if_ath.c revision 237179
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 237179 2012-06-17 03:08:33Z adrian $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49#include "opt_ah.h"
50#include "opt_wlan.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysctl.h>
55#include <sys/mbuf.h>
56#include <sys/malloc.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/errno.h>
63#include <sys/callout.h>
64#include <sys/bus.h>
65#include <sys/endian.h>
66#include <sys/kthread.h>
67#include <sys/taskqueue.h>
68#include <sys/priv.h>
69#include <sys/module.h>
70#include <sys/ktr.h>
71#include <sys/smp.h>	/* for mp_ncpus */
72
73#include <machine/bus.h>
74
75#include <net/if.h>
76#include <net/if_dl.h>
77#include <net/if_media.h>
78#include <net/if_types.h>
79#include <net/if_arp.h>
80#include <net/ethernet.h>
81#include <net/if_llc.h>
82
83#include <net80211/ieee80211_var.h>
84#include <net80211/ieee80211_regdomain.h>
85#ifdef IEEE80211_SUPPORT_SUPERG
86#include <net80211/ieee80211_superg.h>
87#endif
88#ifdef IEEE80211_SUPPORT_TDMA
89#include <net80211/ieee80211_tdma.h>
90#endif
91
92#include <net/bpf.h>
93
94#ifdef INET
95#include <netinet/in.h>
96#include <netinet/if_ether.h>
97#endif
98
99#include <dev/ath/if_athvar.h>
100#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101#include <dev/ath/ath_hal/ah_diagcodes.h>
102
103#include <dev/ath/if_ath_debug.h>
104#include <dev/ath/if_ath_misc.h>
105#include <dev/ath/if_ath_tsf.h>
106#include <dev/ath/if_ath_tx.h>
107#include <dev/ath/if_ath_sysctl.h>
108#include <dev/ath/if_ath_led.h>
109#include <dev/ath/if_ath_keycache.h>
110#include <dev/ath/if_ath_rx.h>
111#include <dev/ath/if_ath_beacon.h>
112#include <dev/ath/if_athdfs.h>
113
114#ifdef ATH_TX99_DIAG
115#include <dev/ath/ath_tx99/ath_tx99.h>
116#endif
117
118#define	ATH_KTR_INTR	KTR_SPARE4
119#define	ATH_KTR_ERR	KTR_SPARE3
120
121/*
122 * ATH_BCBUF determines the number of vap's that can transmit
123 * beacons and also (currently) the number of vap's that can
124 * have unique mac addresses/bssid.  When staggering beacons
125 * 4 is probably a good max as otherwise the beacons become
126 * very closely spaced and there is limited time for cab q traffic
127 * to go out.  You can burst beacons instead but that is not good
128 * for stations in power save and at some point you really want
129 * another radio (and channel).
130 *
131 * The limit on the number of mac addresses is tied to our use of
132 * the U/L bit and tracking addresses in a byte; it would be
133 * worthwhile to allow more for applications like proxy sta.
134 */
135CTASSERT(ATH_BCBUF <= 8);
136
137static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
138		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
139		    const uint8_t [IEEE80211_ADDR_LEN],
140		    const uint8_t [IEEE80211_ADDR_LEN]);
141static void	ath_vap_delete(struct ieee80211vap *);
142static void	ath_init(void *);
143static void	ath_stop_locked(struct ifnet *);
144static void	ath_stop(struct ifnet *);
145static int	ath_reset_vap(struct ieee80211vap *, u_long);
146static int	ath_media_change(struct ifnet *);
147static void	ath_watchdog(void *);
148static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
149static void	ath_fatal_proc(void *, int);
150static void	ath_bmiss_vap(struct ieee80211vap *);
151static void	ath_bmiss_proc(void *, int);
152static void	ath_key_update_begin(struct ieee80211vap *);
153static void	ath_key_update_end(struct ieee80211vap *);
154static void	ath_update_mcast(struct ifnet *);
155static void	ath_update_promisc(struct ifnet *);
156static void	ath_updateslot(struct ifnet *);
157static void	ath_bstuck_proc(void *, int);
158static void	ath_reset_proc(void *, int);
159static void	ath_descdma_cleanup(struct ath_softc *sc,
160			struct ath_descdma *, ath_bufhead *);
161static int	ath_desc_alloc(struct ath_softc *);
162static void	ath_desc_free(struct ath_softc *);
163static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
164			const uint8_t [IEEE80211_ADDR_LEN]);
165static void	ath_node_cleanup(struct ieee80211_node *);
166static void	ath_node_free(struct ieee80211_node *);
167static void	ath_node_getsignal(const struct ieee80211_node *,
168			int8_t *, int8_t *);
169static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
170static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
171static int	ath_tx_setup(struct ath_softc *, int, int);
172static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
173static void	ath_tx_cleanup(struct ath_softc *);
174static void	ath_tx_proc_q0(void *, int);
175static void	ath_tx_proc_q0123(void *, int);
176static void	ath_tx_proc(void *, int);
177static void	ath_txq_sched_tasklet(void *, int);
178static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
179static void	ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type);
180static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
181static void	ath_scan_start(struct ieee80211com *);
182static void	ath_scan_end(struct ieee80211com *);
183static void	ath_set_channel(struct ieee80211com *);
184#ifdef	ATH_ENABLE_11N
185static void	ath_update_chw(struct ieee80211com *);
186#endif	/* ATH_ENABLE_11N */
187static void	ath_calibrate(void *);
188static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
189static void	ath_setup_stationkey(struct ieee80211_node *);
190static void	ath_newassoc(struct ieee80211_node *, int);
191static int	ath_setregdomain(struct ieee80211com *,
192		    struct ieee80211_regdomain *, int,
193		    struct ieee80211_channel []);
194static void	ath_getradiocaps(struct ieee80211com *, int, int *,
195		    struct ieee80211_channel []);
196static int	ath_getchannels(struct ath_softc *);
197
198static int	ath_rate_setup(struct ath_softc *, u_int mode);
199static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
200
201static void	ath_announce(struct ath_softc *);
202
203static void	ath_dfs_tasklet(void *, int);
204
205#ifdef IEEE80211_SUPPORT_TDMA
206#include <dev/ath/if_ath_tdma.h>
207#endif
208
209#if 0
210#define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
211#define	TDMA_LPF_LEN		6
212#define	TDMA_DUMMY_MARKER	0x127
213#define	TDMA_EP_MUL(x, mul)	((x) * (mul))
214#define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
215#define	TDMA_LPF(x, y, len) \
216    ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
217#define	TDMA_SAMPLE(x, y) do {					\
218	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
219} while (0)
220#define	TDMA_EP_RND(x,mul) \
221	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
222#define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
223#endif /* IEEE80211_SUPPORT_TDMA */
224
225SYSCTL_DECL(_hw_ath);
226
227/* XXX validate sysctl values */
228static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
229SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
230	    0, "long chip calibration interval (secs)");
231static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
232SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
233	    0, "short chip calibration interval (msecs)");
234static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
235SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
236	    0, "reset chip calibration results (secs)");
237static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
238SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
239	    0, "ANI calibration (msecs)");
240
241static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
242SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
243	    0, "rx buffers allocated");
244TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
245static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
246SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
247	    0, "tx buffers allocated");
248TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
249static	int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
250SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
251	    0, "tx (mgmt) buffers allocated");
252TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
253
254int ath_bstuck_threshold = 4;		/* max missed beacons */
255SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
256	    0, "max missed beacon xmits before chip reset");
257
258MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
259
260#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
261#define	HAL_MODE_HT40 \
262	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
263	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
264int
265ath_attach(u_int16_t devid, struct ath_softc *sc)
266{
267	struct ifnet *ifp;
268	struct ieee80211com *ic;
269	struct ath_hal *ah = NULL;
270	HAL_STATUS status;
271	int error = 0, i;
272	u_int wmodes;
273	uint8_t macaddr[IEEE80211_ADDR_LEN];
274	int rx_chainmask, tx_chainmask;
275
276	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
277
278	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
279	if (ifp == NULL) {
280		device_printf(sc->sc_dev, "can not if_alloc()\n");
281		error = ENOSPC;
282		goto bad;
283	}
284	ic = ifp->if_l2com;
285
286	/* set these up early for if_printf use */
287	if_initname(ifp, device_get_name(sc->sc_dev),
288		device_get_unit(sc->sc_dev));
289
290	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
291	    sc->sc_eepromdata, &status);
292	if (ah == NULL) {
293		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
294			status);
295		error = ENXIO;
296		goto bad;
297	}
298	sc->sc_ah = ah;
299	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
300#ifdef	ATH_DEBUG
301	sc->sc_debug = ath_debug;
302#endif
303
304	/*
305	 * Check if the MAC has multi-rate retry support.
306	 * We do this by trying to setup a fake extended
307	 * descriptor.  MAC's that don't have support will
308	 * return false w/o doing anything.  MAC's that do
309	 * support it will return true w/o doing anything.
310	 */
311	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
312
313	/*
314	 * Check if the device has hardware counters for PHY
315	 * errors.  If so we need to enable the MIB interrupt
316	 * so we can act on stat triggers.
317	 */
318	if (ath_hal_hwphycounters(ah))
319		sc->sc_needmib = 1;
320
321	/*
322	 * Get the hardware key cache size.
323	 */
324	sc->sc_keymax = ath_hal_keycachesize(ah);
325	if (sc->sc_keymax > ATH_KEYMAX) {
326		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
327			ATH_KEYMAX, sc->sc_keymax);
328		sc->sc_keymax = ATH_KEYMAX;
329	}
330	/*
331	 * Reset the key cache since some parts do not
332	 * reset the contents on initial power up.
333	 */
334	for (i = 0; i < sc->sc_keymax; i++)
335		ath_hal_keyreset(ah, i);
336
337	/*
338	 * Collect the default channel list.
339	 */
340	error = ath_getchannels(sc);
341	if (error != 0)
342		goto bad;
343
344	/*
345	 * Setup rate tables for all potential media types.
346	 */
347	ath_rate_setup(sc, IEEE80211_MODE_11A);
348	ath_rate_setup(sc, IEEE80211_MODE_11B);
349	ath_rate_setup(sc, IEEE80211_MODE_11G);
350	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
351	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
352	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
353	ath_rate_setup(sc, IEEE80211_MODE_11NA);
354	ath_rate_setup(sc, IEEE80211_MODE_11NG);
355	ath_rate_setup(sc, IEEE80211_MODE_HALF);
356	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
357
358	/* NB: setup here so ath_rate_update is happy */
359	ath_setcurmode(sc, IEEE80211_MODE_11A);
360
361	/*
362	 * Allocate tx+rx descriptors and populate the lists.
363	 */
364	error = ath_desc_alloc(sc);
365	if (error != 0) {
366		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
367		goto bad;
368	}
369	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
370	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
371
372	ATH_TXBUF_LOCK_INIT(sc);
373
374	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
375		taskqueue_thread_enqueue, &sc->sc_tq);
376	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
377		"%s taskq", ifp->if_xname);
378
379	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc);
380	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
381	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
382	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
383	TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc);
384	TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc);
385
386	/*
387	 * Allocate hardware transmit queues: one queue for
388	 * beacon frames and one data queue for each QoS
389	 * priority.  Note that the hal handles resetting
390	 * these queues at the needed time.
391	 *
392	 * XXX PS-Poll
393	 */
394	sc->sc_bhalq = ath_beaconq_setup(ah);
395	if (sc->sc_bhalq == (u_int) -1) {
396		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
397		error = EIO;
398		goto bad2;
399	}
400	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
401	if (sc->sc_cabq == NULL) {
402		if_printf(ifp, "unable to setup CAB xmit queue!\n");
403		error = EIO;
404		goto bad2;
405	}
406	/* NB: insure BK queue is the lowest priority h/w queue */
407	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
408		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
409			ieee80211_wme_acnames[WME_AC_BK]);
410		error = EIO;
411		goto bad2;
412	}
413	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
414	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
415	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
416		/*
417		 * Not enough hardware tx queues to properly do WME;
418		 * just punt and assign them all to the same h/w queue.
419		 * We could do a better job of this if, for example,
420		 * we allocate queues when we switch from station to
421		 * AP mode.
422		 */
423		if (sc->sc_ac2q[WME_AC_VI] != NULL)
424			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
425		if (sc->sc_ac2q[WME_AC_BE] != NULL)
426			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
427		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
428		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
429		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
430	}
431
432	/*
433	 * Special case certain configurations.  Note the
434	 * CAB queue is handled by these specially so don't
435	 * include them when checking the txq setup mask.
436	 */
437	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
438	case 0x01:
439		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
440		break;
441	case 0x0f:
442		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
443		break;
444	default:
445		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
446		break;
447	}
448
449	/*
450	 * Setup rate control.  Some rate control modules
451	 * call back to change the anntena state so expose
452	 * the necessary entry points.
453	 * XXX maybe belongs in struct ath_ratectrl?
454	 */
455	sc->sc_setdefantenna = ath_setdefantenna;
456	sc->sc_rc = ath_rate_attach(sc);
457	if (sc->sc_rc == NULL) {
458		error = EIO;
459		goto bad2;
460	}
461
462	/* Attach DFS module */
463	if (! ath_dfs_attach(sc)) {
464		device_printf(sc->sc_dev,
465		    "%s: unable to attach DFS\n", __func__);
466		error = EIO;
467		goto bad2;
468	}
469
470	/* Start DFS processing tasklet */
471	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
472
473	/* Configure LED state */
474	sc->sc_blinking = 0;
475	sc->sc_ledstate = 1;
476	sc->sc_ledon = 0;			/* low true */
477	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
478	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
479
480	/*
481	 * Don't setup hardware-based blinking.
482	 *
483	 * Although some NICs may have this configured in the
484	 * default reset register values, the user may wish
485	 * to alter which pins have which function.
486	 *
487	 * The reference driver attaches the MAC network LED to GPIO1 and
488	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
489	 * NIC has these reversed.
490	 */
491	sc->sc_hardled = (1 == 0);
492	sc->sc_led_net_pin = -1;
493	sc->sc_led_pwr_pin = -1;
494	/*
495	 * Auto-enable soft led processing for IBM cards and for
496	 * 5211 minipci cards.  Users can also manually enable/disable
497	 * support with a sysctl.
498	 */
499	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
500	ath_led_config(sc);
501	ath_hal_setledstate(ah, HAL_LED_INIT);
502
503	ifp->if_softc = sc;
504	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
505	ifp->if_start = ath_start;
506	ifp->if_ioctl = ath_ioctl;
507	ifp->if_init = ath_init;
508	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
509	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
510	IFQ_SET_READY(&ifp->if_snd);
511
512	ic->ic_ifp = ifp;
513	/* XXX not right but it's not used anywhere important */
514	ic->ic_phytype = IEEE80211_T_OFDM;
515	ic->ic_opmode = IEEE80211_M_STA;
516	ic->ic_caps =
517		  IEEE80211_C_STA		/* station mode */
518		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
519		| IEEE80211_C_HOSTAP		/* hostap mode */
520		| IEEE80211_C_MONITOR		/* monitor mode */
521		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
522		| IEEE80211_C_WDS		/* 4-address traffic works */
523		| IEEE80211_C_MBSS		/* mesh point link mode */
524		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
525		| IEEE80211_C_SHSLOT		/* short slot time supported */
526		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
527#ifndef	ATH_ENABLE_11N
528		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
529#endif
530		| IEEE80211_C_TXFRAG		/* handle tx frags */
531#ifdef	ATH_ENABLE_DFS
532		| IEEE80211_C_DFS		/* Enable radar detection */
533#endif
534		;
535	/*
536	 * Query the hal to figure out h/w crypto support.
537	 */
538	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
539		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
540	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
541		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
542	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
543		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
544	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
545		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
546	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
547		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
548		/*
549		 * Check if h/w does the MIC and/or whether the
550		 * separate key cache entries are required to
551		 * handle both tx+rx MIC keys.
552		 */
553		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
554			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
555		/*
556		 * If the h/w supports storing tx+rx MIC keys
557		 * in one cache slot automatically enable use.
558		 */
559		if (ath_hal_hastkipsplit(ah) ||
560		    !ath_hal_settkipsplit(ah, AH_FALSE))
561			sc->sc_splitmic = 1;
562		/*
563		 * If the h/w can do TKIP MIC together with WME then
564		 * we use it; otherwise we force the MIC to be done
565		 * in software by the net80211 layer.
566		 */
567		if (ath_hal_haswmetkipmic(ah))
568			sc->sc_wmetkipmic = 1;
569	}
570	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
571	/*
572	 * Check for multicast key search support.
573	 */
574	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
575	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
576		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
577	}
578	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
579	/*
580	 * Mark key cache slots associated with global keys
581	 * as in use.  If we knew TKIP was not to be used we
582	 * could leave the +32, +64, and +32+64 slots free.
583	 */
584	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
585		setbit(sc->sc_keymap, i);
586		setbit(sc->sc_keymap, i+64);
587		if (sc->sc_splitmic) {
588			setbit(sc->sc_keymap, i+32);
589			setbit(sc->sc_keymap, i+32+64);
590		}
591	}
592	/*
593	 * TPC support can be done either with a global cap or
594	 * per-packet support.  The latter is not available on
595	 * all parts.  We're a bit pedantic here as all parts
596	 * support a global cap.
597	 */
598	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
599		ic->ic_caps |= IEEE80211_C_TXPMGT;
600
601	/*
602	 * Mark WME capability only if we have sufficient
603	 * hardware queues to do proper priority scheduling.
604	 */
605	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
606		ic->ic_caps |= IEEE80211_C_WME;
607	/*
608	 * Check for misc other capabilities.
609	 */
610	if (ath_hal_hasbursting(ah))
611		ic->ic_caps |= IEEE80211_C_BURST;
612	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
613	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
614	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
615	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
616	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
617	if (ath_hal_hasfastframes(ah))
618		ic->ic_caps |= IEEE80211_C_FF;
619	wmodes = ath_hal_getwirelessmodes(ah);
620	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
621		ic->ic_caps |= IEEE80211_C_TURBOP;
622#ifdef IEEE80211_SUPPORT_TDMA
623	if (ath_hal_macversion(ah) > 0x78) {
624		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
625		ic->ic_tdma_update = ath_tdma_update;
626	}
627#endif
628
629	/*
630	 * TODO: enforce that at least this many frames are available
631	 * in the txbuf list before allowing data frames (raw or
632	 * otherwise) to be transmitted.
633	 */
634	sc->sc_txq_data_minfree = 10;
635	/*
636	 * Leave this as default to maintain legacy behaviour.
637	 * Shortening the cabq/mcastq may end up causing some
638	 * undesirable behaviour.
639	 */
640	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
641
642	/*
643	 * Allow the TX and RX chainmasks to be overridden by
644	 * environment variables and/or device.hints.
645	 *
646	 * This must be done early - before the hardware is
647	 * calibrated or before the 802.11n stream calculation
648	 * is done.
649	 */
650	if (resource_int_value(device_get_name(sc->sc_dev),
651	    device_get_unit(sc->sc_dev), "rx_chainmask",
652	    &rx_chainmask) == 0) {
653		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
654		    rx_chainmask);
655		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
656	}
657	if (resource_int_value(device_get_name(sc->sc_dev),
658	    device_get_unit(sc->sc_dev), "tx_chainmask",
659	    &tx_chainmask) == 0) {
660		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
661		    tx_chainmask);
662		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
663	}
664
665#ifdef	ATH_ENABLE_11N
666	/*
667	 * Query HT capabilities
668	 */
669	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
670	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
671		int rxs, txs;
672
673		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
674		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
675			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
676			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
677			    | IEEE80211_HTCAP_MAXAMSDU_3839
678			    				/* max A-MSDU length */
679			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
680			;
681
682		/*
683		 * Enable short-GI for HT20 only if the hardware
684		 * advertises support.
685		 * Notably, anything earlier than the AR9287 doesn't.
