if_ath.c revision 144961
1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 * 3. Neither the names of the above-listed copyright holders nor the names
16 *    of any contributors may be used to endorse or promote products derived
17 *    from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * NO WARRANTY
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34 * THE POSSIBILITY OF SUCH DAMAGES.
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 144961 2005-04-12 17:56:43Z sam $");
39
40/*
41 * Driver for the Atheros Wireless LAN controller.
42 *
43 * This software is derived from work of Atsushi Onoe; his contribution
44 * is greatly appreciated.
45 */
46
47#include "opt_inet.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/sysctl.h>
52#include <sys/mbuf.h>
53#include <sys/malloc.h>
54#include <sys/lock.h>
55#include <sys/mutex.h>
56#include <sys/kernel.h>
57#include <sys/socket.h>
58#include <sys/sockio.h>
59#include <sys/errno.h>
60#include <sys/callout.h>
61#include <sys/bus.h>
62#include <sys/endian.h>
63
64#include <machine/bus.h>
65
66#include <net/if.h>
67#include <net/if_dl.h>
68#include <net/if_media.h>
69#include <net/if_arp.h>
70#include <net/ethernet.h>
71#include <net/if_llc.h>
72
73#include <net80211/ieee80211_var.h>
74
75#include <net/bpf.h>
76
77#ifdef INET
78#include <netinet/in.h>
79#include <netinet/if_ether.h>
80#endif
81
82#define	AR_DEBUG
83#include <dev/ath/if_athvar.h>
84#include <contrib/dev/ath/ah_desc.h>
85#include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
86
87/* unalligned little endian access */
88#define LE_READ_2(p)							\
89	((u_int16_t)							\
90	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
91#define LE_READ_4(p)							\
92	((u_int32_t)							\
93	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
94	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
95
96enum {
97	ATH_LED_TX,
98	ATH_LED_RX,
99	ATH_LED_POLL,
100};
101
102static void	ath_init(void *);
103static void	ath_stop_locked(struct ifnet *);
104static void	ath_stop(struct ifnet *);
105static void	ath_start(struct ifnet *);
106static int	ath_reset(struct ifnet *);
107static int	ath_media_change(struct ifnet *);
108static void	ath_watchdog(struct ifnet *);
109static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
110static void	ath_fatal_proc(void *, int);
111static void	ath_rxorn_proc(void *, int);
112static void	ath_bmiss_proc(void *, int);
113static void	ath_initkeytable(struct ath_softc *);
114static int	ath_key_alloc(struct ieee80211com *,
115			const struct ieee80211_key *);
116static int	ath_key_delete(struct ieee80211com *,
117			const struct ieee80211_key *);
118static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
119			const u_int8_t mac[IEEE80211_ADDR_LEN]);
120static void	ath_key_update_begin(struct ieee80211com *);
121static void	ath_key_update_end(struct ieee80211com *);
122static void	ath_mode_init(struct ath_softc *);
123static void	ath_setslottime(struct ath_softc *);
124static void	ath_updateslot(struct ifnet *);
125static int	ath_beaconq_setup(struct ath_hal *);
126static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
127static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
128static void	ath_beacon_proc(void *, int);
129static void	ath_bstuck_proc(void *, int);
130static void	ath_beacon_free(struct ath_softc *);
131static void	ath_beacon_config(struct ath_softc *);
132static void	ath_descdma_cleanup(struct ath_softc *sc,
133			struct ath_descdma *, ath_bufhead *);
134static int	ath_desc_alloc(struct ath_softc *);
135static void	ath_desc_free(struct ath_softc *);
136static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
137static void	ath_node_free(struct ieee80211_node *);
138static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
139static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
140static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
141			struct ieee80211_node *ni,
142			int subtype, int rssi, u_int32_t rstamp);
143static void	ath_setdefantenna(struct ath_softc *, u_int);
144static void	ath_rx_proc(void *, int);
145static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
146static int	ath_tx_setup(struct ath_softc *, int, int);
147static int	ath_wme_update(struct ieee80211com *);
148static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
149static void	ath_tx_cleanup(struct ath_softc *);
150static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
151			     struct ath_buf *, struct mbuf *);
152static void	ath_tx_proc_q0(void *, int);
153static void	ath_tx_proc_q0123(void *, int);
154static void	ath_tx_proc(void *, int);
155static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
156static void	ath_draintxq(struct ath_softc *);
157static void	ath_stoprecv(struct ath_softc *);
158static int	ath_startrecv(struct ath_softc *);
159static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
160static void	ath_next_scan(void *);
161static void	ath_calibrate(void *);
162static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
163static void	ath_newassoc(struct ieee80211com *,
164			struct ieee80211_node *, int);
165static int	ath_getchannels(struct ath_softc *, u_int cc,
166			HAL_BOOL outdoor, HAL_BOOL xchanmode);
167static void	ath_led_event(struct ath_softc *, int);
168static void	ath_update_txpow(struct ath_softc *);
169
170static int	ath_rate_setup(struct ath_softc *, u_int mode);
171static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
172
173static void	ath_sysctlattach(struct ath_softc *);
174static void	ath_bpfattach(struct ath_softc *);
175static void	ath_announce(struct ath_softc *);
176
177SYSCTL_DECL(_hw_ath);
178
179/* XXX validate sysctl values */
180static	int ath_dwelltime = 200;		/* 5 channels/second */
181SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
182	    0, "channel dwell time (ms) for AP/station scanning");
183static	int ath_calinterval = 30;		/* calibrate every 30 secs */
184SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
185	    0, "chip calibration interval (secs)");
186static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
187SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
188	    0, "outdoor operation");
189TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
190static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
191SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
192	    0, "extended channel mode");
193TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
194static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
195SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
196	    0, "country code");
197TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
198static	int ath_regdomain = 0;			/* regulatory domain */
199SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
200	    0, "regulatory domain");
201
202#ifdef AR_DEBUG
203static	int ath_debug = 0;
204SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
205	    0, "control debugging printfs");
206TUNABLE_INT("hw.ath.debug", &ath_debug);
207enum {
208	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
209	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
210	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
211	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
212	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
213	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
214	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
215	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
216	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
217	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
218	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
219	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
220	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
221	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
222	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
223	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
224	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
225	ATH_DEBUG_LED		= 0x00100000,	/* led management */
226	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
227	ATH_DEBUG_ANY		= 0xffffffff
228};
229#define	IFF_DUMPPKTS(sc, m) \
230	((sc->sc_debug & (m)) || \
231	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
232#define	DPRINTF(sc, m, fmt, ...) do {				\
233	if (sc->sc_debug & (m))					\
234		printf(fmt, __VA_ARGS__);			\
235} while (0)
236#define	KEYPRINTF(sc, ix, hk, mac) do {				\
237	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
238		ath_keyprint(__func__, ix, hk, mac);		\
239} while (0)
240static	void ath_printrxbuf(struct ath_buf *bf, int);
241static	void ath_printtxbuf(struct ath_buf *bf, int);
242#else
243#define	IFF_DUMPPKTS(sc, m) \
244	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
245#define	DPRINTF(m, fmt, ...)
246#define	KEYPRINTF(sc, k, ix, mac)
247#endif
248
249MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
250
251int
252ath_attach(u_int16_t devid, struct ath_softc *sc)
253{
254	struct ifnet *ifp = &sc->sc_if;
255	struct ieee80211com *ic = &sc->sc_ic;
256	struct ath_hal *ah;
257	HAL_STATUS status;
258	int error = 0, i;
259
260	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
261
262	/* set these up early for if_printf use */
263	if_initname(ifp, device_get_name(sc->sc_dev),
264		device_get_unit(sc->sc_dev));
265
266	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
267	if (ah == NULL) {
268		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
269			status);
270		error = ENXIO;
271		goto bad;
272	}
273	if (ah->ah_abi != HAL_ABI_VERSION) {
274		if_printf(ifp, "HAL ABI mismatch detected "
275			"(HAL:0x%x != driver:0x%x)\n",
276			ah->ah_abi, HAL_ABI_VERSION);
277		error = ENXIO;
278		goto bad;
279	}
280	sc->sc_ah = ah;
281	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
282
283	/*
284	 * Check if the MAC has multi-rate retry support.
285	 * We do this by trying to setup a fake extended
286	 * descriptor.  MAC's that don't have support will
287	 * return false w/o doing anything.  MAC's that do
288	 * support it will return true w/o doing anything.
289	 */
290	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
291
292	/*
293	 * Check if the device has hardware counters for PHY
294	 * errors.  If so we need to enable the MIB interrupt
295	 * so we can act on stat triggers.
296	 */
297	if (ath_hal_hwphycounters(ah))
298		sc->sc_needmib = 1;
299
300	/*
301	 * Get the hardware key cache size.
302	 */
303	sc->sc_keymax = ath_hal_keycachesize(ah);
304	if (sc->sc_keymax > sizeof(sc->sc_keymap) * NBBY) {
305		if_printf(ifp,
306			"Warning, using only %zu of %u key cache slots\n",
307			sizeof(sc->sc_keymap) * NBBY, sc->sc_keymax);
308		sc->sc_keymax = sizeof(sc->sc_keymap) * NBBY;
309	}
310	/*
311	 * Reset the key cache since some parts do not
312	 * reset the contents on initial power up.
313	 */
314	for (i = 0; i < sc->sc_keymax; i++)
315		ath_hal_keyreset(ah, i);
316	/*
317	 * Mark key cache slots associated with global keys
318	 * as in use.  If we knew TKIP was not to be used we
319	 * could leave the +32, +64, and +32+64 slots free.
320	 * XXX only for splitmic.
321	 */
322	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
323		setbit(sc->sc_keymap, i);
324		setbit(sc->sc_keymap, i+32);
325		setbit(sc->sc_keymap, i+64);
326		setbit(sc->sc_keymap, i+32+64);
327	}
328
329	/*
330	 * Collect the channel list using the default country
331	 * code and including outdoor channels.  The 802.11 layer
332	 * is resposible for filtering this list based on settings
333	 * like the phy mode.
334	 */
335	error = ath_getchannels(sc, ath_countrycode,
336			ath_outdoor, ath_xchanmode);
337	if (error != 0)
338		goto bad;
339	/*
340	 * Setup dynamic sysctl's now that country code and
341	 * regdomain are available from the hal.
342	 */
343	ath_sysctlattach(sc);
344
345	/*
346	 * Setup rate tables for all potential media types.
347	 */
348	ath_rate_setup(sc, IEEE80211_MODE_11A);
349	ath_rate_setup(sc, IEEE80211_MODE_11B);
350	ath_rate_setup(sc, IEEE80211_MODE_11G);
351	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
352	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
353	/* NB: setup here so ath_rate_update is happy */
354	ath_setcurmode(sc, IEEE80211_MODE_11A);
355
356	/*
357	 * Allocate tx+rx descriptors and populate the lists.
358	 */
359	error = ath_desc_alloc(sc);
360	if (error != 0) {
361		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
362		goto bad;
363	}
364	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
365	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
366
367	ATH_TXBUF_LOCK_INIT(sc);
368
369	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
370	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
371	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
372	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
373	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
374
375	/*
376	 * Allocate hardware transmit queues: one queue for
377	 * beacon frames and one data queue for each QoS
378	 * priority.  Note that the hal handles reseting
379	 * these queues at the needed time.
380	 *
381	 * XXX PS-Poll
382	 */
383	sc->sc_bhalq = ath_beaconq_setup(ah);
384	if (sc->sc_bhalq == (u_int) -1) {
385		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
386		error = EIO;
387		goto bad2;
388	}
389	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
390	if (sc->sc_cabq == NULL) {
391		if_printf(ifp, "unable to setup CAB xmit queue!\n");
392		error = EIO;
393		goto bad2;
394	}
395	/* NB: insure BK queue is the lowest priority h/w queue */
396	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
397		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
398			ieee80211_wme_acnames[WME_AC_BK]);
399		error = EIO;
400		goto bad2;
401	}
402	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
403	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
404	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
405		/*
406		 * Not enough hardware tx queues to properly do WME;
407		 * just punt and assign them all to the same h/w queue.
408		 * We could do a better job of this if, for example,
409		 * we allocate queues when we switch from station to
410		 * AP mode.
411		 */
412		if (sc->sc_ac2q[WME_AC_VI] != NULL)
413			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
414		if (sc->sc_ac2q[WME_AC_BE] != NULL)
415			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
416		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
417		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
418		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
419	}
420
421	/*
422	 * Special case certain configurations.  Note the
423	 * CAB queue is handled by these specially so don't
424	 * include them when checking the txq setup mask.
425	 */
426	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
427	case 0x01:
428		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
429		break;
430	case 0x0f:
431		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
432		break;
433	default:
434		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
435		break;
436	}
437
438	/*
439	 * Setup rate control.  Some rate control modules
440	 * call back to change the anntena state so expose
441	 * the necessary entry points.
442	 * XXX maybe belongs in struct ath_ratectrl?
443	 */
444	sc->sc_setdefantenna = ath_setdefantenna;
445	sc->sc_rc = ath_rate_attach(sc);
446	if (sc->sc_rc == NULL) {
447		error = EIO;
448		goto bad2;
449	}
450
451	sc->sc_blinking = 0;
452	sc->sc_ledstate = 1;
453	sc->sc_ledon = 0;			/* low true */
454	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
455	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
456	/*
457	 * Auto-enable soft led processing for IBM cards and for
458	 * 5211 minipci cards.  Users can also manually enable/disable
459	 * support with a sysctl.
460	 */
461	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
462	if (sc->sc_softled) {
463		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
464		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
465	}
466
467	ifp->if_softc = sc;
468	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
469	ifp->if_start = ath_start;
470	ifp->if_watchdog = ath_watchdog;
471	ifp->if_ioctl = ath_ioctl;
472	ifp->if_init = ath_init;
473	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
474	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
475	IFQ_SET_READY(&ifp->if_snd);
476
477	ic->ic_ifp = ifp;
478	ic->ic_reset = ath_reset;
479	ic->ic_newassoc = ath_newassoc;
480	ic->ic_updateslot = ath_updateslot;
481	ic->ic_wme.wme_update = ath_wme_update;
482	/* XXX not right but it's not used anywhere important */
483	ic->ic_phytype = IEEE80211_T_OFDM;
484	ic->ic_opmode = IEEE80211_M_STA;
485	ic->ic_caps =
486		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
487		| IEEE80211_C_HOSTAP		/* hostap mode */
488		| IEEE80211_C_MONITOR		/* monitor mode */
489		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
490		| IEEE80211_C_SHSLOT		/* short slot time supported */
491		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
492		;
493	/*
494	 * Query the hal to figure out h/w crypto support.
495	 */
496	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
497		ic->ic_caps |= IEEE80211_C_WEP;
498	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
499		ic->ic_caps |= IEEE80211_C_AES;
500	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
501		ic->ic_caps |= IEEE80211_C_AES_CCM;
502	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
503		ic->ic_caps |= IEEE80211_C_CKIP;
504	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
505		ic->ic_caps |= IEEE80211_C_TKIP;
506		/*
507		 * Check if h/w does the MIC and/or whether the
508		 * separate key cache entries are required to
509		 * handle both tx+rx MIC keys.
510		 */
511		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
512			ic->ic_caps |= IEEE80211_C_TKIPMIC;
513		if (ath_hal_tkipsplit(ah))
514			sc->sc_splitmic = 1;
515	}
516	/*
517	 * TPC support can be done either with a global cap or
518	 * per-packet support.  The latter is not available on
519	 * all parts.  We're a bit pedantic here as all parts
520	 * support a global cap.
521	 */
522	sc->sc_hastpc = ath_hal_hastpc(ah);
523	if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
524		ic->ic_caps |= IEEE80211_C_TXPMGT;
525
526	/*
527	 * Mark WME capability only if we have sufficient
528	 * hardware queues to do proper priority scheduling.
529	 */
530	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
531		ic->ic_caps |= IEEE80211_C_WME;
532	/*
533	 * Check for frame bursting capability.
534	 */
535	if (ath_hal_hasbursting(ah))
536		ic->ic_caps |= IEEE80211_C_BURST;
537
538	/*
539	 * Indicate we need the 802.11 header padded to a
540	 * 32-bit boundary for 4-address and QoS frames.
541	 */
542	ic->ic_flags |= IEEE80211_F_DATAPAD;
543
544	/*
545	 * Query the hal about antenna support.
546	 */
547	if (ath_hal_hasdiversity(ah)) {
548		sc->sc_hasdiversity = 1;
549		sc->sc_diversity = ath_hal_getdiversity(ah);
550	}
551	sc->sc_defant = ath_hal_getdefantenna(ah);
552
553	/*
554	 * Not all chips have the VEOL support we want to
555	 * use with IBSS beacons; check here for it.
556	 */
557	sc->sc_hasveol = ath_hal_hasveol(ah);
558
559	/* get mac address from hardware */
560	ath_hal_getmac(ah, ic->ic_myaddr);
561
562	/* call MI attach routine. */
563	ieee80211_ifattach(ic);
564	/* override default methods */
565	ic->ic_node_alloc = ath_node_alloc;
566	sc->sc_node_free = ic->ic_node_free;
567	ic->ic_node_free = ath_node_free;
568	ic->ic_node_getrssi = ath_node_getrssi;
569	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
570	ic->ic_recv_mgmt = ath_recv_mgmt;
571	sc->sc_newstate = ic->ic_newstate;
572	ic->ic_newstate = ath_newstate;
573	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
574	ic->ic_crypto.cs_key_delete = ath_key_delete;
575	ic->ic_crypto.cs_key_set = ath_key_set;
576	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
577	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
578	/* complete initialization */
579	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
580
581	ath_bpfattach(sc);
582
583	if (bootverbose)
584		ieee80211_announce(ic);
585	ath_announce(sc);
586	return 0;
587bad2:
588	ath_tx_cleanup(sc);
589	ath_desc_free(sc);
590bad:
591	if (ah)
592		ath_hal_detach(ah);
593	sc->sc_invalid = 1;
594	return error;
595}
596
597int
598ath_detach(struct ath_softc *sc)
599{
600	struct ifnet *ifp = &sc->sc_if;
601
602	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
603		__func__, ifp->if_flags);
604
605	ath_stop(ifp);
606	bpfdetach(ifp);
607	/*
608	 * NB: the order of these is important:
609	 * o call the 802.11 layer before detaching the hal to
610	 *   insure callbacks into the driver to delete global
611	 *   key cache entries can be handled
612	 * o reclaim the tx queue data structures after calling
613	 *   the 802.11 layer as we'll get called back to reclaim
614	 *   node state and potentially want to use them
615	 * o to cleanup the tx queues the hal is called, so detach
616	 *   it last
617	 * Other than that, it's straightforward...
