1/*-
2 * Copyright (c) 2003-2008 Joseph Koshy
3 * Copyright (c) 2007 The FreeBSD Foundation
4 * All rights reserved.
5 *
6 * Portions of this software were developed by A. Joseph Koshy under
7 * sponsorship from the FreeBSD Foundation and Google, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD$");
34
35#include <sys/param.h>
36#include <sys/eventhandler.h>
37#include <sys/jail.h>
38#include <sys/kernel.h>
39#include <sys/kthread.h>
40#include <sys/limits.h>
41#include <sys/lock.h>
42#include <sys/malloc.h>
43#include <sys/module.h>
44#include <sys/mount.h>
45#include <sys/mutex.h>
46#include <sys/pmc.h>
47#include <sys/pmckern.h>
48#include <sys/pmclog.h>
49#include <sys/priv.h>
50#include <sys/proc.h>
51#include <sys/queue.h>
52#include <sys/resourcevar.h>
53#include <sys/rwlock.h>
54#include <sys/sched.h>
55#include <sys/signalvar.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysent.h>
60#include <sys/systm.h>
61#include <sys/vnode.h>
62
63#include <sys/linker.h>		/* needs to be after <sys/malloc.h> */
64
65#include <machine/atomic.h>
66#include <machine/md_var.h>
67
68#include <vm/vm.h>
69#include <vm/vm_extern.h>
70#include <vm/pmap.h>
71#include <vm/vm_map.h>
72#include <vm/vm_object.h>
73
74#include "hwpmc_soft.h"
75
76/*
77 * Types
78 */
79
80enum pmc_flags {
81	PMC_FLAG_NONE	  = 0x00, /* do nothing */
82	PMC_FLAG_REMOVE   = 0x01, /* atomically remove entry from hash */
83	PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
84};
85
86/*
87 * The offset in sysent where the syscall is allocated.
88 */
89
90static int pmc_syscall_num = NO_SYSCALL;
91struct pmc_cpu		**pmc_pcpu;	 /* per-cpu state */
92pmc_value_t		*pmc_pcpu_saved; /* saved PMC values: CSW handling */
93
94#define	PMC_PCPU_SAVED(C,R)	pmc_pcpu_saved[(R) + md->pmd_npmc*(C)]
95
96struct mtx_pool		*pmc_mtxpool;
97static int		*pmc_pmcdisp;	 /* PMC row dispositions */
98
99#define	PMC_ROW_DISP_IS_FREE(R)		(pmc_pmcdisp[(R)] == 0)
100#define	PMC_ROW_DISP_IS_THREAD(R)	(pmc_pmcdisp[(R)] > 0)
101#define	PMC_ROW_DISP_IS_STANDALONE(R)	(pmc_pmcdisp[(R)] < 0)
102
103#define	PMC_MARK_ROW_FREE(R) do {					  \
104	pmc_pmcdisp[(R)] = 0;						  \
105} while (0)
106
107#define	PMC_MARK_ROW_STANDALONE(R) do {					  \
108	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
109		    __LINE__));						  \
110	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
111	KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()),		  \
112		("[pmc,%d] row disposition error", __LINE__));		  \
113} while (0)
114
115#define	PMC_UNMARK_ROW_STANDALONE(R) do { 				  \
116	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
117	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
118		    __LINE__));						  \
119} while (0)
120
121#define	PMC_MARK_ROW_THREAD(R) do {					  \
122	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
123		    __LINE__));						  \
124	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
125} while (0)
126
127#define	PMC_UNMARK_ROW_THREAD(R) do {					  \
128	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
129	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
130		    __LINE__));						  \
131} while (0)
132
133
134/* various event handlers */
135static eventhandler_tag	pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag,
136    pmc_kld_unload_tag;
137
138/* Module statistics */
139struct pmc_op_getdriverstats pmc_stats;
140
141/* Machine/processor dependent operations */
142static struct pmc_mdep  *md;
143
144/*
145 * Hash tables mapping owner processes and target threads to PMCs.
146 */
147
148struct mtx pmc_processhash_mtx;		/* spin mutex */
149static u_long pmc_processhashmask;
150static LIST_HEAD(pmc_processhash, pmc_process)	*pmc_processhash;
151
152/*
153 * Hash table of PMC owner descriptors.  This table is protected by
154 * the shared PMC "sx" lock.
155 */
156
157static u_long pmc_ownerhashmask;
158static LIST_HEAD(pmc_ownerhash, pmc_owner)	*pmc_ownerhash;
159
160/*
161 * List of PMC owners with system-wide sampling PMCs.
162 */
163
164static LIST_HEAD(, pmc_owner)			pmc_ss_owners;
165
166
167/*
168 * A map of row indices to classdep structures.
169 */
170static struct pmc_classdep **pmc_rowindex_to_classdep;
171
172/*
173 * Prototypes
174 */
175
176#ifdef	DEBUG
177static int	pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
178static int	pmc_debugflags_parse(char *newstr, char *fence);
179#endif
180
181static int	load(struct module *module, int cmd, void *arg);
182static int	pmc_attach_process(struct proc *p, struct pmc *pm);
183static struct pmc *pmc_allocate_pmc_descriptor(void);
184static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
185static int	pmc_attach_one_process(struct proc *p, struct pmc *pm);
186static int	pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
187    int cpu);
188static int	pmc_can_attach(struct pmc *pm, struct proc *p);
189static void	pmc_capture_user_callchain(int cpu, int soft, struct trapframe *tf);
190static void	pmc_cleanup(void);
191static int	pmc_detach_process(struct proc *p, struct pmc *pm);
192static int	pmc_detach_one_process(struct proc *p, struct pmc *pm,
193    int flags);
194static void	pmc_destroy_owner_descriptor(struct pmc_owner *po);
195static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
196static int	pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
197static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
198    pmc_id_t pmc);
199static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
200    uint32_t mode);
201static void	pmc_force_context_switch(void);
202static void	pmc_link_target_process(struct pmc *pm,
203    struct pmc_process *pp);
204static void	pmc_log_all_process_mappings(struct pmc_owner *po);
205static void	pmc_log_kernel_mappings(struct pmc *pm);
206static void	pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
207static void	pmc_maybe_remove_owner(struct pmc_owner *po);
208static void	pmc_process_csw_in(struct thread *td);
209static void	pmc_process_csw_out(struct thread *td);
210static void	pmc_process_exit(void *arg, struct proc *p);
211static void	pmc_process_fork(void *arg, struct proc *p1,
212    struct proc *p2, int n);
213static void	pmc_process_samples(int cpu, int soft);
214static void	pmc_release_pmc_descriptor(struct pmc *pmc);
215static void	pmc_remove_owner(struct pmc_owner *po);
216static void	pmc_remove_process_descriptor(struct pmc_process *pp);
217static void	pmc_restore_cpu_binding(struct pmc_binding *pb);
218static void	pmc_save_cpu_binding(struct pmc_binding *pb);
219static void	pmc_select_cpu(int cpu);
220static int	pmc_start(struct pmc *pm);
221static int	pmc_stop(struct pmc *pm);
222static int	pmc_syscall_handler(struct thread *td, void *syscall_args);
223static void	pmc_unlink_target_process(struct pmc *pmc,
224    struct pmc_process *pp);
225static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
226static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
227static struct pmc_mdep *pmc_generic_cpu_initialize(void);
228static void pmc_generic_cpu_finalize(struct pmc_mdep *md);
229
230/*
231 * Kernel tunables and sysctl(8) interface.
232 */
233
234SYSCTL_DECL(_kern_hwpmc);
235
236static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
237TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "callchaindepth", &pmc_callchaindepth);
238SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_TUN|CTLFLAG_RD,
239    &pmc_callchaindepth, 0, "depth of call chain records");
240
241#ifdef	DEBUG
242struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
243char	pmc_debugstr[PMC_DEBUG_STRSIZE];
244TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
245    sizeof(pmc_debugstr));
246SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
247    CTLTYPE_STRING|CTLFLAG_RW|CTLFLAG_TUN,
248    0, 0, pmc_debugflags_sysctl_handler, "A", "debug flags");
249#endif
250
251/*
252 * kern.hwpmc.hashrows -- determines the number of rows in the
253 * of the hash table used to look up threads
254 */
255
256static int pmc_hashsize = PMC_HASH_SIZE;
257TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "hashsize", &pmc_hashsize);
258SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_TUN|CTLFLAG_RD,
259    &pmc_hashsize, 0, "rows in hash tables");
260
261/*
262 * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
263 */
264
265static int pmc_nsamples = PMC_NSAMPLES;
266TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "nsamples", &pmc_nsamples);
267SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_TUN|CTLFLAG_RD,
268    &pmc_nsamples, 0, "number of PC samples per CPU");
269
270
271/*
272 * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
273 */
274
275static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
276TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "mtxpoolsize", &pmc_mtxpool_size);
277SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_TUN|CTLFLAG_RD,
278    &pmc_mtxpool_size, 0, "size of spin mutex pool");
279
280
281/*
282 * security.bsd.unprivileged_syspmcs -- allow non-root processes to
283 * allocate system-wide PMCs.
284 *
285 * Allowing unprivileged processes to allocate system PMCs is convenient
286 * if system-wide measurements need to be taken concurrently with other
287 * per-process measurements.  This feature is turned off by default.
288 */
289
290static int pmc_unprivileged_syspmcs = 0;
291TUNABLE_INT("security.bsd.unprivileged_syspmcs", &pmc_unprivileged_syspmcs);
292SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RW,
293    &pmc_unprivileged_syspmcs, 0,
294    "allow unprivileged process to allocate system PMCs");
295
296/*
297 * Hash function.  Discard the lower 2 bits of the pointer since
298 * these are always zero for our uses.  The hash multiplier is
299 * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
300 */
301
302#if	LONG_BIT == 64
303#define	_PMC_HM		11400714819323198486u
304#elif	LONG_BIT == 32
305#define	_PMC_HM		2654435769u
306#else
307#error 	Must know the size of 'long' to compile
308#endif
309
310#define	PMC_HASH_PTR(P,M)	((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
311
312/*
313 * Syscall structures
314 */
315
316/* The `sysent' for the new syscall */
317static struct sysent pmc_sysent = {
318	2,			/* sy_narg */
319	pmc_syscall_handler	/* sy_call */
320};
321
322static struct syscall_module_data pmc_syscall_mod = {
323	load,
324	NULL,
325	&pmc_syscall_num,
326	&pmc_sysent,
327	{ 0, NULL }
328};
329
330static moduledata_t pmc_mod = {
331	PMC_MODULE_NAME,
332	syscall_module_handler,
333	&pmc_syscall_mod
334};
335
336DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
337MODULE_VERSION(pmc, PMC_VERSION);
338
339#ifdef	DEBUG
340enum pmc_dbgparse_state {
341	PMCDS_WS,		/* in whitespace */
342	PMCDS_MAJOR,		/* seen a major keyword */
343	PMCDS_MINOR
344};
345
346static int
347pmc_debugflags_parse(char *newstr, char *fence)
348{
349	char c, *p, *q;
350	struct pmc_debugflags *tmpflags;
351	int error, found, *newbits, tmp;
352	size_t kwlen;
353
354	tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK|M_ZERO);
355
356	p = newstr;
357	error = 0;
358
359	for (; p < fence && (c = *p); p++) {
360
361		/* skip white space */
362		if (c == ' ' || c == '\t')
363			continue;
364
365		/* look for a keyword followed by "=" */
366		for (q = p; p < fence && (c = *p) && c != '='; p++)
367			;
368		if (c != '=') {
369			error = EINVAL;
370			goto done;
371		}
372
373		kwlen = p - q;
374		newbits = NULL;
375
376		/* lookup flag group name */
377#define	DBG_SET_FLAG_MAJ(S,F)						\
378		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
379			newbits = &tmpflags->pdb_ ## F;
380
381		DBG_SET_FLAG_MAJ("cpu",		CPU);
382		DBG_SET_FLAG_MAJ("csw",		CSW);
383		DBG_SET_FLAG_MAJ("logging",	LOG);
384		DBG_SET_FLAG_MAJ("module",	MOD);
385		DBG_SET_FLAG_MAJ("md", 		MDP);
386		DBG_SET_FLAG_MAJ("owner",	OWN);
387		DBG_SET_FLAG_MAJ("pmc",		PMC);
388		DBG_SET_FLAG_MAJ("process",	PRC);
389		DBG_SET_FLAG_MAJ("sampling", 	SAM);
390
391		if (newbits == NULL) {
392			error = EINVAL;
393			goto done;
394		}
395
396		p++;		/* skip the '=' */
397
398		/* Now parse the individual flags */
399		tmp = 0;
400	newflag:
401		for (q = p; p < fence && (c = *p); p++)
402			if (c == ' ' || c == '\t' || c == ',')
403				break;
404
405		/* p == fence or c == ws or c == "," or c == 0 */
406
407		if ((kwlen = p - q) == 0) {
408			*newbits = tmp;
409			continue;
410		}
411
412		found = 0;
413#define	DBG_SET_FLAG_MIN(S,F)						\
414		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
415			tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
416
417		/* a '*' denotes all possible flags in the group */
418		if (kwlen == 1 && *q == '*')
419			tmp = found = ~0;
420		/* look for individual flag names */
421		DBG_SET_FLAG_MIN("allocaterow", ALR);
422		DBG_SET_FLAG_MIN("allocate",	ALL);
423		DBG_SET_FLAG_MIN("attach",	ATT);
424		DBG_SET_FLAG_MIN("bind",	BND);
425		DBG_SET_FLAG_MIN("config",	CFG);
426		DBG_SET_FLAG_MIN("exec",	EXC);
427		DBG_SET_FLAG_MIN("exit",	EXT);
428		DBG_SET_FLAG_MIN("find",	FND);
429		DBG_SET_FLAG_MIN("flush",	FLS);
430		DBG_SET_FLAG_MIN("fork",	FRK);
431		DBG_SET_FLAG_MIN("getbuf",	GTB);
432		DBG_SET_FLAG_MIN("hook",	PMH);
433		DBG_SET_FLAG_MIN("init",	INI);
434		DBG_SET_FLAG_MIN("intr",	INT);
435		DBG_SET_FLAG_MIN("linktarget",	TLK);
436		DBG_SET_FLAG_MIN("mayberemove", OMR);
437		DBG_SET_FLAG_MIN("ops",		OPS);
438		DBG_SET_FLAG_MIN("read",	REA);
439		DBG_SET_FLAG_MIN("register",	REG);
440		DBG_SET_FLAG_MIN("release",	REL);
441		DBG_SET_FLAG_MIN("remove",	ORM);
442		DBG_SET_FLAG_MIN("sample",	SAM);
443		DBG_SET_FLAG_MIN("scheduleio",	SIO);
444		DBG_SET_FLAG_MIN("select",	SEL);
445		DBG_SET_FLAG_MIN("signal",	SIG);
446		DBG_SET_FLAG_MIN("swi",		SWI);
447		DBG_SET_FLAG_MIN("swo",		SWO);
448		DBG_SET_FLAG_MIN("start",	STA);
449		DBG_SET_FLAG_MIN("stop",	STO);
450		DBG_SET_FLAG_MIN("syscall",	PMS);
451		DBG_SET_FLAG_MIN("unlinktarget", TUL);
452		DBG_SET_FLAG_MIN("write",	WRI);
453		if (found == 0) {
454			/* unrecognized flag name */
455			error = EINVAL;
456			goto done;
457		}
458
459		if (c == 0 || c == ' ' || c == '\t') {	/* end of flag group */
460			*newbits = tmp;
461			continue;
462		}
463
464		p++;
465		goto newflag;
466	}
467
468	/* save the new flag set */
469	bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
470
471 done:
472	free(tmpflags, M_PMC);
473	return error;
474}
475
476static int
477pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
478{
479	char *fence, *newstr;
480	int error;
481	unsigned int n;
482
483	(void) arg1; (void) arg2; /* unused parameters */
484
485	n = sizeof(pmc_debugstr);
486	newstr = malloc(n, M_PMC, M_WAITOK|M_ZERO);
487	(void) strlcpy(newstr, pmc_debugstr, n);
488
489	error = sysctl_handle_string(oidp, newstr, n, req);
490
491	/* if there is a new string, parse and copy it */
492	if (error == 0 && req->newptr != NULL) {
493		fence = newstr + (n < req->newlen ? n : req->newlen + 1);
494		if ((error = pmc_debugflags_parse(newstr, fence)) == 0)
495			(void) strlcpy(pmc_debugstr, newstr,
496			    sizeof(pmc_debugstr));
497	}
498
499	free(newstr, M_PMC);
500
501	return error;
502}
503#endif
504
505/*
506 * Map a row index to a classdep structure and return the adjusted row
507 * index for the PMC class index.
508 */
509static struct pmc_classdep *
510pmc_ri_to_classdep(struct pmc_mdep *md, int ri, int *adjri)
511{
512	struct pmc_classdep *pcd;
513
514	(void) md;
515
516	KASSERT(ri >= 0 && ri < md->pmd_npmc,
517	    ("[pmc,%d] illegal row-index %d", __LINE__, ri));
518
519	pcd = pmc_rowindex_to_classdep[ri];
520
521	KASSERT(pcd != NULL,
522	    ("[pmc,%d] ri %d null pcd", __LINE__, ri));
523
524	*adjri = ri - pcd->pcd_ri;
525
526	KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
527	    ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
528
529	return (pcd);
530}
531
532/*
533 * Concurrency Control
534 *
535 * The driver manages the following data structures:
536 *
537 *   - target process descriptors, one per target process
538 *   - owner process descriptors (and attached lists), one per owner process
539 *   - lookup hash tables for owner and target processes
540 *   - PMC descriptors (and attached lists)
541 *   - per-cpu hardware state
542 *   - the 'hook' variable through which the kernel calls into
543 *     this module
544 *   - the machine hardware state (managed by the MD layer)
545 *
546 * These data structures are accessed from:
547 *
548 * - thread context-switch code
549 * - interrupt handlers (possibly on multiple cpus)
550 * - kernel threads on multiple cpus running on behalf of user
551 *   processes doing system calls
552 * - this driver's private kernel threads
553 *
554 * = Locks and Locking strategy =
555 *
556 * The driver uses four locking strategies for its operation:
557 *
558 * - The global SX lock "pmc_sx" is used to protect internal
559 *   data structures.
560 *
561 *   Calls into the module by syscall() start with this lock being
562 *   held in exclusive mode.  Depending on the requested operation,
563 *   the lock may be downgraded to 'shared' mode to allow more
564 *   concurrent readers into the module.  Calls into the module from
565 *   other parts of the kernel acquire the lock in shared mode.
566 *
567 *   This SX lock is held in exclusive mode for any operations that
568 *   modify the linkages between the driver's internal data structures.
569 *
570 *   The 'pmc_hook' function pointer is also protected by this lock.
571 *   It is only examined with the sx lock held in exclusive mode.  The
572 *   kernel module is allowed to be unloaded only with the sx lock held
573 *   in exclusive mode.  In normal syscall handling, after acquiring the
574 *   pmc_sx lock we first check that 'pmc_hook' is non-null before
575 *   proceeding.  This prevents races between the thread unloading the module
576 *   and other threads seeking to use the module.
577 *
578 * - Lookups of target process structures and owner process structures
579 *   cannot use the global "pmc_sx" SX lock because these lookups need
580 *   to happen during context switches and in other critical sections
581 *   where sleeping is not allowed.  We protect these lookup tables
582 *   with their own private spin-mutexes, "pmc_processhash_mtx" and
583 *   "pmc_ownerhash_mtx".
