if_ath.c revision 229950
1139825Simp/*-
226685Sdyson * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
326685Sdyson * All rights reserved.
426685Sdyson *
526685Sdyson * Redistribution and use in source and binary forms, with or without
626685Sdyson * modification, are permitted provided that the following conditions
726685Sdyson * are met:
826685Sdyson * 1. Redistributions of source code must retain the above copyright
926685Sdyson *    notice, this list of conditions and the following disclaimer,
1026685Sdyson *    without modification.
1126685Sdyson * 2. Redistributions in binary form must reproduce at minimum a disclaimer
1226685Sdyson *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
1326685Sdyson *    redistribution must be conditioned upon including a substantially
1426685Sdyson *    similar Disclaimer requirement for further binary redistribution.
1526685Sdyson *
1650477Speter * NO WARRANTY
1726685Sdyson * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
1826685Sdyson * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
1942773Sdt * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
2042773Sdt * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
2142773Sdt * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
2226685Sdyson * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
2334925Sdufault * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
2442773Sdt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
2526685Sdyson * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
2626685Sdyson * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
2726685Sdyson * THE POSSIBILITY OF SUCH DAMAGES.
2826685Sdyson */
2942773Sdt
3026685Sdyson#include <sys/cdefs.h>
3126685Sdyson__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 229950 2012-01-11 00:18:33Z adrian $");
3226685Sdyson
3326685Sdyson/*
3426685Sdyson * Driver for the Atheros Wireless LAN controller.
3526685Sdyson *
3626685Sdyson * This software is derived from work of Atsushi Onoe; his contribution
3726685Sdyson * is greatly appreciated.
38157038Sdavidxu */
39157038Sdavidxu
40157038Sdavidxu#include "opt_inet.h"
4126685Sdyson#include "opt_ath.h"
4226685Sdyson/*
4326685Sdyson * This is needed for register operations which are performed
4426685Sdyson * by the driver - eg, calls to ath_hal_gettsf32().
4526685Sdyson */
4626685Sdyson#include "opt_ah.h"
4726685Sdyson#include "opt_wlan.h"
4826685Sdyson
4934327Sdufault#include <sys/param.h>
5034327Sdufault#include <sys/systm.h>
5134327Sdufault#include <sys/sysctl.h>
5234327Sdufault#include <sys/mbuf.h>
5334327Sdufault#include <sys/malloc.h>
5426685Sdyson#include <sys/lock.h>
5526685Sdyson#include <sys/mutex.h>
5626685Sdyson#include <sys/kernel.h>
5726685Sdyson#include <sys/socket.h>
5865484Salc#include <sys/sockio.h>
5965484Salc#include <sys/errno.h>
6026685Sdyson#include <sys/callout.h>
6126685Sdyson#include <sys/bus.h>
6226685Sdyson#include <sys/endian.h>
6326685Sdyson#include <sys/kthread.h>
6426685Sdyson#include <sys/taskqueue.h>
6526685Sdyson#include <sys/priv.h>
6626685Sdyson#include <sys/module.h>
6726685Sdyson#include <sys/ktr.h>
6826685Sdyson#include <sys/smp.h>	/* for mp_ncpus */
6942773Sdt
7026685Sdyson#include <machine/bus.h>
71185874Sjhb
72185874Sjhb#include <net/if.h>
7326685Sdyson#include <net/if_dl.h>
7426685Sdyson#include <net/if_media.h>
7526685Sdyson#include <net/if_types.h>
76151867Sdavidxu#include <net/if_arp.h>
7726685Sdyson#include <net/ethernet.h>
7826685Sdyson#include <net/if_llc.h>
7955205Speter
8042773Sdt#include <net80211/ieee80211_var.h>
81189822Sdas#include <net80211/ieee80211_regdomain.h>
82189822Sdas#ifdef IEEE80211_SUPPORT_SUPERG
8342773Sdt#include <net80211/ieee80211_superg.h>
8426685Sdyson#endif
8526685Sdyson#ifdef IEEE80211_SUPPORT_TDMA
8626685Sdyson#include <net80211/ieee80211_tdma.h>
8755943Sjasone#endif
8826685Sdyson
8926685Sdyson#include <net/bpf.h>
9026685Sdyson
9126685Sdyson#ifdef INET
9255943Sjasone#include <netinet/in.h>
9326685Sdyson#include <netinet/if_ether.h>
9426685Sdyson#endif
9526685Sdyson
9626685Sdyson#include <dev/ath/if_athvar.h>
9726685Sdyson#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
9826685Sdyson#include <dev/ath/ath_hal/ah_diagcodes.h>
9926685Sdyson
10055943Sjasone#include <dev/ath/if_ath_debug.h>
10126685Sdyson#include <dev/ath/if_ath_misc.h>
10226685Sdyson#include <dev/ath/if_ath_tx.h>
10326685Sdyson#include <dev/ath/if_ath_sysctl.h>
10426685Sdyson#include <dev/ath/if_ath_led.h>
10526685Sdyson#include <dev/ath/if_ath_keycache.h>
10626685Sdyson#include <dev/ath/if_athdfs.h>
10755943Sjasone
10826685Sdyson#ifdef ATH_TX99_DIAG
10926685Sdyson#include <dev/ath/ath_tx99/ath_tx99.h>
11026685Sdyson#endif
11126685Sdyson
11226685Sdyson#define	ATH_KTR_INTR	KTR_SPARE4
11326685Sdyson#define	ATH_KTR_ERR	KTR_SPARE3
11426685Sdyson
11555943Sjasone/*
11626685Sdyson * ATH_BCBUF determines the number of vap's that can transmit
11726685Sdyson * beacons and also (currently) the number of vap's that can
11873557Salc * have unique mac addresses/bssid.  When staggering beacons
11926685Sdyson * 4 is probably a good max as otherwise the beacons become
12055943Sjasone * very closely spaced and there is limited time for cab q traffic
12126685Sdyson * to go out.  You can burst beacons instead but that is not good
12226685Sdyson * for stations in power save and at some point you really want
12326685Sdyson * another radio (and channel).
12426685Sdyson *
12555943Sjasone * The limit on the number of mac addresses is tied to our use of
12626685Sdyson * the U/L bit and tracking addresses in a byte; it would be
127189822Sdas * worthwhile to allow more for applications like proxy sta.
12855943Sjasone */
129189822SdasCTASSERT(ATH_BCBUF <= 8);
13055943Sjasone
131157038Sdavidxustatic struct ieee80211vap *ath_vap_create(struct ieee80211com *,
13242773Sdt		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
13342773Sdt		    const uint8_t [IEEE80211_ADDR_LEN],
13427465Sdyson		    const uint8_t [IEEE80211_ADDR_LEN]);
13527465Sdysonstatic void	ath_vap_delete(struct ieee80211vap *);
13659528Swollmanstatic void	ath_init(void *);
13759528Swollmanstatic void	ath_stop_locked(struct ifnet *);
13859528Swollmanstatic void	ath_stop(struct ifnet *);
13959528Swollmanstatic void	ath_start(struct ifnet *);
14088633Salfredstatic int	ath_reset_vap(struct ieee80211vap *, u_long);
14155943Sjasonestatic int	ath_media_change(struct ifnet *);
14226685Sdysonstatic void	ath_watchdog(void *);
14327465Sdysonstatic int	ath_ioctl(struct ifnet *, u_long, caddr_t);
14426685Sdysonstatic void	ath_fatal_proc(void *, int);
145static void	ath_bmiss_vap(struct ieee80211vap *);
146static void	ath_bmiss_proc(void *, int);
147static void	ath_key_update_begin(struct ieee80211vap *);
148static void	ath_key_update_end(struct ieee80211vap *);
149static void	ath_update_mcast(struct ifnet *);
150static void	ath_update_promisc(struct ifnet *);
151static void	ath_mode_init(struct ath_softc *);
152static void	ath_setslottime(struct ath_softc *);
153static void	ath_updateslot(struct ifnet *);
154static int	ath_beaconq_setup(struct ath_hal *);
155static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
156static void	ath_beacon_update(struct ieee80211vap *, int item);
157static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
158static void	ath_beacon_proc(void *, int);
159static struct ath_buf *ath_beacon_generate(struct ath_softc *,
160			struct ieee80211vap *);
161static void	ath_bstuck_proc(void *, int);
162static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
163static void	ath_beacon_free(struct ath_softc *);
164static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
165static void	ath_descdma_cleanup(struct ath_softc *sc,
166			struct ath_descdma *, ath_bufhead *);
167static int	ath_desc_alloc(struct ath_softc *);
168static void	ath_desc_free(struct ath_softc *);
169static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
170			const uint8_t [IEEE80211_ADDR_LEN]);
171static void	ath_node_cleanup(struct ieee80211_node *);
172static void	ath_node_free(struct ieee80211_node *);
173static void	ath_node_getsignal(const struct ieee80211_node *,
174			int8_t *, int8_t *);
175static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
176static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
177			int subtype, int rssi, int nf);
178static void	ath_setdefantenna(struct ath_softc *, u_int);
179static void	ath_rx_proc(struct ath_softc *sc, int);
180static void	ath_rx_tasklet(void *, int);
181static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
182static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
183static int	ath_tx_setup(struct ath_softc *, int, int);
184static int	ath_wme_update(struct ieee80211com *);
185static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
186static void	ath_tx_cleanup(struct ath_softc *);
187static void	ath_tx_proc_q0(void *, int);
188static void	ath_tx_proc_q0123(void *, int);
189static void	ath_tx_proc(void *, int);
190static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
191static void	ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type);
192static void	ath_stoprecv(struct ath_softc *, int);
193static int	ath_startrecv(struct ath_softc *);
194static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
195static void	ath_scan_start(struct ieee80211com *);
196static void	ath_scan_end(struct ieee80211com *);
197static void	ath_set_channel(struct ieee80211com *);
198static void	ath_calibrate(void *);
199static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
200static void	ath_setup_stationkey(struct ieee80211_node *);
201static void	ath_newassoc(struct ieee80211_node *, int);
202static int	ath_setregdomain(struct ieee80211com *,
203		    struct ieee80211_regdomain *, int,
204		    struct ieee80211_channel []);
205static void	ath_getradiocaps(struct ieee80211com *, int, int *,
206		    struct ieee80211_channel []);
207static int	ath_getchannels(struct ath_softc *);
208
209static int	ath_rate_setup(struct ath_softc *, u_int mode);
210static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
211
212static void	ath_announce(struct ath_softc *);
213
214static void	ath_dfs_tasklet(void *, int);
215
216#ifdef IEEE80211_SUPPORT_TDMA
217static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
218		    u_int32_t bintval);
219static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
220		    const struct ieee80211_tdma_state *tdma);
221static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
222static void	ath_tdma_update(struct ieee80211_node *ni,
223		    const struct ieee80211_tdma_param *tdma, int);
224static void	ath_tdma_beacon_send(struct ath_softc *sc,
225		    struct ieee80211vap *vap);
226
227#define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
228#define	TDMA_LPF_LEN		6
229#define	TDMA_DUMMY_MARKER	0x127
230#define	TDMA_EP_MUL(x, mul)	((x) * (mul))
231#define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
232#define	TDMA_LPF(x, y, len) \
233    ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
234#define	TDMA_SAMPLE(x, y) do {					\
235	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
236} while (0)
237#define	TDMA_EP_RND(x,mul) \
238	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
239#define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
240#endif /* IEEE80211_SUPPORT_TDMA */
241
242SYSCTL_DECL(_hw_ath);
243
244/* XXX validate sysctl values */
245static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
246SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
247	    0, "long chip calibration interval (secs)");
248static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
249SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
250	    0, "short chip calibration interval (msecs)");
251static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
252SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
253	    0, "reset chip calibration results (secs)");
254static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
255SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
256	    0, "ANI calibration (msecs)");
257
258static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
259SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
260	    0, "rx buffers allocated");
261TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
262static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
263SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
264	    0, "tx buffers allocated");
265TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
266
267static	int ath_bstuck_threshold = 4;		/* max missed beacons */
268SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
269	    0, "max missed beacon xmits before chip reset");
270
271MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
272
273#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
274#define	HAL_MODE_HT40 \
275	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
276	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
277int
278ath_attach(u_int16_t devid, struct ath_softc *sc)
279{
280	struct ifnet *ifp;
281	struct ieee80211com *ic;
282	struct ath_hal *ah = NULL;
283	HAL_STATUS status;
284	int error = 0, i;
285	u_int wmodes;
286	uint8_t macaddr[IEEE80211_ADDR_LEN];
287
288	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
289
290	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
291	if (ifp == NULL) {
292		device_printf(sc->sc_dev, "can not if_alloc()\n");
293		error = ENOSPC;
294		goto bad;
295	}
296	ic = ifp->if_l2com;
297
298	/* set these up early for if_printf use */
299	if_initname(ifp, device_get_name(sc->sc_dev),
300		device_get_unit(sc->sc_dev));
301
302	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
303	    sc->sc_eepromdata, &status);
304	if (ah == NULL) {
305		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
306			status);
307		error = ENXIO;
308		goto bad;
309	}
310	sc->sc_ah = ah;
311	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
312#ifdef	ATH_DEBUG
313	sc->sc_debug = ath_debug;
314#endif
315
316	/*
317	 * Check if the MAC has multi-rate retry support.
318	 * We do this by trying to setup a fake extended
319	 * descriptor.  MAC's that don't have support will
320	 * return false w/o doing anything.  MAC's that do
321	 * support it will return true w/o doing anything.
322	 */
323	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
324
325	/*
326	 * Check if the device has hardware counters for PHY
327	 * errors.  If so we need to enable the MIB interrupt
328	 * so we can act on stat triggers.
329	 */
330	if (ath_hal_hwphycounters(ah))
331		sc->sc_needmib = 1;
332
333	/*
334	 * Get the hardware key cache size.
335	 */
336	sc->sc_keymax = ath_hal_keycachesize(ah);
337	if (sc->sc_keymax > ATH_KEYMAX) {
338		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
339			ATH_KEYMAX, sc->sc_keymax);
340		sc->sc_keymax = ATH_KEYMAX;
341	}
342	/*
343	 * Reset the key cache since some parts do not
344	 * reset the contents on initial power up.
345	 */
346	for (i = 0; i < sc->sc_keymax; i++)
347		ath_hal_keyreset(ah, i);
348
349	/*
350	 * Collect the default channel list.
351	 */
352	error = ath_getchannels(sc);
353	if (error != 0)
354		goto bad;
355
356	/*
357	 * Setup rate tables for all potential media types.
358	 */
359	ath_rate_setup(sc, IEEE80211_MODE_11A);
360	ath_rate_setup(sc, IEEE80211_MODE_11B);
361	ath_rate_setup(sc, IEEE80211_MODE_11G);
362	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
363	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
364	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
365	ath_rate_setup(sc, IEEE80211_MODE_11NA);
366	ath_rate_setup(sc, IEEE80211_MODE_11NG);
367	ath_rate_setup(sc, IEEE80211_MODE_HALF);
368	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
369
370	/* NB: setup here so ath_rate_update is happy */
371	ath_setcurmode(sc, IEEE80211_MODE_11A);
372
373	/*
374	 * Allocate tx+rx descriptors and populate the lists.
375	 */
376	error = ath_desc_alloc(sc);
377	if (error != 0) {
378		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
379		goto bad;
380	}
381	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
382	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
383
384	ATH_TXBUF_LOCK_INIT(sc);
385
386	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
387		taskqueue_thread_enqueue, &sc->sc_tq);
388	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
389		"%s taskq", ifp->if_xname);
390
391	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc);
392	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
393	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
394
395	/*
396	 * Allocate hardware transmit queues: one queue for
397	 * beacon frames and one data queue for each QoS
398	 * priority.  Note that the hal handles resetting
399	 * these queues at the needed time.
400	 *
401	 * XXX PS-Poll
402	 */
403	sc->sc_bhalq = ath_beaconq_setup(ah);
404	if (sc->sc_bhalq == (u_int) -1) {
405		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
406		error = EIO;
407		goto bad2;
408	}
409	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
410	if (sc->sc_cabq == NULL) {
411		if_printf(ifp, "unable to setup CAB xmit queue!\n");
412		error = EIO;
413		goto bad2;
414	}
415	/* NB: insure BK queue is the lowest priority h/w queue */
416	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
417		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
418			ieee80211_wme_acnames[WME_AC_BK]);
419		error = EIO;
420		goto bad2;
421	}
422	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
423	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
424	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
425		/*
426		 * Not enough hardware tx queues to properly do WME;
427		 * just punt and assign them all to the same h/w queue.
428		 * We could do a better job of this if, for example,
429		 * we allocate queues when we switch from station to
430		 * AP mode.
431		 */
432		if (sc->sc_ac2q[WME_AC_VI] != NULL)
433			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
434		if (sc->sc_ac2q[WME_AC_BE] != NULL)
435			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
436		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
437		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
438		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
439	}
440
441	/*
442	 * Special case certain configurations.  Note the
443	 * CAB queue is handled by these specially so don't
444	 * include them when checking the txq setup mask.
445	 */
446	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
447	case 0x01:
448		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
449		break;
450	case 0x0f:
451		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
452		break;
453	default:
454		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
455		break;
456	}
457
458	/*
459	 * Setup rate control.  Some rate control modules
460	 * call back to change the anntena state so expose
461	 * the necessary entry points.
462	 * XXX maybe belongs in struct ath_ratectrl?
463	 */
464	sc->sc_setdefantenna = ath_setdefantenna;
465	sc->sc_rc = ath_rate_attach(sc);
466	if (sc->sc_rc == NULL) {
467		error = EIO;
468		goto bad2;
469	}
470
471	/* Attach DFS module */
472	if (! ath_dfs_attach(sc)) {
473		device_printf(sc->sc_dev,
474		    "%s: unable to attach DFS\n", __func__);
475		error = EIO;
476		goto bad2;
477	}
478
479	/* Start DFS processing tasklet */
480	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
481
482	/* Configure LED state */
483	sc->sc_blinking = 0;
484	sc->sc_ledstate = 1;
485	sc->sc_ledon = 0;			/* low true */
486	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
487	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
488
489	/*
490	 * Don't setup hardware-based blinking.
491	 *
492	 * Although some NICs may have this configured in the
493	 * default reset register values, the user may wish
494	 * to alter which pins have which function.
495	 *
496	 * The reference driver attaches the MAC network LED to GPIO1 and
497	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
498	 * NIC has these reversed.
499	 */
500	sc->sc_hardled = (1 == 0);
501	sc->sc_led_net_pin = -1;
502	sc->sc_led_pwr_pin = -1;
503	/*
504	 * Auto-enable soft led processing for IBM cards and for
505	 * 5211 minipci cards.  Users can also manually enable/disable
506	 * support with a sysctl.
507	 */
508	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
509	ath_led_config(sc);
510	ath_hal_setledstate(ah, HAL_LED_INIT);
511
512	ifp->if_softc = sc;
513	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
514	ifp->if_start = ath_start;
515	ifp->if_ioctl = ath_ioctl;
516	ifp->if_init = ath_init;
517	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
518	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
519	IFQ_SET_READY(&ifp->if_snd);
520
521	ic->ic_ifp = ifp;
522	/* XXX not right but it's not used anywhere important */
523	ic->ic_phytype = IEEE80211_T_OFDM;
524	ic->ic_opmode = IEEE80211_M_STA;
525	ic->ic_caps =
526		  IEEE80211_C_STA		/* station mode */
527		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
528		| IEEE80211_C_HOSTAP		/* hostap mode */
529		| IEEE80211_C_MONITOR		/* monitor mode */
530		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
531		| IEEE80211_C_WDS		/* 4-address traffic works */
532		| IEEE80211_C_MBSS		/* mesh point link mode */
533		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
534		| IEEE80211_C_SHSLOT		/* short slot time supported */
535		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
536		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
537		| IEEE80211_C_TXFRAG		/* handle tx frags */
538#ifdef	ATH_ENABLE_DFS
539		| IEEE80211_C_DFS		/* Enable radar detection */
540#endif
541		;
542	/*
543	 * Query the hal to figure out h/w crypto support.
544	 */
545	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
546		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
547	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
548		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
549	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
550		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
551	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
552		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
553	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
554		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
555		/*
556		 * Check if h/w does the MIC and/or whether the
557		 * separate key cache entries are required to
558		 * handle both tx+rx MIC keys.
559		 */
560		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
561			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
562		/*
563		 * If the h/w supports storing tx+rx MIC keys
564		 * in one cache slot automatically enable use.
565		 */
566		if (ath_hal_hastkipsplit(ah) ||
567		    !ath_hal_settkipsplit(ah, AH_FALSE))
568			sc->sc_splitmic = 1;
569		/*
570		 * If the h/w can do TKIP MIC together with WME then
571		 * we use it; otherwise we force the MIC to be done
572		 * in software by the net80211 layer.
573		 */
574		if (ath_hal_haswmetkipmic(ah))
575			sc->sc_wmetkipmic = 1;
576	}
577	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
578	/*
579	 * Check for multicast key search support.
580	 */
581	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
582	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
583		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
584	}
585	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
586	/*
587	 * Mark key cache slots associated with global keys
588	 * as in use.  If we knew TKIP was not to be used we
589	 * could leave the +32, +64, and +32+64 slots free.
590	 */
591	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
592		setbit(sc->sc_keymap, i);
593		setbit(sc->sc_keymap, i+64);
594		if (sc->sc_splitmic) {
595			setbit(sc->sc_keymap, i+32);
596			setbit(sc->sc_keymap, i+32+64);
597		}
598	}
599	/*
600	 * TPC support can be done either with a global cap or
601	 * per-packet support.  The latter is not available on
602	 * all parts.  We're a bit pedantic here as all parts
603	 * support a global cap.
604	 */
605	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
606		ic->ic_caps |= IEEE80211_C_TXPMGT;
607
608	/*
609	 * Mark WME capability only if we have sufficient
610	 * hardware queues to do proper priority scheduling.
611	 */
612	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
613		ic->ic_caps |= IEEE80211_C_WME;
614	/*
615	 * Check for misc other capabilities.
616	 */
617	if (ath_hal_hasbursting(ah))
618		ic->ic_caps |= IEEE80211_C_BURST;
619	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
620	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
621	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
622	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
623	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
624	if (ath_hal_hasfastframes(ah))
625		ic->ic_caps |= IEEE80211_C_FF;
626	wmodes = ath_hal_getwirelessmodes(ah);
627	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
628		ic->ic_caps |= IEEE80211_C_TURBOP;
629#ifdef IEEE80211_SUPPORT_TDMA
630	if (ath_hal_macversion(ah) > 0x78) {
631		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
632		ic->ic_tdma_update = ath_tdma_update;
633	}
634#endif
635
636	/*
637	 * The if_ath 11n support is completely not ready for normal use.
638	 * Enabling this option will likely break everything and everything.
639	 * Don't think of doing that unless you know what you're doing.
640	 */
641
642#ifdef	ATH_ENABLE_11N
643	/*
644	 * Query HT capabilities
645	 */
646	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
647	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
648		int rxs, txs;
649
650		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
651		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
652			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
653			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
654			    | IEEE80211_HTCAP_MAXAMSDU_3839
655			    				/* max A-MSDU length */
656			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
657			;
658
659		/*
660		 * Enable short-GI for HT20 only if the hardware
661		 * advertises support.
662		 * Notably, anything earlier than the AR9287 doesn't.
663		 */
664		if ((ath_hal_getcapability(ah,
665		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
666		    (wmodes & HAL_MODE_HT20)) {
667			device_printf(sc->sc_dev,
668			    "[HT] enabling short-GI in 20MHz mode\n");
669			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
670		}
671
672		if (wmodes & HAL_MODE_HT40)
673			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
674			    |  IEEE80211_HTCAP_SHORTGI40;
675
676		/*
677		 * TX/RX streams need to be taken into account when
678		 * negotiating which MCS rates it'll receive and
679		 * what MCS rates are available for TX.
680		 */
681		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &rxs);
682		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &txs);
683
684		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
685		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
686
687		ic->ic_txstream = txs;
688		ic->ic_rxstream = rxs;
689
690		device_printf(sc->sc_dev,
691		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
692	}
693#endif
694
695	/*
696	 * Check if the hardware requires PCI register serialisation.
697	 * Some of the Owl based MACs require this.
698	 */
699	if (mp_ncpus > 1 &&
700	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
701	     0, NULL) == HAL_OK) {
702		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
703		device_printf(sc->sc_dev,
704		    "Enabling register serialisation\n");
705	}
706
707	/*
708	 * Indicate we need the 802.11 header padded to a
709	 * 32-bit boundary for 4-address and QoS frames.
710	 */
711	ic->ic_flags |= IEEE80211_F_DATAPAD;
712
713	/*
714	 * Query the hal about antenna support.
715	 */
716	sc->sc_defant = ath_hal_getdefantenna(ah);
717
718	/*
719	 * Not all chips have the VEOL support we want to
720	 * use with IBSS beacons; check here for it.
721	 */
722	sc->sc_hasveol = ath_hal_hasveol(ah);
723
724	/* get mac address from hardware */
725	ath_hal_getmac(ah, macaddr);
726	if (sc->sc_hasbmask)
727		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
728
729	/* NB: used to size node table key mapping array */
730	ic->ic_max_keyix = sc->sc_keymax;
731	/* call MI attach routine. */
732	ieee80211_ifattach(ic, macaddr);
733	ic->ic_setregdomain = ath_setregdomain;
734	ic->ic_getradiocaps = ath_getradiocaps;
735	sc->sc_opmode = HAL_M_STA;
736
737	/* override default methods */
738	ic->ic_newassoc = ath_newassoc;
739	ic->ic_updateslot = ath_updateslot;
740	ic->ic_wme.wme_update = ath_wme_update;
741	ic->ic_vap_create = ath_vap_create;
742	ic->ic_vap_delete = ath_vap_delete;
743	ic->ic_raw_xmit = ath_raw_xmit;
744	ic->ic_update_mcast = ath_update_mcast;
745	ic->ic_update_promisc = ath_update_promisc;
746	ic->ic_node_alloc = ath_node_alloc;
747	sc->sc_node_free = ic->ic_node_free;
748	ic->ic_node_free = ath_node_free;
749	sc->sc_node_cleanup = ic->ic_node_cleanup;
750	ic->ic_node_cleanup = ath_node_cleanup;
751	ic->ic_node_getsignal = ath_node_getsignal;
752	ic->ic_scan_start = ath_scan_start;
753	ic->ic_scan_end = ath_scan_end;
754	ic->ic_set_channel = ath_set_channel;
755
756	/* 802.11n specific - but just override anyway */
757	sc->sc_addba_request = ic->ic_addba_request;
758	sc->sc_addba_response = ic->ic_addba_response;
759	sc->sc_addba_stop = ic->ic_addba_stop;
760	sc->sc_bar_response = ic->ic_bar_response;
761	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
762
763	ic->ic_addba_request = ath_addba_request;
764	ic->ic_addba_response = ath_addba_response;
765	ic->ic_addba_response_timeout = ath_addba_response_timeout;
766	ic->ic_addba_stop = ath_addba_stop;
767	ic->ic_bar_response = ath_bar_response;
768
769	ieee80211_radiotap_attach(ic,
770	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
771		ATH_TX_RADIOTAP_PRESENT,
772	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
773		ATH_RX_RADIOTAP_PRESENT);
774
775	/*
776	 * Setup dynamic sysctl's now that country code and
777	 * regdomain are available from the hal.
