if_ath.c revision 154735
1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 * 3. Neither the names of the above-listed copyright holders nor the names
16 *    of any contributors may be used to endorse or promote products derived
17 *    from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * NO WARRANTY
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34 * THE POSSIBILITY OF SUCH DAMAGES.
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 154735 2006-01-23 20:58:05Z sam $");
39
40/*
41 * Driver for the Atheros Wireless LAN controller.
42 *
43 * This software is derived from work of Atsushi Onoe; his contribution
44 * is greatly appreciated.
45 */
46
47#include "opt_inet.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/sysctl.h>
52#include <sys/mbuf.h>
53#include <sys/malloc.h>
54#include <sys/lock.h>
55#include <sys/mutex.h>
56#include <sys/kernel.h>
57#include <sys/socket.h>
58#include <sys/sockio.h>
59#include <sys/errno.h>
60#include <sys/callout.h>
61#include <sys/bus.h>
62#include <sys/endian.h>
63
64#include <machine/bus.h>
65
66#include <net/if.h>
67#include <net/if_dl.h>
68#include <net/if_media.h>
69#include <net/if_types.h>
70#include <net/if_arp.h>
71#include <net/ethernet.h>
72#include <net/if_llc.h>
73
74#include <net80211/ieee80211_var.h>
75
76#include <net/bpf.h>
77
78#ifdef INET
79#include <netinet/in.h>
80#include <netinet/if_ether.h>
81#endif
82
83#define	AR_DEBUG
84#include <dev/ath/if_athvar.h>
85#include <contrib/dev/ath/ah_desc.h>
86#include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
87
88/* unaligned little endian access */
89#define LE_READ_2(p)							\
90	((u_int16_t)							\
91	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
92#define LE_READ_4(p)							\
93	((u_int32_t)							\
94	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
95	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
96
97enum {
98	ATH_LED_TX,
99	ATH_LED_RX,
100	ATH_LED_POLL,
101};
102
103static void	ath_init(void *);
104static void	ath_stop_locked(struct ifnet *);
105static void	ath_stop(struct ifnet *);
106static void	ath_start(struct ifnet *);
107static int	ath_reset(struct ifnet *);
108static int	ath_media_change(struct ifnet *);
109static void	ath_watchdog(struct ifnet *);
110static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
111static void	ath_fatal_proc(void *, int);
112static void	ath_rxorn_proc(void *, int);
113static void	ath_bmiss_proc(void *, int);
114static int	ath_key_alloc(struct ieee80211com *,
115			const struct ieee80211_key *,
116			ieee80211_keyix *, ieee80211_keyix *);
117static int	ath_key_delete(struct ieee80211com *,
118			const struct ieee80211_key *);
119static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
120			const u_int8_t mac[IEEE80211_ADDR_LEN]);
121static void	ath_key_update_begin(struct ieee80211com *);
122static void	ath_key_update_end(struct ieee80211com *);
123static void	ath_mode_init(struct ath_softc *);
124static void	ath_setslottime(struct ath_softc *);
125static void	ath_updateslot(struct ifnet *);
126static int	ath_beaconq_setup(struct ath_hal *);
127static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
128static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
129static void	ath_beacon_proc(void *, int);
130static void	ath_bstuck_proc(void *, int);
131static void	ath_beacon_free(struct ath_softc *);
132static void	ath_beacon_config(struct ath_softc *);
133static void	ath_descdma_cleanup(struct ath_softc *sc,
134			struct ath_descdma *, ath_bufhead *);
135static int	ath_desc_alloc(struct ath_softc *);
136static void	ath_desc_free(struct ath_softc *);
137static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
138static void	ath_node_free(struct ieee80211_node *);
139static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
140static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
141static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
142			struct ieee80211_node *ni,
143			int subtype, int rssi, u_int32_t rstamp);
144static void	ath_setdefantenna(struct ath_softc *, u_int);
145static void	ath_rx_proc(void *, int);
146static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
147static int	ath_tx_setup(struct ath_softc *, int, int);
148static int	ath_wme_update(struct ieee80211com *);
149static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
150static void	ath_tx_cleanup(struct ath_softc *);
151static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
152			     struct ath_buf *, struct mbuf *);
153static void	ath_tx_proc_q0(void *, int);
154static void	ath_tx_proc_q0123(void *, int);
155static void	ath_tx_proc(void *, int);
156static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
157static void	ath_draintxq(struct ath_softc *);
158static void	ath_stoprecv(struct ath_softc *);
159static int	ath_startrecv(struct ath_softc *);
160static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
161static void	ath_next_scan(void *);
162static void	ath_calibrate(void *);
163static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
164static void	ath_setup_stationkey(struct ieee80211_node *);
165static void	ath_newassoc(struct ieee80211_node *, int);
166static int	ath_getchannels(struct ath_softc *, u_int cc,
167			HAL_BOOL outdoor, HAL_BOOL xchanmode);
168static void	ath_led_event(struct ath_softc *, int);
169static void	ath_update_txpow(struct ath_softc *);
170
171static int	ath_rate_setup(struct ath_softc *, u_int mode);
172static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
173
174static void	ath_sysctlattach(struct ath_softc *);
175static void	ath_bpfattach(struct ath_softc *);
176static void	ath_announce(struct ath_softc *);
177
178SYSCTL_DECL(_hw_ath);
179
180/* XXX validate sysctl values */
181static	int ath_dwelltime = 200;		/* 5 channels/second */
182SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
183	    0, "channel dwell time (ms) for AP/station scanning");
184static	int ath_calinterval = 30;		/* calibrate every 30 secs */
185SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
186	    0, "chip calibration interval (secs)");
187static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
188SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
189	    0, "outdoor operation");
190TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
191static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
192SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
193	    0, "extended channel mode");
194TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
195static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
196SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
197	    0, "country code");
198TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
199static	int ath_regdomain = 0;			/* regulatory domain */
200SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
201	    0, "regulatory domain");
202
203#ifdef AR_DEBUG
204static	int ath_debug = 0;
205SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
206	    0, "control debugging printfs");
207TUNABLE_INT("hw.ath.debug", &ath_debug);
208enum {
209	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
210	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
211	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
212	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
213	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
214	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
215	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
216	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
217	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
218	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
219	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
220	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
221	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
222	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
223	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
224	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
225	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
226	ATH_DEBUG_LED		= 0x00100000,	/* led management */
227	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
228	ATH_DEBUG_ANY		= 0xffffffff
229};
230#define	IFF_DUMPPKTS(sc, m) \
231	((sc->sc_debug & (m)) || \
232	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
233#define	DPRINTF(sc, m, fmt, ...) do {				\
234	if (sc->sc_debug & (m))					\
235		printf(fmt, __VA_ARGS__);			\
236} while (0)
237#define	KEYPRINTF(sc, ix, hk, mac) do {				\
238	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
239		ath_keyprint(__func__, ix, hk, mac);		\
240} while (0)
241static	void ath_printrxbuf(struct ath_buf *bf, int);
242static	void ath_printtxbuf(struct ath_buf *bf, int);
243#else
244#define	IFF_DUMPPKTS(sc, m) \
245	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
246#define	DPRINTF(m, fmt, ...)
247#define	KEYPRINTF(sc, k, ix, mac)
248#endif
249
250MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
251
252int
253ath_attach(u_int16_t devid, struct ath_softc *sc)
254{
255	struct ifnet *ifp;
256	struct ieee80211com *ic = &sc->sc_ic;
257	struct ath_hal *ah = NULL;
258	HAL_STATUS status;
259	int error = 0, i;
260
261	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
262
263	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
264	if (ifp == NULL) {
265		device_printf(sc->sc_dev, "can not if_alloc()\n");
266		error = ENOSPC;
267		goto bad;
268	}
269
270	/* set these up early for if_printf use */
271	if_initname(ifp, device_get_name(sc->sc_dev),
272		device_get_unit(sc->sc_dev));
273
274	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
275	if (ah == NULL) {
276		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
277			status);
278		error = ENXIO;
279		goto bad;
280	}
281	if (ah->ah_abi != HAL_ABI_VERSION) {
282		if_printf(ifp, "HAL ABI mismatch detected "
283			"(HAL:0x%x != driver:0x%x)\n",
284			ah->ah_abi, HAL_ABI_VERSION);
285		error = ENXIO;
286		goto bad;
287	}
288	sc->sc_ah = ah;
289	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
290
291	/*
292	 * Check if the MAC has multi-rate retry support.
293	 * We do this by trying to setup a fake extended
294	 * descriptor.  MAC's that don't have support will
295	 * return false w/o doing anything.  MAC's that do
296	 * support it will return true w/o doing anything.
297	 */
298	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
299
300	/*
301	 * Check if the device has hardware counters for PHY
302	 * errors.  If so we need to enable the MIB interrupt
303	 * so we can act on stat triggers.
304	 */
305	if (ath_hal_hwphycounters(ah))
306		sc->sc_needmib = 1;
307
308	/*
309	 * Get the hardware key cache size.
310	 */
311	sc->sc_keymax = ath_hal_keycachesize(ah);
312	if (sc->sc_keymax > ATH_KEYMAX) {
313		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
314			ATH_KEYMAX, sc->sc_keymax);
315		sc->sc_keymax = ATH_KEYMAX;
316	}
317	/*
318	 * Reset the key cache since some parts do not
319	 * reset the contents on initial power up.
320	 */
321	for (i = 0; i < sc->sc_keymax; i++)
322		ath_hal_keyreset(ah, i);
323	/*
324	 * Mark key cache slots associated with global keys
325	 * as in use.  If we knew TKIP was not to be used we
326	 * could leave the +32, +64, and +32+64 slots free.
327	 * XXX only for splitmic.
328	 */
329	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
330		setbit(sc->sc_keymap, i);
331		setbit(sc->sc_keymap, i+32);
332		setbit(sc->sc_keymap, i+64);
333		setbit(sc->sc_keymap, i+32+64);
334	}
335
336	/*
337	 * Collect the channel list using the default country
338	 * code and including outdoor channels.  The 802.11 layer
339	 * is resposible for filtering this list based on settings
340	 * like the phy mode.
341	 */
342	error = ath_getchannels(sc, ath_countrycode,
343			ath_outdoor, ath_xchanmode);
344	if (error != 0)
345		goto bad;
346
347	/*
348	 * Setup rate tables for all potential media types.
349	 */
350	ath_rate_setup(sc, IEEE80211_MODE_11A);
351	ath_rate_setup(sc, IEEE80211_MODE_11B);
352	ath_rate_setup(sc, IEEE80211_MODE_11G);
353	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
354	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
355	/* NB: setup here so ath_rate_update is happy */
356	ath_setcurmode(sc, IEEE80211_MODE_11A);
357
358	/*
359	 * Allocate tx+rx descriptors and populate the lists.
360	 */
361	error = ath_desc_alloc(sc);
362	if (error != 0) {
363		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
364		goto bad;
365	}
366	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
367	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
368
369	ATH_TXBUF_LOCK_INIT(sc);
370
371	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
372	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
373	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
374	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
375	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
376
377	/*
378	 * Allocate hardware transmit queues: one queue for
379	 * beacon frames and one data queue for each QoS
380	 * priority.  Note that the hal handles reseting
381	 * these queues at the needed time.
382	 *
383	 * XXX PS-Poll
384	 */
385	sc->sc_bhalq = ath_beaconq_setup(ah);
386	if (sc->sc_bhalq == (u_int) -1) {
387		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
388		error = EIO;
389		goto bad2;
390	}
391	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
392	if (sc->sc_cabq == NULL) {
393		if_printf(ifp, "unable to setup CAB xmit queue!\n");
394		error = EIO;
395		goto bad2;
396	}
397	/* NB: insure BK queue is the lowest priority h/w queue */
398	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
399		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
400			ieee80211_wme_acnames[WME_AC_BK]);
401		error = EIO;
402		goto bad2;
403	}
404	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
405	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
406	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
407		/*
408		 * Not enough hardware tx queues to properly do WME;
409		 * just punt and assign them all to the same h/w queue.
410		 * We could do a better job of this if, for example,
411		 * we allocate queues when we switch from station to
412		 * AP mode.
413		 */
414		if (sc->sc_ac2q[WME_AC_VI] != NULL)
415			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
416		if (sc->sc_ac2q[WME_AC_BE] != NULL)
417			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
418		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
419		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
420		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
421	}
422
423	/*
424	 * Special case certain configurations.  Note the
425	 * CAB queue is handled by these specially so don't
426	 * include them when checking the txq setup mask.
427	 */
428	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
429	case 0x01:
430		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
431		break;
432	case 0x0f:
433		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
434		break;
435	default:
436		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
437		break;
438	}
439
440	/*
441	 * Setup rate control.  Some rate control modules
442	 * call back to change the anntena state so expose
443	 * the necessary entry points.
444	 * XXX maybe belongs in struct ath_ratectrl?
445	 */
446	sc->sc_setdefantenna = ath_setdefantenna;
447	sc->sc_rc = ath_rate_attach(sc);
448	if (sc->sc_rc == NULL) {
449		error = EIO;
450		goto bad2;
451	}
452
453	sc->sc_blinking = 0;
454	sc->sc_ledstate = 1;
455	sc->sc_ledon = 0;			/* low true */
456	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
457	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
458	/*
459	 * Auto-enable soft led processing for IBM cards and for
460	 * 5211 minipci cards.  Users can also manually enable/disable
461	 * support with a sysctl.
462	 */
463	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
464	if (sc->sc_softled) {
465		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
466		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
467	}
468
469	ifp->if_softc = sc;
470	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
471	ifp->if_start = ath_start;
472	ifp->if_watchdog = ath_watchdog;
473	ifp->if_ioctl = ath_ioctl;
474	ifp->if_init = ath_init;
475	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
476	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
477	IFQ_SET_READY(&ifp->if_snd);
478
479	ic->ic_ifp = ifp;
480	ic->ic_reset = ath_reset;
481	ic->ic_newassoc = ath_newassoc;
482	ic->ic_updateslot = ath_updateslot;
483	ic->ic_wme.wme_update = ath_wme_update;
484	/* XXX not right but it's not used anywhere important */
485	ic->ic_phytype = IEEE80211_T_OFDM;
486	ic->ic_opmode = IEEE80211_M_STA;
487	ic->ic_caps =
488		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
489		| IEEE80211_C_HOSTAP		/* hostap mode */
490		| IEEE80211_C_MONITOR		/* monitor mode */
491		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
492		| IEEE80211_C_SHSLOT		/* short slot time supported */
493		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
494		;
495	/*
496	 * Query the hal to figure out h/w crypto support.
497	 */
498	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
499		ic->ic_caps |= IEEE80211_C_WEP;
500	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
501		ic->ic_caps |= IEEE80211_C_AES;
502	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
503		ic->ic_caps |= IEEE80211_C_AES_CCM;
504	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
505		ic->ic_caps |= IEEE80211_C_CKIP;
506	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
507		ic->ic_caps |= IEEE80211_C_TKIP;
508		/*
509		 * Check if h/w does the MIC and/or whether the
510		 * separate key cache entries are required to
511		 * handle both tx+rx MIC keys.
512		 */
513		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
514			ic->ic_caps |= IEEE80211_C_TKIPMIC;
515		if (ath_hal_tkipsplit(ah))
516			sc->sc_splitmic = 1;
517	}
518	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
519	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
520	/*
521	 * TPC support can be done either with a global cap or
522	 * per-packet support.  The latter is not available on
523	 * all parts.  We're a bit pedantic here as all parts
524	 * support a global cap.
525	 */
526	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
527		ic->ic_caps |= IEEE80211_C_TXPMGT;
528
529	/*
530	 * Mark WME capability only if we have sufficient
531	 * hardware queues to do proper priority scheduling.
532	 */
533	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
534		ic->ic_caps |= IEEE80211_C_WME;
535	/*
536	 * Check for misc other capabilities.
537	 */
538	if (ath_hal_hasbursting(ah))
539		ic->ic_caps |= IEEE80211_C_BURST;
540
541	/*
542	 * Indicate we need the 802.11 header padded to a
543	 * 32-bit boundary for 4-address and QoS frames.
544	 */
545	ic->ic_flags |= IEEE80211_F_DATAPAD;
546
547	/*
548	 * Query the hal about antenna support.
549	 */
550	sc->sc_defant = ath_hal_getdefantenna(ah);
551
552	/*
553	 * Not all chips have the VEOL support we want to
554	 * use with IBSS beacons; check here for it.
555	 */
556	sc->sc_hasveol = ath_hal_hasveol(ah);
557
558	/* get mac address from hardware */
559	ath_hal_getmac(ah, ic->ic_myaddr);
560
561	/* call MI attach routine. */
562	ieee80211_ifattach(ic);
563	/* override default methods */
564	ic->ic_node_alloc = ath_node_alloc;
565	sc->sc_node_free = ic->ic_node_free;
566	ic->ic_node_free = ath_node_free;
567	ic->ic_node_getrssi = ath_node_getrssi;
568	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
569	ic->ic_recv_mgmt = ath_recv_mgmt;
570	sc->sc_newstate = ic->ic_newstate;
571	ic->ic_newstate = ath_newstate;
572	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
573	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
574	ic->ic_crypto.cs_key_delete = ath_key_delete;
575	ic->ic_crypto.cs_key_set = ath_key_set;
576	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
577	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
578	/* complete initialization */
579	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
580
581	ath_bpfattach(sc);
582	/*
583	 * Setup dynamic sysctl's now that country code and
584	 * regdomain are available from the hal.
585	 */
586	ath_sysctlattach(sc);
587
588	if (bootverbose)
589		ieee80211_announce(ic);
590	ath_announce(sc);
591	return 0;
592bad2:
593	ath_tx_cleanup(sc);
594	ath_desc_free(sc);
595bad:
596	if (ah)
597		ath_hal_detach(ah);
598	if (ifp != NULL)
599		if_free(ifp);
600	sc->sc_invalid = 1;
601	return error;
602}
603
604int
605ath_detach(struct ath_softc *sc)
606{
607	struct ifnet *ifp = sc->sc_ifp;
608
609	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
610		__func__, ifp->if_flags);
611
612	ath_stop(ifp);
613	bpfdetach(ifp);
614	/*
615	 * NB: the order of these is important:
616	 * o call the 802.11 layer before detaching the hal to
617	 *   insure callbacks into the driver to delete global
618	 *   key cache entries can be handled
619	 * o reclaim the tx queue data structures after calling
620	 *   the 802.11 layer as we'll get called back to reclaim
621	 *   node state and potentially want to use them
622	 * o to cleanup the tx queues the hal is called, so detach
623	 *   it last
624	 * Other than that, it's straightforward...
625	 */
626	ieee80211_ifdetach(&sc->sc_ic);
627	ath_rate_detach(sc->sc_rc);
628	ath_desc_free(sc);
629	ath_tx_cleanup(sc);
630	ath_hal_detach(sc->sc_ah);
631	if_free(ifp);
632
633	return 0;
634}
635
636void
637ath_suspend(struct ath_softc *sc)
638{
639	struct ifnet *ifp = sc->sc_ifp;
640
641	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
642		__func__, ifp->if_flags);
643
644	ath_stop(ifp);
645}
646
647void
648ath_resume(struct ath_softc *sc)
649{
650	struct ifnet *ifp = sc->sc_ifp;
651
652	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
653		__func__, ifp->if_flags);
654
655	if (ifp->if_flags & IFF_UP) {
656		ath_init(sc);
657		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
658			ath_start(ifp);
659	}
660	if (sc->sc_softled) {
661		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
662		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
663	}
664}
665
666void
667ath_shutdown(struct ath_softc *sc)
668{
669	struct ifnet *ifp = sc->sc_ifp;
670
671	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
672		__func__, ifp->if_flags);
673
674	ath_stop(ifp);
675}
676
677/*
678 * Interrupt handler.  Most of the actual processing is deferred.