584 *
585 * - Interrupt handlers work in a lock free manner.  At interrupt
586 *   time, handlers look at the PMC pointer (phw->phw_pmc) configured
587 *   when the PMC was started.  If this pointer is NULL, the interrupt
588 *   is ignored after updating driver statistics.  We ensure that this
589 *   pointer is set (using an atomic operation if necessary) before the
590 *   PMC hardware is started.  Conversely, this pointer is unset atomically
591 *   only after the PMC hardware is stopped.
592 *
593 *   We ensure that everything needed for the operation of an
594 *   interrupt handler is available without it needing to acquire any
595 *   locks.  We also ensure that a PMC's software state is destroyed only
596 *   after the PMC is taken off hardware (on all CPUs).
597 *
598 * - Context-switch handling with process-private PMCs needs more
599 *   care.
600 *
601 *   A given process may be the target of multiple PMCs.  For example,
602 *   PMCATTACH and PMCDETACH may be requested by a process on one CPU
603 *   while the target process is running on another.  A PMC could also
604 *   be getting released because its owner is exiting.  We tackle
605 *   these situations in the following manner:
606 *
607 *   - each target process structure 'pmc_process' has an array
608 *     of 'struct pmc *' pointers, one for each hardware PMC.
609 *
610 *   - At context switch IN time, each "target" PMC in RUNNING state
611 *     gets started on hardware and a pointer to each PMC is copied into
612 *     the per-cpu phw array.  The 'runcount' for the PMC is
613 *     incremented.
614 *
615 *   - At context switch OUT time, all process-virtual PMCs are stopped
616 *     on hardware.  The saved value is added to the PMCs value field
617 *     only if the PMC is in a non-deleted state (the PMCs state could
618 *     have changed during the current time slice).
619 *
620 *     Note that since in-between a switch IN on a processor and a switch
621 *     OUT, the PMC could have been released on another CPU.  Therefore
622 *     context switch OUT always looks at the hardware state to turn
623 *     OFF PMCs and will update a PMC's saved value only if reachable
624 *     from the target process record.
625 *
626 *   - OP PMCRELEASE could be called on a PMC at any time (the PMC could
627 *     be attached to many processes at the time of the call and could
628 *     be active on multiple CPUs).
629 *
630 *     We prevent further scheduling of the PMC by marking it as in
631 *     state 'DELETED'.  If the runcount of the PMC is non-zero then
632 *     this PMC is currently running on a CPU somewhere.  The thread
633 *     doing the PMCRELEASE operation waits by repeatedly doing a
634 *     pause() till the runcount comes to zero.
635 *
636 * The contents of a PMC descriptor (struct pmc) are protected using
637 * a spin-mutex.  In order to save space, we use a mutex pool.
638 *
639 * In terms of lock types used by witness(4), we use:
640 * - Type "pmc-sx", used by the global SX lock.
641 * - Type "pmc-sleep", for sleep mutexes used by logger threads.
642 * - Type "pmc-per-proc", for protecting PMC owner descriptors.
643 * - Type "pmc-leaf", used for all other spin mutexes.
644 */
645
646/*
647 * save the cpu binding of the current kthread
648 */
649
650static void
651pmc_save_cpu_binding(struct pmc_binding *pb)
652{
653	PMCDBG(CPU,BND,2, "%s", "save-cpu");
654	thread_lock(curthread);
655	pb->pb_bound = sched_is_bound(curthread);
656	pb->pb_cpu   = curthread->td_oncpu;
657	thread_unlock(curthread);
658	PMCDBG(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
659}
660
661/*
662 * restore the cpu binding of the current thread
663 */
664
665static void
666pmc_restore_cpu_binding(struct pmc_binding *pb)
667{
668	PMCDBG(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
669	    curthread->td_oncpu, pb->pb_cpu);
670	thread_lock(curthread);
671	if (pb->pb_bound)
672		sched_bind(curthread, pb->pb_cpu);
673	else
674		sched_unbind(curthread);
675	thread_unlock(curthread);
676	PMCDBG(CPU,BND,2, "%s", "restore-cpu done");
677}
678
679/*
680 * move execution over the specified cpu and bind it there.
681 */
682
683static void
684pmc_select_cpu(int cpu)
685{
686	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
687	    ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
688
689	/* Never move to an inactive CPU. */
690	KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
691	    "CPU %d", __LINE__, cpu));
692
693	PMCDBG(CPU,SEL,2, "select-cpu cpu=%d", cpu);
694	thread_lock(curthread);
695	sched_bind(curthread, cpu);
696	thread_unlock(curthread);
697
698	KASSERT(curthread->td_oncpu == cpu,
699	    ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
700		cpu, curthread->td_oncpu));
701
702	PMCDBG(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
703}
704
705/*
706 * Force a context switch.
707 *
708 * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
709 * guaranteed to force a context switch.
710 */
711
712static void
713pmc_force_context_switch(void)
714{
715
716	pause("pmcctx", 1);
717}
718
719/*
720 * Get the file name for an executable.  This is a simple wrapper
721 * around vn_fullpath(9).
722 */
723
724static void
725pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
726{
727
728	*fullpath = "unknown";
729	*freepath = NULL;
730	vn_fullpath(curthread, v, fullpath, freepath);
731}
732
733/*
734 * remove an process owning PMCs
735 */
736
737void
738pmc_remove_owner(struct pmc_owner *po)
739{
740	struct pmc *pm, *tmp;
741
742	sx_assert(&pmc_sx, SX_XLOCKED);
743
744	PMCDBG(OWN,ORM,1, "remove-owner po=%p", po);
745
746	/* Remove descriptor from the owner hash table */
747	LIST_REMOVE(po, po_next);
748
749	/* release all owned PMC descriptors */
750	LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
751		PMCDBG(OWN,ORM,2, "pmc=%p", pm);
752		KASSERT(pm->pm_owner == po,
753		    ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
754
755		pmc_release_pmc_descriptor(pm);	/* will unlink from the list */
756	}
757
758	KASSERT(po->po_sscount == 0,
759	    ("[pmc,%d] SS count not zero", __LINE__));
760	KASSERT(LIST_EMPTY(&po->po_pmcs),
761	    ("[pmc,%d] PMC list not empty", __LINE__));
762
763	/* de-configure the log file if present */
764	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
765		pmclog_deconfigure_log(po);
766}
767
768/*
769 * remove an owner process record if all conditions are met.
770 */
771
772static void
773pmc_maybe_remove_owner(struct pmc_owner *po)
774{
775
776	PMCDBG(OWN,OMR,1, "maybe-remove-owner po=%p", po);
777
778	/*
779	 * Remove owner record if
780	 * - this process does not own any PMCs
781	 * - this process has not allocated a system-wide sampling buffer
782	 */
783
784	if (LIST_EMPTY(&po->po_pmcs) &&
785	    ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
786		pmc_remove_owner(po);
787		pmc_destroy_owner_descriptor(po);
788	}
789}
790
791/*
792 * Add an association between a target process and a PMC.
793 */
794
795static void
796pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
797{
798	int ri;
799	struct pmc_target *pt;
800
801	sx_assert(&pmc_sx, SX_XLOCKED);
802
803	KASSERT(pm != NULL && pp != NULL,
804	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
805	KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
806	    ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
807		__LINE__, pm, pp->pp_proc->p_pid));
808	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
809	    ("[pmc,%d] Illegal reference count %d for process record %p",
810		__LINE__, pp->pp_refcnt, (void *) pp));
811
812	ri = PMC_TO_ROWINDEX(pm);
813
814	PMCDBG(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
815	    pm, ri, pp);
816
817#ifdef	DEBUG
818	LIST_FOREACH(pt, &pm->pm_targets, pt_next)
819	    if (pt->pt_process == pp)
820		    KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
821				__LINE__, pp, pm));
822#endif
823
824	pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK|M_ZERO);
825	pt->pt_process = pp;
826
827	LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
828
829	atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
830	    (uintptr_t)pm);
831
832	if (pm->pm_owner->po_owner == pp->pp_proc)
833		pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
834
835	/*
836	 * Initialize the per-process values at this row index.
837	 */
838	pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
839	    pm->pm_sc.pm_reloadcount : 0;
840
841	pp->pp_refcnt++;
842
843}
844
845/*
846 * Removes the association between a target process and a PMC.
847 */
848
849static void
850pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
851{
852	int ri;
853	struct proc *p;
854	struct pmc_target *ptgt;
855
856	sx_assert(&pmc_sx, SX_XLOCKED);
857
858	KASSERT(pm != NULL && pp != NULL,
859	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
860
861	KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
862	    ("[pmc,%d] Illegal ref count %d on process record %p",
863		__LINE__, pp->pp_refcnt, (void *) pp));
864
865	ri = PMC_TO_ROWINDEX(pm);
866
867	PMCDBG(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
868	    pm, ri, pp);
869
870	KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
871	    ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
872		ri, pm, pp->pp_pmcs[ri].pp_pmc));
873
874	pp->pp_pmcs[ri].pp_pmc = NULL;
875	pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0;
876
877	/* Remove owner-specific flags */
878	if (pm->pm_owner->po_owner == pp->pp_proc) {
879		pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
880		pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
881	}
882
883	pp->pp_refcnt--;
884
885	/* Remove the target process from the PMC structure */
886	LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
887		if (ptgt->pt_process == pp)
888			break;
889
890	KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
891		    "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
892
893	LIST_REMOVE(ptgt, pt_next);
894	free(ptgt, M_PMC);
895
896	/* if the PMC now lacks targets, send the owner a SIGIO */
897	if (LIST_EMPTY(&pm->pm_targets)) {
898		p = pm->pm_owner->po_owner;
899		PROC_LOCK(p);
900		kern_psignal(p, SIGIO);
901		PROC_UNLOCK(p);
902
903		PMCDBG(PRC,SIG,2, "signalling proc=%p signal=%d", p,
904		    SIGIO);
905	}
906}
907
908/*
909 * Check if PMC 'pm' may be attached to target process 't'.
910 */
911
912static int
913pmc_can_attach(struct pmc *pm, struct proc *t)
914{
915	struct proc *o;		/* pmc owner */
916	struct ucred *oc, *tc;	/* owner, target credentials */
917	int decline_attach, i;
918
919	/*
920	 * A PMC's owner can always attach that PMC to itself.
921	 */
922
923	if ((o = pm->pm_owner->po_owner) == t)
924		return 0;
925
926	PROC_LOCK(o);
927	oc = o->p_ucred;
928	crhold(oc);
929	PROC_UNLOCK(o);
930
931	PROC_LOCK(t);
932	tc = t->p_ucred;
933	crhold(tc);
934	PROC_UNLOCK(t);
935
936	/*
937	 * The effective uid of the PMC owner should match at least one
938	 * of the {effective,real,saved} uids of the target process.
939	 */
940
941	decline_attach = oc->cr_uid != tc->cr_uid &&
942	    oc->cr_uid != tc->cr_svuid &&
943	    oc->cr_uid != tc->cr_ruid;
944
945	/*
946	 * Every one of the target's group ids, must be in the owner's
947	 * group list.
948	 */
949	for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
950		decline_attach = !groupmember(tc->cr_groups[i], oc);
951
952	/* check the read and saved gids too */
953	if (decline_attach == 0)
954		decline_attach = !groupmember(tc->cr_rgid, oc) ||
955		    !groupmember(tc->cr_svgid, oc);
956
957	crfree(tc);
958	crfree(oc);
959
960	return !decline_attach;
961}
962
963/*
964 * Attach a process to a PMC.
965 */
966
967static int
968pmc_attach_one_process(struct proc *p, struct pmc *pm)
969{
970	int ri;
971	char *fullpath, *freepath;
972	struct pmc_process	*pp;
973
974	sx_assert(&pmc_sx, SX_XLOCKED);
975
976	PMCDBG(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
977	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
978
979	/*
980	 * Locate the process descriptor corresponding to process 'p',
981	 * allocating space as needed.
982	 *
983	 * Verify that rowindex 'pm_rowindex' is free in the process
984	 * descriptor.
985	 *
986	 * If not, allocate space for a descriptor and link the
987	 * process descriptor and PMC.
988	 */
989	ri = PMC_TO_ROWINDEX(pm);
990
991	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL)
992		return ENOMEM;
993
994	if (pp->pp_pmcs[ri].pp_pmc == pm) /* already present at slot [ri] */
995		return EEXIST;
996
997	if (pp->pp_pmcs[ri].pp_pmc != NULL)
998		return EBUSY;
999
1000	pmc_link_target_process(pm, pp);
1001
1002	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
1003	    (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
1004		pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
1005
1006	pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
1007
1008	/* issue an attach event to a configured log file */
1009	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
1010		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1011		if (p->p_flag & P_KTHREAD) {
1012			fullpath = kernelname;
1013			freepath = NULL;
1014		} else
1015			pmclog_process_pmcattach(pm, p->p_pid, fullpath);
1016		if (freepath)
1017			free(freepath, M_TEMP);
1018		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1019			pmc_log_process_mappings(pm->pm_owner, p);
1020	}
1021	/* mark process as using HWPMCs */
1022	PROC_LOCK(p);
1023	p->p_flag |= P_HWPMC;
1024	PROC_UNLOCK(p);
1025
1026	return 0;
1027}
1028
1029/*
1030 * Attach a process and optionally its children
1031 */
1032
1033static int
1034pmc_attach_process(struct proc *p, struct pmc *pm)
1035{
1036	int error;
1037	struct proc *top;
1038
1039	sx_assert(&pmc_sx, SX_XLOCKED);
1040
1041	PMCDBG(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
1042	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1043
1044
1045	/*
1046	 * If this PMC successfully allowed a GETMSR operation
1047	 * in the past, disallow further ATTACHes.
1048	 */
1049
1050	if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
1051		return EPERM;
1052
1053	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1054		return pmc_attach_one_process(p, pm);
1055
1056	/*
1057	 * Traverse all child processes, attaching them to
1058	 * this PMC.
1059	 */
1060
1061	sx_slock(&proctree_lock);
1062
1063	top = p;
1064
1065	for (;;) {
1066		if ((error = pmc_attach_one_process(p, pm)) != 0)
1067			break;
1068		if (!LIST_EMPTY(&p->p_children))
1069			p = LIST_FIRST(&p->p_children);
1070		else for (;;) {
1071			if (p == top)
1072				goto done;
1073			if (LIST_NEXT(p, p_sibling)) {
1074				p = LIST_NEXT(p, p_sibling);
1075				break;
1076			}
1077			p = p->p_pptr;
1078		}
1079	}
1080
1081	if (error)
1082		(void) pmc_detach_process(top, pm);
1083
1084 done:
1085	sx_sunlock(&proctree_lock);
1086	return error;
1087}
1088
1089/*
1090 * Detach a process from a PMC.  If there are no other PMCs tracking
1091 * this process, remove the process structure from its hash table.  If
1092 * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
1093 */
1094
1095static int
1096pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
1097{
1098	int ri;
1099	struct pmc_process *pp;
1100
1101	sx_assert(&pmc_sx, SX_XLOCKED);
1102
1103	KASSERT(pm != NULL,
1104	    ("[pmc,%d] null pm pointer", __LINE__));
1105
1106	ri = PMC_TO_ROWINDEX(pm);
1107
1108	PMCDBG(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
1109	    pm, ri, p, p->p_pid, p->p_comm, flags);
1110
1111	if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1112		return ESRCH;
1113
1114	if (pp->pp_pmcs[ri].pp_pmc != pm)
1115		return EINVAL;
1116
1117	pmc_unlink_target_process(pm, pp);
1118
1119	/* Issue a detach entry if a log file is configured */
1120	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
1121		pmclog_process_pmcdetach(pm, p->p_pid);
1122
1123	/*
1124	 * If there are no PMCs targetting this process, we remove its
1125	 * descriptor from the target hash table and unset the P_HWPMC
1126	 * flag in the struct proc.
1127	 */
1128	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1129	    ("[pmc,%d] Illegal refcnt %d for process struct %p",
1130		__LINE__, pp->pp_refcnt, pp));
1131
1132	if (pp->pp_refcnt != 0)	/* still a target of some PMC */
1133		return 0;
1134
1135	pmc_remove_process_descriptor(pp);
1136
1137	if (flags & PMC_FLAG_REMOVE)
1138		free(pp, M_PMC);
1139
1140	PROC_LOCK(p);
1141	p->p_flag &= ~P_HWPMC;
1142	PROC_UNLOCK(p);
1143
1144	return 0;
1145}
1146
1147/*
1148 * Detach a process and optionally its descendants from a PMC.
1149 */
1150
1151static int
1152pmc_detach_process(struct proc *p, struct pmc *pm)
1153{
1154	struct proc *top;
1155
1156	sx_assert(&pmc_sx, SX_XLOCKED);
1157
1158	PMCDBG(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1159	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1160
1161	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1162		return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1163
1164	/*
1165	 * Traverse all children, detaching them from this PMC.  We
1166	 * ignore errors since we could be detaching a PMC from a
1167	 * partially attached proc tree.
1168	 */
1169
1170	sx_slock(&proctree_lock);
1171
1172	top = p;
1173
1174	for (;;) {
1175		(void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1176
1177		if (!LIST_EMPTY(&p->p_children))
1178			p = LIST_FIRST(&p->p_children);
1179		else for (;;) {
1180			if (p == top)
1181				goto done;
1182			if (LIST_NEXT(p, p_sibling)) {
1183				p = LIST_NEXT(p, p_sibling);
1184				break;
1185			}
1186			p = p->p_pptr;
1187		}
1188	}
1189
1190 done:
1191	sx_sunlock(&proctree_lock);
1192
1193	if (LIST_EMPTY(&pm->pm_targets))
1194		pm->pm_flags &= ~PMC_F_ATTACH_DONE;
1195
1196	return 0;
1197}
1198
1199
1200/*
1201 * Thread context switch IN
1202 */
1203
1204static void
1205pmc_process_csw_in(struct thread *td)
1206{
1207	int cpu;
1208	unsigned int adjri, ri;
1209	struct pmc *pm;
1210	struct proc *p;
1211	struct pmc_cpu *pc;
1212	struct pmc_hw *phw;
1213	pmc_value_t newvalue;
1214	struct pmc_process *pp;
1215	struct pmc_classdep *pcd;
1216
1217	p = td->td_proc;
1218
1219	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1220		return;
1221
1222	KASSERT(pp->pp_proc == td->td_proc,
1223	    ("[pmc,%d] not my thread state", __LINE__));
1224
1225	critical_enter(); /* no preemption from this point */
1226
1227	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1228
1229	PMCDBG(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1230	    p->p_pid, p->p_comm, pp);
1231
1232	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1233	    ("[pmc,%d] wierd CPU id %d", __LINE__, cpu));
1234
1235	pc = pmc_pcpu[cpu];
1236
1237	for (ri = 0; ri < md->pmd_npmc; ri++) {
1238
1239		if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1240			continue;
1241
1242		KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
1243		    ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1244			__LINE__, PMC_TO_MODE(pm)));
1245
1246		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1247		    ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1248			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1249
1250		/*
1251		 * Only PMCs that are marked as 'RUNNING' need
1252		 * be placed on hardware.
1253		 */
1254
1255		if (pm->pm_state != PMC_STATE_RUNNING)
1256			continue;
1257
1258		/* increment PMC runcount */
1259		atomic_add_rel_int(&pm->pm_runcount, 1);
1260
1261		/* configure the HWPMC we are going to use. */
1262		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1263		pcd->pcd_config_pmc(cpu, adjri, pm);
1264
1265		phw = pc->pc_hwpmcs[ri];
1266
1267		KASSERT(phw != NULL,
1268		    ("[pmc,%d] null hw pointer", __LINE__));
1269
1270		KASSERT(phw->phw_pmc == pm,
1271		    ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1272			phw->phw_pmc, pm));
1273
1274		/*
1275		 * Write out saved value and start the PMC.
