if_ath.c revision 183248
1/*-
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 183248 2008-09-21 23:16:19Z sam $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/sysctl.h>
46#include <sys/mbuf.h>
47#include <sys/malloc.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/kernel.h>
51#include <sys/socket.h>
52#include <sys/sockio.h>
53#include <sys/errno.h>
54#include <sys/callout.h>
55#include <sys/bus.h>
56#include <sys/endian.h>
57#include <sys/kthread.h>
58#include <sys/taskqueue.h>
59
60#include <machine/bus.h>
61
62#include <net/if.h>
63#include <net/if_dl.h>
64#include <net/if_media.h>
65#include <net/if_types.h>
66#include <net/if_arp.h>
67#include <net/ethernet.h>
68#include <net/if_llc.h>
69
70#include <net80211/ieee80211_var.h>
71
72#include <net/bpf.h>
73
74#ifdef INET
75#include <netinet/in.h>
76#include <netinet/if_ether.h>
77#endif
78
79#include <dev/ath/if_athvar.h>
80#include <contrib/dev/ath/ah_desc.h>
81#include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
82
83#ifdef ATH_TX99_DIAG
84#include <dev/ath/ath_tx99/ath_tx99.h>
85#endif
86
87/*
88 * We require a HAL w/ the changes for split tx/rx MIC.
89 */
90CTASSERT(HAL_ABI_VERSION > 0x06052200);
91
92/*
93 * ATH_BCBUF determines the number of vap's that can transmit
94 * beacons and also (currently) the number of vap's that can
95 * have unique mac addresses/bssid.  When staggering beacons
96 * 4 is probably a good max as otherwise the beacons become
97 * very closely spaced and there is limited time for cab q traffic
98 * to go out.  You can burst beacons instead but that is not good
99 * for stations in power save and at some point you really want
100 * another radio (and channel).
101 *
102 * The limit on the number of mac addresses is tied to our use of
103 * the U/L bit and tracking addresses in a byte; it would be
104 * worthwhile to allow more for applications like proxy sta.
105 */
106CTASSERT(ATH_BCBUF <= 8);
107
108/* unaligned little endian access */
109#define LE_READ_2(p)							\
110	((u_int16_t)							\
111	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
112#define LE_READ_4(p)							\
113	((u_int32_t)							\
114	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
115	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116
117enum {
118	ATH_LED_TX,
119	ATH_LED_RX,
120	ATH_LED_POLL,
121};
122
123static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
124		    const char name[IFNAMSIZ], int unit, int opmode,
125		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
126		    const uint8_t mac[IEEE80211_ADDR_LEN]);
127static void	ath_vap_delete(struct ieee80211vap *);
128static void	ath_init(void *);
129static void	ath_stop_locked(struct ifnet *);
130static void	ath_stop(struct ifnet *);
131static void	ath_start(struct ifnet *);
132static int	ath_reset(struct ifnet *);
133static int	ath_reset_vap(struct ieee80211vap *, u_long);
134static int	ath_media_change(struct ifnet *);
135static void	ath_watchdog(struct ifnet *);
136static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
137static void	ath_fatal_proc(void *, int);
138static void	ath_rxorn_proc(void *, int);
139static void	ath_bmiss_vap(struct ieee80211vap *);
140static void	ath_bmiss_proc(void *, int);
141static int	ath_keyset(struct ath_softc *, const struct ieee80211_key *,
142			struct ieee80211_node *);
143static int	ath_key_alloc(struct ieee80211vap *,
144			struct ieee80211_key *,
145			ieee80211_keyix *, ieee80211_keyix *);
146static int	ath_key_delete(struct ieee80211vap *,
147			const struct ieee80211_key *);
148static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
149			const u_int8_t mac[IEEE80211_ADDR_LEN]);
150static void	ath_key_update_begin(struct ieee80211vap *);
151static void	ath_key_update_end(struct ieee80211vap *);
152static void	ath_update_mcast(struct ifnet *);
153static void	ath_update_promisc(struct ifnet *);
154static void	ath_mode_init(struct ath_softc *);
155static void	ath_setslottime(struct ath_softc *);
156static void	ath_updateslot(struct ifnet *);
157static int	ath_beaconq_setup(struct ath_hal *);
158static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
159static void	ath_beacon_update(struct ieee80211vap *, int item);
160static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
161static void	ath_beacon_proc(void *, int);
162static struct ath_buf *ath_beacon_generate(struct ath_softc *,
163			struct ieee80211vap *);
164static void	ath_bstuck_proc(void *, int);
165static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
166static void	ath_beacon_free(struct ath_softc *);
167static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
168static void	ath_descdma_cleanup(struct ath_softc *sc,
169			struct ath_descdma *, ath_bufhead *);
170static int	ath_desc_alloc(struct ath_softc *);
171static void	ath_desc_free(struct ath_softc *);
172static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
173			const uint8_t [IEEE80211_ADDR_LEN]);
174static void	ath_node_free(struct ieee80211_node *);
175static void	ath_node_getsignal(const struct ieee80211_node *,
176			int8_t *, int8_t *);
177static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
178static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
179			int subtype, int rssi, int noise, u_int32_t rstamp);
180static void	ath_setdefantenna(struct ath_softc *, u_int);
181static void	ath_rx_proc(void *, int);
182static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
183static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
184static int	ath_tx_setup(struct ath_softc *, int, int);
185static int	ath_wme_update(struct ieee80211com *);
186static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
187static void	ath_tx_cleanup(struct ath_softc *);
188static void	ath_freetx(struct mbuf *);
189static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
190			     struct ath_buf *, struct mbuf *);
191static void	ath_tx_proc_q0(void *, int);
192static void	ath_tx_proc_q0123(void *, int);
193static void	ath_tx_proc(void *, int);
194static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
195static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
196static void	ath_draintxq(struct ath_softc *);
197static void	ath_stoprecv(struct ath_softc *);
198static int	ath_startrecv(struct ath_softc *);
199static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
200static void	ath_scan_start(struct ieee80211com *);
201static void	ath_scan_end(struct ieee80211com *);
202static void	ath_set_channel(struct ieee80211com *);
203static void	ath_calibrate(void *);
204static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
205static void	ath_setup_stationkey(struct ieee80211_node *);
206static void	ath_newassoc(struct ieee80211_node *, int);
207static int	ath_setregdomain(struct ieee80211com *,
208		    struct ieee80211_regdomain *, int,
209		    struct ieee80211_channel []);
210static void	ath_getradiocaps(struct ieee80211com *, int *,
211		    struct ieee80211_channel []);
212static int	ath_getchannels(struct ath_softc *);
213static void	ath_led_event(struct ath_softc *, int);
214
215static int	ath_rate_setup(struct ath_softc *, u_int mode);
216static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
217
218static void	ath_sysctlattach(struct ath_softc *);
219static int	ath_raw_xmit(struct ieee80211_node *,
220			struct mbuf *, const struct ieee80211_bpf_params *);
221static void	ath_bpfattach(struct ath_softc *);
222static void	ath_announce(struct ath_softc *);
223
224SYSCTL_DECL(_hw_ath);
225
226/* XXX validate sysctl values */
227static	int ath_calinterval = 30;		/* calibrate every 30 secs */
228SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
229	    0, "chip calibration interval (secs)");
230
231static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
232SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
233	    0, "rx buffers allocated");
234TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
235static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
236SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
237	    0, "tx buffers allocated");
238TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
239
240#ifdef ATH_DEBUG
241static	int ath_debug = 0;
242SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
243	    0, "control debugging printfs");
244TUNABLE_INT("hw.ath.debug", &ath_debug);
245enum {
246	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
247	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
248	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
249	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
250	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
251	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
252	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
253	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
254	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
255	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
256	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
257	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
258	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
259	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
260	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
261	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
262	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
263	ATH_DEBUG_LED		= 0x00100000,	/* led management */
264	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
265	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
266	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
267	ATH_DEBUG_ANY		= 0xffffffff
268};
269#define	IFF_DUMPPKTS(sc, m) \
270	((sc->sc_debug & (m)) || \
271	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
272#define	DPRINTF(sc, m, fmt, ...) do {				\
273	if (sc->sc_debug & (m))					\
274		printf(fmt, __VA_ARGS__);			\
275} while (0)
276#define	KEYPRINTF(sc, ix, hk, mac) do {				\
277	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
278		ath_keyprint(sc, __func__, ix, hk, mac);	\
279} while (0)
280static	void ath_printrxbuf(const struct ath_buf *bf, u_int ix, int);
281static	void ath_printtxbuf(const struct ath_buf *bf, u_int qnum, u_int ix, int done);
282#else
283#define	IFF_DUMPPKTS(sc, m) \
284	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
285#define	DPRINTF(sc, m, fmt, ...) do {				\
286	(void) sc;						\
287} while (0)
288#define	KEYPRINTF(sc, k, ix, mac) do {				\
289	(void) sc;						\
290} while (0)
291#endif
292
293MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
294
295int
296ath_attach(u_int16_t devid, struct ath_softc *sc)
297{
298	struct ifnet *ifp;
299	struct ieee80211com *ic;
300	struct ath_hal *ah = NULL;
301	HAL_STATUS status;
302	int error = 0, i;
303
304	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
305
306	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
307	if (ifp == NULL) {
308		device_printf(sc->sc_dev, "can not if_alloc()\n");
309		error = ENOSPC;
310		goto bad;
311	}
312	ic = ifp->if_l2com;
313
314	/* set these up early for if_printf use */
315	if_initname(ifp, device_get_name(sc->sc_dev),
316		device_get_unit(sc->sc_dev));
317
318	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
319	if (ah == NULL) {
320		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
321			status);
322		error = ENXIO;
323		goto bad;
324	}
325	if (ah->ah_abi != HAL_ABI_VERSION) {
326		if_printf(ifp, "HAL ABI mismatch detected "
327			"(HAL:0x%x != driver:0x%x)\n",
328			ah->ah_abi, HAL_ABI_VERSION);
329		error = ENXIO;
330		goto bad;
331	}
332	sc->sc_ah = ah;
333	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
334
335	/*
336	 * Check if the MAC has multi-rate retry support.
337	 * We do this by trying to setup a fake extended
338	 * descriptor.  MAC's that don't have support will
339	 * return false w/o doing anything.  MAC's that do
340	 * support it will return true w/o doing anything.
341	 */
342	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
343
344	/*
345	 * Check if the device has hardware counters for PHY
346	 * errors.  If so we need to enable the MIB interrupt
347	 * so we can act on stat triggers.
348	 */
349	if (ath_hal_hwphycounters(ah))
350		sc->sc_needmib = 1;
351
352	/*
353	 * Get the hardware key cache size.
354	 */
355	sc->sc_keymax = ath_hal_keycachesize(ah);
356	if (sc->sc_keymax > ATH_KEYMAX) {
357		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
358			ATH_KEYMAX, sc->sc_keymax);
359		sc->sc_keymax = ATH_KEYMAX;
360	}
361	/*
362	 * Reset the key cache since some parts do not
363	 * reset the contents on initial power up.
364	 */
365	for (i = 0; i < sc->sc_keymax; i++)
366		ath_hal_keyreset(ah, i);
367
368	/*
369	 * Collect the default channel list.
370	 */
371	error = ath_getchannels(sc);
372	if (error != 0)
373		goto bad;
374
375	/*
376	 * Setup rate tables for all potential media types.
377	 */
378	ath_rate_setup(sc, IEEE80211_MODE_11A);
379	ath_rate_setup(sc, IEEE80211_MODE_11B);
380	ath_rate_setup(sc, IEEE80211_MODE_11G);
381	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
382	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
383	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
384	ath_rate_setup(sc, IEEE80211_MODE_11NA);
385	ath_rate_setup(sc, IEEE80211_MODE_11NG);
386	ath_rate_setup(sc, IEEE80211_MODE_HALF);
387	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
388
389	/* NB: setup here so ath_rate_update is happy */
390	ath_setcurmode(sc, IEEE80211_MODE_11A);
391
392	/*
393	 * Allocate tx+rx descriptors and populate the lists.
394	 */
395	error = ath_desc_alloc(sc);
396	if (error != 0) {
397		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
398		goto bad;
399	}
400	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
401
402	ATH_TXBUF_LOCK_INIT(sc);
403
404	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
405		taskqueue_thread_enqueue, &sc->sc_tq);
406	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
407		"%s taskq", ifp->if_xname);
408
409	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
410	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
411	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
412	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
413
414	/*
415	 * Allocate hardware transmit queues: one queue for
416	 * beacon frames and one data queue for each QoS
417	 * priority.  Note that the hal handles reseting
418	 * these queues at the needed time.
419	 *
420	 * XXX PS-Poll
421	 */
422	sc->sc_bhalq = ath_beaconq_setup(ah);
423	if (sc->sc_bhalq == (u_int) -1) {
424		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
425		error = EIO;
426		goto bad2;
427	}
428	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
429	if (sc->sc_cabq == NULL) {
430		if_printf(ifp, "unable to setup CAB xmit queue!\n");
431		error = EIO;
432		goto bad2;
433	}
434	/* NB: insure BK queue is the lowest priority h/w queue */
435	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
436		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
437			ieee80211_wme_acnames[WME_AC_BK]);
438		error = EIO;
439		goto bad2;
440	}
441	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
442	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
443	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
444		/*
445		 * Not enough hardware tx queues to properly do WME;
446		 * just punt and assign them all to the same h/w queue.
447		 * We could do a better job of this if, for example,
448		 * we allocate queues when we switch from station to
449		 * AP mode.
450		 */
451		if (sc->sc_ac2q[WME_AC_VI] != NULL)
452			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
453		if (sc->sc_ac2q[WME_AC_BE] != NULL)
454			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
455		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
456		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
457		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
458	}
459
460	/*
461	 * Special case certain configurations.  Note the
462	 * CAB queue is handled by these specially so don't
463	 * include them when checking the txq setup mask.
464	 */
465	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
466	case 0x01:
467		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
468		break;
469	case 0x0f:
470		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
471		break;
472	default:
473		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
474		break;
475	}
476
477	/*
478	 * Setup rate control.  Some rate control modules
479	 * call back to change the anntena state so expose
480	 * the necessary entry points.
481	 * XXX maybe belongs in struct ath_ratectrl?
482	 */
483	sc->sc_setdefantenna = ath_setdefantenna;
484	sc->sc_rc = ath_rate_attach(sc);
485	if (sc->sc_rc == NULL) {
486		error = EIO;
487		goto bad2;
488	}
489
490	sc->sc_blinking = 0;
491	sc->sc_ledstate = 1;
492	sc->sc_ledon = 0;			/* low true */
493	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
494	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
495	/*
496	 * Auto-enable soft led processing for IBM cards and for
497	 * 5211 minipci cards.  Users can also manually enable/disable
498	 * support with a sysctl.
499	 */
500	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
501	if (sc->sc_softled) {
502		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
503		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
504	}
505
506	ifp->if_softc = sc;
507	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
508	ifp->if_start = ath_start;
509	ifp->if_watchdog = ath_watchdog;
510	ifp->if_ioctl = ath_ioctl;
511	ifp->if_init = ath_init;
512	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
513	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
514	IFQ_SET_READY(&ifp->if_snd);
515
516	ic->ic_ifp = ifp;
517	/* XXX not right but it's not used anywhere important */
518	ic->ic_phytype = IEEE80211_T_OFDM;
519	ic->ic_opmode = IEEE80211_M_STA;
520	ic->ic_caps =
521		  IEEE80211_C_STA		/* station mode */
522		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
523		| IEEE80211_C_HOSTAP		/* hostap mode */
524		| IEEE80211_C_MONITOR		/* monitor mode */
525		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
526		| IEEE80211_C_WDS		/* 4-address traffic works */
527		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
528		| IEEE80211_C_SHSLOT		/* short slot time supported */
529		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
530		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
531		| IEEE80211_C_TXFRAG		/* handle tx frags */
532		;
533	/*
534	 * Query the hal to figure out h/w crypto support.
535	 */
536	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
537		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
538	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
539		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
540	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
541		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
542	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
543		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
544	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
545		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
546		/*
547		 * Check if h/w does the MIC and/or whether the
548		 * separate key cache entries are required to
549		 * handle both tx+rx MIC keys.
550		 */
551		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
552			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
553		/*
554		 * If the h/w supports storing tx+rx MIC keys
555		 * in one cache slot automatically enable use.
556		 */
557		if (ath_hal_hastkipsplit(ah) ||
558		    !ath_hal_settkipsplit(ah, AH_FALSE))
559			sc->sc_splitmic = 1;
560		/*
561		 * If the h/w can do TKIP MIC together with WME then
562		 * we use it; otherwise we force the MIC to be done
563		 * in software by the net80211 layer.
564		 */
565		if (ath_hal_haswmetkipmic(ah))
566			sc->sc_wmetkipmic = 1;
567	}
568	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
569	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
570	/*
571	 * Mark key cache slots associated with global keys
572	 * as in use.  If we knew TKIP was not to be used we
573	 * could leave the +32, +64, and +32+64 slots free.
574	 */
575	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
576		setbit(sc->sc_keymap, i);
577		setbit(sc->sc_keymap, i+64);
578		if (sc->sc_splitmic) {
579			setbit(sc->sc_keymap, i+32);
580			setbit(sc->sc_keymap, i+32+64);
581		}
582	}
583	/*
584	 * TPC support can be done either with a global cap or
585	 * per-packet support.  The latter is not available on
586	 * all parts.  We're a bit pedantic here as all parts
587	 * support a global cap.
588	 */
589	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
590		ic->ic_caps |= IEEE80211_C_TXPMGT;
591
592	/*
593	 * Mark WME capability only if we have sufficient
594	 * hardware queues to do proper priority scheduling.
595	 */
596	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
597		ic->ic_caps |= IEEE80211_C_WME;
598	/*
599	 * Check for misc other capabilities.
600	 */
601	if (ath_hal_hasbursting(ah))
602		ic->ic_caps |= IEEE80211_C_BURST;
603	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
604	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
605	if (ath_hal_hasfastframes(ah))
606		ic->ic_caps |= IEEE80211_C_FF;
607	if (ath_hal_getwirelessmodes(ah, ic->ic_regdomain.country) & (HAL_MODE_108G|HAL_MODE_TURBO))
608		ic->ic_caps |= IEEE80211_C_TURBOP;
609
610	/*
611	 * Indicate we need the 802.11 header padded to a
612	 * 32-bit boundary for 4-address and QoS frames.
613	 */
614	ic->ic_flags |= IEEE80211_F_DATAPAD;
615
616	/*
617	 * Query the hal about antenna support.
618	 */
619	sc->sc_defant = ath_hal_getdefantenna(ah);
620
621	/*
622	 * Not all chips have the VEOL support we want to
623	 * use with IBSS beacons; check here for it.
624	 */
625	sc->sc_hasveol = ath_hal_hasveol(ah);
626
627	/* get mac address from hardware */
628	ath_hal_getmac(ah, ic->ic_myaddr);
629	if (sc->sc_hasbmask)
630		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
631
632	/* NB: used to size node table key mapping array */
633	ic->ic_max_keyix = sc->sc_keymax;
634	/* call MI attach routine. */
635	ieee80211_ifattach(ic);
636	ic->ic_setregdomain = ath_setregdomain;
637	ic->ic_getradiocaps = ath_getradiocaps;
638	sc->sc_opmode = HAL_M_STA;
639
640	/* override default methods */
641	ic->ic_newassoc = ath_newassoc;
642	ic->ic_updateslot = ath_updateslot;
643	ic->ic_wme.wme_update = ath_wme_update;
644	ic->ic_vap_create = ath_vap_create;
645	ic->ic_vap_delete = ath_vap_delete;
646	ic->ic_raw_xmit = ath_raw_xmit;
647	ic->ic_update_mcast = ath_update_mcast;
648	ic->ic_update_promisc = ath_update_promisc;
649	ic->ic_node_alloc = ath_node_alloc;
650	sc->sc_node_free = ic->ic_node_free;
651	ic->ic_node_free = ath_node_free;
652	ic->ic_node_getsignal = ath_node_getsignal;
653	ic->ic_scan_start = ath_scan_start;
654	ic->ic_scan_end = ath_scan_end;
655	ic->ic_set_channel = ath_set_channel;
656
657	ath_bpfattach(sc);
658	/*
659	 * Setup dynamic sysctl's now that country code and
660	 * regdomain are available from the hal.
661	 */
662	ath_sysctlattach(sc);
663
664	if (bootverbose)
665		ieee80211_announce(ic);
666	ath_announce(sc);
667	return 0;
668bad2:
669	ath_tx_cleanup(sc);
670	ath_desc_free(sc);
671bad:
672	if (ah)
673		ath_hal_detach(ah);
674	if (ifp != NULL)
675		if_free(ifp);
676	sc->sc_invalid = 1;
677	return error;
678}
679
680int
681ath_detach(struct ath_softc *sc)
682{
683	struct ifnet *ifp = sc->sc_ifp;
684
685	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
686		__func__, ifp->if_flags);
687
688	/*
689	 * NB: the order of these is important:
690	 * o stop the chip so no more interrupts will fire
691	 * o call the 802.11 layer before detaching the hal to
692	 *   insure callbacks into the driver to delete global
693	 *   key cache entries can be handled
694	 * o free the taskqueue which drains any pending tasks
695	 * o reclaim the bpf tap now that we know nothing will use
696	 *   it (e.g. rx processing from the task q thread)
697	 * o reclaim the tx queue data structures after calling
698	 *   the 802.11 layer as we'll get called back to reclaim
699	 *   node state and potentially want to use them
700	 * o to cleanup the tx queues the hal is called, so detach
701	 *   it last
702	 * Other than that, it's straightforward...
703	 */
704	ath_stop(ifp);
705	ieee80211_ifdetach(ifp->if_l2com);
706	taskqueue_free(sc->sc_tq);
707	bpfdetach(ifp);
708#ifdef ATH_TX99_DIAG
709	if (sc->sc_tx99 != NULL)
710		sc->sc_tx99->detach(sc->sc_tx99);
711#endif
712	ath_rate_detach(sc->sc_rc);
713	ath_desc_free(sc);
714	ath_tx_cleanup(sc);
715	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
716	if_free(ifp);
717
718	return 0;
719}
720
721/*
722 * MAC address handling for multiple BSS on the same radio.
723 * The first vap uses the MAC address from the EEPROM.  For
724 * subsequent vap's we set the U/L bit (bit 1) in the MAC
725 * address and use the next six bits as an index.
726 */
727static void
728assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
729{
730	int i;
731
732	if (clone && sc->sc_hasbmask) {
733		/* NB: we only do this if h/w supports multiple bssid */
734		for (i = 0; i < 8; i++)
735			if ((sc->sc_bssidmask & (1<<i)) == 0)
736				break;
737		if (i != 0)
738			mac[0] |= (i << 2)|0x2;
739	} else
740		i = 0;
741	sc->sc_bssidmask |= 1<<i;
742	sc->sc_hwbssidmask[0] &= ~mac[0];
743	if (i == 0)
744		sc->sc_nbssid0++;
745}
746
747static void
748reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
749{
750	int i = mac[0] >> 2;
751	uint8_t mask;
752
753	if (i != 0 || --sc->sc_nbssid0 == 0) {
754		sc->sc_bssidmask &= ~(1<<i);
755		/* recalculate bssid mask from remaining addresses */
756		mask = 0xff;
757		for (i = 1; i < 8; i++)
758			if (sc->sc_bssidmask & (1<<i))
759				mask &= ~((i<<2)|0x2);
760		sc->sc_hwbssidmask[0] |= mask;
761	}
762}
763
764/*
765 * Assign a beacon xmit slot.  We try to space out
766 * assignments so when beacons are staggered the
767 * traffic coming out of the cab q has maximal time
768 * to go out before the next beacon is scheduled.
769 */
770static int
771assign_bslot(struct ath_softc *sc)
772{
773	u_int slot, free;
774
775	free = 0;
776	for (slot = 0; slot < ATH_BCBUF; slot++)
777		if (sc->sc_bslot[slot] == NULL) {
778			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
779			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
780				return slot;
781			free = slot;
782			/* NB: keep looking for a double slot */
783		}
784	return free;
785}
786
787static struct ieee80211vap *
788ath_vap_create(struct ieee80211com *ic,
789	const char name[IFNAMSIZ], int unit, int opmode, int flags,
790	const uint8_t bssid[IEEE80211_ADDR_LEN],
791	const uint8_t mac0[IEEE80211_ADDR_LEN])
792{
793	struct ath_softc *sc = ic->ic_ifp->if_softc;
794	struct ath_vap *avp;
795	struct ieee80211vap *vap;
796	uint8_t mac[IEEE80211_ADDR_LEN];
797	int ic_opmode, needbeacon, error;
798
799	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
800	    M_80211_VAP, M_WAITOK | M_ZERO);
801	needbeacon = 0;
802	IEEE80211_ADDR_COPY(mac, mac0);
803
804	ATH_LOCK(sc);
805	switch (opmode) {
806	case IEEE80211_M_STA:
807		if (sc->sc_nstavaps != 0) {	/* XXX only 1 sta for now */
808			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
809			goto bad;
810		}
811		if (sc->sc_nvaps) {
812			/*
813			 * When there are multiple vaps we must fall
814			 * back to s/w beacon miss handling.
815			 */
816			flags |= IEEE80211_CLONE_NOBEACONS;
817		}
818		if (flags & IEEE80211_CLONE_NOBEACONS) {
819			sc->sc_swbmiss = 1;
820			ic_opmode = IEEE80211_M_HOSTAP;
821		} else
822			ic_opmode = opmode;
823		break;
824	case IEEE80211_M_IBSS:
825		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
826			device_printf(sc->sc_dev,
827			    "only 1 ibss vap supported\n");
828			goto bad;
829		}
830		ic_opmode = opmode;
831		needbeacon = 1;
832		break;
833	case IEEE80211_M_AHDEMO:
834		/* fall thru... */
835	case IEEE80211_M_MONITOR:
836		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
837			/* XXX not right for monitor mode */
838			ic_opmode = ic->ic_opmode;
839		} else
840			ic_opmode = opmode;
841		break;
842	case IEEE80211_M_HOSTAP:
843		needbeacon = 1;
844		/* fall thru... */
845	case IEEE80211_M_WDS:
846		if (sc->sc_nvaps && ic->ic_opmode == IEEE80211_M_STA) {
847			device_printf(sc->sc_dev,
848			    "wds not supported in sta mode\n");
849			goto bad;
850		}
851		if (opmode == IEEE80211_M_WDS) {
852			/*
853			 * Silently remove any request for a unique
854			 * bssid; WDS vap's always share the local
855			 * mac address.
856			 */
857			flags &= ~IEEE80211_CLONE_BSSID;
858		}
859		ic_opmode = IEEE80211_M_HOSTAP;
860		break;
861	default:
862		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
863		goto bad;
864	}
865	/*
866	 * Check that a beacon buffer is available; the code below assumes it.
867	 */
868	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
869		device_printf(sc->sc_dev, "no beacon buffer available\n");
870		goto bad;
871	}
872
873	/* STA, AHDEMO? */
874	if (opmode == IEEE80211_M_HOSTAP) {
875		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
876		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
877	}
878
879	vap = &avp->av_vap;
880	/* XXX can't hold mutex across if_alloc */
881	ATH_UNLOCK(sc);
882	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
883	    bssid, mac);
884	ATH_LOCK(sc);
885	if (error != 0) {
886		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
887		    __func__, error);
888		goto bad2;
889	}
890
891	/* h/w crypto support */
892	vap->iv_key_alloc = ath_key_alloc;
893	vap->iv_key_delete = ath_key_delete;
894	vap->iv_key_set = ath_key_set;
895	vap->iv_key_update_begin = ath_key_update_begin;
896	vap->iv_key_update_end = ath_key_update_end;
897
898	/* override various methods */
899	avp->av_recv_mgmt = vap->iv_recv_mgmt;
900	vap->iv_recv_mgmt = ath_recv_mgmt;
901	vap->iv_reset = ath_reset_vap;
902	vap->iv_update_beacon = ath_beacon_update;
903	avp->av_newstate = vap->iv_newstate;
904	vap->iv_newstate = ath_newstate;
905	avp->av_bmiss = vap->iv_bmiss;
906	vap->iv_bmiss = ath_bmiss_vap;
907
908	avp->av_bslot = -1;
909	if (needbeacon) {
910		/*
911		 * Allocate beacon state and setup the q for buffered
912		 * multicast frames.  We know a beacon buffer is
913		 * available because we checked above.
914		 */
915		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
916		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
917		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
918			/*
919			 * Assign the vap to a beacon xmit slot.  As above
920			 * this cannot fail to find a free one.