686		 */
687		if ((ath_hal_getcapability(ah,
688		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
689		    (wmodes & HAL_MODE_HT20)) {
690			device_printf(sc->sc_dev,
691			    "[HT] enabling short-GI in 20MHz mode\n");
692			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
693		}
694
695		if (wmodes & HAL_MODE_HT40)
696			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
697			    |  IEEE80211_HTCAP_SHORTGI40;
698
699		/*
700		 * TX/RX streams need to be taken into account when
701		 * negotiating which MCS rates it'll receive and
702		 * what MCS rates are available for TX.
703		 */
704		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
705		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
706
707		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
708		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
709
710		ic->ic_txstream = txs;
711		ic->ic_rxstream = rxs;
712
713		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
714		    &sc->sc_rts_aggr_limit);
715		if (sc->sc_rts_aggr_limit != (64 * 1024))
716			device_printf(sc->sc_dev,
717			    "[HT] RTS aggregates limited to %d KiB\n",
718			    sc->sc_rts_aggr_limit / 1024);
719
720		device_printf(sc->sc_dev,
721		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
722	}
723#endif
724
725	/*
726	 * Check if the hardware requires PCI register serialisation.
727	 * Some of the Owl based MACs require this.
728	 */
729	if (mp_ncpus > 1 &&
730	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
731	     0, NULL) == HAL_OK) {
732		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
733		device_printf(sc->sc_dev,
734		    "Enabling register serialisation\n");
735	}
736
737	/*
738	 * Indicate we need the 802.11 header padded to a
739	 * 32-bit boundary for 4-address and QoS frames.
740	 */
741	ic->ic_flags |= IEEE80211_F_DATAPAD;
742
743	/*
744	 * Query the hal about antenna support.
745	 */
746	sc->sc_defant = ath_hal_getdefantenna(ah);
747
748	/*
749	 * Not all chips have the VEOL support we want to
750	 * use with IBSS beacons; check here for it.
751	 */
752	sc->sc_hasveol = ath_hal_hasveol(ah);
753
754	/* get mac address from hardware */
755	ath_hal_getmac(ah, macaddr);
756	if (sc->sc_hasbmask)
757		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
758
759	/* NB: used to size node table key mapping array */
760	ic->ic_max_keyix = sc->sc_keymax;
761	/* call MI attach routine. */
762	ieee80211_ifattach(ic, macaddr);
763	ic->ic_setregdomain = ath_setregdomain;
764	ic->ic_getradiocaps = ath_getradiocaps;
765	sc->sc_opmode = HAL_M_STA;
766
767	/* override default methods */
768	ic->ic_newassoc = ath_newassoc;
769	ic->ic_updateslot = ath_updateslot;
770	ic->ic_wme.wme_update = ath_wme_update;
771	ic->ic_vap_create = ath_vap_create;
772	ic->ic_vap_delete = ath_vap_delete;
773	ic->ic_raw_xmit = ath_raw_xmit;
774	ic->ic_update_mcast = ath_update_mcast;
775	ic->ic_update_promisc = ath_update_promisc;
776	ic->ic_node_alloc = ath_node_alloc;
777	sc->sc_node_free = ic->ic_node_free;
778	ic->ic_node_free = ath_node_free;
779	sc->sc_node_cleanup = ic->ic_node_cleanup;
780	ic->ic_node_cleanup = ath_node_cleanup;
781	ic->ic_node_getsignal = ath_node_getsignal;
782	ic->ic_scan_start = ath_scan_start;
783	ic->ic_scan_end = ath_scan_end;
784	ic->ic_set_channel = ath_set_channel;
785#ifdef	ATH_ENABLE_11N
786	/* 802.11n specific - but just override anyway */
787	sc->sc_addba_request = ic->ic_addba_request;
788	sc->sc_addba_response = ic->ic_addba_response;
789	sc->sc_addba_stop = ic->ic_addba_stop;
790	sc->sc_bar_response = ic->ic_bar_response;
791	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
792
793	ic->ic_addba_request = ath_addba_request;
794	ic->ic_addba_response = ath_addba_response;
795	ic->ic_addba_response_timeout = ath_addba_response_timeout;
796	ic->ic_addba_stop = ath_addba_stop;
797	ic->ic_bar_response = ath_bar_response;
798
799	ic->ic_update_chw = ath_update_chw;
800#endif	/* ATH_ENABLE_11N */
801
802	ieee80211_radiotap_attach(ic,
803	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
804		ATH_TX_RADIOTAP_PRESENT,
805	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
806		ATH_RX_RADIOTAP_PRESENT);
807
808	/*
809	 * Setup dynamic sysctl's now that country code and
810	 * regdomain are available from the hal.
811	 */
812	ath_sysctlattach(sc);
813	ath_sysctl_stats_attach(sc);
814	ath_sysctl_hal_attach(sc);
815
816	if (bootverbose)
817		ieee80211_announce(ic);
818	ath_announce(sc);
819	return 0;
820bad2:
821	ath_tx_cleanup(sc);
822	ath_desc_free(sc);
823bad:
824	if (ah)
825		ath_hal_detach(ah);
826	if (ifp != NULL)
827		if_free(ifp);
828	sc->sc_invalid = 1;
829	return error;
830}
831
832int
833ath_detach(struct ath_softc *sc)
834{
835	struct ifnet *ifp = sc->sc_ifp;
836
837	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
838		__func__, ifp->if_flags);
839
840	/*
841	 * NB: the order of these is important:
842	 * o stop the chip so no more interrupts will fire
843	 * o call the 802.11 layer before detaching the hal to
844	 *   insure callbacks into the driver to delete global
845	 *   key cache entries can be handled
846	 * o free the taskqueue which drains any pending tasks
847	 * o reclaim the tx queue data structures after calling
848	 *   the 802.11 layer as we'll get called back to reclaim
849	 *   node state and potentially want to use them
850	 * o to cleanup the tx queues the hal is called, so detach
851	 *   it last
852	 * Other than that, it's straightforward...
853	 */
854	ath_stop(ifp);
855	ieee80211_ifdetach(ifp->if_l2com);
856	taskqueue_free(sc->sc_tq);
857#ifdef ATH_TX99_DIAG
858	if (sc->sc_tx99 != NULL)
859		sc->sc_tx99->detach(sc->sc_tx99);
860#endif
861	ath_rate_detach(sc->sc_rc);
862
863	ath_dfs_detach(sc);
864	ath_desc_free(sc);
865	ath_tx_cleanup(sc);
866	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
867	if_free(ifp);
868
869	return 0;
870}
871
872/*
873 * MAC address handling for multiple BSS on the same radio.
874 * The first vap uses the MAC address from the EEPROM.  For
875 * subsequent vap's we set the U/L bit (bit 1) in the MAC
876 * address and use the next six bits as an index.
877 */
878static void
879assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
880{
881	int i;
882
883	if (clone && sc->sc_hasbmask) {
884		/* NB: we only do this if h/w supports multiple bssid */
885		for (i = 0; i < 8; i++)
886			if ((sc->sc_bssidmask & (1<<i)) == 0)
887				break;
888		if (i != 0)
889			mac[0] |= (i << 2)|0x2;
890	} else
891		i = 0;
892	sc->sc_bssidmask |= 1<<i;
893	sc->sc_hwbssidmask[0] &= ~mac[0];
894	if (i == 0)
895		sc->sc_nbssid0++;
896}
897
898static void
899reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
900{
901	int i = mac[0] >> 2;
902	uint8_t mask;
903
904	if (i != 0 || --sc->sc_nbssid0 == 0) {
905		sc->sc_bssidmask &= ~(1<<i);
906		/* recalculate bssid mask from remaining addresses */
907		mask = 0xff;
908		for (i = 1; i < 8; i++)
909			if (sc->sc_bssidmask & (1<<i))
910				mask &= ~((i<<2)|0x2);
911		sc->sc_hwbssidmask[0] |= mask;
912	}
913}
914
915/*
916 * Assign a beacon xmit slot.  We try to space out
917 * assignments so when beacons are staggered the
918 * traffic coming out of the cab q has maximal time
919 * to go out before the next beacon is scheduled.
920 */
921static int
922assign_bslot(struct ath_softc *sc)
923{
924	u_int slot, free;
925
926	free = 0;
927	for (slot = 0; slot < ATH_BCBUF; slot++)
928		if (sc->sc_bslot[slot] == NULL) {
929			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
930			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
931				return slot;
932			free = slot;
933			/* NB: keep looking for a double slot */
934		}
935	return free;
936}
937
938static struct ieee80211vap *
939ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
940    enum ieee80211_opmode opmode, int flags,
941    const uint8_t bssid[IEEE80211_ADDR_LEN],
942    const uint8_t mac0[IEEE80211_ADDR_LEN])
943{
944	struct ath_softc *sc = ic->ic_ifp->if_softc;
945	struct ath_vap *avp;
946	struct ieee80211vap *vap;
947	uint8_t mac[IEEE80211_ADDR_LEN];
948	int needbeacon, error;
949	enum ieee80211_opmode ic_opmode;
950
951	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
952	    M_80211_VAP, M_WAITOK | M_ZERO);
953	needbeacon = 0;
954	IEEE80211_ADDR_COPY(mac, mac0);
955
956	ATH_LOCK(sc);
957	ic_opmode = opmode;		/* default to opmode of new vap */
958	switch (opmode) {
959	case IEEE80211_M_STA:
960		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
961			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
962			goto bad;
963		}
964		if (sc->sc_nvaps) {
965			/*
966			 * With multiple vaps we must fall back
967			 * to s/w beacon miss handling.
968			 */
969			flags |= IEEE80211_CLONE_NOBEACONS;
970		}
971		if (flags & IEEE80211_CLONE_NOBEACONS) {
972			/*
973			 * Station mode w/o beacons are implemented w/ AP mode.
974			 */
975			ic_opmode = IEEE80211_M_HOSTAP;
976		}
977		break;
978	case IEEE80211_M_IBSS:
979		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
980			device_printf(sc->sc_dev,
981			    "only 1 ibss vap supported\n");
982			goto bad;
983		}
984		needbeacon = 1;
985		break;
986	case IEEE80211_M_AHDEMO:
987#ifdef IEEE80211_SUPPORT_TDMA
988		if (flags & IEEE80211_CLONE_TDMA) {
989			if (sc->sc_nvaps != 0) {
990				device_printf(sc->sc_dev,
991				    "only 1 tdma vap supported\n");
992				goto bad;
993			}
994			needbeacon = 1;
995			flags |= IEEE80211_CLONE_NOBEACONS;
996		}
997		/* fall thru... */
998#endif
999	case IEEE80211_M_MONITOR:
1000		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1001			/*
1002			 * Adopt existing mode.  Adding a monitor or ahdemo
1003			 * vap to an existing configuration is of dubious
1004			 * value but should be ok.
1005			 */
1006			/* XXX not right for monitor mode */
1007			ic_opmode = ic->ic_opmode;
1008		}
1009		break;
1010	case IEEE80211_M_HOSTAP:
1011	case IEEE80211_M_MBSS:
1012		needbeacon = 1;
1013		break;
1014	case IEEE80211_M_WDS:
1015		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1016			device_printf(sc->sc_dev,
1017			    "wds not supported in sta mode\n");
1018			goto bad;
1019		}
1020		/*
1021		 * Silently remove any request for a unique
1022		 * bssid; WDS vap's always share the local
1023		 * mac address.
1024		 */
1025		flags &= ~IEEE80211_CLONE_BSSID;
1026		if (sc->sc_nvaps == 0)
1027			ic_opmode = IEEE80211_M_HOSTAP;
1028		else
1029			ic_opmode = ic->ic_opmode;
1030		break;
1031	default:
1032		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1033		goto bad;
1034	}
1035	/*
1036	 * Check that a beacon buffer is available; the code below assumes it.
1037	 */
1038	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1039		device_printf(sc->sc_dev, "no beacon buffer available\n");
1040		goto bad;
1041	}
1042
1043	/* STA, AHDEMO? */
1044	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1045		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1046		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1047	}
1048
1049	vap = &avp->av_vap;
1050	/* XXX can't hold mutex across if_alloc */
1051	ATH_UNLOCK(sc);
1052	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1053	    bssid, mac);
1054	ATH_LOCK(sc);
1055	if (error != 0) {
1056		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1057		    __func__, error);
1058		goto bad2;
1059	}
1060
1061	/* h/w crypto support */
1062	vap->iv_key_alloc = ath_key_alloc;
1063	vap->iv_key_delete = ath_key_delete;
1064	vap->iv_key_set = ath_key_set;
1065	vap->iv_key_update_begin = ath_key_update_begin;
1066	vap->iv_key_update_end = ath_key_update_end;
1067
1068	/* override various methods */
1069	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1070	vap->iv_recv_mgmt = ath_recv_mgmt;
1071	vap->iv_reset = ath_reset_vap;
1072	vap->iv_update_beacon = ath_beacon_update;
1073	avp->av_newstate = vap->iv_newstate;
1074	vap->iv_newstate = ath_newstate;
1075	avp->av_bmiss = vap->iv_bmiss;
1076	vap->iv_bmiss = ath_bmiss_vap;
1077
1078	/* Set default parameters */
1079
1080	/*
1081	 * Anything earlier than some AR9300 series MACs don't
1082	 * support a smaller MPDU density.
1083	 */
1084	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1085	/*
1086	 * All NICs can handle the maximum size, however
1087	 * AR5416 based MACs can only TX aggregates w/ RTS
1088	 * protection when the total aggregate size is <= 8k.
1089	 * However, for now that's enforced by the TX path.
1090	 */
1091	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1092
1093	avp->av_bslot = -1;
1094	if (needbeacon) {
1095		/*
1096		 * Allocate beacon state and setup the q for buffered
1097		 * multicast frames.  We know a beacon buffer is
1098		 * available because we checked above.
1099		 */
1100		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1101		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1102		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1103			/*
1104			 * Assign the vap to a beacon xmit slot.  As above
1105			 * this cannot fail to find a free one.
1106			 */
1107			avp->av_bslot = assign_bslot(sc);
1108			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1109			    ("beacon slot %u not empty", avp->av_bslot));
1110			sc->sc_bslot[avp->av_bslot] = vap;
1111			sc->sc_nbcnvaps++;
1112		}
1113		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1114			/*
1115			 * Multple vaps are to transmit beacons and we
1116			 * have h/w support for TSF adjusting; enable
1117			 * use of staggered beacons.
1118			 */
1119			sc->sc_stagbeacons = 1;
1120		}
1121		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1122	}
1123
1124	ic->ic_opmode = ic_opmode;
1125	if (opmode != IEEE80211_M_WDS) {
1126		sc->sc_nvaps++;
1127		if (opmode == IEEE80211_M_STA)
1128			sc->sc_nstavaps++;
1129		if (opmode == IEEE80211_M_MBSS)
1130			sc->sc_nmeshvaps++;
1131	}
1132	switch (ic_opmode) {
1133	case IEEE80211_M_IBSS:
1134		sc->sc_opmode = HAL_M_IBSS;
1135		break;
1136	case IEEE80211_M_STA:
1137		sc->sc_opmode = HAL_M_STA;
1138		break;
1139	case IEEE80211_M_AHDEMO:
1140#ifdef IEEE80211_SUPPORT_TDMA
1141		if (vap->iv_caps & IEEE80211_C_TDMA) {
1142			sc->sc_tdma = 1;
1143			/* NB: disable tsf adjust */
1144			sc->sc_stagbeacons = 0;
1145		}
1146		/*
1147		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1148		 * just ap mode.
1149		 */
1150		/* fall thru... */
1151#endif
1152	case IEEE80211_M_HOSTAP:
1153	case IEEE80211_M_MBSS:
1154		sc->sc_opmode = HAL_M_HOSTAP;
1155		break;
1156	case IEEE80211_M_MONITOR:
1157		sc->sc_opmode = HAL_M_MONITOR;
1158		break;
1159	default:
1160		/* XXX should not happen */
1161		break;
1162	}
1163	if (sc->sc_hastsfadd) {
1164		/*
1165		 * Configure whether or not TSF adjust should be done.
1166		 */
1167		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1168	}
1169	if (flags & IEEE80211_CLONE_NOBEACONS) {
1170		/*
1171		 * Enable s/w beacon miss handling.
1172		 */
1173		sc->sc_swbmiss = 1;
1174	}
1175	ATH_UNLOCK(sc);
1176
1177	/* complete setup */
1178	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1179	return vap;
1180bad2:
1181	reclaim_address(sc, mac);
1182	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1183bad:
1184	free(avp, M_80211_VAP);
1185	ATH_UNLOCK(sc);
1186	return NULL;
1187}
1188
1189static void
1190ath_vap_delete(struct ieee80211vap *vap)
1191{
1192	struct ieee80211com *ic = vap->iv_ic;
1193	struct ifnet *ifp = ic->ic_ifp;
1194	struct ath_softc *sc = ifp->if_softc;
1195	struct ath_hal *ah = sc->sc_ah;
1196	struct ath_vap *avp = ATH_VAP(vap);
1197
1198	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1199	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1200		/*
1201		 * Quiesce the hardware while we remove the vap.  In
1202		 * particular we need to reclaim all references to
1203		 * the vap state by any frames pending on the tx queues.
1204		 */
1205		ath_hal_intrset(ah, 0);		/* disable interrupts */
1206		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1207		/* XXX Do all frames from all vaps/nodes need draining here? */
1208		ath_stoprecv(sc, 1);		/* stop recv side */
1209	}
1210
1211	ieee80211_vap_detach(vap);
1212
1213	/*
1214	 * XXX Danger Will Robinson! Danger!
1215	 *
1216	 * Because ieee80211_vap_detach() can queue a frame (the station
1217	 * diassociate message?) after we've drained the TXQ and
1218	 * flushed the software TXQ, we will end up with a frame queued
1219	 * to a node whose vap is about to be freed.
1220	 *
1221	 * To work around this, flush the hardware/software again.
1222	 * This may be racy - the ath task may be running and the packet
1223	 * may be being scheduled between sw->hw txq. Tsk.
1224	 *
1225	 * TODO: figure out why a new node gets allocated somewhere around
1226	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1227	 * call!)
1228	 */
1229
1230	ath_draintxq(sc, ATH_RESET_DEFAULT);
1231
1232	ATH_LOCK(sc);
1233	/*
1234	 * Reclaim beacon state.  Note this must be done before
1235	 * the vap instance is reclaimed as we may have a reference
1236	 * to it in the buffer for the beacon frame.
1237	 */
1238	if (avp->av_bcbuf != NULL) {
1239		if (avp->av_bslot != -1) {
1240			sc->sc_bslot[avp->av_bslot] = NULL;
1241			sc->sc_nbcnvaps--;
1242		}
1243		ath_beacon_return(sc, avp->av_bcbuf);
1244		avp->av_bcbuf = NULL;
1245		if (sc->sc_nbcnvaps == 0) {
1246			sc->sc_stagbeacons = 0;
1247			if (sc->sc_hastsfadd)
1248				ath_hal_settsfadjust(sc->sc_ah, 0);
1249		}
1250		/*
1251		 * Reclaim any pending mcast frames for the vap.
1252		 */
1253		ath_tx_draintxq(sc, &avp->av_mcastq);
1254		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1255	}
1256	/*
1257	 * Update bookkeeping.
1258	 */
1259	if (vap->iv_opmode == IEEE80211_M_STA) {
1260		sc->sc_nstavaps--;
1261		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1262			sc->sc_swbmiss = 0;
1263	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1264	    vap->iv_opmode == IEEE80211_M_MBSS) {
1265		reclaim_address(sc, vap->iv_myaddr);
1266		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1267		if (vap->iv_opmode == IEEE80211_M_MBSS)
1268			sc->sc_nmeshvaps--;
1269	}
1270	if (vap->iv_opmode != IEEE80211_M_WDS)
1271		sc->sc_nvaps--;
1272#ifdef IEEE80211_SUPPORT_TDMA
1273	/* TDMA operation ceases when the last vap is destroyed */
1274	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1275		sc->sc_tdma = 0;
1276		sc->sc_swbmiss = 0;
1277	}
1278#endif
1279	free(avp, M_80211_VAP);
1280
1281	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1282		/*
1283		 * Restart rx+tx machines if still running (RUNNING will
1284		 * be reset if we just destroyed the last vap).