1276		 *
1277		 * Sampling PMCs use a per-process value, while
1278		 * counting mode PMCs use a per-pmc value that is
1279		 * inherited across descendants.
1280		 */
1281		if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1282			mtx_pool_lock_spin(pmc_mtxpool, pm);
1283			newvalue = PMC_PCPU_SAVED(cpu,ri) =
1284			    pp->pp_pmcs[ri].pp_pmcval;
1285			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1286		} else {
1287			KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
1288			    ("[pmc,%d] illegal mode=%d", __LINE__,
1289			    PMC_TO_MODE(pm)));
1290			mtx_pool_lock_spin(pmc_mtxpool, pm);
1291			newvalue = PMC_PCPU_SAVED(cpu, ri) =
1292			    pm->pm_gv.pm_savedvalue;
1293			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1294		}
1295
1296		PMCDBG(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
1297
1298		pcd->pcd_write_pmc(cpu, adjri, newvalue);
1299		pcd->pcd_start_pmc(cpu, adjri);
1300	}
1301
1302	/*
1303	 * perform any other architecture/cpu dependent thread
1304	 * switch-in actions.
1305	 */
1306
1307	(void) (*md->pmd_switch_in)(pc, pp);
1308
1309	critical_exit();
1310
1311}
1312
1313/*
1314 * Thread context switch OUT.
1315 */
1316
1317static void
1318pmc_process_csw_out(struct thread *td)
1319{
1320	int cpu;
1321	int64_t tmp;
1322	struct pmc *pm;
1323	struct proc *p;
1324	enum pmc_mode mode;
1325	struct pmc_cpu *pc;
1326	pmc_value_t newvalue;
1327	unsigned int adjri, ri;
1328	struct pmc_process *pp;
1329	struct pmc_classdep *pcd;
1330
1331
1332	/*
1333	 * Locate our process descriptor; this may be NULL if
1334	 * this process is exiting and we have already removed
1335	 * the process from the target process table.
1336	 *
1337	 * Note that due to kernel preemption, multiple
1338	 * context switches may happen while the process is
1339	 * exiting.
1340	 *
1341	 * Note also that if the target process cannot be
1342	 * found we still need to deconfigure any PMCs that
1343	 * are currently running on hardware.
1344	 */
1345
1346	p = td->td_proc;
1347	pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1348
1349	/*
1350	 * save PMCs
1351	 */
1352
1353	critical_enter();
1354
1355	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1356
1357	PMCDBG(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1358	    p->p_pid, p->p_comm, pp);
1359
1360	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1361	    ("[pmc,%d wierd CPU id %d", __LINE__, cpu));
1362
1363	pc = pmc_pcpu[cpu];
1364
1365	/*
1366	 * When a PMC gets unlinked from a target PMC, it will
1367	 * be removed from the target's pp_pmc[] array.
1368	 *
1369	 * However, on a MP system, the target could have been
1370	 * executing on another CPU at the time of the unlink.
1371	 * So, at context switch OUT time, we need to look at
1372	 * the hardware to determine if a PMC is scheduled on
1373	 * it.
1374	 */
1375
1376	for (ri = 0; ri < md->pmd_npmc; ri++) {
1377
1378		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1379		pm  = NULL;
1380		(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
1381
1382		if (pm == NULL)	/* nothing at this row index */
1383			continue;
1384
1385		mode = PMC_TO_MODE(pm);
1386		if (!PMC_IS_VIRTUAL_MODE(mode))
1387			continue; /* not a process virtual PMC */
1388
1389		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1390		    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1391			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1392
1393		/* Stop hardware if not already stopped */
1394		if (pm->pm_stalled == 0)
1395			pcd->pcd_stop_pmc(cpu, adjri);
1396
1397		/* reduce this PMC's runcount */
1398		atomic_subtract_rel_int(&pm->pm_runcount, 1);
1399
1400		/*
1401		 * If this PMC is associated with this process,
1402		 * save the reading.
1403		 */
1404
1405		if (pp != NULL && pp->pp_pmcs[ri].pp_pmc != NULL) {
1406
1407			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1408			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
1409				pm, ri, pp->pp_pmcs[ri].pp_pmc));
1410
1411			KASSERT(pp->pp_refcnt > 0,
1412			    ("[pmc,%d] pp refcnt = %d", __LINE__,
1413				pp->pp_refcnt));
1414
1415			pcd->pcd_read_pmc(cpu, adjri, &newvalue);
1416
1417			tmp = newvalue - PMC_PCPU_SAVED(cpu,ri);
1418
1419			PMCDBG(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd", cpu, ri,
1420			    tmp);
1421
1422			if (mode == PMC_MODE_TS) {
1423
1424				/*
1425				 * For sampling process-virtual PMCs,
1426				 * we expect the count to be
1427				 * decreasing as the 'value'
1428				 * programmed into the PMC is the
1429				 * number of events to be seen till
1430				 * the next sampling interrupt.
1431				 */
1432				if (tmp < 0)
1433					tmp += pm->pm_sc.pm_reloadcount;
1434				mtx_pool_lock_spin(pmc_mtxpool, pm);
1435				pp->pp_pmcs[ri].pp_pmcval -= tmp;
1436				if ((int64_t) pp->pp_pmcs[ri].pp_pmcval < 0)
1437					pp->pp_pmcs[ri].pp_pmcval +=
1438					    pm->pm_sc.pm_reloadcount;
1439				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1440
1441			} else {
1442
1443				/*
1444				 * For counting process-virtual PMCs,
1445				 * we expect the count to be
1446				 * increasing monotonically, modulo a 64
1447				 * bit wraparound.
1448				 */
1449				KASSERT((int64_t) tmp >= 0,
1450				    ("[pmc,%d] negative increment cpu=%d "
1451				     "ri=%d newvalue=%jx saved=%jx "
1452				     "incr=%jx", __LINE__, cpu, ri,
1453				     newvalue, PMC_PCPU_SAVED(cpu,ri), tmp));
1454
1455				mtx_pool_lock_spin(pmc_mtxpool, pm);
1456				pm->pm_gv.pm_savedvalue += tmp;
1457				pp->pp_pmcs[ri].pp_pmcval += tmp;
1458				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1459
1460				if (pm->pm_flags & PMC_F_LOG_PROCCSW)
1461					pmclog_process_proccsw(pm, pp, tmp);
1462			}
1463		}
1464
1465		/* mark hardware as free */
1466		pcd->pcd_config_pmc(cpu, adjri, NULL);
1467	}
1468
1469	/*
1470	 * perform any other architecture/cpu dependent thread
1471	 * switch out functions.
1472	 */
1473
1474	(void) (*md->pmd_switch_out)(pc, pp);
1475
1476	critical_exit();
1477}
1478
1479/*
1480 * A mapping change for a process.
1481 */
1482
1483static void
1484pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
1485{
1486	int ri;
1487	pid_t pid;
1488	char *fullpath, *freepath;
1489	const struct pmc *pm;
1490	struct pmc_owner *po;
1491	const struct pmc_process *pp;
1492
1493	freepath = fullpath = NULL;
1494	pmc_getfilename((struct vnode *) pkm->pm_file, &fullpath, &freepath);
1495
1496	pid = td->td_proc->p_pid;
1497
1498	/* Inform owners of all system-wide sampling PMCs. */
1499	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1500	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1501		pmclog_process_map_in(po, pid, pkm->pm_address, fullpath);
1502
1503	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1504		goto done;
1505
1506	/*
1507	 * Inform sampling PMC owners tracking this process.
1508	 */
1509	for (ri = 0; ri < md->pmd_npmc; ri++)
1510		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1511		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1512			pmclog_process_map_in(pm->pm_owner,
1513			    pid, pkm->pm_address, fullpath);
1514
1515  done:
1516	if (freepath)
1517		free(freepath, M_TEMP);
1518}
1519
1520
1521/*
1522 * Log an munmap request.
1523 */
1524
1525static void
1526pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
1527{
1528	int ri;
1529	pid_t pid;
1530	struct pmc_owner *po;
1531	const struct pmc *pm;
1532	const struct pmc_process *pp;
1533
1534	pid = td->td_proc->p_pid;
1535
1536	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1537	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1538		pmclog_process_map_out(po, pid, pkm->pm_address,
1539		    pkm->pm_address + pkm->pm_size);
1540
1541	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1542		return;
1543
1544	for (ri = 0; ri < md->pmd_npmc; ri++)
1545		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1546		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1547			pmclog_process_map_out(pm->pm_owner, pid,
1548			    pkm->pm_address, pkm->pm_address + pkm->pm_size);
1549}
1550
1551/*
1552 * Log mapping information about the kernel.
1553 */
1554
1555static void
1556pmc_log_kernel_mappings(struct pmc *pm)
1557{
1558	struct pmc_owner *po;
1559	struct pmckern_map_in *km, *kmbase;
1560
1561	sx_assert(&pmc_sx, SX_LOCKED);
1562	KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
1563	    ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
1564		__LINE__, (void *) pm));
1565
1566	po = pm->pm_owner;
1567
1568	if (po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE)
1569		return;
1570
1571	/*
1572	 * Log the current set of kernel modules.
1573	 */
1574	kmbase = linker_hwpmc_list_objects();
1575	for (km = kmbase; km->pm_file != NULL; km++) {
1576		PMCDBG(LOG,REG,1,"%s %p", (char *) km->pm_file,
1577		    (void *) km->pm_address);
1578		pmclog_process_map_in(po, (pid_t) -1, km->pm_address,
1579		    km->pm_file);
1580	}
1581	free(kmbase, M_LINKER);
1582
1583	po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
1584}
1585
1586/*
1587 * Log the mappings for a single process.
1588 */
1589
1590static void
1591pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
1592{
1593	vm_map_t map;
1594	struct vnode *vp;
1595	struct vmspace *vm;
1596	vm_map_entry_t entry;
1597	vm_offset_t last_end;
1598	u_int last_timestamp;
1599	struct vnode *last_vp;
1600	vm_offset_t start_addr;
1601	vm_object_t obj, lobj, tobj;
1602	char *fullpath, *freepath;
1603
1604	last_vp = NULL;
1605	last_end = (vm_offset_t) 0;
1606	fullpath = freepath = NULL;
1607
1608	if ((vm = vmspace_acquire_ref(p)) == NULL)
1609		return;
1610
1611	map = &vm->vm_map;
1612	vm_map_lock_read(map);
1613
1614	for (entry = map->header.next; entry != &map->header; entry = entry->next) {
1615
1616		if (entry == NULL) {
1617			PMCDBG(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
1618			    "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
1619			break;
1620		}
1621
1622		/*
1623		 * We only care about executable map entries.
1624		 */
1625		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) ||
1626		    !(entry->protection & VM_PROT_EXECUTE) ||
1627		    (entry->object.vm_object == NULL)) {
1628			continue;
1629		}
1630
1631		obj = entry->object.vm_object;
1632		VM_OBJECT_RLOCK(obj);
1633
1634		/*
1635		 * Walk the backing_object list to find the base
1636		 * (non-shadowed) vm_object.
1637		 */
1638		for (lobj = tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
1639			if (tobj != obj)
1640				VM_OBJECT_RLOCK(tobj);
1641			if (lobj != obj)
1642				VM_OBJECT_RUNLOCK(lobj);
1643			lobj = tobj;
1644		}
1645
1646		/*
1647		 * At this point lobj is the base vm_object and it is locked.
1648		 */
1649		if (lobj == NULL) {
1650			PMCDBG(LOG,OPS,2, "hwpmc: lobj unexpectedly NULL! pid=%d "
1651			    "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
1652			VM_OBJECT_RUNLOCK(obj);
1653			continue;
1654		}
1655
1656		if (lobj->type != OBJT_VNODE || lobj->handle == NULL) {
1657			if (lobj != obj)
1658				VM_OBJECT_RUNLOCK(lobj);
1659			VM_OBJECT_RUNLOCK(obj);
1660			continue;
1661		}
1662
1663		/*
1664		 * Skip contiguous regions that point to the same
1665		 * vnode, so we don't emit redundant MAP-IN
1666		 * directives.
1667		 */
1668		if (entry->start == last_end && lobj->handle == last_vp) {
1669			last_end = entry->end;
1670			if (lobj != obj)
1671				VM_OBJECT_RUNLOCK(lobj);
1672			VM_OBJECT_RUNLOCK(obj);
1673			continue;
1674		}
1675
1676		/*
1677		 * We don't want to keep the proc's vm_map or this
1678		 * vm_object locked while we walk the pathname, since
1679		 * vn_fullpath() can sleep.  However, if we drop the
1680		 * lock, it's possible for concurrent activity to
1681		 * modify the vm_map list.  To protect against this,
1682		 * we save the vm_map timestamp before we release the
1683		 * lock, and check it after we reacquire the lock
1684		 * below.
1685		 */
1686		start_addr = entry->start;
1687		last_end = entry->end;
1688		last_timestamp = map->timestamp;
1689		vm_map_unlock_read(map);
1690
1691		vp = lobj->handle;
1692		vref(vp);
1693		if (lobj != obj)
1694			VM_OBJECT_RUNLOCK(lobj);
1695
1696		VM_OBJECT_RUNLOCK(obj);
1697
1698		freepath = NULL;
1699		pmc_getfilename(vp, &fullpath, &freepath);
1700		last_vp = vp;
1701
1702		vrele(vp);
1703
1704		vp = NULL;
1705		pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
1706		if (freepath)
1707			free(freepath, M_TEMP);
1708
1709		vm_map_lock_read(map);
1710
1711		/*
1712		 * If our saved timestamp doesn't match, this means
1713		 * that the vm_map was modified out from under us and
1714		 * we can't trust our current "entry" pointer.  Do a
1715		 * new lookup for this entry.  If there is no entry
1716		 * for this address range, vm_map_lookup_entry() will
1717		 * return the previous one, so we always want to go to
1718		 * entry->next on the next loop iteration.
1719		 *
1720		 * There is an edge condition here that can occur if
1721		 * there is no entry at or before this address.  In
1722		 * this situation, vm_map_lookup_entry returns
1723		 * &map->header, which would cause our loop to abort
1724		 * without processing the rest of the map.  However,
1725		 * in practice this will never happen for process
1726		 * vm_map.  This is because the executable's text
1727		 * segment is the first mapping in the proc's address
1728		 * space, and this mapping is never removed until the
1729		 * process exits, so there will always be a non-header
1730		 * entry at or before the requested address for
1731		 * vm_map_lookup_entry to return.
1732		 */
1733		if (map->timestamp != last_timestamp)
1734			vm_map_lookup_entry(map, last_end - 1, &entry);
1735	}
1736
1737	vm_map_unlock_read(map);
1738	vmspace_free(vm);
1739	return;
1740}
1741
1742/*
1743 * Log mappings for all processes in the system.
1744 */
1745
1746static void
1747pmc_log_all_process_mappings(struct pmc_owner *po)
1748{
1749	struct proc *p, *top;
1750
1751	sx_assert(&pmc_sx, SX_XLOCKED);
1752
1753	if ((p = pfind(1)) == NULL)
1754		panic("[pmc,%d] Cannot find init", __LINE__);
1755
1756	PROC_UNLOCK(p);
1757
1758	sx_slock(&proctree_lock);
1759
1760	top = p;
1761
1762	for (;;) {
1763		pmc_log_process_mappings(po, p);
1764		if (!LIST_EMPTY(&p->p_children))
1765			p = LIST_FIRST(&p->p_children);
1766		else for (;;) {
1767			if (p == top)
1768				goto done;
1769			if (LIST_NEXT(p, p_sibling)) {
1770				p = LIST_NEXT(p, p_sibling);
1771				break;
1772			}
1773			p = p->p_pptr;
1774		}
1775	}
1776 done:
1777	sx_sunlock(&proctree_lock);
1778}
1779
1780/*
1781 * The 'hook' invoked from the kernel proper
1782 */
1783
1784
1785#ifdef	DEBUG
1786const char *pmc_hooknames[] = {
1787	/* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
1788	"",
1789	"EXEC",
1790	"CSW-IN",
1791	"CSW-OUT",
1792	"SAMPLE",
1793	"UNUSED1",
1794	"UNUSED2",
1795	"MMAP",
1796	"MUNMAP",
1797	"CALLCHAIN-NMI",
1798	"CALLCHAIN-SOFT",
1799	"SOFTSAMPLING"
1800};
1801#endif
1802
1803static int
1804pmc_hook_handler(struct thread *td, int function, void *arg)
1805{
1806
1807	PMCDBG(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
1808	    pmc_hooknames[function], arg);
1809
1810	switch (function)
1811	{
1812
1813	/*
1814	 * Process exec()
1815	 */
1816
1817	case PMC_FN_PROCESS_EXEC:
1818	{
1819		char *fullpath, *freepath;
1820		unsigned int ri;
1821		int is_using_hwpmcs;
1822		struct pmc *pm;
1823		struct proc *p;
1824		struct pmc_owner *po;
1825		struct pmc_process *pp;
1826		struct pmckern_procexec *pk;
1827
1828		sx_assert(&pmc_sx, SX_XLOCKED);
1829
1830		p = td->td_proc;
1831		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1832
1833		pk = (struct pmckern_procexec *) arg;
1834
1835		/* Inform owners of SS mode PMCs of the exec event. */
1836		LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1837		    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1838			    pmclog_process_procexec(po, PMC_ID_INVALID,
1839				p->p_pid, pk->pm_entryaddr, fullpath);
1840
1841		PROC_LOCK(p);
1842		is_using_hwpmcs = p->p_flag & P_HWPMC;
1843		PROC_UNLOCK(p);
1844
1845		if (!is_using_hwpmcs) {
1846			if (freepath)
1847				free(freepath, M_TEMP);
1848			break;
1849		}
1850
1851		/*
1852		 * PMCs are not inherited across an exec():  remove any
1853		 * PMCs that this process is the owner of.
1854		 */
1855
1856		if ((po = pmc_find_owner_descriptor(p)) != NULL) {
1857			pmc_remove_owner(po);
1858			pmc_destroy_owner_descriptor(po);
1859		}
1860
1861		/*
1862		 * If the process being exec'ed is not the target of any
1863		 * PMC, we are done.
1864		 */
1865		if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
1866			if (freepath)
1867				free(freepath, M_TEMP);
1868			break;
1869		}
1870
1871		/*
1872		 * Log the exec event to all monitoring owners.  Skip
1873		 * owners who have already recieved the event because
1874		 * they had system sampling PMCs active.
1875		 */
1876		for (ri = 0; ri < md->pmd_npmc; ri++)
1877			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
1878				po = pm->pm_owner;
1879				if (po->po_sscount == 0 &&
1880				    po->po_flags & PMC_PO_OWNS_LOGFILE)
1881					pmclog_process_procexec(po, pm->pm_id,
1882					    p->p_pid, pk->pm_entryaddr,
1883					    fullpath);
1884			}
1885
1886		if (freepath)
1887			free(freepath, M_TEMP);
1888
1889
1890		PMCDBG(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
1891		    p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
1892
1893		if (pk->pm_credentialschanged == 0) /* no change */
1894			break;
1895
1896		/*
1897		 * If the newly exec()'ed process has a different credential
1898		 * than before, allow it to be the target of a PMC only if
1899		 * the PMC's owner has sufficient priviledge.