921			 */
922			avp->av_bslot = assign_bslot(sc);
923			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
924			    ("beacon slot %u not empty", avp->av_bslot));
925			sc->sc_bslot[avp->av_bslot] = vap;
926			sc->sc_nbcnvaps++;
927		}
928		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
929			/*
930			 * Multple vaps are to transmit beacons and we
931			 * have h/w support for TSF adjusting; enable
932			 * use of staggered beacons.
933			 */
934			sc->sc_stagbeacons = 1;
935		}
936		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
937	}
938
939	ic->ic_opmode = ic_opmode;
940	if (opmode != IEEE80211_M_WDS) {
941		sc->sc_nvaps++;
942		if (opmode == IEEE80211_M_STA)
943			sc->sc_nstavaps++;
944	}
945	switch (ic_opmode) {
946	case IEEE80211_M_IBSS:
947		sc->sc_opmode = HAL_M_IBSS;
948		break;
949	case IEEE80211_M_STA:
950		sc->sc_opmode = HAL_M_STA;
951		break;
952	case IEEE80211_M_AHDEMO:
953	case IEEE80211_M_HOSTAP:
954		sc->sc_opmode = HAL_M_HOSTAP;
955		break;
956	case IEEE80211_M_MONITOR:
957		sc->sc_opmode = HAL_M_MONITOR;
958		break;
959	default:
960		/* XXX should not happen */
961		break;
962	}
963	if (sc->sc_hastsfadd) {
964		/*
965		 * Configure whether or not TSF adjust should be done.
966		 */
967		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
968	}
969	ATH_UNLOCK(sc);
970
971	/* complete setup */
972	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
973	return vap;
974bad2:
975	reclaim_address(sc, mac);
976	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
977bad:
978	free(avp, M_80211_VAP);
979	ATH_UNLOCK(sc);
980	return NULL;
981}
982
983static void
984ath_vap_delete(struct ieee80211vap *vap)
985{
986	struct ieee80211com *ic = vap->iv_ic;
987	struct ifnet *ifp = ic->ic_ifp;
988	struct ath_softc *sc = ifp->if_softc;
989	struct ath_hal *ah = sc->sc_ah;
990	struct ath_vap *avp = ATH_VAP(vap);
991
992	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
993		/*
994		 * Quiesce the hardware while we remove the vap.  In
995		 * particular we need to reclaim all references to
996		 * the vap state by any frames pending on the tx queues.
997		 */
998		ath_hal_intrset(ah, 0);		/* disable interrupts */
999		ath_draintxq(sc);		/* stop xmit side */
1000		ath_stoprecv(sc);		/* stop recv side */
1001	}
1002
1003	ieee80211_vap_detach(vap);
1004	ATH_LOCK(sc);
1005	/*
1006	 * Reclaim beacon state.  Note this must be done before
1007	 * the vap instance is reclaimed as we may have a reference
1008	 * to it in the buffer for the beacon frame.
1009	 */
1010	if (avp->av_bcbuf != NULL) {
1011		if (avp->av_bslot != -1) {
1012			sc->sc_bslot[avp->av_bslot] = NULL;
1013			sc->sc_nbcnvaps--;
1014		}
1015		ath_beacon_return(sc, avp->av_bcbuf);
1016		avp->av_bcbuf = NULL;
1017		if (sc->sc_nbcnvaps == 0) {
1018			sc->sc_stagbeacons = 0;
1019			if (sc->sc_hastsfadd)
1020				ath_hal_settsfadjust(sc->sc_ah, 0);
1021		}
1022		/*
1023		 * Reclaim any pending mcast frames for the vap.
1024		 */
1025		ath_tx_draintxq(sc, &avp->av_mcastq);
1026		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1027	}
1028	/*
1029	 * Update bookkeeping.
1030	 */
1031	if (vap->iv_opmode == IEEE80211_M_STA) {
1032		sc->sc_nstavaps--;
1033		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1034			sc->sc_swbmiss = 0;
1035	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
1036		reclaim_address(sc, vap->iv_myaddr);
1037		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1038	}
1039	if (vap->iv_opmode != IEEE80211_M_WDS)
1040		sc->sc_nvaps--;
1041	ATH_UNLOCK(sc);
1042	free(avp, M_80211_VAP);
1043
1044	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1045		/*
1046		 * Restart rx+tx machines if still running (RUNNING will
1047		 * be reset if we just destroyed the last vap).
1048		 */
1049		if (ath_startrecv(sc) != 0)
1050			if_printf(ifp, "%s: unable to restart recv logic\n",
1051			    __func__);
1052		if (sc->sc_beacons)
1053			ath_beacon_config(sc, NULL);
1054		ath_hal_intrset(ah, sc->sc_imask);
1055	}
1056}
1057
1058void
1059ath_suspend(struct ath_softc *sc)
1060{
1061	struct ifnet *ifp = sc->sc_ifp;
1062	struct ieee80211com *ic = ifp->if_l2com;
1063
1064	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1065		__func__, ifp->if_flags);
1066
1067	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1068	if (ic->ic_opmode == IEEE80211_M_STA)
1069		ath_stop(ifp);
1070	else
1071		ieee80211_suspend_all(ic);
1072	/*
1073	 * NB: don't worry about putting the chip in low power
1074	 * mode; pci will power off our socket on suspend and
1075	 * cardbus detaches the device.
1076	 */
1077}
1078
1079/*
1080 * Reset the key cache since some parts do not reset the
1081 * contents on resume.  First we clear all entries, then
1082 * re-load keys that the 802.11 layer assumes are setup
1083 * in h/w.
1084 */
1085static void
1086ath_reset_keycache(struct ath_softc *sc)
1087{
1088	struct ifnet *ifp = sc->sc_ifp;
1089	struct ieee80211com *ic = ifp->if_l2com;
1090	struct ath_hal *ah = sc->sc_ah;
1091	int i;
1092
1093	for (i = 0; i < sc->sc_keymax; i++)
1094		ath_hal_keyreset(ah, i);
1095	ieee80211_crypto_reload_keys(ic);
1096}
1097
1098void
1099ath_resume(struct ath_softc *sc)
1100{
1101	struct ifnet *ifp = sc->sc_ifp;
1102	struct ieee80211com *ic = ifp->if_l2com;
1103	struct ath_hal *ah = sc->sc_ah;
1104	HAL_STATUS status;
1105
1106	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1107		__func__, ifp->if_flags);
1108
1109	/*
1110	 * Must reset the chip before we reload the
1111	 * keycache as we were powered down on suspend.
1112	 */
1113	ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status);
1114	ath_reset_keycache(sc);
1115	if (sc->sc_resume_up) {
1116		if (ic->ic_opmode == IEEE80211_M_STA) {
1117			ath_init(sc);
1118			ieee80211_beacon_miss(ic);
1119		} else
1120			ieee80211_resume_all(ic);
1121	}
1122	if (sc->sc_softled) {
1123		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
1124		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1125	}
1126}
1127
1128void
1129ath_shutdown(struct ath_softc *sc)
1130{
1131	struct ifnet *ifp = sc->sc_ifp;
1132
1133	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1134		__func__, ifp->if_flags);
1135
1136	ath_stop(ifp);
1137	/* NB: no point powering down chip as we're about to reboot */
1138}
1139
1140/*
1141 * Interrupt handler.  Most of the actual processing is deferred.
1142 */
1143void
1144ath_intr(void *arg)
1145{
1146	struct ath_softc *sc = arg;
1147	struct ifnet *ifp = sc->sc_ifp;
1148	struct ath_hal *ah = sc->sc_ah;
1149	HAL_INT status;
1150
1151	if (sc->sc_invalid) {
1152		/*
1153		 * The hardware is not ready/present, don't touch anything.
1154		 * Note this can happen early on if the IRQ is shared.
1155		 */
1156		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1157		return;
1158	}
1159	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1160		return;
1161	if ((ifp->if_flags & IFF_UP) == 0 ||
1162	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1163		HAL_INT status;
1164
1165		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1166			__func__, ifp->if_flags);
1167		ath_hal_getisr(ah, &status);	/* clear ISR */
1168		ath_hal_intrset(ah, 0);		/* disable further intr's */
1169		return;
1170	}
1171	/*
1172	 * Figure out the reason(s) for the interrupt.  Note
1173	 * that the hal returns a pseudo-ISR that may include
1174	 * bits we haven't explicitly enabled so we mask the
1175	 * value to insure we only process bits we requested.
1176	 */
1177	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1178	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1179	status &= sc->sc_imask;			/* discard unasked for bits */
1180	if (status & HAL_INT_FATAL) {
1181		sc->sc_stats.ast_hardware++;
1182		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1183		ath_fatal_proc(sc, 0);
1184	} else if (status & HAL_INT_RXORN) {
1185		sc->sc_stats.ast_rxorn++;
1186		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1187		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxorntask);
1188	} else {
1189		if (status & HAL_INT_SWBA) {
1190			/*
1191			 * Software beacon alert--time to send a beacon.
1192			 * Handle beacon transmission directly; deferring
1193			 * this is too slow to meet timing constraints
1194			 * under load.
1195			 */
1196			ath_beacon_proc(sc, 0);
1197		}
1198		if (status & HAL_INT_RXEOL) {
1199			/*
1200			 * NB: the hardware should re-read the link when
1201			 *     RXE bit is written, but it doesn't work at
1202			 *     least on older hardware revs.
1203			 */
1204			sc->sc_stats.ast_rxeol++;
1205			sc->sc_rxlink = NULL;
1206		}
1207		if (status & HAL_INT_TXURN) {
1208			sc->sc_stats.ast_txurn++;
1209			/* bump tx trigger level */
1210			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1211		}
1212		if (status & HAL_INT_RX)
1213			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1214		if (status & HAL_INT_TX)
1215			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1216		if (status & HAL_INT_BMISS) {
1217			sc->sc_stats.ast_bmiss++;
1218			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1219		}
1220		if (status & HAL_INT_MIB) {
1221			sc->sc_stats.ast_mib++;
1222			/*
1223			 * Disable interrupts until we service the MIB
1224			 * interrupt; otherwise it will continue to fire.
1225			 */
1226			ath_hal_intrset(ah, 0);
1227			/*
1228			 * Let the hal handle the event.  We assume it will
1229			 * clear whatever condition caused the interrupt.
1230			 */
1231			ath_hal_mibevent(ah, &sc->sc_halstats);
1232			ath_hal_intrset(ah, sc->sc_imask);
1233		}
1234	}
1235}
1236
1237static void
1238ath_fatal_proc(void *arg, int pending)
1239{
1240	struct ath_softc *sc = arg;
1241	struct ifnet *ifp = sc->sc_ifp;
1242	u_int32_t *state;
1243	u_int32_t len;
1244	void *sp;
1245
1246	if_printf(ifp, "hardware error; resetting\n");
1247	/*
1248	 * Fatal errors are unrecoverable.  Typically these
1249	 * are caused by DMA errors.  Collect h/w state from
1250	 * the hal so we can diagnose what's going on.
1251	 */
1252	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1253		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1254		state = sp;
1255		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1256		    state[0], state[1] , state[2], state[3],
1257		    state[4], state[5]);
1258	}
1259	ath_reset(ifp);
1260}
1261
1262static void
1263ath_rxorn_proc(void *arg, int pending)
1264{
1265	struct ath_softc *sc = arg;
1266	struct ifnet *ifp = sc->sc_ifp;
1267
1268	if_printf(ifp, "rx FIFO overrun; resetting\n");
1269	ath_reset(ifp);
1270}
1271
1272static void
1273ath_bmiss_vap(struct ieee80211vap *vap)
1274{
1275	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
1276	u_int64_t lastrx = sc->sc_lastrx;
1277	u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1278	u_int bmisstimeout =
1279		vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1280
1281	DPRINTF(sc, ATH_DEBUG_BEACON,
1282	    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1283	    __func__, (unsigned long long) tsf,
1284	    (unsigned long long)(tsf - lastrx),
1285	    (unsigned long long) lastrx, bmisstimeout);
1286	/*
1287	 * Workaround phantom bmiss interrupts by sanity-checking
1288	 * the time of our last rx'd frame.  If it is within the
1289	 * beacon miss interval then ignore the interrupt.  If it's
1290	 * truly a bmiss we'll get another interrupt soon and that'll
1291	 * be dispatched up for processing.
1292	 */
1293	if (tsf - lastrx > bmisstimeout)
1294		ATH_VAP(vap)->av_bmiss(vap);
1295	else
1296		sc->sc_stats.ast_bmiss_phantom++;
1297}
1298
1299static void
1300ath_bmiss_proc(void *arg, int pending)
1301{
1302	struct ath_softc *sc = arg;
1303	struct ifnet *ifp = sc->sc_ifp;
1304
1305	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1306	ieee80211_beacon_miss(ifp->if_l2com);
1307}
1308
1309/*
1310 * Convert net80211 channel to a HAL channel with the flags
1311 * constrained to reflect the current operating mode and
1312 * the frequency possibly mapped for GSM channels.
1313 */
1314static void
1315ath_mapchan(HAL_CHANNEL *hc, const struct ieee80211_channel *chan)
1316{
1317#define	N(a)	(sizeof(a) / sizeof(a[0]))
1318	static const u_int modeflags[IEEE80211_MODE_MAX] = {
1319		0,			/* IEEE80211_MODE_AUTO */
1320		CHANNEL_A,		/* IEEE80211_MODE_11A */
1321		CHANNEL_B,		/* IEEE80211_MODE_11B */
1322		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
1323		0,			/* IEEE80211_MODE_FH */
1324		CHANNEL_108A,		/* IEEE80211_MODE_TURBO_A */
1325		CHANNEL_108G,		/* IEEE80211_MODE_TURBO_G */
1326		CHANNEL_ST,		/* IEEE80211_MODE_STURBO_A */
1327		CHANNEL_A,		/* IEEE80211_MODE_11NA */
1328		CHANNEL_PUREG,		/* IEEE80211_MODE_11NG */
1329	};
1330	enum ieee80211_phymode mode = ieee80211_chan2mode(chan);
1331
1332	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
1333	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
1334	hc->channelFlags = modeflags[mode];
1335	if (IEEE80211_IS_CHAN_HALF(chan))
1336		hc->channelFlags |= CHANNEL_HALF;
1337	if (IEEE80211_IS_CHAN_QUARTER(chan))
1338		hc->channelFlags |= CHANNEL_QUARTER;
1339	if (IEEE80211_IS_CHAN_HT20(chan))
1340		hc->channelFlags |= CHANNEL_HT20;
1341	if (IEEE80211_IS_CHAN_HT40D(chan))
1342		hc->channelFlags |= CHANNEL_HT40MINUS;
1343	if (IEEE80211_IS_CHAN_HT40U(chan))
1344		hc->channelFlags |= CHANNEL_HT40PLUS;
1345
1346	hc->channel = IEEE80211_IS_CHAN_GSM(chan) ?
1347		2422 + (922 - chan->ic_freq) : chan->ic_freq;
1348#undef N
1349}
1350
1351/*
1352 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1353 * calcs together with WME.  If necessary disable the crypto
1354 * hardware and mark the 802.11 state so keys will be setup
1355 * with the MIC work done in software.
1356 */
1357static void
1358ath_settkipmic(struct ath_softc *sc)
1359{
1360	struct ifnet *ifp = sc->sc_ifp;
1361	struct ieee80211com *ic = ifp->if_l2com;
1362
1363	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1364		if (ic->ic_flags & IEEE80211_F_WME) {
1365			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1366			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1367		} else {
1368			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1369			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1370		}
1371	}
1372}
1373
1374static void
1375ath_init(void *arg)
1376{
1377	struct ath_softc *sc = (struct ath_softc *) arg;
1378	struct ifnet *ifp = sc->sc_ifp;
1379	struct ieee80211com *ic = ifp->if_l2com;
1380	struct ath_hal *ah = sc->sc_ah;
1381	HAL_STATUS status;
1382
1383	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1384		__func__, ifp->if_flags);
1385
1386	ATH_LOCK(sc);
1387	/*
1388	 * Stop anything previously setup.  This is safe
1389	 * whether this is the first time through or not.
1390	 */
1391	ath_stop_locked(ifp);
1392
1393	/*
1394	 * The basic interface to setting the hardware in a good
1395	 * state is ``reset''.  On return the hardware is known to
1396	 * be powered up and with interrupts disabled.  This must
1397	 * be followed by initialization of the appropriate bits
1398	 * and then setup of the interrupt mask.
1399	 */
1400	ath_mapchan(&sc->sc_curchan, ic->ic_curchan);
1401	ath_settkipmic(sc);
1402	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1403		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1404			status);
1405		ATH_UNLOCK(sc);
1406		return;
1407	}
1408	ath_chan_change(sc, ic->ic_curchan);
1409
1410	/*
1411	 * Likewise this is set during reset so update
1412	 * state cached in the driver.
1413	 */
1414	sc->sc_diversity = ath_hal_getdiversity(ah);
1415	sc->sc_calinterval = 1;
1416	sc->sc_caltries = 0;
1417
1418	/*
1419	 * Setup the hardware after reset: the key cache
1420	 * is filled as needed and the receive engine is
1421	 * set going.  Frame transmit is handled entirely
1422	 * in the frame output path; there's nothing to do
1423	 * here except setup the interrupt mask.
1424	 */
1425	if (ath_startrecv(sc) != 0) {
1426		if_printf(ifp, "unable to start recv logic\n");
1427		ATH_UNLOCK(sc);
1428		return;
1429	}
1430
1431	/*
1432	 * Enable interrupts.
1433	 */
1434	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1435		  | HAL_INT_RXEOL | HAL_INT_RXORN
1436		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1437	/*
1438	 * Enable MIB interrupts when there are hardware phy counters.
1439	 * Note we only do this (at the moment) for station mode.
1440	 */
1441	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1442		sc->sc_imask |= HAL_INT_MIB;
1443
1444	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1445	ath_hal_intrset(ah, sc->sc_imask);
1446
1447	ATH_UNLOCK(sc);
1448
1449#ifdef ATH_TX99_DIAG
1450	if (sc->sc_tx99 != NULL)
1451		sc->sc_tx99->start(sc->sc_tx99);
1452	else
1453#endif
1454	ieee80211_start_all(ic);		/* start all vap's */
1455}
1456
1457static void
1458ath_stop_locked(struct ifnet *ifp)
1459{
1460	struct ath_softc *sc = ifp->if_softc;
1461	struct ath_hal *ah = sc->sc_ah;
1462
1463	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1464		__func__, sc->sc_invalid, ifp->if_flags);
1465
1466	ATH_LOCK_ASSERT(sc);
1467	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1468		/*
1469		 * Shutdown the hardware and driver:
1470		 *    reset 802.11 state machine
1471		 *    turn off timers
1472		 *    disable interrupts
1473		 *    turn off the radio
1474		 *    clear transmit machinery
1475		 *    clear receive machinery
1476		 *    drain and release tx queues
1477		 *    reclaim beacon resources
1478		 *    power down hardware
1479		 *
1480		 * Note that some of this work is not possible if the
1481		 * hardware is gone (invalid).
1482		 */
1483#ifdef ATH_TX99_DIAG
1484		if (sc->sc_tx99 != NULL)
1485			sc->sc_tx99->stop(sc->sc_tx99);
1486#endif
1487		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1488		ifp->if_timer = 0;
1489		if (!sc->sc_invalid) {
1490			if (sc->sc_softled) {
1491				callout_stop(&sc->sc_ledtimer);
1492				ath_hal_gpioset(ah, sc->sc_ledpin,
1493					!sc->sc_ledon);
1494				sc->sc_blinking = 0;
1495			}
1496			ath_hal_intrset(ah, 0);
1497		}
1498		ath_draintxq(sc);
1499		if (!sc->sc_invalid) {
1500			ath_stoprecv(sc);
1501			ath_hal_phydisable(ah);
1502		} else
1503			sc->sc_rxlink = NULL;
1504		ath_beacon_free(sc);	/* XXX not needed */
1505	}
1506}
1507
1508static void
1509ath_stop(struct ifnet *ifp)
1510{
1511	struct ath_softc *sc = ifp->if_softc;
1512
1513	ATH_LOCK(sc);
1514	ath_stop_locked(ifp);
1515	ATH_UNLOCK(sc);
1516}
1517
1518/*
1519 * Reset the hardware w/o losing operational state.  This is
1520 * basically a more efficient way of doing ath_stop, ath_init,
1521 * followed by state transitions to the current 802.11
1522 * operational state.  Used to recover from various errors and
1523 * to reset or reload hardware state.
1524 */
1525static int
1526ath_reset(struct ifnet *ifp)
1527{
1528	struct ath_softc *sc = ifp->if_softc;
1529	struct ieee80211com *ic = ifp->if_l2com;
1530	struct ath_hal *ah = sc->sc_ah;
1531	HAL_STATUS status;
1532
1533	/*
1534	 * Convert to a HAL channel description with the flags
1535	 * constrained to reflect the current operating mode.
1536	 */
1537	ath_mapchan(&sc->sc_curchan, ic->ic_curchan);
1538
1539	ath_hal_intrset(ah, 0);		/* disable interrupts */
1540	ath_draintxq(sc);		/* stop xmit side */
1541	ath_stoprecv(sc);		/* stop recv side */
1542	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1543	/* NB: indicate channel change so we do a full reset */
1544	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE, &status))
1545		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1546			__func__, status);
1547	sc->sc_diversity = ath_hal_getdiversity(ah);
1548	sc->sc_calinterval = 1;
1549	sc->sc_caltries = 0;
1550	if (ath_startrecv(sc) != 0)	/* restart recv */
1551		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1552	/*
1553	 * We may be doing a reset in response to an ioctl
1554	 * that changes the channel so update any state that
1555	 * might change as a result.
1556	 */
1557	ath_chan_change(sc, ic->ic_curchan);
1558	if (sc->sc_beacons)
1559		ath_beacon_config(sc, NULL);	/* restart beacons */
1560	ath_hal_intrset(ah, sc->sc_imask);
1561
1562	ath_start(ifp);			/* restart xmit */
1563	return 0;
1564}
1565
1566static int
1567ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1568{
1569	return ath_reset(vap->iv_ic->ic_ifp);
1570}
1571
1572static int
1573ath_ff_always(struct ath_txq *txq, struct ath_buf *bf)
1574{
1575	return 0;
1576}
1577
1578#if 0
1579static int
1580ath_ff_ageflushtestdone(struct ath_txq *txq, struct ath_buf *bf)
1581{
1582	return (txq->axq_curage - bf->bf_age) < ATH_FF_STAGEMAX;
1583}
1584#endif
1585
1586/*
1587 * Flush FF staging queue.
1588 */
1589static void
1590ath_ff_stageq_flush(struct ath_softc *sc, struct ath_txq *txq,
1591	int (*ath_ff_flushdonetest)(struct ath_txq *txq, struct ath_buf *bf))
1592{
1593	struct ath_buf *bf;
1594	struct ieee80211_node *ni;
1595	int pktlen, pri;
1596
1597	for (;;) {
1598		ATH_TXQ_LOCK(txq);
1599		/*
1600		 * Go from the back (oldest) to front so we can
1601		 * stop early based on the age of the entry.
1602		 */
1603		bf = TAILQ_LAST(&txq->axq_stageq, axq_headtype);
1604		if (bf == NULL || ath_ff_flushdonetest(txq, bf)) {
1605			ATH_TXQ_UNLOCK(txq);
1606			break;
1607		}
1608
1609		ni = bf->bf_node;
1610		pri = M_WME_GETAC(bf->bf_m);
1611		KASSERT(ATH_NODE(ni)->an_ff_buf[pri],
1612			("no bf on staging queue %p", bf));
1613		ATH_NODE(ni)->an_ff_buf[pri] = NULL;
1614		TAILQ_REMOVE(&txq->axq_stageq, bf, bf_stagelist);
1615
1616		ATH_TXQ_UNLOCK(txq);
1617
1618		DPRINTF(sc, ATH_DEBUG_FF, "%s: flush frame, age %u\n",
1619			__func__, bf->bf_age);
1620
1621		sc->sc_stats.ast_ff_flush++;
1622
1623		/* encap and xmit */
1624		bf->bf_m = ieee80211_encap(ni, bf->bf_m);
1625		if (bf->bf_m == NULL) {
1626			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1627				"%s: discard, encapsulation failure\n",
1628				__func__);
1629			sc->sc_stats.ast_tx_encap++;
1630			goto bad;
1631		}
1632		pktlen = bf->bf_m->m_pkthdr.len; /* NB: don't reference below */
1633		if (ath_tx_start(sc, ni, bf, bf->bf_m) == 0) {
1634#if 0 /*XXX*/
1635			ifp->if_opackets++;
1636#endif
1637			continue;
1638		}
1639	bad:
1640		if (ni != NULL)
1641			ieee80211_free_node(ni);
1642		bf->bf_node = NULL;
1643		if (bf->bf_m != NULL) {
1644			m_freem(bf->bf_m);
1645			bf->bf_m = NULL;
1646		}
1647
1648		ATH_TXBUF_LOCK(sc);
1649		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1650		ATH_TXBUF_UNLOCK(sc);
1651	}
1652}
1653
1654static __inline u_int32_t
1655ath_ff_approx_txtime(struct ath_softc *sc, struct ath_node *an, struct mbuf *m)
1656{
1657	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1658	u_int32_t framelen;
1659	struct ath_buf *bf;
1660
1661	/*
1662	 * Approximate the frame length to be transmitted. A swag to add
1663	 * the following maximal values to the skb payload:
1664	 *   - 32: 802.11 encap + CRC
1665	 *   - 24: encryption overhead (if wep bit)
1666	 *   - 4 + 6: fast-frame header and padding
1667	 *   - 16: 2 LLC FF tunnel headers
1668	 *   - 14: 1 802.3 FF tunnel header (skb already accounts for 2nd)
1669	 */
1670	framelen = m->m_pkthdr.len + 32 + 4 + 6 + 16 + 14;
1671	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1672		framelen += 24;
1673	bf = an->an_ff_buf[M_WME_GETAC(m)];
1674	if (bf != NULL)
1675		framelen += bf->bf_m->m_pkthdr.len;
1676	return ath_hal_computetxtime(sc->sc_ah, sc->sc_currates, framelen,
1677			sc->sc_lastdatarix, AH_FALSE);
1678}
1679
1680/*
1681 * Determine if a data frame may be aggregated via ff tunnelling.
1682 * Note the caller is responsible for checking if the destination
1683 * supports fast frames.
1684 *
1685 *  NB: allowing EAPOL frames to be aggregated with other unicast traffic.
1686 *      Do 802.1x EAPOL frames proceed in the clear? Then they couldn't
1687 *      be aggregated with other types of frames when encryption is on?
1688 *
1689 *  NB: assumes lock on an_ff_buf effectively held by txq lock mechanism.
1690 */
1691static __inline int
1692ath_ff_can_aggregate(struct ath_softc *sc,
1693	struct ath_node *an, struct mbuf *m, int *flushq)
1694{
1695	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1696	struct ath_txq *txq;
1697	u_int32_t txoplimit;
1698	u_int pri;
1699
1700	*flushq = 0;
1701
1702	/*
1703	 * If there is no frame to combine with and the txq has
1704	 * fewer frames than the minimum required; then do not
1705	 * attempt to aggregate this frame.
1706	 */
1707	pri = M_WME_GETAC(m);
1708	txq = sc->sc_ac2q[pri];
1709	if (an->an_ff_buf[pri] == NULL && txq->axq_depth < sc->sc_fftxqmin)
1710		return 0;
1711	/*
1712	 * When not in station mode never aggregate a multicast
1713	 * frame; this insures, for example, that a combined frame
1714	 * does not require multiple encryption keys when using
1715	 * 802.1x/WPA.
1716	 */
1717	if (ic->ic_opmode != IEEE80211_M_STA &&
1718	    ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost))
1719		return 0;
1720	/*
1721	 * Consult the max bursting interval to insure a combined
1722	 * frame fits within the TxOp window.
1723	 */
1724	txoplimit = IEEE80211_TXOP_TO_US(
1725		ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit);
1726	if (txoplimit != 0 && ath_ff_approx_txtime(sc, an, m) > txoplimit) {
1727		DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1728			"%s: FF TxOp violation\n", __func__);
1729		if (an->an_ff_buf[pri] != NULL)
1730			*flushq = 1;
1731		return 0;
1732	}
1733	return 1;		/* try to aggregate */
1734}
1735
1736/*
1737 * Check if the supplied frame can be partnered with an existing
1738 * or pending frame.  Return a reference to any frame that should be
1739 * sent on return; otherwise return NULL.
