zio.c revision 252840
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/fm/fs/zfs.h>
28#include <sys/spa.h>
29#include <sys/txg.h>
30#include <sys/spa_impl.h>
31#include <sys/vdev_impl.h>
32#include <sys/zio_impl.h>
33#include <sys/zio_compress.h>
34#include <sys/zio_checksum.h>
35#include <sys/dmu_objset.h>
36#include <sys/arc.h>
37#include <sys/ddt.h>
38#include <sys/trim_map.h>
39
40SYSCTL_DECL(_vfs_zfs);
41SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
42static int zio_use_uma = 0;
43TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
44SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
45    "Use uma(9) for ZIO allocations");
46static int zio_exclude_metadata = 0;
47TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
48SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
49    "Exclude metadata buffers from dumps as well");
50
51zio_trim_stats_t zio_trim_stats = {
52	{ "bytes",		KSTAT_DATA_UINT64,
53	  "Number of bytes successfully TRIMmed" },
54	{ "success",		KSTAT_DATA_UINT64,
55	  "Number of successful TRIM requests" },
56	{ "unsupported",	KSTAT_DATA_UINT64,
57	  "Number of TRIM requests that failed because TRIM is not supported" },
58	{ "failed",		KSTAT_DATA_UINT64,
59	  "Number of TRIM requests that failed for reasons other than not supported" },
60};
61
62static kstat_t *zio_trim_ksp;
63
64/*
65 * ==========================================================================
66 * I/O priority table
67 * ==========================================================================
68 */
69uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
70	0,	/* ZIO_PRIORITY_NOW		*/
71	0,	/* ZIO_PRIORITY_SYNC_READ	*/
72	0,	/* ZIO_PRIORITY_SYNC_WRITE	*/
73	0,	/* ZIO_PRIORITY_LOG_WRITE	*/
74	1,	/* ZIO_PRIORITY_CACHE_FILL	*/
75	1,	/* ZIO_PRIORITY_AGG		*/
76	4,	/* ZIO_PRIORITY_FREE		*/
77	4,	/* ZIO_PRIORITY_ASYNC_WRITE	*/
78	6,	/* ZIO_PRIORITY_ASYNC_READ	*/
79	10,	/* ZIO_PRIORITY_RESILVER	*/
80	20,	/* ZIO_PRIORITY_SCRUB		*/
81	2,	/* ZIO_PRIORITY_DDT_PREFETCH	*/
82	30,	/* ZIO_PRIORITY_TRIM		*/
83};
84
85/*
86 * ==========================================================================
87 * I/O type descriptions
88 * ==========================================================================
89 */
90char *zio_type_name[ZIO_TYPES] = {
91	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
92	"zio_ioctl"
93};
94
95/*
96 * ==========================================================================
97 * I/O kmem caches
98 * ==========================================================================
99 */
100kmem_cache_t *zio_cache;
101kmem_cache_t *zio_link_cache;
102kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
103kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
104
105#ifdef _KERNEL
106extern vmem_t *zio_alloc_arena;
107#endif
108extern int zfs_mg_alloc_failures;
109
110/*
111 * The following actions directly effect the spa's sync-to-convergence logic.
112 * The values below define the sync pass when we start performing the action.
113 * Care should be taken when changing these values as they directly impact
114 * spa_sync() performance. Tuning these values may introduce subtle performance
115 * pathologies and should only be done in the context of performance analysis.
116 * These tunables will eventually be removed and replaced with #defines once
117 * enough analysis has been done to determine optimal values.
118 *
119 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
120 * regular blocks are not deferred.
121 */
122int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
123TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
124SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
125    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
126int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
127TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
128SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
129    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
130int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
131TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
132SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
133    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
134
135/*
136 * An allocating zio is one that either currently has the DVA allocate
137 * stage set or will have it later in its lifetime.