618	 */
619	ieee80211_ifdetach(&sc->sc_ic);
620	ath_rate_detach(sc->sc_rc);
621	ath_desc_free(sc);
622	ath_tx_cleanup(sc);
623	ath_hal_detach(sc->sc_ah);
624
625	return 0;
626}
627
628void
629ath_suspend(struct ath_softc *sc)
630{
631	struct ifnet *ifp = &sc->sc_if;
632
633	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
634		__func__, ifp->if_flags);
635
636	ath_stop(ifp);
637}
638
639void
640ath_resume(struct ath_softc *sc)
641{
642	struct ifnet *ifp = &sc->sc_if;
643
644	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
645		__func__, ifp->if_flags);
646
647	if (ifp->if_flags & IFF_UP) {
648		ath_init(ifp);
649		if (ifp->if_flags & IFF_RUNNING)
650			ath_start(ifp);
651	}
652}
653
654void
655ath_shutdown(struct ath_softc *sc)
656{
657	struct ifnet *ifp = &sc->sc_if;
658
659	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
660		__func__, ifp->if_flags);
661
662	ath_stop(ifp);
663}
664
665/*
666 * Interrupt handler.  Most of the actual processing is deferred.
667 */
668void
669ath_intr(void *arg)
670{
671	struct ath_softc *sc = arg;
672	struct ifnet *ifp = &sc->sc_if;
673	struct ath_hal *ah = sc->sc_ah;
674	HAL_INT status;
675
676	if (sc->sc_invalid) {
677		/*
678		 * The hardware is not ready/present, don't touch anything.
679		 * Note this can happen early on if the IRQ is shared.
680		 */
681		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
682		return;
683	}
684	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
685		return;
686	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
687		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
688			__func__, ifp->if_flags);
689		ath_hal_getisr(ah, &status);	/* clear ISR */
690		ath_hal_intrset(ah, 0);		/* disable further intr's */
691		return;
692	}
693	/*
694	 * Figure out the reason(s) for the interrupt.  Note
695	 * that the hal returns a pseudo-ISR that may include
696	 * bits we haven't explicitly enabled so we mask the
697	 * value to insure we only process bits we requested.
698	 */
699	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
700	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
701	status &= sc->sc_imask;			/* discard unasked for bits */
702	if (status & HAL_INT_FATAL) {
703		/*
704		 * Fatal errors are unrecoverable.  Typically
705		 * these are caused by DMA errors.  Unfortunately
706		 * the exact reason is not (presently) returned
707		 * by the hal.
708		 */
709		sc->sc_stats.ast_hardware++;
710		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
711		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
712	} else if (status & HAL_INT_RXORN) {
713		sc->sc_stats.ast_rxorn++;
714		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
715		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
716	} else {
717		if (status & HAL_INT_SWBA) {
718			/*
719			 * Software beacon alert--time to send a beacon.
720			 * Handle beacon transmission directly; deferring
721			 * this is too slow to meet timing constraints
722			 * under load.
723			 */
724			ath_beacon_proc(sc, 0);
725		}
726		if (status & HAL_INT_RXEOL) {
727			/*
728			 * NB: the hardware should re-read the link when
729			 *     RXE bit is written, but it doesn't work at
730			 *     least on older hardware revs.
731			 */
732			sc->sc_stats.ast_rxeol++;
733			sc->sc_rxlink = NULL;
734		}
735		if (status & HAL_INT_TXURN) {
736			sc->sc_stats.ast_txurn++;
737			/* bump tx trigger level */
738			ath_hal_updatetxtriglevel(ah, AH_TRUE);
739		}
740		if (status & HAL_INT_RX)
741			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
742		if (status & HAL_INT_TX)
743			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
744		if (status & HAL_INT_BMISS) {
745			sc->sc_stats.ast_bmiss++;
746			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
747		}
748		if (status & HAL_INT_MIB) {
749			sc->sc_stats.ast_mib++;
750			/*
751			 * Disable interrupts until we service the MIB
752			 * interrupt; otherwise it will continue to fire.
753			 */
754			ath_hal_intrset(ah, 0);
755			/*
756			 * Let the hal handle the event.  We assume it will
757			 * clear whatever condition caused the interrupt.
758			 */
759			ath_hal_mibevent(ah,
760				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
761			ath_hal_intrset(ah, sc->sc_imask);
762		}
763	}
764}
765
766static void
767ath_fatal_proc(void *arg, int pending)
768{
769	struct ath_softc *sc = arg;
770	struct ifnet *ifp = &sc->sc_if;
771
772	if_printf(ifp, "hardware error; resetting\n");
773	ath_reset(ifp);
774}
775
776static void
777ath_rxorn_proc(void *arg, int pending)
778{
779	struct ath_softc *sc = arg;
780	struct ifnet *ifp = &sc->sc_if;
781
782	if_printf(ifp, "rx FIFO overrun; resetting\n");
783	ath_reset(ifp);
784}
785
786static void
787ath_bmiss_proc(void *arg, int pending)
788{
789	struct ath_softc *sc = arg;
790	struct ieee80211com *ic = &sc->sc_ic;
791
792	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
793	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
794		("unexpect operating mode %u", ic->ic_opmode));
795	if (ic->ic_state == IEEE80211_S_RUN) {
796		/*
797		 * Rather than go directly to scan state, try to
798		 * reassociate first.  If that fails then the state
799		 * machine will drop us into scanning after timing
800		 * out waiting for a probe response.
801		 */
802		NET_LOCK_GIANT();
803		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
804		NET_UNLOCK_GIANT();
805	}
806}
807
808static u_int
809ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
810{
811#define	N(a)	(sizeof(a) / sizeof(a[0]))
812	static const u_int modeflags[] = {
813		0,			/* IEEE80211_MODE_AUTO */
814		CHANNEL_A,		/* IEEE80211_MODE_11A */
815		CHANNEL_B,		/* IEEE80211_MODE_11B */
816		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
817		0,			/* IEEE80211_MODE_FH */
818		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
819		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
820	};
821	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
822
823	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
824	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
825	return modeflags[mode];
826#undef N
827}
828
829static void
830ath_init(void *arg)
831{
832	struct ath_softc *sc = (struct ath_softc *) arg;
833	struct ieee80211com *ic = &sc->sc_ic;
834	struct ifnet *ifp = &sc->sc_if;
835	struct ieee80211_node *ni;
836	struct ath_hal *ah = sc->sc_ah;
837	HAL_STATUS status;
838
839	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
840		__func__, ifp->if_flags);
841
842	ATH_LOCK(sc);
843	/*
844	 * Stop anything previously setup.  This is safe
845	 * whether this is the first time through or not.
846	 */
847	ath_stop_locked(ifp);
848
849	/*
850	 * The basic interface to setting the hardware in a good
851	 * state is ``reset''.  On return the hardware is known to
852	 * be powered up and with interrupts disabled.  This must
853	 * be followed by initialization of the appropriate bits
854	 * and then setup of the interrupt mask.
855	 */
856	sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
857	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
858	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
859		if_printf(ifp, "unable to reset hardware; hal status %u\n",
860			status);
861		goto done;
862	}
863
864	/*
865	 * This is needed only to setup initial state
866	 * but it's best done after a reset.
867	 */
868	ath_update_txpow(sc);
869
870	/*
871	 * Setup the hardware after reset: the key cache
872	 * is filled as needed and the receive engine is
873	 * set going.  Frame transmit is handled entirely
874	 * in the frame output path; there's nothing to do
875	 * here except setup the interrupt mask.
876	 */
877	ath_initkeytable(sc);		/* XXX still needed? */
878	if (ath_startrecv(sc) != 0) {
879		if_printf(ifp, "unable to start recv logic\n");
880		goto done;
881	}
882
883	/*
884	 * Enable interrupts.
885	 */
886	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
887		  | HAL_INT_RXEOL | HAL_INT_RXORN
888		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
889	/*
890	 * Enable MIB interrupts when there are hardware phy counters.
891	 * Note we only do this (at the moment) for station mode.
892	 */
893	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
894		sc->sc_imask |= HAL_INT_MIB;
895	ath_hal_intrset(ah, sc->sc_imask);
896
897	ifp->if_flags |= IFF_RUNNING;
898	ic->ic_state = IEEE80211_S_INIT;
899
900	/*
901	 * The hardware should be ready to go now so it's safe
902	 * to kick the 802.11 state machine as it's likely to
903	 * immediately call back to us to send mgmt frames.
904	 */
905	ni = ic->ic_bss;
906	ni->ni_chan = ic->ic_ibss_chan;
907	ath_chan_change(sc, ni->ni_chan);
908	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
909		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
910			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
911	} else
912		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
913done:
914	ATH_UNLOCK(sc);
915}
916
917static void
918ath_stop_locked(struct ifnet *ifp)
919{
920	struct ath_softc *sc = ifp->if_softc;
921	struct ieee80211com *ic = &sc->sc_ic;
922	struct ath_hal *ah = sc->sc_ah;
923
924	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
925		__func__, sc->sc_invalid, ifp->if_flags);
926
927	ATH_LOCK_ASSERT(sc);
928	if (ifp->if_flags & IFF_RUNNING) {
929		/*
930		 * Shutdown the hardware and driver:
931		 *    reset 802.11 state machine
932		 *    turn off timers
933		 *    disable interrupts
934		 *    turn off the radio
935		 *    clear transmit machinery
936		 *    clear receive machinery
937		 *    drain and release tx queues
938		 *    reclaim beacon resources
939		 *    power down hardware
940		 *
941		 * Note that some of this work is not possible if the
942		 * hardware is gone (invalid).
943		 */
944		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
945		ifp->if_flags &= ~IFF_RUNNING;
946		ifp->if_timer = 0;
947		if (!sc->sc_invalid) {
948			if (sc->sc_softled) {
949				callout_stop(&sc->sc_ledtimer);
950				ath_hal_gpioset(ah, sc->sc_ledpin,
951					!sc->sc_ledon);
952				sc->sc_blinking = 0;
953			}
954			ath_hal_intrset(ah, 0);
955		}
956		ath_draintxq(sc);
957		if (!sc->sc_invalid) {
958			ath_stoprecv(sc);
959			ath_hal_phydisable(ah);
960		} else
961			sc->sc_rxlink = NULL;
962		IFQ_DRV_PURGE(&ifp->if_snd);
963		ath_beacon_free(sc);
964	}
965}
966
967static void
968ath_stop(struct ifnet *ifp)
969{
970	struct ath_softc *sc = ifp->if_softc;
971
972	ATH_LOCK(sc);
973	ath_stop_locked(ifp);
974	if (!sc->sc_invalid) {
975		/*
976		 * Set the chip in full sleep mode.  Note that we are
977		 * careful to do this only when bringing the interface
978		 * completely to a stop.  When the chip is in this state
979		 * it must be carefully woken up or references to
980		 * registers in the PCI clock domain may freeze the bus
981		 * (and system).  This varies by chip and is mostly an
982		 * issue with newer parts that go to sleep more quickly.
983		 */
984		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
985	}
986	ATH_UNLOCK(sc);
987}
988
989/*
990 * Reset the hardware w/o losing operational state.  This is
991 * basically a more efficient way of doing ath_stop, ath_init,
992 * followed by state transitions to the current 802.11
993 * operational state.  Used to recover from various errors and
994 * to reset or reload hardware state.
995 */
996static int
997ath_reset(struct ifnet *ifp)
998{
999	struct ath_softc *sc = ifp->if_softc;
1000	struct ieee80211com *ic = &sc->sc_ic;
1001	struct ath_hal *ah = sc->sc_ah;
1002	struct ieee80211_channel *c;
1003	HAL_STATUS status;
1004
1005	/*
1006	 * Convert to a HAL channel description with the flags
1007	 * constrained to reflect the current operating mode.
1008	 */
1009	c = ic->ic_ibss_chan;
1010	sc->sc_curchan.channel = c->ic_freq;
1011	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1012
1013	ath_hal_intrset(ah, 0);		/* disable interrupts */
1014	ath_draintxq(sc);		/* stop xmit side */
1015	ath_stoprecv(sc);		/* stop recv side */
1016	/* NB: indicate channel change so we do a full reset */
1017	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1018		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1019			__func__, status);
1020	ath_update_txpow(sc);		/* update tx power state */
1021	if (ath_startrecv(sc) != 0)	/* restart recv */
1022		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1023	/*
1024	 * We may be doing a reset in response to an ioctl
1025	 * that changes the channel so update any state that
1026	 * might change as a result.
1027	 */
1028	ath_chan_change(sc, c);
1029	if (ic->ic_state == IEEE80211_S_RUN)
1030		ath_beacon_config(sc);	/* restart beacons */
1031	ath_hal_intrset(ah, sc->sc_imask);
1032
1033	ath_start(ifp);			/* restart xmit */
1034	return 0;
1035}
1036
1037static void
1038ath_start(struct ifnet *ifp)
1039{
1040	struct ath_softc *sc = ifp->if_softc;
1041	struct ath_hal *ah = sc->sc_ah;
1042	struct ieee80211com *ic = &sc->sc_ic;
1043	struct ieee80211_node *ni;
1044	struct ath_buf *bf;
1045	struct mbuf *m;
1046	struct ieee80211_frame *wh;
1047	struct ether_header *eh;
1048
1049	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1050		return;
1051	for (;;) {
1052		/*
1053		 * Grab a TX buffer and associated resources.
1054		 */
1055		ATH_TXBUF_LOCK(sc);
1056		bf = STAILQ_FIRST(&sc->sc_txbuf);
1057		if (bf != NULL)
1058			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1059		ATH_TXBUF_UNLOCK(sc);
1060		if (bf == NULL) {
1061			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1062				__func__);
1063			sc->sc_stats.ast_tx_qstop++;
1064			ifp->if_flags |= IFF_OACTIVE;
1065			break;
1066		}
1067		/*
1068		 * Poll the management queue for frames; they
1069		 * have priority over normal data frames.
1070		 */
1071		IF_DEQUEUE(&ic->ic_mgtq, m);
1072		if (m == NULL) {
1073			/*
1074			 * No data frames go out unless we're associated.
1075			 */
1076			if (ic->ic_state != IEEE80211_S_RUN) {
1077				DPRINTF(sc, ATH_DEBUG_ANY,
1078					"%s: ignore data packet, state %u\n",
1079					__func__, ic->ic_state);
1080				sc->sc_stats.ast_tx_discard++;
1081				ATH_TXBUF_LOCK(sc);
1082				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1083				ATH_TXBUF_UNLOCK(sc);
1084				break;
1085			}
1086			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1087			if (m == NULL) {
1088				ATH_TXBUF_LOCK(sc);
1089				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1090				ATH_TXBUF_UNLOCK(sc);
1091				break;
1092			}
1093			/*
1094			 * Find the node for the destination so we can do
1095			 * things like power save and fast frames aggregation.
1096			 */
1097			if (m->m_len < sizeof(struct ether_header) &&
1098			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1099				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1100				ni = NULL;
1101				goto bad;
1102			}
1103			eh = mtod(m, struct ether_header *);
1104			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1105			if (ni == NULL) {
1106				/* NB: ieee80211_find_txnode does stat+msg */
1107				m_freem(m);
1108				goto bad;
1109			}
1110			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1111			    (m->m_flags & M_PWR_SAV) == 0) {
1112				/*
1113				 * Station in power save mode; pass the frame
1114				 * to the 802.11 layer and continue.  We'll get
1115				 * the frame back when the time is right.
1116				 */
1117				ieee80211_pwrsave(ic, ni, m);
1118				goto reclaim;
1119			}
1120			/* calculate priority so we can find the tx queue */
1121			if (ieee80211_classify(ic, m, ni)) {
1122				DPRINTF(sc, ATH_DEBUG_XMIT,
1123					"%s: discard, classification failure\n",
1124					__func__);
1125				m_freem(m);
1126				goto bad;
1127			}
1128			ifp->if_opackets++;
1129			BPF_MTAP(ifp, m);
1130			/*
1131			 * Encapsulate the packet in prep for transmission.
1132			 */
1133			m = ieee80211_encap(ic, m, ni);
1134			if (m == NULL) {
1135				DPRINTF(sc, ATH_DEBUG_ANY,
1136					"%s: encapsulation failure\n",
1137					__func__);
1138				sc->sc_stats.ast_tx_encap++;
1139				goto bad;
1140			}
1141		} else {
1142			/*
1143			 * Hack!  The referenced node pointer is in the
1144			 * rcvif field of the packet header.  This is
1145			 * placed there by ieee80211_mgmt_output because
1146			 * we need to hold the reference with the frame
1147			 * and there's no other way (other than packet
1148			 * tags which we consider too expensive to use)
1149			 * to pass it along.
1150			 */
1151			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1152			m->m_pkthdr.rcvif = NULL;
1153
1154			wh = mtod(m, struct ieee80211_frame *);
1155			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1156			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1157				/* fill time stamp */
1158				u_int64_t tsf;
1159				u_int32_t *tstamp;
1160
1161				tsf = ath_hal_gettsf64(ah);
1162				/* XXX: adjust 100us delay to xmit */
1163				tsf += 100;
1164				tstamp = (u_int32_t *)&wh[1];
1165				tstamp[0] = htole32(tsf & 0xffffffff);
1166				tstamp[1] = htole32(tsf >> 32);
1167			}
1168			sc->sc_stats.ast_tx_mgmt++;
1169		}
1170
1171		if (ath_tx_start(sc, ni, bf, m)) {
1172	bad:
1173			ifp->if_oerrors++;
1174	reclaim:
1175			ATH_TXBUF_LOCK(sc);
1176			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1177			ATH_TXBUF_UNLOCK(sc);
1178			if (ni != NULL)
1179				ieee80211_free_node(ni);
1180			continue;
1181		}
1182
1183		sc->sc_tx_timer = 5;
1184		ifp->if_timer = 1;
1185	}
1186}
1187
1188static int
1189ath_media_change(struct ifnet *ifp)
1190{
1191#define	IS_UP(ifp) \
1192	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
1193	int error;
1194
1195	error = ieee80211_media_change(ifp);
1196	if (error == ENETRESET) {
1197		if (IS_UP(ifp))
1198			ath_init(ifp);		/* XXX lose error */
1199		error = 0;
1200	}
1201	return error;
1202#undef IS_UP
1203}
1204
1205#ifdef AR_DEBUG
1206static void
1207ath_keyprint(const char *tag, u_int ix,
1208	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1209{
1210	static const char *ciphers[] = {
1211		"WEP",
1212		"AES-OCB",
1213		"AES-CCM",
1214		"CKIP",
1215		"TKIP",
1216		"CLR",
1217	};
1218	int i, n;
1219
1220	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1221	for (i = 0, n = hk->kv_len; i < n; i++)
1222		printf("%02x", hk->kv_val[i]);
1223	printf(" mac %s", ether_sprintf(mac));
1224	if (hk->kv_type == HAL_CIPHER_TKIP) {
1225		printf(" mic ");
1226		for (i = 0; i < sizeof(hk->kv_mic); i++)
1227			printf("%02x", hk->kv_mic[i]);
1228	}
1229	printf("\n");
1230}
1231#endif
1232
1233/*
1234 * Set a TKIP key into the hardware.  This handles the
1235 * potential distribution of key state to multiple key
1236 * cache slots for TKIP.