778	 */
779	ath_sysctlattach(sc);
780	ath_sysctl_stats_attach(sc);
781	ath_sysctl_hal_attach(sc);
782
783	if (bootverbose)
784		ieee80211_announce(ic);
785	ath_announce(sc);
786	return 0;
787bad2:
788	ath_tx_cleanup(sc);
789	ath_desc_free(sc);
790bad:
791	if (ah)
792		ath_hal_detach(ah);
793	if (ifp != NULL)
794		if_free(ifp);
795	sc->sc_invalid = 1;
796	return error;
797}
798
799int
800ath_detach(struct ath_softc *sc)
801{
802	struct ifnet *ifp = sc->sc_ifp;
803
804	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
805		__func__, ifp->if_flags);
806
807	/*
808	 * NB: the order of these is important:
809	 * o stop the chip so no more interrupts will fire
810	 * o call the 802.11 layer before detaching the hal to
811	 *   insure callbacks into the driver to delete global
812	 *   key cache entries can be handled
813	 * o free the taskqueue which drains any pending tasks
814	 * o reclaim the tx queue data structures after calling
815	 *   the 802.11 layer as we'll get called back to reclaim
816	 *   node state and potentially want to use them
817	 * o to cleanup the tx queues the hal is called, so detach
818	 *   it last
819	 * Other than that, it's straightforward...
820	 */
821	ath_stop(ifp);
822	ieee80211_ifdetach(ifp->if_l2com);
823	taskqueue_free(sc->sc_tq);
824#ifdef ATH_TX99_DIAG
825	if (sc->sc_tx99 != NULL)
826		sc->sc_tx99->detach(sc->sc_tx99);
827#endif
828	ath_rate_detach(sc->sc_rc);
829
830	ath_dfs_detach(sc);
831	ath_desc_free(sc);
832	ath_tx_cleanup(sc);
833	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
834	if_free(ifp);
835
836	return 0;
837}
838
839/*
840 * MAC address handling for multiple BSS on the same radio.
841 * The first vap uses the MAC address from the EEPROM.  For
842 * subsequent vap's we set the U/L bit (bit 1) in the MAC
843 * address and use the next six bits as an index.
844 */
845static void
846assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
847{
848	int i;
849
850	if (clone && sc->sc_hasbmask) {
851		/* NB: we only do this if h/w supports multiple bssid */
852		for (i = 0; i < 8; i++)
853			if ((sc->sc_bssidmask & (1<<i)) == 0)
854				break;
855		if (i != 0)
856			mac[0] |= (i << 2)|0x2;
857	} else
858		i = 0;
859	sc->sc_bssidmask |= 1<<i;
860	sc->sc_hwbssidmask[0] &= ~mac[0];
861	if (i == 0)
862		sc->sc_nbssid0++;
863}
864
865static void
866reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
867{
868	int i = mac[0] >> 2;
869	uint8_t mask;
870
871	if (i != 0 || --sc->sc_nbssid0 == 0) {
872		sc->sc_bssidmask &= ~(1<<i);
873		/* recalculate bssid mask from remaining addresses */
874		mask = 0xff;
875		for (i = 1; i < 8; i++)
876			if (sc->sc_bssidmask & (1<<i))
877				mask &= ~((i<<2)|0x2);
878		sc->sc_hwbssidmask[0] |= mask;
879	}
880}
881
882/*
883 * Assign a beacon xmit slot.  We try to space out
884 * assignments so when beacons are staggered the
885 * traffic coming out of the cab q has maximal time
886 * to go out before the next beacon is scheduled.
887 */
888static int
889assign_bslot(struct ath_softc *sc)
890{
891	u_int slot, free;
892
893	free = 0;
894	for (slot = 0; slot < ATH_BCBUF; slot++)
895		if (sc->sc_bslot[slot] == NULL) {
896			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
897			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
898				return slot;
899			free = slot;
900			/* NB: keep looking for a double slot */
901		}
902	return free;
903}
904
905static struct ieee80211vap *
906ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
907    enum ieee80211_opmode opmode, int flags,
908    const uint8_t bssid[IEEE80211_ADDR_LEN],
909    const uint8_t mac0[IEEE80211_ADDR_LEN])
910{
911	struct ath_softc *sc = ic->ic_ifp->if_softc;
912	struct ath_vap *avp;
913	struct ieee80211vap *vap;
914	uint8_t mac[IEEE80211_ADDR_LEN];
915	int needbeacon, error;
916	enum ieee80211_opmode ic_opmode;
917
918	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
919	    M_80211_VAP, M_WAITOK | M_ZERO);
920	needbeacon = 0;
921	IEEE80211_ADDR_COPY(mac, mac0);
922
923	ATH_LOCK(sc);
924	ic_opmode = opmode;		/* default to opmode of new vap */
925	switch (opmode) {
926	case IEEE80211_M_STA:
927		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
928			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
929			goto bad;
930		}
931		if (sc->sc_nvaps) {
932			/*
933			 * With multiple vaps we must fall back
934			 * to s/w beacon miss handling.
935			 */
936			flags |= IEEE80211_CLONE_NOBEACONS;
937		}
938		if (flags & IEEE80211_CLONE_NOBEACONS) {
939			/*
940			 * Station mode w/o beacons are implemented w/ AP mode.
941			 */
942			ic_opmode = IEEE80211_M_HOSTAP;
943		}
944		break;
945	case IEEE80211_M_IBSS:
946		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
947			device_printf(sc->sc_dev,
948			    "only 1 ibss vap supported\n");
949			goto bad;
950		}
951		needbeacon = 1;
952		break;
953	case IEEE80211_M_AHDEMO:
954#ifdef IEEE80211_SUPPORT_TDMA
955		if (flags & IEEE80211_CLONE_TDMA) {
956			if (sc->sc_nvaps != 0) {
957				device_printf(sc->sc_dev,
958				    "only 1 tdma vap supported\n");
959				goto bad;
960			}
961			needbeacon = 1;
962			flags |= IEEE80211_CLONE_NOBEACONS;
963		}
964		/* fall thru... */
965#endif
966	case IEEE80211_M_MONITOR:
967		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
968			/*
969			 * Adopt existing mode.  Adding a monitor or ahdemo
970			 * vap to an existing configuration is of dubious
971			 * value but should be ok.
972			 */
973			/* XXX not right for monitor mode */
974			ic_opmode = ic->ic_opmode;
975		}
976		break;
977	case IEEE80211_M_HOSTAP:
978	case IEEE80211_M_MBSS:
979		needbeacon = 1;
980		break;
981	case IEEE80211_M_WDS:
982		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
983			device_printf(sc->sc_dev,
984			    "wds not supported in sta mode\n");
985			goto bad;
986		}
987		/*
988		 * Silently remove any request for a unique
989		 * bssid; WDS vap's always share the local
990		 * mac address.
991		 */
992		flags &= ~IEEE80211_CLONE_BSSID;
993		if (sc->sc_nvaps == 0)
994			ic_opmode = IEEE80211_M_HOSTAP;
995		else
996			ic_opmode = ic->ic_opmode;
997		break;
998	default:
999		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1000		goto bad;
1001	}
1002	/*
1003	 * Check that a beacon buffer is available; the code below assumes it.
1004	 */
1005	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1006		device_printf(sc->sc_dev, "no beacon buffer available\n");
1007		goto bad;
1008	}
1009
1010	/* STA, AHDEMO? */
1011	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1012		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1013		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1014	}
1015
1016	vap = &avp->av_vap;
1017	/* XXX can't hold mutex across if_alloc */
1018	ATH_UNLOCK(sc);
1019	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1020	    bssid, mac);
1021	ATH_LOCK(sc);
1022	if (error != 0) {
1023		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1024		    __func__, error);
1025		goto bad2;
1026	}
1027
1028	/* h/w crypto support */
1029	vap->iv_key_alloc = ath_key_alloc;
1030	vap->iv_key_delete = ath_key_delete;
1031	vap->iv_key_set = ath_key_set;
1032	vap->iv_key_update_begin = ath_key_update_begin;
1033	vap->iv_key_update_end = ath_key_update_end;
1034
1035	/* override various methods */
1036	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1037	vap->iv_recv_mgmt = ath_recv_mgmt;
1038	vap->iv_reset = ath_reset_vap;
1039	vap->iv_update_beacon = ath_beacon_update;
1040	avp->av_newstate = vap->iv_newstate;
1041	vap->iv_newstate = ath_newstate;
1042	avp->av_bmiss = vap->iv_bmiss;
1043	vap->iv_bmiss = ath_bmiss_vap;
1044
1045	/* Set default parameters */
1046
1047	/*
1048	 * Anything earlier than some AR9300 series MACs don't
1049	 * support a smaller MPDU density.
1050	 */
1051	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1052	/*
1053	 * All NICs can handle the maximum size, however
1054	 * AR5416 based MACs can only TX aggregates w/ RTS
1055	 * protection when the total aggregate size is <= 8k.
1056	 * However, for now that's enforced by the TX path.
1057	 */
1058	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1059
1060	avp->av_bslot = -1;
1061	if (needbeacon) {
1062		/*
1063		 * Allocate beacon state and setup the q for buffered
1064		 * multicast frames.  We know a beacon buffer is
1065		 * available because we checked above.
1066		 */
1067		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1068		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1069		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1070			/*
1071			 * Assign the vap to a beacon xmit slot.  As above
1072			 * this cannot fail to find a free one.
1073			 */
1074			avp->av_bslot = assign_bslot(sc);
1075			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1076			    ("beacon slot %u not empty", avp->av_bslot));
1077			sc->sc_bslot[avp->av_bslot] = vap;
1078			sc->sc_nbcnvaps++;
1079		}
1080		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1081			/*
1082			 * Multple vaps are to transmit beacons and we
1083			 * have h/w support for TSF adjusting; enable
1084			 * use of staggered beacons.
1085			 */
1086			sc->sc_stagbeacons = 1;
1087		}
1088		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1089	}
1090
1091	ic->ic_opmode = ic_opmode;
1092	if (opmode != IEEE80211_M_WDS) {
1093		sc->sc_nvaps++;
1094		if (opmode == IEEE80211_M_STA)
1095			sc->sc_nstavaps++;
1096		if (opmode == IEEE80211_M_MBSS)
1097			sc->sc_nmeshvaps++;
1098	}
1099	switch (ic_opmode) {
1100	case IEEE80211_M_IBSS:
1101		sc->sc_opmode = HAL_M_IBSS;
1102		break;
1103	case IEEE80211_M_STA:
1104		sc->sc_opmode = HAL_M_STA;
1105		break;
1106	case IEEE80211_M_AHDEMO:
1107#ifdef IEEE80211_SUPPORT_TDMA
1108		if (vap->iv_caps & IEEE80211_C_TDMA) {
1109			sc->sc_tdma = 1;
1110			/* NB: disable tsf adjust */
1111			sc->sc_stagbeacons = 0;
1112		}
1113		/*
1114		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1115		 * just ap mode.
1116		 */
1117		/* fall thru... */
1118#endif
1119	case IEEE80211_M_HOSTAP:
1120	case IEEE80211_M_MBSS:
1121		sc->sc_opmode = HAL_M_HOSTAP;
1122		break;
1123	case IEEE80211_M_MONITOR:
1124		sc->sc_opmode = HAL_M_MONITOR;
1125		break;
1126	default:
1127		/* XXX should not happen */
1128		break;
1129	}
1130	if (sc->sc_hastsfadd) {
1131		/*
1132		 * Configure whether or not TSF adjust should be done.
1133		 */
1134		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1135	}
1136	if (flags & IEEE80211_CLONE_NOBEACONS) {
1137		/*
1138		 * Enable s/w beacon miss handling.
1139		 */
1140		sc->sc_swbmiss = 1;
1141	}
1142	ATH_UNLOCK(sc);
1143
1144	/* complete setup */
1145	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1146	return vap;
1147bad2:
1148	reclaim_address(sc, mac);
1149	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1150bad:
1151	free(avp, M_80211_VAP);
1152	ATH_UNLOCK(sc);
1153	return NULL;
1154}
1155
1156static void
1157ath_vap_delete(struct ieee80211vap *vap)
1158{
1159	struct ieee80211com *ic = vap->iv_ic;
1160	struct ifnet *ifp = ic->ic_ifp;
1161	struct ath_softc *sc = ifp->if_softc;
1162	struct ath_hal *ah = sc->sc_ah;
1163	struct ath_vap *avp = ATH_VAP(vap);
1164
1165	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1166	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1167		/*
1168		 * Quiesce the hardware while we remove the vap.  In
1169		 * particular we need to reclaim all references to
1170		 * the vap state by any frames pending on the tx queues.
1171		 */
1172		ath_hal_intrset(ah, 0);		/* disable interrupts */
1173		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1174		/* XXX Do all frames from all vaps/nodes need draining here? */
1175		ath_stoprecv(sc, 1);		/* stop recv side */
1176	}
1177
1178	ieee80211_vap_detach(vap);
1179
1180	/*
1181	 * XXX Danger Will Robinson! Danger!
1182	 *
1183	 * Because ieee80211_vap_detach() can queue a frame (the station
1184	 * diassociate message?) after we've drained the TXQ and
1185	 * flushed the software TXQ, we will end up with a frame queued
1186	 * to a node whose vap is about to be freed.
1187	 *
1188	 * To work around this, flush the hardware/software again.
1189	 * This may be racy - the ath task may be running and the packet
1190	 * may be being scheduled between sw->hw txq. Tsk.
1191	 *
1192	 * TODO: figure out why a new node gets allocated somewhere around
1193	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1194	 * call!)
1195	 */
1196
1197	ath_draintxq(sc, ATH_RESET_DEFAULT);
1198
1199	ATH_LOCK(sc);
1200	/*
1201	 * Reclaim beacon state.  Note this must be done before
1202	 * the vap instance is reclaimed as we may have a reference
1203	 * to it in the buffer for the beacon frame.
1204	 */
1205	if (avp->av_bcbuf != NULL) {
1206		if (avp->av_bslot != -1) {
1207			sc->sc_bslot[avp->av_bslot] = NULL;
1208			sc->sc_nbcnvaps--;
1209		}
1210		ath_beacon_return(sc, avp->av_bcbuf);
1211		avp->av_bcbuf = NULL;
1212		if (sc->sc_nbcnvaps == 0) {
1213			sc->sc_stagbeacons = 0;
1214			if (sc->sc_hastsfadd)
1215				ath_hal_settsfadjust(sc->sc_ah, 0);
1216		}
1217		/*
1218		 * Reclaim any pending mcast frames for the vap.
1219		 */
1220		ath_tx_draintxq(sc, &avp->av_mcastq);
1221		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1222	}
1223	/*
1224	 * Update bookkeeping.
1225	 */
1226	if (vap->iv_opmode == IEEE80211_M_STA) {
1227		sc->sc_nstavaps--;
1228		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1229			sc->sc_swbmiss = 0;
1230	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1231	    vap->iv_opmode == IEEE80211_M_MBSS) {
1232		reclaim_address(sc, vap->iv_myaddr);
1233		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1234		if (vap->iv_opmode == IEEE80211_M_MBSS)
1235			sc->sc_nmeshvaps--;
1236	}
1237	if (vap->iv_opmode != IEEE80211_M_WDS)
1238		sc->sc_nvaps--;
1239#ifdef IEEE80211_SUPPORT_TDMA
1240	/* TDMA operation ceases when the last vap is destroyed */
1241	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1242		sc->sc_tdma = 0;
1243		sc->sc_swbmiss = 0;
1244	}
1245#endif
1246	free(avp, M_80211_VAP);
1247
1248	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1249		/*
1250		 * Restart rx+tx machines if still running (RUNNING will
1251		 * be reset if we just destroyed the last vap).
1252		 */
1253		if (ath_startrecv(sc) != 0)
1254			if_printf(ifp, "%s: unable to restart recv logic\n",
1255			    __func__);
1256		if (sc->sc_beacons) {		/* restart beacons */
1257#ifdef IEEE80211_SUPPORT_TDMA
1258			if (sc->sc_tdma)
1259				ath_tdma_config(sc, NULL);
1260			else
1261#endif
1262				ath_beacon_config(sc, NULL);
1263		}
1264		ath_hal_intrset(ah, sc->sc_imask);
1265	}
1266	ATH_UNLOCK(sc);
1267}
1268
1269void
1270ath_suspend(struct ath_softc *sc)
1271{
1272	struct ifnet *ifp = sc->sc_ifp;
1273	struct ieee80211com *ic = ifp->if_l2com;
1274
1275	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1276		__func__, ifp->if_flags);
1277
1278	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1279	if (ic->ic_opmode == IEEE80211_M_STA)
1280		ath_stop(ifp);
1281	else
1282		ieee80211_suspend_all(ic);
1283	/*
1284	 * NB: don't worry about putting the chip in low power
1285	 * mode; pci will power off our socket on suspend and
1286	 * CardBus detaches the device.
1287	 */
1288}
1289
1290/*
1291 * Reset the key cache since some parts do not reset the
1292 * contents on resume.  First we clear all entries, then
1293 * re-load keys that the 802.11 layer assumes are setup
1294 * in h/w.
1295 */
1296static void
1297ath_reset_keycache(struct ath_softc *sc)
1298{
1299	struct ifnet *ifp = sc->sc_ifp;
1300	struct ieee80211com *ic = ifp->if_l2com;
1301	struct ath_hal *ah = sc->sc_ah;
1302	int i;
1303
1304	for (i = 0; i < sc->sc_keymax; i++)
1305		ath_hal_keyreset(ah, i);
1306	ieee80211_crypto_reload_keys(ic);
1307}
1308
1309void
1310ath_resume(struct ath_softc *sc)
1311{
1312	struct ifnet *ifp = sc->sc_ifp;
1313	struct ieee80211com *ic = ifp->if_l2com;
1314	struct ath_hal *ah = sc->sc_ah;
1315	HAL_STATUS status;
1316
1317	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1318		__func__, ifp->if_flags);
1319
1320	/*
1321	 * Must reset the chip before we reload the
1322	 * keycache as we were powered down on suspend.
1323	 */
1324	ath_hal_reset(ah, sc->sc_opmode,
1325	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1326	    AH_FALSE, &status);
1327	ath_reset_keycache(sc);
1328
1329	/* Let DFS at it in case it's a DFS channel */
1330	ath_dfs_radar_enable(sc, ic->ic_curchan);
1331
1332	/* Restore the LED configuration */
1333	ath_led_config(sc);
1334	ath_hal_setledstate(ah, HAL_LED_INIT);
1335
1336	if (sc->sc_resume_up) {
1337		if (ic->ic_opmode == IEEE80211_M_STA) {
1338			ath_init(sc);
1339			ath_hal_setledstate(ah, HAL_LED_RUN);
1340			/*
1341			 * Program the beacon registers using the last rx'd
1342			 * beacon frame and enable sync on the next beacon
1343			 * we see.  This should handle the case where we
1344			 * wakeup and find the same AP and also the case where
1345			 * we wakeup and need to roam.  For the latter we
1346			 * should get bmiss events that trigger a roam.
1347			 */
1348			ath_beacon_config(sc, NULL);
1349			sc->sc_syncbeacon = 1;
1350		} else
1351			ieee80211_resume_all(ic);
1352	}
1353
1354	/* XXX beacons ? */
1355}
1356
1357void
1358ath_shutdown(struct ath_softc *sc)
1359{
1360	struct ifnet *ifp = sc->sc_ifp;
1361
1362	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1363		__func__, ifp->if_flags);
1364
1365	ath_stop(ifp);
1366	/* NB: no point powering down chip as we're about to reboot */
1367}
1368
1369/*
1370 * Interrupt handler.  Most of the actual processing is deferred.
1371 */
1372void
1373ath_intr(void *arg)
1374{
1375	struct ath_softc *sc = arg;
1376	struct ifnet *ifp = sc->sc_ifp;
1377	struct ath_hal *ah = sc->sc_ah;
1378	HAL_INT status = 0;
1379	uint32_t txqs;
1380
1381	/*
1382	 * If we're inside a reset path, just print a warning and
1383	 * clear the ISR. The reset routine will finish it for us.
1384	 */
1385	ATH_PCU_LOCK(sc);
1386	if (sc->sc_inreset_cnt) {
1387		HAL_INT status;
1388		ath_hal_getisr(ah, &status);	/* clear ISR */
1389		ath_hal_intrset(ah, 0);		/* disable further intr's */
1390		DPRINTF(sc, ATH_DEBUG_ANY,
1391		    "%s: in reset, ignoring: status=0x%x\n",
1392		    __func__, status);
1393		ATH_PCU_UNLOCK(sc);
1394		return;
1395	}
1396
1397	if (sc->sc_invalid) {
1398		/*
1399		 * The hardware is not ready/present, don't touch anything.
1400		 * Note this can happen early on if the IRQ is shared.
1401		 */
1402		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1403		ATH_PCU_UNLOCK(sc);
1404		return;
1405	}
1406	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1407		ATH_PCU_UNLOCK(sc);
1408		return;
1409	}
1410
1411	if ((ifp->if_flags & IFF_UP) == 0 ||
1412	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1413		HAL_INT status;
1414
1415		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1416			__func__, ifp->if_flags);
1417		ath_hal_getisr(ah, &status);	/* clear ISR */
1418		ath_hal_intrset(ah, 0);		/* disable further intr's */
1419		ATH_PCU_UNLOCK(sc);
1420		return;
1421	}
1422
1423	/*
1424	 * Figure out the reason(s) for the interrupt.  Note
1425	 * that the hal returns a pseudo-ISR that may include
1426	 * bits we haven't explicitly enabled so we mask the
1427	 * value to insure we only process bits we requested.
1428	 */
1429	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1430	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1431	CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status);
1432#ifdef	ATH_KTR_INTR_DEBUG
1433	CTR5(ATH_KTR_INTR,
1434	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1435	    ah->ah_intrstate[0],
1436	    ah->ah_intrstate[1],
1437	    ah->ah_intrstate[2],
1438	    ah->ah_intrstate[3],
1439	    ah->ah_intrstate[6]);
1440#endif
1441	status &= sc->sc_imask;			/* discard unasked for bits */
1442
1443	/* Short-circuit un-handled interrupts */
1444	if (status == 0x0) {
1445		ATH_PCU_UNLOCK(sc);
1446		return;
1447	}
1448
1449	/*
1450	 * Take a note that we're inside the interrupt handler, so
1451	 * the reset routines know to wait.
1452	 */
1453	sc->sc_intr_cnt++;
1454	ATH_PCU_UNLOCK(sc);
1455
1456	/*
1457	 * Handle the interrupt. We won't run concurrent with the reset
1458	 * or channel change routines as they'll wait for sc_intr_cnt
1459	 * to be 0 before continuing.
1460	 */
1461	if (status & HAL_INT_FATAL) {
1462		sc->sc_stats.ast_hardware++;
1463		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1464		ath_fatal_proc(sc, 0);
1465	} else {
1466		if (status & HAL_INT_SWBA) {
1467			/*
1468			 * Software beacon alert--time to send a beacon.
1469			 * Handle beacon transmission directly; deferring
1470			 * this is too slow to meet timing constraints
1471			 * under load.
1472			 */
1473#ifdef IEEE80211_SUPPORT_TDMA
1474			if (sc->sc_tdma) {
1475				if (sc->sc_tdmaswba == 0) {
1476					struct ieee80211com *ic = ifp->if_l2com;
1477					struct ieee80211vap *vap =
1478					    TAILQ_FIRST(&ic->ic_vaps);
1479					ath_tdma_beacon_send(sc, vap);
1480					sc->sc_tdmaswba =
1481					    vap->iv_tdma->tdma_bintval;
1482				} else
1483					sc->sc_tdmaswba--;
1484			} else
1485#endif
1486			{
1487				ath_beacon_proc(sc, 0);
1488#ifdef IEEE80211_SUPPORT_SUPERG
1489				/*
1490				 * Schedule the rx taskq in case there's no
1491				 * traffic so any frames held on the staging
1492				 * queue are aged and potentially flushed.
1493				 */
1494				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1495#endif
1496			}
1497		}
1498		if (status & HAL_INT_RXEOL) {
1499			int imask;
1500			CTR0(ATH_KTR_ERR, "ath_intr: RXEOL");
1501			ATH_PCU_LOCK(sc);
1502			/*
1503			 * NB: the hardware should re-read the link when
1504			 *     RXE bit is written, but it doesn't work at
1505			 *     least on older hardware revs.
1506			 */
1507			sc->sc_stats.ast_rxeol++;
1508			/*
1509			 * Disable RXEOL/RXORN - prevent an interrupt
1510			 * storm until the PCU logic can be reset.
1511			 * In case the interface is reset some other
1512			 * way before "sc_kickpcu" is called, don't
1513			 * modify sc_imask - that way if it is reset
1514			 * by a call to ath_reset() somehow, the
1515			 * interrupt mask will be correctly reprogrammed.
1516			 */
1517			imask = sc->sc_imask;
1518			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1519			ath_hal_intrset(ah, imask);
1520			/*
1521			 * Only blank sc_rxlink if we've not yet kicked
1522			 * the PCU.
1523			 *
1524			 * This isn't entirely correct - the correct solution
1525			 * would be to have a PCU lock and engage that for
1526			 * the duration of the PCU fiddling; which would include
1527			 * running the RX process. Otherwise we could end up
1528			 * messing up the RX descriptor chain and making the
1529			 * RX desc list much shorter.
1530			 */
1531			if (! sc->sc_kickpcu)
1532				sc->sc_rxlink = NULL;
1533			sc->sc_kickpcu = 1;
1534			/*
1535			 * Enqueue an RX proc, to handled whatever
1536			 * is in the RX queue.
1537			 * This will then kick the PCU.
1538			 */
1539			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1540			ATH_PCU_UNLOCK(sc);
1541		}
1542		if (status & HAL_INT_TXURN) {
1543			sc->sc_stats.ast_txurn++;
1544			/* bump tx trigger level */
1545			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1546		}
1547		if (status & HAL_INT_RX) {
1548			sc->sc_stats.ast_rx_intr++;
1549			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1550		}
1551		if (status & HAL_INT_TX) {
1552			sc->sc_stats.ast_tx_intr++;
1553			/*
1554			 * Grab all the currently set bits in the HAL txq bitmap
1555			 * and blank them. This is the only place we should be
1556			 * doing this.
1557			 */
1558			ATH_PCU_LOCK(sc);
1559			txqs = 0xffffffff;
1560			ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1561			sc->sc_txq_active |= txqs;
1562			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1563			ATH_PCU_UNLOCK(sc);
1564		}
1565		if (status & HAL_INT_BMISS) {
1566			sc->sc_stats.ast_bmiss++;
1567			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1568		}
1569		if (status & HAL_INT_GTT)
1570			sc->sc_stats.ast_tx_timeout++;
1571		if (status & HAL_INT_CST)
1572			sc->sc_stats.ast_tx_cst++;
1573		if (status & HAL_INT_MIB) {
1574			sc->sc_stats.ast_mib++;
1575			ATH_PCU_LOCK(sc);
1576			/*
1577			 * Disable interrupts until we service the MIB
1578			 * interrupt; otherwise it will continue to fire.
1579			 */
1580			ath_hal_intrset(ah, 0);
1581			/*
1582			 * Let the hal handle the event.  We assume it will
1583			 * clear whatever condition caused the interrupt.
1584			 */
1585			ath_hal_mibevent(ah, &sc->sc_halstats);
1586			/*
1587			 * Don't reset the interrupt if we've just
1588			 * kicked the PCU, or we may get a nested
1589			 * RXEOL before the rxproc has had a chance
1590			 * to run.