679 */
680void
681ath_intr(void *arg)
682{
683	struct ath_softc *sc = arg;
684	struct ifnet *ifp = sc->sc_ifp;
685	struct ath_hal *ah = sc->sc_ah;
686	HAL_INT status;
687
688	if (sc->sc_invalid) {
689		/*
690		 * The hardware is not ready/present, don't touch anything.
691		 * Note this can happen early on if the IRQ is shared.
692		 */
693		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
694		return;
695	}
696	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
697		return;
698	if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags &
699	    IFF_DRV_RUNNING))) {
700		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
701			__func__, ifp->if_flags);
702		ath_hal_getisr(ah, &status);	/* clear ISR */
703		ath_hal_intrset(ah, 0);		/* disable further intr's */
704		return;
705	}
706	/*
707	 * Figure out the reason(s) for the interrupt.  Note
708	 * that the hal returns a pseudo-ISR that may include
709	 * bits we haven't explicitly enabled so we mask the
710	 * value to insure we only process bits we requested.
711	 */
712	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
713	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
714	status &= sc->sc_imask;			/* discard unasked for bits */
715	if (status & HAL_INT_FATAL) {
716		/*
717		 * Fatal errors are unrecoverable.  Typically
718		 * these are caused by DMA errors.  Unfortunately
719		 * the exact reason is not (presently) returned
720		 * by the hal.
721		 */
722		sc->sc_stats.ast_hardware++;
723		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
724		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
725	} else if (status & HAL_INT_RXORN) {
726		sc->sc_stats.ast_rxorn++;
727		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
728		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
729	} else {
730		if (status & HAL_INT_SWBA) {
731			/*
732			 * Software beacon alert--time to send a beacon.
733			 * Handle beacon transmission directly; deferring
734			 * this is too slow to meet timing constraints
735			 * under load.
736			 */
737			ath_beacon_proc(sc, 0);
738		}
739		if (status & HAL_INT_RXEOL) {
740			/*
741			 * NB: the hardware should re-read the link when
742			 *     RXE bit is written, but it doesn't work at
743			 *     least on older hardware revs.
744			 */
745			sc->sc_stats.ast_rxeol++;
746			sc->sc_rxlink = NULL;
747		}
748		if (status & HAL_INT_TXURN) {
749			sc->sc_stats.ast_txurn++;
750			/* bump tx trigger level */
751			ath_hal_updatetxtriglevel(ah, AH_TRUE);
752		}
753		if (status & HAL_INT_RX)
754			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
755		if (status & HAL_INT_TX)
756			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
757		if (status & HAL_INT_BMISS) {
758			sc->sc_stats.ast_bmiss++;
759			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
760		}
761		if (status & HAL_INT_MIB) {
762			sc->sc_stats.ast_mib++;
763			/*
764			 * Disable interrupts until we service the MIB
765			 * interrupt; otherwise it will continue to fire.
766			 */
767			ath_hal_intrset(ah, 0);
768			/*
769			 * Let the hal handle the event.  We assume it will
770			 * clear whatever condition caused the interrupt.
771			 */
772			ath_hal_mibevent(ah,
773				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
774			ath_hal_intrset(ah, sc->sc_imask);
775		}
776	}
777}
778
779static void
780ath_fatal_proc(void *arg, int pending)
781{
782	struct ath_softc *sc = arg;
783	struct ifnet *ifp = sc->sc_ifp;
784
785	if_printf(ifp, "hardware error; resetting\n");
786	ath_reset(ifp);
787}
788
789static void
790ath_rxorn_proc(void *arg, int pending)
791{
792	struct ath_softc *sc = arg;
793	struct ifnet *ifp = sc->sc_ifp;
794
795	if_printf(ifp, "rx FIFO overrun; resetting\n");
796	ath_reset(ifp);
797}
798
799static void
800ath_bmiss_proc(void *arg, int pending)
801{
802	struct ath_softc *sc = arg;
803	struct ieee80211com *ic = &sc->sc_ic;
804
805	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
806	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
807		("unexpect operating mode %u", ic->ic_opmode));
808	if (ic->ic_state == IEEE80211_S_RUN) {
809		/*
810		 * Rather than go directly to scan state, try to
811		 * reassociate first.  If that fails then the state
812		 * machine will drop us into scanning after timing
813		 * out waiting for a probe response.
814		 */
815		NET_LOCK_GIANT();
816		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
817		NET_UNLOCK_GIANT();
818	}
819}
820
821static u_int
822ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
823{
824#define	N(a)	(sizeof(a) / sizeof(a[0]))
825	static const u_int modeflags[] = {
826		0,			/* IEEE80211_MODE_AUTO */
827		CHANNEL_A,		/* IEEE80211_MODE_11A */
828		CHANNEL_B,		/* IEEE80211_MODE_11B */
829		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
830		0,			/* IEEE80211_MODE_FH */
831		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
832		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
833	};
834	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
835
836	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
837	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
838	return modeflags[mode];
839#undef N
840}
841
842static void
843ath_init(void *arg)
844{
845	struct ath_softc *sc = (struct ath_softc *) arg;
846	struct ieee80211com *ic = &sc->sc_ic;
847	struct ifnet *ifp = sc->sc_ifp;
848	struct ath_hal *ah = sc->sc_ah;
849	HAL_STATUS status;
850
851	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
852		__func__, ifp->if_flags);
853
854	ATH_LOCK(sc);
855	/*
856	 * Stop anything previously setup.  This is safe
857	 * whether this is the first time through or not.
858	 */
859	ath_stop_locked(ifp);
860
861	/*
862	 * The basic interface to setting the hardware in a good
863	 * state is ``reset''.  On return the hardware is known to
864	 * be powered up and with interrupts disabled.  This must
865	 * be followed by initialization of the appropriate bits
866	 * and then setup of the interrupt mask.
867	 */
868	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
869	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
870	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
871		if_printf(ifp, "unable to reset hardware; hal status %u\n",
872			status);
873		goto done;
874	}
875
876	/*
877	 * This is needed only to setup initial state
878	 * but it's best done after a reset.
879	 */
880	ath_update_txpow(sc);
881	/*
882	 * Likewise this is set during reset so update
883	 * state cached in the driver.
884	 */
885	sc->sc_diversity = ath_hal_getdiversity(ah);
886
887	/*
888	 * Setup the hardware after reset: the key cache
889	 * is filled as needed and the receive engine is
890	 * set going.  Frame transmit is handled entirely
891	 * in the frame output path; there's nothing to do
892	 * here except setup the interrupt mask.
893	 */
894	if (ath_startrecv(sc) != 0) {
895		if_printf(ifp, "unable to start recv logic\n");
896		goto done;
897	}
898
899	/*
900	 * Enable interrupts.
901	 */
902	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
903		  | HAL_INT_RXEOL | HAL_INT_RXORN
904		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
905	/*
906	 * Enable MIB interrupts when there are hardware phy counters.
907	 * Note we only do this (at the moment) for station mode.
908	 */
909	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
910		sc->sc_imask |= HAL_INT_MIB;
911	ath_hal_intrset(ah, sc->sc_imask);
912
913	ifp->if_drv_flags |= IFF_DRV_RUNNING;
914	ic->ic_state = IEEE80211_S_INIT;
915
916	/*
917	 * The hardware should be ready to go now so it's safe
918	 * to kick the 802.11 state machine as it's likely to
919	 * immediately call back to us to send mgmt frames.
920	 */
921	ath_chan_change(sc, ic->ic_curchan);
922	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
923		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
924			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
925	} else
926		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
927done:
928	ATH_UNLOCK(sc);
929}
930
931static void
932ath_stop_locked(struct ifnet *ifp)
933{
934	struct ath_softc *sc = ifp->if_softc;
935	struct ieee80211com *ic = &sc->sc_ic;
936	struct ath_hal *ah = sc->sc_ah;
937
938	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
939		__func__, sc->sc_invalid, ifp->if_flags);
940
941	ATH_LOCK_ASSERT(sc);
942	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
943		/*
944		 * Shutdown the hardware and driver:
945		 *    reset 802.11 state machine
946		 *    turn off timers
947		 *    disable interrupts
948		 *    turn off the radio
949		 *    clear transmit machinery
950		 *    clear receive machinery
951		 *    drain and release tx queues
952		 *    reclaim beacon resources
953		 *    power down hardware
954		 *
955		 * Note that some of this work is not possible if the
956		 * hardware is gone (invalid).
957		 */
958		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
959		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
960		ifp->if_timer = 0;
961		if (!sc->sc_invalid) {
962			if (sc->sc_softled) {
963				callout_stop(&sc->sc_ledtimer);
964				ath_hal_gpioset(ah, sc->sc_ledpin,
965					!sc->sc_ledon);
966				sc->sc_blinking = 0;
967			}
968			ath_hal_intrset(ah, 0);
969		}
970		ath_draintxq(sc);
971		if (!sc->sc_invalid) {
972			ath_stoprecv(sc);
973			ath_hal_phydisable(ah);
974		} else
975			sc->sc_rxlink = NULL;
976		IFQ_DRV_PURGE(&ifp->if_snd);
977		ath_beacon_free(sc);
978	}
979}
980
981static void
982ath_stop(struct ifnet *ifp)
983{
984	struct ath_softc *sc = ifp->if_softc;
985
986	ATH_LOCK(sc);
987	ath_stop_locked(ifp);
988	if (!sc->sc_invalid) {
989		/*
990		 * Set the chip in full sleep mode.  Note that we are
991		 * careful to do this only when bringing the interface
992		 * completely to a stop.  When the chip is in this state
993		 * it must be carefully woken up or references to
994		 * registers in the PCI clock domain may freeze the bus
995		 * (and system).  This varies by chip and is mostly an
996		 * issue with newer parts that go to sleep more quickly.
997		 */
998		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
999	}
1000	ATH_UNLOCK(sc);
1001}
1002
1003/*
1004 * Reset the hardware w/o losing operational state.  This is
1005 * basically a more efficient way of doing ath_stop, ath_init,
1006 * followed by state transitions to the current 802.11
1007 * operational state.  Used to recover from various errors and
1008 * to reset or reload hardware state.
1009 */
1010static int
1011ath_reset(struct ifnet *ifp)
1012{
1013	struct ath_softc *sc = ifp->if_softc;
1014	struct ieee80211com *ic = &sc->sc_ic;
1015	struct ath_hal *ah = sc->sc_ah;
1016	struct ieee80211_channel *c;
1017	HAL_STATUS status;
1018
1019	/*
1020	 * Convert to a HAL channel description with the flags
1021	 * constrained to reflect the current operating mode.
1022	 */
1023	c = ic->ic_curchan;
1024	sc->sc_curchan.channel = c->ic_freq;
1025	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1026
1027	ath_hal_intrset(ah, 0);		/* disable interrupts */
1028	ath_draintxq(sc);		/* stop xmit side */
1029	ath_stoprecv(sc);		/* stop recv side */
1030	/* NB: indicate channel change so we do a full reset */
1031	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1032		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1033			__func__, status);
1034	ath_update_txpow(sc);		/* update tx power state */
1035	sc->sc_diversity = ath_hal_getdiversity(ah);
1036	if (ath_startrecv(sc) != 0)	/* restart recv */
1037		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1038	/*
1039	 * We may be doing a reset in response to an ioctl
1040	 * that changes the channel so update any state that
1041	 * might change as a result.
1042	 */
1043	ath_chan_change(sc, c);
1044	if (ic->ic_state == IEEE80211_S_RUN)
1045		ath_beacon_config(sc);	/* restart beacons */
1046	ath_hal_intrset(ah, sc->sc_imask);
1047
1048	ath_start(ifp);			/* restart xmit */
1049	return 0;
1050}
1051
1052static void
1053ath_start(struct ifnet *ifp)
1054{
1055	struct ath_softc *sc = ifp->if_softc;
1056	struct ath_hal *ah = sc->sc_ah;
1057	struct ieee80211com *ic = &sc->sc_ic;
1058	struct ieee80211_node *ni;
1059	struct ath_buf *bf;
1060	struct mbuf *m;
1061	struct ieee80211_frame *wh;
1062	struct ether_header *eh;
1063
1064	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1065		return;
1066	for (;;) {
1067		/*
1068		 * Grab a TX buffer and associated resources.
1069		 */
1070		ATH_TXBUF_LOCK(sc);
1071		bf = STAILQ_FIRST(&sc->sc_txbuf);
1072		if (bf != NULL)
1073			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1074		ATH_TXBUF_UNLOCK(sc);
1075		if (bf == NULL) {
1076			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1077				__func__);
1078			sc->sc_stats.ast_tx_qstop++;
1079			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1080			break;
1081		}
1082		/*
1083		 * Poll the management queue for frames; they
1084		 * have priority over normal data frames.
1085		 */
1086		IF_DEQUEUE(&ic->ic_mgtq, m);
1087		if (m == NULL) {
1088			/*
1089			 * No data frames go out unless we're associated.
1090			 */
1091			if (ic->ic_state != IEEE80211_S_RUN) {
1092				DPRINTF(sc, ATH_DEBUG_ANY,
1093					"%s: ignore data packet, state %u\n",
1094					__func__, ic->ic_state);
1095				sc->sc_stats.ast_tx_discard++;
1096				ATH_TXBUF_LOCK(sc);
1097				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1098				ATH_TXBUF_UNLOCK(sc);
1099				break;
1100			}
1101			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1102			if (m == NULL) {
1103				ATH_TXBUF_LOCK(sc);
1104				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1105				ATH_TXBUF_UNLOCK(sc);
1106				break;
1107			}
1108			/*
1109			 * Find the node for the destination so we can do
1110			 * things like power save and fast frames aggregation.
1111			 */
1112			if (m->m_len < sizeof(struct ether_header) &&
1113			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1114				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1115				ni = NULL;
1116				goto bad;
1117			}
1118			eh = mtod(m, struct ether_header *);
1119			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1120			if (ni == NULL) {
1121				/* NB: ieee80211_find_txnode does stat+msg */
1122				m_freem(m);
1123				goto bad;
1124			}
1125			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1126			    (m->m_flags & M_PWR_SAV) == 0) {
1127				/*
1128				 * Station in power save mode; pass the frame
1129				 * to the 802.11 layer and continue.  We'll get
1130				 * the frame back when the time is right.
1131				 */
1132				ieee80211_pwrsave(ic, ni, m);
1133				goto reclaim;
1134			}
1135			/* calculate priority so we can find the tx queue */
1136			if (ieee80211_classify(ic, m, ni)) {
1137				DPRINTF(sc, ATH_DEBUG_XMIT,
1138					"%s: discard, classification failure\n",
1139					__func__);
1140				m_freem(m);
1141				goto bad;
1142			}
1143			ifp->if_opackets++;
1144			BPF_MTAP(ifp, m);
1145			/*
1146			 * Encapsulate the packet in prep for transmission.
1147			 */
1148			m = ieee80211_encap(ic, m, ni);
1149			if (m == NULL) {
1150				DPRINTF(sc, ATH_DEBUG_ANY,
1151					"%s: encapsulation failure\n",
1152					__func__);
1153				sc->sc_stats.ast_tx_encap++;
1154				goto bad;
1155			}
1156		} else {
1157			/*
1158			 * Hack!  The referenced node pointer is in the
1159			 * rcvif field of the packet header.  This is
1160			 * placed there by ieee80211_mgmt_output because
1161			 * we need to hold the reference with the frame
1162			 * and there's no other way (other than packet
1163			 * tags which we consider too expensive to use)
1164			 * to pass it along.
1165			 */
1166			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1167			m->m_pkthdr.rcvif = NULL;
1168
1169			wh = mtod(m, struct ieee80211_frame *);
1170			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1171			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1172				/* fill time stamp */
1173				u_int64_t tsf;
1174				u_int32_t *tstamp;
1175
1176				tsf = ath_hal_gettsf64(ah);
1177				/* XXX: adjust 100us delay to xmit */
1178				tsf += 100;
1179				tstamp = (u_int32_t *)&wh[1];
1180				tstamp[0] = htole32(tsf & 0xffffffff);
1181				tstamp[1] = htole32(tsf >> 32);
1182			}
1183			sc->sc_stats.ast_tx_mgmt++;
1184		}
1185
1186		if (ath_tx_start(sc, ni, bf, m)) {
1187	bad:
1188			ifp->if_oerrors++;
1189	reclaim:
1190			ATH_TXBUF_LOCK(sc);
1191			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1192			ATH_TXBUF_UNLOCK(sc);
1193			if (ni != NULL)
1194				ieee80211_free_node(ni);
1195			continue;
1196		}
1197
1198		sc->sc_tx_timer = 5;
1199		ifp->if_timer = 1;
1200	}
1201}
1202
1203static int
1204ath_media_change(struct ifnet *ifp)
1205{
1206#define	IS_UP(ifp) \
1207	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1208	int error;
1209
1210	error = ieee80211_media_change(ifp);
1211	if (error == ENETRESET) {
1212		if (IS_UP(ifp))
1213			ath_init(ifp->if_softc);	/* XXX lose error */
1214		error = 0;
1215	}
1216	return error;
1217#undef IS_UP
1218}
1219
1220#ifdef AR_DEBUG
1221static void
1222ath_keyprint(const char *tag, u_int ix,
1223	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1224{
1225	static const char *ciphers[] = {
1226		"WEP",
1227		"AES-OCB",
1228		"AES-CCM",
1229		"CKIP",
1230		"TKIP",
1231		"CLR",
1232	};
1233	int i, n;
1234
1235	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1236	for (i = 0, n = hk->kv_len; i < n; i++)
1237		printf("%02x", hk->kv_val[i]);
1238	printf(" mac %s", ether_sprintf(mac));
1239	if (hk->kv_type == HAL_CIPHER_TKIP) {
1240		printf(" mic ");
1241		for (i = 0; i < sizeof(hk->kv_mic); i++)
1242			printf("%02x", hk->kv_mic[i]);
1243	}
1244	printf("\n");
1245}
1246#endif
1247
1248/*
1249 * Set a TKIP key into the hardware.  This handles the
1250 * potential distribution of key state to multiple key
1251 * cache slots for TKIP.
1252 */
1253static int
1254ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1255	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1256{
1257#define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1258	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1259	struct ath_hal *ah = sc->sc_ah;
1260
1261	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1262		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1263	KASSERT(sc->sc_splitmic, ("key cache !split"));
1264	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1265		/*
1266		 * TX key goes at first index, RX key at the rx index.
1267		 * The hal handles the MIC keys at index+64.
1268		 */
1269		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1270		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1271		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1272			return 0;
1273
1274		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1275		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1276		/* XXX delete tx key on failure? */
1277		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1278	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1279		/*
1280		 * TX/RX key goes at first index.
1281		 * The hal handles the MIC keys are index+64.
1282		 */
1283		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1284			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1285		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1286		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1287	}
1288	return 0;
1289#undef IEEE80211_KEY_XR
1290}
1291
1292/*
1293 * Set a net80211 key into the hardware.  This handles the
1294 * potential distribution of key state to multiple key
1295 * cache slots for TKIP with hardware MIC support.