1740 */
1741static struct mbuf *
1742ath_ff_check(struct ath_softc *sc, struct ath_txq *txq,
1743	struct ath_buf *bf, struct mbuf *m, struct ieee80211_node *ni)
1744{
1745	struct ath_node *an = ATH_NODE(ni);
1746	struct ath_buf *bfstaged;
1747	int ff_flush, pri;
1748
1749	/*
1750	 * Check if the supplied frame can be aggregated.
1751	 *
1752	 * NB: we use the txq lock to protect references to
1753	 *     an->an_ff_txbuf in ath_ff_can_aggregate().
1754	 */
1755	ATH_TXQ_LOCK(txq);
1756	pri = M_WME_GETAC(m);
1757	if (ath_ff_can_aggregate(sc, an, m, &ff_flush)) {
1758		struct ath_buf *bfstaged = an->an_ff_buf[pri];
1759		if (bfstaged != NULL) {
1760			/*
1761			 * A frame is available for partnering; remove
1762			 * it, chain it to this one, and encapsulate.
1763			 */
1764			an->an_ff_buf[pri] = NULL;
1765			TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1766			ATH_TXQ_UNLOCK(txq);
1767
1768			/*
1769			 * Chain mbufs and add FF magic.
1770			 */
1771			DPRINTF(sc, ATH_DEBUG_FF,
1772				"[%s] aggregate fast-frame, age %u\n",
1773				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1774			m->m_nextpkt = NULL;
1775			bfstaged->bf_m->m_nextpkt = m;
1776			m = bfstaged->bf_m;
1777			bfstaged->bf_m = NULL;
1778			m->m_flags |= M_FF;
1779			/*
1780			 * Release the node reference held while
1781			 * the packet sat on an_ff_buf[]
1782			 */
1783			bfstaged->bf_node = NULL;
1784			ieee80211_free_node(ni);
1785
1786			/*
1787			 * Return bfstaged to the free list.
1788			 */
1789			ATH_TXBUF_LOCK(sc);
1790			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bfstaged, bf_list);
1791			ATH_TXBUF_UNLOCK(sc);
1792
1793			return m;		/* ready to go */
1794		} else {
1795			/*
1796			 * No frame available, queue this frame to wait
1797			 * for a partner.  Note that we hold the buffer
1798			 * and a reference to the node; we need the
1799			 * buffer in particular so we're certain we
1800			 * can flush the frame at a later time.
1801			 */
1802			DPRINTF(sc, ATH_DEBUG_FF,
1803				"[%s] stage fast-frame, age %u\n",
1804				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1805
1806			bf->bf_m = m;
1807			bf->bf_node = ni;	/* NB: held reference */
1808			bf->bf_age = txq->axq_curage;
1809			an->an_ff_buf[pri] = bf;
1810			TAILQ_INSERT_HEAD(&txq->axq_stageq, bf, bf_stagelist);
1811			ATH_TXQ_UNLOCK(txq);
1812
1813			return NULL;		/* consumed */
1814		}
1815	}
1816	/*
1817	 * Frame could not be aggregated, it needs to be returned
1818	 * to the caller for immediate transmission.  In addition
1819	 * we check if we should first flush a frame from the
1820	 * staging queue before sending this one.
1821	 *
1822	 * NB: ath_ff_can_aggregate only marks ff_flush if a frame
1823	 *     is present to flush.
1824	 */
1825	if (ff_flush) {
1826		int pktlen;
1827
1828		bfstaged = an->an_ff_buf[pri];
1829		an->an_ff_buf[pri] = NULL;
1830		TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1831		ATH_TXQ_UNLOCK(txq);
1832
1833		DPRINTF(sc, ATH_DEBUG_FF, "[%s] flush staged frame\n",
1834			ether_sprintf(an->an_node.ni_macaddr));
1835
1836		/* encap and xmit */
1837		bfstaged->bf_m = ieee80211_encap(ni, bfstaged->bf_m);
1838		if (bfstaged->bf_m == NULL) {
1839			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1840				"%s: discard, encap failure\n", __func__);
1841			sc->sc_stats.ast_tx_encap++;
1842			goto ff_flushbad;
1843		}
1844		pktlen = bfstaged->bf_m->m_pkthdr.len;
1845		if (ath_tx_start(sc, ni, bfstaged, bfstaged->bf_m)) {
1846			DPRINTF(sc, ATH_DEBUG_XMIT,
1847				"%s: discard, xmit failure\n", __func__);
1848	ff_flushbad:
1849			/*
1850			 * Unable to transmit frame that was on the staging
1851			 * queue.  Reclaim the node reference and other
1852			 * resources.
1853			 */
1854			if (ni != NULL)
1855				ieee80211_free_node(ni);
1856			bfstaged->bf_node = NULL;
1857			if (bfstaged->bf_m != NULL) {
1858				m_freem(bfstaged->bf_m);
1859				bfstaged->bf_m = NULL;
1860			}
1861
1862			ATH_TXBUF_LOCK(sc);
1863			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bfstaged, bf_list);
1864			ATH_TXBUF_UNLOCK(sc);
1865		} else {
1866#if 0
1867			ifp->if_opackets++;
1868#endif
1869		}
1870	} else {
1871		if (an->an_ff_buf[pri] != NULL) {
1872			/*
1873			 * XXX: out-of-order condition only occurs for AP
1874			 * mode and multicast.  There may be no valid way
1875			 * to get this condition.
1876			 */
1877			DPRINTF(sc, ATH_DEBUG_FF, "[%s] out-of-order frame\n",
1878				ether_sprintf(an->an_node.ni_macaddr));
1879			/* XXX stat */
1880		}
1881		ATH_TXQ_UNLOCK(txq);
1882	}
1883	return m;
1884}
1885
1886/*
1887 * Cleanup driver resources when we run out of buffers
1888 * while processing fragments; return the tx buffers
1889 * allocated and drop node references.
1890 */
1891static void
1892ath_txfrag_cleanup(struct ath_softc *sc,
1893	ath_bufhead *frags, struct ieee80211_node *ni)
1894{
1895	struct ath_buf *bf, *next;
1896
1897	ATH_TXBUF_LOCK_ASSERT(sc);
1898
1899	STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
1900		/* NB: bf assumed clean */
1901		STAILQ_REMOVE_HEAD(frags, bf_list);
1902		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1903		ieee80211_node_decref(ni);
1904	}
1905}
1906
1907/*
1908 * Setup xmit of a fragmented frame.  Allocate a buffer
1909 * for each frag and bump the node reference count to
1910 * reflect the held reference to be setup by ath_tx_start.
1911 */
1912static int
1913ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1914	struct mbuf *m0, struct ieee80211_node *ni)
1915{
1916	struct mbuf *m;
1917	struct ath_buf *bf;
1918
1919	ATH_TXBUF_LOCK(sc);
1920	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1921		bf = STAILQ_FIRST(&sc->sc_txbuf);
1922		if (bf == NULL) {	/* out of buffers, cleanup */
1923			ath_txfrag_cleanup(sc, frags, ni);
1924			break;
1925		}
1926		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1927		ieee80211_node_incref(ni);
1928		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1929	}
1930	ATH_TXBUF_UNLOCK(sc);
1931
1932	return !STAILQ_EMPTY(frags);
1933}
1934
1935static void
1936ath_start(struct ifnet *ifp)
1937{
1938	struct ath_softc *sc = ifp->if_softc;
1939	struct ieee80211com *ic = ifp->if_l2com;
1940	struct ieee80211_node *ni;
1941	struct ath_buf *bf;
1942	struct mbuf *m, *next;
1943	struct ath_txq *txq;
1944	ath_bufhead frags;
1945	int pri;
1946
1947	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1948		return;
1949	for (;;) {
1950		/*
1951		 * Grab a TX buffer and associated resources.
1952		 */
1953		ATH_TXBUF_LOCK(sc);
1954		bf = STAILQ_FIRST(&sc->sc_txbuf);
1955		if (bf != NULL)
1956			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1957		ATH_TXBUF_UNLOCK(sc);
1958		if (bf == NULL) {
1959			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1960				__func__);
1961			sc->sc_stats.ast_tx_qstop++;
1962			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1963			break;
1964		}
1965
1966		IFQ_DEQUEUE(&ifp->if_snd, m);
1967		if (m == NULL) {
1968			ATH_TXBUF_LOCK(sc);
1969			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1970			ATH_TXBUF_UNLOCK(sc);
1971			break;
1972		}
1973		STAILQ_INIT(&frags);
1974		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1975		pri = M_WME_GETAC(m);
1976		txq = sc->sc_ac2q[pri];
1977		if (ni->ni_ath_flags & IEEE80211_NODE_FF) {
1978			/*
1979			 * Check queue length; if too deep drop this
1980			 * frame (tail drop considered good).
1981			 */
1982			if (txq->axq_depth >= sc->sc_fftxqmax) {
1983				DPRINTF(sc, ATH_DEBUG_FF,
1984				    "[%s] tail drop on q %u depth %u\n",
1985				    ether_sprintf(ni->ni_macaddr),
1986				    txq->axq_qnum, txq->axq_depth);
1987				sc->sc_stats.ast_tx_qfull++;
1988				m_freem(m);
1989				goto reclaim;
1990			}
1991			m = ath_ff_check(sc, txq, bf, m, ni);
1992			if (m == NULL) {
1993				/* NB: ni ref & bf held on stageq */
1994				continue;
1995			}
1996		}
1997		ifp->if_opackets++;
1998		/*
1999		 * Encapsulate the packet in prep for transmission.
2000		 */
2001		m = ieee80211_encap(ni, m);
2002		if (m == NULL) {
2003			DPRINTF(sc, ATH_DEBUG_XMIT,
2004			    "%s: encapsulation failure\n", __func__);
2005			sc->sc_stats.ast_tx_encap++;
2006			goto bad;
2007		}
2008		/*
2009		 * Check for fragmentation.  If this frame
2010		 * has been broken up verify we have enough
2011		 * buffers to send all the fragments so all
2012		 * go out or none...
2013		 */
2014		if ((m->m_flags & M_FRAG) &&
2015		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2016			DPRINTF(sc, ATH_DEBUG_XMIT,
2017			    "%s: out of txfrag buffers\n", __func__);
2018			ic->ic_stats.is_tx_nobuf++;	/* XXX */
2019			ath_freetx(m);
2020			goto bad;
2021		}
2022	nextfrag:
2023		/*
2024		 * Pass the frame to the h/w for transmission.
2025		 * Fragmented frames have each frag chained together
2026		 * with m_nextpkt.  We know there are sufficient ath_buf's
2027		 * to send all the frags because of work done by
2028		 * ath_txfrag_setup.  We leave m_nextpkt set while
2029		 * calling ath_tx_start so it can use it to extend the
2030		 * the tx duration to cover the subsequent frag and
2031		 * so it can reclaim all the mbufs in case of an error;
2032		 * ath_tx_start clears m_nextpkt once it commits to
2033		 * handing the frame to the hardware.
2034		 */
2035		next = m->m_nextpkt;
2036		if (ath_tx_start(sc, ni, bf, m)) {
2037	bad:
2038			ifp->if_oerrors++;
2039	reclaim:
2040			bf->bf_m = NULL;
2041			bf->bf_node = NULL;
2042			ATH_TXBUF_LOCK(sc);
2043			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2044			ath_txfrag_cleanup(sc, &frags, ni);
2045			ATH_TXBUF_UNLOCK(sc);
2046			if (ni != NULL)
2047				ieee80211_free_node(ni);
2048			continue;
2049		}
2050		if (next != NULL) {
2051			/*
2052			 * Beware of state changing between frags.
2053			 * XXX check sta power-save state?
2054			 */
2055			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2056				DPRINTF(sc, ATH_DEBUG_XMIT,
2057				    "%s: flush fragmented packet, state %s\n",
2058				    __func__,
2059				    ieee80211_state_name[ni->ni_vap->iv_state]);
2060				ath_freetx(next);
2061				goto reclaim;
2062			}
2063			m = next;
2064			bf = STAILQ_FIRST(&frags);
2065			KASSERT(bf != NULL, ("no buf for txfrag"));
2066			STAILQ_REMOVE_HEAD(&frags, bf_list);
2067			goto nextfrag;
2068		}
2069
2070		ifp->if_timer = 5;
2071#if 0
2072		/*
2073		 * Flush stale frames from the fast-frame staging queue.
2074		 */
2075		if (ic->ic_opmode != IEEE80211_M_STA)
2076			ath_ff_stageq_flush(sc, txq, ath_ff_ageflushtestdone);
2077#endif
2078	}
2079}
2080
2081static int
2082ath_media_change(struct ifnet *ifp)
2083{
2084	int error = ieee80211_media_change(ifp);
2085	/* NB: only the fixed rate can change and that doesn't need a reset */
2086	return (error == ENETRESET ? 0 : error);
2087}
2088
2089#ifdef ATH_DEBUG
2090static void
2091ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
2092	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2093{
2094	static const char *ciphers[] = {
2095		"WEP",
2096		"AES-OCB",
2097		"AES-CCM",
2098		"CKIP",
2099		"TKIP",
2100		"CLR",
2101	};
2102	int i, n;
2103
2104	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
2105	for (i = 0, n = hk->kv_len; i < n; i++)
2106		printf("%02x", hk->kv_val[i]);
2107	printf(" mac %s", ether_sprintf(mac));
2108	if (hk->kv_type == HAL_CIPHER_TKIP) {
2109		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
2110		for (i = 0; i < sizeof(hk->kv_mic); i++)
2111			printf("%02x", hk->kv_mic[i]);
2112		if (!sc->sc_splitmic) {
2113			printf(" txmic ");
2114			for (i = 0; i < sizeof(hk->kv_txmic); i++)
2115				printf("%02x", hk->kv_txmic[i]);
2116		}
2117	}
2118	printf("\n");
2119}
2120#endif
2121
2122/*
2123 * Set a TKIP key into the hardware.  This handles the
2124 * potential distribution of key state to multiple key
2125 * cache slots for TKIP.
2126 */
2127static int
2128ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
2129	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2130{
2131#define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
2132	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
2133	struct ath_hal *ah = sc->sc_ah;
2134
2135	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
2136		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
2137	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
2138		if (sc->sc_splitmic) {
2139			/*
2140			 * TX key goes at first index, RX key at the rx index.
2141			 * The hal handles the MIC keys at index+64.
2142			 */
2143			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
2144			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
2145			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
2146				return 0;
2147
2148			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2149			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
2150			/* XXX delete tx key on failure? */
2151			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
2152		} else {
2153			/*
2154			 * Room for both TX+RX MIC keys in one key cache
2155			 * slot, just set key at the first index; the hal
2156			 * will handle the rest.
2157			 */
2158			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2159			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2160			KEYPRINTF(sc, k->wk_keyix, hk, mac);
2161			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2162		}
2163	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
2164		if (sc->sc_splitmic) {
2165			/*
2166			 * NB: must pass MIC key in expected location when
2167			 * the keycache only holds one MIC key per entry.
2168			 */
2169			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
2170		} else
2171			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2172		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2173		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2174	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
2175		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2176		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2177		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2178	}
2179	return 0;
2180#undef IEEE80211_KEY_XR
2181}
2182
2183/*
2184 * Set a net80211 key into the hardware.  This handles the
2185 * potential distribution of key state to multiple key
2186 * cache slots for TKIP with hardware MIC support.
2187 */
2188static int
2189ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
2190	struct ieee80211_node *bss)
2191{
2192#define	N(a)	(sizeof(a)/sizeof(a[0]))
2193	static const u_int8_t ciphermap[] = {
2194		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
2195		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
2196		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
2197		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
2198		(u_int8_t) -1,		/* 4 is not allocated */
2199		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
2200		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
2201	};
2202	struct ath_hal *ah = sc->sc_ah;
2203	const struct ieee80211_cipher *cip = k->wk_cipher;
2204	u_int8_t gmac[IEEE80211_ADDR_LEN];
2205	const u_int8_t *mac;
2206	HAL_KEYVAL hk;
2207
2208	memset(&hk, 0, sizeof(hk));
2209	/*
2210	 * Software crypto uses a "clear key" so non-crypto
2211	 * state kept in the key cache are maintained and
2212	 * so that rx frames have an entry to match.
2213	 */
2214	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2215		KASSERT(cip->ic_cipher < N(ciphermap),
2216			("invalid cipher type %u", cip->ic_cipher));
2217		hk.kv_type = ciphermap[cip->ic_cipher];
2218		hk.kv_len = k->wk_keylen;
2219		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2220	} else
2221		hk.kv_type = HAL_CIPHER_CLR;
2222
2223	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2224		/*
2225		 * Group keys on hardware that supports multicast frame
2226		 * key search use a mac that is the sender's address with
2227		 * the high bit set instead of the app-specified address.
2228		 */
2229		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2230		gmac[0] |= 0x80;
2231		mac = gmac;
2232	} else
2233		mac = k->wk_macaddr;
2234
2235	if (hk.kv_type == HAL_CIPHER_TKIP &&
2236	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2237		return ath_keyset_tkip(sc, k, &hk, mac);
2238	} else {
2239		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2240		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2241	}
2242#undef N
2243}
2244
2245/*
2246 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2247 * each key, one for decrypt/encrypt and the other for the MIC.
2248 */
2249static u_int16_t
2250key_alloc_2pair(struct ath_softc *sc,
2251	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2252{
2253#define	N(a)	(sizeof(a)/sizeof(a[0]))
2254	u_int i, keyix;
2255
2256	KASSERT(sc->sc_splitmic, ("key cache !split"));
2257	/* XXX could optimize */
2258	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2259		u_int8_t b = sc->sc_keymap[i];
2260		if (b != 0xff) {
2261			/*
2262			 * One or more slots in this byte are free.
2263			 */
2264			keyix = i*NBBY;
2265			while (b & 1) {
2266		again:
2267				keyix++;
2268				b >>= 1;
2269			}
2270			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2271			if (isset(sc->sc_keymap, keyix+32) ||
2272			    isset(sc->sc_keymap, keyix+64) ||
2273			    isset(sc->sc_keymap, keyix+32+64)) {
2274				/* full pair unavailable */
2275				/* XXX statistic */
2276				if (keyix == (i+1)*NBBY) {
2277					/* no slots were appropriate, advance */
2278					continue;
2279				}
2280				goto again;
2281			}
2282			setbit(sc->sc_keymap, keyix);
2283			setbit(sc->sc_keymap, keyix+64);
2284			setbit(sc->sc_keymap, keyix+32);
2285			setbit(sc->sc_keymap, keyix+32+64);
2286			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2287				"%s: key pair %u,%u %u,%u\n",
2288				__func__, keyix, keyix+64,
2289				keyix+32, keyix+32+64);
2290			*txkeyix = keyix;
2291			*rxkeyix = keyix+32;
2292			return 1;
2293		}
2294	}
2295	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2296	return 0;
2297#undef N
2298}
2299
2300/*
2301 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2302 * each key, one for decrypt/encrypt and the other for the MIC.
2303 */
2304static u_int16_t
2305key_alloc_pair(struct ath_softc *sc,
2306	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2307{
2308#define	N(a)	(sizeof(a)/sizeof(a[0]))
2309	u_int i, keyix;
2310
2311	KASSERT(!sc->sc_splitmic, ("key cache split"));
2312	/* XXX could optimize */
2313	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2314		u_int8_t b = sc->sc_keymap[i];
2315		if (b != 0xff) {
2316			/*
2317			 * One or more slots in this byte are free.
2318			 */
2319			keyix = i*NBBY;
2320			while (b & 1) {
2321		again:
2322				keyix++;
2323				b >>= 1;
2324			}
2325			if (isset(sc->sc_keymap, keyix+64)) {
2326				/* full pair unavailable */
2327				/* XXX statistic */
2328				if (keyix == (i+1)*NBBY) {
2329					/* no slots were appropriate, advance */
2330					continue;
2331				}
2332				goto again;
2333			}
2334			setbit(sc->sc_keymap, keyix);
2335			setbit(sc->sc_keymap, keyix+64);
2336			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2337				"%s: key pair %u,%u\n",
2338				__func__, keyix, keyix+64);
2339			*txkeyix = *rxkeyix = keyix;
2340			return 1;
2341		}
2342	}
2343	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2344	return 0;
2345#undef N
2346}
2347
2348/*
2349 * Allocate a single key cache slot.
2350 */
2351static int
2352key_alloc_single(struct ath_softc *sc,
2353	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2354{
2355#define	N(a)	(sizeof(a)/sizeof(a[0]))
2356	u_int i, keyix;
2357
2358	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2359	for (i = 0; i < N(sc->sc_keymap); i++) {
2360		u_int8_t b = sc->sc_keymap[i];
2361		if (b != 0xff) {
2362			/*
2363			 * One or more slots are free.
2364			 */
2365			keyix = i*NBBY;
2366			while (b & 1)
2367				keyix++, b >>= 1;
2368			setbit(sc->sc_keymap, keyix);
2369			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2370				__func__, keyix);
2371			*txkeyix = *rxkeyix = keyix;
2372			return 1;
2373		}
2374	}
2375	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2376	return 0;
2377#undef N
2378}
2379
2380/*
2381 * Allocate one or more key cache slots for a uniacst key.  The
2382 * key itself is needed only to identify the cipher.  For hardware
2383 * TKIP with split cipher+MIC keys we allocate two key cache slot
2384 * pairs so that we can setup separate TX and RX MIC keys.  Note
2385 * that the MIC key for a TKIP key at slot i is assumed by the
2386 * hardware to be at slot i+64.  This limits TKIP keys to the first
2387 * 64 entries.
2388 */
2389static int
2390ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2391	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2392{
2393	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2394
2395	/*
2396	 * Group key allocation must be handled specially for
2397	 * parts that do not support multicast key cache search
2398	 * functionality.  For those parts the key id must match
2399	 * the h/w key index so lookups find the right key.  On
2400	 * parts w/ the key search facility we install the sender's
2401	 * mac address (with the high bit set) and let the hardware
2402	 * find the key w/o using the key id.  This is preferred as
2403	 * it permits us to support multiple users for adhoc and/or
2404	 * multi-station operation.
2405	 */
2406	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
2407		if (!(&vap->iv_nw_keys[0] <= k &&
2408		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2409			/* should not happen */
2410			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2411				"%s: bogus group key\n", __func__);
2412			return 0;
2413		}
2414		/*
2415		 * XXX we pre-allocate the global keys so
2416		 * have no way to check if they've already been allocated.
2417		 */
2418		*keyix = *rxkeyix = k - vap->iv_nw_keys;
2419		return 1;
2420	}
2421
2422	/*
2423	 * We allocate two pair for TKIP when using the h/w to do
2424	 * the MIC.  For everything else, including software crypto,
2425	 * we allocate a single entry.  Note that s/w crypto requires
2426	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2427	 * not support pass-through cache entries and we map all
2428	 * those requests to slot 0.
2429	 */
2430	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2431		return key_alloc_single(sc, keyix, rxkeyix);
2432	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2433	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2434		if (sc->sc_splitmic)
2435			return key_alloc_2pair(sc, keyix, rxkeyix);
2436		else
2437			return key_alloc_pair(sc, keyix, rxkeyix);
2438	} else {
2439		return key_alloc_single(sc, keyix, rxkeyix);
2440	}
2441}
2442
2443/*
2444 * Delete an entry in the key cache allocated by ath_key_alloc.
2445 */
2446static int
2447ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2448{
2449	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2450	struct ath_hal *ah = sc->sc_ah;
2451	const struct ieee80211_cipher *cip = k->wk_cipher;
2452	u_int keyix = k->wk_keyix;
2453
2454	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2455
2456	ath_hal_keyreset(ah, keyix);
2457	/*
2458	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2459	 */
2460	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2461	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2462		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2463	if (keyix >= IEEE80211_WEP_NKID) {
2464		/*
2465		 * Don't touch keymap entries for global keys so
2466		 * they are never considered for dynamic allocation.
2467		 */
2468		clrbit(sc->sc_keymap, keyix);
2469		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2470		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2471			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2472			if (sc->sc_splitmic) {
2473				/* +32 for RX key, +32+64 for RX key MIC */
2474				clrbit(sc->sc_keymap, keyix+32);
2475				clrbit(sc->sc_keymap, keyix+32+64);
2476			}
2477		}
2478	}
2479	return 1;
2480}
2481
2482/*
2483 * Set the key cache contents for the specified key.  Key cache
2484 * slot(s) must already have been allocated by ath_key_alloc.
2485 */
2486static int
2487ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2488	const u_int8_t mac[IEEE80211_ADDR_LEN])
2489{
2490	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2491
2492	return ath_keyset(sc, k, vap->iv_bss);
2493}
2494
2495/*
2496 * Block/unblock tx+rx processing while a key change is done.
2497 * We assume the caller serializes key management operations
2498 * so we only need to worry about synchronization with other
2499 * uses that originate in the driver.
2500 */
2501static void
2502ath_key_update_begin(struct ieee80211vap *vap)
2503{
2504	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2505	struct ath_softc *sc = ifp->if_softc;
2506
2507	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2508	taskqueue_block(sc->sc_tq);
2509	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2510}
2511
2512static void
2513ath_key_update_end(struct ieee80211vap *vap)
2514{
2515	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2516	struct ath_softc *sc = ifp->if_softc;
2517
2518	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2519	IF_UNLOCK(&ifp->if_snd);
2520	taskqueue_unblock(sc->sc_tq);
2521}
2522
2523/*
2524 * Calculate the receive filter according to the
2525 * operating mode and state:
2526 *
2527 * o always accept unicast, broadcast, and multicast traffic
2528 * o accept PHY error frames when hardware doesn't have MIB support
2529 *   to count and we need them for ANI (sta mode only at the moment)
2530 *   and we are not scanning (ANI is disabled)
2531 *   NB: only with recent hal's; older hal's add rx filter bits out
2532 *       of sight and we need to blindly preserve them
2533 * o probe request frames are accepted only when operating in
2534 *   hostap, adhoc, or monitor modes
2535 * o enable promiscuous mode
2536 *   - when in monitor mode
2537 *   - if interface marked PROMISC (assumes bridge setting is filtered)
2538 * o accept beacons:
2539 *   - when operating in station mode for collecting rssi data when
2540 *     the station is otherwise quiet, or
2541 *   - when operating in adhoc mode so the 802.11 layer creates
2542 *     node table entries for peers,
2543 *   - when scanning
2544 *   - when doing s/w beacon miss (e.g. for ap+sta)
2545 *   - when operating in ap mode in 11g to detect overlapping bss that
2546 *     require protection
2547 * o accept control frames:
2548 *   - when in monitor mode
2549 * XXX BAR frames for 11n
2550 * XXX HT protection for 11n
2551 */
2552static u_int32_t
2553ath_calcrxfilter(struct ath_softc *sc)
2554{
2555	struct ifnet *ifp = sc->sc_ifp;
2556	struct ieee80211com *ic = ifp->if_l2com;
2557	u_int32_t rfilt;
2558
2559#if HAL_ABI_VERSION < 0x08011600
2560	rfilt = (ath_hal_getrxfilter(sc->sc_ah) &
2561		(HAL_RX_FILTER_PHYRADAR | HAL_RX_FILTER_PHYERR))
2562	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2563#else
2564	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2565	if (ic->ic_opmode == IEEE80211_M_STA &&
2566	    !sc->sc_needmib && !sc->sc_scanning)
2567		rfilt |= HAL_RX_FILTER_PHYERR;
2568#endif
2569	if (ic->ic_opmode != IEEE80211_M_STA)
2570		rfilt |= HAL_RX_FILTER_PROBEREQ;
2571	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2572		rfilt |= HAL_RX_FILTER_PROM;
2573	if (ic->ic_opmode == IEEE80211_M_STA ||
2574	    sc->sc_opmode == HAL_M_IBSS ||
2575	    sc->sc_swbmiss || sc->sc_scanning)
2576		rfilt |= HAL_RX_FILTER_BEACON;
2577	/*
2578	 * NB: We don't recalculate the rx filter when
2579	 * ic_protmode changes; otherwise we could do
2580	 * this only when ic_protmode != NONE.
2581	 */
2582	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2583	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2584		rfilt |= HAL_RX_FILTER_BEACON;
2585	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2586		rfilt |= HAL_RX_FILTER_CONTROL;
2587	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2588	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2589	return rfilt;
2590}
2591
2592static void
2593ath_update_promisc(struct ifnet *ifp)
2594{
2595	struct ath_softc *sc = ifp->if_softc;
2596	u_int32_t rfilt;
2597
2598	/* configure rx filter */
2599	rfilt = ath_calcrxfilter(sc);
2600	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2601
2602	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2603}
2604
2605static void
2606ath_update_mcast(struct ifnet *ifp)
2607{
2608	struct ath_softc *sc = ifp->if_softc;
2609	u_int32_t mfilt[2];
2610
2611	/* calculate and install multicast filter */
2612	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2613		struct ifmultiaddr *ifma;
2614		/*
2615		 * Merge multicast addresses to form the hardware filter.