1285		 */
1286		if (ath_startrecv(sc) != 0)
1287			if_printf(ifp, "%s: unable to restart recv logic\n",
1288			    __func__);
1289		if (sc->sc_beacons) {		/* restart beacons */
1290#ifdef IEEE80211_SUPPORT_TDMA
1291			if (sc->sc_tdma)
1292				ath_tdma_config(sc, NULL);
1293			else
1294#endif
1295				ath_beacon_config(sc, NULL);
1296		}
1297		ath_hal_intrset(ah, sc->sc_imask);
1298	}
1299	ATH_UNLOCK(sc);
1300}
1301
1302void
1303ath_suspend(struct ath_softc *sc)
1304{
1305	struct ifnet *ifp = sc->sc_ifp;
1306	struct ieee80211com *ic = ifp->if_l2com;
1307
1308	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1309		__func__, ifp->if_flags);
1310
1311	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1312
1313	ieee80211_suspend_all(ic);
1314	/*
1315	 * NB: don't worry about putting the chip in low power
1316	 * mode; pci will power off our socket on suspend and
1317	 * CardBus detaches the device.
1318	 */
1319
1320	/*
1321	 * XXX ensure none of the taskqueues are running
1322	 * XXX ensure sc_invalid is 1
1323	 * XXX ensure the calibration callout is disabled
1324	 */
1325
1326	/* Disable the PCIe PHY, complete with workarounds */
1327	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1328}
1329
1330/*
1331 * Reset the key cache since some parts do not reset the
1332 * contents on resume.  First we clear all entries, then
1333 * re-load keys that the 802.11 layer assumes are setup
1334 * in h/w.
1335 */
1336static void
1337ath_reset_keycache(struct ath_softc *sc)
1338{
1339	struct ifnet *ifp = sc->sc_ifp;
1340	struct ieee80211com *ic = ifp->if_l2com;
1341	struct ath_hal *ah = sc->sc_ah;
1342	int i;
1343
1344	for (i = 0; i < sc->sc_keymax; i++)
1345		ath_hal_keyreset(ah, i);
1346	ieee80211_crypto_reload_keys(ic);
1347}
1348
1349void
1350ath_resume(struct ath_softc *sc)
1351{
1352	struct ifnet *ifp = sc->sc_ifp;
1353	struct ieee80211com *ic = ifp->if_l2com;
1354	struct ath_hal *ah = sc->sc_ah;
1355	HAL_STATUS status;
1356
1357	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1358		__func__, ifp->if_flags);
1359
1360	/* Re-enable PCIe, re-enable the PCIe bus */
1361	ath_hal_enablepcie(ah, 0, 0);
1362
1363	/*
1364	 * Must reset the chip before we reload the
1365	 * keycache as we were powered down on suspend.
1366	 */
1367	ath_hal_reset(ah, sc->sc_opmode,
1368	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1369	    AH_FALSE, &status);
1370	ath_reset_keycache(sc);
1371
1372	/* Let DFS at it in case it's a DFS channel */
1373	ath_dfs_radar_enable(sc, ic->ic_curchan);
1374
1375	/* Restore the LED configuration */
1376	ath_led_config(sc);
1377	ath_hal_setledstate(ah, HAL_LED_INIT);
1378
1379	if (sc->sc_resume_up)
1380		ieee80211_resume_all(ic);
1381
1382	/* XXX beacons ? */
1383}
1384
1385void
1386ath_shutdown(struct ath_softc *sc)
1387{
1388	struct ifnet *ifp = sc->sc_ifp;
1389
1390	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1391		__func__, ifp->if_flags);
1392
1393	ath_stop(ifp);
1394	/* NB: no point powering down chip as we're about to reboot */
1395}
1396
1397/*
1398 * Interrupt handler.  Most of the actual processing is deferred.
1399 */
1400void
1401ath_intr(void *arg)
1402{
1403	struct ath_softc *sc = arg;
1404	struct ifnet *ifp = sc->sc_ifp;
1405	struct ath_hal *ah = sc->sc_ah;
1406	HAL_INT status = 0;
1407	uint32_t txqs;
1408
1409	/*
1410	 * If we're inside a reset path, just print a warning and
1411	 * clear the ISR. The reset routine will finish it for us.
1412	 */
1413	ATH_PCU_LOCK(sc);
1414	if (sc->sc_inreset_cnt) {
1415		HAL_INT status;
1416		ath_hal_getisr(ah, &status);	/* clear ISR */
1417		ath_hal_intrset(ah, 0);		/* disable further intr's */
1418		DPRINTF(sc, ATH_DEBUG_ANY,
1419		    "%s: in reset, ignoring: status=0x%x\n",
1420		    __func__, status);
1421		ATH_PCU_UNLOCK(sc);
1422		return;
1423	}
1424
1425	if (sc->sc_invalid) {
1426		/*
1427		 * The hardware is not ready/present, don't touch anything.
1428		 * Note this can happen early on if the IRQ is shared.
1429		 */
1430		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1431		ATH_PCU_UNLOCK(sc);
1432		return;
1433	}
1434	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1435		ATH_PCU_UNLOCK(sc);
1436		return;
1437	}
1438
1439	if ((ifp->if_flags & IFF_UP) == 0 ||
1440	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1441		HAL_INT status;
1442
1443		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1444			__func__, ifp->if_flags);
1445		ath_hal_getisr(ah, &status);	/* clear ISR */
1446		ath_hal_intrset(ah, 0);		/* disable further intr's */
1447		ATH_PCU_UNLOCK(sc);
1448		return;
1449	}
1450
1451	/*
1452	 * Figure out the reason(s) for the interrupt.  Note
1453	 * that the hal returns a pseudo-ISR that may include
1454	 * bits we haven't explicitly enabled so we mask the
1455	 * value to insure we only process bits we requested.
1456	 */
1457	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1458	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1459	CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status);
1460#ifdef	ATH_KTR_INTR_DEBUG
1461	CTR5(ATH_KTR_INTR,
1462	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1463	    ah->ah_intrstate[0],
1464	    ah->ah_intrstate[1],
1465	    ah->ah_intrstate[2],
1466	    ah->ah_intrstate[3],
1467	    ah->ah_intrstate[6]);
1468#endif
1469
1470	/* Squirrel away SYNC interrupt debugging */
1471	if (ah->ah_syncstate != 0) {
1472		int i;
1473		for (i = 0; i < 32; i++)
1474			if (ah->ah_syncstate & (i << i))
1475				sc->sc_intr_stats.sync_intr[i]++;
1476	}
1477
1478	status &= sc->sc_imask;			/* discard unasked for bits */
1479
1480	/* Short-circuit un-handled interrupts */
1481	if (status == 0x0) {
1482		ATH_PCU_UNLOCK(sc);
1483		return;
1484	}
1485
1486	/*
1487	 * Take a note that we're inside the interrupt handler, so
1488	 * the reset routines know to wait.
1489	 */
1490	sc->sc_intr_cnt++;
1491	ATH_PCU_UNLOCK(sc);
1492
1493	/*
1494	 * Handle the interrupt. We won't run concurrent with the reset
1495	 * or channel change routines as they'll wait for sc_intr_cnt
1496	 * to be 0 before continuing.
1497	 */
1498	if (status & HAL_INT_FATAL) {
1499		sc->sc_stats.ast_hardware++;
1500		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1501		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1502	} else {
1503		if (status & HAL_INT_SWBA) {
1504			/*
1505			 * Software beacon alert--time to send a beacon.
1506			 * Handle beacon transmission directly; deferring
1507			 * this is too slow to meet timing constraints
1508			 * under load.
1509			 */
1510#ifdef IEEE80211_SUPPORT_TDMA
1511			if (sc->sc_tdma) {
1512				if (sc->sc_tdmaswba == 0) {
1513					struct ieee80211com *ic = ifp->if_l2com;
1514					struct ieee80211vap *vap =
1515					    TAILQ_FIRST(&ic->ic_vaps);
1516					ath_tdma_beacon_send(sc, vap);
1517					sc->sc_tdmaswba =
1518					    vap->iv_tdma->tdma_bintval;
1519				} else
1520					sc->sc_tdmaswba--;
1521			} else
1522#endif
1523			{
1524				ath_beacon_proc(sc, 0);
1525#ifdef IEEE80211_SUPPORT_SUPERG
1526				/*
1527				 * Schedule the rx taskq in case there's no
1528				 * traffic so any frames held on the staging
1529				 * queue are aged and potentially flushed.
1530				 */
1531				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1532#endif
1533			}
1534		}
1535		if (status & HAL_INT_RXEOL) {
1536			int imask;
1537			CTR0(ATH_KTR_ERR, "ath_intr: RXEOL");
1538			ATH_PCU_LOCK(sc);
1539			/*
1540			 * NB: the hardware should re-read the link when
1541			 *     RXE bit is written, but it doesn't work at
1542			 *     least on older hardware revs.
1543			 */
1544			sc->sc_stats.ast_rxeol++;
1545			/*
1546			 * Disable RXEOL/RXORN - prevent an interrupt
1547			 * storm until the PCU logic can be reset.
1548			 * In case the interface is reset some other
1549			 * way before "sc_kickpcu" is called, don't
1550			 * modify sc_imask - that way if it is reset
1551			 * by a call to ath_reset() somehow, the
1552			 * interrupt mask will be correctly reprogrammed.
1553			 */
1554			imask = sc->sc_imask;
1555			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1556			ath_hal_intrset(ah, imask);
1557			/*
1558			 * Only blank sc_rxlink if we've not yet kicked
1559			 * the PCU.
1560			 *
1561			 * This isn't entirely correct - the correct solution
1562			 * would be to have a PCU lock and engage that for
1563			 * the duration of the PCU fiddling; which would include
1564			 * running the RX process. Otherwise we could end up
1565			 * messing up the RX descriptor chain and making the
1566			 * RX desc list much shorter.
1567			 */
1568			if (! sc->sc_kickpcu)
1569				sc->sc_rxlink = NULL;
1570			sc->sc_kickpcu = 1;
1571			/*
1572			 * Enqueue an RX proc, to handled whatever
1573			 * is in the RX queue.
1574			 * This will then kick the PCU.
1575			 */
1576			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1577			ATH_PCU_UNLOCK(sc);
1578		}
1579		if (status & HAL_INT_TXURN) {
1580			sc->sc_stats.ast_txurn++;
1581			/* bump tx trigger level */
1582			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1583		}
1584		if (status & HAL_INT_RX) {
1585			sc->sc_stats.ast_rx_intr++;
1586			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1587		}
1588		if (status & HAL_INT_TX) {
1589			sc->sc_stats.ast_tx_intr++;
1590			/*
1591			 * Grab all the currently set bits in the HAL txq bitmap
1592			 * and blank them. This is the only place we should be
1593			 * doing this.
1594			 */
1595			ATH_PCU_LOCK(sc);
1596			txqs = 0xffffffff;
1597			ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1598			sc->sc_txq_active |= txqs;
1599			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1600			ATH_PCU_UNLOCK(sc);
1601		}
1602		if (status & HAL_INT_BMISS) {
1603			sc->sc_stats.ast_bmiss++;
1604			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1605		}
1606		if (status & HAL_INT_GTT)
1607			sc->sc_stats.ast_tx_timeout++;
1608		if (status & HAL_INT_CST)
1609			sc->sc_stats.ast_tx_cst++;
1610		if (status & HAL_INT_MIB) {
1611			sc->sc_stats.ast_mib++;
1612			ATH_PCU_LOCK(sc);
1613			/*
1614			 * Disable interrupts until we service the MIB
1615			 * interrupt; otherwise it will continue to fire.
1616			 */
1617			ath_hal_intrset(ah, 0);
1618			/*
1619			 * Let the hal handle the event.  We assume it will
1620			 * clear whatever condition caused the interrupt.
1621			 */
1622			ath_hal_mibevent(ah, &sc->sc_halstats);
1623			/*
1624			 * Don't reset the interrupt if we've just
1625			 * kicked the PCU, or we may get a nested
1626			 * RXEOL before the rxproc has had a chance
1627			 * to run.
1628			 */
1629			if (sc->sc_kickpcu == 0)
1630				ath_hal_intrset(ah, sc->sc_imask);
1631			ATH_PCU_UNLOCK(sc);
1632		}
1633		if (status & HAL_INT_RXORN) {
1634			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1635			CTR0(ATH_KTR_ERR, "ath_intr: RXORN");
1636			sc->sc_stats.ast_rxorn++;
1637		}
1638	}
1639	ATH_PCU_LOCK(sc);
1640	sc->sc_intr_cnt--;
1641	ATH_PCU_UNLOCK(sc);
1642}
1643
1644static void
1645ath_fatal_proc(void *arg, int pending)
1646{
1647	struct ath_softc *sc = arg;
1648	struct ifnet *ifp = sc->sc_ifp;
1649	u_int32_t *state;
1650	u_int32_t len;
1651	void *sp;
1652
1653	if_printf(ifp, "hardware error; resetting\n");
1654	/*
1655	 * Fatal errors are unrecoverable.  Typically these
1656	 * are caused by DMA errors.  Collect h/w state from
1657	 * the hal so we can diagnose what's going on.
1658	 */
1659	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1660		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1661		state = sp;
1662		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1663		    state[0], state[1] , state[2], state[3],
1664		    state[4], state[5]);
1665	}
1666	ath_reset(ifp, ATH_RESET_NOLOSS);
1667}
1668
1669static void
1670ath_bmiss_vap(struct ieee80211vap *vap)
1671{
1672	/*
1673	 * Workaround phantom bmiss interrupts by sanity-checking
1674	 * the time of our last rx'd frame.  If it is within the
1675	 * beacon miss interval then ignore the interrupt.  If it's
1676	 * truly a bmiss we'll get another interrupt soon and that'll
1677	 * be dispatched up for processing.  Note this applies only
1678	 * for h/w beacon miss events.
1679	 */
1680	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1681		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1682		struct ath_softc *sc = ifp->if_softc;
1683		u_int64_t lastrx = sc->sc_lastrx;
1684		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1685		/* XXX should take a locked ref to iv_bss */
1686		u_int bmisstimeout =
1687			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1688
1689		DPRINTF(sc, ATH_DEBUG_BEACON,
1690		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1691		    __func__, (unsigned long long) tsf,
1692		    (unsigned long long)(tsf - lastrx),
1693		    (unsigned long long) lastrx, bmisstimeout);
1694
1695		if (tsf - lastrx <= bmisstimeout) {
1696			sc->sc_stats.ast_bmiss_phantom++;
1697			return;
1698		}
1699	}
1700	ATH_VAP(vap)->av_bmiss(vap);
1701}
1702
1703static int
1704ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1705{
1706	uint32_t rsize;
1707	void *sp;
1708
1709	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1710		return 0;
1711	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1712	*hangs = *(uint32_t *)sp;
1713	return 1;
1714}
1715
1716static void
1717ath_bmiss_proc(void *arg, int pending)
1718{
1719	struct ath_softc *sc = arg;
1720	struct ifnet *ifp = sc->sc_ifp;
1721	uint32_t hangs;
1722
1723	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1724
1725	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1726		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1727		ath_reset(ifp, ATH_RESET_NOLOSS);
1728	} else
1729		ieee80211_beacon_miss(ifp->if_l2com);
1730}
1731
1732/*
1733 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1734 * calcs together with WME.  If necessary disable the crypto
1735 * hardware and mark the 802.11 state so keys will be setup
1736 * with the MIC work done in software.
1737 */
1738static void
1739ath_settkipmic(struct ath_softc *sc)
1740{
1741	struct ifnet *ifp = sc->sc_ifp;
1742	struct ieee80211com *ic = ifp->if_l2com;
1743
1744	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1745		if (ic->ic_flags & IEEE80211_F_WME) {
1746			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1747			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1748		} else {
1749			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1750			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1751		}
1752	}
1753}
1754
1755static void
1756ath_init(void *arg)
1757{
1758	struct ath_softc *sc = (struct ath_softc *) arg;
1759	struct ifnet *ifp = sc->sc_ifp;
1760	struct ieee80211com *ic = ifp->if_l2com;
1761	struct ath_hal *ah = sc->sc_ah;
1762	HAL_STATUS status;
1763
1764	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1765		__func__, ifp->if_flags);
1766
1767	ATH_LOCK(sc);
1768	/*
1769	 * Stop anything previously setup.  This is safe
1770	 * whether this is the first time through or not.
1771	 */
1772	ath_stop_locked(ifp);
1773
1774	/*
1775	 * The basic interface to setting the hardware in a good
1776	 * state is ``reset''.  On return the hardware is known to
1777	 * be powered up and with interrupts disabled.  This must
1778	 * be followed by initialization of the appropriate bits
1779	 * and then setup of the interrupt mask.
1780	 */
1781	ath_settkipmic(sc);
1782	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1783		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1784			status);
1785		ATH_UNLOCK(sc);
1786		return;
1787	}
1788	ath_chan_change(sc, ic->ic_curchan);
1789
1790	/* Let DFS at it in case it's a DFS channel */
1791	ath_dfs_radar_enable(sc, ic->ic_curchan);
1792
1793	/*
1794	 * Likewise this is set during reset so update
1795	 * state cached in the driver.
1796	 */
1797	sc->sc_diversity = ath_hal_getdiversity(ah);
1798	sc->sc_lastlongcal = 0;
1799	sc->sc_resetcal = 1;
1800	sc->sc_lastcalreset = 0;
1801	sc->sc_lastani = 0;
1802	sc->sc_lastshortcal = 0;
1803	sc->sc_doresetcal = AH_FALSE;
1804	/*
1805	 * Beacon timers were cleared here; give ath_newstate()
1806	 * a hint that the beacon timers should be poked when
1807	 * things transition to the RUN state.
1808	 */
1809	sc->sc_beacons = 0;
1810
1811	/*
1812	 * Initial aggregation settings.
1813	 */
1814	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
1815	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1816	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1817
1818	/*
1819	 * Setup the hardware after reset: the key cache
1820	 * is filled as needed and the receive engine is
1821	 * set going.  Frame transmit is handled entirely
1822	 * in the frame output path; there's nothing to do
1823	 * here except setup the interrupt mask.
1824	 */
1825	if (ath_startrecv(sc) != 0) {
1826		if_printf(ifp, "unable to start recv logic\n");
1827		ATH_UNLOCK(sc);
1828		return;
1829	}
1830
1831	/*
1832	 * Enable interrupts.
1833	 */
1834	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1835		  | HAL_INT_RXEOL | HAL_INT_RXORN
1836		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1837	/*
1838	 * Enable MIB interrupts when there are hardware phy counters.
1839	 * Note we only do this (at the moment) for station mode.
1840	 */
1841	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1842		sc->sc_imask |= HAL_INT_MIB;
1843
1844	/* Enable global TX timeout and carrier sense timeout if available */
1845	if (ath_hal_gtxto_supported(ah))
1846		sc->sc_imask |= HAL_INT_GTT;
1847
1848	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1849		__func__, sc->sc_imask);
1850
1851	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1852	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1853	ath_hal_intrset(ah, sc->sc_imask);
1854
1855	ATH_UNLOCK(sc);
1856
1857#ifdef ATH_TX99_DIAG
1858	if (sc->sc_tx99 != NULL)
1859		sc->sc_tx99->start(sc->sc_tx99);
1860	else
1861#endif
1862	ieee80211_start_all(ic);		/* start all vap's */
1863}
1864
1865static void
1866ath_stop_locked(struct ifnet *ifp)
1867{
1868	struct ath_softc *sc = ifp->if_softc;
1869	struct ath_hal *ah = sc->sc_ah;
1870
1871	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1872		__func__, sc->sc_invalid, ifp->if_flags);
1873
1874	ATH_LOCK_ASSERT(sc);
1875	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1876		/*
1877		 * Shutdown the hardware and driver:
1878		 *    reset 802.11 state machine
1879		 *    turn off timers
1880		 *    disable interrupts
1881		 *    turn off the radio
1882		 *    clear transmit machinery
1883		 *    clear receive machinery
1884		 *    drain and release tx queues
1885		 *    reclaim beacon resources
1886		 *    power down hardware
1887		 *
1888		 * Note that some of this work is not possible if the
1889		 * hardware is gone (invalid).