1900		 */
1901
1902		for (ri = 0; ri < md->pmd_npmc; ri++)
1903			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL)
1904				if (pmc_can_attach(pm, td->td_proc) != 0)
1905					pmc_detach_one_process(td->td_proc,
1906					    pm, PMC_FLAG_NONE);
1907
1908		KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1909		    ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__,
1910			pp->pp_refcnt, pp));
1911
1912		/*
1913		 * If this process is no longer the target of any
1914		 * PMCs, we can remove the process entry and free
1915		 * up space.
1916		 */
1917
1918		if (pp->pp_refcnt == 0) {
1919			pmc_remove_process_descriptor(pp);
1920			free(pp, M_PMC);
1921			break;
1922		}
1923
1924	}
1925	break;
1926
1927	case PMC_FN_CSW_IN:
1928		pmc_process_csw_in(td);
1929		break;
1930
1931	case PMC_FN_CSW_OUT:
1932		pmc_process_csw_out(td);
1933		break;
1934
1935	/*
1936	 * Process accumulated PC samples.
1937	 *
1938	 * This function is expected to be called by hardclock() for
1939	 * each CPU that has accumulated PC samples.
1940	 *
1941	 * This function is to be executed on the CPU whose samples
1942	 * are being processed.
1943	 */
1944	case PMC_FN_DO_SAMPLES:
1945
1946		/*
1947		 * Clear the cpu specific bit in the CPU mask before
1948		 * do the rest of the processing.  If the NMI handler
1949		 * gets invoked after the "atomic_clear_int()" call
1950		 * below but before "pmc_process_samples()" gets
1951		 * around to processing the interrupt, then we will
1952		 * come back here at the next hardclock() tick (and
1953		 * may find nothing to do if "pmc_process_samples()"
1954		 * had already processed the interrupt).  We don't
1955		 * lose the interrupt sample.
1956		 */
1957		CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmc_cpumask);
1958		pmc_process_samples(PCPU_GET(cpuid), PMC_HR);
1959		pmc_process_samples(PCPU_GET(cpuid), PMC_SR);
1960		break;
1961
1962	case PMC_FN_MMAP:
1963		sx_assert(&pmc_sx, SX_LOCKED);
1964		pmc_process_mmap(td, (struct pmckern_map_in *) arg);
1965		break;
1966
1967	case PMC_FN_MUNMAP:
1968		sx_assert(&pmc_sx, SX_LOCKED);
1969		pmc_process_munmap(td, (struct pmckern_map_out *) arg);
1970		break;
1971
1972	case PMC_FN_USER_CALLCHAIN:
1973		/*
1974		 * Record a call chain.
1975		 */
1976		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
1977		    __LINE__));
1978
1979		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
1980		    (struct trapframe *) arg);
1981		td->td_pflags &= ~TDP_CALLCHAIN;
1982		break;
1983
1984	case PMC_FN_USER_CALLCHAIN_SOFT:
1985		/*
1986		 * Record a call chain.
1987		 */
1988		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
1989		    __LINE__));
1990		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_SR,
1991		    (struct trapframe *) arg);
1992		td->td_pflags &= ~TDP_CALLCHAIN;
1993		break;
1994
1995	case PMC_FN_SOFT_SAMPLING:
1996		/*
1997		 * Call soft PMC sampling intr.
1998		 */
1999		pmc_soft_intr((struct pmckern_soft *) arg);
2000		break;
2001
2002	default:
2003#ifdef	DEBUG
2004		KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
2005#endif
2006		break;
2007
2008	}
2009
2010	return 0;
2011}
2012
2013/*
2014 * allocate a 'struct pmc_owner' descriptor in the owner hash table.
2015 */
2016
2017static struct pmc_owner *
2018pmc_allocate_owner_descriptor(struct proc *p)
2019{
2020	uint32_t hindex;
2021	struct pmc_owner *po;
2022	struct pmc_ownerhash *poh;
2023
2024	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2025	poh = &pmc_ownerhash[hindex];
2026
2027	/* allocate space for N pointers and one descriptor struct */
2028	po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK|M_ZERO);
2029	po->po_owner = p;
2030	LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
2031
2032	TAILQ_INIT(&po->po_logbuffers);
2033	mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
2034
2035	PMCDBG(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
2036	    p, p->p_pid, p->p_comm, po);
2037
2038	return po;
2039}
2040
2041static void
2042pmc_destroy_owner_descriptor(struct pmc_owner *po)
2043{
2044
2045	PMCDBG(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
2046	    po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
2047
2048	mtx_destroy(&po->po_mtx);
2049	free(po, M_PMC);
2050}
2051
2052/*
2053 * find the descriptor corresponding to process 'p', adding or removing it
2054 * as specified by 'mode'.
2055 */
2056
2057static struct pmc_process *
2058pmc_find_process_descriptor(struct proc *p, uint32_t mode)
2059{
2060	uint32_t hindex;
2061	struct pmc_process *pp, *ppnew;
2062	struct pmc_processhash *pph;
2063
2064	hindex = PMC_HASH_PTR(p, pmc_processhashmask);
2065	pph = &pmc_processhash[hindex];
2066
2067	ppnew = NULL;
2068
2069	/*
2070	 * Pre-allocate memory in the FIND_ALLOCATE case since we
2071	 * cannot call malloc(9) once we hold a spin lock.
2072	 */
2073	if (mode & PMC_FLAG_ALLOCATE)
2074		ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
2075		    sizeof(struct pmc_targetstate), M_PMC, M_WAITOK|M_ZERO);
2076
2077	mtx_lock_spin(&pmc_processhash_mtx);
2078	LIST_FOREACH(pp, pph, pp_next)
2079	    if (pp->pp_proc == p)
2080		    break;
2081
2082	if ((mode & PMC_FLAG_REMOVE) && pp != NULL)
2083		LIST_REMOVE(pp, pp_next);
2084
2085	if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL &&
2086	    ppnew != NULL) {
2087		ppnew->pp_proc = p;
2088		LIST_INSERT_HEAD(pph, ppnew, pp_next);
2089		pp = ppnew;
2090		ppnew = NULL;
2091	}
2092	mtx_unlock_spin(&pmc_processhash_mtx);
2093
2094	if (pp != NULL && ppnew != NULL)
2095		free(ppnew, M_PMC);
2096
2097	return pp;
2098}
2099
2100/*
2101 * remove a process descriptor from the process hash table.
2102 */
2103
2104static void
2105pmc_remove_process_descriptor(struct pmc_process *pp)
2106{
2107	KASSERT(pp->pp_refcnt == 0,
2108	    ("[pmc,%d] Removing process descriptor %p with count %d",
2109		__LINE__, pp, pp->pp_refcnt));
2110
2111	mtx_lock_spin(&pmc_processhash_mtx);
2112	LIST_REMOVE(pp, pp_next);
2113	mtx_unlock_spin(&pmc_processhash_mtx);
2114}
2115
2116
2117/*
2118 * find an owner descriptor corresponding to proc 'p'
2119 */
2120
2121static struct pmc_owner *
2122pmc_find_owner_descriptor(struct proc *p)
2123{
2124	uint32_t hindex;
2125	struct pmc_owner *po;
2126	struct pmc_ownerhash *poh;
2127
2128	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2129	poh = &pmc_ownerhash[hindex];
2130
2131	po = NULL;
2132	LIST_FOREACH(po, poh, po_next)
2133	    if (po->po_owner == p)
2134		    break;
2135
2136	PMCDBG(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
2137	    "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
2138
2139	return po;
2140}
2141
2142/*
2143 * pmc_allocate_pmc_descriptor
2144 *
2145 * Allocate a pmc descriptor and initialize its
2146 * fields.
2147 */
2148
2149static struct pmc *
2150pmc_allocate_pmc_descriptor(void)
2151{
2152	struct pmc *pmc;
2153
2154	pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK|M_ZERO);
2155
2156	PMCDBG(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
2157
2158	return pmc;
2159}
2160
2161/*
2162 * Destroy a pmc descriptor.
2163 */
2164
2165static void
2166pmc_destroy_pmc_descriptor(struct pmc *pm)
2167{
2168	(void) pm;
2169
2170#ifdef	DEBUG
2171	KASSERT(pm->pm_state == PMC_STATE_DELETED ||
2172	    pm->pm_state == PMC_STATE_FREE,
2173	    ("[pmc,%d] destroying non-deleted PMC", __LINE__));
2174	KASSERT(LIST_EMPTY(&pm->pm_targets),
2175	    ("[pmc,%d] destroying pmc with targets", __LINE__));
2176	KASSERT(pm->pm_owner == NULL,
2177	    ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
2178	KASSERT(pm->pm_runcount == 0,
2179	    ("[pmc,%d] pmc has non-zero run count %d", __LINE__,
2180		pm->pm_runcount));
2181#endif
2182}
2183
2184static void
2185pmc_wait_for_pmc_idle(struct pmc *pm)
2186{
2187#ifdef DEBUG
2188	volatile int maxloop;
2189
2190	maxloop = 100 * pmc_cpu_max();
2191#endif
2192	/*
2193	 * Loop (with a forced context switch) till the PMC's runcount
2194	 * comes down to zero.
2195	 */
2196	while (atomic_load_acq_32(&pm->pm_runcount) > 0) {
2197#ifdef DEBUG
2198		maxloop--;
2199		KASSERT(maxloop > 0,
2200		    ("[pmc,%d] (ri%d, rc%d) waiting too long for "
2201			"pmc to be free", __LINE__,
2202			PMC_TO_ROWINDEX(pm), pm->pm_runcount));
2203#endif
2204		pmc_force_context_switch();
2205	}
2206}
2207
2208/*
2209 * This function does the following things:
2210 *
2211 *  - detaches the PMC from hardware
2212 *  - unlinks all target threads that were attached to it
2213 *  - removes the PMC from its owner's list
2214 *  - destroy's the PMC private mutex
2215 *
2216 * Once this function completes, the given pmc pointer can be safely
2217 * FREE'd by the caller.
2218 */
2219
2220static void
2221pmc_release_pmc_descriptor(struct pmc *pm)
2222{
2223	enum pmc_mode mode;
2224	struct pmc_hw *phw;
2225	u_int adjri, ri, cpu;
2226	struct pmc_owner *po;
2227	struct pmc_binding pb;
2228	struct pmc_process *pp;
2229	struct pmc_classdep *pcd;
2230	struct pmc_target *ptgt, *tmp;
2231
2232	sx_assert(&pmc_sx, SX_XLOCKED);
2233
2234	KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
2235
2236	ri   = PMC_TO_ROWINDEX(pm);
2237	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2238	mode = PMC_TO_MODE(pm);
2239
2240	PMCDBG(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
2241	    mode);
2242
2243	/*
2244	 * First, we take the PMC off hardware.
2245	 */
2246	cpu = 0;
2247	if (PMC_IS_SYSTEM_MODE(mode)) {
2248
2249		/*
2250		 * A system mode PMC runs on a specific CPU.  Switch
2251		 * to this CPU and turn hardware off.
2252		 */
2253		pmc_save_cpu_binding(&pb);
2254
2255		cpu = PMC_TO_CPU(pm);
2256
2257		pmc_select_cpu(cpu);
2258
2259		/* switch off non-stalled CPUs */
2260		if (pm->pm_state == PMC_STATE_RUNNING &&
2261		    pm->pm_stalled == 0) {
2262
2263			phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
2264
2265			KASSERT(phw->phw_pmc == pm,
2266			    ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
2267				__LINE__, ri, phw->phw_pmc, pm));
2268			PMCDBG(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
2269
2270			critical_enter();
2271			pcd->pcd_stop_pmc(cpu, adjri);
2272			critical_exit();
2273		}
2274
2275		PMCDBG(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
2276
2277		critical_enter();
2278		pcd->pcd_config_pmc(cpu, adjri, NULL);
2279		critical_exit();
2280
2281		/* adjust the global and process count of SS mode PMCs */
2282		if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
2283			po = pm->pm_owner;
2284			po->po_sscount--;
2285			if (po->po_sscount == 0) {
2286				atomic_subtract_rel_int(&pmc_ss_count, 1);
2287				LIST_REMOVE(po, po_ssnext);
2288			}
2289		}
2290
2291		pm->pm_state = PMC_STATE_DELETED;
2292
2293		pmc_restore_cpu_binding(&pb);
2294
2295		/*
2296		 * We could have references to this PMC structure in
2297		 * the per-cpu sample queues.  Wait for the queue to
2298		 * drain.
2299		 */
2300		pmc_wait_for_pmc_idle(pm);
2301
2302	} else if (PMC_IS_VIRTUAL_MODE(mode)) {
2303
2304		/*
2305		 * A virtual PMC could be running on multiple CPUs at
2306		 * a given instant.
2307		 *
2308		 * By marking its state as DELETED, we ensure that
2309		 * this PMC is never further scheduled on hardware.
2310		 *
2311		 * Then we wait till all CPUs are done with this PMC.
2312		 */
2313		pm->pm_state = PMC_STATE_DELETED;
2314
2315
2316		/* Wait for the PMCs runcount to come to zero. */
2317		pmc_wait_for_pmc_idle(pm);
2318
2319		/*
2320		 * At this point the PMC is off all CPUs and cannot be
2321		 * freshly scheduled onto a CPU.  It is now safe to
2322		 * unlink all targets from this PMC.  If a
2323		 * process-record's refcount falls to zero, we remove
2324		 * it from the hash table.  The module-wide SX lock
2325		 * protects us from races.
2326		 */
2327		LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
2328			pp = ptgt->pt_process;
2329			pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
2330
2331			PMCDBG(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
2332
2333			/*
2334			 * If the target process record shows that no
2335			 * PMCs are attached to it, reclaim its space.
2336			 */
2337
2338			if (pp->pp_refcnt == 0) {
2339				pmc_remove_process_descriptor(pp);
2340				free(pp, M_PMC);
2341			}
2342		}
2343
2344		cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
2345
2346	}
2347
2348	/*
2349	 * Release any MD resources
2350	 */
2351	(void) pcd->pcd_release_pmc(cpu, adjri, pm);
2352
2353	/*
2354	 * Update row disposition
2355	 */
2356
2357	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
2358		PMC_UNMARK_ROW_STANDALONE(ri);
2359	else
2360		PMC_UNMARK_ROW_THREAD(ri);
2361
2362	/* unlink from the owner's list */
2363	if (pm->pm_owner) {
2364		LIST_REMOVE(pm, pm_next);
2365		pm->pm_owner = NULL;
2366	}
2367
2368	pmc_destroy_pmc_descriptor(pm);
2369}
2370
2371/*
2372 * Register an owner and a pmc.
2373 */
2374
2375static int
2376pmc_register_owner(struct proc *p, struct pmc *pmc)
2377{
2378	struct pmc_owner *po;
2379
2380	sx_assert(&pmc_sx, SX_XLOCKED);
2381
2382	if ((po = pmc_find_owner_descriptor(p)) == NULL)
2383		if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
2384			return ENOMEM;
2385
2386	KASSERT(pmc->pm_owner == NULL,
2387	    ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
2388	pmc->pm_owner  = po;
2389
2390	LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
2391
2392	PROC_LOCK(p);
2393	p->p_flag |= P_HWPMC;
2394	PROC_UNLOCK(p);
2395
2396	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
2397		pmclog_process_pmcallocate(pmc);
2398
2399	PMCDBG(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
2400	    po, pmc);
2401
2402	return 0;
2403}
2404
2405/*
2406 * Return the current row disposition:
2407 * == 0 => FREE
2408 *  > 0 => PROCESS MODE
2409 *  < 0 => SYSTEM MODE
2410 */
2411
2412int
2413pmc_getrowdisp(int ri)
2414{
2415	return pmc_pmcdisp[ri];
2416}
2417
2418/*
2419 * Check if a PMC at row index 'ri' can be allocated to the current
2420 * process.
2421 *
2422 * Allocation can fail if:
2423 *   - the current process is already being profiled by a PMC at index 'ri',
2424 *     attached to it via OP_PMCATTACH.
2425 *   - the current process has already allocated a PMC at index 'ri'
2426 *     via OP_ALLOCATE.
2427 */
2428
2429static int
2430pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
2431{
2432	enum pmc_mode mode;
2433	struct pmc *pm;
2434	struct pmc_owner *po;
2435	struct pmc_process *pp;
2436
2437	PMCDBG(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
2438	    "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
2439
2440	/*
2441	 * We shouldn't have already allocated a process-mode PMC at
2442	 * row index 'ri'.
2443	 *
2444	 * We shouldn't have allocated a system-wide PMC on the same
2445	 * CPU and same RI.
2446	 */
2447	if ((po = pmc_find_owner_descriptor(p)) != NULL)
2448		LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
2449		    if (PMC_TO_ROWINDEX(pm) == ri) {
2450			    mode = PMC_TO_MODE(pm);
2451			    if (PMC_IS_VIRTUAL_MODE(mode))
2452				    return EEXIST;
2453			    if (PMC_IS_SYSTEM_MODE(mode) &&
2454				(int) PMC_TO_CPU(pm) == cpu)
2455				    return EEXIST;
2456		    }
2457	        }
2458
2459	/*
2460	 * We also shouldn't be the target of any PMC at this index
2461	 * since otherwise a PMC_ATTACH to ourselves will fail.
2462	 */
2463	if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
2464		if (pp->pp_pmcs[ri].pp_pmc)
2465			return EEXIST;
2466
2467	PMCDBG(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
2468	    p, p->p_pid, p->p_comm, ri);
2469
2470	return 0;
2471}
2472
2473/*
2474 * Check if a given PMC at row index 'ri' can be currently used in
2475 * mode 'mode'.
2476 */
2477
2478static int
2479pmc_can_allocate_row(int ri, enum pmc_mode mode)
2480{
2481	enum pmc_disp	disp;
2482
2483	sx_assert(&pmc_sx, SX_XLOCKED);
2484
2485	PMCDBG(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
2486
2487	if (PMC_IS_SYSTEM_MODE(mode))
2488		disp = PMC_DISP_STANDALONE;
2489	else
2490		disp = PMC_DISP_THREAD;
2491
2492	/*
2493	 * check disposition for PMC row 'ri':
2494	 *
2495	 * Expected disposition		Row-disposition		Result
2496	 *
2497	 * STANDALONE			STANDALONE or FREE	proceed
2498	 * STANDALONE			THREAD			fail
2499	 * THREAD			THREAD or FREE		proceed
2500	 * THREAD			STANDALONE		fail
2501	 */
2502
2503	if (!PMC_ROW_DISP_IS_FREE(ri) &&
2504	    !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
2505	    !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
2506		return EBUSY;
2507
2508	/*
2509	 * All OK
2510	 */
2511
2512	PMCDBG(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
2513
2514	return 0;
2515
2516}
2517
2518/*
2519 * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
2520 */
2521
2522static struct pmc *
2523pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
2524{
2525	struct pmc *pm;
2526
2527	KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2528	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2529		PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
2530
2531	LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2532	    if (pm->pm_id == pmcid)
2533		    return pm;
2534
2535	return NULL;
2536}
2537
2538static int
2539pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
2540{
2541
2542	struct pmc *pm;
2543	struct pmc_owner *po;
2544
2545	PMCDBG(PMC,FND,1, "find-pmc id=%d", pmcid);
2546
2547	if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL)
2548		return ESRCH;
2549
2550	if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
2551		return EINVAL;
2552
2553	PMCDBG(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
2554
2555	*pmc = pm;
2556	return 0;
2557}
2558
2559/*
2560 * Start a PMC.