1296 */
1297static int
1298ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1299	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1300	struct ieee80211_node *bss)
1301{
1302#define	N(a)	(sizeof(a)/sizeof(a[0]))
1303	static const u_int8_t ciphermap[] = {
1304		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1305		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1306		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1307		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1308		(u_int8_t) -1,		/* 4 is not allocated */
1309		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1310		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1311	};
1312	struct ath_hal *ah = sc->sc_ah;
1313	const struct ieee80211_cipher *cip = k->wk_cipher;
1314	u_int8_t gmac[IEEE80211_ADDR_LEN];
1315	const u_int8_t *mac;
1316	HAL_KEYVAL hk;
1317
1318	memset(&hk, 0, sizeof(hk));
1319	/*
1320	 * Software crypto uses a "clear key" so non-crypto
1321	 * state kept in the key cache are maintained and
1322	 * so that rx frames have an entry to match.
1323	 */
1324	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1325		KASSERT(cip->ic_cipher < N(ciphermap),
1326			("invalid cipher type %u", cip->ic_cipher));
1327		hk.kv_type = ciphermap[cip->ic_cipher];
1328		hk.kv_len = k->wk_keylen;
1329		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1330	} else
1331		hk.kv_type = HAL_CIPHER_CLR;
1332
1333	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1334		/*
1335		 * Group keys on hardware that supports multicast frame
1336		 * key search use a mac that is the sender's address with
1337		 * the high bit set instead of the app-specified address.
1338		 */
1339		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1340		gmac[0] |= 0x80;
1341		mac = gmac;
1342	} else
1343		mac = mac0;
1344
1345	if (hk.kv_type == HAL_CIPHER_TKIP &&
1346	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1347	    sc->sc_splitmic) {
1348		return ath_keyset_tkip(sc, k, &hk, mac);
1349	} else {
1350		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1351		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1352	}
1353#undef N
1354}
1355
1356/*
1357 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1358 * each key, one for decrypt/encrypt and the other for the MIC.
1359 */
1360static u_int16_t
1361key_alloc_2pair(struct ath_softc *sc,
1362	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1363{
1364#define	N(a)	(sizeof(a)/sizeof(a[0]))
1365	u_int i, keyix;
1366
1367	KASSERT(sc->sc_splitmic, ("key cache !split"));
1368	/* XXX could optimize */
1369	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1370		u_int8_t b = sc->sc_keymap[i];
1371		if (b != 0xff) {
1372			/*
1373			 * One or more slots in this byte are free.
1374			 */
1375			keyix = i*NBBY;
1376			while (b & 1) {
1377		again:
1378				keyix++;
1379				b >>= 1;
1380			}
1381			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1382			if (isset(sc->sc_keymap, keyix+32) ||
1383			    isset(sc->sc_keymap, keyix+64) ||
1384			    isset(sc->sc_keymap, keyix+32+64)) {
1385				/* full pair unavailable */
1386				/* XXX statistic */
1387				if (keyix == (i+1)*NBBY) {
1388					/* no slots were appropriate, advance */
1389					continue;
1390				}
1391				goto again;
1392			}
1393			setbit(sc->sc_keymap, keyix);
1394			setbit(sc->sc_keymap, keyix+64);
1395			setbit(sc->sc_keymap, keyix+32);
1396			setbit(sc->sc_keymap, keyix+32+64);
1397			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1398				"%s: key pair %u,%u %u,%u\n",
1399				__func__, keyix, keyix+64,
1400				keyix+32, keyix+32+64);
1401			*txkeyix = keyix;
1402			*rxkeyix = keyix+32;
1403			return 1;
1404		}
1405	}
1406	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1407	return 0;
1408#undef N
1409}
1410
1411/*
1412 * Allocate a single key cache slot.
1413 */
1414static int
1415key_alloc_single(struct ath_softc *sc,
1416	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1417{
1418#define	N(a)	(sizeof(a)/sizeof(a[0]))
1419	u_int i, keyix;
1420
1421	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1422	for (i = 0; i < N(sc->sc_keymap); i++) {
1423		u_int8_t b = sc->sc_keymap[i];
1424		if (b != 0xff) {
1425			/*
1426			 * One or more slots are free.
1427			 */
1428			keyix = i*NBBY;
1429			while (b & 1)
1430				keyix++, b >>= 1;
1431			setbit(sc->sc_keymap, keyix);
1432			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1433				__func__, keyix);
1434			*txkeyix = *rxkeyix = keyix;
1435			return 1;
1436		}
1437	}
1438	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1439	return 0;
1440#undef N
1441}
1442
1443/*
1444 * Allocate one or more key cache slots for a uniacst key.  The
1445 * key itself is needed only to identify the cipher.  For hardware
1446 * TKIP with split cipher+MIC keys we allocate two key cache slot
1447 * pairs so that we can setup separate TX and RX MIC keys.  Note
1448 * that the MIC key for a TKIP key at slot i is assumed by the
1449 * hardware to be at slot i+64.  This limits TKIP keys to the first
1450 * 64 entries.
1451 */
1452static int
1453ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1454	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1455{
1456	struct ath_softc *sc = ic->ic_ifp->if_softc;
1457
1458	/*
1459	 * Group key allocation must be handled specially for
1460	 * parts that do not support multicast key cache search
1461	 * functionality.  For those parts the key id must match
1462	 * the h/w key index so lookups find the right key.  On
1463	 * parts w/ the key search facility we install the sender's
1464	 * mac address (with the high bit set) and let the hardware
1465	 * find the key w/o using the key id.  This is preferred as
1466	 * it permits us to support multiple users for adhoc and/or
1467	 * multi-station operation.
1468	 */
1469	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1470		if (!(&ic->ic_nw_keys[0] <= k &&
1471		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1472			/* should not happen */
1473			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1474				"%s: bogus group key\n", __func__);
1475			return 0;
1476		}
1477		/*
1478		 * XXX we pre-allocate the global keys so
1479		 * have no way to check if they've already been allocated.
1480		 */
1481		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1482		return 1;
1483	}
1484
1485	/*
1486	 * We allocate two pair for TKIP when using the h/w to do
1487	 * the MIC.  For everything else, including software crypto,
1488	 * we allocate a single entry.  Note that s/w crypto requires
1489	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1490	 * not support pass-through cache entries and we map all
1491	 * those requests to slot 0.
1492	 */
1493	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1494		return key_alloc_single(sc, keyix, rxkeyix);
1495	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1496	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1497		return key_alloc_2pair(sc, keyix, rxkeyix);
1498	} else {
1499		return key_alloc_single(sc, keyix, rxkeyix);
1500	}
1501}
1502
1503/*
1504 * Delete an entry in the key cache allocated by ath_key_alloc.
1505 */
1506static int
1507ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1508{
1509	struct ath_softc *sc = ic->ic_ifp->if_softc;
1510	struct ath_hal *ah = sc->sc_ah;
1511	const struct ieee80211_cipher *cip = k->wk_cipher;
1512	u_int keyix = k->wk_keyix;
1513
1514	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1515
1516	ath_hal_keyreset(ah, keyix);
1517	/*
1518	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1519	 */
1520	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1521	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1522		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1523	if (keyix >= IEEE80211_WEP_NKID) {
1524		/*
1525		 * Don't touch keymap entries for global keys so
1526		 * they are never considered for dynamic allocation.
1527		 */
1528		clrbit(sc->sc_keymap, keyix);
1529		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1530		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1531		    sc->sc_splitmic) {
1532			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1533			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1534			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1535		}
1536	}
1537	return 1;
1538}
1539
1540/*
1541 * Set the key cache contents for the specified key.  Key cache
1542 * slot(s) must already have been allocated by ath_key_alloc.
1543 */
1544static int
1545ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1546	const u_int8_t mac[IEEE80211_ADDR_LEN])
1547{
1548	struct ath_softc *sc = ic->ic_ifp->if_softc;
1549
1550	return ath_keyset(sc, k, mac, ic->ic_bss);
1551}
1552
1553/*
1554 * Block/unblock tx+rx processing while a key change is done.
1555 * We assume the caller serializes key management operations
1556 * so we only need to worry about synchronization with other
1557 * uses that originate in the driver.
1558 */
1559static void
1560ath_key_update_begin(struct ieee80211com *ic)
1561{
1562	struct ifnet *ifp = ic->ic_ifp;
1563	struct ath_softc *sc = ifp->if_softc;
1564
1565	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1566#if 0
1567	tasklet_disable(&sc->sc_rxtq);
1568#endif
1569	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1570}
1571
1572static void
1573ath_key_update_end(struct ieee80211com *ic)
1574{
1575	struct ifnet *ifp = ic->ic_ifp;
1576	struct ath_softc *sc = ifp->if_softc;
1577
1578	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1579	IF_UNLOCK(&ifp->if_snd);
1580#if 0
1581	tasklet_enable(&sc->sc_rxtq);
1582#endif
1583}
1584
1585/*
1586 * Calculate the receive filter according to the
1587 * operating mode and state:
1588 *
1589 * o always accept unicast, broadcast, and multicast traffic
1590 * o maintain current state of phy error reception (the hal
1591 *   may enable phy error frames for noise immunity work)
1592 * o probe request frames are accepted only when operating in
1593 *   hostap, adhoc, or monitor modes
1594 * o enable promiscuous mode according to the interface state
1595 * o accept beacons:
1596 *   - when operating in adhoc mode so the 802.11 layer creates
1597 *     node table entries for peers,
1598 *   - when operating in station mode for collecting rssi data when
1599 *     the station is otherwise quiet, or
1600 *   - when scanning
1601 */
1602static u_int32_t
1603ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1604{
1605	struct ieee80211com *ic = &sc->sc_ic;
1606	struct ath_hal *ah = sc->sc_ah;
1607	struct ifnet *ifp = sc->sc_ifp;
1608	u_int32_t rfilt;
1609
1610	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1611	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1612	if (ic->ic_opmode != IEEE80211_M_STA)
1613		rfilt |= HAL_RX_FILTER_PROBEREQ;
1614	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1615	    (ifp->if_flags & IFF_PROMISC))
1616		rfilt |= HAL_RX_FILTER_PROM;
1617	if (ic->ic_opmode == IEEE80211_M_STA ||
1618	    ic->ic_opmode == IEEE80211_M_IBSS ||
1619	    state == IEEE80211_S_SCAN)
1620		rfilt |= HAL_RX_FILTER_BEACON;
1621	return rfilt;
1622}
1623
1624static void
1625ath_mode_init(struct ath_softc *sc)
1626{
1627	struct ieee80211com *ic = &sc->sc_ic;
1628	struct ath_hal *ah = sc->sc_ah;
1629	struct ifnet *ifp = sc->sc_ifp;
1630	u_int32_t rfilt, mfilt[2], val;
1631	u_int8_t pos;
1632	struct ifmultiaddr *ifma;
1633
1634	/* configure rx filter */
1635	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1636	ath_hal_setrxfilter(ah, rfilt);
1637
1638	/* configure operational mode */
1639	ath_hal_setopmode(ah);
1640
1641	/*
1642	 * Handle any link-level address change.  Note that we only
1643	 * need to force ic_myaddr; any other addresses are handled
1644	 * as a byproduct of the ifnet code marking the interface
1645	 * down then up.
1646	 *
1647	 * XXX should get from lladdr instead of arpcom but that's more work
1648	 */
1649	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1650	ath_hal_setmac(ah, ic->ic_myaddr);
1651
1652	/* calculate and install multicast filter */
1653	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1654		mfilt[0] = mfilt[1] = 0;
1655		IF_ADDR_LOCK(ifp);
1656		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1657			caddr_t dl;
1658
1659			/* calculate XOR of eight 6bit values */
1660			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1661			val = LE_READ_4(dl + 0);
1662			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1663			val = LE_READ_4(dl + 3);
1664			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1665			pos &= 0x3f;
1666			mfilt[pos / 32] |= (1 << (pos % 32));
1667		}
1668		IF_ADDR_UNLOCK(ifp);
1669	} else {
1670		mfilt[0] = mfilt[1] = ~0;
1671	}
1672	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1673	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1674		__func__, rfilt, mfilt[0], mfilt[1]);
1675}
1676
1677/*
1678 * Set the slot time based on the current setting.
1679 */
1680static void
1681ath_setslottime(struct ath_softc *sc)
1682{
1683	struct ieee80211com *ic = &sc->sc_ic;
1684	struct ath_hal *ah = sc->sc_ah;
1685
1686	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1687		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1688	else
1689		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1690	sc->sc_updateslot = OK;
1691}
1692
1693/*
1694 * Callback from the 802.11 layer to update the
1695 * slot time based on the current setting.
1696 */
1697static void
1698ath_updateslot(struct ifnet *ifp)
1699{
1700	struct ath_softc *sc = ifp->if_softc;
1701	struct ieee80211com *ic = &sc->sc_ic;
1702
1703	/*
1704	 * When not coordinating the BSS, change the hardware
1705	 * immediately.  For other operation we defer the change
1706	 * until beacon updates have propagated to the stations.
1707	 */
1708	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1709		sc->sc_updateslot = UPDATE;
1710	else
1711		ath_setslottime(sc);
1712}
1713
1714/*
1715 * Setup a h/w transmit queue for beacons.
1716 */
1717static int
1718ath_beaconq_setup(struct ath_hal *ah)
1719{
1720	HAL_TXQ_INFO qi;
1721
1722	memset(&qi, 0, sizeof(qi));
1723	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1724	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1725	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1726	/* NB: for dynamic turbo, don't enable any other interrupts */
1727	qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1728	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1729}
1730
1731/*
1732 * Setup the transmit queue parameters for the beacon queue.
1733 */
1734static int
1735ath_beaconq_config(struct ath_softc *sc)
1736{
1737#define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
1738	struct ieee80211com *ic = &sc->sc_ic;
1739	struct ath_hal *ah = sc->sc_ah;
1740	HAL_TXQ_INFO qi;
1741
1742	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1743	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1744		/*
1745		 * Always burst out beacon and CAB traffic.
1746		 */
1747		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1748		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1749		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1750	} else {
1751		struct wmeParams *wmep =
1752			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1753		/*
1754		 * Adhoc mode; important thing is to use 2x cwmin.
1755		 */
1756		qi.tqi_aifs = wmep->wmep_aifsn;
1757		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1758		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1759	}
1760
1761	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1762		device_printf(sc->sc_dev, "unable to update parameters for "
1763			"beacon hardware queue!\n");
1764		return 0;
1765	} else {
1766		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1767		return 1;
1768	}
1769#undef ATH_EXPONENT_TO_VALUE
1770}
1771
1772/*
1773 * Allocate and setup an initial beacon frame.
1774 */
1775static int
1776ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1777{
1778	struct ieee80211com *ic = ni->ni_ic;
1779	struct ath_buf *bf;
1780	struct mbuf *m;
1781	int error;
1782
1783	bf = STAILQ_FIRST(&sc->sc_bbuf);
1784	if (bf == NULL) {
1785		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1786		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1787		return ENOMEM;			/* XXX */
1788	}
1789	/*
1790	 * NB: the beacon data buffer must be 32-bit aligned;
1791	 * we assume the mbuf routines will return us something
1792	 * with this alignment (perhaps should assert).
1793	 */
1794	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1795	if (m == NULL) {
1796		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1797			__func__);
1798		sc->sc_stats.ast_be_nombuf++;
1799		return ENOMEM;
1800	}
1801	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1802				     bf->bf_segs, &bf->bf_nseg,
1803				     BUS_DMA_NOWAIT);
1804	if (error == 0) {
1805		bf->bf_m = m;
1806		bf->bf_node = ieee80211_ref_node(ni);
1807	} else {
1808		m_freem(m);
1809	}
1810	return error;
1811}
1812
1813/*
1814 * Setup the beacon frame for transmit.
1815 */
1816static void
1817ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1818{
1819#define	USE_SHPREAMBLE(_ic) \
1820	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1821		== IEEE80211_F_SHPREAMBLE)
1822	struct ieee80211_node *ni = bf->bf_node;
1823	struct ieee80211com *ic = ni->ni_ic;
1824	struct mbuf *m = bf->bf_m;
1825	struct ath_hal *ah = sc->sc_ah;
1826	struct ath_node *an = ATH_NODE(ni);
1827	struct ath_desc *ds;
1828	int flags, antenna;
1829	u_int8_t rate;
1830
1831	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1832		__func__, m, m->m_len);
1833
1834	/* setup descriptors */
1835	ds = bf->bf_desc;
1836
1837	flags = HAL_TXDESC_NOACK;
1838	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1839		ds->ds_link = bf->bf_daddr;	/* self-linked */
1840		flags |= HAL_TXDESC_VEOL;
1841		/*
1842		 * Let hardware handle antenna switching.
1843		 */
1844		antenna = sc->sc_txantenna;
1845	} else {
1846		ds->ds_link = 0;
1847		/*
1848		 * Switch antenna every 4 beacons.
1849		 * XXX assumes two antenna
1850		 */
1851		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1852	}
1853
1854	KASSERT(bf->bf_nseg == 1,
1855		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1856	ds->ds_data = bf->bf_segs[0].ds_addr;
1857	/*
1858	 * Calculate rate code.
1859	 * XXX everything at min xmit rate
1860	 */
1861	if (USE_SHPREAMBLE(ic))
1862		rate = an->an_tx_mgtratesp;
1863	else
1864		rate = an->an_tx_mgtrate;
1865	ath_hal_setuptxdesc(ah, ds
1866		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
1867		, sizeof(struct ieee80211_frame)/* header length */
1868		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1869		, ni->ni_txpower		/* txpower XXX */
1870		, rate, 1			/* series 0 rate/tries */
1871		, HAL_TXKEYIX_INVALID		/* no encryption */
1872		, antenna			/* antenna mode */
1873		, flags				/* no ack, veol for beacons */
1874		, 0				/* rts/cts rate */
1875		, 0				/* rts/cts duration */
1876	);
1877	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1878	ath_hal_filltxdesc(ah, ds
1879		, roundup(m->m_len, 4)		/* buffer length */
1880		, AH_TRUE			/* first segment */
1881		, AH_TRUE			/* last segment */
1882		, ds				/* first descriptor */
1883	);
1884#undef USE_SHPREAMBLE
1885}
1886
1887/*
1888 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1889 * frame contents are done as needed and the slot time is
1890 * also adjusted based on current state.
1891 */
1892static void
1893ath_beacon_proc(void *arg, int pending)
1894{
1895	struct ath_softc *sc = arg;
1896	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1897	struct ieee80211_node *ni = bf->bf_node;
1898	struct ieee80211com *ic = ni->ni_ic;
1899	struct ath_hal *ah = sc->sc_ah;
1900	struct mbuf *m;
1901	int ncabq, error, otherant;
1902
1903	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
1904		__func__, pending);
1905
1906	if (ic->ic_opmode == IEEE80211_M_STA ||
1907	    ic->ic_opmode == IEEE80211_M_MONITOR ||
1908	    bf == NULL || bf->bf_m == NULL) {
1909		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
1910			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
1911		return;
1912	}
1913	/*
1914	 * Check if the previous beacon has gone out.  If
1915	 * not don't don't try to post another, skip this
1916	 * period and wait for the next.  Missed beacons
1917	 * indicate a problem and should not occur.  If we
1918	 * miss too many consecutive beacons reset the device.