1890		 */
1891#ifdef ATH_TX99_DIAG
1892		if (sc->sc_tx99 != NULL)
1893			sc->sc_tx99->stop(sc->sc_tx99);
1894#endif
1895		callout_stop(&sc->sc_wd_ch);
1896		sc->sc_wd_timer = 0;
1897		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1898		if (!sc->sc_invalid) {
1899			if (sc->sc_softled) {
1900				callout_stop(&sc->sc_ledtimer);
1901				ath_hal_gpioset(ah, sc->sc_ledpin,
1902					!sc->sc_ledon);
1903				sc->sc_blinking = 0;
1904			}
1905			ath_hal_intrset(ah, 0);
1906		}
1907		ath_draintxq(sc, ATH_RESET_DEFAULT);
1908		if (!sc->sc_invalid) {
1909			ath_stoprecv(sc, 1);
1910			ath_hal_phydisable(ah);
1911		} else
1912			sc->sc_rxlink = NULL;
1913		ath_beacon_free(sc);	/* XXX not needed */
1914	}
1915}
1916
1917#define	MAX_TXRX_ITERATIONS	1000
1918static void
1919ath_txrx_stop_locked(struct ath_softc *sc)
1920{
1921	int i = MAX_TXRX_ITERATIONS;
1922
1923	ATH_UNLOCK_ASSERT(sc);
1924	ATH_PCU_LOCK_ASSERT(sc);
1925
1926	/*
1927	 * Sleep until all the pending operations have completed.
1928	 *
1929	 * The caller must ensure that reset has been incremented
1930	 * or the pending operations may continue being queued.
1931	 */
1932	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
1933	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
1934		if (i <= 0)
1935			break;
1936		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
1937		i--;
1938	}
1939
1940	if (i <= 0)
1941		device_printf(sc->sc_dev,
1942		    "%s: didn't finish after %d iterations\n",
1943		    __func__, MAX_TXRX_ITERATIONS);
1944}
1945#undef	MAX_TXRX_ITERATIONS
1946
1947#if 0
1948static void
1949ath_txrx_stop(struct ath_softc *sc)
1950{
1951	ATH_UNLOCK_ASSERT(sc);
1952	ATH_PCU_UNLOCK_ASSERT(sc);
1953
1954	ATH_PCU_LOCK(sc);
1955	ath_txrx_stop_locked(sc);
1956	ATH_PCU_UNLOCK(sc);
1957}
1958#endif
1959
1960static void
1961ath_txrx_start(struct ath_softc *sc)
1962{
1963
1964	taskqueue_unblock(sc->sc_tq);
1965}
1966
1967/*
1968 * Grab the reset lock, and wait around until noone else
1969 * is trying to do anything with it.
1970 *
1971 * This is totally horrible but we can't hold this lock for
1972 * long enough to do TX/RX or we end up with net80211/ip stack
1973 * LORs and eventual deadlock.
1974 *
1975 * "dowait" signals whether to spin, waiting for the reset
1976 * lock count to reach 0. This should (for now) only be used
1977 * during the reset path, as the rest of the code may not
1978 * be locking-reentrant enough to behave correctly.
1979 *
1980 * Another, cleaner way should be found to serialise all of
1981 * these operations.
1982 */
1983#define	MAX_RESET_ITERATIONS	10
1984static int
1985ath_reset_grablock(struct ath_softc *sc, int dowait)
1986{
1987	int w = 0;
1988	int i = MAX_RESET_ITERATIONS;
1989
1990	ATH_PCU_LOCK_ASSERT(sc);
1991	do {
1992		if (sc->sc_inreset_cnt == 0) {
1993			w = 1;
1994			break;
1995		}
1996		if (dowait == 0) {
1997			w = 0;
1998			break;
1999		}
2000		ATH_PCU_UNLOCK(sc);
2001		pause("ath_reset_grablock", 1);
2002		i--;
2003		ATH_PCU_LOCK(sc);
2004	} while (i > 0);
2005
2006	/*
2007	 * We always increment the refcounter, regardless
2008	 * of whether we succeeded to get it in an exclusive
2009	 * way.
2010	 */
2011	sc->sc_inreset_cnt++;
2012
2013	if (i <= 0)
2014		device_printf(sc->sc_dev,
2015		    "%s: didn't finish after %d iterations\n",
2016		    __func__, MAX_RESET_ITERATIONS);
2017
2018	if (w == 0)
2019		device_printf(sc->sc_dev,
2020		    "%s: warning, recursive reset path!\n",
2021		    __func__);
2022
2023	return w;
2024}
2025#undef MAX_RESET_ITERATIONS
2026
2027/*
2028 * XXX TODO: write ath_reset_releaselock
2029 */
2030
2031static void
2032ath_stop(struct ifnet *ifp)
2033{
2034	struct ath_softc *sc = ifp->if_softc;
2035
2036	ATH_LOCK(sc);
2037	ath_stop_locked(ifp);
2038	ATH_UNLOCK(sc);
2039}
2040
2041/*
2042 * Reset the hardware w/o losing operational state.  This is
2043 * basically a more efficient way of doing ath_stop, ath_init,
2044 * followed by state transitions to the current 802.11
2045 * operational state.  Used to recover from various errors and
2046 * to reset or reload hardware state.
2047 */
2048int
2049ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2050{
2051	struct ath_softc *sc = ifp->if_softc;
2052	struct ieee80211com *ic = ifp->if_l2com;
2053	struct ath_hal *ah = sc->sc_ah;
2054	HAL_STATUS status;
2055	int i;
2056
2057	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2058
2059	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2060	ATH_PCU_UNLOCK_ASSERT(sc);
2061	ATH_UNLOCK_ASSERT(sc);
2062
2063	/* Try to (stop any further TX/RX from occuring */
2064	taskqueue_block(sc->sc_tq);
2065
2066	ATH_PCU_LOCK(sc);
2067	ath_hal_intrset(ah, 0);		/* disable interrupts */
2068	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2069	if (ath_reset_grablock(sc, 1) == 0) {
2070		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2071		    __func__);
2072	}
2073	ATH_PCU_UNLOCK(sc);
2074
2075	/*
2076	 * Should now wait for pending TX/RX to complete
2077	 * and block future ones from occuring. This needs to be
2078	 * done before the TX queue is drained.
2079	 */
2080	ath_draintxq(sc, reset_type);	/* stop xmit side */
2081
2082	/*
2083	 * Regardless of whether we're doing a no-loss flush or
2084	 * not, stop the PCU and handle what's in the RX queue.
2085	 * That way frames aren't dropped which shouldn't be.
2086	 */
2087	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2088	ath_rx_proc(sc, 0);
2089
2090	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2091	/* NB: indicate channel change so we do a full reset */
2092	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2093		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2094			__func__, status);
2095	sc->sc_diversity = ath_hal_getdiversity(ah);
2096
2097	/* Let DFS at it in case it's a DFS channel */
2098	ath_dfs_radar_enable(sc, ic->ic_curchan);
2099
2100	if (ath_startrecv(sc) != 0)	/* restart recv */
2101		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2102	/*
2103	 * We may be doing a reset in response to an ioctl
2104	 * that changes the channel so update any state that
2105	 * might change as a result.
2106	 */
2107	ath_chan_change(sc, ic->ic_curchan);
2108	if (sc->sc_beacons) {		/* restart beacons */
2109#ifdef IEEE80211_SUPPORT_TDMA
2110		if (sc->sc_tdma)
2111			ath_tdma_config(sc, NULL);
2112		else
2113#endif
2114			ath_beacon_config(sc, NULL);
2115	}
2116
2117	/*
2118	 * Release the reset lock and re-enable interrupts here.
2119	 * If an interrupt was being processed in ath_intr(),
2120	 * it would disable interrupts at this point. So we have
2121	 * to atomically enable interrupts and decrement the
2122	 * reset counter - this way ath_intr() doesn't end up
2123	 * disabling interrupts without a corresponding enable
2124	 * in the rest or channel change path.
2125	 */
2126	ATH_PCU_LOCK(sc);
2127	sc->sc_inreset_cnt--;
2128	/* XXX only do this if sc_inreset_cnt == 0? */
2129	ath_hal_intrset(ah, sc->sc_imask);
2130	ATH_PCU_UNLOCK(sc);
2131
2132	/*
2133	 * TX and RX can be started here. If it were started with
2134	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2135	 * Thus if this is a nested call through the reset or
2136	 * channel change code, TX completion will occur but
2137	 * RX completion and ath_start / ath_tx_start will not
2138	 * run.
2139	 */
2140
2141	/* Restart TX/RX as needed */
2142	ath_txrx_start(sc);
2143
2144	/* XXX Restart TX completion and pending TX */
2145	if (reset_type == ATH_RESET_NOLOSS) {
2146		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2147			if (ATH_TXQ_SETUP(sc, i)) {
2148				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2149				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2150				ath_txq_sched(sc, &sc->sc_txq[i]);
2151				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2152			}
2153		}
2154	}
2155
2156	/*
2157	 * This may have been set during an ath_start() call which
2158	 * set this once it detected a concurrent TX was going on.
2159	 * So, clear it.
2160	 */
2161	IF_LOCK(&ifp->if_snd);
2162	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2163	IF_UNLOCK(&ifp->if_snd);
2164
2165	/* Handle any frames in the TX queue */
2166	/*
2167	 * XXX should this be done by the caller, rather than
2168	 * ath_reset() ?
2169	 */
2170	ath_start(ifp);			/* restart xmit */
2171	return 0;
2172}
2173
2174static int
2175ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2176{
2177	struct ieee80211com *ic = vap->iv_ic;
2178	struct ifnet *ifp = ic->ic_ifp;
2179	struct ath_softc *sc = ifp->if_softc;
2180	struct ath_hal *ah = sc->sc_ah;
2181
2182	switch (cmd) {
2183	case IEEE80211_IOC_TXPOWER:
2184		/*
2185		 * If per-packet TPC is enabled, then we have nothing
2186		 * to do; otherwise we need to force the global limit.
2187		 * All this can happen directly; no need to reset.
2188		 */
2189		if (!ath_hal_gettpc(ah))
2190			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2191		return 0;
2192	}
2193	/* XXX? Full or NOLOSS? */
2194	return ath_reset(ifp, ATH_RESET_FULL);
2195}
2196
2197struct ath_buf *
2198_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2199{
2200	struct ath_buf *bf;
2201
2202	ATH_TXBUF_LOCK_ASSERT(sc);
2203
2204	if (btype == ATH_BUFTYPE_MGMT)
2205		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2206	else
2207		bf = TAILQ_FIRST(&sc->sc_txbuf);
2208
2209	if (bf == NULL) {
2210		sc->sc_stats.ast_tx_getnobuf++;
2211	} else {
2212		if (bf->bf_flags & ATH_BUF_BUSY) {
2213			sc->sc_stats.ast_tx_getbusybuf++;
2214			bf = NULL;
2215		}
2216	}
2217
2218	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2219		if (btype == ATH_BUFTYPE_MGMT)
2220			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2221		else {
2222			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2223			sc->sc_txbuf_cnt--;
2224
2225			/*
2226			 * This shuldn't happen; however just to be
2227			 * safe print a warning and fudge the txbuf
2228			 * count.
2229			 */
2230			if (sc->sc_txbuf_cnt < 0) {
2231				device_printf(sc->sc_dev,
2232				    "%s: sc_txbuf_cnt < 0?\n",
2233				    __func__);
2234				sc->sc_txbuf_cnt = 0;
2235			}
2236		}
2237	} else
2238		bf = NULL;
2239
2240	if (bf == NULL) {
2241		/* XXX should check which list, mgmt or otherwise */
2242		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2243		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2244			"out of xmit buffers" : "xmit buffer busy");
2245		return NULL;
2246	}
2247
2248	/* XXX TODO: should do this at buffer list initialisation */
2249	/* XXX (then, ensure the buffer has the right flag set) */
2250	if (btype == ATH_BUFTYPE_MGMT)
2251		bf->bf_flags |= ATH_BUF_MGMT;
2252	else
2253		bf->bf_flags &= (~ATH_BUF_MGMT);
2254
2255	/* Valid bf here; clear some basic fields */
2256	bf->bf_next = NULL;	/* XXX just to be sure */
2257	bf->bf_last = NULL;	/* XXX again, just to be sure */
2258	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2259	bzero(&bf->bf_state, sizeof(bf->bf_state));
2260
2261	return bf;
2262}
2263
2264/*
2265 * When retrying a software frame, buffers marked ATH_BUF_BUSY
2266 * can't be thrown back on the queue as they could still be
2267 * in use by the hardware.
2268 *
2269 * This duplicates the buffer, or returns NULL.
2270 *
2271 * The descriptor is also copied but the link pointers and
2272 * the DMA segments aren't copied; this frame should thus
2273 * be again passed through the descriptor setup/chain routines
2274 * so the link is correct.
2275 *
2276 * The caller must free the buffer using ath_freebuf().
2277 *
2278 * XXX TODO: this call shouldn't fail as it'll cause packet loss
2279 * XXX in the TX pathway when retries are needed.
2280 * XXX Figure out how to keep some buffers free, or factor the
2281 * XXX number of busy buffers into the xmit path (ath_start())
2282 * XXX so we don't over-commit.
2283 */
2284struct ath_buf *
2285ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2286{
2287	struct ath_buf *tbf;
2288
2289	tbf = ath_getbuf(sc,
2290	    (bf->bf_flags & ATH_BUF_MGMT) ?
2291	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2292	if (tbf == NULL)
2293		return NULL;	/* XXX failure? Why? */
2294
2295	/* Copy basics */
2296	tbf->bf_next = NULL;
2297	tbf->bf_nseg = bf->bf_nseg;
2298	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2299	tbf->bf_status = bf->bf_status;
2300	tbf->bf_m = bf->bf_m;
2301	tbf->bf_node = bf->bf_node;
2302	/* will be setup by the chain/setup function */
2303	tbf->bf_lastds = NULL;
2304	/* for now, last == self */
2305	tbf->bf_last = tbf;
2306	tbf->bf_comp = bf->bf_comp;
2307
2308	/* NOTE: DMA segments will be setup by the setup/chain functions */
2309
2310	/* The caller has to re-init the descriptor + links */
2311
2312	/* Copy state */
2313	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2314
2315	return tbf;
2316}
2317
2318struct ath_buf *
2319ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2320{
2321	struct ath_buf *bf;
2322
2323	ATH_TXBUF_LOCK(sc);
2324	bf = _ath_getbuf_locked(sc, btype);
2325	/*
2326	 * If a mgmt buffer was requested but we're out of those,
2327	 * try requesting a normal one.
2328	 */
2329	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2330		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2331	ATH_TXBUF_UNLOCK(sc);
2332	if (bf == NULL) {
2333		struct ifnet *ifp = sc->sc_ifp;
2334
2335		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2336		sc->sc_stats.ast_tx_qstop++;
2337		IF_LOCK(&ifp->if_snd);
2338		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2339		IF_UNLOCK(&ifp->if_snd);
2340	}
2341	return bf;
2342}
2343
2344void
2345ath_start(struct ifnet *ifp)
2346{
2347	struct ath_softc *sc = ifp->if_softc;
2348	struct ieee80211_node *ni;
2349	struct ath_buf *bf;
2350	struct mbuf *m, *next;
2351	ath_bufhead frags;
2352
2353	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2354		return;
2355
2356	/* XXX is it ok to hold the ATH_LOCK here? */
2357	ATH_PCU_LOCK(sc);
2358	if (sc->sc_inreset_cnt > 0) {
2359		device_printf(sc->sc_dev,
2360		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2361		ATH_PCU_UNLOCK(sc);
2362		IF_LOCK(&ifp->if_snd);
2363		sc->sc_stats.ast_tx_qstop++;
2364		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2365		IF_UNLOCK(&ifp->if_snd);
2366		return;
2367	}
2368	sc->sc_txstart_cnt++;
2369	ATH_PCU_UNLOCK(sc);
2370
2371	for (;;) {
2372		ATH_TXBUF_LOCK(sc);
2373		if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) {
2374			/* XXX increment counter? */
2375			ATH_TXBUF_UNLOCK(sc);
2376			IF_LOCK(&ifp->if_snd);
2377			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2378			IF_UNLOCK(&ifp->if_snd);
2379			break;
2380		}
2381		ATH_TXBUF_UNLOCK(sc);
2382
2383		/*
2384		 * Grab a TX buffer and associated resources.
2385		 */
2386		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2387		if (bf == NULL)
2388			break;
2389
2390		IFQ_DEQUEUE(&ifp->if_snd, m);
2391		if (m == NULL) {
2392			ATH_TXBUF_LOCK(sc);
2393			ath_returnbuf_head(sc, bf);
2394			ATH_TXBUF_UNLOCK(sc);
2395			break;
2396		}
2397		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2398		/*
2399		 * Check for fragmentation.  If this frame
2400		 * has been broken up verify we have enough
2401		 * buffers to send all the fragments so all
2402		 * go out or none...
2403		 */
2404		TAILQ_INIT(&frags);
2405		if ((m->m_flags & M_FRAG) &&
2406		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2407			DPRINTF(sc, ATH_DEBUG_XMIT,
2408			    "%s: out of txfrag buffers\n", __func__);
2409			sc->sc_stats.ast_tx_nofrag++;
2410			ifp->if_oerrors++;
2411			ath_freetx(m);
2412			goto bad;
2413		}
2414		ifp->if_opackets++;
2415	nextfrag:
2416		/*
2417		 * Pass the frame to the h/w for transmission.
2418		 * Fragmented frames have each frag chained together
2419		 * with m_nextpkt.  We know there are sufficient ath_buf's
2420		 * to send all the frags because of work done by
2421		 * ath_txfrag_setup.  We leave m_nextpkt set while
2422		 * calling ath_tx_start so it can use it to extend the
2423		 * the tx duration to cover the subsequent frag and
2424		 * so it can reclaim all the mbufs in case of an error;
2425		 * ath_tx_start clears m_nextpkt once it commits to
2426		 * handing the frame to the hardware.
2427		 */
2428		next = m->m_nextpkt;
2429		if (ath_tx_start(sc, ni, bf, m)) {
2430	bad:
2431			ifp->if_oerrors++;
2432	reclaim:
2433			bf->bf_m = NULL;
2434			bf->bf_node = NULL;
2435			ATH_TXBUF_LOCK(sc);
2436			ath_returnbuf_head(sc, bf);
2437			ath_txfrag_cleanup(sc, &frags, ni);
2438			ATH_TXBUF_UNLOCK(sc);
2439			if (ni != NULL)
2440				ieee80211_free_node(ni);
2441			continue;
2442		}
2443		if (next != NULL) {
2444			/*
2445			 * Beware of state changing between frags.
2446			 * XXX check sta power-save state?
2447			 */
2448			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2449				DPRINTF(sc, ATH_DEBUG_XMIT,
2450				    "%s: flush fragmented packet, state %s\n",
2451				    __func__,
2452				    ieee80211_state_name[ni->ni_vap->iv_state]);
2453				ath_freetx(next);
2454				goto reclaim;
2455			}
2456			m = next;
2457			bf = TAILQ_FIRST(&frags);
2458			KASSERT(bf != NULL, ("no buf for txfrag"));
2459			TAILQ_REMOVE(&frags, bf, bf_list);
2460			goto nextfrag;
2461		}
2462
2463		sc->sc_wd_timer = 5;
2464	}
2465
2466	ATH_PCU_LOCK(sc);
2467	sc->sc_txstart_cnt--;
2468	ATH_PCU_UNLOCK(sc);
2469}
2470
2471static int
2472ath_media_change(struct ifnet *ifp)
2473{
2474	int error = ieee80211_media_change(ifp);
2475	/* NB: only the fixed rate can change and that doesn't need a reset */
2476	return (error == ENETRESET ? 0 : error);
2477}
2478
2479/*
2480 * Block/unblock tx+rx processing while a key change is done.