1591			 */
1592			if (sc->sc_kickpcu == 0)
1593				ath_hal_intrset(ah, sc->sc_imask);
1594			ATH_PCU_UNLOCK(sc);
1595		}
1596		if (status & HAL_INT_RXORN) {
1597			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1598			CTR0(ATH_KTR_ERR, "ath_intr: RXORN");
1599			sc->sc_stats.ast_rxorn++;
1600		}
1601	}
1602	ATH_PCU_LOCK(sc);
1603	sc->sc_intr_cnt--;
1604	ATH_PCU_UNLOCK(sc);
1605}
1606
1607static void
1608ath_fatal_proc(void *arg, int pending)
1609{
1610	struct ath_softc *sc = arg;
1611	struct ifnet *ifp = sc->sc_ifp;
1612	u_int32_t *state;
1613	u_int32_t len;
1614	void *sp;
1615
1616	if_printf(ifp, "hardware error; resetting\n");
1617	/*
1618	 * Fatal errors are unrecoverable.  Typically these
1619	 * are caused by DMA errors.  Collect h/w state from
1620	 * the hal so we can diagnose what's going on.
1621	 */
1622	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1623		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1624		state = sp;
1625		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1626		    state[0], state[1] , state[2], state[3],
1627		    state[4], state[5]);
1628	}
1629	ath_reset(ifp, ATH_RESET_NOLOSS);
1630}
1631
1632static void
1633ath_bmiss_vap(struct ieee80211vap *vap)
1634{
1635	/*
1636	 * Workaround phantom bmiss interrupts by sanity-checking
1637	 * the time of our last rx'd frame.  If it is within the
1638	 * beacon miss interval then ignore the interrupt.  If it's
1639	 * truly a bmiss we'll get another interrupt soon and that'll
1640	 * be dispatched up for processing.  Note this applies only
1641	 * for h/w beacon miss events.
1642	 */
1643	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1644		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1645		struct ath_softc *sc = ifp->if_softc;
1646		u_int64_t lastrx = sc->sc_lastrx;
1647		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1648		u_int bmisstimeout =
1649			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1650
1651		DPRINTF(sc, ATH_DEBUG_BEACON,
1652		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1653		    __func__, (unsigned long long) tsf,
1654		    (unsigned long long)(tsf - lastrx),
1655		    (unsigned long long) lastrx, bmisstimeout);
1656
1657		if (tsf - lastrx <= bmisstimeout) {
1658			sc->sc_stats.ast_bmiss_phantom++;
1659			return;
1660		}
1661	}
1662	ATH_VAP(vap)->av_bmiss(vap);
1663}
1664
1665static int
1666ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1667{
1668	uint32_t rsize;
1669	void *sp;
1670
1671	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1672		return 0;
1673	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1674	*hangs = *(uint32_t *)sp;
1675	return 1;
1676}
1677
1678static void
1679ath_bmiss_proc(void *arg, int pending)
1680{
1681	struct ath_softc *sc = arg;
1682	struct ifnet *ifp = sc->sc_ifp;
1683	uint32_t hangs;
1684
1685	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1686
1687	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1688		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1689		ath_reset(ifp, ATH_RESET_NOLOSS);
1690	} else
1691		ieee80211_beacon_miss(ifp->if_l2com);
1692}
1693
1694/*
1695 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1696 * calcs together with WME.  If necessary disable the crypto
1697 * hardware and mark the 802.11 state so keys will be setup
1698 * with the MIC work done in software.
1699 */
1700static void
1701ath_settkipmic(struct ath_softc *sc)
1702{
1703	struct ifnet *ifp = sc->sc_ifp;
1704	struct ieee80211com *ic = ifp->if_l2com;
1705
1706	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1707		if (ic->ic_flags & IEEE80211_F_WME) {
1708			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1709			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1710		} else {
1711			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1712			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1713		}
1714	}
1715}
1716
1717static void
1718ath_init(void *arg)
1719{
1720	struct ath_softc *sc = (struct ath_softc *) arg;
1721	struct ifnet *ifp = sc->sc_ifp;
1722	struct ieee80211com *ic = ifp->if_l2com;
1723	struct ath_hal *ah = sc->sc_ah;
1724	HAL_STATUS status;
1725
1726	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1727		__func__, ifp->if_flags);
1728
1729	ATH_LOCK(sc);
1730	/*
1731	 * Stop anything previously setup.  This is safe
1732	 * whether this is the first time through or not.
1733	 */
1734	ath_stop_locked(ifp);
1735
1736	/*
1737	 * The basic interface to setting the hardware in a good
1738	 * state is ``reset''.  On return the hardware is known to
1739	 * be powered up and with interrupts disabled.  This must
1740	 * be followed by initialization of the appropriate bits
1741	 * and then setup of the interrupt mask.
1742	 */
1743	ath_settkipmic(sc);
1744	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1745		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1746			status);
1747		ATH_UNLOCK(sc);
1748		return;
1749	}
1750	ath_chan_change(sc, ic->ic_curchan);
1751
1752	/* Let DFS at it in case it's a DFS channel */
1753	ath_dfs_radar_enable(sc, ic->ic_curchan);
1754
1755	/*
1756	 * Likewise this is set during reset so update
1757	 * state cached in the driver.
1758	 */
1759	sc->sc_diversity = ath_hal_getdiversity(ah);
1760	sc->sc_lastlongcal = 0;
1761	sc->sc_resetcal = 1;
1762	sc->sc_lastcalreset = 0;
1763	sc->sc_lastani = 0;
1764	sc->sc_lastshortcal = 0;
1765	sc->sc_doresetcal = AH_FALSE;
1766	/*
1767	 * Beacon timers were cleared here; give ath_newstate()
1768	 * a hint that the beacon timers should be poked when
1769	 * things transition to the RUN state.
1770	 */
1771	sc->sc_beacons = 0;
1772
1773	/*
1774	 * Initial aggregation settings.
1775	 */
1776	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
1777	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1778	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1779
1780	/*
1781	 * Setup the hardware after reset: the key cache
1782	 * is filled as needed and the receive engine is
1783	 * set going.  Frame transmit is handled entirely
1784	 * in the frame output path; there's nothing to do
1785	 * here except setup the interrupt mask.
1786	 */
1787	if (ath_startrecv(sc) != 0) {
1788		if_printf(ifp, "unable to start recv logic\n");
1789		ATH_UNLOCK(sc);
1790		return;
1791	}
1792
1793	/*
1794	 * Enable interrupts.
1795	 */
1796	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1797		  | HAL_INT_RXEOL | HAL_INT_RXORN
1798		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1799	/*
1800	 * Enable MIB interrupts when there are hardware phy counters.
1801	 * Note we only do this (at the moment) for station mode.
1802	 */
1803	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1804		sc->sc_imask |= HAL_INT_MIB;
1805
1806	/* Enable global TX timeout and carrier sense timeout if available */
1807	if (ath_hal_gtxto_supported(ah))
1808		sc->sc_imask |= HAL_INT_GTT;
1809
1810	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1811		__func__, sc->sc_imask);
1812
1813	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1814	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1815	ath_hal_intrset(ah, sc->sc_imask);
1816
1817	ATH_UNLOCK(sc);
1818
1819#ifdef ATH_TX99_DIAG
1820	if (sc->sc_tx99 != NULL)
1821		sc->sc_tx99->start(sc->sc_tx99);
1822	else
1823#endif
1824	ieee80211_start_all(ic);		/* start all vap's */
1825}
1826
1827static void
1828ath_stop_locked(struct ifnet *ifp)
1829{
1830	struct ath_softc *sc = ifp->if_softc;
1831	struct ath_hal *ah = sc->sc_ah;
1832
1833	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1834		__func__, sc->sc_invalid, ifp->if_flags);
1835
1836	ATH_LOCK_ASSERT(sc);
1837	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1838		/*
1839		 * Shutdown the hardware and driver:
1840		 *    reset 802.11 state machine
1841		 *    turn off timers
1842		 *    disable interrupts
1843		 *    turn off the radio
1844		 *    clear transmit machinery
1845		 *    clear receive machinery
1846		 *    drain and release tx queues
1847		 *    reclaim beacon resources
1848		 *    power down hardware
1849		 *
1850		 * Note that some of this work is not possible if the
1851		 * hardware is gone (invalid).
1852		 */
1853#ifdef ATH_TX99_DIAG
1854		if (sc->sc_tx99 != NULL)
1855			sc->sc_tx99->stop(sc->sc_tx99);
1856#endif
1857		callout_stop(&sc->sc_wd_ch);
1858		sc->sc_wd_timer = 0;
1859		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1860		if (!sc->sc_invalid) {
1861			if (sc->sc_softled) {
1862				callout_stop(&sc->sc_ledtimer);
1863				ath_hal_gpioset(ah, sc->sc_ledpin,
1864					!sc->sc_ledon);
1865				sc->sc_blinking = 0;
1866			}
1867			ath_hal_intrset(ah, 0);
1868		}
1869		ath_draintxq(sc, ATH_RESET_DEFAULT);
1870		if (!sc->sc_invalid) {
1871			ath_stoprecv(sc, 1);
1872			ath_hal_phydisable(ah);
1873		} else
1874			sc->sc_rxlink = NULL;
1875		ath_beacon_free(sc);	/* XXX not needed */
1876	}
1877}
1878
1879#define	MAX_TXRX_ITERATIONS	1000
1880static void
1881ath_txrx_stop(struct ath_softc *sc)
1882{
1883	int i = MAX_TXRX_ITERATIONS;
1884
1885	ATH_UNLOCK_ASSERT(sc);
1886	/* Stop any new TX/RX from occuring */
1887	taskqueue_block(sc->sc_tq);
1888
1889	ATH_PCU_LOCK(sc);
1890	/*
1891	 * Sleep until all the pending operations have completed.
1892	 *
1893	 * The caller must ensure that reset has been incremented
1894	 * or the pending operations may continue being queued.
1895	 */
1896	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
1897	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
1898		if (i <= 0)
1899			break;
1900		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
1901		i--;
1902	}
1903	ATH_PCU_UNLOCK(sc);
1904
1905	if (i <= 0)
1906		device_printf(sc->sc_dev,
1907		    "%s: didn't finish after %d iterations\n",
1908		    __func__, MAX_TXRX_ITERATIONS);
1909}
1910#undef	MAX_TXRX_ITERATIONS
1911
1912static void
1913ath_txrx_start(struct ath_softc *sc)
1914{
1915
1916	taskqueue_unblock(sc->sc_tq);
1917}
1918
1919/*
1920 * Grab the reset lock, and wait around until noone else
1921 * is trying to do anything with it.
1922 *
1923 * This is totally horrible but we can't hold this lock for
1924 * long enough to do TX/RX or we end up with net80211/ip stack
1925 * LORs and eventual deadlock.
1926 *
1927 * "dowait" signals whether to spin, waiting for the reset
1928 * lock count to reach 0. This should (for now) only be used
1929 * during the reset path, as the rest of the code may not
1930 * be locking-reentrant enough to behave correctly.
1931 *
1932 * Another, cleaner way should be found to serialise all of
1933 * these operations.
1934 */
1935#define	MAX_RESET_ITERATIONS	10
1936static int
1937ath_reset_grablock(struct ath_softc *sc, int dowait)
1938{
1939	int w = 0;
1940	int i = MAX_RESET_ITERATIONS;
1941
1942	ATH_PCU_LOCK_ASSERT(sc);
1943	do {
1944		if (sc->sc_inreset_cnt == 0) {
1945			w = 1;
1946			break;
1947		}
1948		if (dowait == 0) {
1949			w = 0;
1950			break;
1951		}
1952		ATH_PCU_UNLOCK(sc);
1953		pause("ath_reset_grablock", 1);
1954		i--;
1955		ATH_PCU_LOCK(sc);
1956	} while (i > 0);
1957
1958	/*
1959	 * We always increment the refcounter, regardless
1960	 * of whether we succeeded to get it in an exclusive
1961	 * way.
1962	 */
1963	sc->sc_inreset_cnt++;
1964
1965	if (i <= 0)
1966		device_printf(sc->sc_dev,
1967		    "%s: didn't finish after %d iterations\n",
1968		    __func__, MAX_RESET_ITERATIONS);
1969
1970	if (w == 0)
1971		device_printf(sc->sc_dev,
1972		    "%s: warning, recursive reset path!\n",
1973		    __func__);
1974
1975	return w;
1976}
1977#undef MAX_RESET_ITERATIONS
1978
1979/*
1980 * XXX TODO: write ath_reset_releaselock
1981 */
1982
1983static void
1984ath_stop(struct ifnet *ifp)
1985{
1986	struct ath_softc *sc = ifp->if_softc;
1987
1988	ATH_LOCK(sc);
1989	ath_stop_locked(ifp);
1990	ATH_UNLOCK(sc);
1991}
1992
1993/*
1994 * Reset the hardware w/o losing operational state.  This is
1995 * basically a more efficient way of doing ath_stop, ath_init,
1996 * followed by state transitions to the current 802.11
1997 * operational state.  Used to recover from various errors and
1998 * to reset or reload hardware state.
1999 */
2000int
2001ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2002{
2003	struct ath_softc *sc = ifp->if_softc;
2004	struct ieee80211com *ic = ifp->if_l2com;
2005	struct ath_hal *ah = sc->sc_ah;
2006	HAL_STATUS status;
2007	int i;
2008
2009	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2010
2011	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2012	ATH_PCU_UNLOCK_ASSERT(sc);
2013	ATH_UNLOCK_ASSERT(sc);
2014
2015	ATH_PCU_LOCK(sc);
2016	if (ath_reset_grablock(sc, 1) == 0) {
2017		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2018		    __func__);
2019	}
2020	ath_hal_intrset(ah, 0);		/* disable interrupts */
2021	ATH_PCU_UNLOCK(sc);
2022
2023	/*
2024	 * Should now wait for pending TX/RX to complete
2025	 * and block future ones from occuring. This needs to be
2026	 * done before the TX queue is drained.
2027	 */
2028	ath_txrx_stop(sc);
2029	ath_draintxq(sc, reset_type);	/* stop xmit side */
2030
2031	/*
2032	 * Regardless of whether we're doing a no-loss flush or
2033	 * not, stop the PCU and handle what's in the RX queue.
2034	 * That way frames aren't dropped which shouldn't be.
2035	 */
2036	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2037	ath_rx_proc(sc, 0);
2038
2039	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2040	/* NB: indicate channel change so we do a full reset */
2041	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2042		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2043			__func__, status);
2044	sc->sc_diversity = ath_hal_getdiversity(ah);
2045
2046	/* Let DFS at it in case it's a DFS channel */
2047	ath_dfs_radar_enable(sc, ic->ic_curchan);
2048
2049	if (ath_startrecv(sc) != 0)	/* restart recv */
2050		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2051	/*
2052	 * We may be doing a reset in response to an ioctl
2053	 * that changes the channel so update any state that
2054	 * might change as a result.
2055	 */
2056	ath_chan_change(sc, ic->ic_curchan);
2057	if (sc->sc_beacons) {		/* restart beacons */
2058#ifdef IEEE80211_SUPPORT_TDMA
2059		if (sc->sc_tdma)
2060			ath_tdma_config(sc, NULL);
2061		else
2062#endif
2063			ath_beacon_config(sc, NULL);
2064	}
2065
2066	/*
2067	 * Release the reset lock and re-enable interrupts here.
2068	 * If an interrupt was being processed in ath_intr(),
2069	 * it would disable interrupts at this point. So we have
2070	 * to atomically enable interrupts and decrement the
2071	 * reset counter - this way ath_intr() doesn't end up
2072	 * disabling interrupts without a corresponding enable
2073	 * in the rest or channel change path.
2074	 */
2075	ATH_PCU_LOCK(sc);
2076	sc->sc_inreset_cnt--;
2077	/* XXX only do this if sc_inreset_cnt == 0? */
2078	ath_hal_intrset(ah, sc->sc_imask);
2079	ATH_PCU_UNLOCK(sc);
2080
2081	/*
2082	 * TX and RX can be started here. If it were started with
2083	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2084	 * Thus if this is a nested call through the reset or
2085	 * channel change code, TX completion will occur but
2086	 * RX completion and ath_start / ath_tx_start will not
2087	 * run.
2088	 */
2089
2090	/* Restart TX/RX as needed */
2091	ath_txrx_start(sc);
2092
2093	/* XXX Restart TX completion and pending TX */
2094	if (reset_type == ATH_RESET_NOLOSS) {
2095		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2096			if (ATH_TXQ_SETUP(sc, i)) {
2097				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2098				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2099				ath_txq_sched(sc, &sc->sc_txq[i]);
2100				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2101			}
2102		}
2103	}
2104
2105	/*
2106	 * This may have been set during an ath_start() call which
2107	 * set this once it detected a concurrent TX was going on.
2108	 * So, clear it.
2109	 */
2110	/* XXX do this inside of IF_LOCK? */
2111	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2112
2113	/* Handle any frames in the TX queue */
2114	/*
2115	 * XXX should this be done by the caller, rather than
2116	 * ath_reset() ?
2117	 */
2118	ath_start(ifp);			/* restart xmit */
2119	return 0;
2120}
2121
2122static int
2123ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2124{
2125	struct ieee80211com *ic = vap->iv_ic;
2126	struct ifnet *ifp = ic->ic_ifp;
2127	struct ath_softc *sc = ifp->if_softc;
2128	struct ath_hal *ah = sc->sc_ah;
2129
2130	switch (cmd) {
2131	case IEEE80211_IOC_TXPOWER:
2132		/*
2133		 * If per-packet TPC is enabled, then we have nothing
2134		 * to do; otherwise we need to force the global limit.
2135		 * All this can happen directly; no need to reset.
2136		 */
2137		if (!ath_hal_gettpc(ah))
2138			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2139		return 0;
2140	}
2141	/* XXX? Full or NOLOSS? */
2142	return ath_reset(ifp, ATH_RESET_FULL);
2143}
2144
2145struct ath_buf *
2146_ath_getbuf_locked(struct ath_softc *sc)
2147{
2148	struct ath_buf *bf;
2149
2150	ATH_TXBUF_LOCK_ASSERT(sc);
2151
2152	bf = TAILQ_FIRST(&sc->sc_txbuf);
2153	if (bf == NULL) {
2154		sc->sc_stats.ast_tx_getnobuf++;
2155	} else {
2156		if (bf->bf_flags & ATH_BUF_BUSY) {
2157			sc->sc_stats.ast_tx_getbusybuf++;
2158			bf = NULL;
2159		}
2160	}
2161
2162	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
2163		TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2164	else
2165		bf = NULL;
2166
2167	if (bf == NULL) {
2168		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2169		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2170			"out of xmit buffers" : "xmit buffer busy");
2171		return NULL;
2172	}
2173
2174	/* Valid bf here; clear some basic fields */
2175	bf->bf_next = NULL;	/* XXX just to be sure */
2176	bf->bf_last = NULL;	/* XXX again, just to be sure */
2177	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2178	bzero(&bf->bf_state, sizeof(bf->bf_state));
2179
2180	return bf;
2181}
2182
2183/*
2184 * When retrying a software frame, buffers marked ATH_BUF_BUSY
2185 * can't be thrown back on the queue as they could still be
2186 * in use by the hardware.
2187 *
2188 * This duplicates the buffer, or returns NULL.
2189 *
2190 * The descriptor is also copied but the link pointers and
2191 * the DMA segments aren't copied; this frame should thus
2192 * be again passed through the descriptor setup/chain routines
2193 * so the link is correct.
2194 *
2195 * The caller must free the buffer using ath_freebuf().
2196 *
2197 * XXX TODO: this call shouldn't fail as it'll cause packet loss
2198 * XXX in the TX pathway when retries are needed.
2199 * XXX Figure out how to keep some buffers free, or factor the
2200 * XXX number of busy buffers into the xmit path (ath_start())
2201 * XXX so we don't over-commit.
2202 */
2203struct ath_buf *
2204ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2205{
2206	struct ath_buf *tbf;
2207
2208	tbf = ath_getbuf(sc);
2209	if (tbf == NULL)
2210		return NULL;	/* XXX failure? Why? */
2211
2212	/* Copy basics */
2213	tbf->bf_next = NULL;
2214	tbf->bf_nseg = bf->bf_nseg;
2215	tbf->bf_txflags = bf->bf_txflags;
2216	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2217	tbf->bf_status = bf->bf_status;
2218	tbf->bf_m = bf->bf_m;
2219	tbf->bf_node = bf->bf_node;
2220	/* will be setup by the chain/setup function */
2221	tbf->bf_lastds = NULL;
2222	/* for now, last == self */
2223	tbf->bf_last = tbf;
2224	tbf->bf_comp = bf->bf_comp;
2225
2226	/* NOTE: DMA segments will be setup by the setup/chain functions */
2227
2228	/* The caller has to re-init the descriptor + links */
2229
2230	/* Copy state */
2231	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2232
2233	return tbf;
2234}
2235
2236struct ath_buf *
2237ath_getbuf(struct ath_softc *sc)
2238{
2239	struct ath_buf *bf;
2240
2241	ATH_TXBUF_LOCK(sc);
2242	bf = _ath_getbuf_locked(sc);
2243	if (bf == NULL) {
2244		struct ifnet *ifp = sc->sc_ifp;
2245
2246		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2247		sc->sc_stats.ast_tx_qstop++;
2248		/* XXX do this inside of IF_LOCK? */
2249		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2250	}
2251	ATH_TXBUF_UNLOCK(sc);
2252	return bf;
2253}
2254
2255static void
2256ath_start(struct ifnet *ifp)
2257{
2258	struct ath_softc *sc = ifp->if_softc;
2259	struct ieee80211_node *ni;
2260	struct ath_buf *bf;
2261	struct mbuf *m, *next;
2262	ath_bufhead frags;
2263
2264	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2265		return;
2266
2267	/* XXX is it ok to hold the ATH_LOCK here? */
2268	ATH_PCU_LOCK(sc);
2269	if (sc->sc_inreset_cnt > 0) {
2270		device_printf(sc->sc_dev,
2271		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2272		/* XXX do this inside of IF_LOCK? */
2273		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2274		ATH_PCU_UNLOCK(sc);
2275		return;
2276	}
2277	sc->sc_txstart_cnt++;
2278	ATH_PCU_UNLOCK(sc);
2279
2280	for (;;) {
2281		/*
2282		 * Grab a TX buffer and associated resources.
2283		 */
2284		bf = ath_getbuf(sc);
2285		if (bf == NULL)
2286			break;
2287
2288		IFQ_DEQUEUE(&ifp->if_snd, m);
2289		if (m == NULL) {
2290			ATH_TXBUF_LOCK(sc);
2291			TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2292			ATH_TXBUF_UNLOCK(sc);
2293			break;
2294		}
2295		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2296		/*
2297		 * Check for fragmentation.  If this frame
2298		 * has been broken up verify we have enough
2299		 * buffers to send all the fragments so all
2300		 * go out or none...
2301		 */
2302		TAILQ_INIT(&frags);
2303		if ((m->m_flags & M_FRAG) &&
2304		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2305			DPRINTF(sc, ATH_DEBUG_XMIT,
2306			    "%s: out of txfrag buffers\n", __func__);
2307			sc->sc_stats.ast_tx_nofrag++;
2308			ifp->if_oerrors++;
2309			ath_freetx(m);
2310			goto bad;
2311		}
2312		ifp->if_opackets++;
2313	nextfrag:
2314		/*
2315		 * Pass the frame to the h/w for transmission.
2316		 * Fragmented frames have each frag chained together
2317		 * with m_nextpkt.  We know there are sufficient ath_buf's
2318		 * to send all the frags because of work done by
2319		 * ath_txfrag_setup.  We leave m_nextpkt set while
2320		 * calling ath_tx_start so it can use it to extend the
2321		 * the tx duration to cover the subsequent frag and
2322		 * so it can reclaim all the mbufs in case of an error;
2323		 * ath_tx_start clears m_nextpkt once it commits to
2324		 * handing the frame to the hardware.
2325		 */
2326		next = m->m_nextpkt;
2327		if (ath_tx_start(sc, ni, bf, m)) {
2328	bad:
2329			ifp->if_oerrors++;
2330	reclaim:
2331			bf->bf_m = NULL;
2332			bf->bf_node = NULL;
2333			ATH_TXBUF_LOCK(sc);
2334			TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2335			ath_txfrag_cleanup(sc, &frags, ni);
2336			ATH_TXBUF_UNLOCK(sc);
2337			if (ni != NULL)
2338				ieee80211_free_node(ni);
2339			continue;
2340		}
2341		if (next != NULL) {
2342			/*
2343			 * Beware of state changing between frags.
2344			 * XXX check sta power-save state?
2345			 */
2346			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2347				DPRINTF(sc, ATH_DEBUG_XMIT,
2348				    "%s: flush fragmented packet, state %s\n",
2349				    __func__,
2350				    ieee80211_state_name[ni->ni_vap->iv_state]);
2351				ath_freetx(next);
2352				goto reclaim;
2353			}
2354			m = next;
2355			bf = TAILQ_FIRST(&frags);
2356			KASSERT(bf != NULL, ("no buf for txfrag"));
2357			TAILQ_REMOVE(&frags, bf, bf_list);
2358			goto nextfrag;
2359		}
2360
2361		sc->sc_wd_timer = 5;
2362	}
2363
2364	ATH_PCU_LOCK(sc);
2365	sc->sc_txstart_cnt--;
2366	ATH_PCU_UNLOCK(sc);
2367}
2368
2369static int
2370ath_media_change(struct ifnet *ifp)
2371{
2372	int error = ieee80211_media_change(ifp);
2373	/* NB: only the fixed rate can change and that doesn't need a reset */
2374	return (error == ENETRESET ? 0 : error);
2375}
2376
2377/*
2378 * Block/unblock tx+rx processing while a key change is done.
2379 * We assume the caller serializes key management operations
2380 * so we only need to worry about synchronization with other
2381 * uses that originate in the driver.
2382 */
2383static void
2384ath_key_update_begin(struct ieee80211vap *vap)
2385{
2386	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2387	struct ath_softc *sc = ifp->if_softc;
2388
2389	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2390	taskqueue_block(sc->sc_tq);
2391	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2392}
2393
2394static void
2395ath_key_update_end(struct ieee80211vap *vap)
2396{
2397	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2398	struct ath_softc *sc = ifp->if_softc;
2399
2400	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2401	IF_UNLOCK(&ifp->if_snd);
2402	taskqueue_unblock(sc->sc_tq);
2403}
2404
2405/*
2406 * Calculate the receive filter according to the
2407 * operating mode and state:
2408 *
2409 * o always accept unicast, broadcast, and multicast traffic
2410 * o accept PHY error frames when hardware doesn't have MIB support
2411 *   to count and we need them for ANI (sta mode only until recently)
2412 *   and we are not scanning (ANI is disabled)
2413 *   NB: older hal's add rx filter bits out of sight and we need to
2414 *	 blindly preserve them
2415 * o probe request frames are accepted only when operating in
2416 *   hostap, adhoc, mesh, or monitor modes
2417 * o enable promiscuous mode
2418 *   - when in monitor mode
2419 *   - if interface marked PROMISC (assumes bridge setting is filtered)
2420 * o accept beacons:
2421 *   - when operating in station mode for collecting rssi data when
2422 *     the station is otherwise quiet, or
2423 *   - when operating in adhoc mode so the 802.11 layer creates
2424 *     node table entries for peers,
2425 *   - when scanning
2426 *   - when doing s/w beacon miss (e.g. for ap+sta)
2427 *   - when operating in ap mode in 11g to detect overlapping bss that
2428 *     require protection
2429 *   - when operating in mesh mode to detect neighbors
2430 * o accept control frames:
2431 *   - when in monitor mode
2432 * XXX HT protection for 11n
2433 */
2434static u_int32_t
2435ath_calcrxfilter(struct ath_softc *sc)
2436{
2437	struct ifnet *ifp = sc->sc_ifp;
2438	struct ieee80211com *ic = ifp->if_l2com;
2439	u_int32_t rfilt;
2440
2441	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2442	if (!sc->sc_needmib && !sc->sc_scanning)
2443		rfilt |= HAL_RX_FILTER_PHYERR;
2444	if (ic->ic_opmode != IEEE80211_M_STA)
2445		rfilt |= HAL_RX_FILTER_PROBEREQ;
2446	/* XXX ic->ic_monvaps != 0? */
2447	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2448		rfilt |= HAL_RX_FILTER_PROM;
2449	if (ic->ic_opmode == IEEE80211_M_STA ||
2450	    ic->ic_opmode == IEEE80211_M_IBSS ||
2451	    sc->sc_swbmiss || sc->sc_scanning)
2452		rfilt |= HAL_RX_FILTER_BEACON;
2453	/*
2454	 * NB: We don't recalculate the rx filter when
2455	 * ic_protmode changes; otherwise we could do
2456	 * this only when ic_protmode != NONE.