1237 */
1238static int
1239ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1240	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1241{
1242#define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1243	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1244	struct ath_hal *ah = sc->sc_ah;
1245
1246	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1247		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1248	KASSERT(sc->sc_splitmic, ("key cache !split"));
1249	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1250		/*
1251		 * TX key goes at first index, RX key at +32.
1252		 * The hal handles the MIC keys at index+64.
1253		 */
1254		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1255		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1256		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1257			return 0;
1258
1259		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1260		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1261		/* XXX delete tx key on failure? */
1262		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1263	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1264		/*
1265		 * TX/RX key goes at first index.
1266		 * The hal handles the MIC keys are index+64.
1267		 */
1268		KASSERT(k->wk_keyix < IEEE80211_WEP_NKID,
1269			("group key at index %u", k->wk_keyix));
1270		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1271			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1272		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1273		return ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid);
1274	}
1275	/* XXX key w/o xmit/recv; need this for compression? */
1276	return 0;
1277#undef IEEE80211_KEY_XR
1278}
1279
1280/*
1281 * Set a net80211 key into the hardware.  This handles the
1282 * potential distribution of key state to multiple key
1283 * cache slots for TKIP with hardware MIC support.
1284 */
1285static int
1286ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1287	const u_int8_t mac[IEEE80211_ADDR_LEN])
1288{
1289#define	N(a)	(sizeof(a)/sizeof(a[0]))
1290	static const u_int8_t ciphermap[] = {
1291		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1292		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1293		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1294		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1295		(u_int8_t) -1,		/* 4 is not allocated */
1296		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1297		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1298	};
1299	struct ath_hal *ah = sc->sc_ah;
1300	const struct ieee80211_cipher *cip = k->wk_cipher;
1301	HAL_KEYVAL hk;
1302
1303	memset(&hk, 0, sizeof(hk));
1304	/*
1305	 * Software crypto uses a "clear key" so non-crypto
1306	 * state kept in the key cache are maintained and
1307	 * so that rx frames have an entry to match.
1308	 */
1309	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1310		KASSERT(cip->ic_cipher < N(ciphermap),
1311			("invalid cipher type %u", cip->ic_cipher));
1312		hk.kv_type = ciphermap[cip->ic_cipher];
1313		hk.kv_len = k->wk_keylen;
1314		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1315	} else
1316		hk.kv_type = HAL_CIPHER_CLR;
1317
1318	if (hk.kv_type == HAL_CIPHER_TKIP &&
1319	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1320	    sc->sc_splitmic) {
1321		return ath_keyset_tkip(sc, k, &hk, mac);
1322	} else {
1323		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1324		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1325	}
1326#undef N
1327}
1328
1329/*
1330 * Fill the hardware key cache with key entries.
1331 */
1332static void
1333ath_initkeytable(struct ath_softc *sc)
1334{
1335	struct ieee80211com *ic = &sc->sc_ic;
1336	struct ifnet *ifp = &sc->sc_if;
1337	struct ath_hal *ah = sc->sc_ah;
1338	const u_int8_t *bssid;
1339	int i;
1340
1341	/* XXX maybe should reset all keys when !PRIVACY */
1342	if (ic->ic_state == IEEE80211_S_SCAN)
1343		bssid = ifp->if_broadcastaddr;
1344	else
1345		bssid = ic->ic_bss->ni_bssid;
1346	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1347		struct ieee80211_key *k = &ic->ic_nw_keys[i];
1348
1349		if (k->wk_keylen == 0) {
1350			ath_hal_keyreset(ah, i);
1351			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: reset key %u\n",
1352				__func__, i);
1353		} else {
1354			ath_keyset(sc, k, bssid);
1355		}
1356	}
1357}
1358
1359/*
1360 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1361 * each key, one for decrypt/encrypt and the other for the MIC.
1362 */
1363static u_int16_t
1364key_alloc_2pair(struct ath_softc *sc)
1365{
1366#define	N(a)	(sizeof(a)/sizeof(a[0]))
1367	u_int i, keyix;
1368
1369	KASSERT(sc->sc_splitmic, ("key cache !split"));
1370	/* XXX could optimize */
1371	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1372		u_int8_t b = sc->sc_keymap[i];
1373		if (b != 0xff) {
1374			/*
1375			 * One or more slots in this byte are free.
1376			 */
1377			keyix = i*NBBY;
1378			while (b & 1) {
1379		again:
1380				keyix++;
1381				b >>= 1;
1382			}
1383			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1384			if (isset(sc->sc_keymap, keyix+32) ||
1385			    isset(sc->sc_keymap, keyix+64) ||
1386			    isset(sc->sc_keymap, keyix+32+64)) {
1387				/* full pair unavailable */
1388				/* XXX statistic */
1389				if (keyix == (i+1)*NBBY) {
1390					/* no slots were appropriate, advance */
1391					continue;
1392				}
1393				goto again;
1394			}
1395			setbit(sc->sc_keymap, keyix);
1396			setbit(sc->sc_keymap, keyix+64);
1397			setbit(sc->sc_keymap, keyix+32);
1398			setbit(sc->sc_keymap, keyix+32+64);
1399			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1400				"%s: key pair %u,%u %u,%u\n",
1401				__func__, keyix, keyix+64,
1402				keyix+32, keyix+32+64);
1403			return keyix;
1404		}
1405	}
1406	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1407	return IEEE80211_KEYIX_NONE;
1408#undef N
1409}
1410
1411/*
1412 * Allocate a single key cache slot.
1413 */
1414static u_int16_t
1415key_alloc_single(struct ath_softc *sc)
1416{
1417#define	N(a)	(sizeof(a)/sizeof(a[0]))
1418	u_int i, keyix;
1419
1420	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1421	for (i = 0; i < N(sc->sc_keymap); i++) {
1422		u_int8_t b = sc->sc_keymap[i];
1423		if (b != 0xff) {
1424			/*
1425			 * One or more slots are free.
1426			 */
1427			keyix = i*NBBY;
1428			while (b & 1)
1429				keyix++, b >>= 1;
1430			setbit(sc->sc_keymap, keyix);
1431			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1432				__func__, keyix);
1433			return keyix;
1434		}
1435	}
1436	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1437	return IEEE80211_KEYIX_NONE;
1438#undef N
1439}
1440
1441/*
1442 * Allocate one or more key cache slots for a uniacst key.  The
1443 * key itself is needed only to identify the cipher.  For hardware
1444 * TKIP with split cipher+MIC keys we allocate two key cache slot
1445 * pairs so that we can setup separate TX and RX MIC keys.  Note
1446 * that the MIC key for a TKIP key at slot i is assumed by the
1447 * hardware to be at slot i+64.  This limits TKIP keys to the first
1448 * 64 entries.
1449 */
1450static int
1451ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
1452{
1453	struct ath_softc *sc = ic->ic_ifp->if_softc;
1454
1455	/*
1456	 * Group key allocation must be handled specially for
1457	 * parts that do not support multicast key cache search
1458	 * functionality.  For those parts the key id must match
1459	 * the h/w key index so lookups find the right key.  On
1460	 * parts w/ the key search facility we install the sender's
1461	 * mac address (with the high bit set) and let the hardware
1462	 * find the key w/o using the key id.  This is preferred as
1463	 * it permits us to support multiple users for adhoc and/or
1464	 * multi-station operation.
1465	 */
1466	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1467		u_int keyix;
1468
1469		if (!(&ic->ic_nw_keys[0] <= k &&
1470		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1471			/* should not happen */
1472			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1473				"%s: bogus group key\n", __func__);
1474			return IEEE80211_KEYIX_NONE;
1475		}
1476		keyix = k - ic->ic_nw_keys;
1477		/*
1478		 * XXX we pre-allocate the global keys so
1479		 * have no way to check if they've already been allocated.
1480		 */
1481		return keyix;
1482	}
1483
1484	/*
1485	 * We allocate two pair for TKIP when using the h/w to do
1486	 * the MIC.  For everything else, including software crypto,
1487	 * we allocate a single entry.  Note that s/w crypto requires
1488	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1489	 * not support pass-through cache entries and we map all
1490	 * those requests to slot 0.
1491	 */
1492	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1493		return key_alloc_single(sc);
1494	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1495	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1496		return key_alloc_2pair(sc);
1497	} else {
1498		return key_alloc_single(sc);
1499	}
1500}
1501
1502/*
1503 * Delete an entry in the key cache allocated by ath_key_alloc.
1504 */
1505static int
1506ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1507{
1508	struct ath_softc *sc = ic->ic_ifp->if_softc;
1509	struct ath_hal *ah = sc->sc_ah;
1510	const struct ieee80211_cipher *cip = k->wk_cipher;
1511	u_int keyix = k->wk_keyix;
1512
1513	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1514
1515	ath_hal_keyreset(ah, keyix);
1516	/*
1517	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1518	 */
1519	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1520	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1521		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1522	if (keyix >= IEEE80211_WEP_NKID) {
1523		/*
1524		 * Don't touch keymap entries for global keys so
1525		 * they are never considered for dynamic allocation.
1526		 */
1527		clrbit(sc->sc_keymap, keyix);
1528		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1529		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1530		    sc->sc_splitmic) {
1531			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1532			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1533			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1534		}
1535	}
1536	return 1;
1537}
1538
1539/*
1540 * Set the key cache contents for the specified key.  Key cache
1541 * slot(s) must already have been allocated by ath_key_alloc.
1542 */
1543static int
1544ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1545	const u_int8_t mac[IEEE80211_ADDR_LEN])
1546{
1547	struct ath_softc *sc = ic->ic_ifp->if_softc;
1548
1549	return ath_keyset(sc, k, mac);
1550}
1551
1552/*
1553 * Block/unblock tx+rx processing while a key change is done.
1554 * We assume the caller serializes key management operations
1555 * so we only need to worry about synchronization with other
1556 * uses that originate in the driver.
1557 */
1558static void
1559ath_key_update_begin(struct ieee80211com *ic)
1560{
1561	struct ifnet *ifp = ic->ic_ifp;
1562	struct ath_softc *sc = ifp->if_softc;
1563
1564	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1565#if 0
1566	tasklet_disable(&sc->sc_rxtq);
1567#endif
1568	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1569}
1570
1571static void
1572ath_key_update_end(struct ieee80211com *ic)
1573{
1574	struct ifnet *ifp = ic->ic_ifp;
1575	struct ath_softc *sc = ifp->if_softc;
1576
1577	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1578	IF_UNLOCK(&ifp->if_snd);
1579#if 0
1580	tasklet_enable(&sc->sc_rxtq);
1581#endif
1582}
1583
1584/*
1585 * Calculate the receive filter according to the
1586 * operating mode and state:
1587 *
1588 * o always accept unicast, broadcast, and multicast traffic
1589 * o maintain current state of phy error reception (the hal
1590 *   may enable phy error frames for noise immunity work)
1591 * o probe request frames are accepted only when operating in
1592 *   hostap, adhoc, or monitor modes
1593 * o enable promiscuous mode according to the interface state
1594 * o accept beacons:
1595 *   - when operating in adhoc mode so the 802.11 layer creates
1596 *     node table entries for peers,
1597 *   - when operating in station mode for collecting rssi data when
1598 *     the station is otherwise quiet, or
1599 *   - when scanning
1600 */
1601static u_int32_t
1602ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1603{
1604	struct ieee80211com *ic = &sc->sc_ic;
1605	struct ath_hal *ah = sc->sc_ah;
1606	struct ifnet *ifp = &sc->sc_if;
1607	u_int32_t rfilt;
1608
1609	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1610	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1611	if (ic->ic_opmode != IEEE80211_M_STA)
1612		rfilt |= HAL_RX_FILTER_PROBEREQ;
1613	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1614	    (ifp->if_flags & IFF_PROMISC))
1615		rfilt |= HAL_RX_FILTER_PROM;
1616	if (ic->ic_opmode == IEEE80211_M_STA ||
1617	    ic->ic_opmode == IEEE80211_M_IBSS ||
1618	    state == IEEE80211_S_SCAN)
1619		rfilt |= HAL_RX_FILTER_BEACON;
1620	return rfilt;
1621}
1622
1623static void
1624ath_mode_init(struct ath_softc *sc)
1625{
1626	struct ieee80211com *ic = &sc->sc_ic;
1627	struct ath_hal *ah = sc->sc_ah;
1628	struct ifnet *ifp = &sc->sc_if;
1629	u_int32_t rfilt, mfilt[2], val;
1630	u_int8_t pos;
1631	struct ifmultiaddr *ifma;
1632
1633	/* configure rx filter */
1634	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1635	ath_hal_setrxfilter(ah, rfilt);
1636
1637	/* configure operational mode */
1638	ath_hal_setopmode(ah);
1639
1640	/*
1641	 * Handle any link-level address change.  Note that we only
1642	 * need to force ic_myaddr; any other addresses are handled
1643	 * as a byproduct of the ifnet code marking the interface
1644	 * down then up.
1645	 *
1646	 * XXX should get from lladdr instead of arpcom but that's more work
1647	 */
1648	IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2AC(ifp)->ac_enaddr);
1649	ath_hal_setmac(ah, ic->ic_myaddr);
1650
1651	/* calculate and install multicast filter */
1652	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1653		mfilt[0] = mfilt[1] = 0;
1654		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1655			caddr_t dl;
1656
1657			/* calculate XOR of eight 6bit values */
1658			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1659			val = LE_READ_4(dl + 0);
1660			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1661			val = LE_READ_4(dl + 3);
1662			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1663			pos &= 0x3f;
1664			mfilt[pos / 32] |= (1 << (pos % 32));
1665		}
1666	} else {
1667		mfilt[0] = mfilt[1] = ~0;
1668	}
1669	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1670	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1671		__func__, rfilt, mfilt[0], mfilt[1]);
1672}
1673
1674/*
1675 * Set the slot time based on the current setting.
1676 */
1677static void
1678ath_setslottime(struct ath_softc *sc)
1679{
1680	struct ieee80211com *ic = &sc->sc_ic;
1681	struct ath_hal *ah = sc->sc_ah;
1682
1683	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1684		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1685	else
1686		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1687	sc->sc_updateslot = OK;
1688}
1689
1690/*
1691 * Callback from the 802.11 layer to update the
1692 * slot time based on the current setting.
1693 */
1694static void
1695ath_updateslot(struct ifnet *ifp)
1696{
1697	struct ath_softc *sc = ifp->if_softc;
1698	struct ieee80211com *ic = &sc->sc_ic;
1699
1700	/*
1701	 * When not coordinating the BSS, change the hardware
1702	 * immediately.  For other operation we defer the change
1703	 * until beacon updates have propagated to the stations.
1704	 */
1705	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1706		sc->sc_updateslot = UPDATE;
1707	else
1708		ath_setslottime(sc);
1709}
1710
1711/*
1712 * Setup a h/w transmit queue for beacons.
1713 */
1714static int
1715ath_beaconq_setup(struct ath_hal *ah)
1716{
1717	HAL_TXQ_INFO qi;
1718
1719	memset(&qi, 0, sizeof(qi));
1720	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1721	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1722	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1723	/* NB: don't enable any interrupts */
1724	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1725}
1726
1727/*
1728 * Allocate and setup an initial beacon frame.
1729 */
1730static int
1731ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1732{
1733	struct ieee80211com *ic = ni->ni_ic;
1734	struct ath_buf *bf;
1735	struct mbuf *m;
1736	int error;
1737
1738	bf = STAILQ_FIRST(&sc->sc_bbuf);
1739	if (bf == NULL) {
1740		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1741		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1742		return ENOMEM;			/* XXX */
1743	}
1744	/*
1745	 * NB: the beacon data buffer must be 32-bit aligned;
1746	 * we assume the mbuf routines will return us something
1747	 * with this alignment (perhaps should assert).
1748	 */
1749	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1750	if (m == NULL) {
1751		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1752			__func__);
1753		sc->sc_stats.ast_be_nombuf++;
1754		return ENOMEM;
1755	}
1756	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1757				     bf->bf_segs, &bf->bf_nseg,
1758				     BUS_DMA_NOWAIT);
1759	if (error == 0) {
1760		bf->bf_m = m;
1761		bf->bf_node = ieee80211_ref_node(ni);
1762	} else {
1763		m_freem(m);
1764	}
1765	return error;
1766}
1767
1768/*
1769 * Setup the beacon frame for transmit.
1770 */
1771static void
1772ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1773{
1774#define	USE_SHPREAMBLE(_ic) \
1775	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1776		== IEEE80211_F_SHPREAMBLE)
1777	struct ieee80211_node *ni = bf->bf_node;
1778	struct ieee80211com *ic = ni->ni_ic;
1779	struct mbuf *m = bf->bf_m;
1780	struct ath_hal *ah = sc->sc_ah;
1781	struct ath_node *an = ATH_NODE(ni);
1782	struct ath_desc *ds;
1783	int flags, antenna;
1784	u_int8_t rate;
1785
1786	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1787		__func__, m, m->m_len);
1788
1789	/* setup descriptors */
1790	ds = bf->bf_desc;
1791
1792	flags = HAL_TXDESC_NOACK;
1793	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1794		ds->ds_link = bf->bf_daddr;	/* self-linked */
1795		flags |= HAL_TXDESC_VEOL;
1796		/*
1797		 * Let hardware handle antenna switching.
1798		 */
1799		antenna = 0;
1800	} else {
1801		ds->ds_link = 0;
1802		/*
1803		 * Switch antenna every 4 beacons.
1804		 * XXX assumes two antenna
1805		 */
1806		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1807	}
1808
1809	KASSERT(bf->bf_nseg == 1,
1810		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1811	ds->ds_data = bf->bf_segs[0].ds_addr;
1812	/*
1813	 * Calculate rate code.
1814	 * XXX everything at min xmit rate
1815	 */
1816	if (USE_SHPREAMBLE(ic))
1817		rate = an->an_tx_mgtratesp;
1818	else
1819		rate = an->an_tx_mgtrate;
1820	ath_hal_setuptxdesc(ah, ds
1821		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
1822		, sizeof(struct ieee80211_frame)/* header length */
1823		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1824		, ni->ni_txpower		/* txpower XXX */
1825		, rate, 1			/* series 0 rate/tries */
1826		, HAL_TXKEYIX_INVALID		/* no encryption */
1827		, antenna			/* antenna mode */
1828		, flags				/* no ack, veol for beacons */
1829		, 0				/* rts/cts rate */
1830		, 0				/* rts/cts duration */
1831	);
1832	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1833	ath_hal_filltxdesc(ah, ds
1834		, roundup(m->m_len, 4)		/* buffer length */
1835		, AH_TRUE			/* first segment */
1836		, AH_TRUE			/* last segment */
1837		, ds				/* first descriptor */
1838	);
1839#undef USE_SHPREAMBLE
1840}
1841
1842/*
1843 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1844 * frame contents are done as needed and the slot time is
1845 * also adjusted based on current state.