2481 * We assume the caller serializes key management operations
2482 * so we only need to worry about synchronization with other
2483 * uses that originate in the driver.
2484 */
2485static void
2486ath_key_update_begin(struct ieee80211vap *vap)
2487{
2488	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2489	struct ath_softc *sc = ifp->if_softc;
2490
2491	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2492	taskqueue_block(sc->sc_tq);
2493	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2494}
2495
2496static void
2497ath_key_update_end(struct ieee80211vap *vap)
2498{
2499	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2500	struct ath_softc *sc = ifp->if_softc;
2501
2502	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2503	IF_UNLOCK(&ifp->if_snd);
2504	taskqueue_unblock(sc->sc_tq);
2505}
2506
2507static void
2508ath_update_promisc(struct ifnet *ifp)
2509{
2510	struct ath_softc *sc = ifp->if_softc;
2511	u_int32_t rfilt;
2512
2513	/* configure rx filter */
2514	rfilt = ath_calcrxfilter(sc);
2515	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2516
2517	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2518}
2519
2520static void
2521ath_update_mcast(struct ifnet *ifp)
2522{
2523	struct ath_softc *sc = ifp->if_softc;
2524	u_int32_t mfilt[2];
2525
2526	/* calculate and install multicast filter */
2527	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2528		struct ifmultiaddr *ifma;
2529		/*
2530		 * Merge multicast addresses to form the hardware filter.
2531		 */
2532		mfilt[0] = mfilt[1] = 0;
2533		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2534		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2535			caddr_t dl;
2536			u_int32_t val;
2537			u_int8_t pos;
2538
2539			/* calculate XOR of eight 6bit values */
2540			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2541			val = LE_READ_4(dl + 0);
2542			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2543			val = LE_READ_4(dl + 3);
2544			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2545			pos &= 0x3f;
2546			mfilt[pos / 32] |= (1 << (pos % 32));
2547		}
2548		if_maddr_runlock(ifp);
2549	} else
2550		mfilt[0] = mfilt[1] = ~0;
2551	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2552	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2553		__func__, mfilt[0], mfilt[1]);
2554}
2555
2556void
2557ath_mode_init(struct ath_softc *sc)
2558{
2559	struct ifnet *ifp = sc->sc_ifp;
2560	struct ath_hal *ah = sc->sc_ah;
2561	u_int32_t rfilt;
2562
2563	/* configure rx filter */
2564	rfilt = ath_calcrxfilter(sc);
2565	ath_hal_setrxfilter(ah, rfilt);
2566
2567	/* configure operational mode */
2568	ath_hal_setopmode(ah);
2569
2570	/* handle any link-level address change */
2571	ath_hal_setmac(ah, IF_LLADDR(ifp));
2572
2573	/* calculate and install multicast filter */
2574	ath_update_mcast(ifp);
2575}
2576
2577/*
2578 * Set the slot time based on the current setting.
2579 */
2580void
2581ath_setslottime(struct ath_softc *sc)
2582{
2583	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2584	struct ath_hal *ah = sc->sc_ah;
2585	u_int usec;
2586
2587	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2588		usec = 13;
2589	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2590		usec = 21;
2591	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2592		/* honor short/long slot time only in 11g */
2593		/* XXX shouldn't honor on pure g or turbo g channel */
2594		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2595			usec = HAL_SLOT_TIME_9;
2596		else
2597			usec = HAL_SLOT_TIME_20;
2598	} else
2599		usec = HAL_SLOT_TIME_9;
2600
2601	DPRINTF(sc, ATH_DEBUG_RESET,
2602	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2603	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2604	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2605
2606	ath_hal_setslottime(ah, usec);
2607	sc->sc_updateslot = OK;
2608}
2609
2610/*
2611 * Callback from the 802.11 layer to update the
2612 * slot time based on the current setting.
2613 */
2614static void
2615ath_updateslot(struct ifnet *ifp)
2616{
2617	struct ath_softc *sc = ifp->if_softc;
2618	struct ieee80211com *ic = ifp->if_l2com;
2619
2620	/*
2621	 * When not coordinating the BSS, change the hardware
2622	 * immediately.  For other operation we defer the change
2623	 * until beacon updates have propagated to the stations.
2624	 */
2625	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2626	    ic->ic_opmode == IEEE80211_M_MBSS)
2627		sc->sc_updateslot = UPDATE;
2628	else
2629		ath_setslottime(sc);
2630}
2631
2632/*
2633 * Append the contents of src to dst; both queues
2634 * are assumed to be locked.
2635 */
2636void
2637ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2638{
2639
2640	ATH_TXQ_LOCK_ASSERT(dst);
2641	ATH_TXQ_LOCK_ASSERT(src);
2642
2643	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2644	dst->axq_link = src->axq_link;
2645	src->axq_link = NULL;
2646	dst->axq_depth += src->axq_depth;
2647	dst->axq_aggr_depth += src->axq_aggr_depth;
2648	src->axq_depth = 0;
2649	src->axq_aggr_depth = 0;
2650}
2651
2652/*
2653 * Reset the hardware, with no loss.
2654 *
2655 * This can't be used for a general case reset.
2656 */
2657static void
2658ath_reset_proc(void *arg, int pending)
2659{
2660	struct ath_softc *sc = arg;
2661	struct ifnet *ifp = sc->sc_ifp;
2662
2663#if 0
2664	if_printf(ifp, "%s: resetting\n", __func__);
2665#endif
2666	ath_reset(ifp, ATH_RESET_NOLOSS);
2667}
2668
2669/*
2670 * Reset the hardware after detecting beacons have stopped.
2671 */
2672static void
2673ath_bstuck_proc(void *arg, int pending)
2674{
2675	struct ath_softc *sc = arg;
2676	struct ifnet *ifp = sc->sc_ifp;
2677	uint32_t hangs = 0;
2678
2679	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
2680		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
2681
2682	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2683		sc->sc_bmisscount);
2684	sc->sc_stats.ast_bstuck++;
2685	/*
2686	 * This assumes that there's no simultaneous channel mode change
2687	 * occuring.
2688	 */
2689	ath_reset(ifp, ATH_RESET_NOLOSS);
2690}
2691
2692static void
2693ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2694{
2695	bus_addr_t *paddr = (bus_addr_t*) arg;
2696	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2697	*paddr = segs->ds_addr;
2698}
2699
2700static int
2701ath_descdma_setup(struct ath_softc *sc,
2702	struct ath_descdma *dd, ath_bufhead *head,
2703	const char *name, int nbuf, int ndesc)
2704{
2705#define	DS2PHYS(_dd, _ds) \
2706	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2707#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2708	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2709	struct ifnet *ifp = sc->sc_ifp;
2710	uint8_t *ds;
2711	struct ath_buf *bf;
2712	int i, bsize, error;
2713	int desc_len;
2714
2715	desc_len = sizeof(struct ath_desc);
2716
2717	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2718	    __func__, name, nbuf, ndesc);
2719
2720	dd->dd_name = name;
2721	dd->dd_desc_len = desc_len * nbuf * ndesc;
2722
2723	/*
2724	 * Merlin work-around:
2725	 * Descriptors that cross the 4KB boundary can't be used.
2726	 * Assume one skipped descriptor per 4KB page.
2727	 */
2728	if (! ath_hal_split4ktrans(sc->sc_ah)) {
2729		int numdescpage = 4096 / (desc_len * ndesc);
2730		dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096;
2731	}
2732
2733	/*
2734	 * Setup DMA descriptor area.
2735	 */
2736	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2737		       PAGE_SIZE, 0,		/* alignment, bounds */
2738		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2739		       BUS_SPACE_MAXADDR,	/* highaddr */
2740		       NULL, NULL,		/* filter, filterarg */
2741		       dd->dd_desc_len,		/* maxsize */
2742		       1,			/* nsegments */
2743		       dd->dd_desc_len,		/* maxsegsize */
2744		       BUS_DMA_ALLOCNOW,	/* flags */
2745		       NULL,			/* lockfunc */
2746		       NULL,			/* lockarg */
2747		       &dd->dd_dmat);
2748	if (error != 0) {
2749		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2750		return error;
2751	}
2752
2753	/* allocate descriptors */
2754	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2755	if (error != 0) {
2756		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2757			"error %u\n", dd->dd_name, error);
2758		goto fail0;
2759	}
2760
2761	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2762				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2763				 &dd->dd_dmamap);
2764	if (error != 0) {
2765		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2766			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2767		goto fail1;
2768	}
2769
2770	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2771				dd->dd_desc, dd->dd_desc_len,
2772				ath_load_cb, &dd->dd_desc_paddr,
2773				BUS_DMA_NOWAIT);
2774	if (error != 0) {
2775		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2776			dd->dd_name, error);
2777		goto fail2;
2778	}
2779
2780	ds = (uint8_t *) dd->dd_desc;
2781	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2782	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2783	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2784
2785	/* allocate rx buffers */
2786	bsize = sizeof(struct ath_buf) * nbuf;
2787	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2788	if (bf == NULL) {
2789		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2790			dd->dd_name, bsize);
2791		goto fail3;
2792	}
2793	dd->dd_bufptr = bf;
2794
2795	TAILQ_INIT(head);
2796	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) {
2797		bf->bf_desc = (struct ath_desc *) ds;
2798		bf->bf_daddr = DS2PHYS(dd, ds);
2799		if (! ath_hal_split4ktrans(sc->sc_ah)) {
2800			/*
2801			 * Merlin WAR: Skip descriptor addresses which
2802			 * cause 4KB boundary crossing along any point
2803			 * in the descriptor.
2804			 */
2805			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
2806			     desc_len * ndesc)) {
2807				/* Start at the next page */
2808				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
2809				bf->bf_desc = (struct ath_desc *) ds;
2810				bf->bf_daddr = DS2PHYS(dd, ds);
2811			}
2812		}
2813		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2814				&bf->bf_dmamap);
2815		if (error != 0) {
2816			if_printf(ifp, "unable to create dmamap for %s "
2817				"buffer %u, error %u\n", dd->dd_name, i, error);
2818			ath_descdma_cleanup(sc, dd, head);
2819			return error;
2820		}
2821		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
2822		TAILQ_INSERT_TAIL(head, bf, bf_list);
2823	}
2824	return 0;
2825fail3:
2826	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2827fail2:
2828	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2829fail1:
2830	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2831fail0:
2832	bus_dma_tag_destroy(dd->dd_dmat);
2833	memset(dd, 0, sizeof(*dd));
2834	return error;
2835#undef DS2PHYS
2836#undef ATH_DESC_4KB_BOUND_CHECK
2837}
2838
2839static void
2840ath_descdma_cleanup(struct ath_softc *sc,
2841	struct ath_descdma *dd, ath_bufhead *head)
2842{
2843	struct ath_buf *bf;
2844	struct ieee80211_node *ni;
2845
2846	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2847	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2848	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2849	bus_dma_tag_destroy(dd->dd_dmat);
2850
2851	TAILQ_FOREACH(bf, head, bf_list) {
2852		if (bf->bf_m) {
2853			m_freem(bf->bf_m);
2854			bf->bf_m = NULL;
2855		}
2856		if (bf->bf_dmamap != NULL) {
2857			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2858			bf->bf_dmamap = NULL;
2859		}
2860		ni = bf->bf_node;
2861		bf->bf_node = NULL;
2862		if (ni != NULL) {
2863			/*
2864			 * Reclaim node reference.
2865			 */
2866			ieee80211_free_node(ni);
2867		}
2868	}
2869
2870	TAILQ_INIT(head);
2871	free(dd->dd_bufptr, M_ATHDEV);
2872	memset(dd, 0, sizeof(*dd));
2873}
2874
2875static int
2876ath_desc_alloc(struct ath_softc *sc)
2877{
2878	int error;
2879
2880	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2881			"rx", ath_rxbuf, 1);
2882	if (error != 0)
2883		return error;
2884
2885	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2886			"tx", ath_txbuf, ATH_TXDESC);
2887	if (error != 0) {
2888		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2889		return error;
2890	}
2891	sc->sc_txbuf_cnt = ath_txbuf;
2892
2893	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
2894			"tx_mgmt", ath_txbuf_mgmt, ATH_TXDESC);
2895	if (error != 0) {
2896		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2897		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2898		return error;
2899	}
2900
2901	/*
2902	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
2903	 * flag doesn't have to be set in ath_getbuf_locked().
2904	 */
2905
2906	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2907			"beacon", ATH_BCBUF, 1);
2908	if (error != 0) {
2909		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2910		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2911		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
2912		    &sc->sc_txbuf_mgmt);
2913		return error;
2914	}
2915	return 0;
2916}
2917
2918static void
2919ath_desc_free(struct ath_softc *sc)
2920{
2921
2922	if (sc->sc_bdma.dd_desc_len != 0)
2923		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2924	if (sc->sc_txdma.dd_desc_len != 0)
2925		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2926	if (sc->sc_rxdma.dd_desc_len != 0)
2927		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2928	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
2929		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
2930		    &sc->sc_txbuf_mgmt);
2931}
2932
2933static struct ieee80211_node *
2934ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2935{
2936	struct ieee80211com *ic = vap->iv_ic;
2937	struct ath_softc *sc = ic->ic_ifp->if_softc;
2938	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2939	struct ath_node *an;
2940
2941	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2942	if (an == NULL) {
2943		/* XXX stat+msg */
2944		return NULL;
2945	}
2946	ath_rate_node_init(sc, an);
2947
2948	/* Setup the mutex - there's no associd yet so set the name to NULL */
2949	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
2950	    device_get_nameunit(sc->sc_dev), an);
2951	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
2952
2953	/* XXX setup ath_tid */
2954	ath_tx_tid_init(sc, an);
2955
2956	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2957	return &an->an_node;
2958}
2959
2960static void
2961ath_node_cleanup(struct ieee80211_node *ni)
2962{
2963	struct ieee80211com *ic = ni->ni_ic;
2964	struct ath_softc *sc = ic->ic_ifp->if_softc;
2965
2966	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
2967	ath_tx_node_flush(sc, ATH_NODE(ni));
2968	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2969	sc->sc_node_cleanup(ni);
2970}
2971
2972static void
2973ath_node_free(struct ieee80211_node *ni)
2974{
2975	struct ieee80211com *ic = ni->ni_ic;
2976	struct ath_softc *sc = ic->ic_ifp->if_softc;
2977
2978	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2979	mtx_destroy(&ATH_NODE(ni)->an_mtx);
2980	sc->sc_node_free(ni);
2981}
2982
2983static void
2984ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
2985{
2986	struct ieee80211com *ic = ni->ni_ic;
2987	struct ath_softc *sc = ic->ic_ifp->if_softc;
2988	struct ath_hal *ah = sc->sc_ah;
2989
2990	*rssi = ic->ic_node_getrssi(ni);
2991	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
2992		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
2993	else
2994		*noise = -95;		/* nominally correct */
2995}
2996
2997/*
2998 * Set the default antenna.
2999 */
3000void
3001ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3002{
3003	struct ath_hal *ah = sc->sc_ah;
3004
3005	/* XXX block beacon interrupts */
3006	ath_hal_setdefantenna(ah, antenna);
3007	if (sc->sc_defant != antenna)
3008		sc->sc_stats.ast_ant_defswitch++;
3009	sc->sc_defant = antenna;
3010	sc->sc_rxotherant = 0;
3011}
3012
3013static void
3014ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3015{
3016	txq->axq_qnum = qnum;
3017	txq->axq_ac = 0;
3018	txq->axq_depth = 0;
3019	txq->axq_aggr_depth = 0;
3020	txq->axq_intrcnt = 0;
3021	txq->axq_link = NULL;
3022	txq->axq_softc = sc;
3023	TAILQ_INIT(&txq->axq_q);
3024	TAILQ_INIT(&txq->axq_tidq);
3025	ATH_TXQ_LOCK_INIT(sc, txq);
3026}
3027
3028/*
3029 * Setup a h/w transmit queue.
3030 */
3031static struct ath_txq *
3032ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3033{
3034#define	N(a)	(sizeof(a)/sizeof(a[0]))
3035	struct ath_hal *ah = sc->sc_ah;
3036	HAL_TXQ_INFO qi;
3037	int qnum;
3038
3039	memset(&qi, 0, sizeof(qi));
3040	qi.tqi_subtype = subtype;
3041	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3042	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3043	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3044	/*
3045	 * Enable interrupts only for EOL and DESC conditions.
3046	 * We mark tx descriptors to receive a DESC interrupt
3047	 * when a tx queue gets deep; otherwise waiting for the
3048	 * EOL to reap descriptors.  Note that this is done to
3049	 * reduce interrupt load and this only defers reaping
3050	 * descriptors, never transmitting frames.  Aside from
3051	 * reducing interrupts this also permits more concurrency.
3052	 * The only potential downside is if the tx queue backs
3053	 * up in which case the top half of the kernel may backup
3054	 * due to a lack of tx descriptors.
3055	 */
3056	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3057	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3058	if (qnum == -1) {
3059		/*
3060		 * NB: don't print a message, this happens
3061		 * normally on parts with too few tx queues
3062		 */
3063		return NULL;
3064	}
3065	if (qnum >= N(sc->sc_txq)) {
3066		device_printf(sc->sc_dev,
3067			"hal qnum %u out of range, max %zu!\n",
3068			qnum, N(sc->sc_txq));
3069		ath_hal_releasetxqueue(ah, qnum);
3070		return NULL;
3071	}
3072	if (!ATH_TXQ_SETUP(sc, qnum)) {
3073		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3074		sc->sc_txqsetup |= 1<<qnum;
3075	}
3076	return &sc->sc_txq[qnum];
3077#undef N
3078}
3079
3080/*
3081 * Setup a hardware data transmit queue for the specified
3082 * access control.  The hal may not support all requested
3083 * queues in which case it will return a reference to a
3084 * previously setup queue.  We record the mapping from ac's
3085 * to h/w queues for use by ath_tx_start and also track
3086 * the set of h/w queues being used to optimize work in the
3087 * transmit interrupt handler and related routines.
3088 */
3089static int
3090ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3091{
3092#define	N(a)	(sizeof(a)/sizeof(a[0]))
3093	struct ath_txq *txq;
3094
3095	if (ac >= N(sc->sc_ac2q)) {
3096		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3097			ac, N(sc->sc_ac2q));
3098		return 0;
3099	}
3100	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3101	if (txq != NULL) {
3102		txq->axq_ac = ac;
3103		sc->sc_ac2q[ac] = txq;
3104		return 1;
3105	} else
3106		return 0;
3107#undef N
3108}
3109
3110/*
3111 * Update WME parameters for a transmit queue.
3112 */
3113static int
3114ath_txq_update(struct ath_softc *sc, int ac)
3115{
3116#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3117#define	ATH_TXOP_TO_US(v)		(v<<5)
3118	struct ifnet *ifp = sc->sc_ifp;
3119	struct ieee80211com *ic = ifp->if_l2com;
3120	struct ath_txq *txq = sc->sc_ac2q[ac];
3121	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3122	struct ath_hal *ah = sc->sc_ah;
3123	HAL_TXQ_INFO qi;
3124
3125	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3126#ifdef IEEE80211_SUPPORT_TDMA
3127	if (sc->sc_tdma) {
3128		/*
3129		 * AIFS is zero so there's no pre-transmit wait.  The
3130		 * burst time defines the slot duration and is configured
3131		 * through net80211.  The QCU is setup to not do post-xmit
3132		 * back off, lockout all lower-priority QCU's, and fire
3133		 * off the DMA beacon alert timer which is setup based
3134		 * on the slot configuration.