138 */
139#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
140
141boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
142
143#ifdef ZFS_DEBUG
144int zio_buf_debug_limit = 16384;
145#else
146int zio_buf_debug_limit = 0;
147#endif
148
149void
150zio_init(void)
151{
152	size_t c;
153	zio_cache = kmem_cache_create("zio_cache",
154	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
155	zio_link_cache = kmem_cache_create("zio_link_cache",
156	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
157	if (!zio_use_uma)
158		goto out;
159
160	/*
161	 * For small buffers, we want a cache for each multiple of
162	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
163	 * for each quarter-power of 2.  For large buffers, we want
164	 * a cache for each multiple of PAGESIZE.
165	 */
166	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
167		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
168		size_t p2 = size;
169		size_t align = 0;
170		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
171
172		while (p2 & (p2 - 1))
173			p2 &= p2 - 1;
174
175#ifdef illumos
176#ifndef _KERNEL
177		/*
178		 * If we are using watchpoints, put each buffer on its own page,
179		 * to eliminate the performance overhead of trapping to the
180		 * kernel when modifying a non-watched buffer that shares the
181		 * page with a watched buffer.
182		 */
183		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
184			continue;
185#endif
186#endif /* illumos */
187		if (size <= 4 * SPA_MINBLOCKSIZE) {
188			align = SPA_MINBLOCKSIZE;
189		} else if (IS_P2ALIGNED(size, PAGESIZE)) {
190			align = PAGESIZE;
191		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
192			align = p2 >> 2;
193		}
194
195		if (align != 0) {
196			char name[36];
197			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
198			zio_buf_cache[c] = kmem_cache_create(name, size,
199			    align, NULL, NULL, NULL, NULL, NULL, cflags);
200
201			/*
202			 * Since zio_data bufs do not appear in crash dumps, we
203			 * pass KMC_NOTOUCH so that no allocator metadata is
204			 * stored with the buffers.
205			 */
206			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
207			zio_data_buf_cache[c] = kmem_cache_create(name, size,
208			    align, NULL, NULL, NULL, NULL, NULL,
209			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
210		}
211	}
212
213	while (--c != 0) {
214		ASSERT(zio_buf_cache[c] != NULL);
215		if (zio_buf_cache[c - 1] == NULL)
216			zio_buf_cache[c - 1] = zio_buf_cache[c];
217
218		ASSERT(zio_data_buf_cache[c] != NULL);
219		if (zio_data_buf_cache[c - 1] == NULL)
220			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
221	}
222out:
223
224	/*
225	 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
226	 * to fail 3 times per txg or 8 failures, whichever is greater.
227	 */
228	if (zfs_mg_alloc_failures == 0)
229		zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
230	else if (zfs_mg_alloc_failures < 8)
231		zfs_mg_alloc_failures = 8;
232
233	zio_inject_init();
234
235	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
236	    KSTAT_TYPE_NAMED,
237	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
238	    KSTAT_FLAG_VIRTUAL);
239
240	if (zio_trim_ksp != NULL) {
241		zio_trim_ksp->ks_data = &zio_trim_stats;
242		kstat_install(zio_trim_ksp);
243	}
244}
245
246void
247zio_fini(void)
248{
249	size_t c;
250	kmem_cache_t *last_cache = NULL;
251	kmem_cache_t *last_data_cache = NULL;
252
253	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
254		if (zio_buf_cache[c] != last_cache) {
255			last_cache = zio_buf_cache[c];
256			kmem_cache_destroy(zio_buf_cache[c]);
257		}
258		zio_buf_cache[c] = NULL;
259
260		if (zio_data_buf_cache[c] != last_data_cache) {
261			last_data_cache = zio_data_buf_cache[c];
262			kmem_cache_destroy(zio_data_buf_cache[c]);
263		}
264		zio_data_buf_cache[c] = NULL;
265	}
266
267	kmem_cache_destroy(zio_link_cache);
268	kmem_cache_destroy(zio_cache);
269
270	zio_inject_fini();
271
272	if (zio_trim_ksp != NULL) {
273		kstat_delete(zio_trim_ksp);
274		zio_trim_ksp = NULL;
275	}
276}
277
278/*
279 * ==========================================================================
280 * Allocate and free I/O buffers
281 * ==========================================================================
282 */
283
284/*
285 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
286 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
287 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
288 * excess / transient data in-core during a crashdump.