1846 */
1847static void
1848ath_beacon_proc(void *arg, int pending)
1849{
1850	struct ath_softc *sc = arg;
1851	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1852	struct ieee80211_node *ni = bf->bf_node;
1853	struct ieee80211com *ic = ni->ni_ic;
1854	struct ath_hal *ah = sc->sc_ah;
1855	struct mbuf *m;
1856	int ncabq, error, otherant;
1857
1858	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
1859		__func__, pending);
1860
1861	if (ic->ic_opmode == IEEE80211_M_STA ||
1862	    ic->ic_opmode == IEEE80211_M_MONITOR ||
1863	    bf == NULL || bf->bf_m == NULL) {
1864		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
1865			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
1866		return;
1867	}
1868	/*
1869	 * Check if the previous beacon has gone out.  If
1870	 * not don't don't try to post another, skip this
1871	 * period and wait for the next.  Missed beacons
1872	 * indicate a problem and should not occur.  If we
1873	 * miss too many consecutive beacons reset the device.
1874	 */
1875	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
1876		sc->sc_bmisscount++;
1877		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1878			"%s: missed %u consecutive beacons\n",
1879			__func__, sc->sc_bmisscount);
1880		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
1881			taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask);
1882		return;
1883	}
1884	if (sc->sc_bmisscount != 0) {
1885		DPRINTF(sc, ATH_DEBUG_BEACON,
1886			"%s: resume beacon xmit after %u misses\n",
1887			__func__, sc->sc_bmisscount);
1888		sc->sc_bmisscount = 0;
1889	}
1890
1891	/*
1892	 * Update dynamic beacon contents.  If this returns
1893	 * non-zero then we need to remap the memory because
1894	 * the beacon frame changed size (probably because
1895	 * of the TIM bitmap).
1896	 */
1897	m = bf->bf_m;
1898	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
1899	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
1900		/* XXX too conservative? */
1901		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1902		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1903					     bf->bf_segs, &bf->bf_nseg,
1904					     BUS_DMA_NOWAIT);
1905		if (error != 0) {
1906			if_printf(ic->ic_ifp,
1907			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
1908			    __func__, error);
1909			return;
1910		}
1911	}
1912
1913	/*
1914	 * Handle slot time change when a non-ERP station joins/leaves
1915	 * an 11g network.  The 802.11 layer notifies us via callback,
1916	 * we mark updateslot, then wait one beacon before effecting
1917	 * the change.  This gives associated stations at least one
1918	 * beacon interval to note the state change.
1919	 */
1920	/* XXX locking */
1921	if (sc->sc_updateslot == UPDATE)
1922		sc->sc_updateslot = COMMIT;	/* commit next beacon */
1923	else if (sc->sc_updateslot == COMMIT)
1924		ath_setslottime(sc);		/* commit change to h/w */
1925
1926	/*
1927	 * Check recent per-antenna transmit statistics and flip
1928	 * the default antenna if noticeably more frames went out
1929	 * on the non-default antenna.
1930	 * XXX assumes 2 anntenae
1931	 */
1932	otherant = sc->sc_defant & 1 ? 2 : 1;
1933	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
1934		ath_setdefantenna(sc, otherant);
1935	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
1936
1937	/*
1938	 * Construct tx descriptor.
1939	 */
1940	ath_beacon_setup(sc, bf);
1941
1942	/*
1943	 * Stop any current dma and put the new frame on the queue.
1944	 * This should never fail since we check above that no frames
1945	 * are still pending on the queue.
1946	 */
1947	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1948		DPRINTF(sc, ATH_DEBUG_ANY,
1949			"%s: beacon queue %u did not stop?\n",
1950			__func__, sc->sc_bhalq);
1951	}
1952	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1953
1954	/*
1955	 * Enable the CAB queue before the beacon queue to
1956	 * insure cab frames are triggered by this beacon.
1957	 */
1958	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
1959		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
1960	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1961	ath_hal_txstart(ah, sc->sc_bhalq);
1962	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1963		"%s: TXDP[%u] = %p (%p)\n", __func__,
1964		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
1965
1966	sc->sc_stats.ast_be_xmit++;
1967}
1968
1969/*
1970 * Reset the hardware after detecting beacons have stopped.
1971 */
1972static void
1973ath_bstuck_proc(void *arg, int pending)
1974{
1975	struct ath_softc *sc = arg;
1976	struct ifnet *ifp = &sc->sc_if;
1977
1978	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
1979		sc->sc_bmisscount);
1980	ath_reset(ifp);
1981}
1982
1983/*
1984 * Reclaim beacon resources.
1985 */
1986static void
1987ath_beacon_free(struct ath_softc *sc)
1988{
1989	struct ath_buf *bf;
1990
1991	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
1992		if (bf->bf_m != NULL) {
1993			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1994			m_freem(bf->bf_m);
1995			bf->bf_m = NULL;
1996		}
1997		if (bf->bf_node != NULL) {
1998			ieee80211_free_node(bf->bf_node);
1999			bf->bf_node = NULL;
2000		}
2001	}
2002}
2003
2004/*
2005 * Configure the beacon and sleep timers.
2006 *
2007 * When operating as an AP this resets the TSF and sets
2008 * up the hardware to notify us when we need to issue beacons.
2009 *
2010 * When operating in station mode this sets up the beacon
2011 * timers according to the timestamp of the last received
2012 * beacon and the current TSF, configures PCF and DTIM
2013 * handling, programs the sleep registers so the hardware
2014 * will wakeup in time to receive beacons, and configures
2015 * the beacon miss handling so we'll receive a BMISS
2016 * interrupt when we stop seeing beacons from the AP
2017 * we've associated with.
2018 */
2019static void
2020ath_beacon_config(struct ath_softc *sc)
2021{
2022	struct ath_hal *ah = sc->sc_ah;
2023	struct ieee80211com *ic = &sc->sc_ic;
2024	struct ieee80211_node *ni = ic->ic_bss;
2025	u_int32_t nexttbtt, intval;
2026
2027	nexttbtt = (LE_READ_4(ni->ni_tstamp.data + 4) << 22) |
2028	    (LE_READ_4(ni->ni_tstamp.data) >> 10);
2029	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2030	if (nexttbtt == 0)		/* e.g. for ap mode */
2031		nexttbtt = intval;
2032	else if (intval)		/* NB: can be 0 for monitor mode */
2033		nexttbtt = roundup(nexttbtt, intval);
2034	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2035		__func__, nexttbtt, intval, ni->ni_intval);
2036	if (ic->ic_opmode == IEEE80211_M_STA) {
2037		HAL_BEACON_STATE bs;
2038
2039		/* NB: no PCF support right now */
2040		memset(&bs, 0, sizeof(bs));
2041		bs.bs_intval = intval;
2042		bs.bs_nexttbtt = nexttbtt;
2043		bs.bs_dtimperiod = bs.bs_intval;
2044		bs.bs_nextdtim = nexttbtt;
2045		/*
2046		 * The 802.11 layer records the offset to the DTIM
2047		 * bitmap while receiving beacons; use it here to
2048		 * enable h/w detection of our AID being marked in
2049		 * the bitmap vector (to indicate frames for us are
2050		 * pending at the AP).
2051		 */
2052		bs.bs_timoffset = ni->ni_timoff;
2053		/*
2054		 * Calculate the number of consecutive beacons to miss
2055		 * before taking a BMISS interrupt.  The configuration
2056		 * is specified in ms, so we need to convert that to
2057		 * TU's and then calculate based on the beacon interval.
2058		 * Note that we clamp the result to at most 10 beacons.
2059		 */
2060		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2061		if (bs.bs_bmissthreshold > 10)
2062			bs.bs_bmissthreshold = 10;
2063		else if (bs.bs_bmissthreshold <= 0)
2064			bs.bs_bmissthreshold = 1;
2065
2066		/*
2067		 * Calculate sleep duration.  The configuration is
2068		 * given in ms.  We insure a multiple of the beacon
2069		 * period is used.  Also, if the sleep duration is
2070		 * greater than the DTIM period then it makes senses
2071		 * to make it a multiple of that.
2072		 *
2073		 * XXX fixed at 100ms
2074		 */
2075		bs.bs_sleepduration =
2076			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2077		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2078			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2079
2080		DPRINTF(sc, ATH_DEBUG_BEACON,
2081			"%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2082			, __func__
2083			, bs.bs_intval
2084			, bs.bs_nexttbtt
2085			, bs.bs_dtimperiod
2086			, bs.bs_nextdtim
2087			, bs.bs_bmissthreshold
2088			, bs.bs_sleepduration
2089			, bs.bs_cfpperiod
2090			, bs.bs_cfpmaxduration
2091			, bs.bs_cfpnext
2092			, bs.bs_timoffset
2093		);
2094		ath_hal_intrset(ah, 0);
2095		ath_hal_beacontimers(ah, &bs);
2096		sc->sc_imask |= HAL_INT_BMISS;
2097		ath_hal_intrset(ah, sc->sc_imask);
2098	} else {
2099		ath_hal_intrset(ah, 0);
2100		if (nexttbtt == intval)
2101			intval |= HAL_BEACON_RESET_TSF;
2102		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2103			/*
2104			 * In IBSS mode enable the beacon timers but only
2105			 * enable SWBA interrupts if we need to manually
2106			 * prepare beacon frames.  Otherwise we use a
2107			 * self-linked tx descriptor and let the hardware
2108			 * deal with things.
2109			 */
2110			intval |= HAL_BEACON_ENA;
2111			if (!sc->sc_hasveol)
2112				sc->sc_imask |= HAL_INT_SWBA;
2113		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2114			/*
2115			 * In AP mode we enable the beacon timers and
2116			 * SWBA interrupts to prepare beacon frames.
2117			 */
2118			intval |= HAL_BEACON_ENA;
2119			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2120		}
2121		ath_hal_beaconinit(ah, nexttbtt, intval);
2122		sc->sc_bmisscount = 0;
2123		ath_hal_intrset(ah, sc->sc_imask);
2124		/*
2125		 * When using a self-linked beacon descriptor in
2126		 * ibss mode load it once here.
2127		 */
2128		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2129			ath_beacon_proc(sc, 0);
2130	}
2131}
2132
2133static void
2134ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2135{
2136	bus_addr_t *paddr = (bus_addr_t*) arg;
2137	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2138	*paddr = segs->ds_addr;
2139}
2140
2141static int
2142ath_descdma_setup(struct ath_softc *sc,
2143	struct ath_descdma *dd, ath_bufhead *head,
2144	const char *name, int nbuf, int ndesc)
2145{
2146#define	DS2PHYS(_dd, _ds) \
2147	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2148	struct ifnet *ifp = &sc->sc_if;
2149	struct ath_desc *ds;
2150	struct ath_buf *bf;
2151	int i, bsize, error;
2152
2153	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2154	    __func__, name, nbuf, ndesc);
2155
2156	dd->dd_name = name;
2157	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2158
2159	/*
2160	 * Setup DMA descriptor area.
2161	 */
2162	error = bus_dma_tag_create(NULL,	/* parent */
2163		       PAGE_SIZE, 0,		/* alignment, bounds */
2164		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2165		       BUS_SPACE_MAXADDR,	/* highaddr */
2166		       NULL, NULL,		/* filter, filterarg */
2167		       dd->dd_desc_len,		/* maxsize */
2168		       1,			/* nsegments */
2169		       BUS_SPACE_MAXADDR,	/* maxsegsize */
2170		       BUS_DMA_ALLOCNOW,	/* flags */
2171		       NULL,			/* lockfunc */
2172		       NULL,			/* lockarg */
2173		       &dd->dd_dmat);
2174	if (error != 0) {
2175		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2176		return error;
2177	}
2178
2179	/* allocate descriptors */
2180	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2181	if (error != 0) {
2182		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2183			"error %u\n", dd->dd_name, error);
2184		goto fail0;
2185	}
2186
2187	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2188				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2189	if (error != 0) {
2190		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2191			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2192		goto fail1;
2193	}
2194
2195	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2196				dd->dd_desc, dd->dd_desc_len,
2197				ath_load_cb, &dd->dd_desc_paddr,
2198				BUS_DMA_NOWAIT);
2199	if (error != 0) {
2200		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2201			dd->dd_name, error);
2202		goto fail2;
2203	}
2204
2205	ds = dd->dd_desc;
2206	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2207	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2208	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2209
2210	/* allocate rx buffers */
2211	bsize = sizeof(struct ath_buf) * nbuf;
2212	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2213	if (bf == NULL) {
2214		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2215			dd->dd_name, bsize);
2216		goto fail3;
2217	}
2218	dd->dd_bufptr = bf;
2219
2220	STAILQ_INIT(head);
2221	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2222		bf->bf_desc = ds;
2223		bf->bf_daddr = DS2PHYS(dd, ds);
2224		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2225				&bf->bf_dmamap);
2226		if (error != 0) {
2227			if_printf(ifp, "unable to create dmamap for %s "
2228				"buffer %u, error %u\n", dd->dd_name, i, error);
2229			ath_descdma_cleanup(sc, dd, head);
2230			return error;
2231		}
2232		STAILQ_INSERT_TAIL(head, bf, bf_list);
2233	}
2234	return 0;
2235fail3:
2236	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2237fail2:
2238	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2239fail1:
2240	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2241fail0:
2242	bus_dma_tag_destroy(dd->dd_dmat);
2243	memset(dd, 0, sizeof(*dd));
2244	return error;
2245#undef DS2PHYS
2246}
2247
2248static void
2249ath_descdma_cleanup(struct ath_softc *sc,
2250	struct ath_descdma *dd, ath_bufhead *head)
2251{
2252	struct ath_buf *bf;
2253	struct ieee80211_node *ni;
2254
2255	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2256	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2257	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2258	bus_dma_tag_destroy(dd->dd_dmat);
2259
2260	STAILQ_FOREACH(bf, head, bf_list) {
2261		if (bf->bf_m) {
2262			m_freem(bf->bf_m);
2263			bf->bf_m = NULL;
2264		}
2265		if (bf->bf_dmamap != NULL) {
2266			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2267			bf->bf_dmamap = NULL;
2268		}
2269		ni = bf->bf_node;
2270		bf->bf_node = NULL;
2271		if (ni != NULL) {
2272			/*
2273			 * Reclaim node reference.
2274			 */
2275			ieee80211_free_node(ni);
2276		}
2277	}
2278
2279	STAILQ_INIT(head);
2280	free(dd->dd_bufptr, M_ATHDEV);
2281	memset(dd, 0, sizeof(*dd));
2282}
2283
2284static int
2285ath_desc_alloc(struct ath_softc *sc)
2286{
2287	int error;
2288
2289	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2290			"rx", ATH_RXBUF, 1);
2291	if (error != 0)
2292		return error;
2293
2294	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2295			"tx", ATH_TXBUF, ATH_TXDESC);
2296	if (error != 0) {
2297		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2298		return error;
2299	}
2300
2301	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2302			"beacon", 1, 1);
2303	if (error != 0) {
2304		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2305		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2306		return error;
2307	}
2308	return 0;
2309}
2310
2311static void
2312ath_desc_free(struct ath_softc *sc)
2313{
2314
2315	if (sc->sc_bdma.dd_desc_len != 0)
2316		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2317	if (sc->sc_txdma.dd_desc_len != 0)
2318		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2319	if (sc->sc_rxdma.dd_desc_len != 0)
2320		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2321}
2322
2323static struct ieee80211_node *
2324ath_node_alloc(struct ieee80211_node_table *nt)
2325{
2326	struct ieee80211com *ic = nt->nt_ic;
2327	struct ath_softc *sc = ic->ic_ifp->if_softc;
2328	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2329	struct ath_node *an;
2330
2331	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2332	if (an == NULL) {
2333		/* XXX stat+msg */
2334		return NULL;
2335	}
2336	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2337	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2338	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2339	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2340	ath_rate_node_init(sc, an);
2341
2342	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2343	return &an->an_node;
2344}
2345
2346static void
2347ath_node_free(struct ieee80211_node *ni)
2348{
2349	struct ieee80211com *ic = ni->ni_ic;
2350        struct ath_softc *sc = ic->ic_ifp->if_softc;
2351
2352	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2353
2354	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2355	sc->sc_node_free(ni);
2356}
2357
2358static u_int8_t
2359ath_node_getrssi(const struct ieee80211_node *ni)
2360{
2361#define	HAL_EP_RND(x, mul) \
2362	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2363	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2364	int32_t rssi;
2365
2366	/*
2367	 * When only one frame is received there will be no state in
2368	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2369	 */
2370	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2371		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2372	else
2373		rssi = ni->ni_rssi;
2374	/* NB: theoretically we shouldn't need this, but be paranoid */
2375	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2376#undef HAL_EP_RND
2377}
2378
2379static int
2380ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2381{
2382	struct ath_hal *ah = sc->sc_ah;
2383	int error;
2384	struct mbuf *m;
2385	struct ath_desc *ds;
2386
2387	m = bf->bf_m;
2388	if (m == NULL) {
2389		/*
2390		 * NB: by assigning a page to the rx dma buffer we
2391		 * implicitly satisfy the Atheros requirement that
2392		 * this buffer be cache-line-aligned and sized to be
2393		 * multiple of the cache line size.  Not doing this
2394		 * causes weird stuff to happen (for the 5210 at least).
2395		 */
2396		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2397		if (m == NULL) {
2398			DPRINTF(sc, ATH_DEBUG_ANY,
2399				"%s: no mbuf/cluster\n", __func__);
2400			sc->sc_stats.ast_rx_nombuf++;
2401			return ENOMEM;
2402		}
2403		bf->bf_m = m;
2404		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2405
2406		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2407					     bf->bf_dmamap, m,
2408					     bf->bf_segs, &bf->bf_nseg,
2409					     BUS_DMA_NOWAIT);
2410		if (error != 0) {
2411			DPRINTF(sc, ATH_DEBUG_ANY,
2412			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2413			    __func__, error);
2414			sc->sc_stats.ast_rx_busdma++;
2415			return error;
2416		}
2417		KASSERT(bf->bf_nseg == 1,
2418			("multi-segment packet; nseg %u", bf->bf_nseg));
2419	}
2420	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2421
2422	/*
2423	 * Setup descriptors.  For receive we always terminate
2424	 * the descriptor list with a self-linked entry so we'll
2425	 * not get overrun under high load (as can happen with a
2426	 * 5212 when ANI processing enables PHY error frames).
2427	 *
2428	 * To insure the last descriptor is self-linked we create
2429	 * each descriptor as self-linked and add it to the end.  As
2430	 * each additional descriptor is added the previous self-linked
2431	 * entry is ``fixed'' naturally.  This should be safe even
2432	 * if DMA is happening.  When processing RX interrupts we
2433	 * never remove/process the last, self-linked, entry on the
2434	 * descriptor list.  This insures the hardware always has
2435	 * someplace to write a new frame.
2436	 */
2437	ds = bf->bf_desc;
2438	ds->ds_link = bf->bf_daddr;	/* link to self */
2439	ds->ds_data = bf->bf_segs[0].ds_addr;
2440	ath_hal_setuprxdesc(ah, ds
2441		, m->m_len		/* buffer size */
2442		, 0
2443	);
2444
2445	if (sc->sc_rxlink != NULL)
2446		*sc->sc_rxlink = bf->bf_daddr;
2447	sc->sc_rxlink = &ds->ds_link;
2448	return 0;
2449}
2450
2451/*
2452 * Extend 15-bit time stamp from rx descriptor to
2453 * a full 64-bit TSF using the current h/w TSF.