3135		 */
3136		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3137			      | HAL_TXQ_TXERRINT_ENABLE
3138			      | HAL_TXQ_TXURNINT_ENABLE
3139			      | HAL_TXQ_TXEOLINT_ENABLE
3140			      | HAL_TXQ_DBA_GATED
3141			      | HAL_TXQ_BACKOFF_DISABLE
3142			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3143			      ;
3144		qi.tqi_aifs = 0;
3145		/* XXX +dbaprep? */
3146		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3147		qi.tqi_burstTime = qi.tqi_readyTime;
3148	} else {
3149#endif
3150		/*
3151		 * XXX shouldn't this just use the default flags
3152		 * used in the previous queue setup?
3153		 */
3154		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3155			      | HAL_TXQ_TXERRINT_ENABLE
3156			      | HAL_TXQ_TXDESCINT_ENABLE
3157			      | HAL_TXQ_TXURNINT_ENABLE
3158			      | HAL_TXQ_TXEOLINT_ENABLE
3159			      ;
3160		qi.tqi_aifs = wmep->wmep_aifsn;
3161		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3162		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3163		qi.tqi_readyTime = 0;
3164		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3165#ifdef IEEE80211_SUPPORT_TDMA
3166	}
3167#endif
3168
3169	DPRINTF(sc, ATH_DEBUG_RESET,
3170	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3171	    __func__, txq->axq_qnum, qi.tqi_qflags,
3172	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3173
3174	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3175		if_printf(ifp, "unable to update hardware queue "
3176			"parameters for %s traffic!\n",
3177			ieee80211_wme_acnames[ac]);
3178		return 0;
3179	} else {
3180		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3181		return 1;
3182	}
3183#undef ATH_TXOP_TO_US
3184#undef ATH_EXPONENT_TO_VALUE
3185}
3186
3187/*
3188 * Callback from the 802.11 layer to update WME parameters.
3189 */
3190int
3191ath_wme_update(struct ieee80211com *ic)
3192{
3193	struct ath_softc *sc = ic->ic_ifp->if_softc;
3194
3195	return !ath_txq_update(sc, WME_AC_BE) ||
3196	    !ath_txq_update(sc, WME_AC_BK) ||
3197	    !ath_txq_update(sc, WME_AC_VI) ||
3198	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3199}
3200
3201/*
3202 * Reclaim resources for a setup queue.
3203 */
3204static void
3205ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3206{
3207
3208	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3209	ATH_TXQ_LOCK_DESTROY(txq);
3210	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3211}
3212
3213/*
3214 * Reclaim all tx queue resources.
3215 */
3216static void
3217ath_tx_cleanup(struct ath_softc *sc)
3218{
3219	int i;
3220
3221	ATH_TXBUF_LOCK_DESTROY(sc);
3222	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3223		if (ATH_TXQ_SETUP(sc, i))
3224			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3225}
3226
3227/*
3228 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3229 * using the current rates in sc_rixmap.
3230 */
3231int
3232ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3233{
3234	int rix = sc->sc_rixmap[rate];
3235	/* NB: return lowest rix for invalid rate */
3236	return (rix == 0xff ? 0 : rix);
3237}
3238
3239static void
3240ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3241    struct ath_buf *bf)
3242{
3243	struct ieee80211_node *ni = bf->bf_node;
3244	struct ifnet *ifp = sc->sc_ifp;
3245	struct ieee80211com *ic = ifp->if_l2com;
3246	int sr, lr, pri;
3247
3248	if (ts->ts_status == 0) {
3249		u_int8_t txant = ts->ts_antenna;
3250		sc->sc_stats.ast_ant_tx[txant]++;
3251		sc->sc_ant_tx[txant]++;
3252		if (ts->ts_finaltsi != 0)
3253			sc->sc_stats.ast_tx_altrate++;
3254		pri = M_WME_GETAC(bf->bf_m);
3255		if (pri >= WME_AC_VO)
3256			ic->ic_wme.wme_hipri_traffic++;
3257		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3258			ni->ni_inact = ni->ni_inact_reload;
3259	} else {
3260		if (ts->ts_status & HAL_TXERR_XRETRY)
3261			sc->sc_stats.ast_tx_xretries++;
3262		if (ts->ts_status & HAL_TXERR_FIFO)
3263			sc->sc_stats.ast_tx_fifoerr++;
3264		if (ts->ts_status & HAL_TXERR_FILT)
3265			sc->sc_stats.ast_tx_filtered++;
3266		if (ts->ts_status & HAL_TXERR_XTXOP)
3267			sc->sc_stats.ast_tx_xtxop++;
3268		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3269			sc->sc_stats.ast_tx_timerexpired++;
3270
3271		if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
3272			sc->sc_stats.ast_tx_data_underrun++;
3273		if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
3274			sc->sc_stats.ast_tx_delim_underrun++;
3275
3276		if (bf->bf_m->m_flags & M_FF)
3277			sc->sc_stats.ast_ff_txerr++;
3278	}
3279	/* XXX when is this valid? */
3280	if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
3281		sc->sc_stats.ast_tx_desccfgerr++;
3282
3283	sr = ts->ts_shortretry;
3284	lr = ts->ts_longretry;
3285	sc->sc_stats.ast_tx_shortretry += sr;
3286	sc->sc_stats.ast_tx_longretry += lr;
3287
3288}
3289
3290/*
3291 * The default completion. If fail is 1, this means
3292 * "please don't retry the frame, and just return -1 status
3293 * to the net80211 stack.
3294 */
3295void
3296ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3297{
3298	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3299	int st;
3300
3301	if (fail == 1)
3302		st = -1;
3303	else
3304		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3305		    ts->ts_status : HAL_TXERR_XRETRY;
3306
3307	if (bf->bf_state.bfs_dobaw)
3308		device_printf(sc->sc_dev,
3309		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3310		    __func__,
3311		    bf,
3312		    SEQNO(bf->bf_state.bfs_seqno));
3313	if (bf->bf_next != NULL)
3314		device_printf(sc->sc_dev,
3315		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3316		    __func__,
3317		    bf,
3318		    SEQNO(bf->bf_state.bfs_seqno));
3319
3320	/*
3321	 * Do any tx complete callback.  Note this must
3322	 * be done before releasing the node reference.
3323	 * This will free the mbuf, release the net80211
3324	 * node and recycle the ath_buf.
3325	 */
3326	ath_tx_freebuf(sc, bf, st);
3327}
3328
3329/*
3330 * Update rate control with the given completion status.
3331 */
3332void
3333ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
3334    struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
3335    int nframes, int nbad)
3336{
3337	struct ath_node *an;
3338
3339	/* Only for unicast frames */
3340	if (ni == NULL)
3341		return;
3342
3343	an = ATH_NODE(ni);
3344
3345	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
3346		ATH_NODE_LOCK(an);
3347		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
3348		ATH_NODE_UNLOCK(an);
3349	}
3350}
3351
3352/*
3353 * Update the busy status of the last frame on the free list.
3354 * When doing TDMA, the busy flag tracks whether the hardware
3355 * currently points to this buffer or not, and thus gated DMA
3356 * may restart by re-reading the last descriptor in this
3357 * buffer.
3358 *
3359 * This should be called in the completion function once one
3360 * of the buffers has been used.
3361 */
3362static void
3363ath_tx_update_busy(struct ath_softc *sc)
3364{
3365	struct ath_buf *last;
3366
3367	/*
3368	 * Since the last frame may still be marked
3369	 * as ATH_BUF_BUSY, unmark it here before
3370	 * finishing the frame processing.
3371	 * Since we've completed a frame (aggregate
3372	 * or otherwise), the hardware has moved on
3373	 * and is no longer referencing the previous
3374	 * descriptor.
3375	 */
3376	ATH_TXBUF_LOCK_ASSERT(sc);
3377	last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
3378	if (last != NULL)
3379		last->bf_flags &= ~ATH_BUF_BUSY;
3380	last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
3381	if (last != NULL)
3382		last->bf_flags &= ~ATH_BUF_BUSY;
3383}
3384
3385/*
3386 * Process completed xmit descriptors from the specified queue.
3387 * Kick the packet scheduler if needed. This can occur from this
3388 * particular task.
3389 */
3390static int
3391ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
3392{
3393	struct ath_hal *ah = sc->sc_ah;
3394	struct ath_buf *bf;
3395	struct ath_desc *ds;
3396	struct ath_tx_status *ts;
3397	struct ieee80211_node *ni;
3398	struct ath_node *an;
3399#ifdef	IEEE80211_SUPPORT_SUPERG
3400	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3401#endif	/* IEEE80211_SUPPORT_SUPERG */
3402	int nacked;
3403	HAL_STATUS status;
3404
3405	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3406		__func__, txq->axq_qnum,
3407		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3408		txq->axq_link);
3409	nacked = 0;
3410	for (;;) {
3411		ATH_TXQ_LOCK(txq);
3412		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3413		bf = TAILQ_FIRST(&txq->axq_q);
3414		if (bf == NULL) {
3415			ATH_TXQ_UNLOCK(txq);
3416			break;
3417		}
3418		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
3419		ts = &bf->bf_status.ds_txstat;
3420		status = ath_hal_txprocdesc(ah, ds, ts);
3421#ifdef ATH_DEBUG
3422		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3423			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3424			    status == HAL_OK);
3425		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) {
3426			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3427			    status == HAL_OK);
3428		}
3429#endif
3430		if (status == HAL_EINPROGRESS) {
3431			ATH_TXQ_UNLOCK(txq);
3432			break;
3433		}
3434		ATH_TXQ_REMOVE(txq, bf, bf_list);
3435#ifdef IEEE80211_SUPPORT_TDMA
3436		if (txq->axq_depth > 0) {
3437			/*
3438			 * More frames follow.  Mark the buffer busy
3439			 * so it's not re-used while the hardware may
3440			 * still re-read the link field in the descriptor.
3441			 *
3442			 * Use the last buffer in an aggregate as that
3443			 * is where the hardware may be - intermediate
3444			 * descriptors won't be "busy".
3445			 */
3446			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
3447		} else
3448#else
3449		if (txq->axq_depth == 0)
3450#endif
3451			txq->axq_link = NULL;
3452		if (bf->bf_state.bfs_aggr)
3453			txq->axq_aggr_depth--;
3454
3455		ni = bf->bf_node;
3456		/*
3457		 * If unicast frame was ack'd update RSSI,
3458		 * including the last rx time used to
3459		 * workaround phantom bmiss interrupts.
3460		 */
3461		if (ni != NULL && ts->ts_status == 0 &&
3462		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
3463			nacked++;
3464			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3465			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3466				ts->ts_rssi);
3467		}
3468		ATH_TXQ_UNLOCK(txq);
3469
3470		/* If unicast frame, update general statistics */
3471		if (ni != NULL) {
3472			an = ATH_NODE(ni);
3473			/* update statistics */
3474			ath_tx_update_stats(sc, ts, bf);
3475		}
3476
3477		/*
3478		 * Call the completion handler.
3479		 * The completion handler is responsible for
3480		 * calling the rate control code.
3481		 *
3482		 * Frames with no completion handler get the
3483		 * rate control code called here.
3484		 */
3485		if (bf->bf_comp == NULL) {
3486			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3487			    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
3488				/*
3489				 * XXX assume this isn't an aggregate
3490				 * frame.
3491				 */
3492				ath_tx_update_ratectrl(sc, ni,
3493				     bf->bf_state.bfs_rc, ts,
3494				    bf->bf_state.bfs_pktlen, 1,
3495				    (ts->ts_status == 0 ? 0 : 1));
3496			}
3497			ath_tx_default_comp(sc, bf, 0);
3498		} else
3499			bf->bf_comp(sc, bf, 0);
3500	}
3501#ifdef IEEE80211_SUPPORT_SUPERG
3502	/*
3503	 * Flush fast-frame staging queue when traffic slows.
3504	 */
3505	if (txq->axq_depth <= 1)
3506		ieee80211_ff_flush(ic, txq->axq_ac);
3507#endif
3508
3509	/* Kick the TXQ scheduler */
3510	if (dosched) {
3511		ATH_TXQ_LOCK(txq);
3512		ath_txq_sched(sc, txq);
3513		ATH_TXQ_UNLOCK(txq);
3514	}
3515
3516	return nacked;
3517}
3518
3519#define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
3520
3521/*
3522 * Deferred processing of transmit interrupt; special-cased
3523 * for a single hardware transmit queue (e.g. 5210 and 5211).
3524 */
3525static void
3526ath_tx_proc_q0(void *arg, int npending)
3527{
3528	struct ath_softc *sc = arg;
3529	struct ifnet *ifp = sc->sc_ifp;
3530	uint32_t txqs;
3531
3532	ATH_PCU_LOCK(sc);
3533	sc->sc_txproc_cnt++;
3534	txqs = sc->sc_txq_active;
3535	sc->sc_txq_active &= ~txqs;
3536	ATH_PCU_UNLOCK(sc);
3537
3538	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
3539		/* XXX why is lastrx updated in tx code? */
3540		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3541	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3542		ath_tx_processq(sc, sc->sc_cabq, 1);
3543	IF_LOCK(&ifp->if_snd);
3544	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3545	IF_UNLOCK(&ifp->if_snd);
3546	sc->sc_wd_timer = 0;
3547
3548	if (sc->sc_softled)
3549		ath_led_event(sc, sc->sc_txrix);
3550
3551	ATH_PCU_LOCK(sc);
3552	sc->sc_txproc_cnt--;
3553	ATH_PCU_UNLOCK(sc);
3554
3555	ath_tx_kick(sc);
3556}
3557
3558/*
3559 * Deferred processing of transmit interrupt; special-cased
3560 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3561 */
3562static void
3563ath_tx_proc_q0123(void *arg, int npending)
3564{
3565	struct ath_softc *sc = arg;
3566	struct ifnet *ifp = sc->sc_ifp;
3567	int nacked;
3568	uint32_t txqs;
3569
3570	ATH_PCU_LOCK(sc);
3571	sc->sc_txproc_cnt++;
3572	txqs = sc->sc_txq_active;
3573	sc->sc_txq_active &= ~txqs;
3574	ATH_PCU_UNLOCK(sc);
3575
3576	/*
3577	 * Process each active queue.
3578	 */
3579	nacked = 0;
3580	if (TXQACTIVE(txqs, 0))
3581		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
3582	if (TXQACTIVE(txqs, 1))
3583		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
3584	if (TXQACTIVE(txqs, 2))
3585		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
3586	if (TXQACTIVE(txqs, 3))
3587		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
3588	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3589		ath_tx_processq(sc, sc->sc_cabq, 1);
3590	if (nacked)
3591		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3592
3593	IF_LOCK(&ifp->if_snd);
3594	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3595	IF_UNLOCK(&ifp->if_snd);
3596	sc->sc_wd_timer = 0;
3597
3598	if (sc->sc_softled)
3599		ath_led_event(sc, sc->sc_txrix);
3600
3601	ATH_PCU_LOCK(sc);
3602	sc->sc_txproc_cnt--;
3603	ATH_PCU_UNLOCK(sc);
3604
3605	ath_tx_kick(sc);
3606}
3607
3608/*
3609 * Deferred processing of transmit interrupt.
3610 */
3611static void
3612ath_tx_proc(void *arg, int npending)
3613{
3614	struct ath_softc *sc = arg;
3615	struct ifnet *ifp = sc->sc_ifp;
3616	int i, nacked;
3617	uint32_t txqs;
3618
3619	ATH_PCU_LOCK(sc);
3620	sc->sc_txproc_cnt++;
3621	txqs = sc->sc_txq_active;
3622	sc->sc_txq_active &= ~txqs;
3623	ATH_PCU_UNLOCK(sc);
3624
3625	/*
3626	 * Process each active queue.
3627	 */
3628	nacked = 0;
3629	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3630		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
3631			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
3632	if (nacked)
3633		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3634
3635	/* XXX check this inside of IF_LOCK? */
3636	IF_LOCK(&ifp->if_snd);
3637	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3638	IF_UNLOCK(&ifp->if_snd);
3639	sc->sc_wd_timer = 0;
3640
3641	if (sc->sc_softled)
3642		ath_led_event(sc, sc->sc_txrix);
3643
3644	ATH_PCU_LOCK(sc);
3645	sc->sc_txproc_cnt--;
3646	ATH_PCU_UNLOCK(sc);
3647
3648	ath_tx_kick(sc);
3649}
3650#undef	TXQACTIVE
3651
3652/*
3653 * Deferred processing of TXQ rescheduling.
3654 */
3655static void
3656ath_txq_sched_tasklet(void *arg, int npending)
3657{
3658	struct ath_softc *sc = arg;
3659	int i;
3660
3661	/* XXX is skipping ok? */
3662	ATH_PCU_LOCK(sc);
3663#if 0
3664	if (sc->sc_inreset_cnt > 0) {
3665		device_printf(sc->sc_dev,
3666		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
3667		ATH_PCU_UNLOCK(sc);
3668		return;
3669	}
3670#endif
3671	sc->sc_txproc_cnt++;
3672	ATH_PCU_UNLOCK(sc);
3673
3674	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3675		if (ATH_TXQ_SETUP(sc, i)) {
3676			ATH_TXQ_LOCK(&sc->sc_txq[i]);
3677			ath_txq_sched(sc, &sc->sc_txq[i]);
3678			ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
3679		}
3680	}
3681
3682	ATH_PCU_LOCK(sc);
3683	sc->sc_txproc_cnt--;
3684	ATH_PCU_UNLOCK(sc);
3685}
3686
3687void
3688ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
3689{
3690
3691	ATH_TXBUF_LOCK_ASSERT(sc);
3692
3693	if (bf->bf_flags & ATH_BUF_MGMT)
3694		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
3695	else {
3696		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3697		sc->sc_txbuf_cnt++;
3698		if (sc->sc_txbuf_cnt > ath_txbuf) {
3699			device_printf(sc->sc_dev,
3700			    "%s: sc_txbuf_cnt > %d?\n",
3701			    __func__,
3702			    ath_txbuf);
3703			sc->sc_txbuf_cnt = ath_txbuf;
3704		}
3705	}
3706}
3707
3708void
3709ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
3710{
3711
3712	ATH_TXBUF_LOCK_ASSERT(sc);
3713
3714	if (bf->bf_flags & ATH_BUF_MGMT)
3715		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
3716	else {
3717		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
3718		sc->sc_txbuf_cnt++;
3719		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
3720			device_printf(sc->sc_dev,
3721			    "%s: sc_txbuf_cnt > %d?\n",
3722			    __func__,
3723			    ATH_TXBUF);
3724			sc->sc_txbuf_cnt = ATH_TXBUF;
3725		}
3726	}
3727}
3728
3729/*
3730 * Return a buffer to the pool and update the 'busy' flag on the
3731 * previous 'tail' entry.
3732 *
3733 * This _must_ only be called when the buffer is involved in a completed
3734 * TX. The logic is that if it was part of an active TX, the previous
3735 * buffer on the list is now not involved in a halted TX DMA queue, waiting
3736 * for restart (eg for TDMA.)
3737 *
3738 * The caller must free the mbuf and recycle the node reference.
3739 */
3740void
3741ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
3742{
3743	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3744	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
3745
3746	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
3747	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
3748
3749	ATH_TXBUF_LOCK(sc);
3750	ath_tx_update_busy(sc);
3751	ath_returnbuf_tail(sc, bf);
3752	ATH_TXBUF_UNLOCK(sc);
3753}
3754
3755/*
3756 * This is currently used by ath_tx_draintxq() and
3757 * ath_tx_tid_free_pkts().
3758 *
3759 * It recycles a single ath_buf.
3760 */
3761void
3762ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
3763{
3764	struct ieee80211_node *ni = bf->bf_node;
3765	struct mbuf *m0 = bf->bf_m;
3766
3767	bf->bf_node = NULL;
3768	bf->bf_m = NULL;
3769
3770	/* Free the buffer, it's not needed any longer */
3771	ath_freebuf(sc, bf);
3772
3773	if (ni != NULL) {
3774		/*
3775		 * Do any callback and reclaim the node reference.
3776		 */
3777		if (m0->m_flags & M_TXCB)
3778			ieee80211_process_callback(ni, m0, status);
3779		ieee80211_free_node(ni);
3780	}
3781	m_freem(m0);
3782
3783	/*
3784	 * XXX the buffer used to be freed -after-, but the DMA map was
3785	 * freed where ath_freebuf() now is. I've no idea what this
3786	 * will do.