2561 */
2562
2563static int
2564pmc_start(struct pmc *pm)
2565{
2566	enum pmc_mode mode;
2567	struct pmc_owner *po;
2568	struct pmc_binding pb;
2569	struct pmc_classdep *pcd;
2570	int adjri, error, cpu, ri;
2571
2572	KASSERT(pm != NULL,
2573	    ("[pmc,%d] null pm", __LINE__));
2574
2575	mode = PMC_TO_MODE(pm);
2576	ri   = PMC_TO_ROWINDEX(pm);
2577	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2578
2579	error = 0;
2580
2581	PMCDBG(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
2582
2583	po = pm->pm_owner;
2584
2585	/*
2586	 * Disallow PMCSTART if a logfile is required but has not been
2587	 * configured yet.
2588	 */
2589	if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) &&
2590	    (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
2591		return (EDOOFUS);	/* programming error */
2592
2593	/*
2594	 * If this is a sampling mode PMC, log mapping information for
2595	 * the kernel modules that are currently loaded.
2596	 */
2597	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
2598	    pmc_log_kernel_mappings(pm);
2599
2600	if (PMC_IS_VIRTUAL_MODE(mode)) {
2601
2602		/*
2603		 * If a PMCATTACH has never been done on this PMC,
2604		 * attach it to its owner process.
2605		 */
2606
2607		if (LIST_EMPTY(&pm->pm_targets))
2608			error = (pm->pm_flags & PMC_F_ATTACH_DONE) ? ESRCH :
2609			    pmc_attach_process(po->po_owner, pm);
2610
2611		/*
2612		 * If the PMC is attached to its owner, then force a context
2613		 * switch to ensure that the MD state gets set correctly.
2614		 */
2615
2616		if (error == 0) {
2617			pm->pm_state = PMC_STATE_RUNNING;
2618			if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER)
2619				pmc_force_context_switch();
2620		}
2621
2622		return (error);
2623	}
2624
2625
2626	/*
2627	 * A system-wide PMC.
2628	 *
2629	 * Add the owner to the global list if this is a system-wide
2630	 * sampling PMC.
2631	 */
2632
2633	if (mode == PMC_MODE_SS) {
2634		if (po->po_sscount == 0) {
2635			LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
2636			atomic_add_rel_int(&pmc_ss_count, 1);
2637			PMCDBG(PMC,OPS,1, "po=%p in global list", po);
2638		}
2639		po->po_sscount++;
2640
2641		/*
2642		 * Log mapping information for all existing processes in the
2643		 * system.  Subsequent mappings are logged as they happen;
2644		 * see pmc_process_mmap().
2645		 */
2646		if (po->po_logprocmaps == 0) {
2647			pmc_log_all_process_mappings(po);
2648			po->po_logprocmaps = 1;
2649		}
2650	}
2651
2652	/*
2653	 * Move to the CPU associated with this
2654	 * PMC, and start the hardware.
2655	 */
2656
2657	pmc_save_cpu_binding(&pb);
2658
2659	cpu = PMC_TO_CPU(pm);
2660
2661	if (!pmc_cpu_is_active(cpu))
2662		return (ENXIO);
2663
2664	pmc_select_cpu(cpu);
2665
2666	/*
2667	 * global PMCs are configured at allocation time
2668	 * so write out the initial value and start the PMC.
2669	 */
2670
2671	pm->pm_state = PMC_STATE_RUNNING;
2672
2673	critical_enter();
2674	if ((error = pcd->pcd_write_pmc(cpu, adjri,
2675		 PMC_IS_SAMPLING_MODE(mode) ?
2676		 pm->pm_sc.pm_reloadcount :
2677		 pm->pm_sc.pm_initial)) == 0)
2678		error = pcd->pcd_start_pmc(cpu, adjri);
2679	critical_exit();
2680
2681	pmc_restore_cpu_binding(&pb);
2682
2683	return (error);
2684}
2685
2686/*
2687 * Stop a PMC.
2688 */
2689
2690static int
2691pmc_stop(struct pmc *pm)
2692{
2693	struct pmc_owner *po;
2694	struct pmc_binding pb;
2695	struct pmc_classdep *pcd;
2696	int adjri, cpu, error, ri;
2697
2698	KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
2699
2700	PMCDBG(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm,
2701	    PMC_TO_MODE(pm), PMC_TO_ROWINDEX(pm));
2702
2703	pm->pm_state = PMC_STATE_STOPPED;
2704
2705	/*
2706	 * If the PMC is a virtual mode one, changing the state to
2707	 * non-RUNNING is enough to ensure that the PMC never gets
2708	 * scheduled.
2709	 *
2710	 * If this PMC is current running on a CPU, then it will
2711	 * handled correctly at the time its target process is context
2712	 * switched out.
2713	 */
2714
2715	if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
2716		return 0;
2717
2718	/*
2719	 * A system-mode PMC.  Move to the CPU associated with
2720	 * this PMC, and stop the hardware.  We update the
2721	 * 'initial count' so that a subsequent PMCSTART will
2722	 * resume counting from the current hardware count.
2723	 */
2724
2725	pmc_save_cpu_binding(&pb);
2726
2727	cpu = PMC_TO_CPU(pm);
2728
2729	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
2730	    ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
2731
2732	if (!pmc_cpu_is_active(cpu))
2733		return ENXIO;
2734
2735	pmc_select_cpu(cpu);
2736
2737	ri = PMC_TO_ROWINDEX(pm);
2738	pcd = pmc_ri_to_classdep(md, ri, &adjri);
2739
2740	critical_enter();
2741	if ((error = pcd->pcd_stop_pmc(cpu, adjri)) == 0)
2742		error = pcd->pcd_read_pmc(cpu, adjri, &pm->pm_sc.pm_initial);
2743	critical_exit();
2744
2745	pmc_restore_cpu_binding(&pb);
2746
2747	po = pm->pm_owner;
2748
2749	/* remove this owner from the global list of SS PMC owners */
2750	if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
2751		po->po_sscount--;
2752		if (po->po_sscount == 0) {
2753			atomic_subtract_rel_int(&pmc_ss_count, 1);
2754			LIST_REMOVE(po, po_ssnext);
2755			PMCDBG(PMC,OPS,2,"po=%p removed from global list", po);
2756		}
2757	}
2758
2759	return (error);
2760}
2761
2762
2763#ifdef	DEBUG
2764static const char *pmc_op_to_name[] = {
2765#undef	__PMC_OP
2766#define	__PMC_OP(N, D)	#N ,
2767	__PMC_OPS()
2768	NULL
2769};
2770#endif
2771
2772/*
2773 * The syscall interface
2774 */
2775
2776#define	PMC_GET_SX_XLOCK(...) do {		\
2777	sx_xlock(&pmc_sx);			\
2778	if (pmc_hook == NULL) {			\
2779		sx_xunlock(&pmc_sx);		\
2780		return __VA_ARGS__;		\
2781	}					\
2782} while (0)
2783
2784#define	PMC_DOWNGRADE_SX() do {			\
2785	sx_downgrade(&pmc_sx);			\
2786	is_sx_downgraded = 1;			\
2787} while (0)
2788
2789static int
2790pmc_syscall_handler(struct thread *td, void *syscall_args)
2791{
2792	int error, is_sx_downgraded, is_sx_locked, op;
2793	struct pmc_syscall_args *c;
2794	void *arg;
2795
2796	PMC_GET_SX_XLOCK(ENOSYS);
2797
2798	DROP_GIANT();
2799
2800	is_sx_downgraded = 0;
2801	is_sx_locked = 1;
2802
2803	c = (struct pmc_syscall_args *) syscall_args;
2804
2805	op = c->pmop_code;
2806	arg = c->pmop_data;
2807
2808	PMCDBG(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
2809	    pmc_op_to_name[op], arg);
2810
2811	error = 0;
2812	atomic_add_int(&pmc_stats.pm_syscalls, 1);
2813
2814	switch(op)
2815	{
2816
2817
2818	/*
2819	 * Configure a log file.
2820	 *
2821	 * XXX This OP will be reworked.
2822	 */
2823
2824	case PMC_OP_CONFIGURELOG:
2825	{
2826		struct proc *p;
2827		struct pmc *pm;
2828		struct pmc_owner *po;
2829		struct pmc_op_configurelog cl;
2830
2831		sx_assert(&pmc_sx, SX_XLOCKED);
2832
2833		if ((error = copyin(arg, &cl, sizeof(cl))) != 0)
2834			break;
2835
2836		/* mark this process as owning a log file */
2837		p = td->td_proc;
2838		if ((po = pmc_find_owner_descriptor(p)) == NULL)
2839			if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
2840				error = ENOMEM;
2841				break;
2842			}
2843
2844		/*
2845		 * If a valid fd was passed in, try to configure that,
2846		 * otherwise if 'fd' was less than zero and there was
2847		 * a log file configured, flush its buffers and
2848		 * de-configure it.
2849		 */
2850		if (cl.pm_logfd >= 0) {
2851			sx_xunlock(&pmc_sx);
2852			is_sx_locked = 0;
2853			error = pmclog_configure_log(md, po, cl.pm_logfd);
2854		} else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
2855			pmclog_process_closelog(po);
2856			error = pmclog_close(po);
2857			if (error == 0) {
2858				LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2859				    if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
2860					pm->pm_state == PMC_STATE_RUNNING)
2861					    pmc_stop(pm);
2862				error = pmclog_deconfigure_log(po);
2863			}
2864		} else
2865			error = EINVAL;
2866
2867		if (error)
2868			break;
2869	}
2870	break;
2871
2872	/*
2873	 * Flush a log file.
2874	 */
2875
2876	case PMC_OP_FLUSHLOG:
2877	{
2878		struct pmc_owner *po;
2879
2880		sx_assert(&pmc_sx, SX_XLOCKED);
2881
2882		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2883			error = EINVAL;
2884			break;
2885		}
2886
2887		error = pmclog_flush(po);
2888	}
2889	break;
2890
2891	/*
2892	 * Close a log file.
2893	 */
2894
2895	case PMC_OP_CLOSELOG:
2896	{
2897		struct pmc_owner *po;
2898
2899		sx_assert(&pmc_sx, SX_XLOCKED);
2900
2901		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2902			error = EINVAL;
2903			break;
2904		}
2905
2906		error = pmclog_close(po);
2907	}
2908	break;
2909
2910	/*
2911	 * Retrieve hardware configuration.
2912	 */
2913
2914	case PMC_OP_GETCPUINFO:	/* CPU information */
2915	{
2916		struct pmc_op_getcpuinfo gci;
2917		struct pmc_classinfo *pci;
2918		struct pmc_classdep *pcd;
2919		int cl;
2920
2921		gci.pm_cputype = md->pmd_cputype;
2922		gci.pm_ncpu    = pmc_cpu_max();
2923		gci.pm_npmc    = md->pmd_npmc;
2924		gci.pm_nclass  = md->pmd_nclass;
2925		pci = gci.pm_classes;
2926		pcd = md->pmd_classdep;
2927		for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
2928			pci->pm_caps  = pcd->pcd_caps;
2929			pci->pm_class = pcd->pcd_class;
2930			pci->pm_width = pcd->pcd_width;
2931			pci->pm_num   = pcd->pcd_num;
2932		}
2933		error = copyout(&gci, arg, sizeof(gci));
2934	}
2935	break;
2936
2937	/*
2938	 * Retrieve soft events list.
2939	 */
2940	case PMC_OP_GETDYNEVENTINFO:
2941	{
2942		enum pmc_class			cl;
2943		enum pmc_event			ev;
2944		struct pmc_op_getdyneventinfo	*gei;
2945		struct pmc_dyn_event_descr	dev;
2946		struct pmc_soft			*ps;
2947		uint32_t			nevent;
2948
2949		sx_assert(&pmc_sx, SX_LOCKED);
2950
2951		gei = (struct pmc_op_getdyneventinfo *) arg;
2952
2953		if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
2954			break;
2955
2956		/* Only SOFT class is dynamic. */
2957		if (cl != PMC_CLASS_SOFT) {
2958			error = EINVAL;
2959			break;
2960		}
2961
2962		nevent = 0;
2963		for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) {
2964			ps = pmc_soft_ev_acquire(ev);
2965			if (ps == NULL)
2966				continue;
2967			bcopy(&ps->ps_ev, &dev, sizeof(dev));
2968			pmc_soft_ev_release(ps);
2969
2970			error = copyout(&dev,
2971			    &gei->pm_events[nevent],
2972			    sizeof(struct pmc_dyn_event_descr));
2973			if (error != 0)
2974				break;
2975			nevent++;
2976		}
2977		if (error != 0)
2978			break;
2979
2980		error = copyout(&nevent, &gei->pm_nevent,
2981		    sizeof(nevent));
2982	}
2983	break;
2984
2985	/*
2986	 * Get module statistics
2987	 */
2988
2989	case PMC_OP_GETDRIVERSTATS:
2990	{
2991		struct pmc_op_getdriverstats gms;
2992
2993		bcopy(&pmc_stats, &gms, sizeof(gms));
2994		error = copyout(&gms, arg, sizeof(gms));
2995	}
2996	break;
2997
2998
2999	/*
3000	 * Retrieve module version number
3001	 */
3002
3003	case PMC_OP_GETMODULEVERSION:
3004	{
3005		uint32_t cv, modv;
3006
3007		/* retrieve the client's idea of the ABI version */
3008		if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
3009			break;
3010		/* don't service clients newer than our driver */
3011		modv = PMC_VERSION;
3012		if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
3013			error = EPROGMISMATCH;
3014			break;
3015		}
3016		error = copyout(&modv, arg, sizeof(int));
3017	}
3018	break;
3019
3020
3021	/*
3022	 * Retrieve the state of all the PMCs on a given
3023	 * CPU.
3024	 */
3025
3026	case PMC_OP_GETPMCINFO:
3027	{
3028		int ari;
3029		struct pmc *pm;
3030		size_t pmcinfo_size;
3031		uint32_t cpu, n, npmc;
3032		struct pmc_owner *po;
3033		struct pmc_binding pb;
3034		struct pmc_classdep *pcd;
3035		struct pmc_info *p, *pmcinfo;
3036		struct pmc_op_getpmcinfo *gpi;
3037
3038		PMC_DOWNGRADE_SX();
3039
3040		gpi = (struct pmc_op_getpmcinfo *) arg;
3041
3042		if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
3043			break;
3044
3045		if (cpu >= pmc_cpu_max()) {
3046			error = EINVAL;
3047			break;
3048		}
3049
3050		if (!pmc_cpu_is_active(cpu)) {
3051			error = ENXIO;
3052			break;
3053		}
3054
3055		/* switch to CPU 'cpu' */
3056		pmc_save_cpu_binding(&pb);
3057		pmc_select_cpu(cpu);
3058
3059		npmc = md->pmd_npmc;
3060
3061		pmcinfo_size = npmc * sizeof(struct pmc_info);
3062		pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK);
3063
3064		p = pmcinfo;
3065
3066		for (n = 0; n < md->pmd_npmc; n++, p++) {
3067
3068			pcd = pmc_ri_to_classdep(md, n, &ari);
3069
3070			KASSERT(pcd != NULL,
3071			    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
3072
3073			if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
3074				break;
3075
3076			if (PMC_ROW_DISP_IS_STANDALONE(n))
3077				p->pm_rowdisp = PMC_DISP_STANDALONE;
3078			else if (PMC_ROW_DISP_IS_THREAD(n))
3079				p->pm_rowdisp = PMC_DISP_THREAD;
3080			else
3081				p->pm_rowdisp = PMC_DISP_FREE;
3082
3083			p->pm_ownerpid = -1;
3084
3085			if (pm == NULL)	/* no PMC associated */
3086				continue;
3087
3088			po = pm->pm_owner;
3089
3090			KASSERT(po->po_owner != NULL,
3091			    ("[pmc,%d] pmc_owner had a null proc pointer",
3092				__LINE__));
3093
3094			p->pm_ownerpid = po->po_owner->p_pid;
3095			p->pm_mode     = PMC_TO_MODE(pm);
3096			p->pm_event    = pm->pm_event;
3097			p->pm_flags    = pm->pm_flags;
3098
3099			if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3100				p->pm_reloadcount =
3101				    pm->pm_sc.pm_reloadcount;
3102		}
3103
3104		pmc_restore_cpu_binding(&pb);
3105
3106		/* now copy out the PMC info collected */
3107		if (error == 0)
3108			error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
3109
3110		free(pmcinfo, M_PMC);
3111	}
3112	break;
3113
3114
3115	/*
3116	 * Set the administrative state of a PMC.  I.e. whether
3117	 * the PMC is to be used or not.
3118	 */
3119
3120	case PMC_OP_PMCADMIN:
3121	{
3122		int cpu, ri;
3123		enum pmc_state request;
3124		struct pmc_cpu *pc;
3125		struct pmc_hw *phw;
3126		struct pmc_op_pmcadmin pma;
3127		struct pmc_binding pb;
3128
3129		sx_assert(&pmc_sx, SX_XLOCKED);
3130
3131		KASSERT(td == curthread,
3132		    ("[pmc,%d] td != curthread", __LINE__));
3133
3134		error = priv_check(td, PRIV_PMC_MANAGE);
3135		if (error)
3136			break;
3137
3138		if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
3139			break;
3140
3141		cpu = pma.pm_cpu;
3142
3143		if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
3144			error = EINVAL;
3145			break;
3146		}
3147
3148		if (!pmc_cpu_is_active(cpu)) {
3149			error = ENXIO;
3150			break;
3151		}
3152
3153		request = pma.pm_state;
3154
3155		if (request != PMC_STATE_DISABLED &&
3156		    request != PMC_STATE_FREE) {
3157			error = EINVAL;
3158			break;
3159		}
3160
3161		ri = pma.pm_pmc; /* pmc id == row index */
3162		if (ri < 0 || ri >= (int) md->pmd_npmc) {
3163			error = EINVAL;
3164			break;
3165		}
3166
3167		/*
3168		 * We can't disable a PMC with a row-index allocated
3169		 * for process virtual PMCs.
3170		 */
3171
3172		if (PMC_ROW_DISP_IS_THREAD(ri) &&
3173		    request == PMC_STATE_DISABLED) {
3174			error = EBUSY;
3175			break;
3176		}
3177
3178		/*
3179		 * otherwise, this PMC on this CPU is either free or
3180		 * in system-wide mode.
3181		 */
3182
3183		pmc_save_cpu_binding(&pb);
3184		pmc_select_cpu(cpu);
3185
3186		pc  = pmc_pcpu[cpu];
3187		phw = pc->pc_hwpmcs[ri];
3188
3189		/*
3190		 * XXX do we need some kind of 'forced' disable?
3191		 */
3192
3193		if (phw->phw_pmc == NULL) {
3194			if (request == PMC_STATE_DISABLED &&
3195			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
3196				phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
3197				PMC_MARK_ROW_STANDALONE(ri);
3198			} else if (request == PMC_STATE_FREE &&
3199			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
3200				phw->phw_state |=  PMC_PHW_FLAG_IS_ENABLED;
3201				PMC_UNMARK_ROW_STANDALONE(ri);
3202			}
3203			/* other cases are a no-op */
3204		} else
3205			error = EBUSY;
3206
3207		pmc_restore_cpu_binding(&pb);
3208	}
3209	break;
3210
3211
3212	/*
3213	 * Allocate a PMC.