2454 */
2455static __inline u_int64_t
2456ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2457{
2458	u_int64_t tsf;
2459
2460	tsf = ath_hal_gettsf64(ah);
2461	if ((tsf & 0x7fff) < rstamp)
2462		tsf -= 0x8000;
2463	return ((tsf &~ 0x7fff) | rstamp);
2464}
2465
2466/*
2467 * Intercept management frames to collect beacon rssi data
2468 * and to do ibss merges.
2469 */
2470static void
2471ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2472	struct ieee80211_node *ni,
2473	int subtype, int rssi, u_int32_t rstamp)
2474{
2475	struct ath_softc *sc = ic->ic_ifp->if_softc;
2476
2477	/*
2478	 * Call up first so subsequent work can use information
2479	 * potentially stored in the node (e.g. for ibss merge).
2480	 */
2481	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2482	switch (subtype) {
2483	case IEEE80211_FC0_SUBTYPE_BEACON:
2484		/* update rssi statistics for use by the hal */
2485		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2486		/* fall thru... */
2487	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2488		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2489		    ic->ic_state == IEEE80211_S_RUN) {
2490			u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
2491			/*
2492			 * Handle ibss merge as needed; check the tsf on the
2493			 * frame before attempting the merge.  The 802.11 spec
2494			 * says the station should change it's bssid to match
2495			 * the oldest station with the same ssid, where oldest
2496			 * is determined by the tsf.  Note that hardware
2497			 * reconfiguration happens through callback to
2498			 * ath_newstate as the state machine will go from
2499			 * RUN -> RUN when this happens.
2500			 */
2501			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2502				DPRINTF(sc, ATH_DEBUG_STATE,
2503				    "ibss merge, rstamp %u tsf %ju "
2504				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2505				    (uintmax_t)ni->ni_tstamp.tsf);
2506				(void) ieee80211_ibss_merge(ic, ni);
2507			}
2508		}
2509		break;
2510	}
2511}
2512
2513/*
2514 * Set the default antenna.
2515 */
2516static void
2517ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2518{
2519	struct ath_hal *ah = sc->sc_ah;
2520
2521	/* XXX block beacon interrupts */
2522	ath_hal_setdefantenna(ah, antenna);
2523	if (sc->sc_defant != antenna)
2524		sc->sc_stats.ast_ant_defswitch++;
2525	sc->sc_defant = antenna;
2526	sc->sc_rxotherant = 0;
2527}
2528
2529static void
2530ath_rx_proc(void *arg, int npending)
2531{
2532#define	PA2DESC(_sc, _pa) \
2533	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2534		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2535	struct ath_softc *sc = arg;
2536	struct ath_buf *bf;
2537	struct ieee80211com *ic = &sc->sc_ic;
2538	struct ifnet *ifp = &sc->sc_if;
2539	struct ath_hal *ah = sc->sc_ah;
2540	struct ath_desc *ds;
2541	struct mbuf *m;
2542	struct ieee80211_node *ni;
2543	struct ath_node *an;
2544	int len, type;
2545	u_int phyerr;
2546	HAL_STATUS status;
2547
2548	NET_LOCK_GIANT();		/* XXX */
2549
2550	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2551	do {
2552		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2553		if (bf == NULL) {		/* NB: shouldn't happen */
2554			if_printf(ifp, "%s: no buffer!\n", __func__);
2555			break;
2556		}
2557		ds = bf->bf_desc;
2558		if (ds->ds_link == bf->bf_daddr) {
2559			/* NB: never process the self-linked entry at the end */
2560			break;
2561		}
2562		m = bf->bf_m;
2563		if (m == NULL) {		/* NB: shouldn't happen */
2564			if_printf(ifp, "%s: no mbuf!\n", __func__);
2565			continue;
2566		}
2567		/* XXX sync descriptor memory */
2568		/*
2569		 * Must provide the virtual address of the current
2570		 * descriptor, the physical address, and the virtual
2571		 * address of the next descriptor in the h/w chain.
2572		 * This allows the HAL to look ahead to see if the
2573		 * hardware is done with a descriptor by checking the
2574		 * done bit in the following descriptor and the address
2575		 * of the current descriptor the DMA engine is working
2576		 * on.  All this is necessary because of our use of
2577		 * a self-linked list to avoid rx overruns.
2578		 */
2579		status = ath_hal_rxprocdesc(ah, ds,
2580				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2581#ifdef AR_DEBUG
2582		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2583			ath_printrxbuf(bf, status == HAL_OK);
2584#endif
2585		if (status == HAL_EINPROGRESS)
2586			break;
2587		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2588		if (ds->ds_rxstat.rs_more) {
2589			/*
2590			 * Frame spans multiple descriptors; this
2591			 * cannot happen yet as we don't support
2592			 * jumbograms.  If not in monitor mode,
2593			 * discard the frame.
2594			 */
2595			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2596				sc->sc_stats.ast_rx_toobig++;
2597				goto rx_next;
2598			}
2599			/* fall thru for monitor mode handling... */
2600		} else if (ds->ds_rxstat.rs_status != 0) {
2601			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2602				sc->sc_stats.ast_rx_crcerr++;
2603			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2604				sc->sc_stats.ast_rx_fifoerr++;
2605			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2606				sc->sc_stats.ast_rx_phyerr++;
2607				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2608				sc->sc_stats.ast_rx_phy[phyerr]++;
2609				goto rx_next;
2610			}
2611			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2612				/*
2613				 * Decrypt error.  If the error occurred
2614				 * because there was no hardware key, then
2615				 * let the frame through so the upper layers
2616				 * can process it.  This is necessary for 5210
2617				 * parts which have no way to setup a ``clear''
2618				 * key cache entry.
2619				 *
2620				 * XXX do key cache faulting
2621				 */
2622				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2623					goto rx_accept;
2624				sc->sc_stats.ast_rx_badcrypt++;
2625			}
2626			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2627				sc->sc_stats.ast_rx_badmic++;
2628				/*
2629				 * Do minimal work required to hand off
2630				 * the 802.11 header for notifcation.
2631				 */
2632				/* XXX frag's and qos frames */
2633				len = ds->ds_rxstat.rs_datalen;
2634				if (len >= sizeof (struct ieee80211_frame)) {
2635					bus_dmamap_sync(sc->sc_dmat,
2636					    bf->bf_dmamap,
2637					    BUS_DMASYNC_POSTREAD);
2638					ieee80211_notify_michael_failure(ic,
2639					    mtod(m, struct ieee80211_frame *),
2640					    sc->sc_splitmic ?
2641					        ds->ds_rxstat.rs_keyix-32 :
2642					        ds->ds_rxstat.rs_keyix
2643					);
2644				}
2645			}
2646			ifp->if_ierrors++;
2647			/*
2648			 * Reject error frames, we normally don't want
2649			 * to see them in monitor mode (in monitor mode
2650			 * allow through packets that have crypto problems).
2651			 */
2652			if ((ds->ds_rxstat.rs_status &~
2653				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2654			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2655				goto rx_next;
2656		}
2657rx_accept:
2658		/*
2659		 * Sync and unmap the frame.  At this point we're
2660		 * committed to passing the mbuf somewhere so clear
2661		 * bf_m; this means a new sk_buff must be allocated
2662		 * when the rx descriptor is setup again to receive
2663		 * another frame.
2664		 */
2665		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2666		    BUS_DMASYNC_POSTREAD);
2667		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2668		bf->bf_m = NULL;
2669
2670		m->m_pkthdr.rcvif = ifp;
2671		len = ds->ds_rxstat.rs_datalen;
2672		m->m_pkthdr.len = m->m_len = len;
2673
2674		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2675
2676		if (sc->sc_drvbpf) {
2677			u_int8_t rix;
2678
2679			/*
2680			 * Discard anything shorter than an ack or cts.
2681			 */
2682			if (len < IEEE80211_ACK_LEN) {
2683				DPRINTF(sc, ATH_DEBUG_RECV,
2684					"%s: runt packet %d\n",
2685					__func__, len);
2686				sc->sc_stats.ast_rx_tooshort++;
2687				m_freem(m);
2688				goto rx_next;
2689			}
2690			rix = ds->ds_rxstat.rs_rate;
2691			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2692			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2693			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2694			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2695			/* XXX TSF */
2696
2697			bpf_mtap2(sc->sc_drvbpf,
2698				&sc->sc_rx_th, sc->sc_rx_th_len, m);
2699		}
2700
2701		/*
2702		 * From this point on we assume the frame is at least
2703		 * as large as ieee80211_frame_min; verify that.
2704		 */
2705		if (len < IEEE80211_MIN_LEN) {
2706			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2707				__func__, len);
2708			sc->sc_stats.ast_rx_tooshort++;
2709			m_freem(m);
2710			goto rx_next;
2711		}
2712
2713		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2714			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2715				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2716				   ds->ds_rxstat.rs_rssi);
2717		}
2718
2719		m_adj(m, -IEEE80211_CRC_LEN);
2720
2721		/*
2722		 * Locate the node for sender, track state, and then
2723		 * pass the (referenced) node up to the 802.11 layer
2724		 * for its use.
2725		 */
2726		ni = ieee80211_find_rxnode(ic,
2727			mtod(m, const struct ieee80211_frame_min *));
2728
2729		/*
2730		 * Track rx rssi and do any rx antenna management.
2731		 */
2732		an = ATH_NODE(ni);
2733		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2734		if (sc->sc_diversity) {
2735			/*
2736			 * When using fast diversity, change the default rx
2737			 * antenna if diversity chooses the other antenna 3
2738			 * times in a row.
2739			 */
2740			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2741				if (++sc->sc_rxotherant >= 3)
2742					ath_setdefantenna(sc,
2743						ds->ds_rxstat.rs_antenna);
2744			} else
2745				sc->sc_rxotherant = 0;
2746		}
2747
2748		/*
2749		 * Send frame up for processing.
2750		 */
2751		type = ieee80211_input(ic, m, ni,
2752			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2753
2754		if (sc->sc_softled) {
2755			/*
2756			 * Blink for any data frame.  Otherwise do a
2757			 * heartbeat-style blink when idle.  The latter
2758			 * is mainly for station mode where we depend on
2759			 * periodic beacon frames to trigger the poll event.
2760			 */
2761			if (type == IEEE80211_FC0_TYPE_DATA) {
2762				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
2763				ath_led_event(sc, ATH_LED_RX);
2764			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
2765				ath_led_event(sc, ATH_LED_POLL);
2766		}
2767
2768		/*
2769		 * Reclaim node reference.
2770		 */
2771		ieee80211_free_node(ni);
2772rx_next:
2773		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2774	} while (ath_rxbuf_init(sc, bf) == 0);
2775
2776	/* rx signal state monitoring */
2777	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
2778
2779	NET_UNLOCK_GIANT();		/* XXX */
2780#undef PA2DESC
2781}
2782
2783/*
2784 * Setup a h/w transmit queue.
2785 */
2786static struct ath_txq *
2787ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2788{
2789#define	N(a)	(sizeof(a)/sizeof(a[0]))
2790	struct ath_hal *ah = sc->sc_ah;
2791	HAL_TXQ_INFO qi;
2792	int qnum;
2793
2794	memset(&qi, 0, sizeof(qi));
2795	qi.tqi_subtype = subtype;
2796	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2797	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2798	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2799	/*
2800	 * Enable interrupts only for EOL and DESC conditions.
2801	 * We mark tx descriptors to receive a DESC interrupt
2802	 * when a tx queue gets deep; otherwise waiting for the
2803	 * EOL to reap descriptors.  Note that this is done to
2804	 * reduce interrupt load and this only defers reaping
2805	 * descriptors, never transmitting frames.  Aside from
2806	 * reducing interrupts this also permits more concurrency.
2807	 * The only potential downside is if the tx queue backs
2808	 * up in which case the top half of the kernel may backup
2809	 * due to a lack of tx descriptors.
2810	 */
2811	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
2812	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
2813	if (qnum == -1) {
2814		/*
2815		 * NB: don't print a message, this happens
2816		 * normally on parts with too few tx queues
2817		 */
2818		return NULL;
2819	}
2820	if (qnum >= N(sc->sc_txq)) {
2821		device_printf(sc->sc_dev,
2822			"hal qnum %u out of range, max %zu!\n",
2823			qnum, N(sc->sc_txq));
2824		ath_hal_releasetxqueue(ah, qnum);
2825		return NULL;
2826	}
2827	if (!ATH_TXQ_SETUP(sc, qnum)) {
2828		struct ath_txq *txq = &sc->sc_txq[qnum];
2829
2830		txq->axq_qnum = qnum;
2831		txq->axq_depth = 0;
2832		txq->axq_intrcnt = 0;
2833		txq->axq_link = NULL;
2834		STAILQ_INIT(&txq->axq_q);
2835		ATH_TXQ_LOCK_INIT(sc, txq);
2836		sc->sc_txqsetup |= 1<<qnum;
2837	}
2838	return &sc->sc_txq[qnum];
2839#undef N
2840}
2841
2842/*
2843 * Setup a hardware data transmit queue for the specified
2844 * access control.  The hal may not support all requested
2845 * queues in which case it will return a reference to a
2846 * previously setup queue.  We record the mapping from ac's
2847 * to h/w queues for use by ath_tx_start and also track
2848 * the set of h/w queues being used to optimize work in the
2849 * transmit interrupt handler and related routines.
2850 */
2851static int
2852ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
2853{
2854#define	N(a)	(sizeof(a)/sizeof(a[0]))
2855	struct ath_txq *txq;
2856
2857	if (ac >= N(sc->sc_ac2q)) {
2858		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2859			ac, N(sc->sc_ac2q));
2860		return 0;
2861	}
2862	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
2863	if (txq != NULL) {
2864		sc->sc_ac2q[ac] = txq;
2865		return 1;
2866	} else
2867		return 0;
2868#undef N
2869}
2870
2871/*
2872 * Update WME parameters for a transmit queue.
2873 */
2874static int
2875ath_txq_update(struct ath_softc *sc, int ac)
2876{
2877#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
2878#define	ATH_TXOP_TO_US(v)		(v<<5)
2879	struct ieee80211com *ic = &sc->sc_ic;
2880	struct ath_txq *txq = sc->sc_ac2q[ac];
2881	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2882	struct ath_hal *ah = sc->sc_ah;
2883	HAL_TXQ_INFO qi;
2884
2885	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
2886	qi.tqi_aifs = wmep->wmep_aifsn;
2887	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2888	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2889	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
2890
2891	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
2892		device_printf(sc->sc_dev, "unable to update hardware queue "
2893			"parameters for %s traffic!\n",
2894			ieee80211_wme_acnames[ac]);
2895		return 0;
2896	} else {
2897		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
2898		return 1;
2899	}
2900#undef ATH_TXOP_TO_US
2901#undef ATH_EXPONENT_TO_VALUE
2902}
2903
2904/*
2905 * Callback from the 802.11 layer to update WME parameters.
2906 */
2907static int
2908ath_wme_update(struct ieee80211com *ic)
2909{
2910	struct ath_softc *sc = ic->ic_ifp->if_softc;
2911
2912	return !ath_txq_update(sc, WME_AC_BE) ||
2913	    !ath_txq_update(sc, WME_AC_BK) ||
2914	    !ath_txq_update(sc, WME_AC_VI) ||
2915	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
2916}
2917
2918/*
2919 * Reclaim resources for a setup queue.
2920 */
2921static void
2922ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
2923{
2924
2925	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
2926	ATH_TXQ_LOCK_DESTROY(txq);
2927	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
2928}
2929
2930/*
2931 * Reclaim all tx queue resources.
2932 */
2933static void
2934ath_tx_cleanup(struct ath_softc *sc)
2935{
2936	int i;
2937
2938	ATH_TXBUF_LOCK_DESTROY(sc);
2939	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
2940		if (ATH_TXQ_SETUP(sc, i))
2941			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
2942}
2943
2944/*
2945 * Defragment an mbuf chain, returning at most maxfrags separate
2946 * mbufs+clusters.  If this is not possible NULL is returned and
2947 * the original mbuf chain is left in it's present (potentially
2948 * modified) state.  We use two techniques: collapsing consecutive
2949 * mbufs and replacing consecutive mbufs by a cluster.
2950 */
2951static struct mbuf *
2952ath_defrag(struct mbuf *m0, int how, int maxfrags)
2953{
2954	struct mbuf *m, *n, *n2, **prev;
2955	u_int curfrags;
2956
2957	/*
2958	 * Calculate the current number of frags.
2959	 */
2960	curfrags = 0;
2961	for (m = m0; m != NULL; m = m->m_next)
2962		curfrags++;
2963	/*
2964	 * First, try to collapse mbufs.  Note that we always collapse
2965	 * towards the front so we don't need to deal with moving the
2966	 * pkthdr.  This may be suboptimal if the first mbuf has much
2967	 * less data than the following.
2968	 */
2969	m = m0;
2970again:
2971	for (;;) {
2972		n = m->m_next;
2973		if (n == NULL)
2974			break;
2975		if ((m->m_flags & M_RDONLY) == 0 &&
2976		    n->m_len < M_TRAILINGSPACE(m)) {
2977			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
2978				n->m_len);
2979			m->m_len += n->m_len;
2980			m->m_next = n->m_next;
2981			m_free(n);
2982			if (--curfrags <= maxfrags)
2983				return m0;
2984		} else
2985			m = n;
2986	}
2987	KASSERT(maxfrags > 1,
2988		("maxfrags %u, but normal collapse failed", maxfrags));
2989	/*
2990	 * Collapse consecutive mbufs to a cluster.
2991	 */
2992	prev = &m0->m_next;		/* NB: not the first mbuf */
2993	while ((n = *prev) != NULL) {
2994		if ((n2 = n->m_next) != NULL &&
2995		    n->m_len + n2->m_len < MCLBYTES) {
2996			m = m_getcl(how, MT_DATA, 0);
2997			if (m == NULL)
2998				goto bad;
2999			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3000			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3001				n2->m_len);
3002			m->m_len = n->m_len + n2->m_len;
3003			m->m_next = n2->m_next;
3004			*prev = m;
3005			m_free(n);
3006			m_free(n2);
3007			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3008				return m0;
3009			/*
3010			 * Still not there, try the normal collapse
3011			 * again before we allocate another cluster.
3012			 */
3013			goto again;
3014		}
3015		prev = &n->m_next;
3016	}
3017	/*
3018	 * No place where we can collapse to a cluster; punt.
3019	 * This can occur if, for example, you request 2 frags
3020	 * but the packet requires that both be clusters (we
3021	 * never reallocate the first mbuf to avoid moving the
3022	 * packet header).