2457	 */
2458	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2459	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2460		rfilt |= HAL_RX_FILTER_BEACON;
2461
2462	/*
2463	 * Enable hardware PS-POLL RX only for hostap mode;
2464	 * STA mode sends PS-POLL frames but never
2465	 * receives them.
2466	 */
2467	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
2468	    0, NULL) == HAL_OK &&
2469	    ic->ic_opmode == IEEE80211_M_HOSTAP)
2470		rfilt |= HAL_RX_FILTER_PSPOLL;
2471
2472	if (sc->sc_nmeshvaps) {
2473		rfilt |= HAL_RX_FILTER_BEACON;
2474		if (sc->sc_hasbmatch)
2475			rfilt |= HAL_RX_FILTER_BSSID;
2476		else
2477			rfilt |= HAL_RX_FILTER_PROM;
2478	}
2479	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2480		rfilt |= HAL_RX_FILTER_CONTROL;
2481
2482	/*
2483	 * Enable RX of compressed BAR frames only when doing
2484	 * 802.11n. Required for A-MPDU.
2485	 */
2486	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
2487		rfilt |= HAL_RX_FILTER_COMPBAR;
2488
2489	/*
2490	 * Enable radar PHY errors if requested by the
2491	 * DFS module.
2492	 */
2493	if (sc->sc_dodfs)
2494		rfilt |= HAL_RX_FILTER_PHYRADAR;
2495
2496	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2497	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2498	return rfilt;
2499}
2500
2501static void
2502ath_update_promisc(struct ifnet *ifp)
2503{
2504	struct ath_softc *sc = ifp->if_softc;
2505	u_int32_t rfilt;
2506
2507	/* configure rx filter */
2508	rfilt = ath_calcrxfilter(sc);
2509	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2510
2511	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2512}
2513
2514static void
2515ath_update_mcast(struct ifnet *ifp)
2516{
2517	struct ath_softc *sc = ifp->if_softc;
2518	u_int32_t mfilt[2];
2519
2520	/* calculate and install multicast filter */
2521	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2522		struct ifmultiaddr *ifma;
2523		/*
2524		 * Merge multicast addresses to form the hardware filter.
2525		 */
2526		mfilt[0] = mfilt[1] = 0;
2527		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2528		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2529			caddr_t dl;
2530			u_int32_t val;
2531			u_int8_t pos;
2532
2533			/* calculate XOR of eight 6bit values */
2534			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2535			val = LE_READ_4(dl + 0);
2536			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2537			val = LE_READ_4(dl + 3);
2538			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2539			pos &= 0x3f;
2540			mfilt[pos / 32] |= (1 << (pos % 32));
2541		}
2542		if_maddr_runlock(ifp);
2543	} else
2544		mfilt[0] = mfilt[1] = ~0;
2545	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2546	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2547		__func__, mfilt[0], mfilt[1]);
2548}
2549
2550static void
2551ath_mode_init(struct ath_softc *sc)
2552{
2553	struct ifnet *ifp = sc->sc_ifp;
2554	struct ath_hal *ah = sc->sc_ah;
2555	u_int32_t rfilt;
2556
2557	/* configure rx filter */
2558	rfilt = ath_calcrxfilter(sc);
2559	ath_hal_setrxfilter(ah, rfilt);
2560
2561	/* configure operational mode */
2562	ath_hal_setopmode(ah);
2563
2564	/* handle any link-level address change */
2565	ath_hal_setmac(ah, IF_LLADDR(ifp));
2566
2567	/* calculate and install multicast filter */
2568	ath_update_mcast(ifp);
2569}
2570
2571/*
2572 * Set the slot time based on the current setting.
2573 */
2574static void
2575ath_setslottime(struct ath_softc *sc)
2576{
2577	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2578	struct ath_hal *ah = sc->sc_ah;
2579	u_int usec;
2580
2581	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2582		usec = 13;
2583	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2584		usec = 21;
2585	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2586		/* honor short/long slot time only in 11g */
2587		/* XXX shouldn't honor on pure g or turbo g channel */
2588		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2589			usec = HAL_SLOT_TIME_9;
2590		else
2591			usec = HAL_SLOT_TIME_20;
2592	} else
2593		usec = HAL_SLOT_TIME_9;
2594
2595	DPRINTF(sc, ATH_DEBUG_RESET,
2596	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2597	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2598	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2599
2600	ath_hal_setslottime(ah, usec);
2601	sc->sc_updateslot = OK;
2602}
2603
2604/*
2605 * Callback from the 802.11 layer to update the
2606 * slot time based on the current setting.
2607 */
2608static void
2609ath_updateslot(struct ifnet *ifp)
2610{
2611	struct ath_softc *sc = ifp->if_softc;
2612	struct ieee80211com *ic = ifp->if_l2com;
2613
2614	/*
2615	 * When not coordinating the BSS, change the hardware
2616	 * immediately.  For other operation we defer the change
2617	 * until beacon updates have propagated to the stations.
2618	 */
2619	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2620	    ic->ic_opmode == IEEE80211_M_MBSS)
2621		sc->sc_updateslot = UPDATE;
2622	else
2623		ath_setslottime(sc);
2624}
2625
2626/*
2627 * Setup a h/w transmit queue for beacons.
2628 */
2629static int
2630ath_beaconq_setup(struct ath_hal *ah)
2631{
2632	HAL_TXQ_INFO qi;
2633
2634	memset(&qi, 0, sizeof(qi));
2635	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2636	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2637	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2638	/* NB: for dynamic turbo, don't enable any other interrupts */
2639	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2640	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2641}
2642
2643/*
2644 * Setup the transmit queue parameters for the beacon queue.
2645 */
2646static int
2647ath_beaconq_config(struct ath_softc *sc)
2648{
2649#define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2650	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2651	struct ath_hal *ah = sc->sc_ah;
2652	HAL_TXQ_INFO qi;
2653
2654	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2655	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2656	    ic->ic_opmode == IEEE80211_M_MBSS) {
2657		/*
2658		 * Always burst out beacon and CAB traffic.
2659		 */
2660		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2661		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2662		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2663	} else {
2664		struct wmeParams *wmep =
2665			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2666		/*
2667		 * Adhoc mode; important thing is to use 2x cwmin.
2668		 */
2669		qi.tqi_aifs = wmep->wmep_aifsn;
2670		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2671		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2672	}
2673
2674	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2675		device_printf(sc->sc_dev, "unable to update parameters for "
2676			"beacon hardware queue!\n");
2677		return 0;
2678	} else {
2679		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2680		return 1;
2681	}
2682#undef ATH_EXPONENT_TO_VALUE
2683}
2684
2685/*
2686 * Allocate and setup an initial beacon frame.
2687 */
2688static int
2689ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2690{
2691	struct ieee80211vap *vap = ni->ni_vap;
2692	struct ath_vap *avp = ATH_VAP(vap);
2693	struct ath_buf *bf;
2694	struct mbuf *m;
2695	int error;
2696
2697	bf = avp->av_bcbuf;
2698	if (bf->bf_m != NULL) {
2699		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2700		m_freem(bf->bf_m);
2701		bf->bf_m = NULL;
2702	}
2703	if (bf->bf_node != NULL) {
2704		ieee80211_free_node(bf->bf_node);
2705		bf->bf_node = NULL;
2706	}
2707
2708	/*
2709	 * NB: the beacon data buffer must be 32-bit aligned;
2710	 * we assume the mbuf routines will return us something
2711	 * with this alignment (perhaps should assert).
2712	 */
2713	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2714	if (m == NULL) {
2715		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2716		sc->sc_stats.ast_be_nombuf++;
2717		return ENOMEM;
2718	}
2719	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2720				     bf->bf_segs, &bf->bf_nseg,
2721				     BUS_DMA_NOWAIT);
2722	if (error != 0) {
2723		device_printf(sc->sc_dev,
2724		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2725		    __func__, error);
2726		m_freem(m);
2727		return error;
2728	}
2729
2730	/*
2731	 * Calculate a TSF adjustment factor required for staggered
2732	 * beacons.  Note that we assume the format of the beacon
2733	 * frame leaves the tstamp field immediately following the
2734	 * header.
2735	 */
2736	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2737		uint64_t tsfadjust;
2738		struct ieee80211_frame *wh;
2739
2740		/*
2741		 * The beacon interval is in TU's; the TSF is in usecs.
2742		 * We figure out how many TU's to add to align the timestamp
2743		 * then convert to TSF units and handle byte swapping before
2744		 * inserting it in the frame.  The hardware will then add this
2745		 * each time a beacon frame is sent.  Note that we align vap's
2746		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2747		 * timestamp in one beacon interval while the others get a
2748		 * timstamp aligned to the next interval.
2749		 */
2750		tsfadjust = ni->ni_intval *
2751		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2752		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2753
2754		DPRINTF(sc, ATH_DEBUG_BEACON,
2755		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2756		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2757		    avp->av_bslot, ni->ni_intval,
2758		    (long long unsigned) le64toh(tsfadjust));
2759
2760		wh = mtod(m, struct ieee80211_frame *);
2761		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2762	}
2763	bf->bf_m = m;
2764	bf->bf_node = ieee80211_ref_node(ni);
2765
2766	return 0;
2767}
2768
2769/*
2770 * Setup the beacon frame for transmit.
2771 */
2772static void
2773ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2774{
2775#define	USE_SHPREAMBLE(_ic) \
2776	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2777		== IEEE80211_F_SHPREAMBLE)
2778	struct ieee80211_node *ni = bf->bf_node;
2779	struct ieee80211com *ic = ni->ni_ic;
2780	struct mbuf *m = bf->bf_m;
2781	struct ath_hal *ah = sc->sc_ah;
2782	struct ath_desc *ds;
2783	int flags, antenna;
2784	const HAL_RATE_TABLE *rt;
2785	u_int8_t rix, rate;
2786
2787	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2788		__func__, m, m->m_len);
2789
2790	/* setup descriptors */
2791	ds = bf->bf_desc;
2792	bf->bf_last = bf;
2793	bf->bf_lastds = ds;
2794
2795	flags = HAL_TXDESC_NOACK;
2796	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2797		ds->ds_link = bf->bf_daddr;	/* self-linked */
2798		flags |= HAL_TXDESC_VEOL;
2799		/*
2800		 * Let hardware handle antenna switching.
2801		 */
2802		antenna = sc->sc_txantenna;
2803	} else {
2804		ds->ds_link = 0;
2805		/*
2806		 * Switch antenna every 4 beacons.
2807		 * XXX assumes two antenna
2808		 */
2809		if (sc->sc_txantenna != 0)
2810			antenna = sc->sc_txantenna;
2811		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2812			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2813		else
2814			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2815	}
2816
2817	KASSERT(bf->bf_nseg == 1,
2818		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2819	ds->ds_data = bf->bf_segs[0].ds_addr;
2820	/*
2821	 * Calculate rate code.
2822	 * XXX everything at min xmit rate
2823	 */
2824	rix = 0;
2825	rt = sc->sc_currates;
2826	rate = rt->info[rix].rateCode;
2827	if (USE_SHPREAMBLE(ic))
2828		rate |= rt->info[rix].shortPreamble;
2829	ath_hal_setuptxdesc(ah, ds
2830		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2831		, sizeof(struct ieee80211_frame)/* header length */
2832		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2833		, ni->ni_txpower		/* txpower XXX */
2834		, rate, 1			/* series 0 rate/tries */
2835		, HAL_TXKEYIX_INVALID		/* no encryption */
2836		, antenna			/* antenna mode */
2837		, flags				/* no ack, veol for beacons */
2838		, 0				/* rts/cts rate */
2839		, 0				/* rts/cts duration */
2840	);
2841	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2842	ath_hal_filltxdesc(ah, ds
2843		, roundup(m->m_len, 4)		/* buffer length */
2844		, AH_TRUE			/* first segment */
2845		, AH_TRUE			/* last segment */
2846		, ds				/* first descriptor */
2847	);
2848#if 0
2849	ath_desc_swap(ds);
2850#endif
2851#undef USE_SHPREAMBLE
2852}
2853
2854static void
2855ath_beacon_update(struct ieee80211vap *vap, int item)
2856{
2857	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2858
2859	setbit(bo->bo_flags, item);
2860}
2861
2862/*
2863 * Append the contents of src to dst; both queues
2864 * are assumed to be locked.
2865 */
2866static void
2867ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2868{
2869	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2870	dst->axq_link = src->axq_link;
2871	src->axq_link = NULL;
2872	dst->axq_depth += src->axq_depth;
2873	dst->axq_aggr_depth += src->axq_aggr_depth;
2874	src->axq_depth = 0;
2875	src->axq_aggr_depth = 0;
2876}
2877
2878/*
2879 * Transmit a beacon frame at SWBA.  Dynamic updates to the
2880 * frame contents are done as needed and the slot time is
2881 * also adjusted based on current state.
2882 */
2883static void
2884ath_beacon_proc(void *arg, int pending)
2885{
2886	struct ath_softc *sc = arg;
2887	struct ath_hal *ah = sc->sc_ah;
2888	struct ieee80211vap *vap;
2889	struct ath_buf *bf;
2890	int slot, otherant;
2891	uint32_t bfaddr;
2892
2893	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2894		__func__, pending);
2895	/*
2896	 * Check if the previous beacon has gone out.  If
2897	 * not don't try to post another, skip this period
2898	 * and wait for the next.  Missed beacons indicate
2899	 * a problem and should not occur.  If we miss too
2900	 * many consecutive beacons reset the device.
2901	 */
2902	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2903		sc->sc_bmisscount++;
2904		sc->sc_stats.ast_be_missed++;
2905		DPRINTF(sc, ATH_DEBUG_BEACON,
2906			"%s: missed %u consecutive beacons\n",
2907			__func__, sc->sc_bmisscount);
2908		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2909			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2910		return;
2911	}
2912	if (sc->sc_bmisscount != 0) {
2913		DPRINTF(sc, ATH_DEBUG_BEACON,
2914			"%s: resume beacon xmit after %u misses\n",
2915			__func__, sc->sc_bmisscount);
2916		sc->sc_bmisscount = 0;
2917	}
2918
2919	if (sc->sc_stagbeacons) {			/* staggered beacons */
2920		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2921		uint32_t tsftu;
2922
2923		tsftu = ath_hal_gettsf32(ah) >> 10;
2924		/* XXX lintval */
2925		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2926		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2927		bfaddr = 0;
2928		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2929			bf = ath_beacon_generate(sc, vap);
2930			if (bf != NULL)
2931				bfaddr = bf->bf_daddr;
2932		}
2933	} else {					/* burst'd beacons */
2934		uint32_t *bflink = &bfaddr;
2935
2936		for (slot = 0; slot < ATH_BCBUF; slot++) {
2937			vap = sc->sc_bslot[slot];
2938			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2939				bf = ath_beacon_generate(sc, vap);
2940				if (bf != NULL) {
2941					*bflink = bf->bf_daddr;
2942					bflink = &bf->bf_desc->ds_link;
2943				}
2944			}
2945		}
2946		*bflink = 0;				/* terminate list */
2947	}
2948
2949	/*
2950	 * Handle slot time change when a non-ERP station joins/leaves
2951	 * an 11g network.  The 802.11 layer notifies us via callback,
2952	 * we mark updateslot, then wait one beacon before effecting
2953	 * the change.  This gives associated stations at least one
2954	 * beacon interval to note the state change.
2955	 */
2956	/* XXX locking */
2957	if (sc->sc_updateslot == UPDATE) {
2958		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2959		sc->sc_slotupdate = slot;
2960	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2961		ath_setslottime(sc);		/* commit change to h/w */
2962
2963	/*
2964	 * Check recent per-antenna transmit statistics and flip
2965	 * the default antenna if noticeably more frames went out
2966	 * on the non-default antenna.
2967	 * XXX assumes 2 anntenae
2968	 */
2969	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2970		otherant = sc->sc_defant & 1 ? 2 : 1;
2971		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2972			ath_setdefantenna(sc, otherant);
2973		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2974	}
2975
2976	if (bfaddr != 0) {
2977		/*
2978		 * Stop any current dma and put the new frame on the queue.
2979		 * This should never fail since we check above that no frames
2980		 * are still pending on the queue.
2981		 */
2982		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2983			DPRINTF(sc, ATH_DEBUG_ANY,
2984				"%s: beacon queue %u did not stop?\n",
2985				__func__, sc->sc_bhalq);
2986		}
2987		/* NB: cabq traffic should already be queued and primed */
2988		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2989		ath_hal_txstart(ah, sc->sc_bhalq);
2990
2991		sc->sc_stats.ast_be_xmit++;
2992	}
2993}
2994
2995static struct ath_buf *
2996ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2997{
2998	struct ath_vap *avp = ATH_VAP(vap);
2999	struct ath_txq *cabq = sc->sc_cabq;
3000	struct ath_buf *bf;
3001	struct mbuf *m;
3002	int nmcastq, error;
3003
3004	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
3005	    ("not running, state %d", vap->iv_state));
3006	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3007
3008	/*
3009	 * Update dynamic beacon contents.  If this returns
3010	 * non-zero then we need to remap the memory because
3011	 * the beacon frame changed size (probably because
3012	 * of the TIM bitmap).
3013	 */
3014	bf = avp->av_bcbuf;
3015	m = bf->bf_m;
3016	nmcastq = avp->av_mcastq.axq_depth;
3017	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
3018		/* XXX too conservative? */
3019		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3020		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3021					     bf->bf_segs, &bf->bf_nseg,
3022					     BUS_DMA_NOWAIT);
3023		if (error != 0) {
3024			if_printf(vap->iv_ifp,
3025			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3026			    __func__, error);
3027			return NULL;
3028		}
3029	}
3030	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
3031		DPRINTF(sc, ATH_DEBUG_BEACON,
3032		    "%s: cabq did not drain, mcastq %u cabq %u\n",
3033		    __func__, nmcastq, cabq->axq_depth);
3034		sc->sc_stats.ast_cabq_busy++;
3035		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
3036			/*
3037			 * CABQ traffic from a previous vap is still pending.
3038			 * We must drain the q before this beacon frame goes
3039			 * out as otherwise this vap's stations will get cab
3040			 * frames from a different vap.
3041			 * XXX could be slow causing us to miss DBA
3042			 */
3043			ath_tx_draintxq(sc, cabq);
3044		}
3045	}
3046	ath_beacon_setup(sc, bf);
3047	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3048
3049	/*
3050	 * Enable the CAB queue before the beacon queue to
3051	 * insure cab frames are triggered by this beacon.
3052	 */
3053	if (avp->av_boff.bo_tim[4] & 1) {
3054		struct ath_hal *ah = sc->sc_ah;
3055
3056		/* NB: only at DTIM */
3057		ATH_TXQ_LOCK(cabq);
3058		ATH_TXQ_LOCK(&avp->av_mcastq);
3059		if (nmcastq) {
3060			struct ath_buf *bfm;
3061
3062			/*
3063			 * Move frames from the s/w mcast q to the h/w cab q.
3064			 * XXX MORE_DATA bit
3065			 */
3066			bfm = TAILQ_FIRST(&avp->av_mcastq.axq_q);
3067			if (cabq->axq_link != NULL) {
3068				*cabq->axq_link = bfm->bf_daddr;
3069			} else
3070				ath_hal_puttxbuf(ah, cabq->axq_qnum,
3071					bfm->bf_daddr);
3072			ath_txqmove(cabq, &avp->av_mcastq);
3073
3074			sc->sc_stats.ast_cabq_xmit += nmcastq;
3075		}
3076		/* NB: gated by beacon so safe to start here */
3077		if (! TAILQ_EMPTY(&(cabq->axq_q)))
3078			ath_hal_txstart(ah, cabq->axq_qnum);
3079		ATH_TXQ_UNLOCK(&avp->av_mcastq);
3080		ATH_TXQ_UNLOCK(cabq);
3081	}
3082	return bf;
3083}
3084
3085static void
3086ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3087{
3088	struct ath_vap *avp = ATH_VAP(vap);
3089	struct ath_hal *ah = sc->sc_ah;
3090	struct ath_buf *bf;
3091	struct mbuf *m;
3092	int error;
3093
3094	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3095
3096	/*
3097	 * Update dynamic beacon contents.  If this returns
3098	 * non-zero then we need to remap the memory because
3099	 * the beacon frame changed size (probably because
3100	 * of the TIM bitmap).
3101	 */
3102	bf = avp->av_bcbuf;
3103	m = bf->bf_m;
3104	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3105		/* XXX too conservative? */
3106		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3107		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3108					     bf->bf_segs, &bf->bf_nseg,
3109					     BUS_DMA_NOWAIT);
3110		if (error != 0) {
3111			if_printf(vap->iv_ifp,
3112			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3113			    __func__, error);
3114			return;
3115		}
3116	}
3117	ath_beacon_setup(sc, bf);
3118	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3119
3120	/* NB: caller is known to have already stopped tx dma */
3121	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3122	ath_hal_txstart(ah, sc->sc_bhalq);
3123}
3124
3125/*
3126 * Reset the hardware after detecting beacons have stopped.
3127 */
3128static void
3129ath_bstuck_proc(void *arg, int pending)
3130{
3131	struct ath_softc *sc = arg;
3132	struct ifnet *ifp = sc->sc_ifp;
3133	uint32_t hangs = 0;
3134
3135	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3136		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3137
3138	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3139		sc->sc_bmisscount);
3140	sc->sc_stats.ast_bstuck++;
3141	/*
3142	 * This assumes that there's no simultaneous channel mode change
3143	 * occuring.
3144	 */
3145	ath_reset(ifp, ATH_RESET_NOLOSS);
3146}
3147
3148/*
3149 * Reclaim beacon resources and return buffer to the pool.
3150 */
3151static void
3152ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3153{
3154
3155	if (bf->bf_m != NULL) {
3156		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3157		m_freem(bf->bf_m);
3158		bf->bf_m = NULL;
3159	}
3160	if (bf->bf_node != NULL) {
3161		ieee80211_free_node(bf->bf_node);
3162		bf->bf_node = NULL;
3163	}
3164	TAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3165}
3166
3167/*
3168 * Reclaim beacon resources.
3169 */
3170static void
3171ath_beacon_free(struct ath_softc *sc)
3172{
3173	struct ath_buf *bf;
3174
3175	TAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3176		if (bf->bf_m != NULL) {
3177			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3178			m_freem(bf->bf_m);
3179			bf->bf_m = NULL;
3180		}
3181		if (bf->bf_node != NULL) {
3182			ieee80211_free_node(bf->bf_node);
3183			bf->bf_node = NULL;
3184		}
3185	}
3186}
3187
3188/*
3189 * Configure the beacon and sleep timers.
3190 *
3191 * When operating as an AP this resets the TSF and sets
3192 * up the hardware to notify us when we need to issue beacons.
3193 *
3194 * When operating in station mode this sets up the beacon
3195 * timers according to the timestamp of the last received
3196 * beacon and the current TSF, configures PCF and DTIM
3197 * handling, programs the sleep registers so the hardware
3198 * will wakeup in time to receive beacons, and configures
3199 * the beacon miss handling so we'll receive a BMISS
3200 * interrupt when we stop seeing beacons from the AP
3201 * we've associated with.
3202 */
3203static void
3204ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3205{
3206#define	TSF_TO_TU(_h,_l) \
3207	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3208#define	FUDGE	2
3209	struct ath_hal *ah = sc->sc_ah;
3210	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3211	struct ieee80211_node *ni;
3212	u_int32_t nexttbtt, intval, tsftu;
3213	u_int64_t tsf;
3214
3215	if (vap == NULL)
3216		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3217	ni = vap->iv_bss;
3218
3219	/* extract tstamp from last beacon and convert to TU */
3220	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3221			     LE_READ_4(ni->ni_tstamp.data));
3222	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3223	    ic->ic_opmode == IEEE80211_M_MBSS) {
3224		/*
3225		 * For multi-bss ap/mesh support beacons are either staggered
3226		 * evenly over N slots or burst together.  For the former
3227		 * arrange for the SWBA to be delivered for each slot.
3228		 * Slots that are not occupied will generate nothing.
3229		 */
3230		/* NB: the beacon interval is kept internally in TU's */
3231		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3232		if (sc->sc_stagbeacons)
3233			intval /= ATH_BCBUF;
3234	} else {
3235		/* NB: the beacon interval is kept internally in TU's */
3236		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3237	}
3238	if (nexttbtt == 0)		/* e.g. for ap mode */
3239		nexttbtt = intval;
3240	else if (intval)		/* NB: can be 0 for monitor mode */
3241		nexttbtt = roundup(nexttbtt, intval);
3242	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3243		__func__, nexttbtt, intval, ni->ni_intval);
3244	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3245		HAL_BEACON_STATE bs;
3246		int dtimperiod, dtimcount;
3247		int cfpperiod, cfpcount;
3248
3249		/*
3250		 * Setup dtim and cfp parameters according to
3251		 * last beacon we received (which may be none).
3252		 */
3253		dtimperiod = ni->ni_dtim_period;
3254		if (dtimperiod <= 0)		/* NB: 0 if not known */
3255			dtimperiod = 1;
3256		dtimcount = ni->ni_dtim_count;
3257		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3258			dtimcount = 0;		/* XXX? */
3259		cfpperiod = 1;			/* NB: no PCF support yet */
3260		cfpcount = 0;
3261		/*
3262		 * Pull nexttbtt forward to reflect the current
3263		 * TSF and calculate dtim+cfp state for the result.
3264		 */
3265		tsf = ath_hal_gettsf64(ah);
3266		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3267		do {
3268			nexttbtt += intval;
3269			if (--dtimcount < 0) {
3270				dtimcount = dtimperiod - 1;
3271				if (--cfpcount < 0)
3272					cfpcount = cfpperiod - 1;
3273			}
3274		} while (nexttbtt < tsftu);
3275		memset(&bs, 0, sizeof(bs));
3276		bs.bs_intval = intval;
3277		bs.bs_nexttbtt = nexttbtt;
3278		bs.bs_dtimperiod = dtimperiod*intval;
3279		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3280		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3281		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3282		bs.bs_cfpmaxduration = 0;
3283#if 0
3284		/*
3285		 * The 802.11 layer records the offset to the DTIM
3286		 * bitmap while receiving beacons; use it here to
3287		 * enable h/w detection of our AID being marked in
3288		 * the bitmap vector (to indicate frames for us are
3289		 * pending at the AP).