2616		 */
2617		mfilt[0] = mfilt[1] = 0;
2618		IF_ADDR_LOCK(ifp);	/* XXX need some fiddling to remove? */
2619		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2620			caddr_t dl;
2621			u_int32_t val;
2622			u_int8_t pos;
2623
2624			/* calculate XOR of eight 6bit values */
2625			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2626			val = LE_READ_4(dl + 0);
2627			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2628			val = LE_READ_4(dl + 3);
2629			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2630			pos &= 0x3f;
2631			mfilt[pos / 32] |= (1 << (pos % 32));
2632		}
2633		IF_ADDR_UNLOCK(ifp);
2634	} else
2635		mfilt[0] = mfilt[1] = ~0;
2636	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2637	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2638		__func__, mfilt[0], mfilt[1]);
2639}
2640
2641static void
2642ath_mode_init(struct ath_softc *sc)
2643{
2644	struct ifnet *ifp = sc->sc_ifp;
2645	struct ieee80211com *ic = ifp->if_l2com;
2646	struct ath_hal *ah = sc->sc_ah;
2647	u_int32_t rfilt;
2648
2649	/* configure rx filter */
2650	rfilt = ath_calcrxfilter(sc);
2651	ath_hal_setrxfilter(ah, rfilt);
2652
2653	/* configure operational mode */
2654	ath_hal_setopmode(ah);
2655
2656	/*
2657	 * Handle any link-level address change.  Note that we only
2658	 * need to force ic_myaddr; any other addresses are handled
2659	 * as a byproduct of the ifnet code marking the interface
2660	 * down then up.
2661	 *
2662	 * XXX should get from lladdr instead of arpcom but that's more work
2663	 */
2664	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2665	ath_hal_setmac(ah, ic->ic_myaddr);
2666
2667	/* calculate and install multicast filter */
2668	ath_update_mcast(ifp);
2669}
2670
2671/*
2672 * Set the slot time based on the current setting.
2673 */
2674static void
2675ath_setslottime(struct ath_softc *sc)
2676{
2677	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2678	struct ath_hal *ah = sc->sc_ah;
2679	u_int usec;
2680
2681	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2682		usec = 13;
2683	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2684		usec = 21;
2685	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2686		/* honor short/long slot time only in 11g */
2687		/* XXX shouldn't honor on pure g or turbo g channel */
2688		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2689			usec = HAL_SLOT_TIME_9;
2690		else
2691			usec = HAL_SLOT_TIME_20;
2692	} else
2693		usec = HAL_SLOT_TIME_9;
2694
2695	DPRINTF(sc, ATH_DEBUG_RESET,
2696	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2697	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2698	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2699
2700	ath_hal_setslottime(ah, usec);
2701	sc->sc_updateslot = OK;
2702}
2703
2704/*
2705 * Callback from the 802.11 layer to update the
2706 * slot time based on the current setting.
2707 */
2708static void
2709ath_updateslot(struct ifnet *ifp)
2710{
2711	struct ath_softc *sc = ifp->if_softc;
2712	struct ieee80211com *ic = ifp->if_l2com;
2713
2714	/*
2715	 * When not coordinating the BSS, change the hardware
2716	 * immediately.  For other operation we defer the change
2717	 * until beacon updates have propagated to the stations.
2718	 */
2719	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2720		sc->sc_updateslot = UPDATE;
2721	else
2722		ath_setslottime(sc);
2723}
2724
2725/*
2726 * Setup a h/w transmit queue for beacons.
2727 */
2728static int
2729ath_beaconq_setup(struct ath_hal *ah)
2730{
2731	HAL_TXQ_INFO qi;
2732
2733	memset(&qi, 0, sizeof(qi));
2734	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2735	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2736	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2737	/* NB: for dynamic turbo, don't enable any other interrupts */
2738	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2739	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2740}
2741
2742/*
2743 * Setup the transmit queue parameters for the beacon queue.
2744 */
2745static int
2746ath_beaconq_config(struct ath_softc *sc)
2747{
2748#define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2749	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2750	struct ath_hal *ah = sc->sc_ah;
2751	HAL_TXQ_INFO qi;
2752
2753	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2754	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2755		/*
2756		 * Always burst out beacon and CAB traffic.
2757		 */
2758		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2759		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2760		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2761	} else {
2762		struct wmeParams *wmep =
2763			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2764		/*
2765		 * Adhoc mode; important thing is to use 2x cwmin.
2766		 */
2767		qi.tqi_aifs = wmep->wmep_aifsn;
2768		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2769		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2770	}
2771
2772	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2773		device_printf(sc->sc_dev, "unable to update parameters for "
2774			"beacon hardware queue!\n");
2775		return 0;
2776	} else {
2777		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2778		return 1;
2779	}
2780#undef ATH_EXPONENT_TO_VALUE
2781}
2782
2783/*
2784 * Allocate and setup an initial beacon frame.
2785 */
2786static int
2787ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2788{
2789	struct ieee80211vap *vap = ni->ni_vap;
2790	struct ath_vap *avp = ATH_VAP(vap);
2791	struct ath_buf *bf;
2792	struct mbuf *m;
2793	int error;
2794
2795	bf = avp->av_bcbuf;
2796	if (bf->bf_m != NULL) {
2797		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2798		m_freem(bf->bf_m);
2799		bf->bf_m = NULL;
2800	}
2801	if (bf->bf_node != NULL) {
2802		ieee80211_free_node(bf->bf_node);
2803		bf->bf_node = NULL;
2804	}
2805
2806	/*
2807	 * NB: the beacon data buffer must be 32-bit aligned;
2808	 * we assume the mbuf routines will return us something
2809	 * with this alignment (perhaps should assert).
2810	 */
2811	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2812	if (m == NULL) {
2813		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2814		sc->sc_stats.ast_be_nombuf++;
2815		return ENOMEM;
2816	}
2817	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2818				     bf->bf_segs, &bf->bf_nseg,
2819				     BUS_DMA_NOWAIT);
2820	if (error != 0) {
2821		device_printf(sc->sc_dev,
2822		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2823		    __func__, error);
2824		m_freem(m);
2825		return error;
2826	}
2827
2828	/*
2829	 * Calculate a TSF adjustment factor required for staggered
2830	 * beacons.  Note that we assume the format of the beacon
2831	 * frame leaves the tstamp field immediately following the
2832	 * header.
2833	 */
2834	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2835		uint64_t tsfadjust;
2836		struct ieee80211_frame *wh;
2837
2838		/*
2839		 * The beacon interval is in TU's; the TSF is in usecs.
2840		 * We figure out how many TU's to add to align the timestamp
2841		 * then convert to TSF units and handle byte swapping before
2842		 * inserting it in the frame.  The hardware will then add this
2843		 * each time a beacon frame is sent.  Note that we align vap's
2844		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2845		 * timestamp in one beacon interval while the others get a
2846		 * timstamp aligned to the next interval.
2847		 */
2848		tsfadjust = ni->ni_intval *
2849		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2850		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2851
2852		DPRINTF(sc, ATH_DEBUG_BEACON,
2853		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2854		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2855		    avp->av_bslot, ni->ni_intval,
2856		    (long long unsigned) le64toh(tsfadjust));
2857
2858		wh = mtod(m, struct ieee80211_frame *);
2859		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2860	}
2861	bf->bf_m = m;
2862	bf->bf_node = ieee80211_ref_node(ni);
2863
2864	return 0;
2865}
2866
2867/*
2868 * Setup the beacon frame for transmit.
2869 */
2870static void
2871ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2872{
2873#define	USE_SHPREAMBLE(_ic) \
2874	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2875		== IEEE80211_F_SHPREAMBLE)
2876	struct ieee80211_node *ni = bf->bf_node;
2877	struct ieee80211com *ic = ni->ni_ic;
2878	struct mbuf *m = bf->bf_m;
2879	struct ath_hal *ah = sc->sc_ah;
2880	struct ath_desc *ds;
2881	int flags, antenna;
2882	const HAL_RATE_TABLE *rt;
2883	u_int8_t rix, rate;
2884
2885	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2886		__func__, m, m->m_len);
2887
2888	/* setup descriptors */
2889	ds = bf->bf_desc;
2890
2891	flags = HAL_TXDESC_NOACK;
2892	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2893		ds->ds_link = bf->bf_daddr;	/* self-linked */
2894		flags |= HAL_TXDESC_VEOL;
2895		/*
2896		 * Let hardware handle antenna switching.
2897		 */
2898		antenna = sc->sc_txantenna;
2899	} else {
2900		ds->ds_link = 0;
2901		/*
2902		 * Switch antenna every 4 beacons.
2903		 * XXX assumes two antenna
2904		 */
2905		if (sc->sc_txantenna != 0)
2906			antenna = sc->sc_txantenna;
2907		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2908			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2909		else
2910			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2911	}
2912
2913	KASSERT(bf->bf_nseg == 1,
2914		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2915	ds->ds_data = bf->bf_segs[0].ds_addr;
2916	/*
2917	 * Calculate rate code.
2918	 * XXX everything at min xmit rate
2919	 */
2920	rix = 0;
2921	rt = sc->sc_currates;
2922	rate = rt->info[rix].rateCode;
2923	if (USE_SHPREAMBLE(ic))
2924		rate |= rt->info[rix].shortPreamble;
2925	ath_hal_setuptxdesc(ah, ds
2926		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2927		, sizeof(struct ieee80211_frame)/* header length */
2928		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2929		, ni->ni_txpower		/* txpower XXX */
2930		, rate, 1			/* series 0 rate/tries */
2931		, HAL_TXKEYIX_INVALID		/* no encryption */
2932		, antenna			/* antenna mode */
2933		, flags				/* no ack, veol for beacons */
2934		, 0				/* rts/cts rate */
2935		, 0				/* rts/cts duration */
2936	);
2937	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2938	ath_hal_filltxdesc(ah, ds
2939		, roundup(m->m_len, 4)		/* buffer length */
2940		, AH_TRUE			/* first segment */
2941		, AH_TRUE			/* last segment */
2942		, ds				/* first descriptor */
2943	);
2944#if 0
2945	ath_desc_swap(ds);
2946#endif
2947#undef USE_SHPREAMBLE
2948}
2949
2950static void
2951ath_beacon_update(struct ieee80211vap *vap, int item)
2952{
2953	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2954
2955	setbit(bo->bo_flags, item);
2956}
2957
2958/*
2959 * Append the contents of src to dst; both queues
2960 * are assumed to be locked.
2961 */
2962static void
2963ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2964{
2965	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2966	dst->axq_link = src->axq_link;
2967	src->axq_link = NULL;
2968	dst->axq_depth += src->axq_depth;
2969	src->axq_depth = 0;
2970}
2971
2972/*
2973 * Transmit a beacon frame at SWBA.  Dynamic updates to the
2974 * frame contents are done as needed and the slot time is
2975 * also adjusted based on current state.
2976 */
2977static void
2978ath_beacon_proc(void *arg, int pending)
2979{
2980	struct ath_softc *sc = arg;
2981	struct ath_hal *ah = sc->sc_ah;
2982	struct ieee80211vap *vap;
2983	struct ath_buf *bf;
2984	int slot, otherant;
2985	uint32_t bfaddr;
2986
2987	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2988		__func__, pending);
2989	/*
2990	 * Check if the previous beacon has gone out.  If
2991	 * not don't try to post another, skip this period
2992	 * and wait for the next.  Missed beacons indicate
2993	 * a problem and should not occur.  If we miss too
2994	 * many consecutive beacons reset the device.
2995	 */
2996	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2997		sc->sc_bmisscount++;
2998		DPRINTF(sc, ATH_DEBUG_BEACON,
2999			"%s: missed %u consecutive beacons\n",
3000			__func__, sc->sc_bmisscount);
3001		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
3002			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
3003		return;
3004	}
3005	if (sc->sc_bmisscount != 0) {
3006		DPRINTF(sc, ATH_DEBUG_BEACON,
3007			"%s: resume beacon xmit after %u misses\n",
3008			__func__, sc->sc_bmisscount);
3009		sc->sc_bmisscount = 0;
3010	}
3011
3012	if (sc->sc_stagbeacons) {			/* staggered beacons */
3013		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3014		uint32_t tsftu;
3015
3016		tsftu = ath_hal_gettsf32(ah) >> 10;
3017		/* XXX lintval */
3018		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
3019		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
3020		bfaddr = 0;
3021		if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
3022			bf = ath_beacon_generate(sc, vap);
3023			if (bf != NULL)
3024				bfaddr = bf->bf_daddr;
3025		}
3026	} else {					/* burst'd beacons */
3027		uint32_t *bflink = &bfaddr;
3028
3029		for (slot = 0; slot < ATH_BCBUF; slot++) {
3030			vap = sc->sc_bslot[slot];
3031			if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
3032				bf = ath_beacon_generate(sc, vap);
3033				if (bf != NULL) {
3034					*bflink = bf->bf_daddr;
3035					bflink = &bf->bf_desc->ds_link;
3036				}
3037			}
3038		}
3039		*bflink = 0;				/* terminate list */
3040	}
3041
3042	/*
3043	 * Handle slot time change when a non-ERP station joins/leaves
3044	 * an 11g network.  The 802.11 layer notifies us via callback,
3045	 * we mark updateslot, then wait one beacon before effecting
3046	 * the change.  This gives associated stations at least one
3047	 * beacon interval to note the state change.
3048	 */
3049	/* XXX locking */
3050	if (sc->sc_updateslot == UPDATE) {
3051		sc->sc_updateslot = COMMIT;	/* commit next beacon */
3052		sc->sc_slotupdate = slot;
3053	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
3054		ath_setslottime(sc);		/* commit change to h/w */
3055
3056	/*
3057	 * Check recent per-antenna transmit statistics and flip
3058	 * the default antenna if noticeably more frames went out
3059	 * on the non-default antenna.
3060	 * XXX assumes 2 anntenae
3061	 */
3062	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
3063		otherant = sc->sc_defant & 1 ? 2 : 1;
3064		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
3065			ath_setdefantenna(sc, otherant);
3066		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
3067	}
3068
3069	if (bfaddr != 0) {
3070		/*
3071		 * Stop any current dma and put the new frame on the queue.
3072		 * This should never fail since we check above that no frames
3073		 * are still pending on the queue.
3074		 */
3075		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
3076			DPRINTF(sc, ATH_DEBUG_ANY,
3077				"%s: beacon queue %u did not stop?\n",
3078				__func__, sc->sc_bhalq);
3079		}
3080		/* NB: cabq traffic should already be queued and primed */
3081		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
3082		ath_hal_txstart(ah, sc->sc_bhalq);
3083
3084		sc->sc_stats.ast_be_xmit++;
3085	}
3086}
3087
3088static struct ath_buf *
3089ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
3090{
3091	struct ath_vap *avp = ATH_VAP(vap);
3092	struct ath_txq *cabq = sc->sc_cabq;
3093	struct ath_buf *bf;
3094	struct mbuf *m;
3095	int nmcastq, error;
3096
3097	KASSERT(vap->iv_state == IEEE80211_S_RUN,
3098	    ("not running, state %d", vap->iv_state));
3099	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3100
3101	/*
3102	 * Update dynamic beacon contents.  If this returns
3103	 * non-zero then we need to remap the memory because
3104	 * the beacon frame changed size (probably because
3105	 * of the TIM bitmap).
3106	 */
3107	bf = avp->av_bcbuf;
3108	m = bf->bf_m;
3109	nmcastq = avp->av_mcastq.axq_depth;
3110	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
3111		/* XXX too conservative? */
3112		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3113		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3114					     bf->bf_segs, &bf->bf_nseg,
3115					     BUS_DMA_NOWAIT);
3116		if (error != 0) {
3117			if_printf(vap->iv_ifp,
3118			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3119			    __func__, error);
3120			return NULL;
3121		}
3122	}
3123	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
3124		DPRINTF(sc, ATH_DEBUG_BEACON,
3125		    "%s: cabq did not drain, mcastq %u cabq %u\n",
3126		    __func__, nmcastq, cabq->axq_depth);
3127		sc->sc_stats.ast_cabq_busy++;
3128		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
3129			/*
3130			 * CABQ traffic from a previous vap is still pending.
3131			 * We must drain the q before this beacon frame goes
3132			 * out as otherwise this vap's stations will get cab
3133			 * frames from a different vap.
3134			 * XXX could be slow causing us to miss DBA
3135			 */
3136			ath_tx_draintxq(sc, cabq);
3137		}
3138	}
3139	ath_beacon_setup(sc, bf);
3140	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3141
3142	/*
3143	 * Enable the CAB queue before the beacon queue to
3144	 * insure cab frames are triggered by this beacon.
3145	 */
3146	if (avp->av_boff.bo_tim[4] & 1) {
3147		struct ath_hal *ah = sc->sc_ah;
3148
3149		/* NB: only at DTIM */
3150		ATH_TXQ_LOCK(cabq);
3151		ATH_TXQ_LOCK(&avp->av_mcastq);
3152		if (nmcastq) {
3153			struct ath_buf *bfm;
3154
3155			/*
3156			 * Move frames from the s/w mcast q to the h/w cab q.
3157			 * XXX MORE_DATA bit
3158			 */
3159			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
3160			if (cabq->axq_link != NULL) {
3161				*cabq->axq_link = bfm->bf_daddr;
3162			} else
3163				ath_hal_puttxbuf(ah, cabq->axq_qnum,
3164					bfm->bf_daddr);
3165			ath_txqmove(cabq, &avp->av_mcastq);
3166
3167			sc->sc_stats.ast_cabq_xmit += nmcastq;
3168		}
3169		/* NB: gated by beacon so safe to start here */
3170		ath_hal_txstart(ah, cabq->axq_qnum);
3171		ATH_TXQ_UNLOCK(cabq);
3172		ATH_TXQ_UNLOCK(&avp->av_mcastq);
3173	}
3174	return bf;
3175}
3176
3177static void
3178ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3179{
3180	struct ath_vap *avp = ATH_VAP(vap);
3181	struct ath_hal *ah = sc->sc_ah;
3182	struct ath_buf *bf;
3183	struct mbuf *m;
3184	int error;
3185
3186	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3187
3188	/*
3189	 * Update dynamic beacon contents.  If this returns
3190	 * non-zero then we need to remap the memory because
3191	 * the beacon frame changed size (probably because
3192	 * of the TIM bitmap).
3193	 */
3194	bf = avp->av_bcbuf;
3195	m = bf->bf_m;
3196	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3197		/* XXX too conservative? */
3198		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3199		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3200					     bf->bf_segs, &bf->bf_nseg,
3201					     BUS_DMA_NOWAIT);
3202		if (error != 0) {
3203			if_printf(vap->iv_ifp,
3204			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3205			    __func__, error);
3206			return;
3207		}
3208	}
3209	ath_beacon_setup(sc, bf);
3210	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3211
3212	/* NB: caller is known to have already stopped tx dma */
3213	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3214	ath_hal_txstart(ah, sc->sc_bhalq);
3215}
3216
3217/*
3218 * Reset the hardware after detecting beacons have stopped.
3219 */
3220static void
3221ath_bstuck_proc(void *arg, int pending)
3222{
3223	struct ath_softc *sc = arg;
3224	struct ifnet *ifp = sc->sc_ifp;
3225
3226	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3227		sc->sc_bmisscount);
3228	ath_reset(ifp);
3229}
3230
3231/*
3232 * Reclaim beacon resources and return buffer to the pool.
3233 */
3234static void
3235ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3236{
3237
3238	if (bf->bf_m != NULL) {
3239		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3240		m_freem(bf->bf_m);
3241		bf->bf_m = NULL;
3242	}
3243	if (bf->bf_node != NULL) {
3244		ieee80211_free_node(bf->bf_node);
3245		bf->bf_node = NULL;
3246	}
3247	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3248}
3249
3250/*
3251 * Reclaim beacon resources.
3252 */
3253static void
3254ath_beacon_free(struct ath_softc *sc)
3255{
3256	struct ath_buf *bf;
3257
3258	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3259		if (bf->bf_m != NULL) {
3260			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3261			m_freem(bf->bf_m);
3262			bf->bf_m = NULL;
3263		}
3264		if (bf->bf_node != NULL) {
3265			ieee80211_free_node(bf->bf_node);
3266			bf->bf_node = NULL;
3267		}
3268	}
3269}
3270
3271/*
3272 * Configure the beacon and sleep timers.
3273 *
3274 * When operating as an AP this resets the TSF and sets
3275 * up the hardware to notify us when we need to issue beacons.
3276 *
3277 * When operating in station mode this sets up the beacon
3278 * timers according to the timestamp of the last received
3279 * beacon and the current TSF, configures PCF and DTIM
3280 * handling, programs the sleep registers so the hardware
3281 * will wakeup in time to receive beacons, and configures
3282 * the beacon miss handling so we'll receive a BMISS
3283 * interrupt when we stop seeing beacons from the AP
3284 * we've associated with.
3285 */
3286static void
3287ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3288{
3289#define	TSF_TO_TU(_h,_l) \
3290	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3291#define	FUDGE	2
3292	struct ath_hal *ah = sc->sc_ah;
3293	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3294	struct ieee80211_node *ni;
3295	u_int32_t nexttbtt, intval, tsftu;
3296	u_int64_t tsf;
3297
3298	if (vap == NULL)
3299		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3300	ni = vap->iv_bss;
3301
3302	/* extract tstamp from last beacon and convert to TU */
3303	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3304			     LE_READ_4(ni->ni_tstamp.data));
3305	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3306		/*
3307		 * For multi-bss ap support beacons are either staggered
3308		 * evenly over N slots or burst together.  For the former
3309		 * arrange for the SWBA to be delivered for each slot.
3310		 * Slots that are not occupied will generate nothing.
3311		 */
3312		/* NB: the beacon interval is kept internally in TU's */
3313		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3314		if (sc->sc_stagbeacons)
3315			intval /= ATH_BCBUF;
3316	} else {
3317		/* NB: the beacon interval is kept internally in TU's */
3318		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3319	}
3320	if (nexttbtt == 0)		/* e.g. for ap mode */
3321		nexttbtt = intval;
3322	else if (intval)		/* NB: can be 0 for monitor mode */
3323		nexttbtt = roundup(nexttbtt, intval);
3324	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3325		__func__, nexttbtt, intval, ni->ni_intval);
3326	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3327		HAL_BEACON_STATE bs;
3328		int dtimperiod, dtimcount;
3329		int cfpperiod, cfpcount;
3330
3331		/*
3332		 * Setup dtim and cfp parameters according to
3333		 * last beacon we received (which may be none).
3334		 */
3335		dtimperiod = ni->ni_dtim_period;
3336		if (dtimperiod <= 0)		/* NB: 0 if not known */
3337			dtimperiod = 1;
3338		dtimcount = ni->ni_dtim_count;
3339		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3340			dtimcount = 0;		/* XXX? */
3341		cfpperiod = 1;			/* NB: no PCF support yet */
3342		cfpcount = 0;
3343		/*
3344		 * Pull nexttbtt forward to reflect the current
3345		 * TSF and calculate dtim+cfp state for the result.
3346		 */
3347		tsf = ath_hal_gettsf64(ah);
3348		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3349		do {
3350			nexttbtt += intval;
3351			if (--dtimcount < 0) {
3352				dtimcount = dtimperiod - 1;
3353				if (--cfpcount < 0)
3354					cfpcount = cfpperiod - 1;
3355			}
3356		} while (nexttbtt < tsftu);
3357		memset(&bs, 0, sizeof(bs));
3358		bs.bs_intval = intval;
3359		bs.bs_nexttbtt = nexttbtt;
3360		bs.bs_dtimperiod = dtimperiod*intval;
3361		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3362		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3363		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3364		bs.bs_cfpmaxduration = 0;
3365#if 0
3366		/*
3367		 * The 802.11 layer records the offset to the DTIM
3368		 * bitmap while receiving beacons; use it here to
3369		 * enable h/w detection of our AID being marked in
3370		 * the bitmap vector (to indicate frames for us are
3371		 * pending at the AP).
3372		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3373		 * XXX enable based on h/w rev for newer chips
3374		 */
3375		bs.bs_timoffset = ni->ni_timoff;
3376#endif
3377		/*
3378		 * Calculate the number of consecutive beacons to miss
3379		 * before taking a BMISS interrupt.
3380		 * Note that we clamp the result to at most 10 beacons.
3381		 */
3382		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3383		if (bs.bs_bmissthreshold > 10)
3384			bs.bs_bmissthreshold = 10;
3385		else if (bs.bs_bmissthreshold <= 0)
3386			bs.bs_bmissthreshold = 1;
3387
3388		/*
3389		 * Calculate sleep duration.  The configuration is
3390		 * given in ms.  We insure a multiple of the beacon
3391		 * period is used.  Also, if the sleep duration is
3392		 * greater than the DTIM period then it makes senses
3393		 * to make it a multiple of that.
3394		 *
3395		 * XXX fixed at 100ms
3396		 */
3397		bs.bs_sleepduration =
3398			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3399		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3400			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3401
3402		DPRINTF(sc, ATH_DEBUG_BEACON,
3403			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3404			, __func__
3405			, tsf, tsftu
3406			, bs.bs_intval
3407			, bs.bs_nexttbtt
3408			, bs.bs_dtimperiod
3409			, bs.bs_nextdtim
3410			, bs.bs_bmissthreshold
3411			, bs.bs_sleepduration
3412			, bs.bs_cfpperiod
3413			, bs.bs_cfpmaxduration
3414			, bs.bs_cfpnext
3415			, bs.bs_timoffset
3416		);
3417		ath_hal_intrset(ah, 0);
3418		ath_hal_beacontimers(ah, &bs);
3419		sc->sc_imask |= HAL_INT_BMISS;
3420		ath_hal_intrset(ah, sc->sc_imask);
3421	} else {
3422		ath_hal_intrset(ah, 0);
3423		if (nexttbtt == intval)
3424			intval |= HAL_BEACON_RESET_TSF;
3425		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3426			/*
3427			 * In IBSS mode enable the beacon timers but only
3428			 * enable SWBA interrupts if we need to manually
3429			 * prepare beacon frames.  Otherwise we use a
3430			 * self-linked tx descriptor and let the hardware
3431			 * deal with things.
3432			 */
3433			intval |= HAL_BEACON_ENA;
3434			if (!sc->sc_hasveol)
3435				sc->sc_imask |= HAL_INT_SWBA;
3436			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3437				/*
3438				 * Pull nexttbtt forward to reflect
3439				 * the current TSF.
3440				 */
3441				tsf = ath_hal_gettsf64(ah);
3442				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3443				do {
3444					nexttbtt += intval;
3445				} while (nexttbtt < tsftu);
3446			}
3447			ath_beaconq_config(sc);
3448		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3449			/*
3450			 * In AP mode we enable the beacon timers and
3451			 * SWBA interrupts to prepare beacon frames.
3452			 */
3453			intval |= HAL_BEACON_ENA;
3454			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3455			ath_beaconq_config(sc);
3456		}
3457		ath_hal_beaconinit(ah, nexttbtt, intval);
3458		sc->sc_bmisscount = 0;
3459		ath_hal_intrset(ah, sc->sc_imask);
3460		/*
3461		 * When using a self-linked beacon descriptor in
3462		 * ibss mode load it once here.
3463		 */
3464		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3465			ath_beacon_start_adhoc(sc, vap);
3466	}
3467	sc->sc_syncbeacon = 0;
3468#undef FUDGE
3469#undef TSF_TO_TU
3470}
3471
3472static void
3473ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3474{
3475	bus_addr_t *paddr = (bus_addr_t*) arg;
3476	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3477	*paddr = segs->ds_addr;
3478}
3479
3480static int
3481ath_descdma_setup(struct ath_softc *sc,
3482	struct ath_descdma *dd, ath_bufhead *head,
3483	const char *name, int nbuf, int ndesc)
3484{
3485#define	DS2PHYS(_dd, _ds) \
3486	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3487	struct ifnet *ifp = sc->sc_ifp;
3488	struct ath_desc *ds;
3489	struct ath_buf *bf;
3490	int i, bsize, error;
3491
3492	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3493	    __func__, name, nbuf, ndesc);
3494
3495	dd->dd_name = name;
3496	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3497
3498	/*
3499	 * Setup DMA descriptor area.