3023	 */
3024bad:
3025	return NULL;
3026}
3027
3028static int
3029ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3030    struct mbuf *m0)
3031{
3032#define	CTS_DURATION \
3033	ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
3034#define	updateCTSForBursting(_ah, _ds, _txq) \
3035	ath_hal_updateCTSForBursting(_ah, _ds, \
3036	    _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
3037	    _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
3038	    txopLimit, CTS_DURATION)
3039	struct ieee80211com *ic = &sc->sc_ic;
3040	struct ath_hal *ah = sc->sc_ah;
3041	struct ifnet *ifp = &sc->sc_if;
3042	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3043	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3044	u_int8_t rix, txrate, ctsrate;
3045	u_int8_t cix = 0xff;		/* NB: silence compiler */
3046	struct ath_desc *ds, *ds0;
3047	struct ath_txq *txq;
3048	struct ieee80211_frame *wh;
3049	u_int subtype, flags, ctsduration;
3050	HAL_PKT_TYPE atype;
3051	const HAL_RATE_TABLE *rt;
3052	HAL_BOOL shortPreamble;
3053	struct ath_node *an;
3054	struct mbuf *m;
3055	u_int pri;
3056
3057	wh = mtod(m0, struct ieee80211_frame *);
3058	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3059	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3060	hdrlen = ieee80211_anyhdrsize(wh);
3061	/*
3062	 * Packet length must not include any
3063	 * pad bytes; deduct them here.
3064	 */
3065	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3066
3067	if (iswep) {
3068		const struct ieee80211_cipher *cip;
3069		struct ieee80211_key *k;
3070
3071		/*
3072		 * Construct the 802.11 header+trailer for an encrypted
3073		 * frame. The only reason this can fail is because of an
3074		 * unknown or unsupported cipher/key type.
3075		 */
3076		k = ieee80211_crypto_encap(ic, ni, m0);
3077		if (k == NULL) {
3078			/*
3079			 * This can happen when the key is yanked after the
3080			 * frame was queued.  Just discard the frame; the
3081			 * 802.11 layer counts failures and provides
3082			 * debugging/diagnostics.
3083			 */
3084			m_freem(m0);
3085			return EIO;
3086		}
3087		/*
3088		 * Adjust the packet + header lengths for the crypto
3089		 * additions and calculate the h/w key index.  When
3090		 * a s/w mic is done the frame will have had any mic
3091		 * added to it prior to entry so skb->len above will
3092		 * account for it. Otherwise we need to add it to the
3093		 * packet length.
3094		 */
3095		cip = k->wk_cipher;
3096		hdrlen += cip->ic_header;
3097		pktlen += cip->ic_header + cip->ic_trailer;
3098		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3099			pktlen += cip->ic_miclen;
3100		keyix = k->wk_keyix;
3101
3102		/* packet header may have moved, reset our local pointer */
3103		wh = mtod(m0, struct ieee80211_frame *);
3104	} else
3105		keyix = HAL_TXKEYIX_INVALID;
3106
3107	pktlen += IEEE80211_CRC_LEN;
3108
3109	/*
3110	 * Load the DMA map so any coalescing is done.  This
3111	 * also calculates the number of descriptors we need.
3112	 */
3113	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3114				     bf->bf_segs, &bf->bf_nseg,
3115				     BUS_DMA_NOWAIT);
3116	if (error == EFBIG) {
3117		/* XXX packet requires too many descriptors */
3118		bf->bf_nseg = ATH_TXDESC+1;
3119	} else if (error != 0) {
3120		sc->sc_stats.ast_tx_busdma++;
3121		m_freem(m0);
3122		return error;
3123	}
3124	/*
3125	 * Discard null packets and check for packets that
3126	 * require too many TX descriptors.  We try to convert
3127	 * the latter to a cluster.
3128	 */
3129	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3130		sc->sc_stats.ast_tx_linear++;
3131		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3132		if (m == NULL) {
3133			m_freem(m0);
3134			sc->sc_stats.ast_tx_nombuf++;
3135			return ENOMEM;
3136		}
3137		m0 = m;
3138		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3139					     bf->bf_segs, &bf->bf_nseg,
3140					     BUS_DMA_NOWAIT);
3141		if (error != 0) {
3142			sc->sc_stats.ast_tx_busdma++;
3143			m_freem(m0);
3144			return error;
3145		}
3146		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3147		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3148	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3149		sc->sc_stats.ast_tx_nodata++;
3150		m_freem(m0);
3151		return EIO;
3152	}
3153	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3154	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3155	bf->bf_m = m0;
3156	bf->bf_node = ni;			/* NB: held reference */
3157
3158	/* setup descriptors */
3159	ds = bf->bf_desc;
3160	rt = sc->sc_currates;
3161	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3162
3163	/*
3164	 * NB: the 802.11 layer marks whether or not we should
3165	 * use short preamble based on the current mode and
3166	 * negotiated parameters.
3167	 */
3168	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3169	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3170		shortPreamble = AH_TRUE;
3171		sc->sc_stats.ast_tx_shortpre++;
3172	} else {
3173		shortPreamble = AH_FALSE;
3174	}
3175
3176	an = ATH_NODE(ni);
3177	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3178	/*
3179	 * Calculate Atheros packet type from IEEE80211 packet header,
3180	 * setup for rate calculations, and select h/w transmit queue.
3181	 */
3182	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3183	case IEEE80211_FC0_TYPE_MGT:
3184		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3185		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3186			atype = HAL_PKT_TYPE_BEACON;
3187		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3188			atype = HAL_PKT_TYPE_PROBE_RESP;
3189		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3190			atype = HAL_PKT_TYPE_ATIM;
3191		else
3192			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3193		rix = 0;			/* XXX lowest rate */
3194		try0 = ATH_TXMAXTRY;
3195		if (shortPreamble)
3196			txrate = an->an_tx_mgtratesp;
3197		else
3198			txrate = an->an_tx_mgtrate;
3199		/* NB: force all management frames to highest queue */
3200		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3201			/* NB: force all management frames to highest queue */
3202			pri = WME_AC_VO;
3203		} else
3204			pri = WME_AC_BE;
3205		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3206		break;
3207	case IEEE80211_FC0_TYPE_CTL:
3208		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3209		rix = 0;			/* XXX lowest rate */
3210		try0 = ATH_TXMAXTRY;
3211		if (shortPreamble)
3212			txrate = an->an_tx_mgtratesp;
3213		else
3214			txrate = an->an_tx_mgtrate;
3215		/* NB: force all ctl frames to highest queue */
3216		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3217			/* NB: force all ctl frames to highest queue */
3218			pri = WME_AC_VO;
3219		} else
3220			pri = WME_AC_BE;
3221		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3222		break;
3223	case IEEE80211_FC0_TYPE_DATA:
3224		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3225		/*
3226		 * Data frames; consult the rate control module.
3227		 */
3228		ath_rate_findrate(sc, an, shortPreamble, pktlen,
3229			&rix, &try0, &txrate);
3230		sc->sc_txrate = txrate;			/* for LED blinking */
3231		/*
3232		 * Default all non-QoS traffic to the background queue.
3233		 */
3234		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3235			pri = M_WME_GETAC(m0);
3236			if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3237				flags |= HAL_TXDESC_NOACK;
3238				sc->sc_stats.ast_tx_noack++;
3239			}
3240		} else
3241			pri = WME_AC_BE;
3242		break;
3243	default:
3244		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3245			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3246		/* XXX statistic */
3247		m_freem(m0);
3248		return EIO;
3249	}
3250	txq = sc->sc_ac2q[pri];
3251
3252	/*
3253	 * When servicing one or more stations in power-save mode
3254	 * multicast frames must be buffered until after the beacon.
3255	 * We use the CAB queue for that.
3256	 */
3257	if (ismcast && ic->ic_ps_sta) {
3258		txq = sc->sc_cabq;
3259		/* XXX? more bit in 802.11 frame header */
3260	}
3261
3262	/*
3263	 * Calculate miscellaneous flags.
3264	 */
3265	if (ismcast) {
3266		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3267		sc->sc_stats.ast_tx_noack++;
3268	} else if (pktlen > ic->ic_rtsthreshold) {
3269		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3270		cix = rt->info[rix].controlRate;
3271		sc->sc_stats.ast_tx_rts++;
3272	}
3273
3274	/*
3275	 * If 802.11g protection is enabled, determine whether
3276	 * to use RTS/CTS or just CTS.  Note that this is only
3277	 * done for OFDM unicast frames.
3278	 */
3279	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3280	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3281	    (flags & HAL_TXDESC_NOACK) == 0) {
3282		/* XXX fragments must use CCK rates w/ protection */
3283		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3284			flags |= HAL_TXDESC_RTSENA;
3285		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3286			flags |= HAL_TXDESC_CTSENA;
3287		cix = rt->info[sc->sc_protrix].controlRate;
3288		sc->sc_stats.ast_tx_protect++;
3289	}
3290
3291	/*
3292	 * Calculate duration.  This logically belongs in the 802.11
3293	 * layer but it lacks sufficient information to calculate it.
3294	 */
3295	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3296	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3297		u_int16_t dur;
3298		/*
3299		 * XXX not right with fragmentation.
3300		 */
3301		if (shortPreamble)
3302			dur = rt->info[rix].spAckDuration;
3303		else
3304			dur = rt->info[rix].lpAckDuration;
3305		*(u_int16_t *)wh->i_dur = htole16(dur);
3306	}
3307
3308	/*
3309	 * Calculate RTS/CTS rate and duration if needed.
3310	 */
3311	ctsduration = 0;
3312	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3313		/*
3314		 * CTS transmit rate is derived from the transmit rate
3315		 * by looking in the h/w rate table.  We must also factor
3316		 * in whether or not a short preamble is to be used.
3317		 */
3318		/* NB: cix is set above where RTS/CTS is enabled */
3319		KASSERT(cix != 0xff, ("cix not setup"));
3320		ctsrate = rt->info[cix].rateCode;
3321		/*
3322		 * Compute the transmit duration based on the frame
3323		 * size and the size of an ACK frame.  We call into the
3324		 * HAL to do the computation since it depends on the
3325		 * characteristics of the actual PHY being used.
3326		 *
3327		 * NB: CTS is assumed the same size as an ACK so we can
3328		 *     use the precalculated ACK durations.
3329		 */
3330		if (shortPreamble) {
3331			ctsrate |= rt->info[cix].shortPreamble;
3332			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3333				ctsduration += rt->info[cix].spAckDuration;
3334			ctsduration += ath_hal_computetxtime(ah,
3335				rt, pktlen, rix, AH_TRUE);
3336			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3337				ctsduration += rt->info[cix].spAckDuration;
3338		} else {
3339			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3340				ctsduration += rt->info[cix].lpAckDuration;
3341			ctsduration += ath_hal_computetxtime(ah,
3342				rt, pktlen, rix, AH_FALSE);
3343			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3344				ctsduration += rt->info[cix].lpAckDuration;
3345		}
3346		/*
3347		 * Must disable multi-rate retry when using RTS/CTS.
3348		 */
3349		try0 = ATH_TXMAXTRY;
3350	} else
3351		ctsrate = 0;
3352
3353	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3354		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3355			sc->sc_hwmap[txrate].ieeerate, -1);
3356
3357	if (ic->ic_rawbpf)
3358		bpf_mtap(ic->ic_rawbpf, m0);
3359	if (sc->sc_drvbpf) {
3360		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3361		if (iswep)
3362			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3363		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3364		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3365		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3366
3367		bpf_mtap2(sc->sc_drvbpf,
3368			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3369	}
3370
3371	/*
3372	 * Determine if a tx interrupt should be generated for
3373	 * this descriptor.  We take a tx interrupt to reap
3374	 * descriptors when the h/w hits an EOL condition or
3375	 * when the descriptor is specifically marked to generate
3376	 * an interrupt.  We periodically mark descriptors in this
3377	 * way to insure timely replenishing of the supply needed
3378	 * for sending frames.  Defering interrupts reduces system
3379	 * load and potentially allows more concurrent work to be
3380	 * done but if done to aggressively can cause senders to
3381	 * backup.
3382	 *
3383	 * NB: use >= to deal with sc_txintrperiod changing
3384	 *     dynamically through sysctl.
3385	 */
3386	if (flags & HAL_TXDESC_INTREQ) {
3387		txq->axq_intrcnt = 0;
3388	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3389		flags |= HAL_TXDESC_INTREQ;
3390		txq->axq_intrcnt = 0;
3391	}
3392
3393	/*
3394	 * Formulate first tx descriptor with tx controls.
3395	 */
3396	/* XXX check return value? */
3397	ath_hal_setuptxdesc(ah, ds
3398		, pktlen		/* packet length */
3399		, hdrlen		/* header length */
3400		, atype			/* Atheros packet type */
3401		, ni->ni_txpower	/* txpower */
3402		, txrate, try0		/* series 0 rate/tries */
3403		, keyix			/* key cache index */
3404		, sc->sc_txantenna	/* antenna mode */
3405		, flags			/* flags */
3406		, ctsrate		/* rts/cts rate */
3407		, ctsduration		/* rts/cts duration */
3408	);
3409	/*
3410	 * Setup the multi-rate retry state only when we're
3411	 * going to use it.  This assumes ath_hal_setuptxdesc
3412	 * initializes the descriptors (so we don't have to)
3413	 * when the hardware supports multi-rate retry and
3414	 * we don't use it.
3415	 */
3416	if (try0 != ATH_TXMAXTRY)
3417		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3418
3419	/*
3420	 * Fillin the remainder of the descriptor info.
3421	 */
3422	ds0 = ds;
3423	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3424		ds->ds_data = bf->bf_segs[i].ds_addr;
3425		if (i == bf->bf_nseg - 1)
3426			ds->ds_link = 0;
3427		else
3428			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3429		ath_hal_filltxdesc(ah, ds
3430			, bf->bf_segs[i].ds_len	/* segment length */
3431			, i == 0		/* first segment */
3432			, i == bf->bf_nseg - 1	/* last segment */
3433			, ds0			/* first descriptor */
3434		);
3435		DPRINTF(sc, ATH_DEBUG_XMIT,
3436			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3437			__func__, i, ds->ds_link, ds->ds_data,
3438			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3439	}
3440	/*
3441	 * Insert the frame on the outbound list and
3442	 * pass it on to the hardware.
3443	 */
3444	ATH_TXQ_LOCK(txq);
3445	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
3446		u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
3447			cap->cap_wmeParams[pri].wmep_txopLimit);
3448		/*
3449		 * When bursting, potentially extend the CTS duration
3450		 * of a previously queued frame to cover this frame
3451		 * and not exceed the txopLimit.  If that can be done
3452		 * then disable RTS/CTS on this frame since it's now
3453		 * covered (burst extension).  Otherwise we must terminate
3454		 * the burst before this frame goes out so as not to
3455		 * violate the WME parameters.  All this is complicated
3456		 * as we need to update the state of packets on the
3457		 * (live) hardware queue.  The logic is buried in the hal
3458		 * because it's highly chip-specific.
3459		 */
3460		if (txopLimit != 0) {
3461			sc->sc_stats.ast_tx_ctsburst++;
3462			if (updateCTSForBursting(ah, ds0, txq) == 0) {
3463				/*
3464				 * This frame was not covered by RTS/CTS from
3465				 * the previous frame in the burst; update the
3466				 * descriptor pointers so this frame is now
3467				 * treated as the last frame for extending a
3468				 * burst.
3469				 */
3470				txq->axq_lastdsWithCTS = ds0;
3471				/* set gating Desc to final desc */
3472				txq->axq_gatingds =
3473					(struct ath_desc *)txq->axq_link;
3474			} else
3475				sc->sc_stats.ast_tx_ctsext++;
3476		}
3477	}
3478	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3479	if (txq->axq_link == NULL) {
3480		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3481		DPRINTF(sc, ATH_DEBUG_XMIT,
3482			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3483			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3484			txq->axq_depth);
3485	} else {
3486		*txq->axq_link = bf->bf_daddr;
3487		DPRINTF(sc, ATH_DEBUG_XMIT,
3488			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3489			txq->axq_qnum, txq->axq_link,
3490			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3491	}
3492	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3493	/*
3494	 * The CAB queue is started from the SWBA handler since
3495	 * frames only go out on DTIM and to avoid possible races.
3496	 */
3497	if (txq != sc->sc_cabq)
3498		ath_hal_txstart(ah, txq->axq_qnum);
3499	ATH_TXQ_UNLOCK(txq);
3500
3501	return 0;
3502#undef updateCTSForBursting
3503#undef CTS_DURATION
3504}
3505
3506/*
3507 * Process completed xmit descriptors from the specified queue.
3508 */
3509static void
3510ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3511{
3512	struct ath_hal *ah = sc->sc_ah;
3513	struct ieee80211com *ic = &sc->sc_ic;
3514	struct ath_buf *bf;
3515	struct ath_desc *ds, *ds0;
3516	struct ieee80211_node *ni;
3517	struct ath_node *an;
3518	int sr, lr, pri;
3519	HAL_STATUS status;
3520
3521	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3522		__func__, txq->axq_qnum,
3523		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3524		txq->axq_link);
3525	for (;;) {
3526		ATH_TXQ_LOCK(txq);
3527		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3528		bf = STAILQ_FIRST(&txq->axq_q);
3529		if (bf == NULL) {
3530			txq->axq_link = NULL;
3531			ATH_TXQ_UNLOCK(txq);
3532			break;
3533		}
3534		ds0 = &bf->bf_desc[0];
3535		ds = &bf->bf_desc[bf->bf_nseg - 1];
3536		status = ath_hal_txprocdesc(ah, ds);
3537#ifdef AR_DEBUG
3538		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3539			ath_printtxbuf(bf, status == HAL_OK);
3540#endif
3541		if (status == HAL_EINPROGRESS) {
3542			ATH_TXQ_UNLOCK(txq);
3543			break;
3544		}
3545		if (ds0 == txq->axq_lastdsWithCTS)
3546			txq->axq_lastdsWithCTS = NULL;
3547		if (ds == txq->axq_gatingds)
3548			txq->axq_gatingds = NULL;
3549		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3550		ATH_TXQ_UNLOCK(txq);
3551
3552		ni = bf->bf_node;
3553		if (ni != NULL) {
3554			an = ATH_NODE(ni);
3555			if (ds->ds_txstat.ts_status == 0) {
3556				u_int8_t txant = ds->ds_txstat.ts_antenna;
3557				sc->sc_stats.ast_ant_tx[txant]++;
3558				sc->sc_ant_tx[txant]++;
3559				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3560					sc->sc_stats.ast_tx_altrate++;
3561				sc->sc_stats.ast_tx_rssi =
3562					ds->ds_txstat.ts_rssi;
3563				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3564					ds->ds_txstat.ts_rssi);
3565				pri = M_WME_GETAC(bf->bf_m);
3566				if (pri >= WME_AC_VO)
3567					ic->ic_wme.wme_hipri_traffic++;
3568				ni->ni_inact = ni->ni_inact_reload;
3569			} else {
3570				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3571					sc->sc_stats.ast_tx_xretries++;
3572				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3573					sc->sc_stats.ast_tx_fifoerr++;
3574				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3575					sc->sc_stats.ast_tx_filtered++;
3576			}
3577			sr = ds->ds_txstat.ts_shortretry;
3578			lr = ds->ds_txstat.ts_longretry;
3579			sc->sc_stats.ast_tx_shortretry += sr;
3580			sc->sc_stats.ast_tx_longretry += lr;
3581			/*
3582			 * Hand the descriptor to the rate control algorithm.