3214	 */
3215
3216	case PMC_OP_PMCALLOCATE:
3217	{
3218		int adjri, n;
3219		u_int cpu;
3220		uint32_t caps;
3221		struct pmc *pmc;
3222		enum pmc_mode mode;
3223		struct pmc_hw *phw;
3224		struct pmc_binding pb;
3225		struct pmc_classdep *pcd;
3226		struct pmc_op_pmcallocate pa;
3227
3228		if ((error = copyin(arg, &pa, sizeof(pa))) != 0)
3229			break;
3230
3231		caps = pa.pm_caps;
3232		mode = pa.pm_mode;
3233		cpu  = pa.pm_cpu;
3234
3235		if ((mode != PMC_MODE_SS  &&  mode != PMC_MODE_SC  &&
3236		     mode != PMC_MODE_TS  &&  mode != PMC_MODE_TC) ||
3237		    (cpu != (u_int) PMC_CPU_ANY && cpu >= pmc_cpu_max())) {
3238			error = EINVAL;
3239			break;
3240		}
3241
3242		/*
3243		 * Virtual PMCs should only ask for a default CPU.
3244		 * System mode PMCs need to specify a non-default CPU.
3245		 */
3246
3247		if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) ||
3248		    (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) {
3249			error = EINVAL;
3250			break;
3251		}
3252
3253		/*
3254		 * Check that an inactive CPU is not being asked for.
3255		 */
3256
3257		if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu)) {
3258			error = ENXIO;
3259			break;
3260		}
3261
3262		/*
3263		 * Refuse an allocation for a system-wide PMC if this
3264		 * process has been jailed, or if this process lacks
3265		 * super-user credentials and the sysctl tunable
3266		 * 'security.bsd.unprivileged_syspmcs' is zero.
3267		 */
3268
3269		if (PMC_IS_SYSTEM_MODE(mode)) {
3270			if (jailed(curthread->td_ucred)) {
3271				error = EPERM;
3272				break;
3273			}
3274			if (!pmc_unprivileged_syspmcs) {
3275				error = priv_check(curthread,
3276				    PRIV_PMC_SYSTEM);
3277				if (error)
3278					break;
3279			}
3280		}
3281
3282		/*
3283		 * Look for valid values for 'pm_flags'
3284		 */
3285
3286		if ((pa.pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
3287		    PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN)) != 0) {
3288			error = EINVAL;
3289			break;
3290		}
3291
3292		/* process logging options are not allowed for system PMCs */
3293		if (PMC_IS_SYSTEM_MODE(mode) && (pa.pm_flags &
3294		    (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT))) {
3295			error = EINVAL;
3296			break;
3297		}
3298
3299		/*
3300		 * All sampling mode PMCs need to be able to interrupt the
3301		 * CPU.
3302		 */
3303		if (PMC_IS_SAMPLING_MODE(mode))
3304			caps |= PMC_CAP_INTERRUPT;
3305
3306		/* A valid class specifier should have been passed in. */
3307		for (n = 0; n < md->pmd_nclass; n++)
3308			if (md->pmd_classdep[n].pcd_class == pa.pm_class)
3309				break;
3310		if (n == md->pmd_nclass) {
3311			error = EINVAL;
3312			break;
3313		}
3314
3315		/* The requested PMC capabilities should be feasible. */
3316		if ((md->pmd_classdep[n].pcd_caps & caps) != caps) {
3317			error = EOPNOTSUPP;
3318			break;
3319		}
3320
3321		PMCDBG(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
3322		    pa.pm_ev, caps, mode, cpu);
3323
3324		pmc = pmc_allocate_pmc_descriptor();
3325		pmc->pm_id    = PMC_ID_MAKE_ID(cpu,pa.pm_mode,pa.pm_class,
3326		    PMC_ID_INVALID);
3327		pmc->pm_event = pa.pm_ev;
3328		pmc->pm_state = PMC_STATE_FREE;
3329		pmc->pm_caps  = caps;
3330		pmc->pm_flags = pa.pm_flags;
3331
3332		/* switch thread to CPU 'cpu' */
3333		pmc_save_cpu_binding(&pb);
3334
3335#define	PMC_IS_SHAREABLE_PMC(cpu, n)				\
3336	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state &		\
3337	 PMC_PHW_FLAG_IS_SHAREABLE)
3338#define	PMC_IS_UNALLOCATED(cpu, n)				\
3339	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
3340
3341		if (PMC_IS_SYSTEM_MODE(mode)) {
3342			pmc_select_cpu(cpu);
3343			for (n = 0; n < (int) md->pmd_npmc; n++) {
3344				pcd = pmc_ri_to_classdep(md, n, &adjri);
3345				if (pmc_can_allocate_row(n, mode) == 0 &&
3346				    pmc_can_allocate_rowindex(
3347					    curthread->td_proc, n, cpu) == 0 &&
3348				    (PMC_IS_UNALLOCATED(cpu, n) ||
3349				     PMC_IS_SHAREABLE_PMC(cpu, n)) &&
3350				    pcd->pcd_allocate_pmc(cpu, adjri, pmc,
3351					&pa) == 0)
3352					break;
3353			}
3354		} else {
3355			/* Process virtual mode */
3356			for (n = 0; n < (int) md->pmd_npmc; n++) {
3357				pcd = pmc_ri_to_classdep(md, n, &adjri);
3358				if (pmc_can_allocate_row(n, mode) == 0 &&
3359				    pmc_can_allocate_rowindex(
3360					    curthread->td_proc, n,
3361					    PMC_CPU_ANY) == 0 &&
3362				    pcd->pcd_allocate_pmc(curthread->td_oncpu,
3363					adjri, pmc, &pa) == 0)
3364					break;
3365			}
3366		}
3367
3368#undef	PMC_IS_UNALLOCATED
3369#undef	PMC_IS_SHAREABLE_PMC
3370
3371		pmc_restore_cpu_binding(&pb);
3372
3373		if (n == (int) md->pmd_npmc) {
3374			pmc_destroy_pmc_descriptor(pmc);
3375			free(pmc, M_PMC);
3376			pmc = NULL;
3377			error = EINVAL;
3378			break;
3379		}
3380
3381		/* Fill in the correct value in the ID field */
3382		pmc->pm_id = PMC_ID_MAKE_ID(cpu,mode,pa.pm_class,n);
3383
3384		PMCDBG(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
3385		    pmc->pm_event, pa.pm_class, mode, n, pmc->pm_id);
3386
3387		/* Process mode PMCs with logging enabled need log files */
3388		if (pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW))
3389			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3390
3391		/* All system mode sampling PMCs require a log file */
3392		if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
3393			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3394
3395		/*
3396		 * Configure global pmc's immediately
3397		 */
3398
3399		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
3400
3401			pmc_save_cpu_binding(&pb);
3402			pmc_select_cpu(cpu);
3403
3404			phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
3405			pcd = pmc_ri_to_classdep(md, n, &adjri);
3406
3407			if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
3408			    (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
3409				(void) pcd->pcd_release_pmc(cpu, adjri, pmc);
3410				pmc_destroy_pmc_descriptor(pmc);
3411				free(pmc, M_PMC);
3412				pmc = NULL;
3413				pmc_restore_cpu_binding(&pb);
3414				error = EPERM;
3415				break;
3416			}
3417
3418			pmc_restore_cpu_binding(&pb);
3419		}
3420
3421		pmc->pm_state    = PMC_STATE_ALLOCATED;
3422
3423		/*
3424		 * mark row disposition
3425		 */
3426
3427		if (PMC_IS_SYSTEM_MODE(mode))
3428			PMC_MARK_ROW_STANDALONE(n);
3429		else
3430			PMC_MARK_ROW_THREAD(n);
3431
3432		/*
3433		 * Register this PMC with the current thread as its owner.
3434		 */
3435
3436		if ((error =
3437		    pmc_register_owner(curthread->td_proc, pmc)) != 0) {
3438			pmc_release_pmc_descriptor(pmc);
3439			free(pmc, M_PMC);
3440			pmc = NULL;
3441			break;
3442		}
3443
3444		/*
3445		 * Return the allocated index.
3446		 */
3447
3448		pa.pm_pmcid = pmc->pm_id;
3449
3450		error = copyout(&pa, arg, sizeof(pa));
3451	}
3452	break;
3453
3454
3455	/*
3456	 * Attach a PMC to a process.
3457	 */
3458
3459	case PMC_OP_PMCATTACH:
3460	{
3461		struct pmc *pm;
3462		struct proc *p;
3463		struct pmc_op_pmcattach a;
3464
3465		sx_assert(&pmc_sx, SX_XLOCKED);
3466
3467		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3468			break;
3469
3470		if (a.pm_pid < 0) {
3471			error = EINVAL;
3472			break;
3473		} else if (a.pm_pid == 0)
3474			a.pm_pid = td->td_proc->p_pid;
3475
3476		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3477			break;
3478
3479		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
3480			error = EINVAL;
3481			break;
3482		}
3483
3484		/* PMCs may be (re)attached only when allocated or stopped */
3485		if (pm->pm_state == PMC_STATE_RUNNING) {
3486			error = EBUSY;
3487			break;
3488		} else if (pm->pm_state != PMC_STATE_ALLOCATED &&
3489		    pm->pm_state != PMC_STATE_STOPPED) {
3490			error = EINVAL;
3491			break;
3492		}
3493
3494		/* lookup pid */
3495		if ((p = pfind(a.pm_pid)) == NULL) {
3496			error = ESRCH;
3497			break;
3498		}
3499
3500		/*
3501		 * Ignore processes that are working on exiting.
3502		 */
3503		if (p->p_flag & P_WEXIT) {
3504			error = ESRCH;
3505			PROC_UNLOCK(p);	/* pfind() returns a locked process */
3506			break;
3507		}
3508
3509		/*
3510		 * we are allowed to attach a PMC to a process if
3511		 * we can debug it.
3512		 */
3513		error = p_candebug(curthread, p);
3514
3515		PROC_UNLOCK(p);
3516
3517		if (error == 0)
3518			error = pmc_attach_process(p, pm);
3519	}
3520	break;
3521
3522
3523	/*
3524	 * Detach an attached PMC from a process.
3525	 */
3526
3527	case PMC_OP_PMCDETACH:
3528	{
3529		struct pmc *pm;
3530		struct proc *p;
3531		struct pmc_op_pmcattach a;
3532
3533		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3534			break;
3535
3536		if (a.pm_pid < 0) {
3537			error = EINVAL;
3538			break;
3539		} else if (a.pm_pid == 0)
3540			a.pm_pid = td->td_proc->p_pid;
3541
3542		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3543			break;
3544
3545		if ((p = pfind(a.pm_pid)) == NULL) {
3546			error = ESRCH;
3547			break;
3548		}
3549
3550		/*
3551		 * Treat processes that are in the process of exiting
3552		 * as if they were not present.
3553		 */
3554
3555		if (p->p_flag & P_WEXIT)
3556			error = ESRCH;
3557
3558		PROC_UNLOCK(p);	/* pfind() returns a locked process */
3559
3560		if (error == 0)
3561			error = pmc_detach_process(p, pm);
3562	}
3563	break;
3564
3565
3566	/*
3567	 * Retrieve the MSR number associated with the counter
3568	 * 'pmc_id'.  This allows processes to directly use RDPMC
3569	 * instructions to read their PMCs, without the overhead of a
3570	 * system call.
3571	 */
3572
3573	case PMC_OP_PMCGETMSR:
3574	{
3575		int adjri, ri;
3576		struct pmc *pm;
3577		struct pmc_target *pt;
3578		struct pmc_op_getmsr gm;
3579		struct pmc_classdep *pcd;
3580
3581		PMC_DOWNGRADE_SX();
3582
3583		if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
3584			break;
3585
3586		if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
3587			break;
3588
3589		/*
3590		 * The allocated PMC has to be a process virtual PMC,
3591		 * i.e., of type MODE_T[CS].  Global PMCs can only be
3592		 * read using the PMCREAD operation since they may be
3593		 * allocated on a different CPU than the one we could
3594		 * be running on at the time of the RDPMC instruction.
3595		 *
3596		 * The GETMSR operation is not allowed for PMCs that
3597		 * are inherited across processes.
3598		 */
3599
3600		if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
3601		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
3602			error = EINVAL;
3603			break;
3604		}
3605
3606		/*
3607		 * It only makes sense to use a RDPMC (or its
3608		 * equivalent instruction on non-x86 architectures) on
3609		 * a process that has allocated and attached a PMC to
3610		 * itself.  Conversely the PMC is only allowed to have
3611		 * one process attached to it -- its owner.
3612		 */
3613
3614		if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
3615		    LIST_NEXT(pt, pt_next) != NULL ||
3616		    pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
3617			error = EINVAL;
3618			break;
3619		}
3620
3621		ri = PMC_TO_ROWINDEX(pm);
3622		pcd = pmc_ri_to_classdep(md, ri, &adjri);
3623
3624		/* PMC class has no 'GETMSR' support */
3625		if (pcd->pcd_get_msr == NULL) {
3626			error = ENOSYS;
3627			break;
3628		}
3629
3630		if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
3631			break;
3632
3633		if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
3634			break;
3635
3636		/*
3637		 * Mark our process as using MSRs.  Update machine
3638		 * state using a forced context switch.
3639		 */
3640
3641		pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
3642		pmc_force_context_switch();
3643
3644	}
3645	break;
3646
3647	/*
3648	 * Release an allocated PMC
3649	 */
3650
3651	case PMC_OP_PMCRELEASE:
3652	{
3653		pmc_id_t pmcid;
3654		struct pmc *pm;
3655		struct pmc_owner *po;
3656		struct pmc_op_simple sp;
3657
3658		/*
3659		 * Find PMC pointer for the named PMC.
3660		 *
3661		 * Use pmc_release_pmc_descriptor() to switch off the
3662		 * PMC, remove all its target threads, and remove the
3663		 * PMC from its owner's list.
3664		 *
3665		 * Remove the owner record if this is the last PMC
3666		 * owned.
3667		 *
3668		 * Free up space.
3669		 */
3670
3671		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3672			break;
3673
3674		pmcid = sp.pm_pmcid;
3675
3676		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3677			break;
3678
3679		po = pm->pm_owner;
3680		pmc_release_pmc_descriptor(pm);
3681		pmc_maybe_remove_owner(po);
3682
3683		free(pm, M_PMC);
3684	}
3685	break;
3686
3687
3688	/*
3689	 * Read and/or write a PMC.
3690	 */
3691
3692	case PMC_OP_PMCRW:
3693	{
3694		int adjri;
3695		struct pmc *pm;
3696		uint32_t cpu, ri;
3697		pmc_value_t oldvalue;
3698		struct pmc_binding pb;
3699		struct pmc_op_pmcrw prw;
3700		struct pmc_classdep *pcd;
3701		struct pmc_op_pmcrw *pprw;
3702
3703		PMC_DOWNGRADE_SX();
3704
3705		if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
3706			break;
3707
3708		ri = 0;
3709		PMCDBG(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
3710		    prw.pm_flags);
3711
3712		/* must have at least one flag set */
3713		if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
3714			error = EINVAL;
3715			break;
3716		}
3717
3718		/* locate pmc descriptor */
3719		if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
3720			break;
3721
3722		/* Can't read a PMC that hasn't been started. */
3723		if (pm->pm_state != PMC_STATE_ALLOCATED &&
3724		    pm->pm_state != PMC_STATE_STOPPED &&
3725		    pm->pm_state != PMC_STATE_RUNNING) {
3726			error = EINVAL;
3727			break;
3728		}
3729
3730		/* writing a new value is allowed only for 'STOPPED' pmcs */
3731		if (pm->pm_state == PMC_STATE_RUNNING &&
3732		    (prw.pm_flags & PMC_F_NEWVALUE)) {
3733			error = EBUSY;
3734			break;
3735		}
3736
3737		if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
3738
3739			/*
3740			 * If this PMC is attached to its owner (i.e.,
3741			 * the process requesting this operation) and
3742			 * is running, then attempt to get an
3743			 * upto-date reading from hardware for a READ.
3744			 * Writes are only allowed when the PMC is
3745			 * stopped, so only update the saved value
3746			 * field.
3747			 *
3748			 * If the PMC is not running, or is not
3749			 * attached to its owner, read/write to the
3750			 * savedvalue field.
3751			 */
3752
3753			ri = PMC_TO_ROWINDEX(pm);
3754			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3755
3756			mtx_pool_lock_spin(pmc_mtxpool, pm);
3757			cpu = curthread->td_oncpu;
3758
3759			if (prw.pm_flags & PMC_F_OLDVALUE) {
3760				if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
3761				    (pm->pm_state == PMC_STATE_RUNNING))
3762					error = (*pcd->pcd_read_pmc)(cpu, adjri,
3763					    &oldvalue);
3764				else
3765					oldvalue = pm->pm_gv.pm_savedvalue;
3766			}
3767			if (prw.pm_flags & PMC_F_NEWVALUE)
3768				pm->pm_gv.pm_savedvalue = prw.pm_value;
3769
3770			mtx_pool_unlock_spin(pmc_mtxpool, pm);
3771
3772		} else { /* System mode PMCs */
3773			cpu = PMC_TO_CPU(pm);
3774			ri  = PMC_TO_ROWINDEX(pm);
3775			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3776
3777			if (!pmc_cpu_is_active(cpu)) {
3778				error = ENXIO;
3779				break;
3780			}
3781
3782			/* move this thread to CPU 'cpu' */
3783			pmc_save_cpu_binding(&pb);
3784			pmc_select_cpu(cpu);
3785
3786			critical_enter();
3787			/* save old value */
3788			if (prw.pm_flags & PMC_F_OLDVALUE)
3789				if ((error = (*pcd->pcd_read_pmc)(cpu, adjri,
3790					 &oldvalue)))
3791					goto error;
3792			/* write out new value */
3793			if (prw.pm_flags & PMC_F_NEWVALUE)
3794				error = (*pcd->pcd_write_pmc)(cpu, adjri,
3795				    prw.pm_value);
3796		error:
3797			critical_exit();
3798			pmc_restore_cpu_binding(&pb);
3799			if (error)
3800				break;
3801		}
3802
3803		pprw = (struct pmc_op_pmcrw *) arg;
3804
3805#ifdef	DEBUG
3806		if (prw.pm_flags & PMC_F_NEWVALUE)
3807			PMCDBG(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
3808			    ri, prw.pm_value, oldvalue);
3809		else if (prw.pm_flags & PMC_F_OLDVALUE)
3810			PMCDBG(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
3811#endif
3812
3813		/* return old value if requested */
3814		if (prw.pm_flags & PMC_F_OLDVALUE)
3815			if ((error = copyout(&oldvalue, &pprw->pm_value,
3816				 sizeof(prw.pm_value))))
3817				break;
3818
3819	}
3820	break;
3821
3822
3823	/*
3824	 * Set the sampling rate for a sampling mode PMC and the
3825	 * initial count for a counting mode PMC.
3826	 */
3827
3828	case PMC_OP_PMCSETCOUNT:
3829	{
3830		struct pmc *pm;
3831		struct pmc_op_pmcsetcount sc;
3832
3833		PMC_DOWNGRADE_SX();
3834
3835		if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
3836			break;
3837
3838		if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
3839			break;
3840
3841		if (pm->pm_state == PMC_STATE_RUNNING) {
3842			error = EBUSY;
3843			break;
3844		}
3845
3846		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3847			pm->pm_sc.pm_reloadcount = sc.pm_count;
3848		else
3849			pm->pm_sc.pm_initial = sc.pm_count;
3850	}
3851	break;
3852
3853
3854	/*
3855	 * Start a PMC.