1919	 */
1920	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
1921		sc->sc_bmisscount++;
1922		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1923			"%s: missed %u consecutive beacons\n",
1924			__func__, sc->sc_bmisscount);
1925		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
1926			taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask);
1927		return;
1928	}
1929	if (sc->sc_bmisscount != 0) {
1930		DPRINTF(sc, ATH_DEBUG_BEACON,
1931			"%s: resume beacon xmit after %u misses\n",
1932			__func__, sc->sc_bmisscount);
1933		sc->sc_bmisscount = 0;
1934	}
1935
1936	/*
1937	 * Update dynamic beacon contents.  If this returns
1938	 * non-zero then we need to remap the memory because
1939	 * the beacon frame changed size (probably because
1940	 * of the TIM bitmap).
1941	 */
1942	m = bf->bf_m;
1943	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
1944	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
1945		/* XXX too conservative? */
1946		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1947		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1948					     bf->bf_segs, &bf->bf_nseg,
1949					     BUS_DMA_NOWAIT);
1950		if (error != 0) {
1951			if_printf(ic->ic_ifp,
1952			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
1953			    __func__, error);
1954			return;
1955		}
1956	}
1957
1958	/*
1959	 * Handle slot time change when a non-ERP station joins/leaves
1960	 * an 11g network.  The 802.11 layer notifies us via callback,
1961	 * we mark updateslot, then wait one beacon before effecting
1962	 * the change.  This gives associated stations at least one
1963	 * beacon interval to note the state change.
1964	 */
1965	/* XXX locking */
1966	if (sc->sc_updateslot == UPDATE)
1967		sc->sc_updateslot = COMMIT;	/* commit next beacon */
1968	else if (sc->sc_updateslot == COMMIT)
1969		ath_setslottime(sc);		/* commit change to h/w */
1970
1971	/*
1972	 * Check recent per-antenna transmit statistics and flip
1973	 * the default antenna if noticeably more frames went out
1974	 * on the non-default antenna.
1975	 * XXX assumes 2 anntenae
1976	 */
1977	otherant = sc->sc_defant & 1 ? 2 : 1;
1978	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
1979		ath_setdefantenna(sc, otherant);
1980	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
1981
1982	/*
1983	 * Construct tx descriptor.
1984	 */
1985	ath_beacon_setup(sc, bf);
1986
1987	/*
1988	 * Stop any current dma and put the new frame on the queue.
1989	 * This should never fail since we check above that no frames
1990	 * are still pending on the queue.
1991	 */
1992	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1993		DPRINTF(sc, ATH_DEBUG_ANY,
1994			"%s: beacon queue %u did not stop?\n",
1995			__func__, sc->sc_bhalq);
1996	}
1997	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1998
1999	/*
2000	 * Enable the CAB queue before the beacon queue to
2001	 * insure cab frames are triggered by this beacon.
2002	 */
2003	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
2004		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2005	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2006	ath_hal_txstart(ah, sc->sc_bhalq);
2007	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2008		"%s: TXDP[%u] = %p (%p)\n", __func__,
2009		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2010
2011	sc->sc_stats.ast_be_xmit++;
2012}
2013
2014/*
2015 * Reset the hardware after detecting beacons have stopped.
2016 */
2017static void
2018ath_bstuck_proc(void *arg, int pending)
2019{
2020	struct ath_softc *sc = arg;
2021	struct ifnet *ifp = sc->sc_ifp;
2022
2023	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2024		sc->sc_bmisscount);
2025	ath_reset(ifp);
2026}
2027
2028/*
2029 * Reclaim beacon resources.
2030 */
2031static void
2032ath_beacon_free(struct ath_softc *sc)
2033{
2034	struct ath_buf *bf;
2035
2036	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2037		if (bf->bf_m != NULL) {
2038			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2039			m_freem(bf->bf_m);
2040			bf->bf_m = NULL;
2041		}
2042		if (bf->bf_node != NULL) {
2043			ieee80211_free_node(bf->bf_node);
2044			bf->bf_node = NULL;
2045		}
2046	}
2047}
2048
2049/*
2050 * Configure the beacon and sleep timers.
2051 *
2052 * When operating as an AP this resets the TSF and sets
2053 * up the hardware to notify us when we need to issue beacons.
2054 *
2055 * When operating in station mode this sets up the beacon
2056 * timers according to the timestamp of the last received
2057 * beacon and the current TSF, configures PCF and DTIM
2058 * handling, programs the sleep registers so the hardware
2059 * will wakeup in time to receive beacons, and configures
2060 * the beacon miss handling so we'll receive a BMISS
2061 * interrupt when we stop seeing beacons from the AP
2062 * we've associated with.
2063 */
2064static void
2065ath_beacon_config(struct ath_softc *sc)
2066{
2067#define	TSF_TO_TU(_h,_l)	(((_h) << 22) | ((_l) >> 10))
2068	struct ath_hal *ah = sc->sc_ah;
2069	struct ieee80211com *ic = &sc->sc_ic;
2070	struct ieee80211_node *ni = ic->ic_bss;
2071	u_int32_t nexttbtt, intval;
2072
2073	/* extract tstamp from last beacon and convert to TU */
2074	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2075			     LE_READ_4(ni->ni_tstamp.data));
2076	/* NB: the beacon interval is kept internally in TU's */
2077	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2078	if (nexttbtt == 0)		/* e.g. for ap mode */
2079		nexttbtt = intval;
2080	else if (intval)		/* NB: can be 0 for monitor mode */
2081		nexttbtt = roundup(nexttbtt, intval);
2082	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2083		__func__, nexttbtt, intval, ni->ni_intval);
2084	if (ic->ic_opmode == IEEE80211_M_STA) {
2085		HAL_BEACON_STATE bs;
2086		u_int64_t tsf;
2087		u_int32_t tsftu;
2088		int dtimperiod, dtimcount;
2089		int cfpperiod, cfpcount;
2090
2091		/*
2092		 * Setup dtim and cfp parameters according to
2093		 * last beacon we received (which may be none).
2094		 */
2095		dtimperiod = ni->ni_dtim_period;
2096		if (dtimperiod <= 0)		/* NB: 0 if not known */
2097			dtimperiod = 1;
2098		dtimcount = ni->ni_dtim_count;
2099		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2100			dtimcount = 0;		/* XXX? */
2101		cfpperiod = 1;			/* NB: no PCF support yet */
2102		cfpcount = 0;
2103#define	FUDGE	2
2104		/*
2105		 * Pull nexttbtt forward to reflect the current
2106		 * TSF and calculate dtim+cfp state for the result.
2107		 */
2108		tsf = ath_hal_gettsf64(ah);
2109		tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
2110		do {
2111			nexttbtt += intval;
2112			if (--dtimcount < 0) {
2113				dtimcount = dtimperiod - 1;
2114				if (--cfpcount < 0)
2115					cfpcount = cfpperiod - 1;
2116			}
2117		} while (nexttbtt < tsftu);
2118#undef FUDGE
2119		memset(&bs, 0, sizeof(bs));
2120		bs.bs_intval = intval;
2121		bs.bs_nexttbtt = nexttbtt;
2122		bs.bs_dtimperiod = dtimperiod*intval;
2123		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2124		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2125		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2126		bs.bs_cfpmaxduration = 0;
2127#if 0
2128		/*
2129		 * The 802.11 layer records the offset to the DTIM
2130		 * bitmap while receiving beacons; use it here to
2131		 * enable h/w detection of our AID being marked in
2132		 * the bitmap vector (to indicate frames for us are
2133		 * pending at the AP).
2134		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2135		 * XXX enable based on h/w rev for newer chips
2136		 */
2137		bs.bs_timoffset = ni->ni_timoff;
2138#endif
2139		/*
2140		 * Calculate the number of consecutive beacons to miss
2141		 * before taking a BMISS interrupt.  The configuration
2142		 * is specified in ms, so we need to convert that to
2143		 * TU's and then calculate based on the beacon interval.
2144		 * Note that we clamp the result to at most 10 beacons.
2145		 */
2146		bs.bs_bmissthreshold = ic->ic_bmissthreshold;
2147		if (bs.bs_bmissthreshold > 10)
2148			bs.bs_bmissthreshold = 10;
2149		else if (bs.bs_bmissthreshold <= 0)
2150			bs.bs_bmissthreshold = 1;
2151
2152		/*
2153		 * Calculate sleep duration.  The configuration is
2154		 * given in ms.  We insure a multiple of the beacon
2155		 * period is used.  Also, if the sleep duration is
2156		 * greater than the DTIM period then it makes senses
2157		 * to make it a multiple of that.
2158		 *
2159		 * XXX fixed at 100ms
2160		 */
2161		bs.bs_sleepduration =
2162			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2163		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2164			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2165
2166		DPRINTF(sc, ATH_DEBUG_BEACON,
2167			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2168			, __func__
2169			, tsf, tsftu
2170			, bs.bs_intval
2171			, bs.bs_nexttbtt
2172			, bs.bs_dtimperiod
2173			, bs.bs_nextdtim
2174			, bs.bs_bmissthreshold
2175			, bs.bs_sleepduration
2176			, bs.bs_cfpperiod
2177			, bs.bs_cfpmaxduration
2178			, bs.bs_cfpnext
2179			, bs.bs_timoffset
2180		);
2181		ath_hal_intrset(ah, 0);
2182		ath_hal_beacontimers(ah, &bs);
2183		sc->sc_imask |= HAL_INT_BMISS;
2184		ath_hal_intrset(ah, sc->sc_imask);
2185	} else {
2186		ath_hal_intrset(ah, 0);
2187		if (nexttbtt == intval)
2188			intval |= HAL_BEACON_RESET_TSF;
2189		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2190			/*
2191			 * In IBSS mode enable the beacon timers but only
2192			 * enable SWBA interrupts if we need to manually
2193			 * prepare beacon frames.  Otherwise we use a
2194			 * self-linked tx descriptor and let the hardware
2195			 * deal with things.
2196			 */
2197			intval |= HAL_BEACON_ENA;
2198			if (!sc->sc_hasveol)
2199				sc->sc_imask |= HAL_INT_SWBA;
2200			ath_beaconq_config(sc);
2201		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2202			/*
2203			 * In AP mode we enable the beacon timers and
2204			 * SWBA interrupts to prepare beacon frames.
2205			 */
2206			intval |= HAL_BEACON_ENA;
2207			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2208			ath_beaconq_config(sc);
2209		}
2210		ath_hal_beaconinit(ah, nexttbtt, intval);
2211		sc->sc_bmisscount = 0;
2212		ath_hal_intrset(ah, sc->sc_imask);
2213		/*
2214		 * When using a self-linked beacon descriptor in
2215		 * ibss mode load it once here.
2216		 */
2217		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2218			ath_beacon_proc(sc, 0);
2219	}
2220#undef TSF_TO_TU
2221}
2222
2223static void
2224ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2225{
2226	bus_addr_t *paddr = (bus_addr_t*) arg;
2227	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2228	*paddr = segs->ds_addr;
2229}
2230
2231static int
2232ath_descdma_setup(struct ath_softc *sc,
2233	struct ath_descdma *dd, ath_bufhead *head,
2234	const char *name, int nbuf, int ndesc)
2235{
2236#define	DS2PHYS(_dd, _ds) \
2237	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2238	struct ifnet *ifp = sc->sc_ifp;
2239	struct ath_desc *ds;
2240	struct ath_buf *bf;
2241	int i, bsize, error;
2242
2243	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2244	    __func__, name, nbuf, ndesc);
2245
2246	dd->dd_name = name;
2247	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2248
2249	/*
2250	 * Setup DMA descriptor area.
2251	 */
2252	error = bus_dma_tag_create(NULL,	/* parent */
2253		       PAGE_SIZE, 0,		/* alignment, bounds */
2254		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2255		       BUS_SPACE_MAXADDR,	/* highaddr */
2256		       NULL, NULL,		/* filter, filterarg */
2257		       dd->dd_desc_len,		/* maxsize */
2258		       1,			/* nsegments */
2259		       BUS_SPACE_MAXADDR,	/* maxsegsize */
2260		       BUS_DMA_ALLOCNOW,	/* flags */
2261		       NULL,			/* lockfunc */
2262		       NULL,			/* lockarg */
2263		       &dd->dd_dmat);
2264	if (error != 0) {
2265		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2266		return error;
2267	}
2268
2269	/* allocate descriptors */
2270	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2271	if (error != 0) {
2272		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2273			"error %u\n", dd->dd_name, error);
2274		goto fail0;
2275	}
2276
2277	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2278				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2279	if (error != 0) {
2280		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2281			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2282		goto fail1;
2283	}
2284
2285	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2286				dd->dd_desc, dd->dd_desc_len,
2287				ath_load_cb, &dd->dd_desc_paddr,
2288				BUS_DMA_NOWAIT);
2289	if (error != 0) {
2290		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2291			dd->dd_name, error);
2292		goto fail2;
2293	}
2294
2295	ds = dd->dd_desc;
2296	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2297	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2298	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2299
2300	/* allocate rx buffers */
2301	bsize = sizeof(struct ath_buf) * nbuf;
2302	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2303	if (bf == NULL) {
2304		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2305			dd->dd_name, bsize);
2306		goto fail3;
2307	}
2308	dd->dd_bufptr = bf;
2309
2310	STAILQ_INIT(head);
2311	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2312		bf->bf_desc = ds;
2313		bf->bf_daddr = DS2PHYS(dd, ds);
2314		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2315				&bf->bf_dmamap);
2316		if (error != 0) {
2317			if_printf(ifp, "unable to create dmamap for %s "
2318				"buffer %u, error %u\n", dd->dd_name, i, error);
2319			ath_descdma_cleanup(sc, dd, head);
2320			return error;
2321		}
2322		STAILQ_INSERT_TAIL(head, bf, bf_list);
2323	}
2324	return 0;
2325fail3:
2326	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2327fail2:
2328	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2329fail1:
2330	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2331fail0:
2332	bus_dma_tag_destroy(dd->dd_dmat);
2333	memset(dd, 0, sizeof(*dd));
2334	return error;
2335#undef DS2PHYS
2336}
2337
2338static void
2339ath_descdma_cleanup(struct ath_softc *sc,
2340	struct ath_descdma *dd, ath_bufhead *head)
2341{
2342	struct ath_buf *bf;
2343	struct ieee80211_node *ni;
2344
2345	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2346	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2347	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2348	bus_dma_tag_destroy(dd->dd_dmat);
2349
2350	STAILQ_FOREACH(bf, head, bf_list) {
2351		if (bf->bf_m) {
2352			m_freem(bf->bf_m);
2353			bf->bf_m = NULL;
2354		}
2355		if (bf->bf_dmamap != NULL) {
2356			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2357			bf->bf_dmamap = NULL;
2358		}
2359		ni = bf->bf_node;
2360		bf->bf_node = NULL;
2361		if (ni != NULL) {
2362			/*
2363			 * Reclaim node reference.
2364			 */
2365			ieee80211_free_node(ni);
2366		}
2367	}
2368
2369	STAILQ_INIT(head);
2370	free(dd->dd_bufptr, M_ATHDEV);
2371	memset(dd, 0, sizeof(*dd));
2372}
2373
2374static int
2375ath_desc_alloc(struct ath_softc *sc)
2376{
2377	int error;
2378
2379	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2380			"rx", ATH_RXBUF, 1);
2381	if (error != 0)
2382		return error;
2383
2384	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2385			"tx", ATH_TXBUF, ATH_TXDESC);
2386	if (error != 0) {
2387		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2388		return error;
2389	}
2390
2391	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2392			"beacon", 1, 1);
2393	if (error != 0) {
2394		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2395		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2396		return error;
2397	}
2398	return 0;
2399}
2400
2401static void
2402ath_desc_free(struct ath_softc *sc)
2403{
2404
2405	if (sc->sc_bdma.dd_desc_len != 0)
2406		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2407	if (sc->sc_txdma.dd_desc_len != 0)
2408		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2409	if (sc->sc_rxdma.dd_desc_len != 0)
2410		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2411}
2412
2413static struct ieee80211_node *
2414ath_node_alloc(struct ieee80211_node_table *nt)
2415{
2416	struct ieee80211com *ic = nt->nt_ic;
2417	struct ath_softc *sc = ic->ic_ifp->if_softc;
2418	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2419	struct ath_node *an;
2420
2421	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2422	if (an == NULL) {
2423		/* XXX stat+msg */
2424		return NULL;
2425	}
2426	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2427	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2428	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2429	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2430	ath_rate_node_init(sc, an);
2431
2432	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2433	return &an->an_node;
2434}
2435
2436static void
2437ath_node_free(struct ieee80211_node *ni)
2438{
2439	struct ieee80211com *ic = ni->ni_ic;
2440        struct ath_softc *sc = ic->ic_ifp->if_softc;
2441
2442	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2443
2444	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2445	sc->sc_node_free(ni);
2446}
2447
2448static u_int8_t
2449ath_node_getrssi(const struct ieee80211_node *ni)
2450{
2451#define	HAL_EP_RND(x, mul) \
2452	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2453	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2454	int32_t rssi;
2455
2456	/*
2457	 * When only one frame is received there will be no state in
2458	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2459	 */
2460	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2461		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2462	else
2463		rssi = ni->ni_rssi;
2464	/* NB: theoretically we shouldn't need this, but be paranoid */
2465	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2466#undef HAL_EP_RND
2467}
2468
2469static int
2470ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2471{
2472	struct ath_hal *ah = sc->sc_ah;
2473	int error;
2474	struct mbuf *m;
2475	struct ath_desc *ds;
2476
2477	m = bf->bf_m;
2478	if (m == NULL) {
2479		/*
2480		 * NB: by assigning a page to the rx dma buffer we
2481		 * implicitly satisfy the Atheros requirement that
2482		 * this buffer be cache-line-aligned and sized to be
2483		 * multiple of the cache line size.  Not doing this
2484		 * causes weird stuff to happen (for the 5210 at least).
2485		 */
2486		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2487		if (m == NULL) {
2488			DPRINTF(sc, ATH_DEBUG_ANY,
2489				"%s: no mbuf/cluster\n", __func__);
2490			sc->sc_stats.ast_rx_nombuf++;
2491			return ENOMEM;
2492		}
2493		bf->bf_m = m;
2494		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2495
2496		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2497					     bf->bf_dmamap, m,
2498					     bf->bf_segs, &bf->bf_nseg,
2499					     BUS_DMA_NOWAIT);
2500		if (error != 0) {
2501			DPRINTF(sc, ATH_DEBUG_ANY,
2502			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2503			    __func__, error);
2504			sc->sc_stats.ast_rx_busdma++;
2505			return error;
2506		}
2507		KASSERT(bf->bf_nseg == 1,
2508			("multi-segment packet; nseg %u", bf->bf_nseg));
2509	}
2510	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2511
2512	/*
2513	 * Setup descriptors.  For receive we always terminate
2514	 * the descriptor list with a self-linked entry so we'll
2515	 * not get overrun under high load (as can happen with a
2516	 * 5212 when ANI processing enables PHY error frames).
2517	 *
2518	 * To insure the last descriptor is self-linked we create
2519	 * each descriptor as self-linked and add it to the end.  As
2520	 * each additional descriptor is added the previous self-linked
2521	 * entry is ``fixed'' naturally.  This should be safe even
2522	 * if DMA is happening.  When processing RX interrupts we
2523	 * never remove/process the last, self-linked, entry on the
2524	 * descriptor list.  This insures the hardware always has
2525	 * someplace to write a new frame.