3583			 */
3584			ath_rate_tx_complete(sc, an, ds, ds0);
3585			/*
3586			 * Reclaim reference to node.
3587			 *
3588			 * NB: the node may be reclaimed here if, for example
3589			 *     this is a DEAUTH message that was sent and the
3590			 *     node was timed out due to inactivity.
3591			 */
3592			ieee80211_free_node(ni);
3593		}
3594		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3595		    BUS_DMASYNC_POSTWRITE);
3596		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3597		m_freem(bf->bf_m);
3598		bf->bf_m = NULL;
3599		bf->bf_node = NULL;
3600
3601		ATH_TXBUF_LOCK(sc);
3602		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3603		ATH_TXBUF_UNLOCK(sc);
3604	}
3605}
3606
3607/*
3608 * Deferred processing of transmit interrupt; special-cased
3609 * for a single hardware transmit queue (e.g. 5210 and 5211).
3610 */
3611static void
3612ath_tx_proc_q0(void *arg, int npending)
3613{
3614	struct ath_softc *sc = arg;
3615	struct ifnet *ifp = &sc->sc_if;
3616
3617	ath_tx_processq(sc, &sc->sc_txq[0]);
3618	ath_tx_processq(sc, sc->sc_cabq);
3619	ifp->if_flags &= ~IFF_OACTIVE;
3620	sc->sc_tx_timer = 0;
3621
3622	if (sc->sc_softled)
3623		ath_led_event(sc, ATH_LED_TX);
3624
3625	ath_start(ifp);
3626}
3627
3628/*
3629 * Deferred processing of transmit interrupt; special-cased
3630 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3631 */
3632static void
3633ath_tx_proc_q0123(void *arg, int npending)
3634{
3635	struct ath_softc *sc = arg;
3636	struct ifnet *ifp = &sc->sc_if;
3637
3638	/*
3639	 * Process each active queue.
3640	 */
3641	ath_tx_processq(sc, &sc->sc_txq[0]);
3642	ath_tx_processq(sc, &sc->sc_txq[1]);
3643	ath_tx_processq(sc, &sc->sc_txq[2]);
3644	ath_tx_processq(sc, &sc->sc_txq[3]);
3645	ath_tx_processq(sc, sc->sc_cabq);
3646
3647	ifp->if_flags &= ~IFF_OACTIVE;
3648	sc->sc_tx_timer = 0;
3649
3650	if (sc->sc_softled)
3651		ath_led_event(sc, ATH_LED_TX);
3652
3653	ath_start(ifp);
3654}
3655
3656/*
3657 * Deferred processing of transmit interrupt.
3658 */
3659static void
3660ath_tx_proc(void *arg, int npending)
3661{
3662	struct ath_softc *sc = arg;
3663	struct ifnet *ifp = &sc->sc_if;
3664	int i;
3665
3666	/*
3667	 * Process each active queue.
3668	 */
3669	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3670	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3671		if (ATH_TXQ_SETUP(sc, i))
3672			ath_tx_processq(sc, &sc->sc_txq[i]);
3673
3674	ifp->if_flags &= ~IFF_OACTIVE;
3675	sc->sc_tx_timer = 0;
3676
3677	if (sc->sc_softled)
3678		ath_led_event(sc, ATH_LED_TX);
3679
3680	ath_start(ifp);
3681}
3682
3683static void
3684ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3685{
3686	struct ath_hal *ah = sc->sc_ah;
3687	struct ieee80211_node *ni;
3688	struct ath_buf *bf;
3689
3690	/*
3691	 * NB: this assumes output has been stopped and
3692	 *     we do not need to block ath_tx_tasklet
3693	 */
3694	for (;;) {
3695		ATH_TXQ_LOCK(txq);
3696		bf = STAILQ_FIRST(&txq->axq_q);
3697		if (bf == NULL) {
3698			txq->axq_link = NULL;
3699			ATH_TXQ_UNLOCK(txq);
3700			break;
3701		}
3702		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3703		ATH_TXQ_UNLOCK(txq);
3704#ifdef AR_DEBUG
3705		if (sc->sc_debug & ATH_DEBUG_RESET)
3706			ath_printtxbuf(bf,
3707				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3708#endif /* AR_DEBUG */
3709		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3710		m_freem(bf->bf_m);
3711		bf->bf_m = NULL;
3712		ni = bf->bf_node;
3713		bf->bf_node = NULL;
3714		if (ni != NULL) {
3715			/*
3716			 * Reclaim node reference.
3717			 */
3718			ieee80211_free_node(ni);
3719		}
3720		ATH_TXBUF_LOCK(sc);
3721		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3722		ATH_TXBUF_UNLOCK(sc);
3723	}
3724}
3725
3726static void
3727ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3728{
3729	struct ath_hal *ah = sc->sc_ah;
3730
3731	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3732	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3733	    __func__, txq->axq_qnum,
3734	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3735	    txq->axq_link);
3736}
3737
3738/*
3739 * Drain the transmit queues and reclaim resources.
3740 */
3741static void
3742ath_draintxq(struct ath_softc *sc)
3743{
3744	struct ath_hal *ah = sc->sc_ah;
3745	struct ifnet *ifp = &sc->sc_if;
3746	int i;
3747
3748	/* XXX return value */
3749	if (!sc->sc_invalid) {
3750		/* don't touch the hardware if marked invalid */
3751		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3752		DPRINTF(sc, ATH_DEBUG_RESET,
3753		    "%s: beacon queue %p\n", __func__,
3754		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
3755		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3756			if (ATH_TXQ_SETUP(sc, i))
3757				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3758	}
3759	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3760		if (ATH_TXQ_SETUP(sc, i))
3761			ath_tx_draintxq(sc, &sc->sc_txq[i]);
3762	ifp->if_flags &= ~IFF_OACTIVE;
3763	sc->sc_tx_timer = 0;
3764}
3765
3766/*
3767 * Disable the receive h/w in preparation for a reset.
3768 */
3769static void
3770ath_stoprecv(struct ath_softc *sc)
3771{
3772#define	PA2DESC(_sc, _pa) \
3773	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3774		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3775	struct ath_hal *ah = sc->sc_ah;
3776
3777	ath_hal_stoppcurecv(ah);	/* disable PCU */
3778	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
3779	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
3780	DELAY(3000);			/* 3ms is long enough for 1 frame */
3781#ifdef AR_DEBUG
3782	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
3783		struct ath_buf *bf;
3784
3785		printf("%s: rx queue %p, link %p\n", __func__,
3786			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3787		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3788			struct ath_desc *ds = bf->bf_desc;
3789			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
3790				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3791			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
3792				ath_printrxbuf(bf, status == HAL_OK);
3793		}
3794	}
3795#endif
3796	sc->sc_rxlink = NULL;		/* just in case */
3797#undef PA2DESC
3798}
3799
3800/*
3801 * Enable the receive h/w following a reset.
3802 */
3803static int
3804ath_startrecv(struct ath_softc *sc)
3805{
3806	struct ath_hal *ah = sc->sc_ah;
3807	struct ath_buf *bf;
3808
3809	sc->sc_rxlink = NULL;
3810	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3811		int error = ath_rxbuf_init(sc, bf);
3812		if (error != 0) {
3813			DPRINTF(sc, ATH_DEBUG_RECV,
3814				"%s: ath_rxbuf_init failed %d\n",
3815				__func__, error);
3816			return error;
3817		}
3818	}
3819
3820	bf = STAILQ_FIRST(&sc->sc_rxbuf);
3821	ath_hal_putrxbuf(ah, bf->bf_daddr);
3822	ath_hal_rxena(ah);		/* enable recv descriptors */
3823	ath_mode_init(sc);		/* set filters, etc. */
3824	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
3825	return 0;
3826}
3827
3828/*
3829 * Update internal state after a channel change.
3830 */
3831static void
3832ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3833{
3834	struct ieee80211com *ic = &sc->sc_ic;
3835	enum ieee80211_phymode mode;
3836	u_int16_t flags;
3837
3838	/*
3839	 * Change channels and update the h/w rate map
3840	 * if we're switching; e.g. 11a to 11b/g.
3841	 */
3842	mode = ieee80211_chan2mode(ic, chan);
3843	if (mode != sc->sc_curmode)
3844		ath_setcurmode(sc, mode);
3845	/*
3846	 * Update BPF state.  NB: ethereal et. al. don't handle
3847	 * merged flags well so pick a unique mode for their use.
3848	 */
3849	if (IEEE80211_IS_CHAN_A(chan))
3850		flags = IEEE80211_CHAN_A;
3851	/* XXX 11g schizophrenia */
3852	else if (IEEE80211_IS_CHAN_G(chan) ||
3853	    IEEE80211_IS_CHAN_PUREG(chan))
3854		flags = IEEE80211_CHAN_G;
3855	else
3856		flags = IEEE80211_CHAN_B;
3857	if (IEEE80211_IS_CHAN_T(chan))
3858		flags |= IEEE80211_CHAN_TURBO;
3859	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3860		htole16(chan->ic_freq);
3861	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3862		htole16(flags);
3863}
3864
3865/*
3866 * Set/change channels.  If the channel is really being changed,
3867 * it's done by reseting the chip.  To accomplish this we must
3868 * first cleanup any pending DMA, then restart stuff after a la
3869 * ath_init.
3870 */
3871static int
3872ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3873{
3874	struct ath_hal *ah = sc->sc_ah;
3875	struct ieee80211com *ic = &sc->sc_ic;
3876	HAL_CHANNEL hchan;
3877
3878	/*
3879	 * Convert to a HAL channel description with
3880	 * the flags constrained to reflect the current
3881	 * operating mode.
3882	 */
3883	hchan.channel = chan->ic_freq;
3884	hchan.channelFlags = ath_chan2flags(ic, chan);
3885
3886	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
3887	    __func__,
3888	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
3889		sc->sc_curchan.channelFlags),
3890	    	sc->sc_curchan.channel,
3891	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
3892	if (hchan.channel != sc->sc_curchan.channel ||
3893	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
3894		HAL_STATUS status;
3895
3896		/*
3897		 * To switch channels clear any pending DMA operations;
3898		 * wait long enough for the RX fifo to drain, reset the
3899		 * hardware at the new frequency, and then re-enable
3900		 * the relevant bits of the h/w.
3901		 */
3902		ath_hal_intrset(ah, 0);		/* disable interrupts */
3903		ath_draintxq(sc);		/* clear pending tx frames */
3904		ath_stoprecv(sc);		/* turn off frame recv */
3905		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
3906			if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
3907				"channel %u (%u Mhz)\n",
3908				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
3909			return EIO;
3910		}
3911		sc->sc_curchan = hchan;
3912		ath_update_txpow(sc);		/* update tx power state */
3913
3914		/*
3915		 * Re-enable rx framework.
3916		 */
3917		if (ath_startrecv(sc) != 0) {
3918			if_printf(ic->ic_ifp,
3919				"ath_chan_set: unable to restart recv logic\n");
3920			return EIO;
3921		}
3922
3923		/*
3924		 * Change channels and update the h/w rate map
3925		 * if we're switching; e.g. 11a to 11b/g.
3926		 */
3927		ic->ic_ibss_chan = chan;
3928		ath_chan_change(sc, chan);
3929
3930		/*
3931		 * Re-enable interrupts.
3932		 */
3933		ath_hal_intrset(ah, sc->sc_imask);
3934	}
3935	return 0;
3936}
3937
3938static void
3939ath_next_scan(void *arg)
3940{
3941	struct ath_softc *sc = arg;
3942	struct ieee80211com *ic = &sc->sc_ic;
3943
3944	if (ic->ic_state == IEEE80211_S_SCAN)
3945		ieee80211_next_scan(ic);
3946}
3947
3948/*
3949 * Periodically recalibrate the PHY to account
3950 * for temperature/environment changes.
3951 */
3952static void
3953ath_calibrate(void *arg)
3954{
3955	struct ath_softc *sc = arg;
3956	struct ath_hal *ah = sc->sc_ah;
3957
3958	sc->sc_stats.ast_per_cal++;
3959
3960	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
3961		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
3962
3963	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
3964		/*
3965		 * Rfgain is out of bounds, reset the chip
3966		 * to load new gain values.
3967		 */
3968		sc->sc_stats.ast_per_rfgain++;
3969		ath_reset(&sc->sc_if);
3970	}
3971	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
3972		DPRINTF(sc, ATH_DEBUG_ANY,
3973			"%s: calibration of channel %u failed\n",
3974			__func__, sc->sc_curchan.channel);
3975		sc->sc_stats.ast_per_calfail++;
3976	}
3977	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
3978}
3979
3980static int
3981ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3982{
3983	struct ifnet *ifp = ic->ic_ifp;
3984	struct ath_softc *sc = ifp->if_softc;
3985	struct ath_hal *ah = sc->sc_ah;
3986	struct ieee80211_node *ni;
3987	int i, error;
3988	const u_int8_t *bssid;
3989	u_int32_t rfilt;
3990	static const HAL_LED_STATE leds[] = {
3991	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
3992	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
3993	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
3994	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
3995	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
3996	};
3997
3998	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
3999		ieee80211_state_name[ic->ic_state],
4000		ieee80211_state_name[nstate]);
4001
4002	callout_stop(&sc->sc_scan_ch);
4003	callout_stop(&sc->sc_cal_ch);
4004	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4005
4006	if (nstate == IEEE80211_S_INIT) {
4007		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4008		/*
4009		 * NB: disable interrupts so we don't rx frames.
4010		 */
4011		ath_hal_intrset(ah, sc->sc_imask &~ ~HAL_INT_GLOBAL);
4012		/*
4013		 * Notify the rate control algorithm.
4014		 */
4015		ath_rate_newstate(sc, nstate);
4016		goto done;
4017	}
4018	ni = ic->ic_bss;
4019	error = ath_chan_set(sc, ni->ni_chan);
4020	if (error != 0)
4021		goto bad;
4022	rfilt = ath_calcrxfilter(sc, nstate);
4023	if (nstate == IEEE80211_S_SCAN)
4024		bssid = ifp->if_broadcastaddr;
4025	else
4026		bssid = ni->ni_bssid;
4027	ath_hal_setrxfilter(ah, rfilt);
4028	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4029		 __func__, rfilt, ether_sprintf(bssid));
4030
4031	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4032		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4033	else
4034		ath_hal_setassocid(ah, bssid, 0);
4035	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4036		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4037			if (ath_hal_keyisvalid(ah, i))
4038				ath_hal_keysetmac(ah, i, bssid);
4039	}
4040
4041	/*
4042	 * Notify the rate control algorithm so rates
4043	 * are setup should ath_beacon_alloc be called.
4044	 */
4045	ath_rate_newstate(sc, nstate);
4046
4047	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4048		/* nothing to do */;
4049	} else if (nstate == IEEE80211_S_RUN) {
4050		DPRINTF(sc, ATH_DEBUG_STATE,
4051			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4052			"capinfo=0x%04x chan=%d\n"
4053			 , __func__
4054			 , ic->ic_flags
4055			 , ni->ni_intval
4056			 , ether_sprintf(ni->ni_bssid)
4057			 , ni->ni_capinfo
4058			 , ieee80211_chan2ieee(ic, ni->ni_chan));
4059
4060		/*
4061		 * Allocate and setup the beacon frame for AP or adhoc mode.
4062		 */
4063		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
4064		    ic->ic_opmode == IEEE80211_M_IBSS) {
4065			/*
4066			 * Stop any previous beacon DMA.  This may be
4067			 * necessary, for example, when an ibss merge
4068			 * causes reconfiguration; there will be a state
4069			 * transition from RUN->RUN that means we may
4070			 * be called with beacon transmission active.
4071			 */
4072			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4073			ath_beacon_free(sc);
4074			error = ath_beacon_alloc(sc, ni);
4075			if (error != 0)
4076				goto bad;
4077		}
4078
4079		/*
4080		 * Configure the beacon and sleep timers.
4081		 */
4082		ath_beacon_config(sc);
4083	} else {
4084		ath_hal_intrset(ah,
4085			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4086		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4087	}
4088done:
4089	/*
4090	 * Invoke the parent method to complete the work.
4091	 */
4092	error = sc->sc_newstate(ic, nstate, arg);
4093	/*
4094	 * Finally, start any timers.
4095	 */
4096	if (nstate == IEEE80211_S_RUN) {
4097		/* start periodic recalibration timer */
4098		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4099			ath_calibrate, sc);
4100	} else if (nstate == IEEE80211_S_SCAN) {
4101		/* start ap/neighbor scan timer */
4102		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4103			ath_next_scan, sc);
4104	}
4105bad:
4106	return error;
4107}
4108
4109/*
4110 * Setup driver-specific state for a newly associated node.
4111 * Note that we're called also on a re-associate, the isnew
4112 * param tells us if this is the first time or not.
4113 */
4114static void
4115ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
4116{
4117	struct ath_softc *sc = ic->ic_ifp->if_softc;
4118
4119	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4120}
4121
4122static int
4123ath_getchannels(struct ath_softc *sc, u_int cc,
4124	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4125{
4126	struct ieee80211com *ic = &sc->sc_ic;
4127	struct ifnet *ifp = &sc->sc_if;
4128	struct ath_hal *ah = sc->sc_ah;
4129	HAL_CHANNEL *chans;
4130	int i, ix, nchan;
4131
4132	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4133			M_TEMP, M_NOWAIT);
4134	if (chans == NULL) {
4135		if_printf(ifp, "unable to allocate channel table\n");
4136		return ENOMEM;
4137	}
4138	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4139	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4140		u_int32_t rd;
4141
4142		ath_hal_getregdomain(ah, &rd);
4143		if_printf(ifp, "unable to collect channel list from hal; "
4144			"regdomain likely %u country code %u\n", rd, cc);
4145		free(chans, M_TEMP);
4146		return EINVAL;
4147	}
4148
4149	/*
4150	 * Convert HAL channels to ieee80211 ones and insert
4151	 * them in the table according to their channel number.
4152	 */
4153	for (i = 0; i < nchan; i++) {
4154		HAL_CHANNEL *c = &chans[i];
4155		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4156		if (ix > IEEE80211_CHAN_MAX) {
4157			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4158				ix, c->channel, c->channelFlags);
4159			continue;
4160		}
4161		/* NB: flags are known to be compatible */
4162		if (ic->ic_channels[ix].ic_freq == 0) {
4163			ic->ic_channels[ix].ic_freq = c->channel;
4164			ic->ic_channels[ix].ic_flags = c->channelFlags;
4165		} else {
4166			/* channels overlap; e.g. 11g and 11b */
4167			ic->ic_channels[ix].ic_flags |= c->channelFlags;
4168		}
4169	}
4170	free(chans, M_TEMP);
4171	return 0;
4172}
4173
4174static void
4175ath_led_done(void *arg)
4176{
4177	struct ath_softc *sc = arg;
4178
4179	sc->sc_blinking = 0;
4180}
4181
4182/*
4183 * Turn the LED off: flip the pin and then set a timer so no
4184 * update will happen for the specified duration.