3787	 */
3788}
3789
3790void
3791ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3792{
3793#ifdef ATH_DEBUG
3794	struct ath_hal *ah = sc->sc_ah;
3795#endif
3796	struct ath_buf *bf;
3797	u_int ix;
3798
3799	/*
3800	 * NB: this assumes output has been stopped and
3801	 *     we do not need to block ath_tx_proc
3802	 */
3803	ATH_TXBUF_LOCK(sc);
3804	bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
3805	if (bf != NULL)
3806		bf->bf_flags &= ~ATH_BUF_BUSY;
3807	bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
3808	if (bf != NULL)
3809		bf->bf_flags &= ~ATH_BUF_BUSY;
3810	ATH_TXBUF_UNLOCK(sc);
3811
3812	for (ix = 0;; ix++) {
3813		ATH_TXQ_LOCK(txq);
3814		bf = TAILQ_FIRST(&txq->axq_q);
3815		if (bf == NULL) {
3816			txq->axq_link = NULL;
3817			ATH_TXQ_UNLOCK(txq);
3818			break;
3819		}
3820		ATH_TXQ_REMOVE(txq, bf, bf_list);
3821		if (bf->bf_state.bfs_aggr)
3822			txq->axq_aggr_depth--;
3823#ifdef ATH_DEBUG
3824		if (sc->sc_debug & ATH_DEBUG_RESET) {
3825			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3826
3827			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
3828				ath_hal_txprocdesc(ah, bf->bf_lastds,
3829				    &bf->bf_status.ds_txstat) == HAL_OK);
3830			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
3831			    bf->bf_m->m_len, 0, -1);
3832		}
3833#endif /* ATH_DEBUG */
3834		/*
3835		 * Since we're now doing magic in the completion
3836		 * functions, we -must- call it for aggregation
3837		 * destinations or BAW tracking will get upset.
3838		 */
3839		/*
3840		 * Clear ATH_BUF_BUSY; the completion handler
3841		 * will free the buffer.
3842		 */
3843		ATH_TXQ_UNLOCK(txq);
3844		bf->bf_flags &= ~ATH_BUF_BUSY;
3845		if (bf->bf_comp)
3846			bf->bf_comp(sc, bf, 1);
3847		else
3848			ath_tx_default_comp(sc, bf, 1);
3849	}
3850
3851	/*
3852	 * Drain software queued frames which are on
3853	 * active TIDs.
3854	 */
3855	ath_tx_txq_drain(sc, txq);
3856}
3857
3858static void
3859ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3860{
3861	struct ath_hal *ah = sc->sc_ah;
3862
3863	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3864	    __func__, txq->axq_qnum,
3865	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3866	    txq->axq_link);
3867	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3868}
3869
3870static int
3871ath_stoptxdma(struct ath_softc *sc)
3872{
3873	struct ath_hal *ah = sc->sc_ah;
3874	int i;
3875
3876	/* XXX return value */
3877	if (sc->sc_invalid)
3878		return 0;
3879
3880	if (!sc->sc_invalid) {
3881		/* don't touch the hardware if marked invalid */
3882		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3883		    __func__, sc->sc_bhalq,
3884		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
3885		    NULL);
3886		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3887		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3888			if (ATH_TXQ_SETUP(sc, i))
3889				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3890	}
3891
3892	return 1;
3893}
3894
3895/*
3896 * Drain the transmit queues and reclaim resources.
3897 */
3898static void
3899ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
3900{
3901#ifdef	ATH_DEBUG
3902	struct ath_hal *ah = sc->sc_ah;
3903#endif
3904	struct ifnet *ifp = sc->sc_ifp;
3905	int i;
3906
3907	(void) ath_stoptxdma(sc);
3908
3909	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3910		/*
3911		 * XXX TODO: should we just handle the completed TX frames
3912		 * here, whether or not the reset is a full one or not?
3913		 */
3914		if (ATH_TXQ_SETUP(sc, i)) {
3915			if (reset_type == ATH_RESET_NOLOSS)
3916				ath_tx_processq(sc, &sc->sc_txq[i], 0);
3917			else
3918				ath_tx_draintxq(sc, &sc->sc_txq[i]);
3919		}
3920	}
3921#ifdef ATH_DEBUG
3922	if (sc->sc_debug & ATH_DEBUG_RESET) {
3923		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
3924		if (bf != NULL && bf->bf_m != NULL) {
3925			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
3926				ath_hal_txprocdesc(ah, bf->bf_lastds,
3927				    &bf->bf_status.ds_txstat) == HAL_OK);
3928			ieee80211_dump_pkt(ifp->if_l2com,
3929			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
3930			    0, -1);
3931		}
3932	}
3933#endif /* ATH_DEBUG */
3934	IF_LOCK(&ifp->if_snd);
3935	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3936	IF_UNLOCK(&ifp->if_snd);
3937	sc->sc_wd_timer = 0;
3938}
3939
3940/*
3941 * Update internal state after a channel change.
3942 */
3943static void
3944ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3945{
3946	enum ieee80211_phymode mode;
3947
3948	/*
3949	 * Change channels and update the h/w rate map
3950	 * if we're switching; e.g. 11a to 11b/g.
3951	 */
3952	mode = ieee80211_chan2mode(chan);
3953	if (mode != sc->sc_curmode)
3954		ath_setcurmode(sc, mode);
3955	sc->sc_curchan = chan;
3956}
3957
3958/*
3959 * Set/change channels.  If the channel is really being changed,
3960 * it's done by resetting the chip.  To accomplish this we must
3961 * first cleanup any pending DMA, then restart stuff after a la
3962 * ath_init.
3963 */
3964static int
3965ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3966{
3967	struct ifnet *ifp = sc->sc_ifp;
3968	struct ieee80211com *ic = ifp->if_l2com;
3969	struct ath_hal *ah = sc->sc_ah;
3970	int ret = 0;
3971
3972	/* Treat this as an interface reset */
3973	ATH_PCU_UNLOCK_ASSERT(sc);
3974	ATH_UNLOCK_ASSERT(sc);
3975
3976	/* (Try to) stop TX/RX from occuring */
3977	taskqueue_block(sc->sc_tq);
3978
3979	ATH_PCU_LOCK(sc);
3980	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
3981	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
3982	if (ath_reset_grablock(sc, 1) == 0) {
3983		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
3984		    __func__);
3985	}
3986	ATH_PCU_UNLOCK(sc);
3987
3988	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
3989	    __func__, ieee80211_chan2ieee(ic, chan),
3990	    chan->ic_freq, chan->ic_flags);
3991	if (chan != sc->sc_curchan) {
3992		HAL_STATUS status;
3993		/*
3994		 * To switch channels clear any pending DMA operations;
3995		 * wait long enough for the RX fifo to drain, reset the
3996		 * hardware at the new frequency, and then re-enable
3997		 * the relevant bits of the h/w.
3998		 */
3999#if 0
4000		ath_hal_intrset(ah, 0);		/* disable interrupts */
4001#endif
4002		ath_stoprecv(sc, 1);		/* turn off frame recv */
4003		/*
4004		 * First, handle completed TX/RX frames.
4005		 */
4006		ath_rx_proc(sc, 0);
4007		ath_draintxq(sc, ATH_RESET_NOLOSS);
4008		/*
4009		 * Next, flush the non-scheduled frames.
4010		 */
4011		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4012
4013		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4014			if_printf(ifp, "%s: unable to reset "
4015			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4016			    __func__, ieee80211_chan2ieee(ic, chan),
4017			    chan->ic_freq, chan->ic_flags, status);
4018			ret = EIO;
4019			goto finish;
4020		}
4021		sc->sc_diversity = ath_hal_getdiversity(ah);
4022
4023		/* Let DFS at it in case it's a DFS channel */
4024		ath_dfs_radar_enable(sc, chan);
4025
4026		/*
4027		 * Re-enable rx framework.
4028		 */
4029		if (ath_startrecv(sc) != 0) {
4030			if_printf(ifp, "%s: unable to restart recv logic\n",
4031			    __func__);
4032			ret = EIO;
4033			goto finish;
4034		}
4035
4036		/*
4037		 * Change channels and update the h/w rate map
4038		 * if we're switching; e.g. 11a to 11b/g.
4039		 */
4040		ath_chan_change(sc, chan);
4041
4042		/*
4043		 * Reset clears the beacon timers; reset them
4044		 * here if needed.
4045		 */
4046		if (sc->sc_beacons) {		/* restart beacons */
4047#ifdef IEEE80211_SUPPORT_TDMA
4048			if (sc->sc_tdma)
4049				ath_tdma_config(sc, NULL);
4050			else
4051#endif
4052			ath_beacon_config(sc, NULL);
4053		}
4054
4055		/*
4056		 * Re-enable interrupts.
4057		 */
4058#if 0
4059		ath_hal_intrset(ah, sc->sc_imask);
4060#endif
4061	}
4062
4063finish:
4064	ATH_PCU_LOCK(sc);
4065	sc->sc_inreset_cnt--;
4066	/* XXX only do this if sc_inreset_cnt == 0? */
4067	ath_hal_intrset(ah, sc->sc_imask);
4068	ATH_PCU_UNLOCK(sc);
4069
4070	IF_LOCK(&ifp->if_snd);
4071	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4072	IF_UNLOCK(&ifp->if_snd);
4073	ath_txrx_start(sc);
4074	/* XXX ath_start? */
4075
4076	return ret;
4077}
4078
4079/*
4080 * Periodically recalibrate the PHY to account
4081 * for temperature/environment changes.
4082 */
4083static void
4084ath_calibrate(void *arg)
4085{
4086	struct ath_softc *sc = arg;
4087	struct ath_hal *ah = sc->sc_ah;
4088	struct ifnet *ifp = sc->sc_ifp;
4089	struct ieee80211com *ic = ifp->if_l2com;
4090	HAL_BOOL longCal, isCalDone;
4091	HAL_BOOL aniCal, shortCal = AH_FALSE;
4092	int nextcal;
4093
4094	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4095		goto restart;
4096	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4097	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4098	if (sc->sc_doresetcal)
4099		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4100
4101	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4102	if (aniCal) {
4103		sc->sc_stats.ast_ani_cal++;
4104		sc->sc_lastani = ticks;
4105		ath_hal_ani_poll(ah, sc->sc_curchan);
4106	}
4107
4108	if (longCal) {
4109		sc->sc_stats.ast_per_cal++;
4110		sc->sc_lastlongcal = ticks;
4111		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4112			/*
4113			 * Rfgain is out of bounds, reset the chip
4114			 * to load new gain values.
4115			 */
4116			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4117				"%s: rfgain change\n", __func__);
4118			sc->sc_stats.ast_per_rfgain++;
4119			sc->sc_resetcal = 0;
4120			sc->sc_doresetcal = AH_TRUE;
4121			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4122			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4123			return;
4124		}
4125		/*
4126		 * If this long cal is after an idle period, then
4127		 * reset the data collection state so we start fresh.
4128		 */
4129		if (sc->sc_resetcal) {
4130			(void) ath_hal_calreset(ah, sc->sc_curchan);
4131			sc->sc_lastcalreset = ticks;
4132			sc->sc_lastshortcal = ticks;
4133			sc->sc_resetcal = 0;
4134			sc->sc_doresetcal = AH_TRUE;
4135		}
4136	}
4137
4138	/* Only call if we're doing a short/long cal, not for ANI calibration */
4139	if (shortCal || longCal) {
4140		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4141			if (longCal) {
4142				/*
4143				 * Calibrate noise floor data again in case of change.
4144				 */
4145				ath_hal_process_noisefloor(ah);
4146			}
4147		} else {
4148			DPRINTF(sc, ATH_DEBUG_ANY,
4149				"%s: calibration of channel %u failed\n",
4150				__func__, sc->sc_curchan->ic_freq);
4151			sc->sc_stats.ast_per_calfail++;
4152		}
4153		if (shortCal)
4154			sc->sc_lastshortcal = ticks;
4155	}
4156	if (!isCalDone) {
4157restart:
4158		/*
4159		 * Use a shorter interval to potentially collect multiple
4160		 * data samples required to complete calibration.  Once
4161		 * we're told the work is done we drop back to a longer
4162		 * interval between requests.  We're more aggressive doing
4163		 * work when operating as an AP to improve operation right
4164		 * after startup.
4165		 */
4166		sc->sc_lastshortcal = ticks;
4167		nextcal = ath_shortcalinterval*hz/1000;
4168		if (sc->sc_opmode != HAL_M_HOSTAP)
4169			nextcal *= 10;
4170		sc->sc_doresetcal = AH_TRUE;
4171	} else {
4172		/* nextcal should be the shortest time for next event */
4173		nextcal = ath_longcalinterval*hz;
4174		if (sc->sc_lastcalreset == 0)
4175			sc->sc_lastcalreset = sc->sc_lastlongcal;
4176		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4177			sc->sc_resetcal = 1;	/* setup reset next trip */
4178		sc->sc_doresetcal = AH_FALSE;
4179	}
4180	/* ANI calibration may occur more often than short/long/resetcal */
4181	if (ath_anicalinterval > 0)
4182		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4183
4184	if (nextcal != 0) {
4185		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4186		    __func__, nextcal, isCalDone ? "" : "!");
4187		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4188	} else {
4189		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4190		    __func__);
4191		/* NB: don't rearm timer */
4192	}
4193}
4194
4195static void
4196ath_scan_start(struct ieee80211com *ic)
4197{
4198	struct ifnet *ifp = ic->ic_ifp;
4199	struct ath_softc *sc = ifp->if_softc;
4200	struct ath_hal *ah = sc->sc_ah;
4201	u_int32_t rfilt;
4202
4203	/* XXX calibration timer? */
4204
4205	ATH_LOCK(sc);
4206	sc->sc_scanning = 1;
4207	sc->sc_syncbeacon = 0;
4208	rfilt = ath_calcrxfilter(sc);
4209	ATH_UNLOCK(sc);
4210
4211	ATH_PCU_LOCK(sc);
4212	ath_hal_setrxfilter(ah, rfilt);
4213	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4214	ATH_PCU_UNLOCK(sc);
4215
4216	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4217		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4218}
4219
4220static void
4221ath_scan_end(struct ieee80211com *ic)
4222{
4223	struct ifnet *ifp = ic->ic_ifp;
4224	struct ath_softc *sc = ifp->if_softc;
4225	struct ath_hal *ah = sc->sc_ah;
4226	u_int32_t rfilt;
4227
4228	ATH_LOCK(sc);
4229	sc->sc_scanning = 0;
4230	rfilt = ath_calcrxfilter(sc);
4231	ATH_UNLOCK(sc);
4232
4233	ATH_PCU_LOCK(sc);
4234	ath_hal_setrxfilter(ah, rfilt);
4235	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4236
4237	ath_hal_process_noisefloor(ah);
4238	ATH_PCU_UNLOCK(sc);
4239
4240	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4241		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4242		 sc->sc_curaid);
4243}
4244
4245#ifdef	ATH_ENABLE_11N
4246/*
4247 * For now, just do a channel change.
4248 *
4249 * Later, we'll go through the hard slog of suspending tx/rx, changing rate
4250 * control state and resetting the hardware without dropping frames out
4251 * of the queue.
4252 *
4253 * The unfortunate trouble here is making absolutely sure that the
4254 * channel width change has propagated enough so the hardware
4255 * absolutely isn't handed bogus frames for it's current operating
4256 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
4257 * does occur in parallel, we need to make certain we've blocked
4258 * any further ongoing TX (and RX, that can cause raw TX)
4259 * before we do this.
4260 */
4261static void
4262ath_update_chw(struct ieee80211com *ic)
4263{
4264	struct ifnet *ifp = ic->ic_ifp;
4265	struct ath_softc *sc = ifp->if_softc;
4266
4267	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
4268	ath_set_channel(ic);
4269}
4270#endif	/* ATH_ENABLE_11N */
4271
4272static void
4273ath_set_channel(struct ieee80211com *ic)
4274{
4275	struct ifnet *ifp = ic->ic_ifp;
4276	struct ath_softc *sc = ifp->if_softc;
4277
4278	(void) ath_chan_set(sc, ic->ic_curchan);
4279	/*
4280	 * If we are returning to our bss channel then mark state
4281	 * so the next recv'd beacon's tsf will be used to sync the
4282	 * beacon timers.  Note that since we only hear beacons in
4283	 * sta/ibss mode this has no effect in other operating modes.
4284	 */
4285	ATH_LOCK(sc);
4286	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4287		sc->sc_syncbeacon = 1;
4288	ATH_UNLOCK(sc);
4289}
4290
4291/*
4292 * Walk the vap list and check if there any vap's in RUN state.
4293 */
4294static int
4295ath_isanyrunningvaps(struct ieee80211vap *this)
4296{
4297	struct ieee80211com *ic = this->iv_ic;
4298	struct ieee80211vap *vap;
4299
4300	IEEE80211_LOCK_ASSERT(ic);
4301
4302	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4303		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4304			return 1;
4305	}
4306	return 0;
4307}
4308
4309static int
4310ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4311{
4312	struct ieee80211com *ic = vap->iv_ic;
4313	struct ath_softc *sc = ic->ic_ifp->if_softc;
4314	struct ath_vap *avp = ATH_VAP(vap);
4315	struct ath_hal *ah = sc->sc_ah;
4316	struct ieee80211_node *ni = NULL;
4317	int i, error, stamode;
4318	u_int32_t rfilt;
4319	int csa_run_transition = 0;
4320	static const HAL_LED_STATE leds[] = {
4321	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4322	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4323	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4324	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4325	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4326	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4327	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4328	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4329	};
4330
4331	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4332		ieee80211_state_name[vap->iv_state],
4333		ieee80211_state_name[nstate]);
4334
4335	/*
4336	 * net80211 _should_ have the comlock asserted at this point.
4337	 * There are some comments around the calls to vap->iv_newstate
4338	 * which indicate that it (newstate) may end up dropping the
4339	 * lock.  This and the subsequent lock assert check after newstate
4340	 * are an attempt to catch these and figure out how/why.
4341	 */
4342	IEEE80211_LOCK_ASSERT(ic);
4343
4344	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
4345		csa_run_transition = 1;
4346
4347	callout_drain(&sc->sc_cal_ch);
4348	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4349
4350	if (nstate == IEEE80211_S_SCAN) {
4351		/*
4352		 * Scanning: turn off beacon miss and don't beacon.
4353		 * Mark beacon state so when we reach RUN state we'll
4354		 * [re]setup beacons.  Unblock the task q thread so
4355		 * deferred interrupt processing is done.
4356		 */
4357		ath_hal_intrset(ah,
4358		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4359		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4360		sc->sc_beacons = 0;
4361		taskqueue_unblock(sc->sc_tq);
4362	}
4363
4364	ni = ieee80211_ref_node(vap->iv_bss);
4365	rfilt = ath_calcrxfilter(sc);
4366	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4367		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4368		   vap->iv_opmode == IEEE80211_M_IBSS);
4369	if (stamode && nstate == IEEE80211_S_RUN) {
4370		sc->sc_curaid = ni->ni_associd;
4371		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4372		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4373	}
4374	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4375	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4376	ath_hal_setrxfilter(ah, rfilt);
4377
4378	/* XXX is this to restore keycache on resume? */
4379	if (vap->iv_opmode != IEEE80211_M_STA &&
4380	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4381		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4382			if (ath_hal_keyisvalid(ah, i))
4383				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4384	}
4385
4386	/*
4387	 * Invoke the parent method to do net80211 work.
4388	 */
4389	error = avp->av_newstate(vap, nstate, arg);
4390	if (error != 0)
4391		goto bad;
4392
4393	/*
4394	 * See above: ensure av_newstate() doesn't drop the lock
4395	 * on us.