3500	 */
3501	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3502		       PAGE_SIZE, 0,		/* alignment, bounds */
3503		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3504		       BUS_SPACE_MAXADDR,	/* highaddr */
3505		       NULL, NULL,		/* filter, filterarg */
3506		       dd->dd_desc_len,		/* maxsize */
3507		       1,			/* nsegments */
3508		       dd->dd_desc_len,		/* maxsegsize */
3509		       BUS_DMA_ALLOCNOW,	/* flags */
3510		       NULL,			/* lockfunc */
3511		       NULL,			/* lockarg */
3512		       &dd->dd_dmat);
3513	if (error != 0) {
3514		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3515		return error;
3516	}
3517
3518	/* allocate descriptors */
3519	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3520	if (error != 0) {
3521		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3522			"error %u\n", dd->dd_name, error);
3523		goto fail0;
3524	}
3525
3526	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3527				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3528				 &dd->dd_dmamap);
3529	if (error != 0) {
3530		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3531			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3532		goto fail1;
3533	}
3534
3535	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3536				dd->dd_desc, dd->dd_desc_len,
3537				ath_load_cb, &dd->dd_desc_paddr,
3538				BUS_DMA_NOWAIT);
3539	if (error != 0) {
3540		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3541			dd->dd_name, error);
3542		goto fail2;
3543	}
3544
3545	ds = dd->dd_desc;
3546	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3547	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3548	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3549
3550	/* allocate rx buffers */
3551	bsize = sizeof(struct ath_buf) * nbuf;
3552	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3553	if (bf == NULL) {
3554		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3555			dd->dd_name, bsize);
3556		goto fail3;
3557	}
3558	dd->dd_bufptr = bf;
3559
3560	STAILQ_INIT(head);
3561	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3562		bf->bf_desc = ds;
3563		bf->bf_daddr = DS2PHYS(dd, ds);
3564		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3565				&bf->bf_dmamap);
3566		if (error != 0) {
3567			if_printf(ifp, "unable to create dmamap for %s "
3568				"buffer %u, error %u\n", dd->dd_name, i, error);
3569			ath_descdma_cleanup(sc, dd, head);
3570			return error;
3571		}
3572		STAILQ_INSERT_TAIL(head, bf, bf_list);
3573	}
3574	return 0;
3575fail3:
3576	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3577fail2:
3578	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3579fail1:
3580	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3581fail0:
3582	bus_dma_tag_destroy(dd->dd_dmat);
3583	memset(dd, 0, sizeof(*dd));
3584	return error;
3585#undef DS2PHYS
3586}
3587
3588static void
3589ath_descdma_cleanup(struct ath_softc *sc,
3590	struct ath_descdma *dd, ath_bufhead *head)
3591{
3592	struct ath_buf *bf;
3593	struct ieee80211_node *ni;
3594
3595	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3596	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3597	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3598	bus_dma_tag_destroy(dd->dd_dmat);
3599
3600	STAILQ_FOREACH(bf, head, bf_list) {
3601		if (bf->bf_m) {
3602			m_freem(bf->bf_m);
3603			bf->bf_m = NULL;
3604		}
3605		if (bf->bf_dmamap != NULL) {
3606			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3607			bf->bf_dmamap = NULL;
3608		}
3609		ni = bf->bf_node;
3610		bf->bf_node = NULL;
3611		if (ni != NULL) {
3612			/*
3613			 * Reclaim node reference.
3614			 */
3615			ieee80211_free_node(ni);
3616		}
3617	}
3618
3619	STAILQ_INIT(head);
3620	free(dd->dd_bufptr, M_ATHDEV);
3621	memset(dd, 0, sizeof(*dd));
3622}
3623
3624static int
3625ath_desc_alloc(struct ath_softc *sc)
3626{
3627	int error;
3628
3629	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3630			"rx", ath_rxbuf, 1);
3631	if (error != 0)
3632		return error;
3633
3634	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3635			"tx", ath_txbuf, ATH_TXDESC);
3636	if (error != 0) {
3637		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3638		return error;
3639	}
3640
3641	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3642			"beacon", ATH_BCBUF, 1);
3643	if (error != 0) {
3644		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3645		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3646		return error;
3647	}
3648	return 0;
3649}
3650
3651static void
3652ath_desc_free(struct ath_softc *sc)
3653{
3654
3655	if (sc->sc_bdma.dd_desc_len != 0)
3656		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3657	if (sc->sc_txdma.dd_desc_len != 0)
3658		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3659	if (sc->sc_rxdma.dd_desc_len != 0)
3660		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3661}
3662
3663static struct ieee80211_node *
3664ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3665{
3666	struct ieee80211com *ic = vap->iv_ic;
3667	struct ath_softc *sc = ic->ic_ifp->if_softc;
3668	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3669	struct ath_node *an;
3670
3671	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3672	if (an == NULL) {
3673		/* XXX stat+msg */
3674		return NULL;
3675	}
3676	ath_rate_node_init(sc, an);
3677
3678	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3679	return &an->an_node;
3680}
3681
3682static void
3683ath_node_free(struct ieee80211_node *ni)
3684{
3685	struct ieee80211com *ic = ni->ni_ic;
3686        struct ath_softc *sc = ic->ic_ifp->if_softc;
3687
3688	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3689
3690	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3691	sc->sc_node_free(ni);
3692}
3693
3694static void
3695ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3696{
3697	struct ieee80211com *ic = ni->ni_ic;
3698	struct ath_softc *sc = ic->ic_ifp->if_softc;
3699	struct ath_hal *ah = sc->sc_ah;
3700	HAL_CHANNEL hchan;
3701
3702	*rssi = ic->ic_node_getrssi(ni);
3703	if (ni->ni_chan != IEEE80211_CHAN_ANYC) {
3704		ath_mapchan(&hchan, ni->ni_chan);
3705		*noise = ath_hal_getchannoise(ah, &hchan);
3706	} else
3707		*noise = -95;		/* nominally correct */
3708}
3709
3710static int
3711ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3712{
3713	struct ath_hal *ah = sc->sc_ah;
3714	int error;
3715	struct mbuf *m;
3716	struct ath_desc *ds;
3717
3718	m = bf->bf_m;
3719	if (m == NULL) {
3720		/*
3721		 * NB: by assigning a page to the rx dma buffer we
3722		 * implicitly satisfy the Atheros requirement that
3723		 * this buffer be cache-line-aligned and sized to be
3724		 * multiple of the cache line size.  Not doing this
3725		 * causes weird stuff to happen (for the 5210 at least).
3726		 */
3727		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3728		if (m == NULL) {
3729			DPRINTF(sc, ATH_DEBUG_ANY,
3730				"%s: no mbuf/cluster\n", __func__);
3731			sc->sc_stats.ast_rx_nombuf++;
3732			return ENOMEM;
3733		}
3734		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3735
3736		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3737					     bf->bf_dmamap, m,
3738					     bf->bf_segs, &bf->bf_nseg,
3739					     BUS_DMA_NOWAIT);
3740		if (error != 0) {
3741			DPRINTF(sc, ATH_DEBUG_ANY,
3742			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3743			    __func__, error);
3744			sc->sc_stats.ast_rx_busdma++;
3745			m_freem(m);
3746			return error;
3747		}
3748		KASSERT(bf->bf_nseg == 1,
3749			("multi-segment packet; nseg %u", bf->bf_nseg));
3750		bf->bf_m = m;
3751	}
3752	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3753
3754	/*
3755	 * Setup descriptors.  For receive we always terminate
3756	 * the descriptor list with a self-linked entry so we'll
3757	 * not get overrun under high load (as can happen with a
3758	 * 5212 when ANI processing enables PHY error frames).
3759	 *
3760	 * To insure the last descriptor is self-linked we create
3761	 * each descriptor as self-linked and add it to the end.  As
3762	 * each additional descriptor is added the previous self-linked
3763	 * entry is ``fixed'' naturally.  This should be safe even
3764	 * if DMA is happening.  When processing RX interrupts we
3765	 * never remove/process the last, self-linked, entry on the
3766	 * descriptor list.  This insures the hardware always has
3767	 * someplace to write a new frame.
3768	 */
3769	ds = bf->bf_desc;
3770	ds->ds_link = bf->bf_daddr;	/* link to self */
3771	ds->ds_data = bf->bf_segs[0].ds_addr;
3772	ath_hal_setuprxdesc(ah, ds
3773		, m->m_len		/* buffer size */
3774		, 0
3775	);
3776
3777	if (sc->sc_rxlink != NULL)
3778		*sc->sc_rxlink = bf->bf_daddr;
3779	sc->sc_rxlink = &ds->ds_link;
3780	return 0;
3781}
3782
3783/*
3784 * Extend 15-bit time stamp from rx descriptor to
3785 * a full 64-bit TSF using the specified TSF.
3786 */
3787static __inline u_int64_t
3788ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3789{
3790	if ((tsf & 0x7fff) < rstamp)
3791		tsf -= 0x8000;
3792	return ((tsf &~ 0x7fff) | rstamp);
3793}
3794
3795/*
3796 * Intercept management frames to collect beacon rssi data
3797 * and to do ibss merges.
3798 */
3799static void
3800ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3801	int subtype, int rssi, int noise, u_int32_t rstamp)
3802{
3803	struct ieee80211vap *vap = ni->ni_vap;
3804	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3805
3806	/*
3807	 * Call up first so subsequent work can use information
3808	 * potentially stored in the node (e.g. for ibss merge).
3809	 */
3810	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, noise, rstamp);
3811	switch (subtype) {
3812	case IEEE80211_FC0_SUBTYPE_BEACON:
3813		/* update rssi statistics for use by the hal */
3814		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3815		if (sc->sc_syncbeacon &&
3816		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3817			/*
3818			 * Resync beacon timers using the tsf of the beacon
3819			 * frame we just received.
3820			 */
3821			ath_beacon_config(sc, vap);
3822		}
3823		/* fall thru... */
3824	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3825		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3826		    vap->iv_state == IEEE80211_S_RUN) {
3827			u_int64_t tsf = ath_extend_tsf(rstamp,
3828				ath_hal_gettsf64(sc->sc_ah));
3829			/*
3830			 * Handle ibss merge as needed; check the tsf on the
3831			 * frame before attempting the merge.  The 802.11 spec
3832			 * says the station should change it's bssid to match
3833			 * the oldest station with the same ssid, where oldest
3834			 * is determined by the tsf.  Note that hardware
3835			 * reconfiguration happens through callback to
3836			 * ath_newstate as the state machine will go from
3837			 * RUN -> RUN when this happens.
3838			 */
3839			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3840				DPRINTF(sc, ATH_DEBUG_STATE,
3841				    "ibss merge, rstamp %u tsf %ju "
3842				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3843				    (uintmax_t)ni->ni_tstamp.tsf);
3844				(void) ieee80211_ibss_merge(ni);
3845			}
3846		}
3847		break;
3848	}
3849}
3850
3851/*
3852 * Set the default antenna.
3853 */
3854static void
3855ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3856{
3857	struct ath_hal *ah = sc->sc_ah;
3858
3859	/* XXX block beacon interrupts */
3860	ath_hal_setdefantenna(ah, antenna);
3861	if (sc->sc_defant != antenna)
3862		sc->sc_stats.ast_ant_defswitch++;
3863	sc->sc_defant = antenna;
3864	sc->sc_rxotherant = 0;
3865}
3866
3867static int
3868ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3869	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3870{
3871#define	CHAN_HT		htole32(CHANNEL_HT20|CHANNEL_HT40PLUS|CHANNEL_HT40MINUS)
3872#define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3873#define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3874#define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3875	struct ath_softc *sc = ifp->if_softc;
3876	u_int8_t rix;
3877
3878	/*
3879	 * Discard anything shorter than an ack or cts.
3880	 */
3881	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
3882		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
3883			__func__, m->m_pkthdr.len);
3884		sc->sc_stats.ast_rx_tooshort++;
3885		return 0;
3886	}
3887	rix = rs->rs_rate;
3888	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3889	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3890#if HAL_ABI_VERSION >= 0x07050400
3891	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3892	if (sc->sc_rx_th.wr_rate & 0x80) {		/* HT rate */
3893		if ((rs->rs_flags & HAL_RX_2040) == 0)
3894			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3895		else if (sc->sc_curchan.channelFlags & CHANNEL_HT40PLUS)
3896			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3897		else
3898			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3899		if ((rs->rs_flags & HAL_RX_GI) == 0)
3900			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3901	}
3902#endif
3903	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
3904	if (rs->rs_status & HAL_RXERR_CRC)
3905		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3906	/* XXX propagate other error flags from descriptor */
3907	sc->sc_rx_th.wr_antsignal = rs->rs_rssi + nf;
3908	sc->sc_rx_th.wr_antnoise = nf;
3909	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3910
3911	bpf_mtap2(ifp->if_bpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
3912
3913	return 1;
3914#undef CHAN_HT20
3915#undef CHAN_HT40U
3916#undef CHAN_HT40D
3917#undef CHAN_HT
3918}
3919
3920static void
3921ath_handle_micerror(struct ieee80211com *ic,
3922	struct ieee80211_frame *wh, int keyix)
3923{
3924	struct ieee80211_node *ni;
3925
3926	/* XXX recheck MIC to deal w/ chips that lie */
3927	/* XXX discard MIC errors on !data frames */
3928	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3929	if (ni != NULL) {
3930		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3931		ieee80211_free_node(ni);
3932	}
3933}
3934
3935static void
3936ath_rx_proc(void *arg, int npending)
3937{
3938#define	PA2DESC(_sc, _pa) \
3939	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3940		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3941	struct ath_softc *sc = arg;
3942	struct ath_buf *bf;
3943	struct ifnet *ifp = sc->sc_ifp;
3944	struct ieee80211com *ic = ifp->if_l2com;
3945	struct ath_hal *ah = sc->sc_ah;
3946	struct ath_desc *ds;
3947	struct ath_rx_status *rs;
3948	struct mbuf *m;
3949	struct ieee80211_node *ni;
3950	int len, type, ngood;
3951	u_int phyerr;
3952	HAL_STATUS status;
3953	int16_t nf;
3954	u_int64_t tsf;
3955
3956	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3957	ngood = 0;
3958	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3959	tsf = ath_hal_gettsf64(ah);
3960	do {
3961		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3962		if (bf == NULL) {		/* NB: shouldn't happen */
3963			if_printf(ifp, "%s: no buffer!\n", __func__);
3964			break;
3965		}
3966		m = bf->bf_m;
3967		if (m == NULL) {		/* NB: shouldn't happen */
3968			/*
3969			 * If mbuf allocation failed previously there
3970			 * will be no mbuf; try again to re-populate it.
3971			 */
3972			/* XXX make debug msg */
3973			if_printf(ifp, "%s: no mbuf!\n", __func__);
3974			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3975			goto rx_next;
3976		}
3977		ds = bf->bf_desc;
3978		if (ds->ds_link == bf->bf_daddr) {
3979			/* NB: never process the self-linked entry at the end */
3980			break;
3981		}
3982		/* XXX sync descriptor memory */
3983		/*
3984		 * Must provide the virtual address of the current
3985		 * descriptor, the physical address, and the virtual
3986		 * address of the next descriptor in the h/w chain.
3987		 * This allows the HAL to look ahead to see if the
3988		 * hardware is done with a descriptor by checking the
3989		 * done bit in the following descriptor and the address
3990		 * of the current descriptor the DMA engine is working
3991		 * on.  All this is necessary because of our use of
3992		 * a self-linked list to avoid rx overruns.
3993		 */
3994		rs = &bf->bf_status.ds_rxstat;
3995		status = ath_hal_rxprocdesc(ah, ds,
3996				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3997#ifdef ATH_DEBUG
3998		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3999			ath_printrxbuf(bf, 0, status == HAL_OK);
4000#endif
4001		if (status == HAL_EINPROGRESS)
4002			break;
4003		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
4004		if (rs->rs_status != 0) {
4005			if (rs->rs_status & HAL_RXERR_CRC)
4006				sc->sc_stats.ast_rx_crcerr++;
4007			if (rs->rs_status & HAL_RXERR_FIFO)
4008				sc->sc_stats.ast_rx_fifoerr++;
4009			if (rs->rs_status & HAL_RXERR_PHY) {
4010				sc->sc_stats.ast_rx_phyerr++;
4011				phyerr = rs->rs_phyerr & 0x1f;
4012				sc->sc_stats.ast_rx_phy[phyerr]++;
4013				goto rx_error;	/* NB: don't count in ierrors */
4014			}
4015			if (rs->rs_status & HAL_RXERR_DECRYPT) {
4016				/*
4017				 * Decrypt error.  If the error occurred
4018				 * because there was no hardware key, then
4019				 * let the frame through so the upper layers
4020				 * can process it.  This is necessary for 5210
4021				 * parts which have no way to setup a ``clear''
4022				 * key cache entry.
4023				 *
4024				 * XXX do key cache faulting
4025				 */
4026				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
4027					goto rx_accept;
4028				sc->sc_stats.ast_rx_badcrypt++;
4029			}
4030			if (rs->rs_status & HAL_RXERR_MIC) {
4031				sc->sc_stats.ast_rx_badmic++;
4032				/*
4033				 * Do minimal work required to hand off
4034				 * the 802.11 header for notifcation.
4035				 */
4036				/* XXX frag's and qos frames */
4037				len = rs->rs_datalen;
4038				if (len >= sizeof (struct ieee80211_frame)) {
4039					bus_dmamap_sync(sc->sc_dmat,
4040					    bf->bf_dmamap,
4041					    BUS_DMASYNC_POSTREAD);
4042					ath_handle_micerror(ic,
4043					    mtod(m, struct ieee80211_frame *),
4044					    sc->sc_splitmic ?
4045						rs->rs_keyix-32 : rs->rs_keyix);
4046				}
4047			}
4048			ifp->if_ierrors++;
4049rx_error:
4050			/*
4051			 * Cleanup any pending partial frame.
4052			 */
4053			if (sc->sc_rxpending != NULL) {
4054				m_freem(sc->sc_rxpending);
4055				sc->sc_rxpending = NULL;
4056			}
4057			/*
4058			 * When a tap is present pass error frames
4059			 * that have been requested.  By default we
4060			 * pass decrypt+mic errors but others may be
4061			 * interesting (e.g. crc).
4062			 */
4063			if (bpf_peers_present(ifp->if_bpf) &&
4064			    (rs->rs_status & sc->sc_monpass)) {
4065				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4066				    BUS_DMASYNC_POSTREAD);
4067				/* NB: bpf needs the mbuf length setup */
4068				len = rs->rs_datalen;
4069				m->m_pkthdr.len = m->m_len = len;
4070				(void) ath_rx_tap(ifp, m, rs, tsf, nf);
4071			}
4072			/* XXX pass MIC errors up for s/w reclaculation */
4073			goto rx_next;
4074		}
4075rx_accept:
4076		/*
4077		 * Sync and unmap the frame.  At this point we're
4078		 * committed to passing the mbuf somewhere so clear
4079		 * bf_m; this means a new mbuf must be allocated
4080		 * when the rx descriptor is setup again to receive
4081		 * another frame.
4082		 */
4083		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4084		    BUS_DMASYNC_POSTREAD);
4085		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4086		bf->bf_m = NULL;
4087
4088		len = rs->rs_datalen;
4089		m->m_len = len;
4090
4091		if (rs->rs_more) {
4092			/*
4093			 * Frame spans multiple descriptors; save
4094			 * it for the next completed descriptor, it
4095			 * will be used to construct a jumbogram.
4096			 */
4097			if (sc->sc_rxpending != NULL) {
4098				/* NB: max frame size is currently 2 clusters */
4099				sc->sc_stats.ast_rx_toobig++;
4100				m_freem(sc->sc_rxpending);
4101			}
4102			m->m_pkthdr.rcvif = ifp;
4103			m->m_pkthdr.len = len;
4104			sc->sc_rxpending = m;
4105			goto rx_next;
4106		} else if (sc->sc_rxpending != NULL) {
4107			/*
4108			 * This is the second part of a jumbogram,
4109			 * chain it to the first mbuf, adjust the
4110			 * frame length, and clear the rxpending state.
4111			 */
4112			sc->sc_rxpending->m_next = m;
4113			sc->sc_rxpending->m_pkthdr.len += len;
4114			m = sc->sc_rxpending;
4115			sc->sc_rxpending = NULL;
4116		} else {
4117			/*
4118			 * Normal single-descriptor receive; setup
4119			 * the rcvif and packet length.
4120			 */
4121			m->m_pkthdr.rcvif = ifp;
4122			m->m_pkthdr.len = len;
4123		}
4124
4125		ifp->if_ipackets++;
4126		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
4127
4128		if (bpf_peers_present(ifp->if_bpf) &&
4129		    !ath_rx_tap(ifp, m, rs, tsf, nf)) {
4130			m_freem(m);		/* XXX reclaim */
4131			goto rx_next;
4132		}
4133
4134		/*
4135		 * From this point on we assume the frame is at least
4136		 * as large as ieee80211_frame_min; verify that.
4137		 */
4138		if (len < IEEE80211_MIN_LEN) {
4139			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
4140				__func__, len);
4141			sc->sc_stats.ast_rx_tooshort++;
4142			m_freem(m);
4143			goto rx_next;
4144		}
4145
4146		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
4147			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
4148				   sc->sc_hwmap[rs->rs_rate].ieeerate,
4149				   rs->rs_rssi);
4150		}
4151
4152		m_adj(m, -IEEE80211_CRC_LEN);
4153
4154		/*
4155		 * Locate the node for sender, track state, and then
4156		 * pass the (referenced) node up to the 802.11 layer
4157		 * for its use.
4158		 */
4159		ni = ieee80211_find_rxnode_withkey(ic,
4160			mtod(m, const struct ieee80211_frame_min *),
4161			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4162				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4163		if (ni != NULL) {
4164			/*
4165			 * Sending station is known, dispatch directly.
4166			 */
4167			type = ieee80211_input(ni, m,
4168			    rs->rs_rssi, nf, rs->rs_tstamp);
4169			ieee80211_free_node(ni);
4170			/*
4171			 * Arrange to update the last rx timestamp only for
4172			 * frames from our ap when operating in station mode.
4173			 * This assumes the rx key is always setup when
4174			 * associated.
4175			 */
4176			if (ic->ic_opmode == IEEE80211_M_STA &&
4177			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4178				ngood++;
4179		} else {
4180			type = ieee80211_input_all(ic, m,
4181			    rs->rs_rssi, nf, rs->rs_tstamp);
4182		}
4183		/*
4184		 * Track rx rssi and do any rx antenna management.
4185		 */
4186		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4187		if (sc->sc_diversity) {
4188			/*
4189			 * When using fast diversity, change the default rx
4190			 * antenna if diversity chooses the other antenna 3
4191			 * times in a row.
4192			 */
4193			if (sc->sc_defant != rs->rs_antenna) {
4194				if (++sc->sc_rxotherant >= 3)
4195					ath_setdefantenna(sc, rs->rs_antenna);
4196			} else
4197				sc->sc_rxotherant = 0;
4198		}
4199		if (sc->sc_softled) {
4200			/*
4201			 * Blink for any data frame.  Otherwise do a
4202			 * heartbeat-style blink when idle.  The latter
4203			 * is mainly for station mode where we depend on
4204			 * periodic beacon frames to trigger the poll event.
4205			 */
4206			if (type == IEEE80211_FC0_TYPE_DATA) {
4207				sc->sc_rxrate = rs->rs_rate;
4208				ath_led_event(sc, ATH_LED_RX);
4209			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4210				ath_led_event(sc, ATH_LED_POLL);
4211		}
4212rx_next:
4213		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4214	} while (ath_rxbuf_init(sc, bf) == 0);
4215
4216	/* rx signal state monitoring */
4217	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
4218	if (ngood)
4219		sc->sc_lastrx = tsf;
4220
4221	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
4222	    !IFQ_IS_EMPTY(&ifp->if_snd))
4223		ath_start(ifp);
4224
4225#undef PA2DESC
4226}
4227
4228static void
4229ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4230{
4231	txq->axq_qnum = qnum;
4232	txq->axq_depth = 0;
4233	txq->axq_intrcnt = 0;
4234	txq->axq_link = NULL;
4235	STAILQ_INIT(&txq->axq_q);
4236	ATH_TXQ_LOCK_INIT(sc, txq);
4237	TAILQ_INIT(&txq->axq_stageq);
4238	txq->axq_curage = 0;
4239}
4240
4241/*
4242 * Setup a h/w transmit queue.
4243 */
4244static struct ath_txq *
4245ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4246{
4247#define	N(a)	(sizeof(a)/sizeof(a[0]))
4248	struct ath_hal *ah = sc->sc_ah;
4249	HAL_TXQ_INFO qi;
4250	int qnum;
4251
4252	memset(&qi, 0, sizeof(qi));
4253	qi.tqi_subtype = subtype;
4254	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4255	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4256	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4257	/*
4258	 * Enable interrupts only for EOL and DESC conditions.
4259	 * We mark tx descriptors to receive a DESC interrupt
4260	 * when a tx queue gets deep; otherwise waiting for the
4261	 * EOL to reap descriptors.  Note that this is done to
4262	 * reduce interrupt load and this only defers reaping
4263	 * descriptors, never transmitting frames.  Aside from
4264	 * reducing interrupts this also permits more concurrency.
4265	 * The only potential downside is if the tx queue backs
4266	 * up in which case the top half of the kernel may backup
4267	 * due to a lack of tx descriptors.
4268	 */
4269	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4270	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4271	if (qnum == -1) {
4272		/*
4273		 * NB: don't print a message, this happens
4274		 * normally on parts with too few tx queues
4275		 */
4276		return NULL;
4277	}
4278	if (qnum >= N(sc->sc_txq)) {
4279		device_printf(sc->sc_dev,
4280			"hal qnum %u out of range, max %zu!\n",
4281			qnum, N(sc->sc_txq));
4282		ath_hal_releasetxqueue(ah, qnum);
4283		return NULL;
4284	}
4285	if (!ATH_TXQ_SETUP(sc, qnum)) {
4286		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4287		sc->sc_txqsetup |= 1<<qnum;
4288	}
4289	return &sc->sc_txq[qnum];
4290#undef N
4291}
4292
4293/*
4294 * Setup a hardware data transmit queue for the specified
4295 * access control.  The hal may not support all requested
4296 * queues in which case it will return a reference to a
4297 * previously setup queue.  We record the mapping from ac's
4298 * to h/w queues for use by ath_tx_start and also track
4299 * the set of h/w queues being used to optimize work in the
4300 * transmit interrupt handler and related routines.
4301 */
4302static int
4303ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4304{
4305#define	N(a)	(sizeof(a)/sizeof(a[0]))
4306	struct ath_txq *txq;
4307
4308	if (ac >= N(sc->sc_ac2q)) {
4309		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4310			ac, N(sc->sc_ac2q));
4311		return 0;
4312	}
4313	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4314	if (txq != NULL) {
4315		sc->sc_ac2q[ac] = txq;
4316		return 1;
4317	} else
4318		return 0;
4319#undef N
4320}
4321
4322/*
4323 * Update WME parameters for a transmit queue.
4324 */
4325static int
4326ath_txq_update(struct ath_softc *sc, int ac)
4327{
4328#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4329#define	ATH_TXOP_TO_US(v)		(v<<5)
4330	struct ifnet *ifp = sc->sc_ifp;
4331	struct ieee80211com *ic = ifp->if_l2com;
4332	struct ath_txq *txq = sc->sc_ac2q[ac];
4333	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4334	struct ath_hal *ah = sc->sc_ah;
4335	HAL_TXQ_INFO qi;
4336
4337	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4338	qi.tqi_aifs = wmep->wmep_aifsn;
4339	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4340	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4341	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4342
4343	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4344		if_printf(ifp, "unable to update hardware queue "
4345			"parameters for %s traffic!\n",
4346			ieee80211_wme_acnames[ac]);
4347		return 0;
4348	} else {
4349		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4350		return 1;
4351	}
4352#undef ATH_TXOP_TO_US
4353#undef ATH_EXPONENT_TO_VALUE
4354}
4355
4356/*
4357 * Callback from the 802.11 layer to update WME parameters.
4358 */
4359static int
4360ath_wme_update(struct ieee80211com *ic)
4361{
4362	struct ath_softc *sc = ic->ic_ifp->if_softc;
4363
4364	return !ath_txq_update(sc, WME_AC_BE) ||
4365	    !ath_txq_update(sc, WME_AC_BK) ||
4366	    !ath_txq_update(sc, WME_AC_VI) ||
4367	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4368}
4369
4370/*
4371 * Reclaim resources for a setup queue.
4372 */
4373static void
4374ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4375{
4376
4377	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4378	ATH_TXQ_LOCK_DESTROY(txq);
4379	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4380}
4381
4382/*
4383 * Reclaim all tx queue resources.