2526	 */
2527	ds = bf->bf_desc;
2528	ds->ds_link = bf->bf_daddr;	/* link to self */
2529	ds->ds_data = bf->bf_segs[0].ds_addr;
2530	ath_hal_setuprxdesc(ah, ds
2531		, m->m_len		/* buffer size */
2532		, 0
2533	);
2534
2535	if (sc->sc_rxlink != NULL)
2536		*sc->sc_rxlink = bf->bf_daddr;
2537	sc->sc_rxlink = &ds->ds_link;
2538	return 0;
2539}
2540
2541/*
2542 * Extend 15-bit time stamp from rx descriptor to
2543 * a full 64-bit TSF using the specified TSF.
2544 */
2545static __inline u_int64_t
2546ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2547{
2548	if ((tsf & 0x7fff) < rstamp)
2549		tsf -= 0x8000;
2550	return ((tsf &~ 0x7fff) | rstamp);
2551}
2552
2553/*
2554 * Intercept management frames to collect beacon rssi data
2555 * and to do ibss merges.
2556 */
2557static void
2558ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2559	struct ieee80211_node *ni,
2560	int subtype, int rssi, u_int32_t rstamp)
2561{
2562	struct ath_softc *sc = ic->ic_ifp->if_softc;
2563
2564	/*
2565	 * Call up first so subsequent work can use information
2566	 * potentially stored in the node (e.g. for ibss merge).
2567	 */
2568	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2569	switch (subtype) {
2570	case IEEE80211_FC0_SUBTYPE_BEACON:
2571		/* update rssi statistics for use by the hal */
2572		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2573		/* fall thru... */
2574	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2575		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2576		    ic->ic_state == IEEE80211_S_RUN) {
2577			u_int64_t tsf = ath_extend_tsf(rstamp,
2578				ath_hal_gettsf64(sc->sc_ah));
2579			/*
2580			 * Handle ibss merge as needed; check the tsf on the
2581			 * frame before attempting the merge.  The 802.11 spec
2582			 * says the station should change it's bssid to match
2583			 * the oldest station with the same ssid, where oldest
2584			 * is determined by the tsf.  Note that hardware
2585			 * reconfiguration happens through callback to
2586			 * ath_newstate as the state machine will go from
2587			 * RUN -> RUN when this happens.
2588			 */
2589			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2590				DPRINTF(sc, ATH_DEBUG_STATE,
2591				    "ibss merge, rstamp %u tsf %ju "
2592				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2593				    (uintmax_t)ni->ni_tstamp.tsf);
2594				(void) ieee80211_ibss_merge(ni);
2595			}
2596		}
2597		break;
2598	}
2599}
2600
2601/*
2602 * Set the default antenna.
2603 */
2604static void
2605ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2606{
2607	struct ath_hal *ah = sc->sc_ah;
2608
2609	/* XXX block beacon interrupts */
2610	ath_hal_setdefantenna(ah, antenna);
2611	if (sc->sc_defant != antenna)
2612		sc->sc_stats.ast_ant_defswitch++;
2613	sc->sc_defant = antenna;
2614	sc->sc_rxotherant = 0;
2615}
2616
2617static int
2618ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
2619	const struct ath_desc *ds, u_int64_t tsf, int16_t nf)
2620{
2621	u_int8_t rix;
2622
2623	KASSERT(sc->sc_drvbpf != NULL, ("no tap"));
2624
2625	/*
2626	 * Discard anything shorter than an ack or cts.
2627	 */
2628	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
2629		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
2630			__func__, m->m_pkthdr.len);
2631		sc->sc_stats.ast_rx_tooshort++;
2632		return 0;
2633	}
2634	sc->sc_rx_th.wr_tsf = htole64(
2635		ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
2636	rix = ds->ds_rxstat.rs_rate;
2637	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2638	if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2639		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2640	/* XXX propagate other error flags from descriptor */
2641	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2642	sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
2643	sc->sc_rx_th.wr_antnoise = nf;
2644	sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2645
2646	bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
2647
2648	return 1;
2649}
2650
2651static void
2652ath_rx_proc(void *arg, int npending)
2653{
2654#define	PA2DESC(_sc, _pa) \
2655	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2656		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2657	struct ath_softc *sc = arg;
2658	struct ath_buf *bf;
2659	struct ieee80211com *ic = &sc->sc_ic;
2660	struct ifnet *ifp = sc->sc_ifp;
2661	struct ath_hal *ah = sc->sc_ah;
2662	struct ath_desc *ds;
2663	struct mbuf *m;
2664	struct ieee80211_node *ni;
2665	struct ath_node *an;
2666	int len, type;
2667	u_int phyerr;
2668	HAL_STATUS status;
2669	int16_t nf;
2670	u_int64_t tsf;
2671
2672	NET_LOCK_GIANT();		/* XXX */
2673
2674	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2675	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2676	tsf = ath_hal_gettsf64(ah);
2677	do {
2678		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2679		if (bf == NULL) {		/* NB: shouldn't happen */
2680			if_printf(ifp, "%s: no buffer!\n", __func__);
2681			break;
2682		}
2683		ds = bf->bf_desc;
2684		if (ds->ds_link == bf->bf_daddr) {
2685			/* NB: never process the self-linked entry at the end */
2686			break;
2687		}
2688		m = bf->bf_m;
2689		if (m == NULL) {		/* NB: shouldn't happen */
2690			if_printf(ifp, "%s: no mbuf!\n", __func__);
2691			continue;
2692		}
2693		/* XXX sync descriptor memory */
2694		/*
2695		 * Must provide the virtual address of the current
2696		 * descriptor, the physical address, and the virtual
2697		 * address of the next descriptor in the h/w chain.
2698		 * This allows the HAL to look ahead to see if the
2699		 * hardware is done with a descriptor by checking the
2700		 * done bit in the following descriptor and the address
2701		 * of the current descriptor the DMA engine is working
2702		 * on.  All this is necessary because of our use of
2703		 * a self-linked list to avoid rx overruns.
2704		 */
2705		status = ath_hal_rxprocdesc(ah, ds,
2706				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2707#ifdef AR_DEBUG
2708		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2709			ath_printrxbuf(bf, status == HAL_OK);
2710#endif
2711		if (status == HAL_EINPROGRESS)
2712			break;
2713		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2714		if (ds->ds_rxstat.rs_more) {
2715			/*
2716			 * Frame spans multiple descriptors; this
2717			 * cannot happen yet as we don't support
2718			 * jumbograms.  If not in monitor mode,
2719			 * discard the frame.
2720			 */
2721			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2722				sc->sc_stats.ast_rx_toobig++;
2723				goto rx_next;
2724			}
2725			/* fall thru for monitor mode handling... */
2726		} else if (ds->ds_rxstat.rs_status != 0) {
2727			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2728				sc->sc_stats.ast_rx_crcerr++;
2729			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2730				sc->sc_stats.ast_rx_fifoerr++;
2731			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2732				sc->sc_stats.ast_rx_phyerr++;
2733				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2734				sc->sc_stats.ast_rx_phy[phyerr]++;
2735				goto rx_next;
2736			}
2737			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2738				/*
2739				 * Decrypt error.  If the error occurred
2740				 * because there was no hardware key, then
2741				 * let the frame through so the upper layers
2742				 * can process it.  This is necessary for 5210
2743				 * parts which have no way to setup a ``clear''
2744				 * key cache entry.
2745				 *
2746				 * XXX do key cache faulting
2747				 */
2748				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2749					goto rx_accept;
2750				sc->sc_stats.ast_rx_badcrypt++;
2751			}
2752			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2753				sc->sc_stats.ast_rx_badmic++;
2754				/*
2755				 * Do minimal work required to hand off
2756				 * the 802.11 header for notifcation.
2757				 */
2758				/* XXX frag's and qos frames */
2759				len = ds->ds_rxstat.rs_datalen;
2760				if (len >= sizeof (struct ieee80211_frame)) {
2761					bus_dmamap_sync(sc->sc_dmat,
2762					    bf->bf_dmamap,
2763					    BUS_DMASYNC_POSTREAD);
2764					ieee80211_notify_michael_failure(ic,
2765					    mtod(m, struct ieee80211_frame *),
2766					    sc->sc_splitmic ?
2767					        ds->ds_rxstat.rs_keyix-32 :
2768					        ds->ds_rxstat.rs_keyix
2769					);
2770				}
2771			}
2772			ifp->if_ierrors++;
2773			/*
2774			 * When a tap is present pass error frames
2775			 * that have been requested.  By default we
2776			 * pass decrypt+mic errors but others may be
2777			 * interesting (e.g. crc).
2778			 */
2779			if (sc->sc_drvbpf != NULL &&
2780			    (ds->ds_rxstat.rs_status & sc->sc_monpass)) {
2781				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2782				    BUS_DMASYNC_POSTREAD);
2783				/* NB: bpf needs the mbuf length setup */
2784				len = ds->ds_rxstat.rs_datalen;
2785				m->m_pkthdr.len = m->m_len = len;
2786				(void) ath_rx_tap(sc, m, ds, tsf, nf);
2787			}
2788			/* XXX pass MIC errors up for s/w reclaculation */
2789			goto rx_next;
2790		}
2791rx_accept:
2792		/*
2793		 * Sync and unmap the frame.  At this point we're
2794		 * committed to passing the mbuf somewhere so clear
2795		 * bf_m; this means a new sk_buff must be allocated
2796		 * when the rx descriptor is setup again to receive
2797		 * another frame.
2798		 */
2799		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2800		    BUS_DMASYNC_POSTREAD);
2801		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2802		bf->bf_m = NULL;
2803
2804		m->m_pkthdr.rcvif = ifp;
2805		len = ds->ds_rxstat.rs_datalen;
2806		m->m_pkthdr.len = m->m_len = len;
2807
2808		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2809
2810		if (sc->sc_drvbpf != NULL && !ath_rx_tap(sc, m, ds, tsf, nf)) {
2811			m_freem(m);		/* XXX reclaim */
2812			goto rx_next;
2813		}
2814
2815		/*
2816		 * From this point on we assume the frame is at least
2817		 * as large as ieee80211_frame_min; verify that.
2818		 */
2819		if (len < IEEE80211_MIN_LEN) {
2820			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2821				__func__, len);
2822			sc->sc_stats.ast_rx_tooshort++;
2823			m_freem(m);
2824			goto rx_next;
2825		}
2826
2827		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2828			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2829				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2830				   ds->ds_rxstat.rs_rssi);
2831		}
2832
2833		m_adj(m, -IEEE80211_CRC_LEN);
2834
2835		/*
2836		 * Locate the node for sender, track state, and then
2837		 * pass the (referenced) node up to the 802.11 layer
2838		 * for its use.
2839		 */
2840		ni = ieee80211_find_rxnode_withkey(ic,
2841			mtod(m, const struct ieee80211_frame_min *),
2842			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
2843				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
2844		/*
2845		 * Track rx rssi and do any rx antenna management.
2846		 */
2847		an = ATH_NODE(ni);
2848		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2849		/*
2850		 * Send frame up for processing.
2851		 */
2852		type = ieee80211_input(ic, m, ni,
2853			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2854		ieee80211_free_node(ni);
2855		if (sc->sc_diversity) {
2856			/*
2857			 * When using fast diversity, change the default rx
2858			 * antenna if diversity chooses the other antenna 3
2859			 * times in a row.
2860			 */
2861			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2862				if (++sc->sc_rxotherant >= 3)
2863					ath_setdefantenna(sc,
2864						ds->ds_rxstat.rs_antenna);
2865			} else
2866				sc->sc_rxotherant = 0;
2867		}
2868		if (sc->sc_softled) {
2869			/*
2870			 * Blink for any data frame.  Otherwise do a
2871			 * heartbeat-style blink when idle.  The latter
2872			 * is mainly for station mode where we depend on
2873			 * periodic beacon frames to trigger the poll event.
2874			 */
2875			if (type == IEEE80211_FC0_TYPE_DATA) {
2876				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
2877				ath_led_event(sc, ATH_LED_RX);
2878			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
2879				ath_led_event(sc, ATH_LED_POLL);
2880		}
2881rx_next:
2882		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2883	} while (ath_rxbuf_init(sc, bf) == 0);
2884
2885	/* rx signal state monitoring */
2886	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
2887
2888	NET_UNLOCK_GIANT();		/* XXX */
2889#undef PA2DESC
2890}
2891
2892/*
2893 * Setup a h/w transmit queue.
2894 */
2895static struct ath_txq *
2896ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2897{
2898#define	N(a)	(sizeof(a)/sizeof(a[0]))
2899	struct ath_hal *ah = sc->sc_ah;
2900	HAL_TXQ_INFO qi;
2901	int qnum;
2902
2903	memset(&qi, 0, sizeof(qi));
2904	qi.tqi_subtype = subtype;
2905	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2906	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2907	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2908	/*
2909	 * Enable interrupts only for EOL and DESC conditions.
2910	 * We mark tx descriptors to receive a DESC interrupt
2911	 * when a tx queue gets deep; otherwise waiting for the
2912	 * EOL to reap descriptors.  Note that this is done to
2913	 * reduce interrupt load and this only defers reaping
2914	 * descriptors, never transmitting frames.  Aside from
2915	 * reducing interrupts this also permits more concurrency.
2916	 * The only potential downside is if the tx queue backs
2917	 * up in which case the top half of the kernel may backup
2918	 * due to a lack of tx descriptors.
2919	 */
2920	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
2921	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
2922	if (qnum == -1) {
2923		/*
2924		 * NB: don't print a message, this happens
2925		 * normally on parts with too few tx queues
2926		 */
2927		return NULL;
2928	}
2929	if (qnum >= N(sc->sc_txq)) {
2930		device_printf(sc->sc_dev,
2931			"hal qnum %u out of range, max %zu!\n",
2932			qnum, N(sc->sc_txq));
2933		ath_hal_releasetxqueue(ah, qnum);
2934		return NULL;
2935	}
2936	if (!ATH_TXQ_SETUP(sc, qnum)) {
2937		struct ath_txq *txq = &sc->sc_txq[qnum];
2938
2939		txq->axq_qnum = qnum;
2940		txq->axq_depth = 0;
2941		txq->axq_intrcnt = 0;
2942		txq->axq_link = NULL;
2943		STAILQ_INIT(&txq->axq_q);
2944		ATH_TXQ_LOCK_INIT(sc, txq);
2945		sc->sc_txqsetup |= 1<<qnum;
2946	}
2947	return &sc->sc_txq[qnum];
2948#undef N
2949}
2950
2951/*
2952 * Setup a hardware data transmit queue for the specified
2953 * access control.  The hal may not support all requested
2954 * queues in which case it will return a reference to a
2955 * previously setup queue.  We record the mapping from ac's
2956 * to h/w queues for use by ath_tx_start and also track
2957 * the set of h/w queues being used to optimize work in the
2958 * transmit interrupt handler and related routines.
2959 */
2960static int
2961ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
2962{
2963#define	N(a)	(sizeof(a)/sizeof(a[0]))
2964	struct ath_txq *txq;
2965
2966	if (ac >= N(sc->sc_ac2q)) {
2967		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2968			ac, N(sc->sc_ac2q));
2969		return 0;
2970	}
2971	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
2972	if (txq != NULL) {
2973		sc->sc_ac2q[ac] = txq;
2974		return 1;
2975	} else
2976		return 0;
2977#undef N
2978}
2979
2980/*
2981 * Update WME parameters for a transmit queue.
2982 */
2983static int
2984ath_txq_update(struct ath_softc *sc, int ac)
2985{
2986#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
2987#define	ATH_TXOP_TO_US(v)		(v<<5)
2988	struct ieee80211com *ic = &sc->sc_ic;
2989	struct ath_txq *txq = sc->sc_ac2q[ac];
2990	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2991	struct ath_hal *ah = sc->sc_ah;
2992	HAL_TXQ_INFO qi;
2993
2994	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
2995	qi.tqi_aifs = wmep->wmep_aifsn;
2996	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2997	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2998	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
2999
3000	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3001		device_printf(sc->sc_dev, "unable to update hardware queue "
3002			"parameters for %s traffic!\n",
3003			ieee80211_wme_acnames[ac]);
3004		return 0;
3005	} else {
3006		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3007		return 1;
3008	}
3009#undef ATH_TXOP_TO_US
3010#undef ATH_EXPONENT_TO_VALUE
3011}
3012
3013/*
3014 * Callback from the 802.11 layer to update WME parameters.
3015 */
3016static int
3017ath_wme_update(struct ieee80211com *ic)
3018{
3019	struct ath_softc *sc = ic->ic_ifp->if_softc;
3020
3021	return !ath_txq_update(sc, WME_AC_BE) ||
3022	    !ath_txq_update(sc, WME_AC_BK) ||
3023	    !ath_txq_update(sc, WME_AC_VI) ||
3024	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3025}
3026
3027/*
3028 * Reclaim resources for a setup queue.
3029 */
3030static void
3031ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3032{
3033
3034	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3035	ATH_TXQ_LOCK_DESTROY(txq);
3036	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3037}
3038
3039/*
3040 * Reclaim all tx queue resources.
3041 */
3042static void
3043ath_tx_cleanup(struct ath_softc *sc)
3044{
3045	int i;
3046
3047	ATH_TXBUF_LOCK_DESTROY(sc);
3048	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3049		if (ATH_TXQ_SETUP(sc, i))
3050			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3051}
3052
3053/*
3054 * Defragment an mbuf chain, returning at most maxfrags separate
3055 * mbufs+clusters.  If this is not possible NULL is returned and
3056 * the original mbuf chain is left in it's present (potentially
3057 * modified) state.  We use two techniques: collapsing consecutive
3058 * mbufs and replacing consecutive mbufs by a cluster.
3059 */
3060static struct mbuf *
3061ath_defrag(struct mbuf *m0, int how, int maxfrags)
3062{
3063	struct mbuf *m, *n, *n2, **prev;
3064	u_int curfrags;
3065
3066	/*
3067	 * Calculate the current number of frags.
3068	 */
3069	curfrags = 0;
3070	for (m = m0; m != NULL; m = m->m_next)
3071		curfrags++;
3072	/*
3073	 * First, try to collapse mbufs.  Note that we always collapse
3074	 * towards the front so we don't need to deal with moving the
3075	 * pkthdr.  This may be suboptimal if the first mbuf has much
3076	 * less data than the following.
3077	 */
3078	m = m0;
3079again:
3080	for (;;) {
3081		n = m->m_next;
3082		if (n == NULL)
3083			break;
3084		if ((m->m_flags & M_RDONLY) == 0 &&
3085		    n->m_len < M_TRAILINGSPACE(m)) {
3086			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3087				n->m_len);
3088			m->m_len += n->m_len;
3089			m->m_next = n->m_next;
3090			m_free(n);
3091			if (--curfrags <= maxfrags)
3092				return m0;
3093		} else
3094			m = n;
3095	}
3096	KASSERT(maxfrags > 1,
3097		("maxfrags %u, but normal collapse failed", maxfrags));
3098	/*
3099	 * Collapse consecutive mbufs to a cluster.