3856	 */
3857
3858	case PMC_OP_PMCSTART:
3859	{
3860		pmc_id_t pmcid;
3861		struct pmc *pm;
3862		struct pmc_op_simple sp;
3863
3864		sx_assert(&pmc_sx, SX_XLOCKED);
3865
3866		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3867			break;
3868
3869		pmcid = sp.pm_pmcid;
3870
3871		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3872			break;
3873
3874		KASSERT(pmcid == pm->pm_id,
3875		    ("[pmc,%d] pmcid %x != id %x", __LINE__,
3876			pm->pm_id, pmcid));
3877
3878		if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
3879			break;
3880		else if (pm->pm_state != PMC_STATE_STOPPED &&
3881		    pm->pm_state != PMC_STATE_ALLOCATED) {
3882			error = EINVAL;
3883			break;
3884		}
3885
3886		error = pmc_start(pm);
3887	}
3888	break;
3889
3890
3891	/*
3892	 * Stop a PMC.
3893	 */
3894
3895	case PMC_OP_PMCSTOP:
3896	{
3897		pmc_id_t pmcid;
3898		struct pmc *pm;
3899		struct pmc_op_simple sp;
3900
3901		PMC_DOWNGRADE_SX();
3902
3903		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3904			break;
3905
3906		pmcid = sp.pm_pmcid;
3907
3908		/*
3909		 * Mark the PMC as inactive and invoke the MD stop
3910		 * routines if needed.
3911		 */
3912
3913		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3914			break;
3915
3916		KASSERT(pmcid == pm->pm_id,
3917		    ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
3918			pm->pm_id, pmcid));
3919
3920		if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
3921			break;
3922		else if (pm->pm_state != PMC_STATE_RUNNING) {
3923			error = EINVAL;
3924			break;
3925		}
3926
3927		error = pmc_stop(pm);
3928	}
3929	break;
3930
3931
3932	/*
3933	 * Write a user supplied value to the log file.
3934	 */
3935
3936	case PMC_OP_WRITELOG:
3937	{
3938		struct pmc_op_writelog wl;
3939		struct pmc_owner *po;
3940
3941		PMC_DOWNGRADE_SX();
3942
3943		if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
3944			break;
3945
3946		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
3947			error = EINVAL;
3948			break;
3949		}
3950
3951		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
3952			error = EINVAL;
3953			break;
3954		}
3955
3956		error = pmclog_process_userlog(po, &wl);
3957	}
3958	break;
3959
3960
3961	default:
3962		error = EINVAL;
3963		break;
3964	}
3965
3966	if (is_sx_locked != 0) {
3967		if (is_sx_downgraded)
3968			sx_sunlock(&pmc_sx);
3969		else
3970			sx_xunlock(&pmc_sx);
3971	}
3972
3973	if (error)
3974		atomic_add_int(&pmc_stats.pm_syscall_errors, 1);
3975
3976	PICKUP_GIANT();
3977
3978	return error;
3979}
3980
3981/*
3982 * Helper functions
3983 */
3984
3985
3986/*
3987 * Mark the thread as needing callchain capture and post an AST.  The
3988 * actual callchain capture will be done in a context where it is safe
3989 * to take page faults.
3990 */
3991
3992static void
3993pmc_post_callchain_callback(void)
3994{
3995	struct thread *td;
3996
3997	td = curthread;
3998
3999	/*
4000	 * If there is multiple PMCs for the same interrupt ignore new post
4001	 */
4002	if (td->td_pflags & TDP_CALLCHAIN)
4003		return;
4004
4005	/*
4006	 * Mark this thread as needing callchain capture.
4007	 * `td->td_pflags' will be safe to touch because this thread
4008	 * was in user space when it was interrupted.
4009	 */
4010	td->td_pflags |= TDP_CALLCHAIN;
4011
4012	/*
4013	 * Don't let this thread migrate between CPUs until callchain
4014	 * capture completes.
4015	 */
4016	sched_pin();
4017
4018	return;
4019}
4020
4021/*
4022 * Interrupt processing.
4023 *
4024 * Find a free slot in the per-cpu array of samples and capture the
4025 * current callchain there.  If a sample was successfully added, a bit
4026 * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
4027 * needs to be invoked from the clock handler.
4028 *
4029 * This function is meant to be called from an NMI handler.  It cannot
4030 * use any of the locking primitives supplied by the OS.
4031 */
4032
4033int
4034pmc_process_interrupt(int cpu, int ring, struct pmc *pm, struct trapframe *tf,
4035    int inuserspace)
4036{
4037	int error, callchaindepth;
4038	struct thread *td;
4039	struct pmc_sample *ps;
4040	struct pmc_samplebuffer *psb;
4041
4042	error = 0;
4043
4044	/*
4045	 * Allocate space for a sample buffer.
4046	 */
4047	psb = pmc_pcpu[cpu]->pc_sb[ring];
4048
4049	ps = psb->ps_write;
4050	if (ps->ps_nsamples) {	/* in use, reader hasn't caught up */
4051		pm->pm_stalled = 1;
4052		atomic_add_int(&pmc_stats.pm_intr_bufferfull, 1);
4053		PMCDBG(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
4054		    cpu, pm, (void *) tf, inuserspace,
4055		    (int) (psb->ps_write - psb->ps_samples),
4056		    (int) (psb->ps_read - psb->ps_samples));
4057		error = ENOMEM;
4058		goto done;
4059	}
4060
4061
4062	/* Fill in entry. */
4063	PMCDBG(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm,
4064	    (void *) tf, inuserspace,
4065	    (int) (psb->ps_write - psb->ps_samples),
4066	    (int) (psb->ps_read - psb->ps_samples));
4067
4068	KASSERT(pm->pm_runcount >= 0,
4069	    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4070		pm->pm_runcount));
4071
4072	atomic_add_rel_int(&pm->pm_runcount, 1);	/* hold onto PMC */
4073
4074	ps->ps_pmc = pm;
4075	if ((td = curthread) && td->td_proc)
4076		ps->ps_pid = td->td_proc->p_pid;
4077	else
4078		ps->ps_pid = -1;
4079	ps->ps_cpu = cpu;
4080	ps->ps_td = td;
4081	ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
4082
4083	callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
4084	    pmc_callchaindepth : 1;
4085
4086	if (callchaindepth == 1)
4087		ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
4088	else {
4089		/*
4090		 * Kernel stack traversals can be done immediately,
4091		 * while we defer to an AST for user space traversals.
4092		 */
4093		if (!inuserspace) {
4094			callchaindepth =
4095			    pmc_save_kernel_callchain(ps->ps_pc,
4096				callchaindepth, tf);
4097		} else {
4098			pmc_post_callchain_callback();
4099			callchaindepth = PMC_SAMPLE_INUSE;
4100		}
4101	}
4102
4103	ps->ps_nsamples = callchaindepth;	/* mark entry as in use */
4104
4105	/* increment write pointer, modulo ring buffer size */
4106	ps++;
4107	if (ps == psb->ps_fence)
4108		psb->ps_write = psb->ps_samples;
4109	else
4110		psb->ps_write = ps;
4111
4112 done:
4113	/* mark CPU as needing processing */
4114	CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4115
4116	return (error);
4117}
4118
4119/*
4120 * Capture a user call chain.  This function will be called from ast()
4121 * before control returns to userland and before the process gets
4122 * rescheduled.
4123 */
4124
4125static void
4126pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
4127{
4128	int i;
4129	struct pmc *pm;
4130	struct thread *td;
4131	struct pmc_sample *ps;
4132	struct pmc_samplebuffer *psb;
4133#ifdef	INVARIANTS
4134	int ncallchains;
4135#endif
4136
4137	psb = pmc_pcpu[cpu]->pc_sb[ring];
4138	td = curthread;
4139
4140	KASSERT(td->td_pflags & TDP_CALLCHAIN,
4141	    ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
4142		__LINE__));
4143
4144#ifdef	INVARIANTS
4145	ncallchains = 0;
4146#endif
4147
4148	/*
4149	 * Iterate through all deferred callchain requests.
4150	 */
4151
4152	ps = psb->ps_samples;
4153	for (i = 0; i < pmc_nsamples; i++, ps++) {
4154
4155		if (ps->ps_nsamples != PMC_SAMPLE_INUSE)
4156			continue;
4157		if (ps->ps_td != td)
4158			continue;
4159
4160		KASSERT(ps->ps_cpu == cpu,
4161		    ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
4162			ps->ps_cpu, PCPU_GET(cpuid)));
4163
4164		pm = ps->ps_pmc;
4165
4166		KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
4167		    ("[pmc,%d] Retrieving callchain for PMC that doesn't "
4168			"want it", __LINE__));
4169
4170		KASSERT(pm->pm_runcount > 0,
4171		    ("[pmc,%d] runcount %d", __LINE__, pm->pm_runcount));
4172
4173		/*
4174		 * Retrieve the callchain and mark the sample buffer
4175		 * as 'processable' by the timer tick sweep code.
4176		 */
4177		ps->ps_nsamples = pmc_save_user_callchain(ps->ps_pc,
4178		    pmc_callchaindepth, tf);
4179
4180#ifdef	INVARIANTS
4181		ncallchains++;
4182#endif
4183	}
4184
4185	KASSERT(ncallchains > 0,
4186	    ("[pmc,%d] cpu %d didn't find a sample to collect", __LINE__,
4187		cpu));
4188
4189	KASSERT(td->td_pinned == 1,
4190	    ("[pmc,%d] invalid td_pinned value", __LINE__));
4191	sched_unpin();	/* Can migrate safely now. */
4192
4193	return;
4194}
4195
4196/*
4197 * Process saved PC samples.
4198 */
4199
4200static void
4201pmc_process_samples(int cpu, int ring)
4202{
4203	struct pmc *pm;
4204	int adjri, n;
4205	struct thread *td;
4206	struct pmc_owner *po;
4207	struct pmc_sample *ps;
4208	struct pmc_classdep *pcd;
4209	struct pmc_samplebuffer *psb;
4210
4211	KASSERT(PCPU_GET(cpuid) == cpu,
4212	    ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
4213		PCPU_GET(cpuid), cpu));
4214
4215	psb = pmc_pcpu[cpu]->pc_sb[ring];
4216
4217	for (n = 0; n < pmc_nsamples; n++) { /* bound on #iterations */
4218
4219		ps = psb->ps_read;
4220		if (ps->ps_nsamples == PMC_SAMPLE_FREE)
4221			break;
4222
4223		pm = ps->ps_pmc;
4224
4225		KASSERT(pm->pm_runcount > 0,
4226		    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4227			pm->pm_runcount));
4228
4229		po = pm->pm_owner;
4230
4231		KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
4232		    ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
4233			pm, PMC_TO_MODE(pm)));
4234
4235		/* Ignore PMCs that have been switched off */
4236		if (pm->pm_state != PMC_STATE_RUNNING)
4237			goto entrydone;
4238
4239		/* If there is a pending AST wait for completion */
4240		if (ps->ps_nsamples == PMC_SAMPLE_INUSE) {
4241			/* Need a rescan at a later time. */
4242			CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4243			break;
4244		}
4245
4246		PMCDBG(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
4247		    pm, ps->ps_nsamples, ps->ps_flags,
4248		    (int) (psb->ps_write - psb->ps_samples),
4249		    (int) (psb->ps_read - psb->ps_samples));
4250
4251		/*
4252		 * If this is a process-mode PMC that is attached to
4253		 * its owner, and if the PC is in user mode, update
4254		 * profiling statistics like timer-based profiling
4255		 * would have done.
4256		 */
4257		if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
4258			if (ps->ps_flags & PMC_CC_F_USERSPACE) {
4259				td = FIRST_THREAD_IN_PROC(po->po_owner);
4260				addupc_intr(td, ps->ps_pc[0], 1);
4261			}
4262			goto entrydone;
4263		}
4264
4265		/*
4266		 * Otherwise, this is either a sampling mode PMC that
4267		 * is attached to a different process than its owner,
4268		 * or a system-wide sampling PMC.  Dispatch a log
4269		 * entry to the PMC's owner process.
4270		 */
4271		pmclog_process_callchain(pm, ps);
4272
4273	entrydone:
4274		ps->ps_nsamples = 0; /* mark entry as free */
4275		atomic_subtract_rel_int(&pm->pm_runcount, 1);
4276
4277		/* increment read pointer, modulo sample size */
4278		if (++ps == psb->ps_fence)
4279			psb->ps_read = psb->ps_samples;
4280		else
4281			psb->ps_read = ps;
4282	}
4283
4284	atomic_add_int(&pmc_stats.pm_log_sweeps, 1);
4285
4286	/* Do not re-enable stalled PMCs if we failed to process any samples */
4287	if (n == 0)
4288		return;
4289
4290	/*
4291	 * Restart any stalled sampling PMCs on this CPU.
4292	 *
4293	 * If the NMI handler sets the pm_stalled field of a PMC after
4294	 * the check below, we'll end up processing the stalled PMC at
4295	 * the next hardclock tick.
4296	 */
4297	for (n = 0; n < md->pmd_npmc; n++) {
4298		pcd = pmc_ri_to_classdep(md, n, &adjri);
4299		KASSERT(pcd != NULL,
4300		    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
4301		(void) (*pcd->pcd_get_config)(cpu,adjri,&pm);
4302
4303		if (pm == NULL ||			 /* !cfg'ed */
4304		    pm->pm_state != PMC_STATE_RUNNING || /* !active */
4305		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
4306		    pm->pm_stalled == 0) /* !stalled */
4307			continue;
4308
4309		pm->pm_stalled = 0;
4310		(*pcd->pcd_start_pmc)(cpu, adjri);
4311	}
4312}
4313
4314/*
4315 * Event handlers.
4316 */
4317
4318/*
4319 * Handle a process exit.
4320 *
4321 * Remove this process from all hash tables.  If this process
4322 * owned any PMCs, turn off those PMCs and deallocate them,
4323 * removing any associations with target processes.
4324 *
4325 * This function will be called by the last 'thread' of a
4326 * process.
4327 *
4328 * XXX This eventhandler gets called early in the exit process.
4329 * Consider using a 'hook' invocation from thread_exit() or equivalent
4330 * spot.  Another negative is that kse_exit doesn't seem to call
4331 * exit1() [??].
4332 *
4333 */
4334
4335static void
4336pmc_process_exit(void *arg __unused, struct proc *p)
4337{
4338	struct pmc *pm;
4339	int adjri, cpu;
4340	unsigned int ri;
4341	int is_using_hwpmcs;
4342	struct pmc_owner *po;
4343	struct pmc_process *pp;
4344	struct pmc_classdep *pcd;
4345	pmc_value_t newvalue, tmp;
4346
4347	PROC_LOCK(p);
4348	is_using_hwpmcs = p->p_flag & P_HWPMC;
4349	PROC_UNLOCK(p);
4350
4351	/*
4352	 * Log a sysexit event to all SS PMC owners.
4353	 */
4354	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4355	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4356		    pmclog_process_sysexit(po, p->p_pid);
4357
4358	if (!is_using_hwpmcs)
4359		return;
4360
4361	PMC_GET_SX_XLOCK();
4362	PMCDBG(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
4363	    p->p_comm);
4364
4365	/*
4366	 * Since this code is invoked by the last thread in an exiting
4367	 * process, we would have context switched IN at some prior
4368	 * point.  However, with PREEMPTION, kernel mode context
4369	 * switches may happen any time, so we want to disable a
4370	 * context switch OUT till we get any PMCs targetting this
4371	 * process off the hardware.
4372	 *
4373	 * We also need to atomically remove this process'
4374	 * entry from our target process hash table, using
4375	 * PMC_FLAG_REMOVE.
4376	 */
4377	PMCDBG(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
4378	    p->p_comm);
4379
4380	critical_enter(); /* no preemption */
4381
4382	cpu = curthread->td_oncpu;
4383
4384	if ((pp = pmc_find_process_descriptor(p,
4385		 PMC_FLAG_REMOVE)) != NULL) {
4386
4387		PMCDBG(PRC,EXT,2,
4388		    "process-exit proc=%p pmc-process=%p", p, pp);
4389
4390		/*
4391		 * The exiting process could the target of
4392		 * some PMCs which will be running on
4393		 * currently executing CPU.
4394		 *
4395		 * We need to turn these PMCs off like we
4396		 * would do at context switch OUT time.
4397		 */
4398		for (ri = 0; ri < md->pmd_npmc; ri++) {
4399
4400			/*
4401			 * Pick up the pmc pointer from hardware
4402			 * state similar to the CSW_OUT code.
4403			 */
4404			pm = NULL;
4405
4406			pcd = pmc_ri_to_classdep(md, ri, &adjri);
4407
4408			(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
4409
4410			PMCDBG(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
4411
4412			if (pm == NULL ||
4413			    !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
4414				continue;
4415
4416			PMCDBG(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
4417			    "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
4418			    pm, pm->pm_state);
4419
4420			KASSERT(PMC_TO_ROWINDEX(pm) == ri,
4421			    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
4422				__LINE__, PMC_TO_ROWINDEX(pm), ri));
4423
4424			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
4425			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
4426				__LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc));
4427
4428			(void) pcd->pcd_stop_pmc(cpu, adjri);
4429
4430			KASSERT(pm->pm_runcount > 0,
4431			    ("[pmc,%d] bad runcount ri %d rc %d",
4432				__LINE__, ri, pm->pm_runcount));
4433
4434			/* Stop hardware only if it is actually running */
4435			if (pm->pm_state == PMC_STATE_RUNNING &&
4436			    pm->pm_stalled == 0) {
4437				pcd->pcd_read_pmc(cpu, adjri, &newvalue);
4438				tmp = newvalue -
4439				    PMC_PCPU_SAVED(cpu,ri);
4440
4441				mtx_pool_lock_spin(pmc_mtxpool, pm);
4442				pm->pm_gv.pm_savedvalue += tmp;
4443				pp->pp_pmcs[ri].pp_pmcval += tmp;
4444				mtx_pool_unlock_spin(pmc_mtxpool, pm);
4445			}
4446
4447			atomic_subtract_rel_int(&pm->pm_runcount,1);
4448
4449			KASSERT((int) pm->pm_runcount >= 0,
4450			    ("[pmc,%d] runcount is %d", __LINE__, ri));
4451
4452			(void) pcd->pcd_config_pmc(cpu, adjri, NULL);
4453		}
4454
4455		/*
4456		 * Inform the MD layer of this pseudo "context switch
4457		 * out"
4458		 */
4459		(void) md->pmd_switch_out(pmc_pcpu[cpu], pp);
4460
4461		critical_exit(); /* ok to be pre-empted now */
4462
4463		/*
4464		 * Unlink this process from the PMCs that are
4465		 * targetting it.  This will send a signal to
4466		 * all PMC owner's whose PMCs are orphaned.
4467		 *
4468		 * Log PMC value at exit time if requested.
4469		 */
4470		for (ri = 0; ri < md->pmd_npmc; ri++)
4471			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
4472				if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
4473				    PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)))
4474					pmclog_process_procexit(pm, pp);
4475				pmc_unlink_target_process(pm, pp);
4476			}
4477		free(pp, M_PMC);
4478
4479	} else
4480		critical_exit(); /* pp == NULL */
4481
4482
4483	/*
4484	 * If the process owned PMCs, free them up and free up
4485	 * memory.
4486	 */
4487	if ((po = pmc_find_owner_descriptor(p)) != NULL) {
4488		pmc_remove_owner(po);
4489		pmc_destroy_owner_descriptor(po);
4490	}
4491
4492	sx_xunlock(&pmc_sx);
4493}
4494
4495/*
4496 * Handle a process fork.
4497 *
4498 * If the parent process 'p1' is under HWPMC monitoring, then copy
4499 * over any attached PMCs that have 'do_descendants' semantics.