289 */
290void *
291zio_buf_alloc(size_t size)
292{
293	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
294	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
295
296	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
297
298	if (zio_use_uma)
299		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
300	else
301		return (kmem_alloc(size, KM_SLEEP|flags));
302}
303
304/*
305 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
306 * crashdump if the kernel panics.  This exists so that we will limit the amount
307 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
308 * of kernel heap dumped to disk when the kernel panics)
309 */
310void *
311zio_data_buf_alloc(size_t size)
312{
313	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
314
315	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
316
317	if (zio_use_uma)
318		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
319	else
320		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
321}
322
323void
324zio_buf_free(void *buf, size_t size)
325{
326	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
327
328	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
329
330	if (zio_use_uma)
331		kmem_cache_free(zio_buf_cache[c], buf);
332	else
333		kmem_free(buf, size);
334}
335
336void
337zio_data_buf_free(void *buf, size_t size)
338{
339	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
340
341	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
342
343	if (zio_use_uma)
344		kmem_cache_free(zio_data_buf_cache[c], buf);
345	else
346		kmem_free(buf, size);
347}
348
349/*
350 * ==========================================================================
351 * Push and pop I/O transform buffers
352 * ==========================================================================
353 */
354static void
355zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
356	zio_transform_func_t *transform)
357{
358	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
359
360	zt->zt_orig_data = zio->io_data;
361	zt->zt_orig_size = zio->io_size;
362	zt->zt_bufsize = bufsize;
363	zt->zt_transform = transform;
364
365	zt->zt_next = zio->io_transform_stack;
366	zio->io_transform_stack = zt;
367
368	zio->io_data = data;
369	zio->io_size = size;
370}
371
372static void
373zio_pop_transforms(zio_t *zio)
374{
375	zio_transform_t *zt;
376
377	while ((zt = zio->io_transform_stack) != NULL) {
378		if (zt->zt_transform != NULL)
379			zt->zt_transform(zio,
380			    zt->zt_orig_data, zt->zt_orig_size);
381
382		if (zt->zt_bufsize != 0)
383			zio_buf_free(zio->io_data, zt->zt_bufsize);
384
385		zio->io_data = zt->zt_orig_data;
386		zio->io_size = zt->zt_orig_size;
387		zio->io_transform_stack = zt->zt_next;
388
389		kmem_free(zt, sizeof (zio_transform_t));
390	}
391}
392
393/*
394 * ==========================================================================
395 * I/O transform callbacks for subblocks and decompression
396 * ==========================================================================
397 */
398static void
399zio_subblock(zio_t *zio, void *data, uint64_t size)
400{
401	ASSERT(zio->io_size > size);
402
403	if (zio->io_type == ZIO_TYPE_READ)
404		bcopy(zio->io_data, data, size);
405}
406
407static void
408zio_decompress(zio_t *zio, void *data, uint64_t size)
409{
410	if (zio->io_error == 0 &&
411	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
412	    zio->io_data, data, zio->io_size, size) != 0)
413		zio->io_error = SET_ERROR(EIO);
414}
415
416/*
417 * ==========================================================================
418 * I/O parent/child relationships and pipeline interlocks
419 * ==========================================================================
420 */
421/*
422 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
423 *        continue calling these functions until they return NULL.
424 *        Otherwise, the next caller will pick up the list walk in
425 *        some indeterminate state.  (Otherwise every caller would
426 *        have to pass in a cookie to keep the state represented by
427 *        io_walk_link, which gets annoying.)