3100	 */
3101	prev = &m0->m_next;		/* NB: not the first mbuf */
3102	while ((n = *prev) != NULL) {
3103		if ((n2 = n->m_next) != NULL &&
3104		    n->m_len + n2->m_len < MCLBYTES) {
3105			m = m_getcl(how, MT_DATA, 0);
3106			if (m == NULL)
3107				goto bad;
3108			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3109			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3110				n2->m_len);
3111			m->m_len = n->m_len + n2->m_len;
3112			m->m_next = n2->m_next;
3113			*prev = m;
3114			m_free(n);
3115			m_free(n2);
3116			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3117				return m0;
3118			/*
3119			 * Still not there, try the normal collapse
3120			 * again before we allocate another cluster.
3121			 */
3122			goto again;
3123		}
3124		prev = &n->m_next;
3125	}
3126	/*
3127	 * No place where we can collapse to a cluster; punt.
3128	 * This can occur if, for example, you request 2 frags
3129	 * but the packet requires that both be clusters (we
3130	 * never reallocate the first mbuf to avoid moving the
3131	 * packet header).
3132	 */
3133bad:
3134	return NULL;
3135}
3136
3137static int
3138ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3139    struct mbuf *m0)
3140{
3141	struct ieee80211com *ic = &sc->sc_ic;
3142	struct ath_hal *ah = sc->sc_ah;
3143	struct ifnet *ifp = sc->sc_ifp;
3144	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3145	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3146	u_int8_t rix, txrate, ctsrate;
3147	u_int8_t cix = 0xff;		/* NB: silence compiler */
3148	struct ath_desc *ds, *ds0;
3149	struct ath_txq *txq;
3150	struct ieee80211_frame *wh;
3151	u_int subtype, flags, ctsduration;
3152	HAL_PKT_TYPE atype;
3153	const HAL_RATE_TABLE *rt;
3154	HAL_BOOL shortPreamble;
3155	struct ath_node *an;
3156	struct mbuf *m;
3157	u_int pri;
3158
3159	wh = mtod(m0, struct ieee80211_frame *);
3160	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3161	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3162	hdrlen = ieee80211_anyhdrsize(wh);
3163	/*
3164	 * Packet length must not include any
3165	 * pad bytes; deduct them here.
3166	 */
3167	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3168
3169	if (iswep) {
3170		const struct ieee80211_cipher *cip;
3171		struct ieee80211_key *k;
3172
3173		/*
3174		 * Construct the 802.11 header+trailer for an encrypted
3175		 * frame. The only reason this can fail is because of an
3176		 * unknown or unsupported cipher/key type.
3177		 */
3178		k = ieee80211_crypto_encap(ic, ni, m0);
3179		if (k == NULL) {
3180			/*
3181			 * This can happen when the key is yanked after the
3182			 * frame was queued.  Just discard the frame; the
3183			 * 802.11 layer counts failures and provides
3184			 * debugging/diagnostics.
3185			 */
3186			m_freem(m0);
3187			return EIO;
3188		}
3189		/*
3190		 * Adjust the packet + header lengths for the crypto
3191		 * additions and calculate the h/w key index.  When
3192		 * a s/w mic is done the frame will have had any mic
3193		 * added to it prior to entry so skb->len above will
3194		 * account for it. Otherwise we need to add it to the
3195		 * packet length.
3196		 */
3197		cip = k->wk_cipher;
3198		hdrlen += cip->ic_header;
3199		pktlen += cip->ic_header + cip->ic_trailer;
3200		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3201			pktlen += cip->ic_miclen;
3202		keyix = k->wk_keyix;
3203
3204		/* packet header may have moved, reset our local pointer */
3205		wh = mtod(m0, struct ieee80211_frame *);
3206	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3207		/*
3208		 * Use station key cache slot, if assigned.
3209		 */
3210		keyix = ni->ni_ucastkey.wk_keyix;
3211		if (keyix == IEEE80211_KEYIX_NONE)
3212			keyix = HAL_TXKEYIX_INVALID;
3213	} else
3214		keyix = HAL_TXKEYIX_INVALID;
3215
3216	pktlen += IEEE80211_CRC_LEN;
3217
3218	/*
3219	 * Load the DMA map so any coalescing is done.  This
3220	 * also calculates the number of descriptors we need.
3221	 */
3222	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3223				     bf->bf_segs, &bf->bf_nseg,
3224				     BUS_DMA_NOWAIT);
3225	if (error == EFBIG) {
3226		/* XXX packet requires too many descriptors */
3227		bf->bf_nseg = ATH_TXDESC+1;
3228	} else if (error != 0) {
3229		sc->sc_stats.ast_tx_busdma++;
3230		m_freem(m0);
3231		return error;
3232	}
3233	/*
3234	 * Discard null packets and check for packets that
3235	 * require too many TX descriptors.  We try to convert
3236	 * the latter to a cluster.
3237	 */
3238	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3239		sc->sc_stats.ast_tx_linear++;
3240		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3241		if (m == NULL) {
3242			m_freem(m0);
3243			sc->sc_stats.ast_tx_nombuf++;
3244			return ENOMEM;
3245		}
3246		m0 = m;
3247		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3248					     bf->bf_segs, &bf->bf_nseg,
3249					     BUS_DMA_NOWAIT);
3250		if (error != 0) {
3251			sc->sc_stats.ast_tx_busdma++;
3252			m_freem(m0);
3253			return error;
3254		}
3255		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3256		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3257	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3258		sc->sc_stats.ast_tx_nodata++;
3259		m_freem(m0);
3260		return EIO;
3261	}
3262	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3263	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3264	bf->bf_m = m0;
3265	bf->bf_node = ni;			/* NB: held reference */
3266
3267	/* setup descriptors */
3268	ds = bf->bf_desc;
3269	rt = sc->sc_currates;
3270	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3271
3272	/*
3273	 * NB: the 802.11 layer marks whether or not we should
3274	 * use short preamble based on the current mode and
3275	 * negotiated parameters.
3276	 */
3277	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3278	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3279		shortPreamble = AH_TRUE;
3280		sc->sc_stats.ast_tx_shortpre++;
3281	} else {
3282		shortPreamble = AH_FALSE;
3283	}
3284
3285	an = ATH_NODE(ni);
3286	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3287	/*
3288	 * Calculate Atheros packet type from IEEE80211 packet header,
3289	 * setup for rate calculations, and select h/w transmit queue.
3290	 */
3291	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3292	case IEEE80211_FC0_TYPE_MGT:
3293		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3294		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3295			atype = HAL_PKT_TYPE_BEACON;
3296		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3297			atype = HAL_PKT_TYPE_PROBE_RESP;
3298		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3299			atype = HAL_PKT_TYPE_ATIM;
3300		else
3301			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3302		rix = 0;			/* XXX lowest rate */
3303		try0 = ATH_TXMAXTRY;
3304		if (shortPreamble)
3305			txrate = an->an_tx_mgtratesp;
3306		else
3307			txrate = an->an_tx_mgtrate;
3308		/* NB: force all management frames to highest queue */
3309		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3310			/* NB: force all management frames to highest queue */
3311			pri = WME_AC_VO;
3312		} else
3313			pri = WME_AC_BE;
3314		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3315		break;
3316	case IEEE80211_FC0_TYPE_CTL:
3317		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3318		rix = 0;			/* XXX lowest rate */
3319		try0 = ATH_TXMAXTRY;
3320		if (shortPreamble)
3321			txrate = an->an_tx_mgtratesp;
3322		else
3323			txrate = an->an_tx_mgtrate;
3324		/* NB: force all ctl frames to highest queue */
3325		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3326			/* NB: force all ctl frames to highest queue */
3327			pri = WME_AC_VO;
3328		} else
3329			pri = WME_AC_BE;
3330		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3331		break;
3332	case IEEE80211_FC0_TYPE_DATA:
3333		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3334		/*
3335		 * Data frames; consult the rate control module.
3336		 */
3337		ath_rate_findrate(sc, an, shortPreamble, pktlen,
3338			&rix, &try0, &txrate);
3339		sc->sc_txrate = txrate;			/* for LED blinking */
3340		/*
3341		 * Default all non-QoS traffic to the background queue.
3342		 */
3343		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3344			pri = M_WME_GETAC(m0);
3345			if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3346				flags |= HAL_TXDESC_NOACK;
3347				sc->sc_stats.ast_tx_noack++;
3348			}
3349		} else
3350			pri = WME_AC_BE;
3351		break;
3352	default:
3353		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3354			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3355		/* XXX statistic */
3356		m_freem(m0);
3357		return EIO;
3358	}
3359	txq = sc->sc_ac2q[pri];
3360
3361	/*
3362	 * When servicing one or more stations in power-save mode
3363	 * multicast frames must be buffered until after the beacon.
3364	 * We use the CAB queue for that.
3365	 */
3366	if (ismcast && ic->ic_ps_sta) {
3367		txq = sc->sc_cabq;
3368		/* XXX? more bit in 802.11 frame header */
3369	}
3370
3371	/*
3372	 * Calculate miscellaneous flags.
3373	 */
3374	if (ismcast) {
3375		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3376		sc->sc_stats.ast_tx_noack++;
3377	} else if (pktlen > ic->ic_rtsthreshold) {
3378		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3379		cix = rt->info[rix].controlRate;
3380		sc->sc_stats.ast_tx_rts++;
3381	}
3382
3383	/*
3384	 * If 802.11g protection is enabled, determine whether
3385	 * to use RTS/CTS or just CTS.  Note that this is only
3386	 * done for OFDM unicast frames.
3387	 */
3388	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3389	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3390	    (flags & HAL_TXDESC_NOACK) == 0) {
3391		/* XXX fragments must use CCK rates w/ protection */
3392		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3393			flags |= HAL_TXDESC_RTSENA;
3394		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3395			flags |= HAL_TXDESC_CTSENA;
3396		cix = rt->info[sc->sc_protrix].controlRate;
3397		sc->sc_stats.ast_tx_protect++;
3398	}
3399
3400	/*
3401	 * Calculate duration.  This logically belongs in the 802.11
3402	 * layer but it lacks sufficient information to calculate it.
3403	 */
3404	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3405	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3406		u_int16_t dur;
3407		/*
3408		 * XXX not right with fragmentation.
3409		 */
3410		if (shortPreamble)
3411			dur = rt->info[rix].spAckDuration;
3412		else
3413			dur = rt->info[rix].lpAckDuration;
3414		*(u_int16_t *)wh->i_dur = htole16(dur);
3415	}
3416
3417	/*
3418	 * Calculate RTS/CTS rate and duration if needed.
3419	 */
3420	ctsduration = 0;
3421	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3422		/*
3423		 * CTS transmit rate is derived from the transmit rate
3424		 * by looking in the h/w rate table.  We must also factor
3425		 * in whether or not a short preamble is to be used.
3426		 */
3427		/* NB: cix is set above where RTS/CTS is enabled */
3428		KASSERT(cix != 0xff, ("cix not setup"));
3429		ctsrate = rt->info[cix].rateCode;
3430		/*
3431		 * Compute the transmit duration based on the frame
3432		 * size and the size of an ACK frame.  We call into the
3433		 * HAL to do the computation since it depends on the
3434		 * characteristics of the actual PHY being used.
3435		 *
3436		 * NB: CTS is assumed the same size as an ACK so we can
3437		 *     use the precalculated ACK durations.
3438		 */
3439		if (shortPreamble) {
3440			ctsrate |= rt->info[cix].shortPreamble;
3441			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3442				ctsduration += rt->info[cix].spAckDuration;
3443			ctsduration += ath_hal_computetxtime(ah,
3444				rt, pktlen, rix, AH_TRUE);
3445			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3446				ctsduration += rt->info[rix].spAckDuration;
3447		} else {
3448			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3449				ctsduration += rt->info[cix].lpAckDuration;
3450			ctsduration += ath_hal_computetxtime(ah,
3451				rt, pktlen, rix, AH_FALSE);
3452			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3453				ctsduration += rt->info[rix].lpAckDuration;
3454		}
3455		/*
3456		 * Must disable multi-rate retry when using RTS/CTS.
3457		 */
3458		try0 = ATH_TXMAXTRY;
3459	} else
3460		ctsrate = 0;
3461
3462	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3463		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3464			sc->sc_hwmap[txrate].ieeerate, -1);
3465
3466	if (ic->ic_rawbpf)
3467		bpf_mtap(ic->ic_rawbpf, m0);
3468	if (sc->sc_drvbpf) {
3469		u_int64_t tsf = ath_hal_gettsf64(ah);
3470
3471		sc->sc_tx_th.wt_tsf = htole64(tsf);
3472		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3473		if (iswep)
3474			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3475		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3476		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3477		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3478
3479		bpf_mtap2(sc->sc_drvbpf,
3480			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3481	}
3482
3483	/*
3484	 * Determine if a tx interrupt should be generated for
3485	 * this descriptor.  We take a tx interrupt to reap
3486	 * descriptors when the h/w hits an EOL condition or
3487	 * when the descriptor is specifically marked to generate
3488	 * an interrupt.  We periodically mark descriptors in this
3489	 * way to insure timely replenishing of the supply needed
3490	 * for sending frames.  Defering interrupts reduces system
3491	 * load and potentially allows more concurrent work to be
3492	 * done but if done to aggressively can cause senders to
3493	 * backup.
3494	 *
3495	 * NB: use >= to deal with sc_txintrperiod changing
3496	 *     dynamically through sysctl.
3497	 */
3498	if (flags & HAL_TXDESC_INTREQ) {
3499		txq->axq_intrcnt = 0;
3500	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3501		flags |= HAL_TXDESC_INTREQ;
3502		txq->axq_intrcnt = 0;
3503	}
3504
3505	/*
3506	 * Formulate first tx descriptor with tx controls.
3507	 */
3508	/* XXX check return value? */
3509	ath_hal_setuptxdesc(ah, ds
3510		, pktlen		/* packet length */
3511		, hdrlen		/* header length */
3512		, atype			/* Atheros packet type */
3513		, ni->ni_txpower	/* txpower */
3514		, txrate, try0		/* series 0 rate/tries */
3515		, keyix			/* key cache index */
3516		, sc->sc_txantenna	/* antenna mode */
3517		, flags			/* flags */
3518		, ctsrate		/* rts/cts rate */
3519		, ctsduration		/* rts/cts duration */
3520	);
3521	bf->bf_flags = flags;
3522	/*
3523	 * Setup the multi-rate retry state only when we're
3524	 * going to use it.  This assumes ath_hal_setuptxdesc
3525	 * initializes the descriptors (so we don't have to)
3526	 * when the hardware supports multi-rate retry and
3527	 * we don't use it.
3528	 */
3529	if (try0 != ATH_TXMAXTRY)
3530		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3531
3532	/*
3533	 * Fillin the remainder of the descriptor info.
3534	 */
3535	ds0 = ds;
3536	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3537		ds->ds_data = bf->bf_segs[i].ds_addr;
3538		if (i == bf->bf_nseg - 1)
3539			ds->ds_link = 0;
3540		else
3541			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3542		ath_hal_filltxdesc(ah, ds
3543			, bf->bf_segs[i].ds_len	/* segment length */
3544			, i == 0		/* first segment */
3545			, i == bf->bf_nseg - 1	/* last segment */
3546			, ds0			/* first descriptor */
3547		);
3548		DPRINTF(sc, ATH_DEBUG_XMIT,
3549			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3550			__func__, i, ds->ds_link, ds->ds_data,
3551			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3552	}
3553	/*
3554	 * Insert the frame on the outbound list and
3555	 * pass it on to the hardware.
3556	 */
3557	ATH_TXQ_LOCK(txq);
3558	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3559	if (txq->axq_link == NULL) {
3560		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3561		DPRINTF(sc, ATH_DEBUG_XMIT,
3562			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3563			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3564			txq->axq_depth);
3565	} else {
3566		*txq->axq_link = bf->bf_daddr;
3567		DPRINTF(sc, ATH_DEBUG_XMIT,
3568			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3569			txq->axq_qnum, txq->axq_link,
3570			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3571	}
3572	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3573	/*
3574	 * The CAB queue is started from the SWBA handler since
3575	 * frames only go out on DTIM and to avoid possible races.
3576	 */
3577	if (txq != sc->sc_cabq)
3578		ath_hal_txstart(ah, txq->axq_qnum);
3579	ATH_TXQ_UNLOCK(txq);
3580
3581	return 0;
3582}
3583
3584/*
3585 * Process completed xmit descriptors from the specified queue.
3586 */
3587static void
3588ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3589{
3590	struct ath_hal *ah = sc->sc_ah;
3591	struct ieee80211com *ic = &sc->sc_ic;
3592	struct ath_buf *bf;
3593	struct ath_desc *ds, *ds0;
3594	struct ieee80211_node *ni;
3595	struct ath_node *an;
3596	int sr, lr, pri;
3597	HAL_STATUS status;
3598
3599	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3600		__func__, txq->axq_qnum,
3601		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3602		txq->axq_link);
3603	for (;;) {
3604		ATH_TXQ_LOCK(txq);
3605		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3606		bf = STAILQ_FIRST(&txq->axq_q);
3607		if (bf == NULL) {
3608			txq->axq_link = NULL;
3609			ATH_TXQ_UNLOCK(txq);
3610			break;
3611		}
3612		ds0 = &bf->bf_desc[0];
3613		ds = &bf->bf_desc[bf->bf_nseg - 1];
3614		status = ath_hal_txprocdesc(ah, ds);
3615#ifdef AR_DEBUG
3616		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3617			ath_printtxbuf(bf, status == HAL_OK);
3618#endif
3619		if (status == HAL_EINPROGRESS) {
3620			ATH_TXQ_UNLOCK(txq);
3621			break;
3622		}
3623		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3624		ATH_TXQ_UNLOCK(txq);
3625
3626		ni = bf->bf_node;
3627		if (ni != NULL) {
3628			an = ATH_NODE(ni);
3629			if (ds->ds_txstat.ts_status == 0) {
3630				u_int8_t txant = ds->ds_txstat.ts_antenna;
3631				sc->sc_stats.ast_ant_tx[txant]++;
3632				sc->sc_ant_tx[txant]++;
3633				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3634					sc->sc_stats.ast_tx_altrate++;
3635				sc->sc_stats.ast_tx_rssi =
3636					ds->ds_txstat.ts_rssi;
3637				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3638					ds->ds_txstat.ts_rssi);
3639				pri = M_WME_GETAC(bf->bf_m);
3640				if (pri >= WME_AC_VO)
3641					ic->ic_wme.wme_hipri_traffic++;
3642				ni->ni_inact = ni->ni_inact_reload;
3643			} else {
3644				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3645					sc->sc_stats.ast_tx_xretries++;
3646				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3647					sc->sc_stats.ast_tx_fifoerr++;
3648				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3649					sc->sc_stats.ast_tx_filtered++;
3650			}
3651			sr = ds->ds_txstat.ts_shortretry;
3652			lr = ds->ds_txstat.ts_longretry;
3653			sc->sc_stats.ast_tx_shortretry += sr;
3654			sc->sc_stats.ast_tx_longretry += lr;
3655			/*
3656			 * Hand the descriptor to the rate control algorithm.
3657			 */
3658			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3659			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0)
3660				ath_rate_tx_complete(sc, an, ds, ds0);
3661			/*
3662			 * Reclaim reference to node.
3663			 *
3664			 * NB: the node may be reclaimed here if, for example
3665			 *     this is a DEAUTH message that was sent and the
3666			 *     node was timed out due to inactivity.