3290		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3291		 * XXX enable based on h/w rev for newer chips
3292		 */
3293		bs.bs_timoffset = ni->ni_timoff;
3294#endif
3295		/*
3296		 * Calculate the number of consecutive beacons to miss
3297		 * before taking a BMISS interrupt.
3298		 * Note that we clamp the result to at most 10 beacons.
3299		 */
3300		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3301		if (bs.bs_bmissthreshold > 10)
3302			bs.bs_bmissthreshold = 10;
3303		else if (bs.bs_bmissthreshold <= 0)
3304			bs.bs_bmissthreshold = 1;
3305
3306		/*
3307		 * Calculate sleep duration.  The configuration is
3308		 * given in ms.  We insure a multiple of the beacon
3309		 * period is used.  Also, if the sleep duration is
3310		 * greater than the DTIM period then it makes senses
3311		 * to make it a multiple of that.
3312		 *
3313		 * XXX fixed at 100ms
3314		 */
3315		bs.bs_sleepduration =
3316			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3317		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3318			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3319
3320		DPRINTF(sc, ATH_DEBUG_BEACON,
3321			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3322			, __func__
3323			, tsf, tsftu
3324			, bs.bs_intval
3325			, bs.bs_nexttbtt
3326			, bs.bs_dtimperiod
3327			, bs.bs_nextdtim
3328			, bs.bs_bmissthreshold
3329			, bs.bs_sleepduration
3330			, bs.bs_cfpperiod
3331			, bs.bs_cfpmaxduration
3332			, bs.bs_cfpnext
3333			, bs.bs_timoffset
3334		);
3335		ath_hal_intrset(ah, 0);
3336		ath_hal_beacontimers(ah, &bs);
3337		sc->sc_imask |= HAL_INT_BMISS;
3338		ath_hal_intrset(ah, sc->sc_imask);
3339	} else {
3340		ath_hal_intrset(ah, 0);
3341		if (nexttbtt == intval)
3342			intval |= HAL_BEACON_RESET_TSF;
3343		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3344			/*
3345			 * In IBSS mode enable the beacon timers but only
3346			 * enable SWBA interrupts if we need to manually
3347			 * prepare beacon frames.  Otherwise we use a
3348			 * self-linked tx descriptor and let the hardware
3349			 * deal with things.
3350			 */
3351			intval |= HAL_BEACON_ENA;
3352			if (!sc->sc_hasveol)
3353				sc->sc_imask |= HAL_INT_SWBA;
3354			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3355				/*
3356				 * Pull nexttbtt forward to reflect
3357				 * the current TSF.
3358				 */
3359				tsf = ath_hal_gettsf64(ah);
3360				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3361				do {
3362					nexttbtt += intval;
3363				} while (nexttbtt < tsftu);
3364			}
3365			ath_beaconq_config(sc);
3366		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3367		    ic->ic_opmode == IEEE80211_M_MBSS) {
3368			/*
3369			 * In AP/mesh mode we enable the beacon timers
3370			 * and SWBA interrupts to prepare beacon frames.
3371			 */
3372			intval |= HAL_BEACON_ENA;
3373			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3374			ath_beaconq_config(sc);
3375		}
3376		ath_hal_beaconinit(ah, nexttbtt, intval);
3377		sc->sc_bmisscount = 0;
3378		ath_hal_intrset(ah, sc->sc_imask);
3379		/*
3380		 * When using a self-linked beacon descriptor in
3381		 * ibss mode load it once here.
3382		 */
3383		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3384			ath_beacon_start_adhoc(sc, vap);
3385	}
3386	sc->sc_syncbeacon = 0;
3387#undef FUDGE
3388#undef TSF_TO_TU
3389}
3390
3391static void
3392ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3393{
3394	bus_addr_t *paddr = (bus_addr_t*) arg;
3395	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3396	*paddr = segs->ds_addr;
3397}
3398
3399static int
3400ath_descdma_setup(struct ath_softc *sc,
3401	struct ath_descdma *dd, ath_bufhead *head,
3402	const char *name, int nbuf, int ndesc)
3403{
3404#define	DS2PHYS(_dd, _ds) \
3405	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3406#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3407	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3408	struct ifnet *ifp = sc->sc_ifp;
3409	uint8_t *ds;
3410	struct ath_buf *bf;
3411	int i, bsize, error;
3412	int desc_len;
3413
3414	desc_len = sizeof(struct ath_desc);
3415
3416	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3417	    __func__, name, nbuf, ndesc);
3418
3419	dd->dd_name = name;
3420	dd->dd_desc_len = desc_len * nbuf * ndesc;
3421
3422	/*
3423	 * Merlin work-around:
3424	 * Descriptors that cross the 4KB boundary can't be used.
3425	 * Assume one skipped descriptor per 4KB page.
3426	 */
3427	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3428		int numdescpage = 4096 / (desc_len * ndesc);
3429		dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096;
3430	}
3431
3432	/*
3433	 * Setup DMA descriptor area.
3434	 */
3435	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3436		       PAGE_SIZE, 0,		/* alignment, bounds */
3437		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3438		       BUS_SPACE_MAXADDR,	/* highaddr */
3439		       NULL, NULL,		/* filter, filterarg */
3440		       dd->dd_desc_len,		/* maxsize */
3441		       1,			/* nsegments */
3442		       dd->dd_desc_len,		/* maxsegsize */
3443		       BUS_DMA_ALLOCNOW,	/* flags */
3444		       NULL,			/* lockfunc */
3445		       NULL,			/* lockarg */
3446		       &dd->dd_dmat);
3447	if (error != 0) {
3448		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3449		return error;
3450	}
3451
3452	/* allocate descriptors */
3453	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3454	if (error != 0) {
3455		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3456			"error %u\n", dd->dd_name, error);
3457		goto fail0;
3458	}
3459
3460	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3461				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3462				 &dd->dd_dmamap);
3463	if (error != 0) {
3464		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3465			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3466		goto fail1;
3467	}
3468
3469	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3470				dd->dd_desc, dd->dd_desc_len,
3471				ath_load_cb, &dd->dd_desc_paddr,
3472				BUS_DMA_NOWAIT);
3473	if (error != 0) {
3474		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3475			dd->dd_name, error);
3476		goto fail2;
3477	}
3478
3479	ds = (uint8_t *) dd->dd_desc;
3480	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3481	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3482	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3483
3484	/* allocate rx buffers */
3485	bsize = sizeof(struct ath_buf) * nbuf;
3486	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3487	if (bf == NULL) {
3488		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3489			dd->dd_name, bsize);
3490		goto fail3;
3491	}
3492	dd->dd_bufptr = bf;
3493
3494	TAILQ_INIT(head);
3495	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) {
3496		bf->bf_desc = (struct ath_desc *) ds;
3497		bf->bf_daddr = DS2PHYS(dd, ds);
3498		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3499			/*
3500			 * Merlin WAR: Skip descriptor addresses which
3501			 * cause 4KB boundary crossing along any point
3502			 * in the descriptor.
3503			 */
3504			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3505			     desc_len * ndesc)) {
3506				/* Start at the next page */
3507				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3508				bf->bf_desc = (struct ath_desc *) ds;
3509				bf->bf_daddr = DS2PHYS(dd, ds);
3510			}
3511		}
3512		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3513				&bf->bf_dmamap);
3514		if (error != 0) {
3515			if_printf(ifp, "unable to create dmamap for %s "
3516				"buffer %u, error %u\n", dd->dd_name, i, error);
3517			ath_descdma_cleanup(sc, dd, head);
3518			return error;
3519		}
3520		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3521		TAILQ_INSERT_TAIL(head, bf, bf_list);
3522	}
3523	return 0;
3524fail3:
3525	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3526fail2:
3527	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3528fail1:
3529	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3530fail0:
3531	bus_dma_tag_destroy(dd->dd_dmat);
3532	memset(dd, 0, sizeof(*dd));
3533	return error;
3534#undef DS2PHYS
3535#undef ATH_DESC_4KB_BOUND_CHECK
3536}
3537
3538static void
3539ath_descdma_cleanup(struct ath_softc *sc,
3540	struct ath_descdma *dd, ath_bufhead *head)
3541{
3542	struct ath_buf *bf;
3543	struct ieee80211_node *ni;
3544
3545	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3546	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3547	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3548	bus_dma_tag_destroy(dd->dd_dmat);
3549
3550	TAILQ_FOREACH(bf, head, bf_list) {
3551		if (bf->bf_m) {
3552			m_freem(bf->bf_m);
3553			bf->bf_m = NULL;
3554		}
3555		if (bf->bf_dmamap != NULL) {
3556			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3557			bf->bf_dmamap = NULL;
3558		}
3559		ni = bf->bf_node;
3560		bf->bf_node = NULL;
3561		if (ni != NULL) {
3562			/*
3563			 * Reclaim node reference.
3564			 */
3565			ieee80211_free_node(ni);
3566		}
3567	}
3568
3569	TAILQ_INIT(head);
3570	free(dd->dd_bufptr, M_ATHDEV);
3571	memset(dd, 0, sizeof(*dd));
3572}
3573
3574static int
3575ath_desc_alloc(struct ath_softc *sc)
3576{
3577	int error;
3578
3579	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3580			"rx", ath_rxbuf, 1);
3581	if (error != 0)
3582		return error;
3583
3584	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3585			"tx", ath_txbuf, ATH_TXDESC);
3586	if (error != 0) {
3587		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3588		return error;
3589	}
3590
3591	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3592			"beacon", ATH_BCBUF, 1);
3593	if (error != 0) {
3594		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3595		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3596		return error;
3597	}
3598	return 0;
3599}
3600
3601static void
3602ath_desc_free(struct ath_softc *sc)
3603{
3604
3605	if (sc->sc_bdma.dd_desc_len != 0)
3606		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3607	if (sc->sc_txdma.dd_desc_len != 0)
3608		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3609	if (sc->sc_rxdma.dd_desc_len != 0)
3610		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3611}
3612
3613static struct ieee80211_node *
3614ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3615{
3616	struct ieee80211com *ic = vap->iv_ic;
3617	struct ath_softc *sc = ic->ic_ifp->if_softc;
3618	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3619	struct ath_node *an;
3620
3621	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3622	if (an == NULL) {
3623		/* XXX stat+msg */
3624		return NULL;
3625	}
3626	ath_rate_node_init(sc, an);
3627
3628	/* Setup the mutex - there's no associd yet so set the name to NULL */
3629	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3630	    device_get_nameunit(sc->sc_dev), an);
3631	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3632
3633	/* XXX setup ath_tid */
3634	ath_tx_tid_init(sc, an);
3635
3636	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3637	return &an->an_node;
3638}
3639
3640static void
3641ath_node_cleanup(struct ieee80211_node *ni)
3642{
3643	struct ieee80211com *ic = ni->ni_ic;
3644	struct ath_softc *sc = ic->ic_ifp->if_softc;
3645
3646	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3647	ath_tx_node_flush(sc, ATH_NODE(ni));
3648	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3649	sc->sc_node_cleanup(ni);
3650}
3651
3652static void
3653ath_node_free(struct ieee80211_node *ni)
3654{
3655	struct ieee80211com *ic = ni->ni_ic;
3656	struct ath_softc *sc = ic->ic_ifp->if_softc;
3657
3658	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3659	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3660	sc->sc_node_free(ni);
3661}
3662
3663static void
3664ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3665{
3666	struct ieee80211com *ic = ni->ni_ic;
3667	struct ath_softc *sc = ic->ic_ifp->if_softc;
3668	struct ath_hal *ah = sc->sc_ah;
3669
3670	*rssi = ic->ic_node_getrssi(ni);
3671	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3672		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3673	else
3674		*noise = -95;		/* nominally correct */
3675}
3676
3677static int
3678ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3679{
3680	struct ath_hal *ah = sc->sc_ah;
3681	int error;
3682	struct mbuf *m;
3683	struct ath_desc *ds;
3684
3685	m = bf->bf_m;
3686	if (m == NULL) {
3687		/*
3688		 * NB: by assigning a page to the rx dma buffer we
3689		 * implicitly satisfy the Atheros requirement that
3690		 * this buffer be cache-line-aligned and sized to be
3691		 * multiple of the cache line size.  Not doing this
3692		 * causes weird stuff to happen (for the 5210 at least).
3693		 */
3694		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3695		if (m == NULL) {
3696			DPRINTF(sc, ATH_DEBUG_ANY,
3697				"%s: no mbuf/cluster\n", __func__);
3698			sc->sc_stats.ast_rx_nombuf++;
3699			return ENOMEM;
3700		}
3701		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3702
3703		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3704					     bf->bf_dmamap, m,
3705					     bf->bf_segs, &bf->bf_nseg,
3706					     BUS_DMA_NOWAIT);
3707		if (error != 0) {
3708			DPRINTF(sc, ATH_DEBUG_ANY,
3709			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3710			    __func__, error);
3711			sc->sc_stats.ast_rx_busdma++;
3712			m_freem(m);
3713			return error;
3714		}
3715		KASSERT(bf->bf_nseg == 1,
3716			("multi-segment packet; nseg %u", bf->bf_nseg));
3717		bf->bf_m = m;
3718	}
3719	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3720
3721	/*
3722	 * Setup descriptors.  For receive we always terminate
3723	 * the descriptor list with a self-linked entry so we'll
3724	 * not get overrun under high load (as can happen with a
3725	 * 5212 when ANI processing enables PHY error frames).
3726	 *
3727	 * To insure the last descriptor is self-linked we create
3728	 * each descriptor as self-linked and add it to the end.  As
3729	 * each additional descriptor is added the previous self-linked
3730	 * entry is ``fixed'' naturally.  This should be safe even
3731	 * if DMA is happening.  When processing RX interrupts we
3732	 * never remove/process the last, self-linked, entry on the
3733	 * descriptor list.  This insures the hardware always has
3734	 * someplace to write a new frame.
3735	 */
3736	/*
3737	 * 11N: we can no longer afford to self link the last descriptor.
3738	 * MAC acknowledges BA status as long as it copies frames to host
3739	 * buffer (or rx fifo). This can incorrectly acknowledge packets
3740	 * to a sender if last desc is self-linked.
3741	 */
3742	ds = bf->bf_desc;
3743	if (sc->sc_rxslink)
3744		ds->ds_link = bf->bf_daddr;	/* link to self */
3745	else
3746		ds->ds_link = 0;		/* terminate the list */
3747	ds->ds_data = bf->bf_segs[0].ds_addr;
3748	ath_hal_setuprxdesc(ah, ds
3749		, m->m_len		/* buffer size */
3750		, 0
3751	);
3752
3753	if (sc->sc_rxlink != NULL)
3754		*sc->sc_rxlink = bf->bf_daddr;
3755	sc->sc_rxlink = &ds->ds_link;
3756	return 0;
3757}
3758
3759/*
3760 * Extend 15-bit time stamp from rx descriptor to
3761 * a full 64-bit TSF using the specified TSF.
3762 */
3763static __inline u_int64_t
3764ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf)
3765{
3766	if ((tsf & 0x7fff) < rstamp)
3767		tsf -= 0x8000;
3768
3769	return ((tsf &~ 0x7fff) | rstamp);
3770}
3771
3772/*
3773 * Extend 32-bit time stamp from rx descriptor to
3774 * a full 64-bit TSF using the specified TSF.
3775 */
3776static __inline u_int64_t
3777ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf)
3778{
3779	u_int32_t tsf_low = tsf & 0xffffffff;
3780	u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp;
3781
3782	if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000))
3783		tsf64 -= 0x100000000ULL;
3784
3785	if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000))
3786		tsf64 += 0x100000000ULL;
3787
3788	return tsf64;
3789}
3790
3791/*
3792 * Extend the TSF from the RX descriptor to a full 64 bit TSF.
3793 * Earlier hardware versions only wrote the low 15 bits of the
3794 * TSF into the RX descriptor; later versions (AR5416 and up)
3795 * include the 32 bit TSF value.
3796 */
3797static __inline u_int64_t
3798ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf)
3799{
3800	if (sc->sc_rxtsf32)
3801		return ath_extend_tsf32(rstamp, tsf);
3802	else
3803		return ath_extend_tsf15(rstamp, tsf);
3804}
3805
3806/*
3807 * Intercept management frames to collect beacon rssi data
3808 * and to do ibss merges.
3809 */
3810static void
3811ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3812	int subtype, int rssi, int nf)
3813{
3814	struct ieee80211vap *vap = ni->ni_vap;
3815	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3816
3817	/*
3818	 * Call up first so subsequent work can use information
3819	 * potentially stored in the node (e.g. for ibss merge).
3820	 */
3821	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3822	switch (subtype) {
3823	case IEEE80211_FC0_SUBTYPE_BEACON:
3824		/* update rssi statistics for use by the hal */
3825		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3826		if (sc->sc_syncbeacon &&
3827		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3828			/*
3829			 * Resync beacon timers using the tsf of the beacon
3830			 * frame we just received.
3831			 */
3832			ath_beacon_config(sc, vap);
3833		}
3834		/* fall thru... */
3835	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3836		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3837		    vap->iv_state == IEEE80211_S_RUN) {
3838			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3839			uint64_t tsf = ath_extend_tsf(sc, rstamp,
3840				ath_hal_gettsf64(sc->sc_ah));
3841			/*
3842			 * Handle ibss merge as needed; check the tsf on the
3843			 * frame before attempting the merge.  The 802.11 spec
3844			 * says the station should change it's bssid to match
3845			 * the oldest station with the same ssid, where oldest
3846			 * is determined by the tsf.  Note that hardware
3847			 * reconfiguration happens through callback to
3848			 * ath_newstate as the state machine will go from
3849			 * RUN -> RUN when this happens.
3850			 */
3851			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3852				DPRINTF(sc, ATH_DEBUG_STATE,
3853				    "ibss merge, rstamp %u tsf %ju "
3854				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3855				    (uintmax_t)ni->ni_tstamp.tsf);
3856				(void) ieee80211_ibss_merge(ni);
3857			}
3858		}
3859		break;
3860	}
3861}
3862
3863/*
3864 * Set the default antenna.
3865 */
3866static void
3867ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3868{
3869	struct ath_hal *ah = sc->sc_ah;
3870
3871	/* XXX block beacon interrupts */
3872	ath_hal_setdefantenna(ah, antenna);
3873	if (sc->sc_defant != antenna)
3874		sc->sc_stats.ast_ant_defswitch++;
3875	sc->sc_defant = antenna;
3876	sc->sc_rxotherant = 0;
3877}
3878
3879static void
3880ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3881	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3882{
3883#define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3884#define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3885#define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3886#define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3887	struct ath_softc *sc = ifp->if_softc;
3888	const HAL_RATE_TABLE *rt;
3889	uint8_t rix;
3890
3891	rt = sc->sc_currates;
3892	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3893	rix = rt->rateCodeToIndex[rs->rs_rate];
3894	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3895	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3896#ifdef AH_SUPPORT_AR5416
3897	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3898	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3899		struct ieee80211com *ic = ifp->if_l2com;
3900
3901		if ((rs->rs_flags & HAL_RX_2040) == 0)
3902			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3903		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3904			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3905		else
3906			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3907		if ((rs->rs_flags & HAL_RX_GI) == 0)
3908			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3909	}
3910#endif
3911	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
3912	if (rs->rs_status & HAL_RXERR_CRC)
3913		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3914	/* XXX propagate other error flags from descriptor */
3915	sc->sc_rx_th.wr_antnoise = nf;
3916	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3917	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3918#undef CHAN_HT
3919#undef CHAN_HT20
3920#undef CHAN_HT40U
3921#undef CHAN_HT40D
3922}
3923
3924static void
3925ath_handle_micerror(struct ieee80211com *ic,
3926	struct ieee80211_frame *wh, int keyix)
3927{
3928	struct ieee80211_node *ni;
3929
3930	/* XXX recheck MIC to deal w/ chips that lie */
3931	/* XXX discard MIC errors on !data frames */
3932	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3933	if (ni != NULL) {
3934		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3935		ieee80211_free_node(ni);
3936	}
3937}
3938
3939/*
3940 * Only run the RX proc if it's not already running.
3941 * Since this may get run as part of the reset/flush path,
3942 * the task can't clash with an existing, running tasklet.
3943 */
3944static void
3945ath_rx_tasklet(void *arg, int npending)
3946{
3947	struct ath_softc *sc = arg;
3948
3949	CTR1(ATH_KTR_INTR, "ath_rx_proc: pending=%d", npending);
3950	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3951	ATH_PCU_LOCK(sc);
3952	if (sc->sc_inreset_cnt > 0) {
3953		device_printf(sc->sc_dev,
3954		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
3955		ATH_PCU_UNLOCK(sc);
3956		return;
3957	}
3958	ATH_PCU_UNLOCK(sc);
3959	ath_rx_proc(sc, 1);
3960}
3961
3962static void
3963ath_rx_proc(struct ath_softc *sc, int resched)
3964{
3965#define	PA2DESC(_sc, _pa) \
3966	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3967		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3968	struct ath_buf *bf;
3969	struct ifnet *ifp = sc->sc_ifp;
3970	struct ieee80211com *ic = ifp->if_l2com;
3971	struct ath_hal *ah = sc->sc_ah;
3972	struct ath_desc *ds;
3973	struct ath_rx_status *rs;
3974	struct mbuf *m;
3975	struct ieee80211_node *ni;
3976	int len, type, ngood;
3977	HAL_STATUS status;
3978	int16_t nf;
3979	u_int64_t tsf;
3980	int npkts = 0;
3981
3982	/* XXX we must not hold the ATH_LOCK here */
3983	ATH_UNLOCK_ASSERT(sc);
3984	ATH_PCU_UNLOCK_ASSERT(sc);
3985
3986	ATH_PCU_LOCK(sc);
3987	sc->sc_rxproc_cnt++;
3988	ATH_PCU_UNLOCK(sc);
3989
3990	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
3991	ngood = 0;
3992	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3993	sc->sc_stats.ast_rx_noise = nf;
3994	tsf = ath_hal_gettsf64(ah);
3995	do {
3996		bf = TAILQ_FIRST(&sc->sc_rxbuf);
3997		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
3998			if_printf(ifp, "%s: no buffer!\n", __func__);
3999			break;
4000		} else if (bf == NULL) {
4001			/*
4002			 * End of List:
4003			 * this can happen for non-self-linked RX chains
4004			 */
4005			sc->sc_stats.ast_rx_hitqueueend++;
4006			break;
4007		}
4008		m = bf->bf_m;
4009		if (m == NULL) {		/* NB: shouldn't happen */
4010			/*
4011			 * If mbuf allocation failed previously there
4012			 * will be no mbuf; try again to re-populate it.
4013			 */
4014			/* XXX make debug msg */
4015			if_printf(ifp, "%s: no mbuf!\n", __func__);
4016			TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
4017			goto rx_next;
4018		}
4019		ds = bf->bf_desc;
4020		if (ds->ds_link == bf->bf_daddr) {
4021			/* NB: never process the self-linked entry at the end */
4022			sc->sc_stats.ast_rx_hitqueueend++;
4023			break;
4024		}
4025		/* XXX sync descriptor memory */
4026		/*
4027		 * Must provide the virtual address of the current
4028		 * descriptor, the physical address, and the virtual
4029		 * address of the next descriptor in the h/w chain.
4030		 * This allows the HAL to look ahead to see if the
4031		 * hardware is done with a descriptor by checking the
4032		 * done bit in the following descriptor and the address
4033		 * of the current descriptor the DMA engine is working
4034		 * on.  All this is necessary because of our use of
4035		 * a self-linked list to avoid rx overruns.
4036		 */
4037		rs = &bf->bf_status.ds_rxstat;
4038		status = ath_hal_rxprocdesc(ah, ds,
4039				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4040#ifdef ATH_DEBUG
4041		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
4042			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
4043#endif
4044		if (status == HAL_EINPROGRESS)
4045			break;
4046
4047		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
4048		npkts++;
4049
4050		/* These aren't specifically errors */
4051#ifdef	AH_SUPPORT_AR5416
4052		if (rs->rs_flags & HAL_RX_GI)
4053			sc->sc_stats.ast_rx_halfgi++;
4054		if (rs->rs_flags & HAL_RX_2040)
4055			sc->sc_stats.ast_rx_2040++;
4056		if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
4057			sc->sc_stats.ast_rx_pre_crc_err++;
4058		if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
4059			sc->sc_stats.ast_rx_post_crc_err++;
4060		if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
4061			sc->sc_stats.ast_rx_decrypt_busy_err++;
4062		if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
4063			sc->sc_stats.ast_rx_hi_rx_chain++;
4064#endif /* AH_SUPPORT_AR5416 */
4065
4066		if (rs->rs_status != 0) {
4067			if (rs->rs_status & HAL_RXERR_CRC)
4068				sc->sc_stats.ast_rx_crcerr++;
4069			if (rs->rs_status & HAL_RXERR_FIFO)
4070				sc->sc_stats.ast_rx_fifoerr++;
4071			if (rs->rs_status & HAL_RXERR_PHY) {
4072				sc->sc_stats.ast_rx_phyerr++;
4073				/* Process DFS radar events */
4074				if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
4075				    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
4076					/* Since we're touching the frame data, sync it */
4077					bus_dmamap_sync(sc->sc_dmat,
4078					    bf->bf_dmamap,
4079					    BUS_DMASYNC_POSTREAD);
4080					/* Now pass it to the radar processing code */
4081					ath_dfs_process_phy_err(sc, mtod(m, char *), tsf, rs);
4082				}
4083
4084				/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
4085				if (rs->rs_phyerr < 64)
4086					sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
4087				goto rx_error;	/* NB: don't count in ierrors */
4088			}
4089			if (rs->rs_status & HAL_RXERR_DECRYPT) {
4090				/*
4091				 * Decrypt error.  If the error occurred
4092				 * because there was no hardware key, then
4093				 * let the frame through so the upper layers
4094				 * can process it.  This is necessary for 5210
4095				 * parts which have no way to setup a ``clear''
4096				 * key cache entry.
4097				 *
4098				 * XXX do key cache faulting
4099				 */
4100				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
4101					goto rx_accept;
4102				sc->sc_stats.ast_rx_badcrypt++;
4103			}
4104			if (rs->rs_status & HAL_RXERR_MIC) {
4105				sc->sc_stats.ast_rx_badmic++;
4106				/*
4107				 * Do minimal work required to hand off
4108				 * the 802.11 header for notification.
4109				 */
4110				/* XXX frag's and qos frames */
4111				len = rs->rs_datalen;
4112				if (len >= sizeof (struct ieee80211_frame)) {
4113					bus_dmamap_sync(sc->sc_dmat,
4114					    bf->bf_dmamap,
4115					    BUS_DMASYNC_POSTREAD);
4116					ath_handle_micerror(ic,
4117					    mtod(m, struct ieee80211_frame *),
4118					    sc->sc_splitmic ?
4119						rs->rs_keyix-32 : rs->rs_keyix);
4120				}
4121			}
4122			ifp->if_ierrors++;
4123rx_error:
4124			/*
4125			 * Cleanup any pending partial frame.
4126			 */
4127			if (sc->sc_rxpending != NULL) {
4128				m_freem(sc->sc_rxpending);
4129				sc->sc_rxpending = NULL;
4130			}
4131			/*
4132			 * When a tap is present pass error frames
4133			 * that have been requested.  By default we
4134			 * pass decrypt+mic errors but others may be
4135			 * interesting (e.g. crc).