428 */
429zio_t *
430zio_walk_parents(zio_t *cio)
431{
432	zio_link_t *zl = cio->io_walk_link;
433	list_t *pl = &cio->io_parent_list;
434
435	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
436	cio->io_walk_link = zl;
437
438	if (zl == NULL)
439		return (NULL);
440
441	ASSERT(zl->zl_child == cio);
442	return (zl->zl_parent);
443}
444
445zio_t *
446zio_walk_children(zio_t *pio)
447{
448	zio_link_t *zl = pio->io_walk_link;
449	list_t *cl = &pio->io_child_list;
450
451	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
452	pio->io_walk_link = zl;
453
454	if (zl == NULL)
455		return (NULL);
456
457	ASSERT(zl->zl_parent == pio);
458	return (zl->zl_child);
459}
460
461zio_t *
462zio_unique_parent(zio_t *cio)
463{
464	zio_t *pio = zio_walk_parents(cio);
465
466	VERIFY(zio_walk_parents(cio) == NULL);
467	return (pio);
468}
469
470void
471zio_add_child(zio_t *pio, zio_t *cio)
472{
473	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
474
475	/*
476	 * Logical I/Os can have logical, gang, or vdev children.
477	 * Gang I/Os can have gang or vdev children.
478	 * Vdev I/Os can only have vdev children.
479	 * The following ASSERT captures all of these constraints.
480	 */
481	ASSERT(cio->io_child_type <= pio->io_child_type);
482
483	zl->zl_parent = pio;
484	zl->zl_child = cio;
485
486	mutex_enter(&cio->io_lock);
487	mutex_enter(&pio->io_lock);
488
489	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
490
491	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
492		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
493
494	list_insert_head(&pio->io_child_list, zl);
495	list_insert_head(&cio->io_parent_list, zl);
496
497	pio->io_child_count++;
498	cio->io_parent_count++;
499
500	mutex_exit(&pio->io_lock);
501	mutex_exit(&cio->io_lock);
502}
503
504static void
505zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
506{
507	ASSERT(zl->zl_parent == pio);
508	ASSERT(zl->zl_child == cio);
509
510	mutex_enter(&cio->io_lock);
511	mutex_enter(&pio->io_lock);
512
513	list_remove(&pio->io_child_list, zl);
514	list_remove(&cio->io_parent_list, zl);
515
516	pio->io_child_count--;
517	cio->io_parent_count--;
518
519	mutex_exit(&pio->io_lock);
520	mutex_exit(&cio->io_lock);
521
522	kmem_cache_free(zio_link_cache, zl);
523}
524
525static boolean_t
526zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
527{
528	uint64_t *countp = &zio->io_children[child][wait];
529	boolean_t waiting = B_FALSE;
530
531	mutex_enter(&zio->io_lock);
532	ASSERT(zio->io_stall == NULL);
533	if (*countp != 0) {
534		zio->io_stage >>= 1;
535		zio->io_stall = countp;
536		waiting = B_TRUE;
537	}
538	mutex_exit(&zio->io_lock);
539
540	return (waiting);
541}
542
543static void
544zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
545{
546	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
547	int *errorp = &pio->io_child_error[zio->io_child_type];
548
549	mutex_enter(&pio->io_lock);
550	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
551		*errorp = zio_worst_error(*errorp, zio->io_error);
552	pio->io_reexecute |= zio->io_reexecute;
553	ASSERT3U(*countp, >, 0);
554	if (--*countp == 0 && pio->io_stall == countp) {
555		pio->io_stall = NULL;
556		mutex_exit(&pio->io_lock);
557		zio_execute(pio);
558	} else {
559		mutex_exit(&pio->io_lock);
560	}
561}
562
563static void
564zio_inherit_child_errors(zio_t *zio, enum zio_child c)
565{
566	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
567		zio->io_error = zio->io_child_error[c];
568}
569
570/*
571 * ==========================================================================
572 * Create the various types of I/O (read, write, free, etc)
573 * ==========================================================================
574 */
575static zio_t *
576zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
577    void *data, uint64_t size, zio_done_func_t *done, void *private,
578    zio_type_t type, int priority, enum zio_flag flags,
579    vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
580    enum zio_stage stage, enum zio_stage pipeline)
581{
582	zio_t *zio;
583
584	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
585	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
586	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
587
588	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
589	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
590	ASSERT(vd || stage == ZIO_STAGE_OPEN);
591
592	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
593	bzero(zio, sizeof (zio_t));
594
595	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
596	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
597
598	list_create(&zio->io_parent_list, sizeof (zio_link_t),
599	    offsetof(zio_link_t, zl_parent_node));
600	list_create(&zio->io_child_list, sizeof (zio_link_t),