3667			 */
3668			ieee80211_free_node(ni);
3669		}
3670		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3671		    BUS_DMASYNC_POSTWRITE);
3672		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3673		m_freem(bf->bf_m);
3674		bf->bf_m = NULL;
3675		bf->bf_node = NULL;
3676
3677		ATH_TXBUF_LOCK(sc);
3678		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3679		ATH_TXBUF_UNLOCK(sc);
3680	}
3681}
3682
3683/*
3684 * Deferred processing of transmit interrupt; special-cased
3685 * for a single hardware transmit queue (e.g. 5210 and 5211).
3686 */
3687static void
3688ath_tx_proc_q0(void *arg, int npending)
3689{
3690	struct ath_softc *sc = arg;
3691	struct ifnet *ifp = sc->sc_ifp;
3692
3693	ath_tx_processq(sc, &sc->sc_txq[0]);
3694	ath_tx_processq(sc, sc->sc_cabq);
3695	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3696	sc->sc_tx_timer = 0;
3697
3698	if (sc->sc_softled)
3699		ath_led_event(sc, ATH_LED_TX);
3700
3701	ath_start(ifp);
3702}
3703
3704/*
3705 * Deferred processing of transmit interrupt; special-cased
3706 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3707 */
3708static void
3709ath_tx_proc_q0123(void *arg, int npending)
3710{
3711	struct ath_softc *sc = arg;
3712	struct ifnet *ifp = sc->sc_ifp;
3713
3714	/*
3715	 * Process each active queue.
3716	 */
3717	ath_tx_processq(sc, &sc->sc_txq[0]);
3718	ath_tx_processq(sc, &sc->sc_txq[1]);
3719	ath_tx_processq(sc, &sc->sc_txq[2]);
3720	ath_tx_processq(sc, &sc->sc_txq[3]);
3721	ath_tx_processq(sc, sc->sc_cabq);
3722
3723	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3724	sc->sc_tx_timer = 0;
3725
3726	if (sc->sc_softled)
3727		ath_led_event(sc, ATH_LED_TX);
3728
3729	ath_start(ifp);
3730}
3731
3732/*
3733 * Deferred processing of transmit interrupt.
3734 */
3735static void
3736ath_tx_proc(void *arg, int npending)
3737{
3738	struct ath_softc *sc = arg;
3739	struct ifnet *ifp = sc->sc_ifp;
3740	int i;
3741
3742	/*
3743	 * Process each active queue.
3744	 */
3745	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3746	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3747		if (ATH_TXQ_SETUP(sc, i))
3748			ath_tx_processq(sc, &sc->sc_txq[i]);
3749
3750	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3751	sc->sc_tx_timer = 0;
3752
3753	if (sc->sc_softled)
3754		ath_led_event(sc, ATH_LED_TX);
3755
3756	ath_start(ifp);
3757}
3758
3759static void
3760ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3761{
3762	struct ath_hal *ah = sc->sc_ah;
3763	struct ieee80211_node *ni;
3764	struct ath_buf *bf;
3765
3766	/*
3767	 * NB: this assumes output has been stopped and
3768	 *     we do not need to block ath_tx_tasklet
3769	 */
3770	for (;;) {
3771		ATH_TXQ_LOCK(txq);
3772		bf = STAILQ_FIRST(&txq->axq_q);
3773		if (bf == NULL) {
3774			txq->axq_link = NULL;
3775			ATH_TXQ_UNLOCK(txq);
3776			break;
3777		}
3778		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3779		ATH_TXQ_UNLOCK(txq);
3780#ifdef AR_DEBUG
3781		if (sc->sc_debug & ATH_DEBUG_RESET)
3782			ath_printtxbuf(bf,
3783				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3784#endif /* AR_DEBUG */
3785		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3786		m_freem(bf->bf_m);
3787		bf->bf_m = NULL;
3788		ni = bf->bf_node;
3789		bf->bf_node = NULL;
3790		if (ni != NULL) {
3791			/*
3792			 * Reclaim node reference.
3793			 */
3794			ieee80211_free_node(ni);
3795		}
3796		ATH_TXBUF_LOCK(sc);
3797		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3798		ATH_TXBUF_UNLOCK(sc);
3799	}
3800}
3801
3802static void
3803ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3804{
3805	struct ath_hal *ah = sc->sc_ah;
3806
3807	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3808	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3809	    __func__, txq->axq_qnum,
3810	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3811	    txq->axq_link);
3812}
3813
3814/*
3815 * Drain the transmit queues and reclaim resources.
3816 */
3817static void
3818ath_draintxq(struct ath_softc *sc)
3819{
3820	struct ath_hal *ah = sc->sc_ah;
3821	struct ifnet *ifp = sc->sc_ifp;
3822	int i;
3823
3824	/* XXX return value */
3825	if (!sc->sc_invalid) {
3826		/* don't touch the hardware if marked invalid */
3827		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3828		DPRINTF(sc, ATH_DEBUG_RESET,
3829		    "%s: beacon queue %p\n", __func__,
3830		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
3831		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3832			if (ATH_TXQ_SETUP(sc, i))
3833				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3834	}
3835	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3836		if (ATH_TXQ_SETUP(sc, i))
3837			ath_tx_draintxq(sc, &sc->sc_txq[i]);
3838	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3839	sc->sc_tx_timer = 0;
3840}
3841
3842/*
3843 * Disable the receive h/w in preparation for a reset.
3844 */
3845static void
3846ath_stoprecv(struct ath_softc *sc)
3847{
3848#define	PA2DESC(_sc, _pa) \
3849	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3850		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3851	struct ath_hal *ah = sc->sc_ah;
3852
3853	ath_hal_stoppcurecv(ah);	/* disable PCU */
3854	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
3855	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
3856	DELAY(3000);			/* 3ms is long enough for 1 frame */
3857#ifdef AR_DEBUG
3858	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
3859		struct ath_buf *bf;
3860
3861		printf("%s: rx queue %p, link %p\n", __func__,
3862			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3863		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3864			struct ath_desc *ds = bf->bf_desc;
3865			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
3866				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3867			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
3868				ath_printrxbuf(bf, status == HAL_OK);
3869		}
3870	}
3871#endif
3872	sc->sc_rxlink = NULL;		/* just in case */
3873#undef PA2DESC
3874}
3875
3876/*
3877 * Enable the receive h/w following a reset.
3878 */
3879static int
3880ath_startrecv(struct ath_softc *sc)
3881{
3882	struct ath_hal *ah = sc->sc_ah;
3883	struct ath_buf *bf;
3884
3885	sc->sc_rxlink = NULL;
3886	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3887		int error = ath_rxbuf_init(sc, bf);
3888		if (error != 0) {
3889			DPRINTF(sc, ATH_DEBUG_RECV,
3890				"%s: ath_rxbuf_init failed %d\n",
3891				__func__, error);
3892			return error;
3893		}
3894	}
3895
3896	bf = STAILQ_FIRST(&sc->sc_rxbuf);
3897	ath_hal_putrxbuf(ah, bf->bf_daddr);
3898	ath_hal_rxena(ah);		/* enable recv descriptors */
3899	ath_mode_init(sc);		/* set filters, etc. */
3900	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
3901	return 0;
3902}
3903
3904/*
3905 * Update internal state after a channel change.
3906 */
3907static void
3908ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3909{
3910	struct ieee80211com *ic = &sc->sc_ic;
3911	enum ieee80211_phymode mode;
3912	u_int16_t flags;
3913
3914	/*
3915	 * Change channels and update the h/w rate map
3916	 * if we're switching; e.g. 11a to 11b/g.
3917	 */
3918	mode = ieee80211_chan2mode(ic, chan);
3919	if (mode != sc->sc_curmode)
3920		ath_setcurmode(sc, mode);
3921	/*
3922	 * Update BPF state.  NB: ethereal et. al. don't handle
3923	 * merged flags well so pick a unique mode for their use.
3924	 */
3925	if (IEEE80211_IS_CHAN_A(chan))
3926		flags = IEEE80211_CHAN_A;
3927	/* XXX 11g schizophrenia */
3928	else if (IEEE80211_IS_CHAN_G(chan) ||
3929	    IEEE80211_IS_CHAN_PUREG(chan))
3930		flags = IEEE80211_CHAN_G;
3931	else
3932		flags = IEEE80211_CHAN_B;
3933	if (IEEE80211_IS_CHAN_T(chan))
3934		flags |= IEEE80211_CHAN_TURBO;
3935	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3936		htole16(chan->ic_freq);
3937	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3938		htole16(flags);
3939}
3940
3941/*
3942 * Set/change channels.  If the channel is really being changed,
3943 * it's done by reseting the chip.  To accomplish this we must
3944 * first cleanup any pending DMA, then restart stuff after a la
3945 * ath_init.
3946 */
3947static int
3948ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3949{
3950	struct ath_hal *ah = sc->sc_ah;
3951	struct ieee80211com *ic = &sc->sc_ic;
3952	HAL_CHANNEL hchan;
3953
3954	/*
3955	 * Convert to a HAL channel description with
3956	 * the flags constrained to reflect the current
3957	 * operating mode.
3958	 */
3959	hchan.channel = chan->ic_freq;
3960	hchan.channelFlags = ath_chan2flags(ic, chan);
3961
3962	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
3963	    __func__,
3964	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
3965		sc->sc_curchan.channelFlags),
3966	    	sc->sc_curchan.channel,
3967	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
3968	if (hchan.channel != sc->sc_curchan.channel ||
3969	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
3970		HAL_STATUS status;
3971
3972		/*
3973		 * To switch channels clear any pending DMA operations;
3974		 * wait long enough for the RX fifo to drain, reset the
3975		 * hardware at the new frequency, and then re-enable
3976		 * the relevant bits of the h/w.
3977		 */
3978		ath_hal_intrset(ah, 0);		/* disable interrupts */
3979		ath_draintxq(sc);		/* clear pending tx frames */
3980		ath_stoprecv(sc);		/* turn off frame recv */
3981		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
3982			if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
3983				"channel %u (%u Mhz)\n",
3984				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
3985			return EIO;
3986		}
3987		sc->sc_curchan = hchan;
3988		ath_update_txpow(sc);		/* update tx power state */
3989		sc->sc_diversity = ath_hal_getdiversity(ah);
3990
3991		/*
3992		 * Re-enable rx framework.
3993		 */
3994		if (ath_startrecv(sc) != 0) {
3995			if_printf(ic->ic_ifp,
3996				"ath_chan_set: unable to restart recv logic\n");
3997			return EIO;
3998		}
3999
4000		/*
4001		 * Change channels and update the h/w rate map
4002		 * if we're switching; e.g. 11a to 11b/g.
4003		 */
4004		ic->ic_ibss_chan = chan;
4005		ath_chan_change(sc, chan);
4006
4007		/*
4008		 * Re-enable interrupts.
4009		 */
4010		ath_hal_intrset(ah, sc->sc_imask);
4011	}
4012	return 0;
4013}
4014
4015static void
4016ath_next_scan(void *arg)
4017{
4018	struct ath_softc *sc = arg;
4019	struct ieee80211com *ic = &sc->sc_ic;
4020
4021	if (ic->ic_state == IEEE80211_S_SCAN)
4022		ieee80211_next_scan(ic);
4023}
4024
4025/*
4026 * Periodically recalibrate the PHY to account
4027 * for temperature/environment changes.
4028 */
4029static void
4030ath_calibrate(void *arg)
4031{
4032	struct ath_softc *sc = arg;
4033	struct ath_hal *ah = sc->sc_ah;
4034
4035	sc->sc_stats.ast_per_cal++;
4036
4037	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
4038		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
4039
4040	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4041		/*
4042		 * Rfgain is out of bounds, reset the chip
4043		 * to load new gain values.
4044		 */
4045		sc->sc_stats.ast_per_rfgain++;
4046		ath_reset(sc->sc_ifp);
4047	}
4048	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
4049		DPRINTF(sc, ATH_DEBUG_ANY,
4050			"%s: calibration of channel %u failed\n",
4051			__func__, sc->sc_curchan.channel);
4052		sc->sc_stats.ast_per_calfail++;
4053	}
4054	/*
4055	 * Calibrate noise floor data again in case of change.
4056	 */
4057	ath_hal_process_noisefloor(ah);
4058	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
4059}
4060
4061static int
4062ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4063{
4064	struct ifnet *ifp = ic->ic_ifp;
4065	struct ath_softc *sc = ifp->if_softc;
4066	struct ath_hal *ah = sc->sc_ah;
4067	struct ieee80211_node *ni;
4068	int i, error;
4069	const u_int8_t *bssid;
4070	u_int32_t rfilt;
4071	static const HAL_LED_STATE leds[] = {
4072	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4073	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4074	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4075	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4076	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4077	};
4078
4079	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4080		ieee80211_state_name[ic->ic_state],
4081		ieee80211_state_name[nstate]);
4082
4083	callout_stop(&sc->sc_scan_ch);
4084	callout_stop(&sc->sc_cal_ch);
4085	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4086
4087	if (nstate == IEEE80211_S_INIT) {
4088		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4089		/*
4090		 * NB: disable interrupts so we don't rx frames.
4091		 */
4092		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4093		/*
4094		 * Notify the rate control algorithm.
4095		 */
4096		ath_rate_newstate(sc, nstate);
4097		goto done;
4098	}
4099	ni = ic->ic_bss;
4100	error = ath_chan_set(sc, ic->ic_curchan);
4101	if (error != 0)
4102		goto bad;
4103	rfilt = ath_calcrxfilter(sc, nstate);
4104	if (nstate == IEEE80211_S_SCAN)
4105		bssid = ifp->if_broadcastaddr;
4106	else
4107		bssid = ni->ni_bssid;
4108	ath_hal_setrxfilter(ah, rfilt);
4109	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4110		 __func__, rfilt, ether_sprintf(bssid));
4111
4112	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4113		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4114	else
4115		ath_hal_setassocid(ah, bssid, 0);
4116	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4117		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4118			if (ath_hal_keyisvalid(ah, i))
4119				ath_hal_keysetmac(ah, i, bssid);
4120	}
4121
4122	/*
4123	 * Notify the rate control algorithm so rates
4124	 * are setup should ath_beacon_alloc be called.
4125	 */
4126	ath_rate_newstate(sc, nstate);
4127
4128	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4129		/* nothing to do */;
4130	} else if (nstate == IEEE80211_S_RUN) {
4131		DPRINTF(sc, ATH_DEBUG_STATE,
4132			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4133			"capinfo=0x%04x chan=%d\n"
4134			 , __func__
4135			 , ic->ic_flags
4136			 , ni->ni_intval
4137			 , ether_sprintf(ni->ni_bssid)
4138			 , ni->ni_capinfo
4139			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4140
4141		switch (ic->ic_opmode) {
4142		case IEEE80211_M_HOSTAP:
4143		case IEEE80211_M_IBSS:
4144			/*
4145			 * Allocate and setup the beacon frame.
4146			 *
4147			 * Stop any previous beacon DMA.  This may be
4148			 * necessary, for example, when an ibss merge
4149			 * causes reconfiguration; there will be a state
4150			 * transition from RUN->RUN that means we may
4151			 * be called with beacon transmission active.
4152			 */
4153			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4154			ath_beacon_free(sc);
4155			error = ath_beacon_alloc(sc, ni);
4156			if (error != 0)
4157				goto bad;
4158			break;
4159		case IEEE80211_M_STA:
4160			/*
4161			 * Allocate a key cache slot to the station.
4162			 */
4163			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4164			    sc->sc_hasclrkey &&
4165			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4166				ath_setup_stationkey(ni);
4167			break;
4168		default:
4169			break;
4170		}
4171
4172		/*
4173		 * Let the hal process statistics collected during a
4174		 * scan so it can provide calibrated noise floor data.
4175		 */
4176		ath_hal_process_noisefloor(ah);
4177		/*
4178		 * Configure the beacon and sleep timers.
4179		 */
4180		ath_beacon_config(sc);
4181	} else {
4182		ath_hal_intrset(ah,
4183			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4184		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4185	}
4186done:
4187	/*
4188	 * Invoke the parent method to complete the work.
4189	 */
4190	error = sc->sc_newstate(ic, nstate, arg);
4191	/*
4192	 * Finally, start any timers.
4193	 */
4194	if (nstate == IEEE80211_S_RUN) {
4195		/* start periodic recalibration timer */
4196		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4197			ath_calibrate, sc);
4198	} else if (nstate == IEEE80211_S_SCAN) {
4199		/* start ap/neighbor scan timer */
4200		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4201			ath_next_scan, sc);
4202	}
4203bad:
4204	return error;
4205}
4206
4207/*
4208 * Allocate a key cache slot to the station so we can
4209 * setup a mapping from key index to node. The key cache
4210 * slot is needed for managing antenna state and for
4211 * compression when stations do not use crypto.  We do
4212 * it uniliaterally here; if crypto is employed this slot
4213 * will be reassigned.
4214 */
4215static void
4216ath_setup_stationkey(struct ieee80211_node *ni)
4217{
4218	struct ieee80211com *ic = ni->ni_ic;
4219	struct ath_softc *sc = ic->ic_ifp->if_softc;
4220	ieee80211_keyix keyix, rxkeyix;
4221
4222	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4223		/*
4224		 * Key cache is full; we'll fall back to doing
4225		 * the more expensive lookup in software.  Note
4226		 * this also means no h/w compression.
4227		 */
4228		/* XXX msg+statistic */
4229	} else {
4230		/* XXX locking? */
4231		ni->ni_ucastkey.wk_keyix = keyix;
4232		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4233		/* NB: this will create a pass-thru key entry */
4234		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4235	}
4236}
4237
4238/*
4239 * Setup driver-specific state for a newly associated node.
4240 * Note that we're called also on a re-associate, the isnew
4241 * param tells us if this is the first time or not.
4242 */
4243static void
4244ath_newassoc(struct ieee80211_node *ni, int isnew)
4245{
4246	struct ieee80211com *ic = ni->ni_ic;
4247	struct ath_softc *sc = ic->ic_ifp->if_softc;
4248
4249	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4250	if (isnew &&
4251	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4252		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4253		    ("new assoc with a unicast key already setup (keyix %u)",
4254		    ni->ni_ucastkey.wk_keyix));
4255		ath_setup_stationkey(ni);
4256	}
4257}
4258
4259static int
4260ath_getchannels(struct ath_softc *sc, u_int cc,
4261	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4262{
4263	struct ieee80211com *ic = &sc->sc_ic;
4264	struct ifnet *ifp = sc->sc_ifp;
4265	struct ath_hal *ah = sc->sc_ah;
4266	HAL_CHANNEL *chans;
4267	int i, ix, nchan;
4268
4269	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4270			M_TEMP, M_NOWAIT);
4271	if (chans == NULL) {
4272		if_printf(ifp, "unable to allocate channel table\n");
4273		return ENOMEM;
4274	}
4275	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4276	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4277		u_int32_t rd;
4278
4279		ath_hal_getregdomain(ah, &rd);
4280		if_printf(ifp, "unable to collect channel list from hal; "
4281			"regdomain likely %u country code %u\n", rd, cc);
4282		free(chans, M_TEMP);
4283		return EINVAL;
4284	}
4285
4286	/*
4287	 * Convert HAL channels to ieee80211 ones and insert
4288	 * them in the table according to their channel number.