4136			 */
4137			if (ieee80211_radiotap_active(ic) &&
4138			    (rs->rs_status & sc->sc_monpass)) {
4139				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4140				    BUS_DMASYNC_POSTREAD);
4141				/* NB: bpf needs the mbuf length setup */
4142				len = rs->rs_datalen;
4143				m->m_pkthdr.len = m->m_len = len;
4144				bf->bf_m = NULL;
4145				ath_rx_tap(ifp, m, rs, tsf, nf);
4146				ieee80211_radiotap_rx_all(ic, m);
4147				m_freem(m);
4148			}
4149			/* XXX pass MIC errors up for s/w reclaculation */
4150			goto rx_next;
4151		}
4152rx_accept:
4153		/*
4154		 * Sync and unmap the frame.  At this point we're
4155		 * committed to passing the mbuf somewhere so clear
4156		 * bf_m; this means a new mbuf must be allocated
4157		 * when the rx descriptor is setup again to receive
4158		 * another frame.
4159		 */
4160		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4161		    BUS_DMASYNC_POSTREAD);
4162		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4163		bf->bf_m = NULL;
4164
4165		len = rs->rs_datalen;
4166		m->m_len = len;
4167
4168		if (rs->rs_more) {
4169			/*
4170			 * Frame spans multiple descriptors; save
4171			 * it for the next completed descriptor, it
4172			 * will be used to construct a jumbogram.
4173			 */
4174			if (sc->sc_rxpending != NULL) {
4175				/* NB: max frame size is currently 2 clusters */
4176				sc->sc_stats.ast_rx_toobig++;
4177				m_freem(sc->sc_rxpending);
4178			}
4179			m->m_pkthdr.rcvif = ifp;
4180			m->m_pkthdr.len = len;
4181			sc->sc_rxpending = m;
4182			goto rx_next;
4183		} else if (sc->sc_rxpending != NULL) {
4184			/*
4185			 * This is the second part of a jumbogram,
4186			 * chain it to the first mbuf, adjust the
4187			 * frame length, and clear the rxpending state.
4188			 */
4189			sc->sc_rxpending->m_next = m;
4190			sc->sc_rxpending->m_pkthdr.len += len;
4191			m = sc->sc_rxpending;
4192			sc->sc_rxpending = NULL;
4193		} else {
4194			/*
4195			 * Normal single-descriptor receive; setup
4196			 * the rcvif and packet length.
4197			 */
4198			m->m_pkthdr.rcvif = ifp;
4199			m->m_pkthdr.len = len;
4200		}
4201
4202		/*
4203		 * Validate rs->rs_antenna.
4204		 *
4205		 * Some users w/ AR9285 NICs have reported crashes
4206		 * here because rs_antenna field is bogusly large.
4207		 * Let's enforce the maximum antenna limit of 8
4208		 * (and it shouldn't be hard coded, but that's a
4209		 * separate problem) and if there's an issue, print
4210		 * out an error and adjust rs_antenna to something
4211		 * sensible.
4212		 *
4213		 * This code should be removed once the actual
4214		 * root cause of the issue has been identified.
4215		 * For example, it may be that the rs_antenna
4216		 * field is only valid for the lsat frame of
4217		 * an aggregate and it just happens that it is
4218		 * "mostly" right. (This is a general statement -
4219		 * the majority of the statistics are only valid
4220		 * for the last frame in an aggregate.
4221		 */
4222		if (rs->rs_antenna > 7) {
4223			device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
4224			    __func__, rs->rs_antenna);
4225#ifdef	ATH_DEBUG
4226			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
4227#endif /* ATH_DEBUG */
4228			rs->rs_antenna = 0;	/* XXX better than nothing */
4229		}
4230
4231		ifp->if_ipackets++;
4232		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
4233
4234		/*
4235		 * Populate the rx status block.  When there are bpf
4236		 * listeners we do the additional work to provide
4237		 * complete status.  Otherwise we fill in only the
4238		 * material required by ieee80211_input.  Note that
4239		 * noise setting is filled in above.
4240		 */
4241		if (ieee80211_radiotap_active(ic))
4242			ath_rx_tap(ifp, m, rs, tsf, nf);
4243
4244		/*
4245		 * From this point on we assume the frame is at least
4246		 * as large as ieee80211_frame_min; verify that.
4247		 */
4248		if (len < IEEE80211_MIN_LEN) {
4249			if (!ieee80211_radiotap_active(ic)) {
4250				DPRINTF(sc, ATH_DEBUG_RECV,
4251				    "%s: short packet %d\n", __func__, len);
4252				sc->sc_stats.ast_rx_tooshort++;
4253			} else {
4254				/* NB: in particular this captures ack's */
4255				ieee80211_radiotap_rx_all(ic, m);
4256			}
4257			m_freem(m);
4258			goto rx_next;
4259		}
4260
4261		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
4262			const HAL_RATE_TABLE *rt = sc->sc_currates;
4263			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
4264
4265			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
4266			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
4267		}
4268
4269		m_adj(m, -IEEE80211_CRC_LEN);
4270
4271		/*
4272		 * Locate the node for sender, track state, and then
4273		 * pass the (referenced) node up to the 802.11 layer
4274		 * for its use.
4275		 */
4276		ni = ieee80211_find_rxnode_withkey(ic,
4277			mtod(m, const struct ieee80211_frame_min *),
4278			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4279				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4280		sc->sc_lastrs = rs;
4281
4282#ifdef	AH_SUPPORT_AR5416
4283		if (rs->rs_isaggr)
4284			sc->sc_stats.ast_rx_agg++;
4285#endif /* AH_SUPPORT_AR5416 */
4286
4287		if (ni != NULL) {
4288			/*
4289 			 * Only punt packets for ampdu reorder processing for
4290			 * 11n nodes; net80211 enforces that M_AMPDU is only
4291			 * set for 11n nodes.
4292 			 */
4293			if (ni->ni_flags & IEEE80211_NODE_HT)
4294				m->m_flags |= M_AMPDU;
4295
4296			/*
4297			 * Sending station is known, dispatch directly.
4298			 */
4299			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
4300			ieee80211_free_node(ni);
4301			/*
4302			 * Arrange to update the last rx timestamp only for
4303			 * frames from our ap when operating in station mode.
4304			 * This assumes the rx key is always setup when
4305			 * associated.
4306			 */
4307			if (ic->ic_opmode == IEEE80211_M_STA &&
4308			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4309				ngood++;
4310		} else {
4311			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
4312		}
4313		/*
4314		 * Track rx rssi and do any rx antenna management.
4315		 */
4316		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4317		if (sc->sc_diversity) {
4318			/*
4319			 * When using fast diversity, change the default rx
4320			 * antenna if diversity chooses the other antenna 3
4321			 * times in a row.
4322			 */
4323			if (sc->sc_defant != rs->rs_antenna) {
4324				if (++sc->sc_rxotherant >= 3)
4325					ath_setdefantenna(sc, rs->rs_antenna);
4326			} else
4327				sc->sc_rxotherant = 0;
4328		}
4329
4330		/* Newer school diversity - kite specific for now */
4331		/* XXX perhaps migrate the normal diversity code to this? */
4332		if ((ah)->ah_rxAntCombDiversity)
4333			(*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz);
4334
4335		if (sc->sc_softled) {
4336			/*
4337			 * Blink for any data frame.  Otherwise do a
4338			 * heartbeat-style blink when idle.  The latter
4339			 * is mainly for station mode where we depend on
4340			 * periodic beacon frames to trigger the poll event.
4341			 */
4342			if (type == IEEE80211_FC0_TYPE_DATA) {
4343				const HAL_RATE_TABLE *rt = sc->sc_currates;
4344				ath_led_event(sc,
4345				    rt->rateCodeToIndex[rs->rs_rate]);
4346			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4347				ath_led_event(sc, 0);
4348		}
4349rx_next:
4350		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4351	} while (ath_rxbuf_init(sc, bf) == 0);
4352
4353	/* rx signal state monitoring */
4354	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4355	if (ngood)
4356		sc->sc_lastrx = tsf;
4357
4358	CTR2(ATH_KTR_INTR, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
4359	/* Queue DFS tasklet if needed */
4360	if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
4361		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
4362
4363	/*
4364	 * Now that all the RX frames were handled that
4365	 * need to be handled, kick the PCU if there's
4366	 * been an RXEOL condition.
4367	 */
4368	ATH_PCU_LOCK(sc);
4369	if (resched && sc->sc_kickpcu) {
4370		CTR0(ATH_KTR_ERR, "ath_rx_proc: kickpcu");
4371		device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
4372		    __func__, npkts);
4373
4374		/* XXX rxslink? */
4375		/*
4376		 * XXX can we hold the PCU lock here?
4377		 * Are there any net80211 buffer calls involved?
4378		 */
4379		bf = TAILQ_FIRST(&sc->sc_rxbuf);
4380		ath_hal_putrxbuf(ah, bf->bf_daddr);
4381		ath_hal_rxena(ah);		/* enable recv descriptors */
4382		ath_mode_init(sc);		/* set filters, etc. */
4383		ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4384
4385		ath_hal_intrset(ah, sc->sc_imask);
4386		sc->sc_kickpcu = 0;
4387	}
4388	ATH_PCU_UNLOCK(sc);
4389
4390	/* XXX check this inside of IF_LOCK? */
4391	if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
4392#ifdef IEEE80211_SUPPORT_SUPERG
4393		ieee80211_ff_age_all(ic, 100);
4394#endif
4395		if (!IFQ_IS_EMPTY(&ifp->if_snd))
4396			ath_start(ifp);
4397	}
4398#undef PA2DESC
4399
4400	ATH_PCU_LOCK(sc);
4401	sc->sc_rxproc_cnt--;
4402	ATH_PCU_UNLOCK(sc);
4403}
4404
4405static void
4406ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4407{
4408	txq->axq_qnum = qnum;
4409	txq->axq_ac = 0;
4410	txq->axq_depth = 0;
4411	txq->axq_aggr_depth = 0;
4412	txq->axq_intrcnt = 0;
4413	txq->axq_link = NULL;
4414	txq->axq_softc = sc;
4415	TAILQ_INIT(&txq->axq_q);
4416	TAILQ_INIT(&txq->axq_tidq);
4417	ATH_TXQ_LOCK_INIT(sc, txq);
4418}
4419
4420/*
4421 * Setup a h/w transmit queue.
4422 */
4423static struct ath_txq *
4424ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4425{
4426#define	N(a)	(sizeof(a)/sizeof(a[0]))
4427	struct ath_hal *ah = sc->sc_ah;
4428	HAL_TXQ_INFO qi;
4429	int qnum;
4430
4431	memset(&qi, 0, sizeof(qi));
4432	qi.tqi_subtype = subtype;
4433	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4434	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4435	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4436	/*
4437	 * Enable interrupts only for EOL and DESC conditions.
4438	 * We mark tx descriptors to receive a DESC interrupt
4439	 * when a tx queue gets deep; otherwise waiting for the
4440	 * EOL to reap descriptors.  Note that this is done to
4441	 * reduce interrupt load and this only defers reaping
4442	 * descriptors, never transmitting frames.  Aside from
4443	 * reducing interrupts this also permits more concurrency.
4444	 * The only potential downside is if the tx queue backs
4445	 * up in which case the top half of the kernel may backup
4446	 * due to a lack of tx descriptors.
4447	 */
4448	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4449	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4450	if (qnum == -1) {
4451		/*
4452		 * NB: don't print a message, this happens
4453		 * normally on parts with too few tx queues
4454		 */
4455		return NULL;
4456	}
4457	if (qnum >= N(sc->sc_txq)) {
4458		device_printf(sc->sc_dev,
4459			"hal qnum %u out of range, max %zu!\n",
4460			qnum, N(sc->sc_txq));
4461		ath_hal_releasetxqueue(ah, qnum);
4462		return NULL;
4463	}
4464	if (!ATH_TXQ_SETUP(sc, qnum)) {
4465		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4466		sc->sc_txqsetup |= 1<<qnum;
4467	}
4468	return &sc->sc_txq[qnum];
4469#undef N
4470}
4471
4472/*
4473 * Setup a hardware data transmit queue for the specified
4474 * access control.  The hal may not support all requested
4475 * queues in which case it will return a reference to a
4476 * previously setup queue.  We record the mapping from ac's
4477 * to h/w queues for use by ath_tx_start and also track
4478 * the set of h/w queues being used to optimize work in the
4479 * transmit interrupt handler and related routines.
4480 */
4481static int
4482ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4483{
4484#define	N(a)	(sizeof(a)/sizeof(a[0]))
4485	struct ath_txq *txq;
4486
4487	if (ac >= N(sc->sc_ac2q)) {
4488		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4489			ac, N(sc->sc_ac2q));
4490		return 0;
4491	}
4492	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4493	if (txq != NULL) {
4494		txq->axq_ac = ac;
4495		sc->sc_ac2q[ac] = txq;
4496		return 1;
4497	} else
4498		return 0;
4499#undef N
4500}
4501
4502/*
4503 * Update WME parameters for a transmit queue.
4504 */
4505static int
4506ath_txq_update(struct ath_softc *sc, int ac)
4507{
4508#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4509#define	ATH_TXOP_TO_US(v)		(v<<5)
4510	struct ifnet *ifp = sc->sc_ifp;
4511	struct ieee80211com *ic = ifp->if_l2com;
4512	struct ath_txq *txq = sc->sc_ac2q[ac];
4513	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4514	struct ath_hal *ah = sc->sc_ah;
4515	HAL_TXQ_INFO qi;
4516
4517	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4518#ifdef IEEE80211_SUPPORT_TDMA
4519	if (sc->sc_tdma) {
4520		/*
4521		 * AIFS is zero so there's no pre-transmit wait.  The
4522		 * burst time defines the slot duration and is configured
4523		 * through net80211.  The QCU is setup to not do post-xmit
4524		 * back off, lockout all lower-priority QCU's, and fire
4525		 * off the DMA beacon alert timer which is setup based
4526		 * on the slot configuration.
4527		 */
4528		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4529			      | HAL_TXQ_TXERRINT_ENABLE
4530			      | HAL_TXQ_TXURNINT_ENABLE
4531			      | HAL_TXQ_TXEOLINT_ENABLE
4532			      | HAL_TXQ_DBA_GATED
4533			      | HAL_TXQ_BACKOFF_DISABLE
4534			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4535			      ;
4536		qi.tqi_aifs = 0;
4537		/* XXX +dbaprep? */
4538		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4539		qi.tqi_burstTime = qi.tqi_readyTime;
4540	} else {
4541#endif
4542		/*
4543		 * XXX shouldn't this just use the default flags
4544		 * used in the previous queue setup?
4545		 */
4546		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4547			      | HAL_TXQ_TXERRINT_ENABLE
4548			      | HAL_TXQ_TXDESCINT_ENABLE
4549			      | HAL_TXQ_TXURNINT_ENABLE
4550			      | HAL_TXQ_TXEOLINT_ENABLE
4551			      ;
4552		qi.tqi_aifs = wmep->wmep_aifsn;
4553		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4554		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4555		qi.tqi_readyTime = 0;
4556		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4557#ifdef IEEE80211_SUPPORT_TDMA
4558	}
4559#endif
4560
4561	DPRINTF(sc, ATH_DEBUG_RESET,
4562	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4563	    __func__, txq->axq_qnum, qi.tqi_qflags,
4564	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4565
4566	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4567		if_printf(ifp, "unable to update hardware queue "
4568			"parameters for %s traffic!\n",
4569			ieee80211_wme_acnames[ac]);
4570		return 0;
4571	} else {
4572		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4573		return 1;
4574	}
4575#undef ATH_TXOP_TO_US
4576#undef ATH_EXPONENT_TO_VALUE
4577}
4578
4579/*
4580 * Callback from the 802.11 layer to update WME parameters.
4581 */
4582static int
4583ath_wme_update(struct ieee80211com *ic)
4584{
4585	struct ath_softc *sc = ic->ic_ifp->if_softc;
4586
4587	return !ath_txq_update(sc, WME_AC_BE) ||
4588	    !ath_txq_update(sc, WME_AC_BK) ||
4589	    !ath_txq_update(sc, WME_AC_VI) ||
4590	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4591}
4592
4593/*
4594 * Reclaim resources for a setup queue.
4595 */
4596static void
4597ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4598{
4599
4600	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4601	ATH_TXQ_LOCK_DESTROY(txq);
4602	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4603}
4604
4605/*
4606 * Reclaim all tx queue resources.
4607 */
4608static void
4609ath_tx_cleanup(struct ath_softc *sc)
4610{
4611	int i;
4612
4613	ATH_TXBUF_LOCK_DESTROY(sc);
4614	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4615		if (ATH_TXQ_SETUP(sc, i))
4616			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4617}
4618
4619/*
4620 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4621 * using the current rates in sc_rixmap.
4622 */
4623int
4624ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4625{
4626	int rix = sc->sc_rixmap[rate];
4627	/* NB: return lowest rix for invalid rate */
4628	return (rix == 0xff ? 0 : rix);
4629}
4630
4631static void
4632ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4633    struct ath_buf *bf)
4634{
4635	struct ieee80211_node *ni = bf->bf_node;
4636	struct ifnet *ifp = sc->sc_ifp;
4637	struct ieee80211com *ic = ifp->if_l2com;
4638	int sr, lr, pri;
4639
4640	if (ts->ts_status == 0) {
4641		u_int8_t txant = ts->ts_antenna;
4642		sc->sc_stats.ast_ant_tx[txant]++;
4643		sc->sc_ant_tx[txant]++;
4644		if (ts->ts_finaltsi != 0)
4645			sc->sc_stats.ast_tx_altrate++;
4646		pri = M_WME_GETAC(bf->bf_m);
4647		if (pri >= WME_AC_VO)
4648			ic->ic_wme.wme_hipri_traffic++;
4649		if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4650			ni->ni_inact = ni->ni_inact_reload;
4651	} else {
4652		if (ts->ts_status & HAL_TXERR_XRETRY)
4653			sc->sc_stats.ast_tx_xretries++;
4654		if (ts->ts_status & HAL_TXERR_FIFO)
4655			sc->sc_stats.ast_tx_fifoerr++;
4656		if (ts->ts_status & HAL_TXERR_FILT)
4657			sc->sc_stats.ast_tx_filtered++;
4658		if (ts->ts_status & HAL_TXERR_XTXOP)
4659			sc->sc_stats.ast_tx_xtxop++;
4660		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4661			sc->sc_stats.ast_tx_timerexpired++;
4662
4663		if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
4664			sc->sc_stats.ast_tx_data_underrun++;
4665		if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
4666			sc->sc_stats.ast_tx_delim_underrun++;
4667
4668		if (bf->bf_m->m_flags & M_FF)
4669			sc->sc_stats.ast_ff_txerr++;
4670	}
4671	/* XXX when is this valid? */
4672	if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
4673		sc->sc_stats.ast_tx_desccfgerr++;
4674
4675	sr = ts->ts_shortretry;
4676	lr = ts->ts_longretry;
4677	sc->sc_stats.ast_tx_shortretry += sr;
4678	sc->sc_stats.ast_tx_longretry += lr;
4679
4680}
4681
4682/*
4683 * The default completion. If fail is 1, this means
4684 * "please don't retry the frame, and just return -1 status
4685 * to the net80211 stack.
4686 */
4687void
4688ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4689{
4690	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4691	int st;
4692
4693	if (fail == 1)
4694		st = -1;
4695	else
4696		st = ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) ?
4697		    ts->ts_status : HAL_TXERR_XRETRY;
4698
4699	if (bf->bf_state.bfs_dobaw)
4700		device_printf(sc->sc_dev,
4701		    "%s: dobaw should've been cleared!\n", __func__);
4702	if (bf->bf_next != NULL)
4703		device_printf(sc->sc_dev,
4704		    "%s: bf_next not NULL!\n", __func__);
4705
4706	/*
4707	 * Do any tx complete callback.  Note this must
4708	 * be done before releasing the node reference.
4709	 * This will free the mbuf, release the net80211
4710	 * node and recycle the ath_buf.
4711	 */
4712	ath_tx_freebuf(sc, bf, st);
4713}
4714
4715/*
4716 * Update rate control with the given completion status.
4717 */
4718void
4719ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4720    struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4721    int nframes, int nbad)
4722{
4723	struct ath_node *an;
4724
4725	/* Only for unicast frames */
4726	if (ni == NULL)
4727		return;
4728
4729	an = ATH_NODE(ni);
4730
4731	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4732		ATH_NODE_LOCK(an);
4733		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4734		ATH_NODE_UNLOCK(an);
4735	}
4736}
4737
4738/*
4739 * Update the busy status of the last frame on the free list.
4740 * When doing TDMA, the busy flag tracks whether the hardware
4741 * currently points to this buffer or not, and thus gated DMA
4742 * may restart by re-reading the last descriptor in this
4743 * buffer.
4744 *
4745 * This should be called in the completion function once one
4746 * of the buffers has been used.
4747 */
4748static void
4749ath_tx_update_busy(struct ath_softc *sc)
4750{
4751	struct ath_buf *last;
4752
4753	/*
4754	 * Since the last frame may still be marked
4755	 * as ATH_BUF_BUSY, unmark it here before
4756	 * finishing the frame processing.
4757	 * Since we've completed a frame (aggregate
4758	 * or otherwise), the hardware has moved on
4759	 * and is no longer referencing the previous
4760	 * descriptor.
4761	 */
4762	ATH_TXBUF_LOCK_ASSERT(sc);
4763	last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
4764	if (last != NULL)
4765		last->bf_flags &= ~ATH_BUF_BUSY;
4766}
4767
4768
4769/*
4770 * Process completed xmit descriptors from the specified queue.
4771 * Kick the packet scheduler if needed. This can occur from this
4772 * particular task.
4773 */
4774static int
4775ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4776{
4777	struct ath_hal *ah = sc->sc_ah;
4778	struct ath_buf *bf;
4779	struct ath_desc *ds;
4780	struct ath_tx_status *ts;
4781	struct ieee80211_node *ni;
4782	struct ath_node *an;
4783	int nacked;
4784	HAL_STATUS status;
4785
4786	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4787		__func__, txq->axq_qnum,
4788		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4789		txq->axq_link);
4790	nacked = 0;
4791	for (;;) {
4792		ATH_TXQ_LOCK(txq);
4793		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4794		bf = TAILQ_FIRST(&txq->axq_q);
4795		if (bf == NULL) {
4796			ATH_TXQ_UNLOCK(txq);
4797			break;
4798		}
4799		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4800		ts = &bf->bf_status.ds_txstat;
4801		status = ath_hal_txprocdesc(ah, ds, ts);
4802#ifdef ATH_DEBUG
4803		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4804			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4805			    status == HAL_OK);
4806#endif
4807		if (status == HAL_EINPROGRESS) {
4808			ATH_TXQ_UNLOCK(txq);
4809			break;
4810		}
4811		ATH_TXQ_REMOVE(txq, bf, bf_list);
4812#ifdef IEEE80211_SUPPORT_TDMA
4813		if (txq->axq_depth > 0) {
4814			/*
4815			 * More frames follow.  Mark the buffer busy
4816			 * so it's not re-used while the hardware may
4817			 * still re-read the link field in the descriptor.
4818			 *
4819			 * Use the last buffer in an aggregate as that
4820			 * is where the hardware may be - intermediate
4821			 * descriptors won't be "busy".
4822			 */
4823			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4824		} else
4825#else
4826		if (txq->axq_depth == 0)
4827#endif
4828			txq->axq_link = NULL;
4829		if (bf->bf_state.bfs_aggr)
4830			txq->axq_aggr_depth--;
4831
4832		ni = bf->bf_node;
4833		/*
4834		 * If unicast frame was ack'd update RSSI,
4835		 * including the last rx time used to
4836		 * workaround phantom bmiss interrupts.
4837		 */
4838		if (ni != NULL && ts->ts_status == 0 &&
4839		    ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)) {
4840			nacked++;
4841			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4842			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4843				ts->ts_rssi);
4844		}
4845		ATH_TXQ_UNLOCK(txq);
4846
4847		/* If unicast frame, update general statistics */
4848		if (ni != NULL) {
4849			an = ATH_NODE(ni);
4850			/* update statistics */
4851			ath_tx_update_stats(sc, ts, bf);
4852		}
4853
4854		/*
4855		 * Call the completion handler.
4856		 * The completion handler is responsible for
4857		 * calling the rate control code.
4858		 *
4859		 * Frames with no completion handler get the
4860		 * rate control code called here.
4861		 */
4862		if (bf->bf_comp == NULL) {
4863			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4864			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4865				/*
4866				 * XXX assume this isn't an aggregate
4867				 * frame.
4868				 */
4869				ath_tx_update_ratectrl(sc, ni,
4870				     bf->bf_state.bfs_rc, ts,
4871				    bf->bf_state.bfs_pktlen, 1,
4872				    (ts->ts_status == 0 ? 0 : 1));
4873			}
4874			ath_tx_default_comp(sc, bf, 0);
4875		} else
4876			bf->bf_comp(sc, bf, 0);
4877	}
4878#ifdef IEEE80211_SUPPORT_SUPERG
4879	/*
4880	 * Flush fast-frame staging queue when traffic slows.
4881	 */
4882	if (txq->axq_depth <= 1)
4883		ieee80211_ff_flush(ic, txq->axq_ac);
4884#endif
4885
4886	/* Kick the TXQ scheduler */
4887	if (dosched) {
4888		ATH_TXQ_LOCK(txq);
4889		ath_txq_sched(sc, txq);
4890		ATH_TXQ_UNLOCK(txq);
4891	}
4892
4893	return nacked;
4894}
4895
4896#define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4897
4898/*
4899 * Deferred processing of transmit interrupt; special-cased
4900 * for a single hardware transmit queue (e.g. 5210 and 5211).
4901 */
4902static void
4903ath_tx_proc_q0(void *arg, int npending)
4904{
4905	struct ath_softc *sc = arg;
4906	struct ifnet *ifp = sc->sc_ifp;
4907	uint32_t txqs;
4908
4909	ATH_PCU_LOCK(sc);
4910	sc->sc_txproc_cnt++;
4911	txqs = sc->sc_txq_active;
4912	sc->sc_txq_active &= ~txqs;
4913	ATH_PCU_UNLOCK(sc);
4914
4915	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4916		/* XXX why is lastrx updated in tx code? */
4917		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4918	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4919		ath_tx_processq(sc, sc->sc_cabq, 1);
4920	/* XXX check this inside of IF_LOCK? */
4921	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4922	sc->sc_wd_timer = 0;
4923
4924	if (sc->sc_softled)
4925		ath_led_event(sc, sc->sc_txrix);
4926
4927	ATH_PCU_LOCK(sc);
4928	sc->sc_txproc_cnt--;
4929	ATH_PCU_UNLOCK(sc);
4930
4931	ath_start(ifp);
4932}
4933
4934/*
4935 * Deferred processing of transmit interrupt; special-cased
4936 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4937 */
4938static void
4939ath_tx_proc_q0123(void *arg, int npending)
4940{
4941	struct ath_softc *sc = arg;
4942	struct ifnet *ifp = sc->sc_ifp;
4943	int nacked;
4944	uint32_t txqs;
4945
4946	ATH_PCU_LOCK(sc);
4947	sc->sc_txproc_cnt++;
4948	txqs = sc->sc_txq_active;
4949	sc->sc_txq_active &= ~txqs;
4950	ATH_PCU_UNLOCK(sc);
4951
4952	/*
4953	 * Process each active queue.