4384 */
4385static void
4386ath_tx_cleanup(struct ath_softc *sc)
4387{
4388	int i;
4389
4390	ATH_TXBUF_LOCK_DESTROY(sc);
4391	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4392		if (ATH_TXQ_SETUP(sc, i))
4393			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4394}
4395
4396/*
4397 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
4398 */
4399static int
4400ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
4401{
4402	int i;
4403
4404	for (i = 0; i < rt->rateCount; i++)
4405		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
4406			return i;
4407	return 0;		/* NB: lowest rate */
4408}
4409
4410/*
4411 * Reclaim mbuf resources.  For fragmented frames we
4412 * need to claim each frag chained with m_nextpkt.
4413 */
4414static void
4415ath_freetx(struct mbuf *m)
4416{
4417	struct mbuf *next;
4418
4419	do {
4420		next = m->m_nextpkt;
4421		m->m_nextpkt = NULL;
4422		m_freem(m);
4423	} while ((m = next) != NULL);
4424}
4425
4426static int
4427ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4428{
4429	struct mbuf *m;
4430	int error;
4431
4432	/*
4433	 * Load the DMA map so any coalescing is done.  This
4434	 * also calculates the number of descriptors we need.
4435	 */
4436	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4437				     bf->bf_segs, &bf->bf_nseg,
4438				     BUS_DMA_NOWAIT);
4439	if (error == EFBIG) {
4440		/* XXX packet requires too many descriptors */
4441		bf->bf_nseg = ATH_TXDESC+1;
4442	} else if (error != 0) {
4443		sc->sc_stats.ast_tx_busdma++;
4444		ath_freetx(m0);
4445		return error;
4446	}
4447	/*
4448	 * Discard null packets and check for packets that
4449	 * require too many TX descriptors.  We try to convert
4450	 * the latter to a cluster.
4451	 */
4452	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
4453		sc->sc_stats.ast_tx_linear++;
4454		m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
4455		if (m == NULL) {
4456			ath_freetx(m0);
4457			sc->sc_stats.ast_tx_nombuf++;
4458			return ENOMEM;
4459		}
4460		m0 = m;
4461		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4462					     bf->bf_segs, &bf->bf_nseg,
4463					     BUS_DMA_NOWAIT);
4464		if (error != 0) {
4465			sc->sc_stats.ast_tx_busdma++;
4466			ath_freetx(m0);
4467			return error;
4468		}
4469		KASSERT(bf->bf_nseg <= ATH_TXDESC,
4470		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
4471	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
4472		sc->sc_stats.ast_tx_nodata++;
4473		ath_freetx(m0);
4474		return EIO;
4475	}
4476	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4477		__func__, m0, m0->m_pkthdr.len);
4478	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4479	bf->bf_m = m0;
4480
4481	return 0;
4482}
4483
4484static void
4485ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4486{
4487	struct ath_hal *ah = sc->sc_ah;
4488	struct ath_desc *ds, *ds0;
4489	int i;
4490
4491	/*
4492	 * Fillin the remainder of the descriptor info.
4493	 */
4494	ds0 = ds = bf->bf_desc;
4495	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4496		ds->ds_data = bf->bf_segs[i].ds_addr;
4497		if (i == bf->bf_nseg - 1)
4498			ds->ds_link = 0;
4499		else
4500			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4501		ath_hal_filltxdesc(ah, ds
4502			, bf->bf_segs[i].ds_len	/* segment length */
4503			, i == 0		/* first segment */
4504			, i == bf->bf_nseg - 1	/* last segment */
4505			, ds0			/* first descriptor */
4506		);
4507		DPRINTF(sc, ATH_DEBUG_XMIT,
4508			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4509			__func__, i, ds->ds_link, ds->ds_data,
4510			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4511	}
4512	/*
4513	 * Insert the frame on the outbound list and pass it on
4514	 * to the hardware.  Multicast frames buffered for power
4515	 * save stations and transmit from the CAB queue are stored
4516	 * on a s/w only queue and loaded on to the CAB queue in
4517	 * the SWBA handler since frames only go out on DTIM and
4518	 * to avoid possible races.
4519	 */
4520	ATH_TXQ_LOCK(txq);
4521	if (txq->axq_qnum != ATH_TXQ_SWQ) {
4522		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4523		if (txq->axq_link == NULL) {
4524			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4525			DPRINTF(sc, ATH_DEBUG_XMIT,
4526			    "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
4527			    txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
4528			    txq->axq_depth);
4529		} else {
4530			*txq->axq_link = bf->bf_daddr;
4531			DPRINTF(sc, ATH_DEBUG_XMIT,
4532			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4533			    txq->axq_qnum, txq->axq_link,
4534			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4535		}
4536		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4537		ath_hal_txstart(ah, txq->axq_qnum);
4538	} else {
4539		if (txq->axq_link != NULL) {
4540			struct ath_buf *last = ATH_TXQ_LAST(txq);
4541			struct ieee80211_frame *wh;
4542
4543			/* mark previous frame */
4544			wh = mtod(last->bf_m, struct ieee80211_frame *);
4545			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4546			bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4547			    BUS_DMASYNC_PREWRITE);
4548
4549			/* link descriptor */
4550			*txq->axq_link = bf->bf_daddr;
4551		}
4552		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4553		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4554	}
4555	ATH_TXQ_UNLOCK(txq);
4556}
4557
4558static int
4559ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4560    struct mbuf *m0)
4561{
4562	struct ieee80211vap *vap = ni->ni_vap;
4563	struct ath_vap *avp = ATH_VAP(vap);
4564	struct ath_hal *ah = sc->sc_ah;
4565	struct ifnet *ifp = sc->sc_ifp;
4566	struct ieee80211com *ic = ifp->if_l2com;
4567	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4568	int error, iswep, ismcast, isfrag, ismrr;
4569	int keyix, hdrlen, pktlen, try0;
4570	u_int8_t rix, txrate, ctsrate;
4571	u_int8_t cix = 0xff;		/* NB: silence compiler */
4572	struct ath_desc *ds;
4573	struct ath_txq *txq;
4574	struct ieee80211_frame *wh;
4575	u_int subtype, flags, ctsduration;
4576	HAL_PKT_TYPE atype;
4577	const HAL_RATE_TABLE *rt;
4578	HAL_BOOL shortPreamble;
4579	struct ath_node *an;
4580	u_int pri;
4581
4582	wh = mtod(m0, struct ieee80211_frame *);
4583	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4584	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4585	isfrag = m0->m_flags & M_FRAG;
4586	hdrlen = ieee80211_anyhdrsize(wh);
4587	/*
4588	 * Packet length must not include any
4589	 * pad bytes; deduct them here.
4590	 */
4591	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4592
4593	if (iswep) {
4594		const struct ieee80211_cipher *cip;
4595		struct ieee80211_key *k;
4596
4597		/*
4598		 * Construct the 802.11 header+trailer for an encrypted
4599		 * frame. The only reason this can fail is because of an
4600		 * unknown or unsupported cipher/key type.
4601		 */
4602		k = ieee80211_crypto_encap(ni, m0);
4603		if (k == NULL) {
4604			/*
4605			 * This can happen when the key is yanked after the
4606			 * frame was queued.  Just discard the frame; the
4607			 * 802.11 layer counts failures and provides
4608			 * debugging/diagnostics.
4609			 */
4610			ath_freetx(m0);
4611			return EIO;
4612		}
4613		/*
4614		 * Adjust the packet + header lengths for the crypto
4615		 * additions and calculate the h/w key index.  When
4616		 * a s/w mic is done the frame will have had any mic
4617		 * added to it prior to entry so m0->m_pkthdr.len will
4618		 * account for it. Otherwise we need to add it to the
4619		 * packet length.
4620		 */
4621		cip = k->wk_cipher;
4622		hdrlen += cip->ic_header;
4623		pktlen += cip->ic_header + cip->ic_trailer;
4624		/* NB: frags always have any TKIP MIC done in s/w */
4625		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4626			pktlen += cip->ic_miclen;
4627		keyix = k->wk_keyix;
4628
4629		/* packet header may have moved, reset our local pointer */
4630		wh = mtod(m0, struct ieee80211_frame *);
4631	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4632		/*
4633		 * Use station key cache slot, if assigned.
4634		 */
4635		keyix = ni->ni_ucastkey.wk_keyix;
4636		if (keyix == IEEE80211_KEYIX_NONE)
4637			keyix = HAL_TXKEYIX_INVALID;
4638	} else
4639		keyix = HAL_TXKEYIX_INVALID;
4640
4641	pktlen += IEEE80211_CRC_LEN;
4642
4643	/*
4644	 * Load the DMA map so any coalescing is done.  This
4645	 * also calculates the number of descriptors we need.
4646	 */
4647	error = ath_tx_dmasetup(sc, bf, m0);
4648	if (error != 0)
4649		return error;
4650	bf->bf_node = ni;			/* NB: held reference */
4651	m0 = bf->bf_m;				/* NB: may have changed */
4652	wh = mtod(m0, struct ieee80211_frame *);
4653
4654	/* setup descriptors */
4655	ds = bf->bf_desc;
4656	rt = sc->sc_currates;
4657	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4658
4659	/*
4660	 * NB: the 802.11 layer marks whether or not we should
4661	 * use short preamble based on the current mode and
4662	 * negotiated parameters.
4663	 */
4664	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4665	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4666		shortPreamble = AH_TRUE;
4667		sc->sc_stats.ast_tx_shortpre++;
4668	} else {
4669		shortPreamble = AH_FALSE;
4670	}
4671
4672	an = ATH_NODE(ni);
4673	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4674	ismrr = 0;				/* default no multi-rate retry*/
4675	pri = M_WME_GETAC(m0);			/* honor classification */
4676	/* XXX use txparams instead of fixed values */
4677	/*
4678	 * Calculate Atheros packet type from IEEE80211 packet header,
4679	 * setup for rate calculations, and select h/w transmit queue.
4680	 */
4681	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4682	case IEEE80211_FC0_TYPE_MGT:
4683		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4684		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4685			atype = HAL_PKT_TYPE_BEACON;
4686		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4687			atype = HAL_PKT_TYPE_PROBE_RESP;
4688		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4689			atype = HAL_PKT_TYPE_ATIM;
4690		else
4691			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4692		rix = an->an_mgmtrix;
4693		txrate = rt->info[rix].rateCode;
4694		if (shortPreamble)
4695			txrate |= rt->info[rix].shortPreamble;
4696		try0 = ATH_TXMGTTRY;
4697		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4698		break;
4699	case IEEE80211_FC0_TYPE_CTL:
4700		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4701		rix = an->an_mgmtrix;
4702		txrate = rt->info[rix].rateCode;
4703		if (shortPreamble)
4704			txrate |= rt->info[rix].shortPreamble;
4705		try0 = ATH_TXMGTTRY;
4706		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4707		break;
4708	case IEEE80211_FC0_TYPE_DATA:
4709		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4710		/*
4711		 * Data frames: multicast frames go out at a fixed rate,
4712		 * EAPOL frames use the mgmt frame rate; otherwise consult
4713		 * the rate control module for the rate to use.
4714		 */
4715		if (ismcast) {
4716			rix = an->an_mcastrix;
4717			txrate = rt->info[rix].rateCode;
4718			if (shortPreamble)
4719				txrate |= rt->info[rix].shortPreamble;
4720			try0 = 1;
4721		} else if (m0->m_flags & M_EAPOL) {
4722			/* XXX? maybe always use long preamble? */
4723			rix = an->an_mgmtrix;
4724			txrate = rt->info[rix].rateCode;
4725			if (shortPreamble)
4726				txrate |= rt->info[rix].shortPreamble;
4727			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
4728		} else {
4729			ath_rate_findrate(sc, an, shortPreamble, pktlen,
4730				&rix, &try0, &txrate);
4731			sc->sc_txrate = txrate;		/* for LED blinking */
4732			sc->sc_lastdatarix = rix;	/* for fast frames */
4733			if (try0 != ATH_TXMAXTRY)
4734				ismrr = 1;
4735		}
4736		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4737			flags |= HAL_TXDESC_NOACK;
4738		break;
4739	default:
4740		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4741			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4742		/* XXX statistic */
4743		ath_freetx(m0);
4744		return EIO;
4745	}
4746	txq = sc->sc_ac2q[pri];
4747
4748	/*
4749	 * When servicing one or more stations in power-save mode
4750	 * (or) if there is some mcast data waiting on the mcast
4751	 * queue (to prevent out of order delivery) multicast
4752	 * frames must be buffered until after the beacon.
4753	 */
4754	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
4755		txq = &avp->av_mcastq;
4756
4757	/*
4758	 * Calculate miscellaneous flags.
4759	 */
4760	if (ismcast) {
4761		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
4762	} else if (pktlen > vap->iv_rtsthreshold &&
4763	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
4764		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
4765		cix = rt->info[rix].controlRate;
4766		sc->sc_stats.ast_tx_rts++;
4767	}
4768	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
4769		sc->sc_stats.ast_tx_noack++;
4770
4771	/*
4772	 * If 802.11g protection is enabled, determine whether
4773	 * to use RTS/CTS or just CTS.  Note that this is only
4774	 * done for OFDM unicast frames.
4775	 */
4776	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
4777	    rt->info[rix].phy == IEEE80211_T_OFDM &&
4778	    (flags & HAL_TXDESC_NOACK) == 0) {
4779		/* XXX fragments must use CCK rates w/ protection */
4780		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4781			flags |= HAL_TXDESC_RTSENA;
4782		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4783			flags |= HAL_TXDESC_CTSENA;
4784		if (isfrag) {
4785			/*
4786			 * For frags it would be desirable to use the
4787			 * highest CCK rate for RTS/CTS.  But stations
4788			 * farther away may detect it at a lower CCK rate
4789			 * so use the configured protection rate instead
4790			 * (for now).
4791			 */
4792			cix = rt->info[sc->sc_protrix].controlRate;
4793		} else
4794			cix = rt->info[sc->sc_protrix].controlRate;
4795		sc->sc_stats.ast_tx_protect++;
4796	}
4797
4798	/*
4799	 * Calculate duration.  This logically belongs in the 802.11
4800	 * layer but it lacks sufficient information to calculate it.
4801	 */
4802	if ((flags & HAL_TXDESC_NOACK) == 0 &&
4803	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
4804		u_int16_t dur;
4805		if (shortPreamble)
4806			dur = rt->info[rix].spAckDuration;
4807		else
4808			dur = rt->info[rix].lpAckDuration;
4809		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
4810			dur += dur;		/* additional SIFS+ACK */
4811			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
4812			/*
4813			 * Include the size of next fragment so NAV is
4814			 * updated properly.  The last fragment uses only
4815			 * the ACK duration
4816			 */
4817			dur += ath_hal_computetxtime(ah, rt,
4818					m0->m_nextpkt->m_pkthdr.len,
4819					rix, shortPreamble);
4820		}
4821		if (isfrag) {
4822			/*
4823			 * Force hardware to use computed duration for next
4824			 * fragment by disabling multi-rate retry which updates
4825			 * duration based on the multi-rate duration table.
4826			 */
4827			ismrr = 0;
4828			try0 = ATH_TXMGTTRY;	/* XXX? */
4829		}
4830		*(u_int16_t *)wh->i_dur = htole16(dur);
4831	}
4832
4833	/*
4834	 * Calculate RTS/CTS rate and duration if needed.
4835	 */
4836	ctsduration = 0;
4837	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
4838		/*
4839		 * CTS transmit rate is derived from the transmit rate
4840		 * by looking in the h/w rate table.  We must also factor
4841		 * in whether or not a short preamble is to be used.
4842		 */
4843		/* NB: cix is set above where RTS/CTS is enabled */
4844		KASSERT(cix != 0xff, ("cix not setup"));
4845		ctsrate = rt->info[cix].rateCode;
4846		/*
4847		 * Compute the transmit duration based on the frame
4848		 * size and the size of an ACK frame.  We call into the
4849		 * HAL to do the computation since it depends on the
4850		 * characteristics of the actual PHY being used.
4851		 *
4852		 * NB: CTS is assumed the same size as an ACK so we can
4853		 *     use the precalculated ACK durations.
4854		 */
4855		if (shortPreamble) {
4856			ctsrate |= rt->info[cix].shortPreamble;
4857			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4858				ctsduration += rt->info[cix].spAckDuration;
4859			ctsduration += ath_hal_computetxtime(ah,
4860				rt, pktlen, rix, AH_TRUE);
4861			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4862				ctsduration += rt->info[rix].spAckDuration;
4863		} else {
4864			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4865				ctsduration += rt->info[cix].lpAckDuration;
4866			ctsduration += ath_hal_computetxtime(ah,
4867				rt, pktlen, rix, AH_FALSE);
4868			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4869				ctsduration += rt->info[rix].lpAckDuration;
4870		}
4871		/*
4872		 * Must disable multi-rate retry when using RTS/CTS.
4873		 */
4874		ismrr = 0;
4875		try0 = ATH_TXMGTTRY;		/* XXX */
4876	} else
4877		ctsrate = 0;
4878
4879	/*
4880	 * At this point we are committed to sending the frame
4881	 * and we don't need to look at m_nextpkt; clear it in
4882	 * case this frame is part of frag chain.
4883	 */
4884	m0->m_nextpkt = NULL;
4885
4886	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
4887		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
4888			sc->sc_hwmap[txrate].ieeerate, -1);
4889
4890	if (bpf_peers_present(ifp->if_bpf)) {
4891		u_int64_t tsf = ath_hal_gettsf64(ah);
4892
4893		sc->sc_tx_th.wt_tsf = htole64(tsf);
4894		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
4895		if (iswep)
4896			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4897		if (isfrag)
4898			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
4899		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
4900		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
4901		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
4902
4903		bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
4904	}
4905
4906	/*
4907	 * Determine if a tx interrupt should be generated for
4908	 * this descriptor.  We take a tx interrupt to reap
4909	 * descriptors when the h/w hits an EOL condition or
4910	 * when the descriptor is specifically marked to generate
4911	 * an interrupt.  We periodically mark descriptors in this
4912	 * way to insure timely replenishing of the supply needed
4913	 * for sending frames.  Defering interrupts reduces system
4914	 * load and potentially allows more concurrent work to be
4915	 * done but if done to aggressively can cause senders to
4916	 * backup.
4917	 *
4918	 * NB: use >= to deal with sc_txintrperiod changing
4919	 *     dynamically through sysctl.
4920	 */
4921	if (flags & HAL_TXDESC_INTREQ) {
4922		txq->axq_intrcnt = 0;
4923	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4924		flags |= HAL_TXDESC_INTREQ;
4925		txq->axq_intrcnt = 0;
4926	}
4927
4928	/*
4929	 * Formulate first tx descriptor with tx controls.
4930	 */
4931	/* XXX check return value? */
4932	ath_hal_setuptxdesc(ah, ds
4933		, pktlen		/* packet length */
4934		, hdrlen		/* header length */
4935		, atype			/* Atheros packet type */
4936		, ni->ni_txpower	/* txpower */
4937		, txrate, try0		/* series 0 rate/tries */
4938		, keyix			/* key cache index */
4939		, sc->sc_txantenna	/* antenna mode */
4940		, flags			/* flags */
4941		, ctsrate		/* rts/cts rate */
4942		, ctsduration		/* rts/cts duration */
4943	);
4944	bf->bf_flags = flags;
4945	/*
4946	 * Setup the multi-rate retry state only when we're
4947	 * going to use it.  This assumes ath_hal_setuptxdesc
4948	 * initializes the descriptors (so we don't have to)
4949	 * when the hardware supports multi-rate retry and
4950	 * we don't use it.
4951	 */
4952	if (ismrr)
4953		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4954
4955	ath_tx_handoff(sc, txq, bf);
4956	return 0;
4957}
4958
4959/*
4960 * Process completed xmit descriptors from the specified queue.
4961 */
4962static int
4963ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4964{
4965	struct ath_hal *ah = sc->sc_ah;
4966	struct ifnet *ifp = sc->sc_ifp;
4967	struct ieee80211com *ic = ifp->if_l2com;
4968	struct ath_buf *bf;
4969	struct ath_desc *ds, *ds0;
4970	struct ath_tx_status *ts;
4971	struct ieee80211_node *ni;
4972	struct ath_node *an;
4973	int sr, lr, pri, nacked;
4974	HAL_STATUS status;
4975
4976	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4977		__func__, txq->axq_qnum,
4978		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4979		txq->axq_link);
4980	nacked = 0;
4981	for (;;) {
4982		ATH_TXQ_LOCK(txq);
4983		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4984		bf = STAILQ_FIRST(&txq->axq_q);
4985		if (bf == NULL) {
4986			ATH_TXQ_UNLOCK(txq);
4987			break;
4988		}
4989		ds0 = &bf->bf_desc[0];
4990		ds = &bf->bf_desc[bf->bf_nseg - 1];
4991		ts = &bf->bf_status.ds_txstat;
4992		status = ath_hal_txprocdesc(ah, ds, ts);
4993#ifdef ATH_DEBUG
4994		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4995			ath_printtxbuf(bf, txq->axq_qnum, 0, status == HAL_OK);
4996#endif
4997		if (status == HAL_EINPROGRESS) {
4998			ATH_TXQ_UNLOCK(txq);
4999			break;
5000		}
5001		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5002		if (txq->axq_depth == 0)
5003			txq->axq_link = NULL;
5004		ATH_TXQ_UNLOCK(txq);
5005
5006		ni = bf->bf_node;
5007		if (ni != NULL) {
5008			an = ATH_NODE(ni);
5009			if (ts->ts_status == 0) {
5010				u_int8_t txant = ts->ts_antenna;
5011				sc->sc_stats.ast_ant_tx[txant]++;
5012				sc->sc_ant_tx[txant]++;
5013				if (ts->ts_rate & HAL_TXSTAT_ALTRATE)
5014					sc->sc_stats.ast_tx_altrate++;
5015				sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
5016				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
5017					ts->ts_rssi);
5018				pri = M_WME_GETAC(bf->bf_m);
5019				if (pri >= WME_AC_VO)
5020					ic->ic_wme.wme_hipri_traffic++;
5021				ni->ni_inact = ni->ni_inact_reload;
5022			} else {
5023				if (ts->ts_status & HAL_TXERR_XRETRY)
5024					sc->sc_stats.ast_tx_xretries++;
5025				if (ts->ts_status & HAL_TXERR_FIFO)
5026					sc->sc_stats.ast_tx_fifoerr++;
5027				if (ts->ts_status & HAL_TXERR_FILT)
5028					sc->sc_stats.ast_tx_filtered++;
5029				if (bf->bf_m->m_flags & M_FF)
5030					sc->sc_stats.ast_ff_txerr++;
5031			}
5032			sr = ts->ts_shortretry;
5033			lr = ts->ts_longretry;
5034			sc->sc_stats.ast_tx_shortretry += sr;
5035			sc->sc_stats.ast_tx_longretry += lr;
5036			/*
5037			 * Hand the descriptor to the rate control algorithm.
5038			 */
5039			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
5040			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
5041				/*
5042				 * If frame was ack'd update the last rx time
5043				 * used to workaround phantom bmiss interrupts.
5044				 */
5045				if (ts->ts_status == 0)
5046					nacked++;
5047				ath_rate_tx_complete(sc, an, bf);
5048			}
5049			/*
5050			 * Do any tx complete callback.  Note this must
5051			 * be done before releasing the node reference.
5052			 */
5053			if (bf->bf_m->m_flags & M_TXCB)
5054				ieee80211_process_callback(ni, bf->bf_m,
5055					ts->ts_status);
5056			/*
5057			 * Reclaim reference to node.
5058			 *
5059			 * NB: the node may be reclaimed here if, for example
5060			 *     this is a DEAUTH message that was sent and the
5061			 *     node was timed out due to inactivity.
5062			 */
5063			ieee80211_free_node(ni);
5064		}
5065		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5066		    BUS_DMASYNC_POSTWRITE);
5067		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5068
5069		m_freem(bf->bf_m);
5070		bf->bf_m = NULL;
5071		bf->bf_node = NULL;
5072
5073		ATH_TXBUF_LOCK(sc);
5074		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5075		ATH_TXBUF_UNLOCK(sc);
5076	}
5077	/*
5078	 * Flush fast-frame staging queue when traffic slows.
5079	 */
5080	if (txq->axq_depth <= 1)
5081		ath_ff_stageq_flush(sc, txq, ath_ff_always);
5082	return nacked;
5083}
5084
5085static __inline int
5086txqactive(struct ath_hal *ah, int qnum)
5087{
5088	u_int32_t txqs = 1<<qnum;
5089	ath_hal_gettxintrtxqs(ah, &txqs);
5090	return (txqs & (1<<qnum));
5091}
5092
5093/*
5094 * Deferred processing of transmit interrupt; special-cased
5095 * for a single hardware transmit queue (e.g. 5210 and 5211).
5096 */
5097static void
5098ath_tx_proc_q0(void *arg, int npending)
5099{
5100	struct ath_softc *sc = arg;
5101	struct ifnet *ifp = sc->sc_ifp;
5102
5103	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5104		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5105	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5106		ath_tx_processq(sc, sc->sc_cabq);
5107	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5108	ifp->if_timer = 0;
5109
5110	if (sc->sc_softled)
5111		ath_led_event(sc, ATH_LED_TX);
5112
5113	ath_start(ifp);
5114}
5115
5116/*
5117 * Deferred processing of transmit interrupt; special-cased
5118 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5119 */
5120static void
5121ath_tx_proc_q0123(void *arg, int npending)
5122{
5123	struct ath_softc *sc = arg;
5124	struct ifnet *ifp = sc->sc_ifp;
5125	int nacked;
5126
5127	/*
5128	 * Process each active queue.
5129	 */
5130	nacked = 0;
5131	if (txqactive(sc->sc_ah, 0))
5132		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5133	if (txqactive(sc->sc_ah, 1))
5134		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5135	if (txqactive(sc->sc_ah, 2))
5136		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5137	if (txqactive(sc->sc_ah, 3))
5138		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5139	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5140		ath_tx_processq(sc, sc->sc_cabq);
5141	if (nacked)
5142		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5143
5144	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5145	ifp->if_timer = 0;
5146
5147	if (sc->sc_softled)
5148		ath_led_event(sc, ATH_LED_TX);
5149
5150	ath_start(ifp);
5151}
5152
5153/*
5154 * Deferred processing of transmit interrupt.
5155 */
5156static void
5157ath_tx_proc(void *arg, int npending)
5158{
5159	struct ath_softc *sc = arg;
5160	struct ifnet *ifp = sc->sc_ifp;
5161	int i, nacked;
5162
5163	/*
5164	 * Process each active queue.
5165	 */
5166	nacked = 0;
5167	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5168		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5169			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5170	if (nacked)
5171		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5172
5173	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5174	ifp->if_timer = 0;
5175
5176	if (sc->sc_softled)
5177		ath_led_event(sc, ATH_LED_TX);
5178
5179	ath_start(ifp);
5180}
5181
5182static void
5183ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5184{
5185#ifdef ATH_DEBUG
5186	struct ath_hal *ah = sc->sc_ah;
5187#endif
5188	struct ieee80211_node *ni;
5189	struct ath_buf *bf;
5190	u_int ix;
5191
5192	/*
5193	 * NB: this assumes output has been stopped and
5194	 *     we do not need to block ath_tx_tasklet
5195	 */
5196	for (ix = 0;; ix++) {
5197		ATH_TXQ_LOCK(txq);
5198		bf = STAILQ_FIRST(&txq->axq_q);
5199		if (bf == NULL) {
5200			txq->axq_link = NULL;
5201			ATH_TXQ_UNLOCK(txq);
5202			break;
5203		}
5204		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5205		ATH_TXQ_UNLOCK(txq);
5206#ifdef ATH_DEBUG
5207		if (sc->sc_debug & ATH_DEBUG_RESET) {
5208			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5209
5210			ath_printtxbuf(bf, txq->axq_qnum, ix,
5211				ath_hal_txprocdesc(ah, bf->bf_desc,
5212				    &bf->bf_status.ds_txstat) == HAL_OK);
5213			ieee80211_dump_pkt(ic, mtod(bf->bf_m, caddr_t),
5214				bf->bf_m->m_len, 0, -1);
5215		}
5216#endif /* ATH_DEBUG */
5217		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5218		ni = bf->bf_node;
5219		bf->bf_node = NULL;
5220		if (ni != NULL) {
5221			/*
5222			 * Do any callback and reclaim the node reference.
5223			 */
5224			if (bf->bf_m->m_flags & M_TXCB)
5225				ieee80211_process_callback(ni, bf->bf_m, -1);
5226			ieee80211_free_node(ni);
5227		}
5228		m_freem(bf->bf_m);
5229		bf->bf_m = NULL;
5230
5231		ATH_TXBUF_LOCK(sc);
5232		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5233		ATH_TXBUF_UNLOCK(sc);
5234	}
5235}
5236
5237static void
5238ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5239{
5240	struct ath_hal *ah = sc->sc_ah;
5241
5242	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5243	    __func__, txq->axq_qnum,
5244	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5245	    txq->axq_link);
5246	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5247}
5248
5249/*
5250 * Drain the transmit queues and reclaim resources.