4185 */
4186static void
4187ath_led_off(void *arg)
4188{
4189	struct ath_softc *sc = arg;
4190
4191	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4192	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4193}
4194
4195/*
4196 * Blink the LED according to the specified on/off times.
4197 */
4198static void
4199ath_led_blink(struct ath_softc *sc, int on, int off)
4200{
4201	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4202	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4203	sc->sc_blinking = 1;
4204	sc->sc_ledoff = off;
4205	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4206}
4207
4208static void
4209ath_led_event(struct ath_softc *sc, int event)
4210{
4211
4212	sc->sc_ledevent = ticks;	/* time of last event */
4213	if (sc->sc_blinking)		/* don't interrupt active blink */
4214		return;
4215	switch (event) {
4216	case ATH_LED_POLL:
4217		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4218			sc->sc_hwmap[0].ledoff);
4219		break;
4220	case ATH_LED_TX:
4221		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4222			sc->sc_hwmap[sc->sc_txrate].ledoff);
4223		break;
4224	case ATH_LED_RX:
4225		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4226			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4227		break;
4228	}
4229}
4230
4231static void
4232ath_update_txpow(struct ath_softc *sc)
4233{
4234	struct ieee80211com *ic = &sc->sc_ic;
4235	struct ath_hal *ah = sc->sc_ah;
4236	u_int32_t txpow;
4237
4238	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4239		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4240		/* read back in case value is clamped */
4241		ath_hal_gettxpowlimit(ah, &txpow);
4242		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4243	}
4244	/*
4245	 * Fetch max tx power level for status requests.
4246	 */
4247	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4248	ic->ic_bss->ni_txpower = txpow;
4249}
4250
4251static int
4252ath_rate_setup(struct ath_softc *sc, u_int mode)
4253{
4254	struct ath_hal *ah = sc->sc_ah;
4255	struct ieee80211com *ic = &sc->sc_ic;
4256	const HAL_RATE_TABLE *rt;
4257	struct ieee80211_rateset *rs;
4258	int i, maxrates;
4259
4260	switch (mode) {
4261	case IEEE80211_MODE_11A:
4262		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4263		break;
4264	case IEEE80211_MODE_11B:
4265		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4266		break;
4267	case IEEE80211_MODE_11G:
4268		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4269		break;
4270	case IEEE80211_MODE_TURBO_A:
4271		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4272		break;
4273	case IEEE80211_MODE_TURBO_G:
4274		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4275		break;
4276	default:
4277		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4278			__func__, mode);
4279		return 0;
4280	}
4281	rt = sc->sc_rates[mode];
4282	if (rt == NULL)
4283		return 0;
4284	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4285		DPRINTF(sc, ATH_DEBUG_ANY,
4286			"%s: rate table too small (%u > %u)\n",
4287			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4288		maxrates = IEEE80211_RATE_MAXSIZE;
4289	} else
4290		maxrates = rt->rateCount;
4291	rs = &ic->ic_sup_rates[mode];
4292	for (i = 0; i < maxrates; i++)
4293		rs->rs_rates[i] = rt->info[i].dot11Rate;
4294	rs->rs_nrates = maxrates;
4295	return 1;
4296}
4297
4298static void
4299ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4300{
4301#define	N(a)	(sizeof(a)/sizeof(a[0]))
4302	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4303	static const struct {
4304		u_int		rate;		/* tx/rx 802.11 rate */
4305		u_int16_t	timeOn;		/* LED on time (ms) */
4306		u_int16_t	timeOff;	/* LED off time (ms) */
4307	} blinkrates[] = {
4308		{ 108,  40,  10 },
4309		{  96,  44,  11 },
4310		{  72,  50,  13 },
4311		{  48,  57,  14 },
4312		{  36,  67,  16 },
4313		{  24,  80,  20 },
4314		{  22, 100,  25 },
4315		{  18, 133,  34 },
4316		{  12, 160,  40 },
4317		{  10, 200,  50 },
4318		{   6, 240,  58 },
4319		{   4, 267,  66 },
4320		{   2, 400, 100 },
4321		{   0, 500, 130 },
4322	};
4323	const HAL_RATE_TABLE *rt;
4324	int i, j;
4325
4326	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4327	rt = sc->sc_rates[mode];
4328	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4329	for (i = 0; i < rt->rateCount; i++)
4330		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4331	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4332	for (i = 0; i < 32; i++) {
4333		u_int8_t ix = rt->rateCodeToIndex[i];
4334		if (ix == 0xff) {
4335			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4336			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4337			continue;
4338		}
4339		sc->sc_hwmap[i].ieeerate =
4340			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4341		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4342		if (rt->info[ix].shortPreamble ||
4343		    rt->info[ix].phy == IEEE80211_T_OFDM)
4344			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4345		/* NB: receive frames include FCS */
4346		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4347			IEEE80211_RADIOTAP_F_FCS;
4348		/* setup blink rate table to avoid per-packet lookup */
4349		for (j = 0; j < N(blinkrates)-1; j++)
4350			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4351				break;
4352		/* NB: this uses the last entry if the rate isn't found */
4353		/* XXX beware of overlow */
4354		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4355		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4356	}
4357	sc->sc_currates = rt;
4358	sc->sc_curmode = mode;
4359	/*
4360	 * All protection frames are transmited at 2Mb/s for
4361	 * 11g, otherwise at 1Mb/s.
4362	 * XXX select protection rate index from rate table.
4363	 */
4364	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4365	/* NB: caller is responsible for reseting rate control state */
4366#undef N
4367}
4368
4369#ifdef AR_DEBUG
4370static void
4371ath_printrxbuf(struct ath_buf *bf, int done)
4372{
4373	struct ath_desc *ds;
4374	int i;
4375
4376	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4377		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4378		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4379		    ds->ds_link, ds->ds_data,
4380		    ds->ds_ctl0, ds->ds_ctl1,
4381		    ds->ds_hw[0], ds->ds_hw[1],
4382		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4383	}
4384}
4385
4386static void
4387ath_printtxbuf(struct ath_buf *bf, int done)
4388{
4389	struct ath_desc *ds;
4390	int i;
4391
4392	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4393		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4394		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4395		    ds->ds_link, ds->ds_data,
4396		    ds->ds_ctl0, ds->ds_ctl1,
4397		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4398		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4399	}
4400}
4401#endif /* AR_DEBUG */
4402
4403static void
4404ath_watchdog(struct ifnet *ifp)
4405{
4406	struct ath_softc *sc = ifp->if_softc;
4407	struct ieee80211com *ic = &sc->sc_ic;
4408
4409	ifp->if_timer = 0;
4410	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4411		return;
4412	if (sc->sc_tx_timer) {
4413		if (--sc->sc_tx_timer == 0) {
4414			if_printf(ifp, "device timeout\n");
4415			ath_reset(ifp);
4416			ifp->if_oerrors++;
4417			sc->sc_stats.ast_watchdog++;
4418		} else
4419			ifp->if_timer = 1;
4420	}
4421	ieee80211_watchdog(ic);
4422}
4423
4424/*
4425 * Diagnostic interface to the HAL.  This is used by various
4426 * tools to do things like retrieve register contents for
4427 * debugging.  The mechanism is intentionally opaque so that
4428 * it can change frequently w/o concern for compatiblity.
4429 */
4430static int
4431ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4432{
4433	struct ath_hal *ah = sc->sc_ah;
4434	u_int id = ad->ad_id & ATH_DIAG_ID;
4435	void *indata = NULL;
4436	void *outdata = NULL;
4437	u_int32_t insize = ad->ad_in_size;
4438	u_int32_t outsize = ad->ad_out_size;
4439	int error = 0;
4440
4441	if (ad->ad_id & ATH_DIAG_IN) {
4442		/*
4443		 * Copy in data.
4444		 */
4445		indata = malloc(insize, M_TEMP, M_NOWAIT);
4446		if (indata == NULL) {
4447			error = ENOMEM;
4448			goto bad;
4449		}
4450		error = copyin(ad->ad_in_data, indata, insize);
4451		if (error)
4452			goto bad;
4453	}
4454	if (ad->ad_id & ATH_DIAG_DYN) {
4455		/*
4456		 * Allocate a buffer for the results (otherwise the HAL
4457		 * returns a pointer to a buffer where we can read the
4458		 * results).  Note that we depend on the HAL leaving this
4459		 * pointer for us to use below in reclaiming the buffer;
4460		 * may want to be more defensive.
4461		 */
4462		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4463		if (outdata == NULL) {
4464			error = ENOMEM;
4465			goto bad;
4466		}
4467	}
4468	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4469		if (outsize < ad->ad_out_size)
4470			ad->ad_out_size = outsize;
4471		if (outdata != NULL)
4472			error = copyout(outdata, ad->ad_out_data,
4473					ad->ad_out_size);
4474	} else {
4475		error = EINVAL;
4476	}
4477bad:
4478	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4479		free(indata, M_TEMP);
4480	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4481		free(outdata, M_TEMP);
4482	return error;
4483}
4484
4485static int
4486ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4487{
4488#define	IS_RUNNING(ifp) \
4489	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
4490	struct ath_softc *sc = ifp->if_softc;
4491	struct ieee80211com *ic = &sc->sc_ic;
4492	struct ifreq *ifr = (struct ifreq *)data;
4493	int error = 0;
4494
4495	ATH_LOCK(sc);
4496	switch (cmd) {
4497	case SIOCSIFFLAGS:
4498		if (IS_RUNNING(ifp)) {
4499			/*
4500			 * To avoid rescanning another access point,
4501			 * do not call ath_init() here.  Instead,
4502			 * only reflect promisc mode settings.
4503			 */
4504			ath_mode_init(sc);
4505		} else if (ifp->if_flags & IFF_UP) {
4506			/*
4507			 * Beware of being called during attach/detach
4508			 * to reset promiscuous mode.  In that case we
4509			 * will still be marked UP but not RUNNING.
4510			 * However trying to re-init the interface
4511			 * is the wrong thing to do as we've already
4512			 * torn down much of our state.  There's
4513			 * probably a better way to deal with this.
4514			 */
4515			if (!sc->sc_invalid && ic->ic_bss != NULL)
4516				ath_init(ifp);	/* XXX lose error */
4517		} else
4518			ath_stop_locked(ifp);
4519		break;
4520	case SIOCADDMULTI:
4521	case SIOCDELMULTI:
4522		/*
4523		 * The upper layer has already installed/removed
4524		 * the multicast address(es), just recalculate the
4525		 * multicast filter for the card.
4526		 */
4527		if (ifp->if_flags & IFF_RUNNING)
4528			ath_mode_init(sc);
4529		break;
4530	case SIOCGATHSTATS:
4531		/* NB: embed these numbers to get a consistent view */
4532		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4533		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4534		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4535		ATH_UNLOCK(sc);
4536		/*
4537		 * NB: Drop the softc lock in case of a page fault;
4538		 * we'll accept any potential inconsisentcy in the
4539		 * statistics.  The alternative is to copy the data
4540		 * to a local structure.
4541		 */
4542		return copyout(&sc->sc_stats,
4543				ifr->ifr_data, sizeof (sc->sc_stats));
4544	case SIOCGATHDIAG:
4545		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4546		break;
4547	default:
4548		error = ieee80211_ioctl(ic, cmd, data);
4549		if (error == ENETRESET) {
4550			if (IS_RUNNING(ifp) &&
4551			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4552				ath_init(ifp);	/* XXX lose error */
4553			error = 0;
4554		}
4555		if (error == ERESTART)
4556			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4557		break;
4558	}
4559	ATH_UNLOCK(sc);
4560	return error;
4561#undef IS_RUNNING
4562}
4563
4564static int
4565ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
4566{
4567	struct ath_softc *sc = arg1;
4568	u_int slottime = ath_hal_getslottime(sc->sc_ah);
4569	int error;
4570
4571	error = sysctl_handle_int(oidp, &slottime, 0, req);
4572	if (error || !req->newptr)
4573		return error;
4574	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
4575}
4576
4577static int
4578ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
4579{
4580	struct ath_softc *sc = arg1;
4581	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
4582	int error;
4583
4584	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
4585	if (error || !req->newptr)
4586		return error;
4587	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
4588}
4589
4590static int
4591ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
4592{
4593	struct ath_softc *sc = arg1;
4594	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
4595	int error;
4596
4597	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
4598	if (error || !req->newptr)
4599		return error;
4600	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
4601}
4602
4603static int
4604ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
4605{
4606	struct ath_softc *sc = arg1;
4607	int softled = sc->sc_softled;
4608	int error;
4609
4610	error = sysctl_handle_int(oidp, &softled, 0, req);
4611	if (error || !req->newptr)
4612		return error;
4613	softled = (softled != 0);
4614	if (softled != sc->sc_softled) {
4615		if (softled) {
4616			/* NB: handle any sc_ledpin change */
4617			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
4618			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
4619				!sc->sc_ledon);
4620		}
4621		sc->sc_softled = softled;
4622	}
4623	return 0;
4624}
4625
4626static int
4627ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
4628{
4629	struct ath_softc *sc = arg1;
4630	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
4631	int error;
4632
4633	error = sysctl_handle_int(oidp, &defantenna, 0, req);
4634	if (!error && req->newptr)
4635		ath_hal_setdefantenna(sc->sc_ah, defantenna);
4636	return error;
4637}
4638
4639static int
4640ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
4641{
4642	struct ath_softc *sc = arg1;
4643	u_int diversity = sc->sc_diversity;
4644	int error;
4645
4646	error = sysctl_handle_int(oidp, &diversity, 0, req);
4647	if (error || !req->newptr)
4648		return error;
4649	sc->sc_diversity = diversity;
4650	return !ath_hal_setdiversity(sc->sc_ah, diversity) ? EINVAL : 0;
4651}
4652
4653static int
4654ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
4655{
4656	struct ath_softc *sc = arg1;
4657	u_int32_t diag;
4658	int error;
4659
4660	if (!ath_hal_getdiag(sc->sc_ah, &diag))
4661		return EINVAL;
4662	error = sysctl_handle_int(oidp, &diag, 0, req);
4663	if (error || !req->newptr)
4664		return error;
4665	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
4666}
4667
4668static int
4669ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
4670{
4671	struct ath_softc *sc = arg1;
4672	struct ifnet *ifp = &sc->sc_if;
4673	u_int32_t scale;
4674	int error;
4675
4676	ath_hal_gettpscale(sc->sc_ah, &scale);
4677	error = sysctl_handle_int(oidp, &scale, 0, req);
4678	if (error || !req->newptr)
4679		return error;
4680	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
4681}
4682
4683static int
4684ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
4685{
4686	struct ath_softc *sc = arg1;
4687	u_int tpc = ath_hal_gettpc(sc->sc_ah);
4688	int error;
4689
4690	error = sysctl_handle_int(oidp, &tpc, 0, req);
4691	if (error || !req->newptr)
4692		return error;
4693	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
4694}
4695
4696static void
4697ath_sysctlattach(struct ath_softc *sc)
4698{
4699	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4700	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4701
4702	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
4703	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4704		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
4705		"EEPROM country code");
4706	ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain);
4707	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4708		"regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0,
4709		"EEPROM regdomain code");
4710	sc->sc_debug = ath_debug;
4711	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4712		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
4713		"control debugging printfs");
4714
4715	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4716		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4717		ath_sysctl_slottime, "I", "802.11 slot time (us)");
4718	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4719		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4720		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
4721	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4722		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4723		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
4724	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4725		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4726		ath_sysctl_softled, "I", "enable/disable software LED support");
4727	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4728		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
4729		"GPIO pin connected to LED");
4730	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4731		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
4732		"setting to turn LED on");
4733	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4734		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
4735		"idle time for inactivity LED (ticks)");
4736	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4737		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
4738		"tx antenna (0=auto)");
4739	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4740		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4741		ath_sysctl_rxantenna, "I", "default/rx antenna");
4742	if (sc->sc_hasdiversity)
4743		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4744			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4745			ath_sysctl_diversity, "I", "antenna diversity");
4746	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
4747	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4748		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
4749		"tx descriptor batching");
4750	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4751		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4752		ath_sysctl_diag, "I", "h/w diagnostic control");
4753	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4754		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4755		ath_sysctl_tpscale, "I", "tx power scaling");
4756	if (sc->sc_hastpc)
4757		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4758			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4759			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
4760}
4761
4762static void
4763ath_bpfattach(struct ath_softc *sc)
4764{
4765	struct ifnet *ifp = &sc->sc_if;
4766
4767	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4768		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4769		&sc->sc_drvbpf);
4770	/*
4771	 * Initialize constant fields.
4772	 * XXX make header lengths a multiple of 32-bits so subsequent
4773	 *     headers are properly aligned; this is a kludge to keep
4774	 *     certain applications happy.
4775	 *
4776	 * NB: the channel is setup each time we transition to the
4777	 *     RUN state to avoid filling it in for each frame.
4778	 */
4779	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4780	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4781	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4782
4783	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4784	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4785	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4786}
4787
4788/*
4789 * Announce various information on device/driver attach.
4790 */
4791static void
4792ath_announce(struct ath_softc *sc)
4793{
4794#define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
4795	struct ifnet *ifp = &sc->sc_if;
4796	struct ath_hal *ah = sc->sc_ah;
4797	u_int modes, cc;
4798
4799	if_printf(ifp, "mac %d.%d phy %d.%d",
4800		ah->ah_macVersion, ah->ah_macRev,
4801		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4802	/*
4803	 * Print radio revision(s).  We check the wireless modes
4804	 * to avoid falsely printing revs for inoperable parts.
4805	 * Dual-band radio revs are returned in the 5Ghz rev number.
4806	 */
4807	ath_hal_getcountrycode(ah, &cc);
4808	modes = ath_hal_getwirelessmodes(ah, cc);
4809	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4810		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4811			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4812				ah->ah_analog5GhzRev >> 4,
4813				ah->ah_analog5GhzRev & 0xf,
4814				ah->ah_analog2GhzRev >> 4,
4815				ah->ah_analog2GhzRev & 0xf);
4816		else
4817			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4818				ah->ah_analog5GhzRev & 0xf);
4819	} else
4820		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4821			ah->ah_analog5GhzRev & 0xf);
4822	printf("\n");
4823	if (bootverbose) {
4824		int i;
4825		for (i = 0; i <= WME_AC_VO; i++) {
4826			struct ath_txq *txq = sc->sc_ac2q[i];
4827			if_printf(ifp, "Use hw queue %u for %s traffic\n",
4828				txq->axq_qnum, ieee80211_wme_acnames[i]);
4829		}
4830		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4831			sc->sc_cabq->axq_qnum);
4832		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4833	}
4834#undef HAL_MODE_DUALBAND
4835}
4836