4396	 */
4397	IEEE80211_LOCK_ASSERT(ic);
4398
4399	if (nstate == IEEE80211_S_RUN) {
4400		/* NB: collect bss node again, it may have changed */
4401		ieee80211_free_node(ni);
4402		ni = ieee80211_ref_node(vap->iv_bss);
4403
4404		DPRINTF(sc, ATH_DEBUG_STATE,
4405		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4406		    "capinfo 0x%04x chan %d\n", __func__,
4407		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4408		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4409
4410		switch (vap->iv_opmode) {
4411#ifdef IEEE80211_SUPPORT_TDMA
4412		case IEEE80211_M_AHDEMO:
4413			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4414				break;
4415			/* fall thru... */
4416#endif
4417		case IEEE80211_M_HOSTAP:
4418		case IEEE80211_M_IBSS:
4419		case IEEE80211_M_MBSS:
4420			/*
4421			 * Allocate and setup the beacon frame.
4422			 *
4423			 * Stop any previous beacon DMA.  This may be
4424			 * necessary, for example, when an ibss merge
4425			 * causes reconfiguration; there will be a state
4426			 * transition from RUN->RUN that means we may
4427			 * be called with beacon transmission active.
4428			 */
4429			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4430
4431			error = ath_beacon_alloc(sc, ni);
4432			if (error != 0)
4433				goto bad;
4434			/*
4435			 * If joining an adhoc network defer beacon timer
4436			 * configuration to the next beacon frame so we
4437			 * have a current TSF to use.  Otherwise we're
4438			 * starting an ibss/bss so there's no need to delay;
4439			 * if this is the first vap moving to RUN state, then
4440			 * beacon state needs to be [re]configured.
4441			 */
4442			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4443			    ni->ni_tstamp.tsf != 0) {
4444				sc->sc_syncbeacon = 1;
4445			} else if (!sc->sc_beacons) {
4446#ifdef IEEE80211_SUPPORT_TDMA
4447				if (vap->iv_caps & IEEE80211_C_TDMA)
4448					ath_tdma_config(sc, vap);
4449				else
4450#endif
4451					ath_beacon_config(sc, vap);
4452				sc->sc_beacons = 1;
4453			}
4454			break;
4455		case IEEE80211_M_STA:
4456			/*
4457			 * Defer beacon timer configuration to the next
4458			 * beacon frame so we have a current TSF to use
4459			 * (any TSF collected when scanning is likely old).
4460			 * However if it's due to a CSA -> RUN transition,
4461			 * force a beacon update so we pick up a lack of
4462			 * beacons from an AP in CAC and thus force a
4463			 * scan.
4464			 */
4465			sc->sc_syncbeacon = 1;
4466			if (csa_run_transition)
4467				ath_beacon_config(sc, vap);
4468			break;
4469		case IEEE80211_M_MONITOR:
4470			/*
4471			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
4472			 * transitions so we must re-enable interrupts here to
4473			 * handle the case of a single monitor mode vap.
4474			 */
4475			ath_hal_intrset(ah, sc->sc_imask);
4476			break;
4477		case IEEE80211_M_WDS:
4478			break;
4479		default:
4480			break;
4481		}
4482		/*
4483		 * Let the hal process statistics collected during a
4484		 * scan so it can provide calibrated noise floor data.
4485		 */
4486		ath_hal_process_noisefloor(ah);
4487		/*
4488		 * Reset rssi stats; maybe not the best place...
4489		 */
4490		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4491		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4492		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4493		/*
4494		 * Finally, start any timers and the task q thread
4495		 * (in case we didn't go through SCAN state).
4496		 */
4497		if (ath_longcalinterval != 0) {
4498			/* start periodic recalibration timer */
4499			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4500		} else {
4501			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4502			    "%s: calibration disabled\n", __func__);
4503		}
4504		taskqueue_unblock(sc->sc_tq);
4505	} else if (nstate == IEEE80211_S_INIT) {
4506		/*
4507		 * If there are no vaps left in RUN state then
4508		 * shutdown host/driver operation:
4509		 * o disable interrupts
4510		 * o disable the task queue thread
4511		 * o mark beacon processing as stopped
4512		 */
4513		if (!ath_isanyrunningvaps(vap)) {
4514			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4515			/* disable interrupts  */
4516			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4517			taskqueue_block(sc->sc_tq);
4518			sc->sc_beacons = 0;
4519		}
4520#ifdef IEEE80211_SUPPORT_TDMA
4521		ath_hal_setcca(ah, AH_TRUE);
4522#endif
4523	}
4524bad:
4525	ieee80211_free_node(ni);
4526	return error;
4527}
4528
4529/*
4530 * Allocate a key cache slot to the station so we can
4531 * setup a mapping from key index to node. The key cache
4532 * slot is needed for managing antenna state and for
4533 * compression when stations do not use crypto.  We do
4534 * it uniliaterally here; if crypto is employed this slot
4535 * will be reassigned.
4536 */
4537static void
4538ath_setup_stationkey(struct ieee80211_node *ni)
4539{
4540	struct ieee80211vap *vap = ni->ni_vap;
4541	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4542	ieee80211_keyix keyix, rxkeyix;
4543
4544	/* XXX should take a locked ref to vap->iv_bss */
4545	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4546		/*
4547		 * Key cache is full; we'll fall back to doing
4548		 * the more expensive lookup in software.  Note
4549		 * this also means no h/w compression.
4550		 */
4551		/* XXX msg+statistic */
4552	} else {
4553		/* XXX locking? */
4554		ni->ni_ucastkey.wk_keyix = keyix;
4555		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4556		/* NB: must mark device key to get called back on delete */
4557		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
4558		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
4559		/* NB: this will create a pass-thru key entry */
4560		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
4561	}
4562}
4563
4564/*
4565 * Setup driver-specific state for a newly associated node.
4566 * Note that we're called also on a re-associate, the isnew
4567 * param tells us if this is the first time or not.
4568 */
4569static void
4570ath_newassoc(struct ieee80211_node *ni, int isnew)
4571{
4572	struct ath_node *an = ATH_NODE(ni);
4573	struct ieee80211vap *vap = ni->ni_vap;
4574	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4575	const struct ieee80211_txparam *tp = ni->ni_txparms;
4576
4577	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
4578	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
4579
4580	ath_rate_newassoc(sc, an, isnew);
4581	if (isnew &&
4582	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
4583	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4584		ath_setup_stationkey(ni);
4585}
4586
4587static int
4588ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
4589	int nchans, struct ieee80211_channel chans[])
4590{
4591	struct ath_softc *sc = ic->ic_ifp->if_softc;
4592	struct ath_hal *ah = sc->sc_ah;
4593	HAL_STATUS status;
4594
4595	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4596	    "%s: rd %u cc %u location %c%s\n",
4597	    __func__, reg->regdomain, reg->country, reg->location,
4598	    reg->ecm ? " ecm" : "");
4599
4600	status = ath_hal_set_channels(ah, chans, nchans,
4601	    reg->country, reg->regdomain);
4602	if (status != HAL_OK) {
4603		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
4604		    __func__, status);
4605		return EINVAL;		/* XXX */
4606	}
4607
4608	return 0;
4609}
4610
4611static void
4612ath_getradiocaps(struct ieee80211com *ic,
4613	int maxchans, int *nchans, struct ieee80211_channel chans[])
4614{
4615	struct ath_softc *sc = ic->ic_ifp->if_softc;
4616	struct ath_hal *ah = sc->sc_ah;
4617
4618	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
4619	    __func__, SKU_DEBUG, CTRY_DEFAULT);
4620
4621	/* XXX check return */
4622	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
4623	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
4624
4625}
4626
4627static int
4628ath_getchannels(struct ath_softc *sc)
4629{
4630	struct ifnet *ifp = sc->sc_ifp;
4631	struct ieee80211com *ic = ifp->if_l2com;
4632	struct ath_hal *ah = sc->sc_ah;
4633	HAL_STATUS status;
4634
4635	/*
4636	 * Collect channel set based on EEPROM contents.
4637	 */
4638	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
4639	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
4640	if (status != HAL_OK) {
4641		if_printf(ifp, "%s: unable to collect channel list from hal, "
4642		    "status %d\n", __func__, status);
4643		return EINVAL;
4644	}
4645	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
4646	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
4647	/* XXX map Atheros sku's to net80211 SKU's */
4648	/* XXX net80211 types too small */
4649	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
4650	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
4651	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
4652	ic->ic_regdomain.isocc[1] = ' ';
4653
4654	ic->ic_regdomain.ecm = 1;
4655	ic->ic_regdomain.location = 'I';
4656
4657	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4658	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
4659	    __func__, sc->sc_eerd, sc->sc_eecc,
4660	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
4661	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
4662	return 0;
4663}
4664
4665static int
4666ath_rate_setup(struct ath_softc *sc, u_int mode)
4667{
4668	struct ath_hal *ah = sc->sc_ah;
4669	const HAL_RATE_TABLE *rt;
4670
4671	switch (mode) {
4672	case IEEE80211_MODE_11A:
4673		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4674		break;
4675	case IEEE80211_MODE_HALF:
4676		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
4677		break;
4678	case IEEE80211_MODE_QUARTER:
4679		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
4680		break;
4681	case IEEE80211_MODE_11B:
4682		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4683		break;
4684	case IEEE80211_MODE_11G:
4685		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4686		break;
4687	case IEEE80211_MODE_TURBO_A:
4688		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
4689		break;
4690	case IEEE80211_MODE_TURBO_G:
4691		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4692		break;
4693	case IEEE80211_MODE_STURBO_A:
4694		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4695		break;
4696	case IEEE80211_MODE_11NA:
4697		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
4698		break;
4699	case IEEE80211_MODE_11NG:
4700		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
4701		break;
4702	default:
4703		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4704			__func__, mode);
4705		return 0;
4706	}
4707	sc->sc_rates[mode] = rt;
4708	return (rt != NULL);
4709}
4710
4711static void
4712ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4713{
4714#define	N(a)	(sizeof(a)/sizeof(a[0]))
4715	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4716	static const struct {
4717		u_int		rate;		/* tx/rx 802.11 rate */
4718		u_int16_t	timeOn;		/* LED on time (ms) */
4719		u_int16_t	timeOff;	/* LED off time (ms) */
4720	} blinkrates[] = {
4721		{ 108,  40,  10 },
4722		{  96,  44,  11 },
4723		{  72,  50,  13 },
4724		{  48,  57,  14 },
4725		{  36,  67,  16 },
4726		{  24,  80,  20 },
4727		{  22, 100,  25 },
4728		{  18, 133,  34 },
4729		{  12, 160,  40 },
4730		{  10, 200,  50 },
4731		{   6, 240,  58 },
4732		{   4, 267,  66 },
4733		{   2, 400, 100 },
4734		{   0, 500, 130 },
4735		/* XXX half/quarter rates */
4736	};
4737	const HAL_RATE_TABLE *rt;
4738	int i, j;
4739
4740	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4741	rt = sc->sc_rates[mode];
4742	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4743	for (i = 0; i < rt->rateCount; i++) {
4744		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
4745		if (rt->info[i].phy != IEEE80211_T_HT)
4746			sc->sc_rixmap[ieeerate] = i;
4747		else
4748			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
4749	}
4750	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4751	for (i = 0; i < N(sc->sc_hwmap); i++) {
4752		if (i >= rt->rateCount) {
4753			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4754			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4755			continue;
4756		}
4757		sc->sc_hwmap[i].ieeerate =
4758			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
4759		if (rt->info[i].phy == IEEE80211_T_HT)
4760			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
4761		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4762		if (rt->info[i].shortPreamble ||
4763		    rt->info[i].phy == IEEE80211_T_OFDM)
4764			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4765		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
4766		for (j = 0; j < N(blinkrates)-1; j++)
4767			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4768				break;
4769		/* NB: this uses the last entry if the rate isn't found */
4770		/* XXX beware of overlow */
4771		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4772		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4773	}
4774	sc->sc_currates = rt;
4775	sc->sc_curmode = mode;
4776	/*
4777	 * All protection frames are transmited at 2Mb/s for
4778	 * 11g, otherwise at 1Mb/s.
4779	 */
4780	if (mode == IEEE80211_MODE_11G)
4781		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
4782	else
4783		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
4784	/* NB: caller is responsible for resetting rate control state */
4785#undef N
4786}
4787
4788static void
4789ath_watchdog(void *arg)
4790{
4791	struct ath_softc *sc = arg;
4792	int do_reset = 0;
4793
4794	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
4795		struct ifnet *ifp = sc->sc_ifp;
4796		uint32_t hangs;
4797
4798		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
4799		    hangs != 0) {
4800			if_printf(ifp, "%s hang detected (0x%x)\n",
4801			    hangs & 0xff ? "bb" : "mac", hangs);
4802		} else
4803			if_printf(ifp, "device timeout\n");
4804		do_reset = 1;
4805		ifp->if_oerrors++;
4806		sc->sc_stats.ast_watchdog++;
4807	}
4808
4809	/*
4810	 * We can't hold the lock across the ath_reset() call.
4811	 *
4812	 * And since this routine can't hold a lock and sleep,
4813	 * do the reset deferred.
4814	 */
4815	if (do_reset) {
4816		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4817	}
4818
4819	callout_schedule(&sc->sc_wd_ch, hz);
4820}
4821
4822#ifdef ATH_DIAGAPI
4823/*
4824 * Diagnostic interface to the HAL.  This is used by various
4825 * tools to do things like retrieve register contents for
4826 * debugging.  The mechanism is intentionally opaque so that
4827 * it can change frequently w/o concern for compatiblity.
4828 */
4829static int
4830ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4831{
4832	struct ath_hal *ah = sc->sc_ah;
4833	u_int id = ad->ad_id & ATH_DIAG_ID;
4834	void *indata = NULL;
4835	void *outdata = NULL;
4836	u_int32_t insize = ad->ad_in_size;
4837	u_int32_t outsize = ad->ad_out_size;
4838	int error = 0;
4839
4840	if (ad->ad_id & ATH_DIAG_IN) {
4841		/*
4842		 * Copy in data.
4843		 */
4844		indata = malloc(insize, M_TEMP, M_NOWAIT);
4845		if (indata == NULL) {
4846			error = ENOMEM;
4847			goto bad;
4848		}
4849		error = copyin(ad->ad_in_data, indata, insize);
4850		if (error)
4851			goto bad;
4852	}
4853	if (ad->ad_id & ATH_DIAG_DYN) {
4854		/*
4855		 * Allocate a buffer for the results (otherwise the HAL
4856		 * returns a pointer to a buffer where we can read the
4857		 * results).  Note that we depend on the HAL leaving this
4858		 * pointer for us to use below in reclaiming the buffer;
4859		 * may want to be more defensive.
4860		 */
4861		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4862		if (outdata == NULL) {
4863			error = ENOMEM;
4864			goto bad;
4865		}
4866	}
4867	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4868		if (outsize < ad->ad_out_size)
4869			ad->ad_out_size = outsize;
4870		if (outdata != NULL)
4871			error = copyout(outdata, ad->ad_out_data,
4872					ad->ad_out_size);
4873	} else {
4874		error = EINVAL;
4875	}
4876bad:
4877	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4878		free(indata, M_TEMP);
4879	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4880		free(outdata, M_TEMP);
4881	return error;
4882}
4883#endif /* ATH_DIAGAPI */
4884
4885static int
4886ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4887{
4888#define	IS_RUNNING(ifp) \
4889	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
4890	struct ath_softc *sc = ifp->if_softc;
4891	struct ieee80211com *ic = ifp->if_l2com;
4892	struct ifreq *ifr = (struct ifreq *)data;
4893	const HAL_RATE_TABLE *rt;
4894	int error = 0;
4895
4896	switch (cmd) {
4897	case SIOCSIFFLAGS:
4898		ATH_LOCK(sc);
4899		if (IS_RUNNING(ifp)) {
4900			/*
4901			 * To avoid rescanning another access point,
4902			 * do not call ath_init() here.  Instead,
4903			 * only reflect promisc mode settings.
4904			 */
4905			ath_mode_init(sc);
4906		} else if (ifp->if_flags & IFF_UP) {
4907			/*
4908			 * Beware of being called during attach/detach
4909			 * to reset promiscuous mode.  In that case we
4910			 * will still be marked UP but not RUNNING.
4911			 * However trying to re-init the interface
4912			 * is the wrong thing to do as we've already
4913			 * torn down much of our state.  There's
4914			 * probably a better way to deal with this.
4915			 */
4916			if (!sc->sc_invalid)
4917				ath_init(sc);	/* XXX lose error */
4918		} else {
4919			ath_stop_locked(ifp);
4920#ifdef notyet
4921			/* XXX must wakeup in places like ath_vap_delete */
4922			if (!sc->sc_invalid)
4923				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
4924#endif
4925		}
4926		ATH_UNLOCK(sc);
4927		break;
4928	case SIOCGIFMEDIA:
4929	case SIOCSIFMEDIA:
4930		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4931		break;
4932	case SIOCGATHSTATS:
4933		/* NB: embed these numbers to get a consistent view */
4934		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4935		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4936		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
4937		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
4938#ifdef IEEE80211_SUPPORT_TDMA
4939		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
4940		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
4941#endif
4942		rt = sc->sc_currates;
4943		sc->sc_stats.ast_tx_rate =
4944		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
4945		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
4946			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
4947		return copyout(&sc->sc_stats,
4948		    ifr->ifr_data, sizeof (sc->sc_stats));
4949	case SIOCGATHAGSTATS:
4950		return copyout(&sc->sc_aggr_stats,
4951		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
4952	case SIOCZATHSTATS:
4953		error = priv_check(curthread, PRIV_DRIVER);
4954		if (error == 0) {
4955			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
4956			memset(&sc->sc_aggr_stats, 0,
4957			    sizeof(sc->sc_aggr_stats));
4958			memset(&sc->sc_intr_stats, 0,
4959			    sizeof(sc->sc_intr_stats));
4960		}
4961		break;
4962#ifdef ATH_DIAGAPI
4963	case SIOCGATHDIAG:
4964		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4965		break;
4966	case SIOCGATHPHYERR:
4967		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
4968		break;
4969#endif
4970	case SIOCGIFADDR:
4971		error = ether_ioctl(ifp, cmd, data);
4972		break;
4973	default:
4974		error = EINVAL;
4975		break;
4976	}
4977	return error;
4978#undef IS_RUNNING
4979}
4980
4981/*
4982 * Announce various information on device/driver attach.
4983 */
4984static void
4985ath_announce(struct ath_softc *sc)
4986{
4987	struct ifnet *ifp = sc->sc_ifp;
4988	struct ath_hal *ah = sc->sc_ah;
4989
4990	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
4991		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
4992		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4993	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
4994		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
4995	if (bootverbose) {
4996		int i;
4997		for (i = 0; i <= WME_AC_VO; i++) {
4998			struct ath_txq *txq = sc->sc_ac2q[i];
4999			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5000				txq->axq_qnum, ieee80211_wme_acnames[i]);
5001		}
5002		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5003			sc->sc_cabq->axq_qnum);
5004		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5005	}
5006	if (ath_rxbuf != ATH_RXBUF)
5007		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5008	if (ath_txbuf != ATH_TXBUF)
5009		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5010	if (sc->sc_mcastkey && bootverbose)
5011		if_printf(ifp, "using multicast key search\n");
5012}
5013
5014static void
5015ath_dfs_tasklet(void *p, int npending)
5016{
5017	struct ath_softc *sc = (struct ath_softc *) p;
5018	struct ifnet *ifp = sc->sc_ifp;
5019	struct ieee80211com *ic = ifp->if_l2com;
5020
5021	/*
5022	 * If previous processing has found a radar event,
5023	 * signal this to the net80211 layer to begin DFS
5024	 * processing.
5025	 */
5026	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5027		/* DFS event found, initiate channel change */
5028		/*
5029		 * XXX doesn't currently tell us whether the event
5030		 * XXX was found in the primary or extension
5031		 * XXX channel!
5032		 */
5033		IEEE80211_LOCK(ic);
5034		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5035		IEEE80211_UNLOCK(ic);
5036	}
5037}
5038
5039MODULE_VERSION(if_ath, 1);
5040MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
5041#if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
5042MODULE_DEPEND(if_ath, alq, 1, 1, 1);
5043#endif
5044