4954	 */
4955	nacked = 0;
4956	if (TXQACTIVE(txqs, 0))
4957		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4958	if (TXQACTIVE(txqs, 1))
4959		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4960	if (TXQACTIVE(txqs, 2))
4961		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4962	if (TXQACTIVE(txqs, 3))
4963		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4964	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4965		ath_tx_processq(sc, sc->sc_cabq, 1);
4966	if (nacked)
4967		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4968
4969	/* XXX check this inside of IF_LOCK? */
4970	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4971	sc->sc_wd_timer = 0;
4972
4973	if (sc->sc_softled)
4974		ath_led_event(sc, sc->sc_txrix);
4975
4976	ATH_PCU_LOCK(sc);
4977	sc->sc_txproc_cnt--;
4978	ATH_PCU_UNLOCK(sc);
4979
4980	ath_start(ifp);
4981}
4982
4983/*
4984 * Deferred processing of transmit interrupt.
4985 */
4986static void
4987ath_tx_proc(void *arg, int npending)
4988{
4989	struct ath_softc *sc = arg;
4990	struct ifnet *ifp = sc->sc_ifp;
4991	int i, nacked;
4992	uint32_t txqs;
4993
4994	ATH_PCU_LOCK(sc);
4995	sc->sc_txproc_cnt++;
4996	txqs = sc->sc_txq_active;
4997	sc->sc_txq_active &= ~txqs;
4998	ATH_PCU_UNLOCK(sc);
4999
5000	/*
5001	 * Process each active queue.
5002	 */
5003	nacked = 0;
5004	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5005		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
5006			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
5007	if (nacked)
5008		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5009
5010	/* XXX check this inside of IF_LOCK? */
5011	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5012	sc->sc_wd_timer = 0;
5013
5014	if (sc->sc_softled)
5015		ath_led_event(sc, sc->sc_txrix);
5016
5017	ATH_PCU_LOCK(sc);
5018	sc->sc_txproc_cnt--;
5019	ATH_PCU_UNLOCK(sc);
5020
5021	ath_start(ifp);
5022}
5023#undef	TXQACTIVE
5024
5025/*
5026 * Return a buffer to the pool and update the 'busy' flag on the
5027 * previous 'tail' entry.
5028 *
5029 * This _must_ only be called when the buffer is involved in a completed
5030 * TX. The logic is that if it was part of an active TX, the previous
5031 * buffer on the list is now not involved in a halted TX DMA queue, waiting
5032 * for restart (eg for TDMA.)
5033 *
5034 * The caller must free the mbuf and recycle the node reference.
5035 */
5036void
5037ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
5038{
5039	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5040	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
5041
5042	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
5043	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
5044
5045	ATH_TXBUF_LOCK(sc);
5046	ath_tx_update_busy(sc);
5047	TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5048	ATH_TXBUF_UNLOCK(sc);
5049}
5050
5051/*
5052 * This is currently used by ath_tx_draintxq() and
5053 * ath_tx_tid_free_pkts().
5054 *
5055 * It recycles a single ath_buf.
5056 */
5057void
5058ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
5059{
5060	struct ieee80211_node *ni = bf->bf_node;
5061	struct mbuf *m0 = bf->bf_m;
5062
5063	bf->bf_node = NULL;
5064	bf->bf_m = NULL;
5065
5066	/* Free the buffer, it's not needed any longer */
5067	ath_freebuf(sc, bf);
5068
5069	if (ni != NULL) {
5070		/*
5071		 * Do any callback and reclaim the node reference.
5072		 */
5073		if (m0->m_flags & M_TXCB)
5074			ieee80211_process_callback(ni, m0, status);
5075		ieee80211_free_node(ni);
5076	}
5077	m_freem(m0);
5078
5079	/*
5080	 * XXX the buffer used to be freed -after-, but the DMA map was
5081	 * freed where ath_freebuf() now is. I've no idea what this
5082	 * will do.
5083	 */
5084}
5085
5086void
5087ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5088{
5089#ifdef ATH_DEBUG
5090	struct ath_hal *ah = sc->sc_ah;
5091#endif
5092	struct ath_buf *bf;
5093	u_int ix;
5094
5095	/*
5096	 * NB: this assumes output has been stopped and
5097	 *     we do not need to block ath_tx_proc
5098	 */
5099	ATH_TXBUF_LOCK(sc);
5100	bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
5101	if (bf != NULL)
5102		bf->bf_flags &= ~ATH_BUF_BUSY;
5103	ATH_TXBUF_UNLOCK(sc);
5104
5105	for (ix = 0;; ix++) {
5106		ATH_TXQ_LOCK(txq);
5107		bf = TAILQ_FIRST(&txq->axq_q);
5108		if (bf == NULL) {
5109			txq->axq_link = NULL;
5110			ATH_TXQ_UNLOCK(txq);
5111			break;
5112		}
5113		ATH_TXQ_REMOVE(txq, bf, bf_list);
5114		if (bf->bf_state.bfs_aggr)
5115			txq->axq_aggr_depth--;
5116#ifdef ATH_DEBUG
5117		if (sc->sc_debug & ATH_DEBUG_RESET) {
5118			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5119
5120			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5121				ath_hal_txprocdesc(ah, bf->bf_lastds,
5122				    &bf->bf_status.ds_txstat) == HAL_OK);
5123			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5124			    bf->bf_m->m_len, 0, -1);
5125		}
5126#endif /* ATH_DEBUG */
5127		/*
5128		 * Since we're now doing magic in the completion
5129		 * functions, we -must- call it for aggregation
5130		 * destinations or BAW tracking will get upset.
5131		 */
5132		/*
5133		 * Clear ATH_BUF_BUSY; the completion handler
5134		 * will free the buffer.
5135		 */
5136		ATH_TXQ_UNLOCK(txq);
5137		bf->bf_flags &= ~ATH_BUF_BUSY;
5138		if (bf->bf_comp)
5139			bf->bf_comp(sc, bf, 1);
5140		else
5141			ath_tx_default_comp(sc, bf, 1);
5142	}
5143
5144	/*
5145	 * Drain software queued frames which are on
5146	 * active TIDs.
5147	 */
5148	ath_tx_txq_drain(sc, txq);
5149}
5150
5151static void
5152ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5153{
5154	struct ath_hal *ah = sc->sc_ah;
5155
5156	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5157	    __func__, txq->axq_qnum,
5158	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5159	    txq->axq_link);
5160	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5161}
5162
5163static int
5164ath_stoptxdma(struct ath_softc *sc)
5165{
5166	struct ath_hal *ah = sc->sc_ah;
5167	int i;
5168
5169	/* XXX return value */
5170	if (sc->sc_invalid)
5171		return 0;
5172
5173	if (!sc->sc_invalid) {
5174		/* don't touch the hardware if marked invalid */
5175		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5176		    __func__, sc->sc_bhalq,
5177		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5178		    NULL);
5179		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5180		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5181			if (ATH_TXQ_SETUP(sc, i))
5182				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5183	}
5184
5185	return 1;
5186}
5187
5188/*
5189 * Drain the transmit queues and reclaim resources.
5190 */
5191static void
5192ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5193{
5194#ifdef	ATH_DEBUG
5195	struct ath_hal *ah = sc->sc_ah;
5196#endif
5197	struct ifnet *ifp = sc->sc_ifp;
5198	int i;
5199
5200	(void) ath_stoptxdma(sc);
5201
5202	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5203		/*
5204		 * XXX TODO: should we just handle the completed TX frames
5205		 * here, whether or not the reset is a full one or not?
5206		 */
5207		if (ATH_TXQ_SETUP(sc, i)) {
5208			if (reset_type == ATH_RESET_NOLOSS)
5209				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5210			else
5211				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5212		}
5213	}
5214#ifdef ATH_DEBUG
5215	if (sc->sc_debug & ATH_DEBUG_RESET) {
5216		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5217		if (bf != NULL && bf->bf_m != NULL) {
5218			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5219				ath_hal_txprocdesc(ah, bf->bf_lastds,
5220				    &bf->bf_status.ds_txstat) == HAL_OK);
5221			ieee80211_dump_pkt(ifp->if_l2com,
5222			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5223			    0, -1);
5224		}
5225	}
5226#endif /* ATH_DEBUG */
5227	/* XXX check this inside of IF_LOCK? */
5228	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5229	sc->sc_wd_timer = 0;
5230}
5231
5232/*
5233 * Disable the receive h/w in preparation for a reset.
5234 */
5235static void
5236ath_stoprecv(struct ath_softc *sc, int dodelay)
5237{
5238#define	PA2DESC(_sc, _pa) \
5239	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5240		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5241	struct ath_hal *ah = sc->sc_ah;
5242
5243	ath_hal_stoppcurecv(ah);	/* disable PCU */
5244	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5245	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5246	if (dodelay)
5247		DELAY(3000);		/* 3ms is long enough for 1 frame */
5248#ifdef ATH_DEBUG
5249	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5250		struct ath_buf *bf;
5251		u_int ix;
5252
5253		printf("%s: rx queue %p, link %p\n", __func__,
5254			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5255		ix = 0;
5256		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5257			struct ath_desc *ds = bf->bf_desc;
5258			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5259			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5260				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5261			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5262				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5263			ix++;
5264		}
5265	}
5266#endif
5267	if (sc->sc_rxpending != NULL) {
5268		m_freem(sc->sc_rxpending);
5269		sc->sc_rxpending = NULL;
5270	}
5271	sc->sc_rxlink = NULL;		/* just in case */
5272#undef PA2DESC
5273}
5274
5275/*
5276 * Enable the receive h/w following a reset.
5277 */
5278static int
5279ath_startrecv(struct ath_softc *sc)
5280{
5281	struct ath_hal *ah = sc->sc_ah;
5282	struct ath_buf *bf;
5283
5284	sc->sc_rxlink = NULL;
5285	sc->sc_rxpending = NULL;
5286	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5287		int error = ath_rxbuf_init(sc, bf);
5288		if (error != 0) {
5289			DPRINTF(sc, ATH_DEBUG_RECV,
5290				"%s: ath_rxbuf_init failed %d\n",
5291				__func__, error);
5292			return error;
5293		}
5294	}
5295
5296	bf = TAILQ_FIRST(&sc->sc_rxbuf);
5297	ath_hal_putrxbuf(ah, bf->bf_daddr);
5298	ath_hal_rxena(ah);		/* enable recv descriptors */
5299	ath_mode_init(sc);		/* set filters, etc. */
5300	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5301	return 0;
5302}
5303
5304/*
5305 * Update internal state after a channel change.
5306 */
5307static void
5308ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5309{
5310	enum ieee80211_phymode mode;
5311
5312	/*
5313	 * Change channels and update the h/w rate map
5314	 * if we're switching; e.g. 11a to 11b/g.
5315	 */
5316	mode = ieee80211_chan2mode(chan);
5317	if (mode != sc->sc_curmode)
5318		ath_setcurmode(sc, mode);
5319	sc->sc_curchan = chan;
5320}
5321
5322/*
5323 * Set/change channels.  If the channel is really being changed,
5324 * it's done by resetting the chip.  To accomplish this we must
5325 * first cleanup any pending DMA, then restart stuff after a la
5326 * ath_init.
5327 */
5328static int
5329ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5330{
5331	struct ifnet *ifp = sc->sc_ifp;
5332	struct ieee80211com *ic = ifp->if_l2com;
5333	struct ath_hal *ah = sc->sc_ah;
5334	int ret = 0;
5335	int dointr = 0;
5336
5337	/* Treat this as an interface reset */
5338	ATH_PCU_LOCK(sc);
5339	if (ath_reset_grablock(sc, 1) == 0) {
5340		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5341		    __func__);
5342	}
5343	if (chan != sc->sc_curchan) {
5344		dointr = 1;
5345		/* XXX only do this if inreset_cnt is 1? */
5346		ath_hal_intrset(ah, 0);
5347	}
5348	ATH_PCU_UNLOCK(sc);
5349	ath_txrx_stop(sc);
5350
5351	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5352	    __func__, ieee80211_chan2ieee(ic, chan),
5353	    chan->ic_freq, chan->ic_flags);
5354	if (chan != sc->sc_curchan) {
5355		HAL_STATUS status;
5356		/*
5357		 * To switch channels clear any pending DMA operations;
5358		 * wait long enough for the RX fifo to drain, reset the
5359		 * hardware at the new frequency, and then re-enable
5360		 * the relevant bits of the h/w.
5361		 */
5362#if 0
5363		ath_hal_intrset(ah, 0);		/* disable interrupts */
5364#endif
5365		ath_stoprecv(sc, 1);		/* turn off frame recv */
5366		/*
5367		 * First, handle completed TX/RX frames.
5368		 */
5369		ath_rx_proc(sc, 0);
5370		ath_draintxq(sc, ATH_RESET_NOLOSS);
5371		/*
5372		 * Next, flush the non-scheduled frames.
5373		 */
5374		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5375
5376		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5377			if_printf(ifp, "%s: unable to reset "
5378			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5379			    __func__, ieee80211_chan2ieee(ic, chan),
5380			    chan->ic_freq, chan->ic_flags, status);
5381			ret = EIO;
5382			goto finish;
5383		}
5384		sc->sc_diversity = ath_hal_getdiversity(ah);
5385
5386		/* Let DFS at it in case it's a DFS channel */
5387		ath_dfs_radar_enable(sc, ic->ic_curchan);
5388
5389		/*
5390		 * Re-enable rx framework.
5391		 */
5392		if (ath_startrecv(sc) != 0) {
5393			if_printf(ifp, "%s: unable to restart recv logic\n",
5394			    __func__);
5395			ret = EIO;
5396			goto finish;
5397		}
5398
5399		/*
5400		 * Change channels and update the h/w rate map
5401		 * if we're switching; e.g. 11a to 11b/g.
5402		 */
5403		ath_chan_change(sc, chan);
5404
5405		/*
5406		 * Reset clears the beacon timers; reset them
5407		 * here if needed.
5408		 */
5409		if (sc->sc_beacons) {		/* restart beacons */
5410#ifdef IEEE80211_SUPPORT_TDMA
5411			if (sc->sc_tdma)
5412				ath_tdma_config(sc, NULL);
5413			else
5414#endif
5415			ath_beacon_config(sc, NULL);
5416		}
5417
5418#if 0
5419		/*
5420		 * Re-enable interrupts.
5421		 */
5422		ath_hal_intrset(ah, sc->sc_imask);
5423#endif
5424	}
5425
5426finish:
5427	ATH_PCU_LOCK(sc);
5428	sc->sc_inreset_cnt--;
5429	/* XXX only do this if sc_inreset_cnt == 0? */
5430	if (dointr)
5431		ath_hal_intrset(ah, sc->sc_imask);
5432	ATH_PCU_UNLOCK(sc);
5433
5434	/* XXX do this inside of IF_LOCK? */
5435	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5436	ath_txrx_start(sc);
5437	/* XXX ath_start? */
5438
5439	return ret;
5440}
5441
5442/*
5443 * Periodically recalibrate the PHY to account
5444 * for temperature/environment changes.
5445 */
5446static void
5447ath_calibrate(void *arg)
5448{
5449	struct ath_softc *sc = arg;
5450	struct ath_hal *ah = sc->sc_ah;
5451	struct ifnet *ifp = sc->sc_ifp;
5452	struct ieee80211com *ic = ifp->if_l2com;
5453	HAL_BOOL longCal, isCalDone;
5454	HAL_BOOL aniCal, shortCal = AH_FALSE;
5455	int nextcal;
5456
5457	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5458		goto restart;
5459	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5460	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5461	if (sc->sc_doresetcal)
5462		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5463
5464	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5465	if (aniCal) {
5466		sc->sc_stats.ast_ani_cal++;
5467		sc->sc_lastani = ticks;
5468		ath_hal_ani_poll(ah, sc->sc_curchan);
5469	}
5470
5471	if (longCal) {
5472		sc->sc_stats.ast_per_cal++;
5473		sc->sc_lastlongcal = ticks;
5474		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5475			/*
5476			 * Rfgain is out of bounds, reset the chip
5477			 * to load new gain values.
5478			 */
5479			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5480				"%s: rfgain change\n", __func__);
5481			sc->sc_stats.ast_per_rfgain++;
5482			/*
5483			 * Drop lock - we can't hold it across the
5484			 * ath_reset() call. Instead, we'll drop
5485			 * out here, do a reset, then reschedule
5486			 * the callout.
5487			 */
5488			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5489			sc->sc_resetcal = 0;
5490			sc->sc_doresetcal = AH_TRUE;
5491			ATH_UNLOCK(sc);
5492			ath_reset(ifp, ATH_RESET_NOLOSS);
5493			ATH_LOCK(sc);
5494			return;
5495		}
5496		/*
5497		 * If this long cal is after an idle period, then
5498		 * reset the data collection state so we start fresh.
5499		 */
5500		if (sc->sc_resetcal) {
5501			(void) ath_hal_calreset(ah, sc->sc_curchan);
5502			sc->sc_lastcalreset = ticks;
5503			sc->sc_lastshortcal = ticks;
5504			sc->sc_resetcal = 0;
5505			sc->sc_doresetcal = AH_TRUE;
5506		}
5507	}
5508
5509	/* Only call if we're doing a short/long cal, not for ANI calibration */
5510	if (shortCal || longCal) {
5511		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5512			if (longCal) {
5513				/*
5514				 * Calibrate noise floor data again in case of change.
5515				 */
5516				ath_hal_process_noisefloor(ah);
5517			}
5518		} else {
5519			DPRINTF(sc, ATH_DEBUG_ANY,
5520				"%s: calibration of channel %u failed\n",
5521				__func__, sc->sc_curchan->ic_freq);
5522			sc->sc_stats.ast_per_calfail++;
5523		}
5524		if (shortCal)
5525			sc->sc_lastshortcal = ticks;
5526	}
5527	if (!isCalDone) {
5528restart:
5529		/*
5530		 * Use a shorter interval to potentially collect multiple
5531		 * data samples required to complete calibration.  Once
5532		 * we're told the work is done we drop back to a longer
5533		 * interval between requests.  We're more aggressive doing
5534		 * work when operating as an AP to improve operation right
5535		 * after startup.
5536		 */
5537		sc->sc_lastshortcal = ticks;
5538		nextcal = ath_shortcalinterval*hz/1000;
5539		if (sc->sc_opmode != HAL_M_HOSTAP)
5540			nextcal *= 10;
5541		sc->sc_doresetcal = AH_TRUE;
5542	} else {
5543		/* nextcal should be the shortest time for next event */
5544		nextcal = ath_longcalinterval*hz;
5545		if (sc->sc_lastcalreset == 0)
5546			sc->sc_lastcalreset = sc->sc_lastlongcal;
5547		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5548			sc->sc_resetcal = 1;	/* setup reset next trip */
5549		sc->sc_doresetcal = AH_FALSE;
5550	}
5551	/* ANI calibration may occur more often than short/long/resetcal */
5552	if (ath_anicalinterval > 0)
5553		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5554
5555	if (nextcal != 0) {
5556		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5557		    __func__, nextcal, isCalDone ? "" : "!");
5558		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5559	} else {
5560		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5561		    __func__);
5562		/* NB: don't rearm timer */
5563	}
5564}
5565
5566static void
5567ath_scan_start(struct ieee80211com *ic)
5568{
5569	struct ifnet *ifp = ic->ic_ifp;
5570	struct ath_softc *sc = ifp->if_softc;
5571	struct ath_hal *ah = sc->sc_ah;
5572	u_int32_t rfilt;
5573
5574	/* XXX calibration timer? */
5575
5576	sc->sc_scanning = 1;
5577	sc->sc_syncbeacon = 0;
5578	rfilt = ath_calcrxfilter(sc);
5579	ath_hal_setrxfilter(ah, rfilt);
5580	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5581
5582	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5583		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5584}
5585
5586static void
5587ath_scan_end(struct ieee80211com *ic)
5588{
5589	struct ifnet *ifp = ic->ic_ifp;
5590	struct ath_softc *sc = ifp->if_softc;
5591	struct ath_hal *ah = sc->sc_ah;
5592	u_int32_t rfilt;
5593
5594	sc->sc_scanning = 0;
5595	rfilt = ath_calcrxfilter(sc);
5596	ath_hal_setrxfilter(ah, rfilt);
5597	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5598
5599	ath_hal_process_noisefloor(ah);
5600
5601	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5602		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5603		 sc->sc_curaid);
5604}
5605
5606static void
5607ath_set_channel(struct ieee80211com *ic)
5608{
5609	struct ifnet *ifp = ic->ic_ifp;
5610	struct ath_softc *sc = ifp->if_softc;
5611
5612	(void) ath_chan_set(sc, ic->ic_curchan);
5613	/*
5614	 * If we are returning to our bss channel then mark state
5615	 * so the next recv'd beacon's tsf will be used to sync the
5616	 * beacon timers.  Note that since we only hear beacons in
5617	 * sta/ibss mode this has no effect in other operating modes.
5618	 */
5619	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5620		sc->sc_syncbeacon = 1;
5621}
5622
5623/*
5624 * Walk the vap list and check if there any vap's in RUN state.
5625 */
5626static int
5627ath_isanyrunningvaps(struct ieee80211vap *this)
5628{
5629	struct ieee80211com *ic = this->iv_ic;
5630	struct ieee80211vap *vap;
5631
5632	IEEE80211_LOCK_ASSERT(ic);
5633
5634	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5635		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5636			return 1;
5637	}
5638	return 0;
5639}
5640
5641static int
5642ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5643{
5644	struct ieee80211com *ic = vap->iv_ic;
5645	struct ath_softc *sc = ic->ic_ifp->if_softc;
5646	struct ath_vap *avp = ATH_VAP(vap);
5647	struct ath_hal *ah = sc->sc_ah;
5648	struct ieee80211_node *ni = NULL;
5649	int i, error, stamode;
5650	u_int32_t rfilt;
5651	int csa_run_transition = 0;
5652	static const HAL_LED_STATE leds[] = {
5653	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5654	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5655	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5656	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5657	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5658	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5659	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5660	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5661	};
5662
5663	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5664		ieee80211_state_name[vap->iv_state],
5665		ieee80211_state_name[nstate]);
5666
5667	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5668		csa_run_transition = 1;
5669
5670	callout_drain(&sc->sc_cal_ch);
5671	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5672
5673	if (nstate == IEEE80211_S_SCAN) {
5674		/*
5675		 * Scanning: turn off beacon miss and don't beacon.
5676		 * Mark beacon state so when we reach RUN state we'll
5677		 * [re]setup beacons.  Unblock the task q thread so
5678		 * deferred interrupt processing is done.
5679		 */
5680		ath_hal_intrset(ah,
5681		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5682		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5683		sc->sc_beacons = 0;
5684		taskqueue_unblock(sc->sc_tq);
5685	}
5686
5687	ni = vap->iv_bss;
5688	rfilt = ath_calcrxfilter(sc);
5689	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5690		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5691		   vap->iv_opmode == IEEE80211_M_IBSS);
5692	if (stamode && nstate == IEEE80211_S_RUN) {
5693		sc->sc_curaid = ni->ni_associd;
5694		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5695		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5696	}
5697	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5698	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5699	ath_hal_setrxfilter(ah, rfilt);
5700
5701	/* XXX is this to restore keycache on resume? */
5702	if (vap->iv_opmode != IEEE80211_M_STA &&
5703	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5704		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5705			if (ath_hal_keyisvalid(ah, i))
5706				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5707	}
5708
5709	/*
5710	 * Invoke the parent method to do net80211 work.
5711	 */
5712	error = avp->av_newstate(vap, nstate, arg);
5713	if (error != 0)
5714		goto bad;
5715
5716	if (nstate == IEEE80211_S_RUN) {
5717		/* NB: collect bss node again, it may have changed */
5718		ni = vap->iv_bss;
5719
5720		DPRINTF(sc, ATH_DEBUG_STATE,
5721		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5722		    "capinfo 0x%04x chan %d\n", __func__,
5723		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5724		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5725
5726		switch (vap->iv_opmode) {
5727#ifdef IEEE80211_SUPPORT_TDMA
5728		case IEEE80211_M_AHDEMO:
5729			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5730				break;
5731			/* fall thru... */
5732#endif
5733		case IEEE80211_M_HOSTAP:
5734		case IEEE80211_M_IBSS:
5735		case IEEE80211_M_MBSS:
5736			/*
5737			 * Allocate and setup the beacon frame.
5738			 *
5739			 * Stop any previous beacon DMA.  This may be
5740			 * necessary, for example, when an ibss merge
5741			 * causes reconfiguration; there will be a state
5742			 * transition from RUN->RUN that means we may
5743			 * be called with beacon transmission active.
5744			 */
5745			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5746
5747			error = ath_beacon_alloc(sc, ni);
5748			if (error != 0)
5749				goto bad;
5750			/*
5751			 * If joining an adhoc network defer beacon timer
5752			 * configuration to the next beacon frame so we
5753			 * have a current TSF to use.  Otherwise we're
5754			 * starting an ibss/bss so there's no need to delay;
5755			 * if this is the first vap moving to RUN state, then
5756			 * beacon state needs to be [re]configured.
5757			 */
5758			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5759			    ni->ni_tstamp.tsf != 0) {
5760				sc->sc_syncbeacon = 1;
5761			} else if (!sc->sc_beacons) {
5762#ifdef IEEE80211_SUPPORT_TDMA
5763				if (vap->iv_caps & IEEE80211_C_TDMA)
5764					ath_tdma_config(sc, vap);
5765				else
5766#endif
5767					ath_beacon_config(sc, vap);
5768				sc->sc_beacons = 1;
5769			}
5770			break;
5771		case IEEE80211_M_STA:
5772			/*
5773			 * Defer beacon timer configuration to the next
5774			 * beacon frame so we have a current TSF to use
5775			 * (any TSF collected when scanning is likely old).
5776			 * However if it's due to a CSA -> RUN transition,
5777			 * force a beacon update so we pick up a lack of
5778			 * beacons from an AP in CAC and thus force a
5779			 * scan.
5780			 */
5781			sc->sc_syncbeacon = 1;
5782			if (csa_run_transition)
5783				ath_beacon_config(sc, vap);
5784			break;
5785		case IEEE80211_M_MONITOR:
5786			/*
5787			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5788			 * transitions so we must re-enable interrupts here to
5789			 * handle the case of a single monitor mode vap.
5790			 */
5791			ath_hal_intrset(ah, sc->sc_imask);
5792			break;
5793		case IEEE80211_M_WDS:
5794			break;
5795		default:
5796			break;
5797		}
5798		/*
5799		 * Let the hal process statistics collected during a
5800		 * scan so it can provide calibrated noise floor data.
5801		 */
5802		ath_hal_process_noisefloor(ah);
5803		/*
5804		 * Reset rssi stats; maybe not the best place...
5805		 */
5806		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5807		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5808		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5809		/*
5810		 * Finally, start any timers and the task q thread
5811		 * (in case we didn't go through SCAN state).
5812		 */
5813		if (ath_longcalinterval != 0) {
5814			/* start periodic recalibration timer */
5815			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5816		} else {
5817			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5818			    "%s: calibration disabled\n", __func__);
5819		}
5820		taskqueue_unblock(sc->sc_tq);
5821	} else if (nstate == IEEE80211_S_INIT) {
5822		/*
5823		 * If there are no vaps left in RUN state then
5824		 * shutdown host/driver operation:
5825		 * o disable interrupts
5826		 * o disable the task queue thread
5827		 * o mark beacon processing as stopped
5828		 */
5829		if (!ath_isanyrunningvaps(vap)) {
5830			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5831			/* disable interrupts  */
5832			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5833			taskqueue_block(sc->sc_tq);
5834			sc->sc_beacons = 0;
5835		}
5836#ifdef IEEE80211_SUPPORT_TDMA
5837		ath_hal_setcca(ah, AH_TRUE);
5838#endif
5839	}
5840bad:
5841	return error;
5842}
5843
5844/*
5845 * Allocate a key cache slot to the station so we can
5846 * setup a mapping from key index to node. The key cache
5847 * slot is needed for managing antenna state and for
5848 * compression when stations do not use crypto.  We do
5849 * it uniliaterally here; if crypto is employed this slot
5850 * will be reassigned.