601	    offsetof(zio_link_t, zl_child_node));
602
603	if (vd != NULL)
604		zio->io_child_type = ZIO_CHILD_VDEV;
605	else if (flags & ZIO_FLAG_GANG_CHILD)
606		zio->io_child_type = ZIO_CHILD_GANG;
607	else if (flags & ZIO_FLAG_DDT_CHILD)
608		zio->io_child_type = ZIO_CHILD_DDT;
609	else
610		zio->io_child_type = ZIO_CHILD_LOGICAL;
611
612	if (bp != NULL) {
613		zio->io_bp = (blkptr_t *)bp;
614		zio->io_bp_copy = *bp;
615		zio->io_bp_orig = *bp;
616		if (type != ZIO_TYPE_WRITE ||
617		    zio->io_child_type == ZIO_CHILD_DDT)
618			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
619		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
620			zio->io_logical = zio;
621		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
622			pipeline |= ZIO_GANG_STAGES;
623	}
624
625	zio->io_spa = spa;
626	zio->io_txg = txg;
627	zio->io_done = done;
628	zio->io_private = private;
629	zio->io_type = type;
630	zio->io_priority = priority;
631	zio->io_vd = vd;
632	zio->io_offset = offset;
633	zio->io_orig_data = zio->io_data = data;
634	zio->io_orig_size = zio->io_size = size;
635	zio->io_orig_flags = zio->io_flags = flags;
636	zio->io_orig_stage = zio->io_stage = stage;
637	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
638
639	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
640	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
641
642	if (zb != NULL)
643		zio->io_bookmark = *zb;
644
645	if (pio != NULL) {
646		if (zio->io_logical == NULL)
647			zio->io_logical = pio->io_logical;
648		if (zio->io_child_type == ZIO_CHILD_GANG)
649			zio->io_gang_leader = pio->io_gang_leader;
650		zio_add_child(pio, zio);
651	}
652
653	return (zio);
654}
655
656static void
657zio_destroy(zio_t *zio)
658{
659	list_destroy(&zio->io_parent_list);
660	list_destroy(&zio->io_child_list);
661	mutex_destroy(&zio->io_lock);
662	cv_destroy(&zio->io_cv);
663	kmem_cache_free(zio_cache, zio);
664}
665
666zio_t *
667zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
668    void *private, enum zio_flag flags)
669{
670	zio_t *zio;
671
672	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
673	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
674	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
675
676	return (zio);
677}
678
679zio_t *
680zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
681{
682	return (zio_null(NULL, spa, NULL, done, private, flags));
683}
684
685zio_t *
686zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
687    void *data, uint64_t size, zio_done_func_t *done, void *private,
688    int priority, enum zio_flag flags, const zbookmark_t *zb)
689{
690	zio_t *zio;
691
692	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
693	    data, size, done, private,
694	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
695	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
696	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
697
698	return (zio);
699}
700
701zio_t *
702zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
703    void *data, uint64_t size, const zio_prop_t *zp,
704    zio_done_func_t *ready, zio_done_func_t *done, void *private,
705    int priority, enum zio_flag flags, const zbookmark_t *zb)
706{
707	zio_t *zio;
708
709	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
710	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
711	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
712	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
713	    DMU_OT_IS_VALID(zp->zp_type) &&
714	    zp->zp_level < 32 &&
715	    zp->zp_copies > 0 &&
716	    zp->zp_copies <= spa_max_replication(spa));
717
718	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
719	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
720	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
721	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
722
723	zio->io_ready = ready;
724	zio->io_prop = *zp;
725
726	return (zio);
727}
728
729zio_t *
730zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
731    uint64_t size, zio_done_func_t *done, void *private, int priority,
732    enum zio_flag flags, zbookmark_t *zb)
733{
734	zio_t *zio;
735
736	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
737	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
738	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
739
740	return (zio);
741}
742
743void
744zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
745{
746	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
747	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
748	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
749	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
750
751	/*
752	 * We must reset the io_prop to match the values that existed
753	 * when the bp was first written by dmu_sync() keeping in mind
754	 * that nopwrite and dedup are mutually exclusive.