4289	 */
4290	for (i = 0; i < nchan; i++) {
4291		HAL_CHANNEL *c = &chans[i];
4292		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4293		if (ix > IEEE80211_CHAN_MAX) {
4294			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4295				ix, c->channel, c->channelFlags);
4296			continue;
4297		}
4298		/* NB: flags are known to be compatible */
4299		if (ic->ic_channels[ix].ic_freq == 0) {
4300			ic->ic_channels[ix].ic_freq = c->channel;
4301			ic->ic_channels[ix].ic_flags = c->channelFlags;
4302		} else {
4303			/* channels overlap; e.g. 11g and 11b */
4304			ic->ic_channels[ix].ic_flags |= c->channelFlags;
4305		}
4306	}
4307	free(chans, M_TEMP);
4308	return 0;
4309}
4310
4311static void
4312ath_led_done(void *arg)
4313{
4314	struct ath_softc *sc = arg;
4315
4316	sc->sc_blinking = 0;
4317}
4318
4319/*
4320 * Turn the LED off: flip the pin and then set a timer so no
4321 * update will happen for the specified duration.
4322 */
4323static void
4324ath_led_off(void *arg)
4325{
4326	struct ath_softc *sc = arg;
4327
4328	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4329	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4330}
4331
4332/*
4333 * Blink the LED according to the specified on/off times.
4334 */
4335static void
4336ath_led_blink(struct ath_softc *sc, int on, int off)
4337{
4338	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4339	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4340	sc->sc_blinking = 1;
4341	sc->sc_ledoff = off;
4342	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4343}
4344
4345static void
4346ath_led_event(struct ath_softc *sc, int event)
4347{
4348
4349	sc->sc_ledevent = ticks;	/* time of last event */
4350	if (sc->sc_blinking)		/* don't interrupt active blink */
4351		return;
4352	switch (event) {
4353	case ATH_LED_POLL:
4354		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4355			sc->sc_hwmap[0].ledoff);
4356		break;
4357	case ATH_LED_TX:
4358		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4359			sc->sc_hwmap[sc->sc_txrate].ledoff);
4360		break;
4361	case ATH_LED_RX:
4362		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4363			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4364		break;
4365	}
4366}
4367
4368static void
4369ath_update_txpow(struct ath_softc *sc)
4370{
4371	struct ieee80211com *ic = &sc->sc_ic;
4372	struct ath_hal *ah = sc->sc_ah;
4373	u_int32_t txpow;
4374
4375	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4376		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4377		/* read back in case value is clamped */
4378		ath_hal_gettxpowlimit(ah, &txpow);
4379		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4380	}
4381	/*
4382	 * Fetch max tx power level for status requests.
4383	 */
4384	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4385	ic->ic_bss->ni_txpower = txpow;
4386}
4387
4388static int
4389ath_rate_setup(struct ath_softc *sc, u_int mode)
4390{
4391	struct ath_hal *ah = sc->sc_ah;
4392	struct ieee80211com *ic = &sc->sc_ic;
4393	const HAL_RATE_TABLE *rt;
4394	struct ieee80211_rateset *rs;
4395	int i, maxrates;
4396
4397	switch (mode) {
4398	case IEEE80211_MODE_11A:
4399		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4400		break;
4401	case IEEE80211_MODE_11B:
4402		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4403		break;
4404	case IEEE80211_MODE_11G:
4405		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4406		break;
4407	case IEEE80211_MODE_TURBO_A:
4408		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4409		break;
4410	case IEEE80211_MODE_TURBO_G:
4411		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4412		break;
4413	default:
4414		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4415			__func__, mode);
4416		return 0;
4417	}
4418	rt = sc->sc_rates[mode];
4419	if (rt == NULL)
4420		return 0;
4421	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4422		DPRINTF(sc, ATH_DEBUG_ANY,
4423			"%s: rate table too small (%u > %u)\n",
4424			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4425		maxrates = IEEE80211_RATE_MAXSIZE;
4426	} else
4427		maxrates = rt->rateCount;
4428	rs = &ic->ic_sup_rates[mode];
4429	for (i = 0; i < maxrates; i++)
4430		rs->rs_rates[i] = rt->info[i].dot11Rate;
4431	rs->rs_nrates = maxrates;
4432	return 1;
4433}
4434
4435static void
4436ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4437{
4438#define	N(a)	(sizeof(a)/sizeof(a[0]))
4439	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4440	static const struct {
4441		u_int		rate;		/* tx/rx 802.11 rate */
4442		u_int16_t	timeOn;		/* LED on time (ms) */
4443		u_int16_t	timeOff;	/* LED off time (ms) */
4444	} blinkrates[] = {
4445		{ 108,  40,  10 },
4446		{  96,  44,  11 },
4447		{  72,  50,  13 },
4448		{  48,  57,  14 },
4449		{  36,  67,  16 },
4450		{  24,  80,  20 },
4451		{  22, 100,  25 },
4452		{  18, 133,  34 },
4453		{  12, 160,  40 },
4454		{  10, 200,  50 },
4455		{   6, 240,  58 },
4456		{   4, 267,  66 },
4457		{   2, 400, 100 },
4458		{   0, 500, 130 },
4459	};
4460	const HAL_RATE_TABLE *rt;
4461	int i, j;
4462
4463	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4464	rt = sc->sc_rates[mode];
4465	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4466	for (i = 0; i < rt->rateCount; i++)
4467		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4468	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4469	for (i = 0; i < 32; i++) {
4470		u_int8_t ix = rt->rateCodeToIndex[i];
4471		if (ix == 0xff) {
4472			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4473			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4474			continue;
4475		}
4476		sc->sc_hwmap[i].ieeerate =
4477			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4478		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4479		if (rt->info[ix].shortPreamble ||
4480		    rt->info[ix].phy == IEEE80211_T_OFDM)
4481			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4482		/* NB: receive frames include FCS */
4483		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4484			IEEE80211_RADIOTAP_F_FCS;
4485		/* setup blink rate table to avoid per-packet lookup */
4486		for (j = 0; j < N(blinkrates)-1; j++)
4487			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4488				break;
4489		/* NB: this uses the last entry if the rate isn't found */
4490		/* XXX beware of overlow */
4491		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4492		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4493	}
4494	sc->sc_currates = rt;
4495	sc->sc_curmode = mode;
4496	/*
4497	 * All protection frames are transmited at 2Mb/s for
4498	 * 11g, otherwise at 1Mb/s.
4499	 * XXX select protection rate index from rate table.
4500	 */
4501	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4502	/* NB: caller is responsible for reseting rate control state */
4503#undef N
4504}
4505
4506#ifdef AR_DEBUG
4507static void
4508ath_printrxbuf(struct ath_buf *bf, int done)
4509{
4510	struct ath_desc *ds;
4511	int i;
4512
4513	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4514		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4515		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4516		    ds->ds_link, ds->ds_data,
4517		    ds->ds_ctl0, ds->ds_ctl1,
4518		    ds->ds_hw[0], ds->ds_hw[1],
4519		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4520	}
4521}
4522
4523static void
4524ath_printtxbuf(struct ath_buf *bf, int done)
4525{
4526	struct ath_desc *ds;
4527	int i;
4528
4529	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4530		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4531		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4532		    ds->ds_link, ds->ds_data,
4533		    ds->ds_ctl0, ds->ds_ctl1,
4534		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4535		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4536	}
4537}
4538#endif /* AR_DEBUG */
4539
4540static void
4541ath_watchdog(struct ifnet *ifp)
4542{
4543	struct ath_softc *sc = ifp->if_softc;
4544	struct ieee80211com *ic = &sc->sc_ic;
4545
4546	ifp->if_timer = 0;
4547	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
4548		return;
4549	if (sc->sc_tx_timer) {
4550		if (--sc->sc_tx_timer == 0) {
4551			if_printf(ifp, "device timeout\n");
4552			ath_reset(ifp);
4553			ifp->if_oerrors++;
4554			sc->sc_stats.ast_watchdog++;
4555		} else
4556			ifp->if_timer = 1;
4557	}
4558	ieee80211_watchdog(ic);
4559}
4560
4561/*
4562 * Diagnostic interface to the HAL.  This is used by various
4563 * tools to do things like retrieve register contents for
4564 * debugging.  The mechanism is intentionally opaque so that
4565 * it can change frequently w/o concern for compatiblity.
4566 */
4567static int
4568ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4569{
4570	struct ath_hal *ah = sc->sc_ah;
4571	u_int id = ad->ad_id & ATH_DIAG_ID;
4572	void *indata = NULL;
4573	void *outdata = NULL;
4574	u_int32_t insize = ad->ad_in_size;
4575	u_int32_t outsize = ad->ad_out_size;
4576	int error = 0;
4577
4578	if (ad->ad_id & ATH_DIAG_IN) {
4579		/*
4580		 * Copy in data.
4581		 */
4582		indata = malloc(insize, M_TEMP, M_NOWAIT);
4583		if (indata == NULL) {
4584			error = ENOMEM;
4585			goto bad;
4586		}
4587		error = copyin(ad->ad_in_data, indata, insize);
4588		if (error)
4589			goto bad;
4590	}
4591	if (ad->ad_id & ATH_DIAG_DYN) {
4592		/*
4593		 * Allocate a buffer for the results (otherwise the HAL
4594		 * returns a pointer to a buffer where we can read the
4595		 * results).  Note that we depend on the HAL leaving this
4596		 * pointer for us to use below in reclaiming the buffer;
4597		 * may want to be more defensive.
4598		 */
4599		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4600		if (outdata == NULL) {
4601			error = ENOMEM;
4602			goto bad;
4603		}
4604	}
4605	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4606		if (outsize < ad->ad_out_size)
4607			ad->ad_out_size = outsize;
4608		if (outdata != NULL)
4609			error = copyout(outdata, ad->ad_out_data,
4610					ad->ad_out_size);
4611	} else {
4612		error = EINVAL;
4613	}
4614bad:
4615	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4616		free(indata, M_TEMP);
4617	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4618		free(outdata, M_TEMP);
4619	return error;
4620}
4621
4622static int
4623ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4624{
4625#define	IS_RUNNING(ifp) \
4626	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
4627	struct ath_softc *sc = ifp->if_softc;
4628	struct ieee80211com *ic = &sc->sc_ic;
4629	struct ifreq *ifr = (struct ifreq *)data;
4630	int error = 0;
4631
4632	ATH_LOCK(sc);
4633	switch (cmd) {
4634	case SIOCSIFFLAGS:
4635		if (IS_RUNNING(ifp)) {
4636			/*
4637			 * To avoid rescanning another access point,
4638			 * do not call ath_init() here.  Instead,
4639			 * only reflect promisc mode settings.
4640			 */
4641			ath_mode_init(sc);
4642		} else if (ifp->if_flags & IFF_UP) {
4643			/*
4644			 * Beware of being called during attach/detach
4645			 * to reset promiscuous mode.  In that case we
4646			 * will still be marked UP but not RUNNING.
4647			 * However trying to re-init the interface
4648			 * is the wrong thing to do as we've already
4649			 * torn down much of our state.  There's
4650			 * probably a better way to deal with this.
4651			 */
4652			if (!sc->sc_invalid && ic->ic_bss != NULL)
4653				ath_init(sc);	/* XXX lose error */
4654		} else
4655			ath_stop_locked(ifp);
4656		break;
4657	case SIOCADDMULTI:
4658	case SIOCDELMULTI:
4659		/*
4660		 * The upper layer has already installed/removed
4661		 * the multicast address(es), just recalculate the
4662		 * multicast filter for the card.
4663		 */
4664		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4665			ath_mode_init(sc);
4666		break;
4667	case SIOCGATHSTATS:
4668		/* NB: embed these numbers to get a consistent view */
4669		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4670		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4671		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4672		ATH_UNLOCK(sc);
4673		/*
4674		 * NB: Drop the softc lock in case of a page fault;
4675		 * we'll accept any potential inconsisentcy in the
4676		 * statistics.  The alternative is to copy the data
4677		 * to a local structure.
4678		 */
4679		return copyout(&sc->sc_stats,
4680				ifr->ifr_data, sizeof (sc->sc_stats));
4681	case SIOCGATHDIAG:
4682		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4683		break;
4684	default:
4685		error = ieee80211_ioctl(ic, cmd, data);
4686		if (error == ENETRESET) {
4687			if (IS_RUNNING(ifp) &&
4688			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4689				ath_init(sc);	/* XXX lose error */
4690			error = 0;
4691		}
4692		if (error == ERESTART)
4693			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4694		break;
4695	}
4696	ATH_UNLOCK(sc);
4697	return error;
4698#undef IS_RUNNING
4699}
4700
4701static int
4702ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
4703{
4704	struct ath_softc *sc = arg1;
4705	u_int slottime = ath_hal_getslottime(sc->sc_ah);
4706	int error;
4707
4708	error = sysctl_handle_int(oidp, &slottime, 0, req);
4709	if (error || !req->newptr)
4710		return error;
4711	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
4712}
4713
4714static int
4715ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
4716{
4717	struct ath_softc *sc = arg1;
4718	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
4719	int error;
4720
4721	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
4722	if (error || !req->newptr)
4723		return error;
4724	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
4725}
4726
4727static int
4728ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
4729{
4730	struct ath_softc *sc = arg1;
4731	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
4732	int error;
4733
4734	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
4735	if (error || !req->newptr)
4736		return error;
4737	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
4738}
4739
4740static int
4741ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
4742{
4743	struct ath_softc *sc = arg1;
4744	int softled = sc->sc_softled;
4745	int error;
4746
4747	error = sysctl_handle_int(oidp, &softled, 0, req);
4748	if (error || !req->newptr)
4749		return error;
4750	softled = (softled != 0);
4751	if (softled != sc->sc_softled) {
4752		if (softled) {
4753			/* NB: handle any sc_ledpin change */
4754			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
4755			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
4756				!sc->sc_ledon);
4757		}
4758		sc->sc_softled = softled;
4759	}
4760	return 0;
4761}
4762
4763static int
4764ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
4765{
4766	struct ath_softc *sc = arg1;
4767	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
4768	int error;
4769
4770	error = sysctl_handle_int(oidp, &defantenna, 0, req);
4771	if (!error && req->newptr)
4772		ath_hal_setdefantenna(sc->sc_ah, defantenna);
4773	return error;
4774}
4775
4776static int
4777ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
4778{
4779	struct ath_softc *sc = arg1;
4780	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
4781	int error;
4782
4783	error = sysctl_handle_int(oidp, &diversity, 0, req);
4784	if (error || !req->newptr)
4785		return error;
4786	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
4787		return EINVAL;
4788	sc->sc_diversity = diversity;
4789	return 0;
4790}
4791
4792static int
4793ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
4794{
4795	struct ath_softc *sc = arg1;
4796	u_int32_t diag;
4797	int error;
4798
4799	if (!ath_hal_getdiag(sc->sc_ah, &diag))
4800		return EINVAL;
4801	error = sysctl_handle_int(oidp, &diag, 0, req);
4802	if (error || !req->newptr)
4803		return error;
4804	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
4805}
4806
4807static int
4808ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
4809{
4810	struct ath_softc *sc = arg1;
4811	struct ifnet *ifp = sc->sc_ifp;
4812	u_int32_t scale;
4813	int error;
4814
4815	ath_hal_gettpscale(sc->sc_ah, &scale);
4816	error = sysctl_handle_int(oidp, &scale, 0, req);
4817	if (error || !req->newptr)
4818		return error;
4819	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
4820}
4821
4822static int
4823ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
4824{
4825	struct ath_softc *sc = arg1;
4826	u_int tpc = ath_hal_gettpc(sc->sc_ah);
4827	int error;
4828
4829	error = sysctl_handle_int(oidp, &tpc, 0, req);
4830	if (error || !req->newptr)
4831		return error;
4832	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
4833}
4834
4835static void
4836ath_sysctlattach(struct ath_softc *sc)
4837{
4838	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4839	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4840	struct ath_hal *ah = sc->sc_ah;
4841
4842	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
4843	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4844		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
4845		"EEPROM country code");
4846	ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain);
4847	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4848		"regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0,
4849		"EEPROM regdomain code");
4850	sc->sc_debug = ath_debug;
4851	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4852		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
4853		"control debugging printfs");
4854
4855	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4856		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4857		ath_sysctl_slottime, "I", "802.11 slot time (us)");
4858	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4859		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4860		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
4861	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4862		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4863		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
4864	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4865		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4866		ath_sysctl_softled, "I", "enable/disable software LED support");
4867	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4868		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
4869		"GPIO pin connected to LED");
4870	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4871		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
4872		"setting to turn LED on");
4873	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4874		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
4875		"idle time for inactivity LED (ticks)");
4876	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4877		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
4878		"tx antenna (0=auto)");
4879	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4880		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4881		ath_sysctl_rxantenna, "I", "default/rx antenna");
4882	if (ath_hal_hasdiversity(ah))
4883		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4884			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4885			ath_sysctl_diversity, "I", "antenna diversity");
4886	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
4887	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4888		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
4889		"tx descriptor batching");
4890	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4891		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4892		ath_sysctl_diag, "I", "h/w diagnostic control");
4893	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4894		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4895		ath_sysctl_tpscale, "I", "tx power scaling");
4896	if (ath_hal_hastpc(ah))
4897		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4898			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4899			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
4900	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
4901	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4902		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
4903		"mask of error frames to pass when monitoring");
4904}
4905
4906static void
4907ath_bpfattach(struct ath_softc *sc)
4908{
4909	struct ifnet *ifp = sc->sc_ifp;
4910
4911	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4912		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4913		&sc->sc_drvbpf);
4914	/*
4915	 * Initialize constant fields.
4916	 * XXX make header lengths a multiple of 32-bits so subsequent
4917	 *     headers are properly aligned; this is a kludge to keep
4918	 *     certain applications happy.
4919	 *
4920	 * NB: the channel is setup each time we transition to the
4921	 *     RUN state to avoid filling it in for each frame.
4922	 */
4923	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4924	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4925	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4926
4927	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4928	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4929	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4930}
4931
4932/*
4933 * Announce various information on device/driver attach.
4934 */
4935static void
4936ath_announce(struct ath_softc *sc)
4937{
4938#define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
4939	struct ifnet *ifp = sc->sc_ifp;
4940	struct ath_hal *ah = sc->sc_ah;
4941	u_int modes, cc;
4942
4943	if_printf(ifp, "mac %d.%d phy %d.%d",
4944		ah->ah_macVersion, ah->ah_macRev,
4945		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4946	/*
4947	 * Print radio revision(s).  We check the wireless modes
4948	 * to avoid falsely printing revs for inoperable parts.
4949	 * Dual-band radio revs are returned in the 5Ghz rev number.
4950	 */
4951	ath_hal_getcountrycode(ah, &cc);
4952	modes = ath_hal_getwirelessmodes(ah, cc);
4953	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4954		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4955			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4956				ah->ah_analog5GhzRev >> 4,
4957				ah->ah_analog5GhzRev & 0xf,
4958				ah->ah_analog2GhzRev >> 4,
4959				ah->ah_analog2GhzRev & 0xf);
4960		else
4961			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4962				ah->ah_analog5GhzRev & 0xf);
4963	} else
4964		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4965			ah->ah_analog5GhzRev & 0xf);
4966	printf("\n");
4967	if (bootverbose) {
4968		int i;
4969		for (i = 0; i <= WME_AC_VO; i++) {
4970			struct ath_txq *txq = sc->sc_ac2q[i];
4971			if_printf(ifp, "Use hw queue %u for %s traffic\n",
4972				txq->axq_qnum, ieee80211_wme_acnames[i]);
4973		}
4974		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4975			sc->sc_cabq->axq_qnum);
4976		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4977	}
4978#undef HAL_MODE_DUALBAND
4979}
4980