5251 */
5252static void
5253ath_draintxq(struct ath_softc *sc)
5254{
5255	struct ath_hal *ah = sc->sc_ah;
5256	struct ifnet *ifp = sc->sc_ifp;
5257	int i;
5258
5259	/* XXX return value */
5260	if (!sc->sc_invalid) {
5261		/* don't touch the hardware if marked invalid */
5262		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5263		    __func__, sc->sc_bhalq,
5264		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5265		    NULL);
5266		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5267		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5268			if (ATH_TXQ_SETUP(sc, i))
5269				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5270	}
5271	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5272		if (ATH_TXQ_SETUP(sc, i))
5273			ath_tx_draintxq(sc, &sc->sc_txq[i]);
5274#ifdef ATH_DEBUG
5275	if (sc->sc_debug & ATH_DEBUG_RESET) {
5276		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5277		if (bf != NULL && bf->bf_m != NULL) {
5278			ath_printtxbuf(bf, sc->sc_bhalq, 0,
5279				ath_hal_txprocdesc(ah, bf->bf_desc,
5280				    &bf->bf_status.ds_txstat) == HAL_OK);
5281			ieee80211_dump_pkt(ifp->if_l2com, mtod(bf->bf_m, caddr_t),
5282				bf->bf_m->m_len, 0, -1);
5283		}
5284	}
5285#endif /* ATH_DEBUG */
5286	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5287	ifp->if_timer = 0;
5288}
5289
5290/*
5291 * Disable the receive h/w in preparation for a reset.
5292 */
5293static void
5294ath_stoprecv(struct ath_softc *sc)
5295{
5296#define	PA2DESC(_sc, _pa) \
5297	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5298		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5299	struct ath_hal *ah = sc->sc_ah;
5300
5301	ath_hal_stoppcurecv(ah);	/* disable PCU */
5302	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5303	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5304	DELAY(3000);			/* 3ms is long enough for 1 frame */
5305#ifdef ATH_DEBUG
5306	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5307		struct ath_buf *bf;
5308		u_int ix;
5309
5310		printf("%s: rx queue %p, link %p\n", __func__,
5311			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5312		ix = 0;
5313		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5314			struct ath_desc *ds = bf->bf_desc;
5315			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5316			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5317				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5318			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5319				ath_printrxbuf(bf, ix, status == HAL_OK);
5320			ix++;
5321		}
5322	}
5323#endif
5324	if (sc->sc_rxpending != NULL) {
5325		m_freem(sc->sc_rxpending);
5326		sc->sc_rxpending = NULL;
5327	}
5328	sc->sc_rxlink = NULL;		/* just in case */
5329#undef PA2DESC
5330}
5331
5332/*
5333 * Enable the receive h/w following a reset.
5334 */
5335static int
5336ath_startrecv(struct ath_softc *sc)
5337{
5338	struct ath_hal *ah = sc->sc_ah;
5339	struct ath_buf *bf;
5340
5341	sc->sc_rxlink = NULL;
5342	sc->sc_rxpending = NULL;
5343	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5344		int error = ath_rxbuf_init(sc, bf);
5345		if (error != 0) {
5346			DPRINTF(sc, ATH_DEBUG_RECV,
5347				"%s: ath_rxbuf_init failed %d\n",
5348				__func__, error);
5349			return error;
5350		}
5351	}
5352
5353	bf = STAILQ_FIRST(&sc->sc_rxbuf);
5354	ath_hal_putrxbuf(ah, bf->bf_daddr);
5355	ath_hal_rxena(ah);		/* enable recv descriptors */
5356	ath_mode_init(sc);		/* set filters, etc. */
5357	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5358	return 0;
5359}
5360
5361/*
5362 * Update internal state after a channel change.
5363 */
5364static void
5365ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5366{
5367	enum ieee80211_phymode mode;
5368
5369	/*
5370	 * Change channels and update the h/w rate map
5371	 * if we're switching; e.g. 11a to 11b/g.
5372	 */
5373	if (IEEE80211_IS_CHAN_HALF(chan))
5374		mode = IEEE80211_MODE_HALF;
5375	else if (IEEE80211_IS_CHAN_QUARTER(chan))
5376		mode = IEEE80211_MODE_QUARTER;
5377	else
5378		mode = ieee80211_chan2mode(chan);
5379	if (mode != sc->sc_curmode)
5380		ath_setcurmode(sc, mode);
5381
5382	sc->sc_rx_th.wr_chan_flags = htole32(chan->ic_flags);
5383	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags;
5384	sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq);
5385	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq;
5386	sc->sc_rx_th.wr_chan_ieee = chan->ic_ieee;
5387	sc->sc_tx_th.wt_chan_ieee = sc->sc_rx_th.wr_chan_ieee;
5388	sc->sc_rx_th.wr_chan_maxpow = chan->ic_maxregpower;
5389	sc->sc_tx_th.wt_chan_maxpow = sc->sc_rx_th.wr_chan_maxpow;
5390}
5391
5392/*
5393 * Set/change channels.  If the channel is really being changed,
5394 * it's done by reseting the chip.  To accomplish this we must
5395 * first cleanup any pending DMA, then restart stuff after a la
5396 * ath_init.
5397 */
5398static int
5399ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5400{
5401	struct ifnet *ifp = sc->sc_ifp;
5402	struct ieee80211com *ic = ifp->if_l2com;
5403	struct ath_hal *ah = sc->sc_ah;
5404	HAL_CHANNEL hchan;
5405
5406	/*
5407	 * Convert to a HAL channel description with
5408	 * the flags constrained to reflect the current
5409	 * operating mode.
5410	 */
5411	ath_mapchan(&hchan, chan);
5412
5413	DPRINTF(sc, ATH_DEBUG_RESET,
5414	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
5415	    __func__,
5416	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
5417		sc->sc_curchan.channelFlags),
5418	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
5419	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
5420	        hchan.channel, hchan.channelFlags);
5421	if (hchan.channel != sc->sc_curchan.channel ||
5422	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
5423		HAL_STATUS status;
5424
5425		/*
5426		 * To switch channels clear any pending DMA operations;
5427		 * wait long enough for the RX fifo to drain, reset the
5428		 * hardware at the new frequency, and then re-enable
5429		 * the relevant bits of the h/w.
5430		 */
5431		ath_hal_intrset(ah, 0);		/* disable interrupts */
5432		ath_draintxq(sc);		/* clear pending tx frames */
5433		ath_stoprecv(sc);		/* turn off frame recv */
5434		if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_TRUE, &status)) {
5435			if_printf(ifp, "%s: unable to reset "
5436			    "channel %u (%u Mhz, flags 0x%x hal flags 0x%x), "
5437			    "hal status %u\n", __func__,
5438			    ieee80211_chan2ieee(ic, chan), chan->ic_freq,
5439			    chan->ic_flags, hchan.channelFlags, status);
5440			return EIO;
5441		}
5442		sc->sc_curchan = hchan;
5443		sc->sc_diversity = ath_hal_getdiversity(ah);
5444		sc->sc_calinterval = 1;
5445		sc->sc_caltries = 0;
5446
5447		/*
5448		 * Re-enable rx framework.
5449		 */
5450		if (ath_startrecv(sc) != 0) {
5451			if_printf(ifp, "%s: unable to restart recv logic\n",
5452			    __func__);
5453			return EIO;
5454		}
5455
5456		/*
5457		 * Change channels and update the h/w rate map
5458		 * if we're switching; e.g. 11a to 11b/g.
5459		 */
5460		ath_chan_change(sc, chan);
5461
5462		/*
5463		 * Re-enable interrupts.
5464		 */
5465		ath_hal_intrset(ah, sc->sc_imask);
5466	}
5467	return 0;
5468}
5469
5470/*
5471 * Periodically recalibrate the PHY to account
5472 * for temperature/environment changes.
5473 */
5474static void
5475ath_calibrate(void *arg)
5476{
5477	struct ath_softc *sc = arg;
5478	struct ath_hal *ah = sc->sc_ah;
5479	HAL_BOOL iqCalDone;
5480
5481	sc->sc_stats.ast_per_cal++;
5482
5483	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5484		/*
5485		 * Rfgain is out of bounds, reset the chip
5486		 * to load new gain values.
5487		 */
5488		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5489			"%s: rfgain change\n", __func__);
5490		sc->sc_stats.ast_per_rfgain++;
5491		ath_reset(sc->sc_ifp);
5492	}
5493	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
5494		DPRINTF(sc, ATH_DEBUG_ANY,
5495			"%s: calibration of channel %u failed\n",
5496			__func__, sc->sc_curchan.channel);
5497		sc->sc_stats.ast_per_calfail++;
5498	}
5499	/*
5500	 * Calibrate noise floor data again in case of change.
5501	 */
5502	ath_hal_process_noisefloor(ah);
5503	/*
5504	 * Poll more frequently when the IQ calibration is in
5505	 * progress to speedup loading the final settings.
5506	 * We temper this aggressive polling with an exponential
5507	 * back off after 4 tries up to ath_calinterval.
5508	 */
5509	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
5510		sc->sc_caltries = 0;
5511		sc->sc_calinterval = ath_calinterval;
5512	} else if (sc->sc_caltries > 4) {
5513		sc->sc_caltries = 0;
5514		sc->sc_calinterval <<= 1;
5515		if (sc->sc_calinterval > ath_calinterval)
5516			sc->sc_calinterval = ath_calinterval;
5517	}
5518	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
5519		("bad calibration interval %u", sc->sc_calinterval));
5520
5521	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5522		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
5523		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
5524	sc->sc_caltries++;
5525	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
5526		ath_calibrate, sc);
5527}
5528
5529static void
5530ath_scan_start(struct ieee80211com *ic)
5531{
5532	struct ifnet *ifp = ic->ic_ifp;
5533	struct ath_softc *sc = ifp->if_softc;
5534	struct ath_hal *ah = sc->sc_ah;
5535	u_int32_t rfilt;
5536
5537	/* XXX calibration timer? */
5538
5539	sc->sc_scanning = 1;
5540	sc->sc_syncbeacon = 0;
5541	rfilt = ath_calcrxfilter(sc);
5542	ath_hal_setrxfilter(ah, rfilt);
5543	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5544
5545	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5546		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5547}
5548
5549static void
5550ath_scan_end(struct ieee80211com *ic)
5551{
5552	struct ifnet *ifp = ic->ic_ifp;
5553	struct ath_softc *sc = ifp->if_softc;
5554	struct ath_hal *ah = sc->sc_ah;
5555	u_int32_t rfilt;
5556
5557	sc->sc_scanning = 0;
5558	rfilt = ath_calcrxfilter(sc);
5559	ath_hal_setrxfilter(ah, rfilt);
5560	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5561
5562	ath_hal_process_noisefloor(ah);
5563
5564	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5565		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5566		 sc->sc_curaid);
5567}
5568
5569static void
5570ath_set_channel(struct ieee80211com *ic)
5571{
5572	struct ifnet *ifp = ic->ic_ifp;
5573	struct ath_softc *sc = ifp->if_softc;
5574
5575	(void) ath_chan_set(sc, ic->ic_curchan);
5576	/*
5577	 * If we are returning to our bss channel then mark state
5578	 * so the next recv'd beacon's tsf will be used to sync the
5579	 * beacon timers.  Note that since we only hear beacons in
5580	 * sta/ibss mode this has no effect in other operating modes.
5581	 */
5582	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5583		sc->sc_syncbeacon = 1;
5584}
5585
5586/*
5587 * Walk the vap list and check if there any vap's in RUN state.
5588 */
5589static int
5590ath_isanyrunningvaps(struct ieee80211vap *this)
5591{
5592	struct ieee80211com *ic = this->iv_ic;
5593	struct ieee80211vap *vap;
5594
5595	IEEE80211_LOCK_ASSERT(ic);
5596
5597	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5598		if (vap != this && vap->iv_state == IEEE80211_S_RUN)
5599			return 1;
5600	}
5601	return 0;
5602}
5603
5604static int
5605ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5606{
5607	struct ieee80211com *ic = vap->iv_ic;
5608	struct ath_softc *sc = ic->ic_ifp->if_softc;
5609	struct ath_vap *avp = ATH_VAP(vap);
5610	struct ath_hal *ah = sc->sc_ah;
5611	struct ieee80211_node *ni = NULL;
5612	int i, error, stamode;
5613	u_int32_t rfilt;
5614	static const HAL_LED_STATE leds[] = {
5615	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5616	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5617	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5618	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5619	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5620	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5621	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5622	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5623	};
5624
5625	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5626		ieee80211_state_name[vap->iv_state],
5627		ieee80211_state_name[nstate]);
5628
5629	callout_stop(&sc->sc_cal_ch);
5630	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5631
5632	if (nstate == IEEE80211_S_SCAN) {
5633		/*
5634		 * Scanning: turn off beacon miss and don't beacon.
5635		 * Mark beacon state so when we reach RUN state we'll
5636		 * [re]setup beacons.  Unblock the task q thread so
5637		 * deferred interrupt processing is done.
5638		 */
5639		ath_hal_intrset(ah,
5640		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5641		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5642		sc->sc_beacons = 0;
5643		taskqueue_unblock(sc->sc_tq);
5644	}
5645
5646	ni = vap->iv_bss;
5647	rfilt = ath_calcrxfilter(sc);
5648	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5649		   vap->iv_opmode == IEEE80211_M_IBSS);
5650	if (stamode && nstate == IEEE80211_S_RUN) {
5651		sc->sc_curaid = ni->ni_associd;
5652		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5653		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5654	}
5655	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5656	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5657	ath_hal_setrxfilter(ah, rfilt);
5658
5659	/* XXX is this to restore keycache on resume? */
5660	if (vap->iv_opmode != IEEE80211_M_STA &&
5661	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5662		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5663			if (ath_hal_keyisvalid(ah, i))
5664				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5665	}
5666	/*
5667	 * Notify the rate control algorithm so rates
5668	 * are setup should ath_beacon_alloc be called.
5669	 */
5670	ath_rate_newstate(vap, nstate);
5671
5672	/*
5673	 * Invoke the parent method to do net80211 work.
5674	 */
5675	error = avp->av_newstate(vap, nstate, arg);
5676	if (error != 0)
5677		goto bad;
5678
5679	if (nstate == IEEE80211_S_RUN) {
5680		/* NB: collect bss node again, it may have changed */
5681		ni = vap->iv_bss;
5682
5683		DPRINTF(sc, ATH_DEBUG_STATE,
5684		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5685		    "capinfo 0x%04x chan %d\n", __func__,
5686		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5687		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5688
5689		switch (vap->iv_opmode) {
5690		case IEEE80211_M_HOSTAP:
5691		case IEEE80211_M_IBSS:
5692			/*
5693			 * Allocate and setup the beacon frame.
5694			 *
5695			 * Stop any previous beacon DMA.  This may be
5696			 * necessary, for example, when an ibss merge
5697			 * causes reconfiguration; there will be a state
5698			 * transition from RUN->RUN that means we may
5699			 * be called with beacon transmission active.
5700			 */
5701			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5702
5703			error = ath_beacon_alloc(sc, ni);
5704			if (error != 0)
5705				goto bad;
5706			/*
5707			 * If joining an adhoc network defer beacon timer
5708			 * configuration to the next beacon frame so we
5709			 * have a current TSF to use.  Otherwise we're
5710			 * starting an ibss/bss so there's no need to delay;
5711			 * if this is the first vap moving to RUN state, then
5712			 * beacon state needs to be [re]configured.
5713			 */
5714			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5715			    ni->ni_tstamp.tsf != 0) {
5716				sc->sc_syncbeacon = 1;
5717			} else if (!sc->sc_beacons) {
5718				ath_beacon_config(sc, vap);
5719				sc->sc_beacons = 1;
5720			}
5721			break;
5722		case IEEE80211_M_STA:
5723			/*
5724			 * Fakeup since we're not called by net80211.
5725			 */
5726			ath_newassoc(ni, 1);
5727			/*
5728			 * Defer beacon timer configuration to the next
5729			 * beacon frame so we have a current TSF to use
5730			 * (any TSF collected when scanning is likely old).
5731			 */
5732			sc->sc_syncbeacon = 1;
5733			break;
5734		case IEEE80211_M_MONITOR:
5735			/*
5736			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5737			 * transitions so we must re-enable interrupts here to
5738			 * handle the case of a single monitor mode vap.
5739			 */
5740			ath_hal_intrset(ah, sc->sc_imask);
5741			break;
5742		case IEEE80211_M_WDS:
5743			break;
5744		default:
5745			break;
5746		}
5747		/*
5748		 * Let the hal process statistics collected during a
5749		 * scan so it can provide calibrated noise floor data.
5750		 */
5751		ath_hal_process_noisefloor(ah);
5752		/*
5753		 * Reset rssi stats; maybe not the best place...
5754		 */
5755		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5756		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5757		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5758		/*
5759		 * Finally, start any timers and the task q thread
5760		 * (in case we didn't go through SCAN state).
5761		 */
5762		if (sc->sc_calinterval != 0) {
5763			/* start periodic recalibration timer */
5764			callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
5765				ath_calibrate, sc);
5766		}
5767		taskqueue_unblock(sc->sc_tq);
5768	} else if (nstate == IEEE80211_S_INIT) {
5769		/*
5770		 * If there are no vaps left in RUN state then
5771		 * shutdown host/driver operation:
5772		 * o disable interrupts
5773		 * o disable the task queue thread
5774		 * o mark beacon processing as stopped
5775		 */
5776		if (!ath_isanyrunningvaps(vap)) {
5777			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5778			/* disable interrupts  */
5779			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5780			taskqueue_block(sc->sc_tq);
5781			sc->sc_beacons = 0;
5782		}
5783	}
5784bad:
5785	return error;
5786}
5787
5788/*
5789 * Allocate a key cache slot to the station so we can
5790 * setup a mapping from key index to node. The key cache
5791 * slot is needed for managing antenna state and for
5792 * compression when stations do not use crypto.  We do
5793 * it uniliaterally here; if crypto is employed this slot
5794 * will be reassigned.
5795 */
5796static void
5797ath_setup_stationkey(struct ieee80211_node *ni)
5798{
5799	struct ieee80211vap *vap = ni->ni_vap;
5800	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5801	ieee80211_keyix keyix, rxkeyix;
5802
5803	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5804		/*
5805		 * Key cache is full; we'll fall back to doing
5806		 * the more expensive lookup in software.  Note
5807		 * this also means no h/w compression.
5808		 */
5809		/* XXX msg+statistic */
5810	} else {
5811		/* XXX locking? */
5812		ni->ni_ucastkey.wk_keyix = keyix;
5813		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5814		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5815		/* NB: this will create a pass-thru key entry */
5816		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
5817	}
5818}
5819
5820/*
5821 * Setup driver-specific state for a newly associated node.
5822 * Note that we're called also on a re-associate, the isnew
5823 * param tells us if this is the first time or not.
5824 */
5825static void
5826ath_newassoc(struct ieee80211_node *ni, int isnew)
5827{
5828	struct ath_node *an = ATH_NODE(ni);
5829	struct ieee80211vap *vap = ni->ni_vap;
5830	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5831	const struct ieee80211_txparam *tp;
5832	enum ieee80211_phymode mode;
5833
5834	/*
5835	 * Deduce netband of station to simplify setting up xmit
5836	 * parameters.  Note this allows us to assign different
5837	 * parameters to each station in a mixed bss (b/g, n/[abg]).
5838	 */
5839	if (ni->ni_flags & IEEE80211_NODE_HT) {
5840		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
5841			mode = IEEE80211_MODE_11NA;
5842		else
5843			mode = IEEE80211_MODE_11NG;
5844	} else if (IEEE80211_IS_CHAN_A(ni->ni_chan))
5845		mode = IEEE80211_MODE_11A;
5846	else if (ni->ni_flags & IEEE80211_NODE_ERP)
5847		mode = IEEE80211_MODE_11G;
5848	else
5849		mode = IEEE80211_MODE_11B;
5850	tp = &vap->iv_txparms[mode];
5851	an->an_tp = tp;
5852	an->an_mcastrix = ath_tx_findrix(sc->sc_rates[mode], tp->mcastrate);
5853	an->an_mgmtrix = ath_tx_findrix(sc->sc_rates[mode], tp->mgmtrate);
5854
5855	ath_rate_newassoc(sc, an, isnew);
5856	if (isnew &&
5857	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5858	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5859		ath_setup_stationkey(ni);
5860}
5861
5862static int
5863getchannels(struct ath_softc *sc, int *nchans, struct ieee80211_channel chans[],
5864	int cc, int ecm, int outdoor)
5865{
5866	struct ath_hal *ah = sc->sc_ah;
5867	HAL_CHANNEL *halchans;
5868	int i, nhalchans, error;
5869
5870	halchans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
5871			M_TEMP, M_NOWAIT | M_ZERO);
5872	if (halchans == NULL) {
5873		device_printf(sc->sc_dev,
5874		    "%s: unable to allocate channel table\n", __func__);
5875		return ENOMEM;
5876	}
5877	error = 0;
5878	if (!ath_hal_init_channels(ah, halchans, IEEE80211_CHAN_MAX, &nhalchans,
5879	    NULL, 0, NULL, CTRY_DEFAULT, HAL_MODE_ALL, AH_FALSE, AH_TRUE)) {
5880		error = EINVAL;
5881		goto done;
5882	}
5883	if (nchans == NULL)		/* no table requested */
5884		goto done;
5885
5886	/*
5887	 * Convert HAL channels to ieee80211 ones.
5888	 */
5889	for (i = 0; i < nhalchans; i++) {
5890		HAL_CHANNEL *c = &halchans[i];
5891		struct ieee80211_channel *ichan = &chans[i];
5892
5893		ichan->ic_ieee = ath_hal_mhz2ieee(ah, c->channel,
5894					c->channelFlags);
5895		if (bootverbose)
5896			device_printf(sc->sc_dev, "hal channel %u/%x -> %u "
5897			    "maxpow %d minpow %d maxreg %d\n",
5898			    c->channel, c->channelFlags, ichan->ic_ieee,
5899			    c->maxTxPower, c->minTxPower, c->maxRegTxPower);
5900		ichan->ic_freq = c->channel;
5901
5902		if ((c->channelFlags & CHANNEL_PUREG) == CHANNEL_PUREG) {
5903			/*
5904			 * Except for AR5211, HAL's PUREG means mixed
5905			 * DSSS and OFDM.
5906			 */
5907			ichan->ic_flags = c->channelFlags &~ CHANNEL_PUREG;
5908			ichan->ic_flags |= IEEE80211_CHAN_G;
5909		} else {
5910			ichan->ic_flags = c->channelFlags;
5911		}
5912
5913		if (ath_hal_isgsmsku(ah)) {
5914			/* remap to true frequencies */
5915			ichan->ic_freq = 922 + (2422 - ichan->ic_freq);
5916			ichan->ic_flags |= IEEE80211_CHAN_GSM;
5917			ichan->ic_ieee = ieee80211_mhz2ieee(ichan->ic_freq,
5918						    ichan->ic_flags);
5919		}
5920		ichan->ic_maxregpower = c->maxRegTxPower;	/* dBm */
5921		/* XXX: old hal's don't provide maxTxPower for some parts */
5922		ichan->ic_maxpower = (c->maxTxPower != 0) ?
5923		    c->maxTxPower : 2*c->maxRegTxPower;		/* 1/2 dBm */
5924		ichan->ic_minpower = c->minTxPower;		/* 1/2 dBm */
5925	}
5926	*nchans = nhalchans;
5927done:
5928	free(halchans, M_TEMP);
5929	return error;
5930}
5931
5932static int
5933ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
5934	int nchans, struct ieee80211_channel chans[])
5935{
5936	struct ath_softc *sc = ic->ic_ifp->if_softc;
5937	struct ath_hal *ah = sc->sc_ah;
5938	u_int32_t ord;
5939	int error;
5940
5941	(void) ath_hal_getregdomain(ah, &ord);
5942	/* XXX map sku->rd */
5943	ath_hal_setregdomain(ah, rd->regdomain);
5944	error = getchannels(sc, &nchans, chans, rd->country,
5945	     rd->ecm ? AH_TRUE : AH_FALSE,
5946	     rd->location == 'O' ? AH_TRUE : AH_FALSE);
5947	if (error != 0) {
5948		/*
5949		 * Restore previous state.
5950		 */
5951		ath_hal_setregdomain(ah, ord);
5952		(void) getchannels(sc, NULL, NULL, ic->ic_regdomain.country,
5953		     ic->ic_regdomain.ecm ? AH_TRUE : AH_FALSE,
5954		     ic->ic_regdomain.location == 'O' ? AH_TRUE : AH_FALSE);
5955		return error;
5956	}
5957	return 0;
5958}
5959
5960static void
5961ath_getradiocaps(struct ieee80211com *ic,
5962	int *nchans, struct ieee80211_channel chans[])
5963{
5964	struct ath_softc *sc = ic->ic_ifp->if_softc;
5965	struct ath_hal *ah = sc->sc_ah;
5966	u_int32_t ord;
5967
5968	(void) ath_hal_getregdomain(ah, &ord);
5969	ath_hal_setregdomain(ah, 0);
5970	/* XXX not quite right but close enough for now */
5971	getchannels(sc, nchans, chans, CTRY_DEBUG, AH_TRUE, AH_FALSE);
5972
5973	/* NB: restore previous state */
5974	ath_hal_setregdomain(ah, ord);
5975	(void) getchannels(sc, NULL, NULL, ic->ic_regdomain.country,
5976	     ic->ic_regdomain.ecm ? AH_TRUE : AH_FALSE,
5977	     ic->ic_regdomain.location == 'O' ? AH_TRUE : AH_FALSE);
5978}
5979
5980static int
5981ath_mapregdomain(struct ath_softc *sc, u_int32_t rd)
5982{
5983	/* map Atheros rd's to SKU's */
5984	return rd;
5985}
5986
5987static int
5988ath_getchannels(struct ath_softc *sc)
5989{
5990	struct ifnet *ifp = sc->sc_ifp;
5991	struct ieee80211com *ic = ifp->if_l2com;
5992	struct ath_hal *ah = sc->sc_ah;
5993	int error;
5994
5995	/*
5996	 * Convert HAL channels to ieee80211 ones.
5997	 */
5998	error = getchannels(sc, &ic->ic_nchans, ic->ic_channels,
5999	    CTRY_DEFAULT, AH_TRUE, AH_FALSE);
6000	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6001	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6002	if (error) {
6003		if_printf(ifp, "%s: unable to collect channel list from hal, "
6004		    "error %d\n", __func__, error);
6005		if (error == EINVAL) {
6006			if_printf(ifp, "%s: regdomain likely %u country code %u\n",
6007			    __func__, sc->sc_eerd, sc->sc_eecc);
6008		}
6009		return error;
6010	}
6011	ic->ic_regdomain.regdomain = ath_mapregdomain(sc, sc->sc_eerd);
6012	ic->ic_regdomain.country = sc->sc_eecc;
6013	ic->ic_regdomain.ecm = 1;
6014	ic->ic_regdomain.location = 'I';
6015	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6016	ic->ic_regdomain.isocc[1] = ' ';
6017	return 0;
6018}
6019
6020static void
6021ath_led_done(void *arg)
6022{
6023	struct ath_softc *sc = arg;
6024
6025	sc->sc_blinking = 0;
6026}
6027
6028/*
6029 * Turn the LED off: flip the pin and then set a timer so no
6030 * update will happen for the specified duration.
6031 */
6032static void
6033ath_led_off(void *arg)
6034{
6035	struct ath_softc *sc = arg;
6036
6037	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
6038	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
6039}
6040
6041/*
6042 * Blink the LED according to the specified on/off times.