5851 */
5852static void
5853ath_setup_stationkey(struct ieee80211_node *ni)
5854{
5855	struct ieee80211vap *vap = ni->ni_vap;
5856	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5857	ieee80211_keyix keyix, rxkeyix;
5858
5859	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5860		/*
5861		 * Key cache is full; we'll fall back to doing
5862		 * the more expensive lookup in software.  Note
5863		 * this also means no h/w compression.
5864		 */
5865		/* XXX msg+statistic */
5866	} else {
5867		/* XXX locking? */
5868		ni->ni_ucastkey.wk_keyix = keyix;
5869		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5870		/* NB: must mark device key to get called back on delete */
5871		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5872		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5873		/* NB: this will create a pass-thru key entry */
5874		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
5875	}
5876}
5877
5878/*
5879 * Setup driver-specific state for a newly associated node.
5880 * Note that we're called also on a re-associate, the isnew
5881 * param tells us if this is the first time or not.
5882 */
5883static void
5884ath_newassoc(struct ieee80211_node *ni, int isnew)
5885{
5886	struct ath_node *an = ATH_NODE(ni);
5887	struct ieee80211vap *vap = ni->ni_vap;
5888	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5889	const struct ieee80211_txparam *tp = ni->ni_txparms;
5890
5891	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5892	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5893
5894	ath_rate_newassoc(sc, an, isnew);
5895	if (isnew &&
5896	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5897	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5898		ath_setup_stationkey(ni);
5899}
5900
5901static int
5902ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5903	int nchans, struct ieee80211_channel chans[])
5904{
5905	struct ath_softc *sc = ic->ic_ifp->if_softc;
5906	struct ath_hal *ah = sc->sc_ah;
5907	HAL_STATUS status;
5908
5909	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5910	    "%s: rd %u cc %u location %c%s\n",
5911	    __func__, reg->regdomain, reg->country, reg->location,
5912	    reg->ecm ? " ecm" : "");
5913
5914	status = ath_hal_set_channels(ah, chans, nchans,
5915	    reg->country, reg->regdomain);
5916	if (status != HAL_OK) {
5917		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5918		    __func__, status);
5919		return EINVAL;		/* XXX */
5920	}
5921
5922	return 0;
5923}
5924
5925static void
5926ath_getradiocaps(struct ieee80211com *ic,
5927	int maxchans, int *nchans, struct ieee80211_channel chans[])
5928{
5929	struct ath_softc *sc = ic->ic_ifp->if_softc;
5930	struct ath_hal *ah = sc->sc_ah;
5931
5932	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5933	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5934
5935	/* XXX check return */
5936	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5937	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5938
5939}
5940
5941static int
5942ath_getchannels(struct ath_softc *sc)
5943{
5944	struct ifnet *ifp = sc->sc_ifp;
5945	struct ieee80211com *ic = ifp->if_l2com;
5946	struct ath_hal *ah = sc->sc_ah;
5947	HAL_STATUS status;
5948
5949	/*
5950	 * Collect channel set based on EEPROM contents.
5951	 */
5952	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5953	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5954	if (status != HAL_OK) {
5955		if_printf(ifp, "%s: unable to collect channel list from hal, "
5956		    "status %d\n", __func__, status);
5957		return EINVAL;
5958	}
5959	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5960	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5961	/* XXX map Atheros sku's to net80211 SKU's */
5962	/* XXX net80211 types too small */
5963	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5964	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5965	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5966	ic->ic_regdomain.isocc[1] = ' ';
5967
5968	ic->ic_regdomain.ecm = 1;
5969	ic->ic_regdomain.location = 'I';
5970
5971	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5972	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5973	    __func__, sc->sc_eerd, sc->sc_eecc,
5974	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5975	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5976	return 0;
5977}
5978
5979static int
5980ath_rate_setup(struct ath_softc *sc, u_int mode)
5981{
5982	struct ath_hal *ah = sc->sc_ah;
5983	const HAL_RATE_TABLE *rt;
5984
5985	switch (mode) {
5986	case IEEE80211_MODE_11A:
5987		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5988		break;
5989	case IEEE80211_MODE_HALF:
5990		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5991		break;
5992	case IEEE80211_MODE_QUARTER:
5993		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5994		break;
5995	case IEEE80211_MODE_11B:
5996		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5997		break;
5998	case IEEE80211_MODE_11G:
5999		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6000		break;
6001	case IEEE80211_MODE_TURBO_A:
6002		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6003		break;
6004	case IEEE80211_MODE_TURBO_G:
6005		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6006		break;
6007	case IEEE80211_MODE_STURBO_A:
6008		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6009		break;
6010	case IEEE80211_MODE_11NA:
6011		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6012		break;
6013	case IEEE80211_MODE_11NG:
6014		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6015		break;
6016	default:
6017		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6018			__func__, mode);
6019		return 0;
6020	}
6021	sc->sc_rates[mode] = rt;
6022	return (rt != NULL);
6023}
6024
6025static void
6026ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6027{
6028#define	N(a)	(sizeof(a)/sizeof(a[0]))
6029	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6030	static const struct {
6031		u_int		rate;		/* tx/rx 802.11 rate */
6032		u_int16_t	timeOn;		/* LED on time (ms) */
6033		u_int16_t	timeOff;	/* LED off time (ms) */
6034	} blinkrates[] = {
6035		{ 108,  40,  10 },
6036		{  96,  44,  11 },
6037		{  72,  50,  13 },
6038		{  48,  57,  14 },
6039		{  36,  67,  16 },
6040		{  24,  80,  20 },
6041		{  22, 100,  25 },
6042		{  18, 133,  34 },
6043		{  12, 160,  40 },
6044		{  10, 200,  50 },
6045		{   6, 240,  58 },
6046		{   4, 267,  66 },
6047		{   2, 400, 100 },
6048		{   0, 500, 130 },
6049		/* XXX half/quarter rates */
6050	};
6051	const HAL_RATE_TABLE *rt;
6052	int i, j;
6053
6054	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6055	rt = sc->sc_rates[mode];
6056	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6057	for (i = 0; i < rt->rateCount; i++) {
6058		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6059		if (rt->info[i].phy != IEEE80211_T_HT)
6060			sc->sc_rixmap[ieeerate] = i;
6061		else
6062			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6063	}
6064	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6065	for (i = 0; i < N(sc->sc_hwmap); i++) {
6066		if (i >= rt->rateCount) {
6067			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6068			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6069			continue;
6070		}
6071		sc->sc_hwmap[i].ieeerate =
6072			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6073		if (rt->info[i].phy == IEEE80211_T_HT)
6074			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6075		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6076		if (rt->info[i].shortPreamble ||
6077		    rt->info[i].phy == IEEE80211_T_OFDM)
6078			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6079		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6080		for (j = 0; j < N(blinkrates)-1; j++)
6081			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6082				break;
6083		/* NB: this uses the last entry if the rate isn't found */
6084		/* XXX beware of overlow */
6085		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6086		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6087	}
6088	sc->sc_currates = rt;
6089	sc->sc_curmode = mode;
6090	/*
6091	 * All protection frames are transmited at 2Mb/s for
6092	 * 11g, otherwise at 1Mb/s.
6093	 */
6094	if (mode == IEEE80211_MODE_11G)
6095		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6096	else
6097		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6098	/* NB: caller is responsible for resetting rate control state */
6099#undef N
6100}
6101
6102static void
6103ath_watchdog(void *arg)
6104{
6105	struct ath_softc *sc = arg;
6106	int do_reset = 0;
6107
6108	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6109		struct ifnet *ifp = sc->sc_ifp;
6110		uint32_t hangs;
6111
6112		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6113		    hangs != 0) {
6114			if_printf(ifp, "%s hang detected (0x%x)\n",
6115			    hangs & 0xff ? "bb" : "mac", hangs);
6116		} else
6117			if_printf(ifp, "device timeout\n");
6118		do_reset = 1;
6119		ifp->if_oerrors++;
6120		sc->sc_stats.ast_watchdog++;
6121	}
6122
6123	/*
6124	 * We can't hold the lock across the ath_reset() call.
6125	 */
6126	if (do_reset) {
6127		ATH_UNLOCK(sc);
6128		ath_reset(sc->sc_ifp, ATH_RESET_NOLOSS);
6129		ATH_LOCK(sc);
6130	}
6131
6132	callout_schedule(&sc->sc_wd_ch, hz);
6133}
6134
6135#ifdef ATH_DIAGAPI
6136/*
6137 * Diagnostic interface to the HAL.  This is used by various
6138 * tools to do things like retrieve register contents for
6139 * debugging.  The mechanism is intentionally opaque so that
6140 * it can change frequently w/o concern for compatiblity.
6141 */
6142static int
6143ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6144{
6145	struct ath_hal *ah = sc->sc_ah;
6146	u_int id = ad->ad_id & ATH_DIAG_ID;
6147	void *indata = NULL;
6148	void *outdata = NULL;
6149	u_int32_t insize = ad->ad_in_size;
6150	u_int32_t outsize = ad->ad_out_size;
6151	int error = 0;
6152
6153	if (ad->ad_id & ATH_DIAG_IN) {
6154		/*
6155		 * Copy in data.
6156		 */
6157		indata = malloc(insize, M_TEMP, M_NOWAIT);
6158		if (indata == NULL) {
6159			error = ENOMEM;
6160			goto bad;
6161		}
6162		error = copyin(ad->ad_in_data, indata, insize);
6163		if (error)
6164			goto bad;
6165	}
6166	if (ad->ad_id & ATH_DIAG_DYN) {
6167		/*
6168		 * Allocate a buffer for the results (otherwise the HAL
6169		 * returns a pointer to a buffer where we can read the
6170		 * results).  Note that we depend on the HAL leaving this
6171		 * pointer for us to use below in reclaiming the buffer;
6172		 * may want to be more defensive.
6173		 */
6174		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6175		if (outdata == NULL) {
6176			error = ENOMEM;
6177			goto bad;
6178		}
6179	}
6180	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6181		if (outsize < ad->ad_out_size)
6182			ad->ad_out_size = outsize;
6183		if (outdata != NULL)
6184			error = copyout(outdata, ad->ad_out_data,
6185					ad->ad_out_size);
6186	} else {
6187		error = EINVAL;
6188	}
6189bad:
6190	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6191		free(indata, M_TEMP);
6192	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6193		free(outdata, M_TEMP);
6194	return error;
6195}
6196#endif /* ATH_DIAGAPI */
6197
6198static int
6199ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6200{
6201#define	IS_RUNNING(ifp) \
6202	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6203	struct ath_softc *sc = ifp->if_softc;
6204	struct ieee80211com *ic = ifp->if_l2com;
6205	struct ifreq *ifr = (struct ifreq *)data;
6206	const HAL_RATE_TABLE *rt;
6207	int error = 0;
6208
6209	switch (cmd) {
6210	case SIOCSIFFLAGS:
6211		ATH_LOCK(sc);
6212		if (IS_RUNNING(ifp)) {
6213			/*
6214			 * To avoid rescanning another access point,
6215			 * do not call ath_init() here.  Instead,
6216			 * only reflect promisc mode settings.
6217			 */
6218			ath_mode_init(sc);
6219		} else if (ifp->if_flags & IFF_UP) {
6220			/*
6221			 * Beware of being called during attach/detach
6222			 * to reset promiscuous mode.  In that case we
6223			 * will still be marked UP but not RUNNING.
6224			 * However trying to re-init the interface
6225			 * is the wrong thing to do as we've already
6226			 * torn down much of our state.  There's
6227			 * probably a better way to deal with this.
6228			 */
6229			if (!sc->sc_invalid)
6230				ath_init(sc);	/* XXX lose error */
6231		} else {
6232			ath_stop_locked(ifp);
6233#ifdef notyet
6234			/* XXX must wakeup in places like ath_vap_delete */
6235			if (!sc->sc_invalid)
6236				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6237#endif
6238		}
6239		ATH_UNLOCK(sc);
6240		break;
6241	case SIOCGIFMEDIA:
6242	case SIOCSIFMEDIA:
6243		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6244		break;
6245	case SIOCGATHSTATS:
6246		/* NB: embed these numbers to get a consistent view */
6247		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6248		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6249		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6250		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6251#ifdef IEEE80211_SUPPORT_TDMA
6252		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6253		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6254#endif
6255		rt = sc->sc_currates;
6256		sc->sc_stats.ast_tx_rate =
6257		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6258		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6259			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6260		return copyout(&sc->sc_stats,
6261		    ifr->ifr_data, sizeof (sc->sc_stats));
6262	case SIOCZATHSTATS:
6263		error = priv_check(curthread, PRIV_DRIVER);
6264		if (error == 0)
6265			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6266		break;
6267#ifdef ATH_DIAGAPI
6268	case SIOCGATHDIAG:
6269		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6270		break;
6271	case SIOCGATHPHYERR:
6272		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6273		break;
6274#endif
6275	case SIOCGIFADDR:
6276		error = ether_ioctl(ifp, cmd, data);
6277		break;
6278	default:
6279		error = EINVAL;
6280		break;
6281	}
6282	return error;
6283#undef IS_RUNNING
6284}
6285
6286/*
6287 * Announce various information on device/driver attach.
6288 */
6289static void
6290ath_announce(struct ath_softc *sc)
6291{
6292	struct ifnet *ifp = sc->sc_ifp;
6293	struct ath_hal *ah = sc->sc_ah;
6294
6295	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6296		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6297		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6298	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6299		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6300	if (bootverbose) {
6301		int i;
6302		for (i = 0; i <= WME_AC_VO; i++) {
6303			struct ath_txq *txq = sc->sc_ac2q[i];
6304			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6305				txq->axq_qnum, ieee80211_wme_acnames[i]);
6306		}
6307		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6308			sc->sc_cabq->axq_qnum);
6309		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6310	}
6311	if (ath_rxbuf != ATH_RXBUF)
6312		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6313	if (ath_txbuf != ATH_TXBUF)
6314		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6315	if (sc->sc_mcastkey && bootverbose)
6316		if_printf(ifp, "using multicast key search\n");
6317}
6318
6319#ifdef IEEE80211_SUPPORT_TDMA
6320static void
6321ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
6322{
6323	struct ath_hal *ah = sc->sc_ah;
6324	HAL_BEACON_TIMERS bt;
6325
6326	bt.bt_intval = bintval | HAL_BEACON_ENA;
6327	bt.bt_nexttbtt = nexttbtt;
6328	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
6329	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
6330	bt.bt_nextatim = nexttbtt+1;
6331	/* Enables TBTT, DBA, SWBA timers by default */
6332	bt.bt_flags = 0;
6333	ath_hal_beaconsettimers(ah, &bt);
6334}
6335
6336/*
6337 * Calculate the beacon interval.  This is periodic in the
6338 * superframe for the bss.  We assume each station is configured
6339 * identically wrt transmit rate so the guard time we calculate
6340 * above will be the same on all stations.  Note we need to
6341 * factor in the xmit time because the hardware will schedule
6342 * a frame for transmit if the start of the frame is within
6343 * the burst time.  When we get hardware that properly kills
6344 * frames in the PCU we can reduce/eliminate the guard time.
6345 *
6346 * Roundup to 1024 is so we have 1 TU buffer in the guard time
6347 * to deal with the granularity of the nexttbtt timer.  11n MAC's
6348 * with 1us timer granularity should allow us to reduce/eliminate
6349 * this.
6350 */
6351static void
6352ath_tdma_bintvalsetup(struct ath_softc *sc,
6353	const struct ieee80211_tdma_state *tdma)
6354{
6355	/* copy from vap state (XXX check all vaps have same value?) */
6356	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
6357
6358	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
6359		tdma->tdma_slotcnt, 1024);
6360	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
6361	if (sc->sc_tdmabintval & 1)
6362		sc->sc_tdmabintval++;
6363
6364	if (tdma->tdma_slot == 0) {
6365		/*
6366		 * Only slot 0 beacons; other slots respond.
6367		 */
6368		sc->sc_imask |= HAL_INT_SWBA;
6369		sc->sc_tdmaswba = 0;		/* beacon immediately */
6370	} else {
6371		/* XXX all vaps must be slot 0 or slot !0 */
6372		sc->sc_imask &= ~HAL_INT_SWBA;
6373	}
6374}
6375
6376/*
6377 * Max 802.11 overhead.  This assumes no 4-address frames and
6378 * the encapsulation done by ieee80211_encap (llc).  We also
6379 * include potential crypto overhead.
6380 */
6381#define	IEEE80211_MAXOVERHEAD \
6382	(sizeof(struct ieee80211_qosframe) \
6383	 + sizeof(struct llc) \
6384	 + IEEE80211_ADDR_LEN \
6385	 + IEEE80211_WEP_IVLEN \
6386	 + IEEE80211_WEP_KIDLEN \
6387	 + IEEE80211_WEP_CRCLEN \
6388	 + IEEE80211_WEP_MICLEN \
6389	 + IEEE80211_CRC_LEN)
6390
6391/*
6392 * Setup initially for tdma operation.  Start the beacon
6393 * timers and enable SWBA if we are slot 0.  Otherwise
6394 * we wait for slot 0 to arrive so we can sync up before
6395 * starting to transmit.
6396 */
6397static void
6398ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
6399{
6400	struct ath_hal *ah = sc->sc_ah;
6401	struct ifnet *ifp = sc->sc_ifp;
6402	struct ieee80211com *ic = ifp->if_l2com;
6403	const struct ieee80211_txparam *tp;
6404	const struct ieee80211_tdma_state *tdma = NULL;
6405	int rix;
6406
6407	if (vap == NULL) {
6408		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
6409		if (vap == NULL) {
6410			if_printf(ifp, "%s: no vaps?\n", __func__);
6411			return;
6412		}
6413	}
6414	tp = vap->iv_bss->ni_txparms;
6415	/*
6416	 * Calculate the guard time for each slot.  This is the
6417	 * time to send a maximal-size frame according to the
6418	 * fixed/lowest transmit rate.  Note that the interface
6419	 * mtu does not include the 802.11 overhead so we must
6420	 * tack that on (ath_hal_computetxtime includes the
6421	 * preamble and plcp in it's calculation).
6422	 */
6423	tdma = vap->iv_tdma;
6424	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
6425		rix = ath_tx_findrix(sc, tp->ucastrate);
6426	else
6427		rix = ath_tx_findrix(sc, tp->mcastrate);
6428	/* XXX short preamble assumed */
6429	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
6430		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
6431
6432	ath_hal_intrset(ah, 0);
6433
6434	ath_beaconq_config(sc);			/* setup h/w beacon q */
6435	if (sc->sc_setcca)
6436		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
6437	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
6438	ath_tdma_settimers(sc, sc->sc_tdmabintval,
6439		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
6440	sc->sc_syncbeacon = 0;
6441
6442	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
6443	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
6444
6445	ath_hal_intrset(ah, sc->sc_imask);
6446
6447	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
6448	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
6449	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
6450	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
6451	    sc->sc_tdmadbaprep);
6452}
6453
6454/*
6455 * Update tdma operation.  Called from the 802.11 layer
6456 * when a beacon is received from the TDMA station operating
6457 * in the slot immediately preceding us in the bss.  Use
6458 * the rx timestamp for the beacon frame to update our
6459 * beacon timers so we follow their schedule.  Note that
6460 * by using the rx timestamp we implicitly include the
6461 * propagation delay in our schedule.
6462 */
6463static void
6464ath_tdma_update(struct ieee80211_node *ni,
6465	const struct ieee80211_tdma_param *tdma, int changed)
6466{
6467#define	TSF_TO_TU(_h,_l) \
6468	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
6469#define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
6470	struct ieee80211vap *vap = ni->ni_vap;
6471	struct ieee80211com *ic = ni->ni_ic;
6472	struct ath_softc *sc = ic->ic_ifp->if_softc;
6473	struct ath_hal *ah = sc->sc_ah;
6474	const HAL_RATE_TABLE *rt = sc->sc_currates;
6475	u_int64_t tsf, rstamp, nextslot, nexttbtt;
6476	u_int32_t txtime, nextslottu;
6477	int32_t tudelta, tsfdelta;
6478	const struct ath_rx_status *rs;
6479	int rix;
6480
6481	sc->sc_stats.ast_tdma_update++;
6482
6483	/*
6484	 * Check for and adopt configuration changes.
6485	 */
6486	if (changed != 0) {
6487		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
6488
6489		ath_tdma_bintvalsetup(sc, ts);
6490		if (changed & TDMA_UPDATE_SLOTLEN)
6491			ath_wme_update(ic);
6492
6493		DPRINTF(sc, ATH_DEBUG_TDMA,
6494		    "%s: adopt slot %u slotcnt %u slotlen %u us "
6495		    "bintval %u TU\n", __func__,
6496		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
6497		    sc->sc_tdmabintval);
6498
6499		/* XXX right? */
6500		ath_hal_intrset(ah, sc->sc_imask);
6501		/* NB: beacon timers programmed below */
6502	}
6503
6504	/* extend rx timestamp to 64 bits */
6505	rs = sc->sc_lastrs;
6506	tsf = ath_hal_gettsf64(ah);
6507	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
6508	/*
6509	 * The rx timestamp is set by the hardware on completing
6510	 * reception (at the point where the rx descriptor is DMA'd
6511	 * to the host).  To find the start of our next slot we
6512	 * must adjust this time by the time required to send
6513	 * the packet just received.
6514	 */
6515	rix = rt->rateCodeToIndex[rs->rs_rate];
6516	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
6517	    rt->info[rix].shortPreamble);
6518	/* NB: << 9 is to cvt to TU and /2 */
6519	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
6520	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
6521
6522	/*
6523	 * Retrieve the hardware NextTBTT in usecs
6524	 * and calculate the difference between what the
6525	 * other station thinks and what we have programmed.  This
6526	 * lets us figure how to adjust our timers to match.  The
6527	 * adjustments are done by pulling the TSF forward and possibly
6528	 * rewriting the beacon timers.
6529	 */
6530	nexttbtt = ath_hal_getnexttbtt(ah);
6531	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt);
6532
6533	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
6534	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
6535	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
6536
6537	if (tsfdelta < 0) {
6538		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
6539		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
6540		tsfdelta = -tsfdelta % 1024;
6541		nextslottu++;
6542	} else if (tsfdelta > 0) {
6543		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
6544		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
6545		tsfdelta = 1024 - (tsfdelta % 1024);
6546		nextslottu++;
6547	} else {
6548		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
6549		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
6550	}
6551	tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt);
6552
6553	/*
6554	 * Copy sender's timetstamp into tdma ie so they can
6555	 * calculate roundtrip time.  We submit a beacon frame
6556	 * below after any timer adjustment.  The frame goes out
6557	 * at the next TBTT so the sender can calculate the
6558	 * roundtrip by inspecting the tdma ie in our beacon frame.
6559	 *
6560	 * NB: This tstamp is subtlely preserved when
6561	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
6562	 *     slot position changes) because ieee80211_add_tdma
6563	 *     skips over the data.
6564	 */
6565	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
6566		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
6567		&ni->ni_tstamp.data, 8);
6568#if 0
6569	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
6570	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n",
6571	    (unsigned long long) tsf, (unsigned long long) nextslot,
6572	    (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta);
6573#endif
6574	/*
6575	 * Adjust the beacon timers only when pulling them forward
6576	 * or when going back by less than the beacon interval.
6577	 * Negative jumps larger than the beacon interval seem to
6578	 * cause the timers to stop and generally cause instability.
6579	 * This basically filters out jumps due to missed beacons.
6580	 */
6581	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
6582		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
6583		sc->sc_stats.ast_tdma_timers++;
6584	}
6585	if (tsfdelta > 0) {
6586		ath_hal_adjusttsf(ah, tsfdelta);
6587		sc->sc_stats.ast_tdma_tsf++;
6588	}
6589	ath_tdma_beacon_send(sc, vap);		/* prepare response */
6590#undef TU_TO_TSF
6591#undef TSF_TO_TU
6592}
6593
6594/*
6595 * Transmit a beacon frame at SWBA.  Dynamic updates
6596 * to the frame contents are done as needed.
6597 */
6598static void
6599ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
6600{
6601	struct ath_hal *ah = sc->sc_ah;
6602	struct ath_buf *bf;
6603	int otherant;
6604
6605	/*
6606	 * Check if the previous beacon has gone out.  If
6607	 * not don't try to post another, skip this period
6608	 * and wait for the next.  Missed beacons indicate
6609	 * a problem and should not occur.  If we miss too
6610	 * many consecutive beacons reset the device.
6611	 */
6612	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
6613		sc->sc_bmisscount++;
6614		DPRINTF(sc, ATH_DEBUG_BEACON,
6615			"%s: missed %u consecutive beacons\n",
6616			__func__, sc->sc_bmisscount);
6617		if (sc->sc_bmisscount >= ath_bstuck_threshold)
6618			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
6619		return;
6620	}
6621	if (sc->sc_bmisscount != 0) {
6622		DPRINTF(sc, ATH_DEBUG_BEACON,
6623			"%s: resume beacon xmit after %u misses\n",
6624			__func__, sc->sc_bmisscount);
6625		sc->sc_bmisscount = 0;
6626	}
6627
6628	/*
6629	 * Check recent per-antenna transmit statistics and flip
6630	 * the default antenna if noticeably more frames went out
6631	 * on the non-default antenna.
6632	 * XXX assumes 2 anntenae
6633	 */
6634	if (!sc->sc_diversity) {
6635		otherant = sc->sc_defant & 1 ? 2 : 1;
6636		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
6637			ath_setdefantenna(sc, otherant);
6638		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
6639	}
6640
6641	bf = ath_beacon_generate(sc, vap);
6642	if (bf != NULL) {
6643		/*
6644		 * Stop any current dma and put the new frame on the queue.
6645		 * This should never fail since we check above that no frames
6646		 * are still pending on the queue.
6647		 */
6648		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
6649			DPRINTF(sc, ATH_DEBUG_ANY,
6650				"%s: beacon queue %u did not stop?\n",
6651				__func__, sc->sc_bhalq);
6652			/* NB: the HAL still stops DMA, so proceed */
6653		}
6654		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
6655		ath_hal_txstart(ah, sc->sc_bhalq);
6656
6657		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
6658
6659		/*
6660		 * Record local TSF for our last send for use
6661		 * in arbitrating slot collisions.
6662		 */
6663		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
6664	}
6665}
6666#endif /* IEEE80211_SUPPORT_TDMA */
6667
6668static void
6669ath_dfs_tasklet(void *p, int npending)
6670{
6671	struct ath_softc *sc = (struct ath_softc *) p;
6672	struct ifnet *ifp = sc->sc_ifp;
6673	struct ieee80211com *ic = ifp->if_l2com;
6674
6675	/*
6676	 * If previous processing has found a radar event,
6677	 * signal this to the net80211 layer to begin DFS
6678	 * processing.
6679	 */
6680	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6681		/* DFS event found, initiate channel change */
6682		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6683	}
6684}
6685
6686MODULE_VERSION(if_ath, 1);
6687MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
6688