4500 */
4501
4502static void
4503pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
4504    int flags)
4505{
4506	int is_using_hwpmcs;
4507	unsigned int ri;
4508	uint32_t do_descendants;
4509	struct pmc *pm;
4510	struct pmc_owner *po;
4511	struct pmc_process *ppnew, *ppold;
4512
4513	(void) flags;		/* unused parameter */
4514
4515	PROC_LOCK(p1);
4516	is_using_hwpmcs = p1->p_flag & P_HWPMC;
4517	PROC_UNLOCK(p1);
4518
4519	/*
4520	 * If there are system-wide sampling PMCs active, we need to
4521	 * log all fork events to their owner's logs.
4522	 */
4523
4524	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4525	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4526		    pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
4527
4528	if (!is_using_hwpmcs)
4529		return;
4530
4531	PMC_GET_SX_XLOCK();
4532	PMCDBG(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
4533	    p1->p_pid, p1->p_comm, newproc);
4534
4535	/*
4536	 * If the parent process (curthread->td_proc) is a
4537	 * target of any PMCs, look for PMCs that are to be
4538	 * inherited, and link these into the new process
4539	 * descriptor.
4540	 */
4541	if ((ppold = pmc_find_process_descriptor(curthread->td_proc,
4542		 PMC_FLAG_NONE)) == NULL)
4543		goto done;		/* nothing to do */
4544
4545	do_descendants = 0;
4546	for (ri = 0; ri < md->pmd_npmc; ri++)
4547		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL)
4548			do_descendants |= pm->pm_flags & PMC_F_DESCENDANTS;
4549	if (do_descendants == 0) /* nothing to do */
4550		goto done;
4551
4552	/* allocate a descriptor for the new process  */
4553	if ((ppnew = pmc_find_process_descriptor(newproc,
4554		 PMC_FLAG_ALLOCATE)) == NULL)
4555		goto done;
4556
4557	/*
4558	 * Run through all PMCs that were targeting the old process
4559	 * and which specified F_DESCENDANTS and attach them to the
4560	 * new process.
4561	 *
4562	 * Log the fork event to all owners of PMCs attached to this
4563	 * process, if not already logged.
4564	 */
4565	for (ri = 0; ri < md->pmd_npmc; ri++)
4566		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
4567		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
4568			pmc_link_target_process(pm, ppnew);
4569			po = pm->pm_owner;
4570			if (po->po_sscount == 0 &&
4571			    po->po_flags & PMC_PO_OWNS_LOGFILE)
4572				pmclog_process_procfork(po, p1->p_pid,
4573				    newproc->p_pid);
4574		}
4575
4576	/*
4577	 * Now mark the new process as being tracked by this driver.
4578	 */
4579	PROC_LOCK(newproc);
4580	newproc->p_flag |= P_HWPMC;
4581	PROC_UNLOCK(newproc);
4582
4583 done:
4584	sx_xunlock(&pmc_sx);
4585}
4586
4587static void
4588pmc_kld_load(void *arg __unused, linker_file_t lf)
4589{
4590	struct pmc_owner *po;
4591
4592	sx_slock(&pmc_sx);
4593
4594	/*
4595	 * Notify owners of system sampling PMCs about KLD operations.
4596	 */
4597	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4598		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4599			pmclog_process_map_in(po, (pid_t) -1,
4600			    (uintfptr_t) lf->address, lf->filename);
4601
4602	/*
4603	 * TODO: Notify owners of (all) process-sampling PMCs too.
4604	 */
4605
4606	sx_sunlock(&pmc_sx);
4607}
4608
4609static void
4610pmc_kld_unload(void *arg __unused, const char *filename __unused,
4611    caddr_t address, size_t size)
4612{
4613	struct pmc_owner *po;
4614
4615	sx_slock(&pmc_sx);
4616
4617	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4618		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4619			pmclog_process_map_out(po, (pid_t) -1,
4620			    (uintfptr_t) address, (uintfptr_t) address + size);
4621
4622	/*
4623	 * TODO: Notify owners of process-sampling PMCs.
4624	 */
4625
4626	sx_sunlock(&pmc_sx);
4627}
4628
4629/*
4630 * initialization
4631 */
4632
4633static const char *pmc_name_of_pmcclass[] = {
4634#undef	__PMC_CLASS
4635#define	__PMC_CLASS(N) #N ,
4636	__PMC_CLASSES()
4637};
4638
4639/*
4640 * Base class initializer: allocate structure and set default classes.
4641 */
4642struct pmc_mdep *
4643pmc_mdep_alloc(int nclasses)
4644{
4645	struct pmc_mdep *md;
4646	int	n;
4647
4648	/* SOFT + md classes */
4649	n = 1 + nclasses;
4650	md = malloc(sizeof(struct pmc_mdep) + n *
4651	    sizeof(struct pmc_classdep), M_PMC, M_WAITOK|M_ZERO);
4652	md->pmd_nclass = n;
4653
4654	/* Add base class. */
4655	pmc_soft_initialize(md);
4656	return md;
4657}
4658
4659void
4660pmc_mdep_free(struct pmc_mdep *md)
4661{
4662	pmc_soft_finalize(md);
4663	free(md, M_PMC);
4664}
4665
4666static int
4667generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
4668{
4669	(void) pc; (void) pp;
4670
4671	return (0);
4672}
4673
4674static int
4675generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
4676{
4677	(void) pc; (void) pp;
4678
4679	return (0);
4680}
4681
4682static struct pmc_mdep *
4683pmc_generic_cpu_initialize(void)
4684{
4685	struct pmc_mdep *md;
4686
4687	md = pmc_mdep_alloc(0);
4688
4689	md->pmd_cputype    = PMC_CPU_GENERIC;
4690
4691	md->pmd_pcpu_init  = NULL;
4692	md->pmd_pcpu_fini  = NULL;
4693	md->pmd_switch_in  = generic_switch_in;
4694	md->pmd_switch_out = generic_switch_out;
4695
4696	return (md);
4697}
4698
4699static void
4700pmc_generic_cpu_finalize(struct pmc_mdep *md)
4701{
4702	(void) md;
4703}
4704
4705
4706static int
4707pmc_initialize(void)
4708{
4709	int c, cpu, error, n, ri;
4710	unsigned int maxcpu;
4711	struct pmc_binding pb;
4712	struct pmc_sample *ps;
4713	struct pmc_classdep *pcd;
4714	struct pmc_samplebuffer *sb;
4715
4716	md = NULL;
4717	error = 0;
4718
4719#ifdef	DEBUG
4720	/* parse debug flags first */
4721	if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
4722		pmc_debugstr, sizeof(pmc_debugstr)))
4723		pmc_debugflags_parse(pmc_debugstr,
4724		    pmc_debugstr+strlen(pmc_debugstr));
4725#endif
4726
4727	PMCDBG(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
4728
4729	/* check kernel version */
4730	if (pmc_kernel_version != PMC_VERSION) {
4731		if (pmc_kernel_version == 0)
4732			printf("hwpmc: this kernel has not been compiled with "
4733			    "'options HWPMC_HOOKS'.\n");
4734		else
4735			printf("hwpmc: kernel version (0x%x) does not match "
4736			    "module version (0x%x).\n", pmc_kernel_version,
4737			    PMC_VERSION);
4738		return EPROGMISMATCH;
4739	}
4740
4741	/*
4742	 * check sysctl parameters
4743	 */
4744
4745	if (pmc_hashsize <= 0) {
4746		(void) printf("hwpmc: tunable \"hashsize\"=%d must be "
4747		    "greater than zero.\n", pmc_hashsize);
4748		pmc_hashsize = PMC_HASH_SIZE;
4749	}
4750
4751	if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
4752		(void) printf("hwpmc: tunable \"nsamples\"=%d out of "
4753		    "range.\n", pmc_nsamples);
4754		pmc_nsamples = PMC_NSAMPLES;
4755	}
4756
4757	if (pmc_callchaindepth <= 0 ||
4758	    pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
4759		(void) printf("hwpmc: tunable \"callchaindepth\"=%d out of "
4760		    "range.\n", pmc_callchaindepth);
4761		pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
4762	}
4763
4764	md = pmc_md_initialize();
4765	if (md == NULL) {
4766		/* Default to generic CPU. */
4767		md = pmc_generic_cpu_initialize();
4768		if (md == NULL)
4769			return (ENOSYS);
4770        }
4771
4772	KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
4773	    ("[pmc,%d] no classes or pmcs", __LINE__));
4774
4775	/* Compute the map from row-indices to classdep pointers. */
4776	pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
4777	    md->pmd_npmc, M_PMC, M_WAITOK|M_ZERO);
4778
4779	for (n = 0; n < md->pmd_npmc; n++)
4780		pmc_rowindex_to_classdep[n] = NULL;
4781	for (ri = c = 0; c < md->pmd_nclass; c++) {
4782		pcd = &md->pmd_classdep[c];
4783		for (n = 0; n < pcd->pcd_num; n++, ri++)
4784			pmc_rowindex_to_classdep[ri] = pcd;
4785	}
4786
4787	KASSERT(ri == md->pmd_npmc,
4788	    ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
4789	    ri, md->pmd_npmc));
4790
4791	maxcpu = pmc_cpu_max();
4792
4793	/* allocate space for the per-cpu array */
4794	pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
4795	    M_WAITOK|M_ZERO);
4796
4797	/* per-cpu 'saved values' for managing process-mode PMCs */
4798	pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
4799	    M_PMC, M_WAITOK);
4800
4801	/* Perform CPU-dependent initialization. */
4802	pmc_save_cpu_binding(&pb);
4803	error = 0;
4804	for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
4805		if (!pmc_cpu_is_active(cpu))
4806			continue;
4807		pmc_select_cpu(cpu);
4808		pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
4809		    md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
4810		    M_WAITOK|M_ZERO);
4811		if (md->pmd_pcpu_init)
4812			error = md->pmd_pcpu_init(md, cpu);
4813		for (n = 0; error == 0 && n < md->pmd_nclass; n++)
4814			error = md->pmd_classdep[n].pcd_pcpu_init(md, cpu);
4815	}
4816	pmc_restore_cpu_binding(&pb);
4817
4818	if (error)
4819		return (error);
4820
4821	/* allocate space for the sample array */
4822	for (cpu = 0; cpu < maxcpu; cpu++) {
4823		if (!pmc_cpu_is_active(cpu))
4824			continue;
4825
4826		sb = malloc(sizeof(struct pmc_samplebuffer) +
4827		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4828		    M_WAITOK|M_ZERO);
4829		sb->ps_read = sb->ps_write = sb->ps_samples;
4830		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4831
4832		KASSERT(pmc_pcpu[cpu] != NULL,
4833		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4834
4835		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4836		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4837
4838		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4839			ps->ps_pc = sb->ps_callchains +
4840			    (n * pmc_callchaindepth);
4841
4842		pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
4843
4844		sb = malloc(sizeof(struct pmc_samplebuffer) +
4845		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4846		    M_WAITOK|M_ZERO);
4847		sb->ps_read = sb->ps_write = sb->ps_samples;
4848		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4849
4850		KASSERT(pmc_pcpu[cpu] != NULL,
4851		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4852
4853		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4854		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4855
4856		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4857			ps->ps_pc = sb->ps_callchains +
4858			    (n * pmc_callchaindepth);
4859
4860		pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
4861	}
4862
4863	/* allocate space for the row disposition array */
4864	pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
4865	    M_PMC, M_WAITOK|M_ZERO);
4866
4867	/* mark all PMCs as available */
4868	for (n = 0; n < (int) md->pmd_npmc; n++)
4869		PMC_MARK_ROW_FREE(n);
4870
4871	/* allocate thread hash tables */
4872	pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
4873	    &pmc_ownerhashmask);
4874
4875	pmc_processhash = hashinit(pmc_hashsize, M_PMC,
4876	    &pmc_processhashmask);
4877	mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
4878	    MTX_SPIN);
4879
4880	LIST_INIT(&pmc_ss_owners);
4881	pmc_ss_count = 0;
4882
4883	/* allocate a pool of spin mutexes */
4884	pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
4885	    MTX_SPIN);
4886
4887	PMCDBG(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
4888	    "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
4889	    pmc_processhash, pmc_processhashmask);
4890
4891	/* register process {exit,fork,exec} handlers */
4892	pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
4893	    pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
4894	pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
4895	    pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
4896
4897	/* register kld event handlers */
4898	pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load,
4899	    NULL, EVENTHANDLER_PRI_ANY);
4900	pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload,
4901	    NULL, EVENTHANDLER_PRI_ANY);
4902
4903	/* initialize logging */
4904	pmclog_initialize();
4905
4906	/* set hook functions */
4907	pmc_intr = md->pmd_intr;
4908	pmc_hook = pmc_hook_handler;
4909
4910	if (error == 0) {
4911		printf(PMC_MODULE_NAME ":");
4912		for (n = 0; n < (int) md->pmd_nclass; n++) {
4913			pcd = &md->pmd_classdep[n];
4914			printf(" %s/%d/%d/0x%b",
4915			    pmc_name_of_pmcclass[pcd->pcd_class],
4916			    pcd->pcd_num,
4917			    pcd->pcd_width,
4918			    pcd->pcd_caps,
4919			    "\20"
4920			    "\1INT\2USR\3SYS\4EDG\5THR"
4921			    "\6REA\7WRI\10INV\11QUA\12PRC"
4922			    "\13TAG\14CSC");
4923		}
4924		printf("\n");
4925	}
4926
4927	return (error);
4928}
4929
4930/* prepare to be unloaded */
4931static void
4932pmc_cleanup(void)
4933{
4934	int c, cpu;
4935	unsigned int maxcpu;
4936	struct pmc_ownerhash *ph;
4937	struct pmc_owner *po, *tmp;
4938	struct pmc_binding pb;
4939#ifdef	DEBUG
4940	struct pmc_processhash *prh;
4941#endif
4942
4943	PMCDBG(MOD,INI,0, "%s", "cleanup");
4944
4945	/* switch off sampling */
4946	CPU_ZERO(&pmc_cpumask);
4947	pmc_intr = NULL;
4948
4949	sx_xlock(&pmc_sx);
4950	if (pmc_hook == NULL) {	/* being unloaded already */
4951		sx_xunlock(&pmc_sx);
4952		return;
4953	}
4954
4955	pmc_hook = NULL; /* prevent new threads from entering module */
4956
4957	/* deregister event handlers */
4958	EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
4959	EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
4960	EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag);
4961	EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag);
4962
4963	/* send SIGBUS to all owner threads, free up allocations */
4964	if (pmc_ownerhash)
4965		for (ph = pmc_ownerhash;
4966		     ph <= &pmc_ownerhash[pmc_ownerhashmask];
4967		     ph++) {
4968			LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
4969				pmc_remove_owner(po);
4970
4971				/* send SIGBUS to owner processes */
4972				PMCDBG(MOD,INI,2, "cleanup signal proc=%p "
4973				    "(%d, %s)", po->po_owner,
4974				    po->po_owner->p_pid,
4975				    po->po_owner->p_comm);
4976
4977				PROC_LOCK(po->po_owner);
4978				kern_psignal(po->po_owner, SIGBUS);
4979				PROC_UNLOCK(po->po_owner);
4980
4981				pmc_destroy_owner_descriptor(po);
4982			}
4983		}
4984
4985	/* reclaim allocated data structures */
4986	if (pmc_mtxpool)
4987		mtx_pool_destroy(&pmc_mtxpool);
4988
4989	mtx_destroy(&pmc_processhash_mtx);
4990	if (pmc_processhash) {
4991#ifdef	DEBUG
4992		struct pmc_process *pp;
4993
4994		PMCDBG(MOD,INI,3, "%s", "destroy process hash");
4995		for (prh = pmc_processhash;
4996		     prh <= &pmc_processhash[pmc_processhashmask];
4997		     prh++)
4998			LIST_FOREACH(pp, prh, pp_next)
4999			    PMCDBG(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
5000#endif
5001
5002		hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
5003		pmc_processhash = NULL;
5004	}
5005
5006	if (pmc_ownerhash) {
5007		PMCDBG(MOD,INI,3, "%s", "destroy owner hash");
5008		hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
5009		pmc_ownerhash = NULL;
5010	}
5011
5012	KASSERT(LIST_EMPTY(&pmc_ss_owners),
5013	    ("[pmc,%d] Global SS owner list not empty", __LINE__));
5014	KASSERT(pmc_ss_count == 0,
5015	    ("[pmc,%d] Global SS count not empty", __LINE__));
5016
5017 	/* do processor and pmc-class dependent cleanup */
5018	maxcpu = pmc_cpu_max();
5019
5020	PMCDBG(MOD,INI,3, "%s", "md cleanup");
5021	if (md) {
5022		pmc_save_cpu_binding(&pb);
5023		for (cpu = 0; cpu < maxcpu; cpu++) {
5024			PMCDBG(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
5025			    cpu, pmc_pcpu[cpu]);
5026			if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
5027				continue;
5028			pmc_select_cpu(cpu);
5029			for (c = 0; c < md->pmd_nclass; c++)
5030				md->pmd_classdep[c].pcd_pcpu_fini(md, cpu);
5031			if (md->pmd_pcpu_fini)
5032				md->pmd_pcpu_fini(md, cpu);
5033		}
5034
5035		if (md->pmd_cputype == PMC_CPU_GENERIC)
5036			pmc_generic_cpu_finalize(md);
5037		else
5038			pmc_md_finalize(md);
5039
5040		pmc_mdep_free(md);
5041		md = NULL;
5042		pmc_restore_cpu_binding(&pb);
5043	}
5044
5045	/* Free per-cpu descriptors. */
5046	for (cpu = 0; cpu < maxcpu; cpu++) {
5047		if (!pmc_cpu_is_active(cpu))
5048			continue;
5049		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
5050		    ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
5051			cpu));
5052		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
5053		    ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
5054			cpu));
5055		free(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
5056		free(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
5057		free(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
5058		free(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
5059		free(pmc_pcpu[cpu], M_PMC);
5060	}
5061
5062	free(pmc_pcpu, M_PMC);
5063	pmc_pcpu = NULL;
5064
5065	free(pmc_pcpu_saved, M_PMC);
5066	pmc_pcpu_saved = NULL;
5067
5068	if (pmc_pmcdisp) {
5069		free(pmc_pmcdisp, M_PMC);
5070		pmc_pmcdisp = NULL;
5071	}
5072
5073	if (pmc_rowindex_to_classdep) {
5074		free(pmc_rowindex_to_classdep, M_PMC);
5075		pmc_rowindex_to_classdep = NULL;
5076	}
5077
5078	pmclog_shutdown();
5079
5080	sx_xunlock(&pmc_sx); 	/* we are done */
5081}
5082
5083/*
5084 * The function called at load/unload.
5085 */
5086
5087static int
5088load (struct module *module __unused, int cmd, void *arg __unused)
5089{
5090	int error;
5091
5092	error = 0;
5093
5094	switch (cmd) {
5095	case MOD_LOAD :
5096		/* initialize the subsystem */
5097		error = pmc_initialize();
5098		if (error != 0)
5099			break;
5100		PMCDBG(MOD,INI,1, "syscall=%d maxcpu=%d",
5101		    pmc_syscall_num, pmc_cpu_max());
5102		break;
5103
5104
5105	case MOD_UNLOAD :
5106	case MOD_SHUTDOWN:
5107		pmc_cleanup();
5108		PMCDBG(MOD,INI,1, "%s", "unloaded");
5109		break;
5110
5111	default :
5112		error = EINVAL;	/* XXX should panic(9) */
5113		break;
5114	}
5115
5116	return error;
5117}
5118
5119/* memory pool */
5120MALLOC_DEFINE(M_PMC, "pmc", "Memory space for the PMC module");
5121