6043 */
6044static void
6045ath_led_blink(struct ath_softc *sc, int on, int off)
6046{
6047	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
6048	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
6049	sc->sc_blinking = 1;
6050	sc->sc_ledoff = off;
6051	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
6052}
6053
6054static void
6055ath_led_event(struct ath_softc *sc, int event)
6056{
6057
6058	sc->sc_ledevent = ticks;	/* time of last event */
6059	if (sc->sc_blinking)		/* don't interrupt active blink */
6060		return;
6061	switch (event) {
6062	case ATH_LED_POLL:
6063		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
6064			sc->sc_hwmap[0].ledoff);
6065		break;
6066	case ATH_LED_TX:
6067		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
6068			sc->sc_hwmap[sc->sc_txrate].ledoff);
6069		break;
6070	case ATH_LED_RX:
6071		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
6072			sc->sc_hwmap[sc->sc_rxrate].ledoff);
6073		break;
6074	}
6075}
6076
6077static int
6078ath_rate_setup(struct ath_softc *sc, u_int mode)
6079{
6080	struct ath_hal *ah = sc->sc_ah;
6081	const HAL_RATE_TABLE *rt;
6082
6083	switch (mode) {
6084	case IEEE80211_MODE_11A:
6085		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6086		break;
6087	case IEEE80211_MODE_HALF:
6088		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6089		break;
6090	case IEEE80211_MODE_QUARTER:
6091		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6092		break;
6093	case IEEE80211_MODE_11B:
6094		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6095		break;
6096	case IEEE80211_MODE_11G:
6097		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6098		break;
6099	case IEEE80211_MODE_TURBO_A:
6100		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6101#if HAL_ABI_VERSION < 0x07013100
6102		if (rt == NULL)		/* XXX bandaid for old hal's */
6103			rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6104#endif
6105		break;
6106	case IEEE80211_MODE_TURBO_G:
6107		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6108		break;
6109	case IEEE80211_MODE_STURBO_A:
6110		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6111		break;
6112	case IEEE80211_MODE_11NA:
6113		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6114		break;
6115	case IEEE80211_MODE_11NG:
6116		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6117		break;
6118	default:
6119		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6120			__func__, mode);
6121		return 0;
6122	}
6123	sc->sc_rates[mode] = rt;
6124	return (rt != NULL);
6125}
6126
6127static void
6128ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6129{
6130#define	N(a)	(sizeof(a)/sizeof(a[0]))
6131	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6132	static const struct {
6133		u_int		rate;		/* tx/rx 802.11 rate */
6134		u_int16_t	timeOn;		/* LED on time (ms) */
6135		u_int16_t	timeOff;	/* LED off time (ms) */
6136	} blinkrates[] = {
6137		{ 108,  40,  10 },
6138		{  96,  44,  11 },
6139		{  72,  50,  13 },
6140		{  48,  57,  14 },
6141		{  36,  67,  16 },
6142		{  24,  80,  20 },
6143		{  22, 100,  25 },
6144		{  18, 133,  34 },
6145		{  12, 160,  40 },
6146		{  10, 200,  50 },
6147		{   6, 240,  58 },
6148		{   4, 267,  66 },
6149		{   2, 400, 100 },
6150		{   0, 500, 130 },
6151		/* XXX half/quarter rates */
6152	};
6153	const HAL_RATE_TABLE *rt;
6154	int i, j;
6155
6156	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6157	rt = sc->sc_rates[mode];
6158	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6159	for (i = 0; i < rt->rateCount; i++)
6160		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
6161	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6162	for (i = 0; i < 32; i++) {
6163		u_int8_t ix = rt->rateCodeToIndex[i];
6164		if (ix == 0xff) {
6165			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6166			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6167			continue;
6168		}
6169		sc->sc_hwmap[i].ieeerate =
6170			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
6171		if (rt->info[ix].phy == IEEE80211_T_HT)
6172			sc->sc_hwmap[i].ieeerate |= 0x80;	/* MCS */
6173		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6174		if (rt->info[ix].shortPreamble ||
6175		    rt->info[ix].phy == IEEE80211_T_OFDM)
6176			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6177		/* NB: receive frames include FCS */
6178		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
6179			IEEE80211_RADIOTAP_F_FCS;
6180		/* setup blink rate table to avoid per-packet lookup */
6181		for (j = 0; j < N(blinkrates)-1; j++)
6182			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6183				break;
6184		/* NB: this uses the last entry if the rate isn't found */
6185		/* XXX beware of overlow */
6186		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6187		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6188	}
6189	sc->sc_currates = rt;
6190	sc->sc_curmode = mode;
6191	/*
6192	 * All protection frames are transmited at 2Mb/s for
6193	 * 11g, otherwise at 1Mb/s.
6194	 */
6195	if (mode == IEEE80211_MODE_11G)
6196		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
6197	else
6198		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
6199	/* NB: caller is responsible for reseting rate control state */
6200#undef N
6201}
6202
6203#ifdef ATH_DEBUG
6204static void
6205ath_printrxbuf(const struct ath_buf *bf, u_int ix, int done)
6206{
6207	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6208	const struct ath_desc *ds;
6209	int i;
6210
6211	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6212		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6213		       "      %08x %08x %08x %08x\n",
6214		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6215		    ds->ds_link, ds->ds_data,
6216		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6217		    ds->ds_ctl0, ds->ds_ctl1,
6218		    ds->ds_hw[0], ds->ds_hw[1]);
6219	}
6220}
6221
6222static void
6223ath_printtxbuf(const struct ath_buf *bf, u_int qnum, u_int ix, int done)
6224{
6225	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6226	const struct ath_desc *ds;
6227	int i;
6228
6229	printf("Q%u[%3u]", qnum, ix);
6230	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6231		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6232		       "        %08x %08x %08x %08x %08x %08x\n",
6233		    ds, (const struct ath_desc *)bf->bf_daddr + i,
6234		    ds->ds_link, ds->ds_data, bf->bf_flags,
6235		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6236		    ds->ds_ctl0, ds->ds_ctl1,
6237		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6238	}
6239}
6240#endif /* ATH_DEBUG */
6241
6242static void
6243ath_watchdog(struct ifnet *ifp)
6244{
6245	struct ath_softc *sc = ifp->if_softc;
6246
6247	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && !sc->sc_invalid) {
6248		if_printf(ifp, "device timeout\n");
6249		ath_reset(ifp);
6250		ifp->if_oerrors++;
6251		sc->sc_stats.ast_watchdog++;
6252	}
6253}
6254
6255#ifdef ATH_DIAGAPI
6256/*
6257 * Diagnostic interface to the HAL.  This is used by various
6258 * tools to do things like retrieve register contents for
6259 * debugging.  The mechanism is intentionally opaque so that
6260 * it can change frequently w/o concern for compatiblity.
6261 */
6262static int
6263ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6264{
6265	struct ath_hal *ah = sc->sc_ah;
6266	u_int id = ad->ad_id & ATH_DIAG_ID;
6267	void *indata = NULL;
6268	void *outdata = NULL;
6269	u_int32_t insize = ad->ad_in_size;
6270	u_int32_t outsize = ad->ad_out_size;
6271	int error = 0;
6272
6273	if (ad->ad_id & ATH_DIAG_IN) {
6274		/*
6275		 * Copy in data.
6276		 */
6277		indata = malloc(insize, M_TEMP, M_NOWAIT);
6278		if (indata == NULL) {
6279			error = ENOMEM;
6280			goto bad;
6281		}
6282		error = copyin(ad->ad_in_data, indata, insize);
6283		if (error)
6284			goto bad;
6285	}
6286	if (ad->ad_id & ATH_DIAG_DYN) {
6287		/*
6288		 * Allocate a buffer for the results (otherwise the HAL
6289		 * returns a pointer to a buffer where we can read the
6290		 * results).  Note that we depend on the HAL leaving this
6291		 * pointer for us to use below in reclaiming the buffer;
6292		 * may want to be more defensive.
6293		 */
6294		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6295		if (outdata == NULL) {
6296			error = ENOMEM;
6297			goto bad;
6298		}
6299	}
6300	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6301		if (outsize < ad->ad_out_size)
6302			ad->ad_out_size = outsize;
6303		if (outdata != NULL)
6304			error = copyout(outdata, ad->ad_out_data,
6305					ad->ad_out_size);
6306	} else {
6307		error = EINVAL;
6308	}
6309bad:
6310	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6311		free(indata, M_TEMP);
6312	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6313		free(outdata, M_TEMP);
6314	return error;
6315}
6316#endif /* ATH_DIAGAPI */
6317
6318static int
6319ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6320{
6321#define	IS_RUNNING(ifp) \
6322	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6323	struct ath_softc *sc = ifp->if_softc;
6324	struct ieee80211com *ic = ifp->if_l2com;
6325	struct ifreq *ifr = (struct ifreq *)data;
6326	int error = 0;
6327
6328	switch (cmd) {
6329	case SIOCSIFFLAGS:
6330		ATH_LOCK(sc);
6331		if (IS_RUNNING(ifp)) {
6332			/*
6333			 * To avoid rescanning another access point,
6334			 * do not call ath_init() here.  Instead,
6335			 * only reflect promisc mode settings.
6336			 */
6337			ath_mode_init(sc);
6338		} else if (ifp->if_flags & IFF_UP) {
6339			/*
6340			 * Beware of being called during attach/detach
6341			 * to reset promiscuous mode.  In that case we
6342			 * will still be marked UP but not RUNNING.
6343			 * However trying to re-init the interface
6344			 * is the wrong thing to do as we've already
6345			 * torn down much of our state.  There's
6346			 * probably a better way to deal with this.
6347			 */
6348			if (!sc->sc_invalid)
6349				ath_init(sc);	/* XXX lose error */
6350		} else {
6351			ath_stop_locked(ifp);
6352#ifdef notyet
6353			/* XXX must wakeup in places like ath_vap_delete */
6354			if (!sc->sc_invalid)
6355				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6356#endif
6357		}
6358		ATH_UNLOCK(sc);
6359		break;
6360	case SIOCGIFMEDIA:
6361	case SIOCSIFMEDIA:
6362		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6363		break;
6364	case SIOCGATHSTATS:
6365		/* NB: embed these numbers to get a consistent view */
6366		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6367		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6368#if 0
6369		ieee80211_getsignal(ic, &sc->sc_stats.ast_rx_rssi,
6370			&sc->sc_stats.ast_rx_noise);
6371#endif
6372		sc->sc_stats.ast_tx_rate = sc->sc_hwmap[sc->sc_txrate].ieeerate;
6373		return copyout(&sc->sc_stats,
6374		    ifr->ifr_data, sizeof (sc->sc_stats));
6375#ifdef ATH_DIAGAPI
6376	case SIOCGATHDIAG:
6377		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6378		break;
6379#endif
6380	case SIOCGIFADDR:
6381		error = ether_ioctl(ifp, cmd, data);
6382		break;
6383	default:
6384		error = EINVAL;
6385		break;
6386	}
6387	return error;
6388#undef IS_RUNNING
6389}
6390
6391static int
6392ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6393{
6394	struct ath_softc *sc = arg1;
6395	u_int slottime = ath_hal_getslottime(sc->sc_ah);
6396	int error;
6397
6398	error = sysctl_handle_int(oidp, &slottime, 0, req);
6399	if (error || !req->newptr)
6400		return error;
6401	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
6402}
6403
6404static int
6405ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6406{
6407	struct ath_softc *sc = arg1;
6408	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6409	int error;
6410
6411	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6412	if (error || !req->newptr)
6413		return error;
6414	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
6415}
6416
6417static int
6418ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6419{
6420	struct ath_softc *sc = arg1;
6421	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6422	int error;
6423
6424	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6425	if (error || !req->newptr)
6426		return error;
6427	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
6428}
6429
6430static int
6431ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6432{
6433	struct ath_softc *sc = arg1;
6434	int softled = sc->sc_softled;
6435	int error;
6436
6437	error = sysctl_handle_int(oidp, &softled, 0, req);
6438	if (error || !req->newptr)
6439		return error;
6440	softled = (softled != 0);
6441	if (softled != sc->sc_softled) {
6442		if (softled) {
6443			/* NB: handle any sc_ledpin change */
6444			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
6445			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6446				!sc->sc_ledon);
6447		}
6448		sc->sc_softled = softled;
6449	}
6450	return 0;
6451}
6452
6453static int
6454ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6455{
6456	struct ath_softc *sc = arg1;
6457	int ledpin = sc->sc_ledpin;
6458	int error;
6459
6460	error = sysctl_handle_int(oidp, &ledpin, 0, req);
6461	if (error || !req->newptr)
6462		return error;
6463	if (ledpin != sc->sc_ledpin) {
6464		sc->sc_ledpin = ledpin;
6465		if (sc->sc_softled) {
6466			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
6467			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6468				!sc->sc_ledon);
6469		}
6470	}
6471	return 0;
6472}
6473
6474static int
6475ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6476{
6477	struct ath_softc *sc = arg1;
6478	u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6479	int error;
6480
6481	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6482	if (!error && req->newptr) {
6483		/* XXX assumes 2 antenna ports */
6484		if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B)
6485			return EINVAL;
6486		ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6487		/*
6488		 * NB: with the switch locked this isn't meaningful,
6489		 *     but set it anyway so things like radiotap get
6490		 *     consistent info in their data.
6491		 */
6492		sc->sc_txantenna = txantenna;
6493	}
6494	return error;
6495}
6496
6497static int
6498ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6499{
6500	struct ath_softc *sc = arg1;
6501	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
6502	int error;
6503
6504	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6505	if (!error && req->newptr)
6506		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6507	return error;
6508}
6509
6510static int
6511ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6512{
6513	struct ath_softc *sc = arg1;
6514	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
6515	int error;
6516
6517	error = sysctl_handle_int(oidp, &diversity, 0, req);
6518	if (error || !req->newptr)
6519		return error;
6520	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6521		return EINVAL;
6522	sc->sc_diversity = diversity;
6523	return 0;
6524}
6525
6526static int
6527ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6528{
6529	struct ath_softc *sc = arg1;
6530	u_int32_t diag;
6531	int error;
6532
6533	if (!ath_hal_getdiag(sc->sc_ah, &diag))
6534		return EINVAL;
6535	error = sysctl_handle_int(oidp, &diag, 0, req);
6536	if (error || !req->newptr)
6537		return error;
6538	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
6539}
6540
6541static int
6542ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6543{
6544	struct ath_softc *sc = arg1;
6545	struct ifnet *ifp = sc->sc_ifp;
6546	u_int32_t scale;
6547	int error;
6548
6549	(void) ath_hal_gettpscale(sc->sc_ah, &scale);
6550	error = sysctl_handle_int(oidp, &scale, 0, req);
6551	if (error || !req->newptr)
6552		return error;
6553	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL :
6554	    (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6555}
6556
6557static int
6558ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6559{
6560	struct ath_softc *sc = arg1;
6561	u_int tpc = ath_hal_gettpc(sc->sc_ah);
6562	int error;
6563
6564	error = sysctl_handle_int(oidp, &tpc, 0, req);
6565	if (error || !req->newptr)
6566		return error;
6567	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
6568}
6569
6570static int
6571ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6572{
6573	struct ath_softc *sc = arg1;
6574	struct ifnet *ifp = sc->sc_ifp;
6575	struct ath_hal *ah = sc->sc_ah;
6576	u_int rfkill = ath_hal_getrfkill(ah);
6577	int error;
6578
6579	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6580	if (error || !req->newptr)
6581		return error;
6582	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
6583		return 0;
6584	if (!ath_hal_setrfkill(ah, rfkill))
6585		return EINVAL;
6586	return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6587}
6588
6589static int
6590ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6591{
6592	struct ath_softc *sc = arg1;
6593	u_int rfsilent;
6594	int error;
6595
6596	(void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6597	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6598	if (error || !req->newptr)
6599		return error;
6600	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
6601		return EINVAL;
6602	sc->sc_rfsilentpin = rfsilent & 0x1c;
6603	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6604	return 0;
6605}
6606
6607static int
6608ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6609{
6610	struct ath_softc *sc = arg1;
6611	u_int32_t tpack;
6612	int error;
6613
6614	(void) ath_hal_gettpack(sc->sc_ah, &tpack);
6615	error = sysctl_handle_int(oidp, &tpack, 0, req);
6616	if (error || !req->newptr)
6617		return error;
6618	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
6619}
6620
6621static int
6622ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6623{
6624	struct ath_softc *sc = arg1;
6625	u_int32_t tpcts;
6626	int error;
6627
6628	(void) ath_hal_gettpcts(sc->sc_ah, &tpcts);
6629	error = sysctl_handle_int(oidp, &tpcts, 0, req);
6630	if (error || !req->newptr)
6631		return error;
6632	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
6633}
6634
6635static void
6636ath_sysctlattach(struct ath_softc *sc)
6637{
6638	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6639	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6640	struct ath_hal *ah = sc->sc_ah;
6641
6642	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6643		"countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
6644		"EEPROM country code");
6645	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6646		"regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
6647		"EEPROM regdomain code");
6648#ifdef	ATH_DEBUG
6649	sc->sc_debug = ath_debug;
6650	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6651		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
6652		"control debugging printfs");
6653#endif
6654	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6655		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6656		ath_sysctl_slottime, "I", "802.11 slot time (us)");
6657	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6658		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6659		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6660	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6661		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6662		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6663	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6664		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6665		ath_sysctl_softled, "I", "enable/disable software LED support");
6666	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6667		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6668		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6669	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6670		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6671		"setting to turn LED on");
6672	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6673		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6674		"idle time for inactivity LED (ticks)");
6675	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6676		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6677		ath_sysctl_txantenna, "I", "antenna switch");
6678	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6679		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6680		ath_sysctl_rxantenna, "I", "default/rx antenna");
6681	if (ath_hal_hasdiversity(ah))
6682		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6683			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6684			ath_sysctl_diversity, "I", "antenna diversity");
6685	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6686	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6687		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6688		"tx descriptor batching");
6689	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6690		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6691		ath_sysctl_diag, "I", "h/w diagnostic control");
6692	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6693		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6694		ath_sysctl_tpscale, "I", "tx power scaling");
6695	if (ath_hal_hastpc(ah)) {
6696		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6697			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6698			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6699		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6700			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6701			ath_sysctl_tpack, "I", "tx power for ack frames");
6702		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6703			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6704			ath_sysctl_tpcts, "I", "tx power for cts frames");
6705	}
6706	if (ath_hal_hasfastframes(sc->sc_ah)) {
6707		sc->sc_fftxqmin = ATH_FF_TXQMIN;
6708		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6709			"fftxqmin", CTLFLAG_RW, &sc->sc_fftxqmin, 0,
6710			"min frames before fast-frame staging");
6711		sc->sc_fftxqmax = ATH_FF_TXQMAX;
6712		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6713			"fftxqmax", CTLFLAG_RW, &sc->sc_fftxqmax, 0,
6714			"max queued frames before tail drop");
6715	}
6716	if (ath_hal_hasrfsilent(ah)) {
6717		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6718			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6719			ath_sysctl_rfsilent, "I", "h/w RF silent config");
6720		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6721			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6722			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6723	}
6724	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6725	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6726		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6727		"mask of error frames to pass when monitoring");
6728}
6729
6730static void
6731ath_bpfattach(struct ath_softc *sc)
6732{
6733	struct ifnet *ifp = sc->sc_ifp;
6734
6735	bpfattach(ifp, DLT_IEEE802_11_RADIO,
6736		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th));
6737	/*
6738	 * Initialize constant fields.
6739	 * XXX make header lengths a multiple of 32-bits so subsequent
6740	 *     headers are properly aligned; this is a kludge to keep
6741	 *     certain applications happy.
6742	 *
6743	 * NB: the channel is setup each time we transition to the
6744	 *     RUN state to avoid filling it in for each frame.
6745	 */
6746	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
6747	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
6748	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
6749
6750	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
6751	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
6752	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
6753}
6754
6755static int
6756ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
6757	struct ath_buf *bf, struct mbuf *m0,
6758	const struct ieee80211_bpf_params *params)
6759{
6760	struct ifnet *ifp = sc->sc_ifp;
6761	struct ieee80211com *ic = ifp->if_l2com;
6762	struct ath_hal *ah = sc->sc_ah;
6763	int error, ismcast, ismrr;
6764	int hdrlen, pktlen, try0, txantenna;
6765	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
6766	struct ieee80211_frame *wh;
6767	u_int flags, ctsduration;
6768	HAL_PKT_TYPE atype;
6769	const HAL_RATE_TABLE *rt;
6770	struct ath_desc *ds;
6771	u_int pri;
6772
6773	wh = mtod(m0, struct ieee80211_frame *);
6774	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
6775	hdrlen = ieee80211_anyhdrsize(wh);
6776	/*
6777	 * Packet length must not include any
6778	 * pad bytes; deduct them here.
6779	 */
6780	/* XXX honor IEEE80211_BPF_DATAPAD */
6781	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
6782
6783	error = ath_tx_dmasetup(sc, bf, m0);
6784	if (error != 0)
6785		return error;
6786	m0 = bf->bf_m;				/* NB: may have changed */
6787	wh = mtod(m0, struct ieee80211_frame *);
6788	bf->bf_node = ni;			/* NB: held reference */
6789
6790	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
6791	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
6792	if (params->ibp_flags & IEEE80211_BPF_RTS)
6793		flags |= HAL_TXDESC_RTSENA;
6794	else if (params->ibp_flags & IEEE80211_BPF_CTS)
6795		flags |= HAL_TXDESC_CTSENA;
6796	/* XXX leave ismcast to injector? */
6797	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
6798		flags |= HAL_TXDESC_NOACK;
6799
6800	rt = sc->sc_currates;
6801	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
6802	rix = ath_tx_findrix(rt, params->ibp_rate0);
6803	txrate = rt->info[rix].rateCode;
6804	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6805		txrate |= rt->info[rix].shortPreamble;
6806	sc->sc_txrate = txrate;
6807	try0 = params->ibp_try0;
6808	ismrr = (params->ibp_try1 != 0);
6809	txantenna = params->ibp_pri >> 2;
6810	if (txantenna == 0)			/* XXX? */
6811		txantenna = sc->sc_txantenna;
6812	ctsduration = 0;
6813	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
6814		cix = ath_tx_findrix(rt, params->ibp_ctsrate);
6815		ctsrate = rt->info[cix].rateCode;
6816		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
6817			ctsrate |= rt->info[cix].shortPreamble;
6818			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6819				ctsduration += rt->info[cix].spAckDuration;
6820			ctsduration += ath_hal_computetxtime(ah,
6821				rt, pktlen, rix, AH_TRUE);
6822			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6823				ctsduration += rt->info[rix].spAckDuration;
6824		} else {
6825			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6826				ctsduration += rt->info[cix].lpAckDuration;
6827			ctsduration += ath_hal_computetxtime(ah,
6828				rt, pktlen, rix, AH_FALSE);
6829			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6830				ctsduration += rt->info[rix].lpAckDuration;
6831		}
6832		ismrr = 0;			/* XXX */
6833	} else
6834		ctsrate = 0;
6835	pri = params->ibp_pri & 3;
6836	/*
6837	 * NB: we mark all packets as type PSPOLL so the h/w won't
6838	 * set the sequence number, duration, etc.
6839	 */
6840	atype = HAL_PKT_TYPE_PSPOLL;
6841
6842	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
6843		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
6844			sc->sc_hwmap[txrate].ieeerate, -1);
6845
6846	if (bpf_peers_present(ifp->if_bpf)) {
6847		u_int64_t tsf = ath_hal_gettsf64(ah);
6848
6849		sc->sc_tx_th.wt_tsf = htole64(tsf);
6850		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
6851		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
6852			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
6853		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
6854		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
6855		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
6856
6857		bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
6858	}
6859
6860	/*
6861	 * Formulate first tx descriptor with tx controls.
6862	 */
6863	ds = bf->bf_desc;
6864	/* XXX check return value? */
6865	ath_hal_setuptxdesc(ah, ds
6866		, pktlen		/* packet length */
6867		, hdrlen		/* header length */
6868		, atype			/* Atheros packet type */
6869		, params->ibp_power	/* txpower */
6870		, txrate, try0		/* series 0 rate/tries */
6871		, HAL_TXKEYIX_INVALID	/* key cache index */
6872		, txantenna		/* antenna mode */
6873		, flags			/* flags */
6874		, ctsrate		/* rts/cts rate */
6875		, ctsduration		/* rts/cts duration */
6876	);
6877	bf->bf_flags = flags;
6878
6879	if (ismrr) {
6880		rix = ath_tx_findrix(rt, params->ibp_rate1);
6881		rate1 = rt->info[rix].rateCode;
6882		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6883			rate1 |= rt->info[rix].shortPreamble;
6884		if (params->ibp_try2) {
6885			rix = ath_tx_findrix(rt, params->ibp_rate2);
6886			rate2 = rt->info[rix].rateCode;
6887			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6888				rate2 |= rt->info[rix].shortPreamble;
6889		} else
6890			rate2 = 0;
6891		if (params->ibp_try3) {
6892			rix = ath_tx_findrix(rt, params->ibp_rate3);
6893			rate3 = rt->info[rix].rateCode;
6894			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6895				rate3 |= rt->info[rix].shortPreamble;
6896		} else
6897			rate3 = 0;
6898		ath_hal_setupxtxdesc(ah, ds
6899			, rate1, params->ibp_try1	/* series 1 */
6900			, rate2, params->ibp_try2	/* series 2 */
6901			, rate3, params->ibp_try3	/* series 3 */
6902		);
6903	}
6904
6905	/* NB: no buffered multicast in power save support */
6906	ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
6907	return 0;
6908}
6909
6910static int
6911ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
6912	const struct ieee80211_bpf_params *params)
6913{
6914	struct ieee80211com *ic = ni->ni_ic;
6915	struct ifnet *ifp = ic->ic_ifp;
6916	struct ath_softc *sc = ifp->if_softc;
6917	struct ath_buf *bf;
6918
6919	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
6920		ieee80211_free_node(ni);
6921		m_freem(m);
6922		return ENETDOWN;
6923	}
6924	/*
6925	 * Grab a TX buffer and associated resources.
6926	 */
6927	ATH_TXBUF_LOCK(sc);
6928	bf = STAILQ_FIRST(&sc->sc_txbuf);
6929	if (bf != NULL)
6930		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
6931	ATH_TXBUF_UNLOCK(sc);
6932	if (bf == NULL) {
6933		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
6934			__func__);
6935		sc->sc_stats.ast_tx_qstop++;
6936		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
6937		ieee80211_free_node(ni);
6938		m_freem(m);
6939		return ENOBUFS;
6940	}
6941
6942	ifp->if_opackets++;
6943	sc->sc_stats.ast_tx_raw++;
6944
6945	if (params == NULL) {
6946		/*
6947		 * Legacy path; interpret frame contents to decide
6948		 * precisely how to send the frame.
6949		 */
6950		if (ath_tx_start(sc, ni, bf, m))
6951			goto bad;
6952	} else {
6953		/*
6954		 * Caller supplied explicit parameters to use in
6955		 * sending the frame.
6956		 */
6957		if (ath_tx_raw_start(sc, ni, bf, m, params))
6958			goto bad;
6959	}
6960	ifp->if_timer = 5;
6961
6962	return 0;
6963bad:
6964	ifp->if_oerrors++;
6965	ATH_TXBUF_LOCK(sc);
6966	STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
6967	ATH_TXBUF_UNLOCK(sc);
6968	ieee80211_free_node(ni);
6969	return EIO;		/* XXX */
6970}
6971
6972/*
6973 * Announce various information on device/driver attach.
6974 */
6975static void
6976ath_announce(struct ath_softc *sc)
6977{
6978#define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
6979	struct ifnet *ifp = sc->sc_ifp;
6980	struct ath_hal *ah = sc->sc_ah;
6981	u_int modes, cc;
6982
6983	if_printf(ifp, "mac %d.%d phy %d.%d",
6984		ah->ah_macVersion, ah->ah_macRev,
6985		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6986	/*
6987	 * Print radio revision(s).  We check the wireless modes
6988	 * to avoid falsely printing revs for inoperable parts.
6989	 * Dual-band radio revs are returned in the 5Ghz rev number.
6990	 */
6991	ath_hal_getcountrycode(ah, &cc);
6992	modes = ath_hal_getwirelessmodes(ah, cc);
6993	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
6994		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
6995			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
6996				ah->ah_analog5GhzRev >> 4,
6997				ah->ah_analog5GhzRev & 0xf,
6998				ah->ah_analog2GhzRev >> 4,
6999				ah->ah_analog2GhzRev & 0xf);
7000		else
7001			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
7002				ah->ah_analog5GhzRev & 0xf);
7003	} else
7004		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
7005			ah->ah_analog5GhzRev & 0xf);
7006	printf("\n");
7007	if (bootverbose) {
7008		int i;
7009		for (i = 0; i <= WME_AC_VO; i++) {
7010			struct ath_txq *txq = sc->sc_ac2q[i];
7011			if_printf(ifp, "Use hw queue %u for %s traffic\n",
7012				txq->axq_qnum, ieee80211_wme_acnames[i]);
7013		}
7014		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
7015			sc->sc_cabq->axq_qnum);
7016		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
7017	}
7018	if (ath_rxbuf != ATH_RXBUF)
7019		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
7020	if (ath_txbuf != ATH_TXBUF)
7021		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
7022#undef HAL_MODE_DUALBAND
7023}
7024