755	 */
756	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
757	zio->io_prop.zp_nopwrite = nopwrite;
758	zio->io_prop.zp_copies = copies;
759	zio->io_bp_override = bp;
760}
761
762void
763zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
764{
765	metaslab_check_free(spa, bp);
766
767	/*
768	 * Frees that are for the currently-syncing txg, are not going to be
769	 * deferred, and which will not need to do a read (i.e. not GANG or
770	 * DEDUP), can be processed immediately.  Otherwise, put them on the
771	 * in-memory list for later processing.
772	 */
773	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
774	    txg != spa->spa_syncing_txg ||
775	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
776		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
777	} else {
778		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
779		    BP_GET_PSIZE(bp), 0)));
780	}
781}
782
783zio_t *
784zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
785    uint64_t size, enum zio_flag flags)
786{
787	zio_t *zio;
788	enum zio_stage stage = ZIO_FREE_PIPELINE;
789
790	dprintf_bp(bp, "freeing in txg %llu, pass %u",
791	    (longlong_t)txg, spa->spa_sync_pass);
792
793	ASSERT(!BP_IS_HOLE(bp));
794	ASSERT(spa_syncing_txg(spa) == txg);
795	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
796
797	metaslab_check_free(spa, bp);
798	arc_freed(spa, bp);
799
800	/*
801	 * GANG and DEDUP blocks can induce a read (for the gang block header,
802	 * or the DDT), so issue them asynchronously so that this thread is
803	 * not tied up.
804	 */
805	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
806		stage |= ZIO_STAGE_ISSUE_ASYNC;
807
808	zio = zio_create(pio, spa, txg, bp, NULL, size,
809	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
810	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
811
812	return (zio);
813}
814
815zio_t *
816zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
817    zio_done_func_t *done, void *private, enum zio_flag flags)
818{
819	zio_t *zio;
820
821	/*
822	 * A claim is an allocation of a specific block.  Claims are needed
823	 * to support immediate writes in the intent log.  The issue is that
824	 * immediate writes contain committed data, but in a txg that was
825	 * *not* committed.  Upon opening the pool after an unclean shutdown,
826	 * the intent log claims all blocks that contain immediate write data
827	 * so that the SPA knows they're in use.
828	 *
829	 * All claims *must* be resolved in the first txg -- before the SPA
830	 * starts allocating blocks -- so that nothing is allocated twice.
831	 * If txg == 0 we just verify that the block is claimable.
832	 */
833	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
834	ASSERT(txg == spa_first_txg(spa) || txg == 0);
835	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
836
837	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
838	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
839	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
840
841	return (zio);
842}
843
844zio_t *
845zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
846    uint64_t size, zio_done_func_t *done, void *private, int priority,
847    enum zio_flag flags)
848{
849	zio_t *zio;
850	int c;
851
852	if (vd->vdev_children == 0) {
853		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
854		    ZIO_TYPE_IOCTL, priority, flags, vd, offset, NULL,
855		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
856
857		zio->io_cmd = cmd;
858	} else {
859		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
860
861		for (c = 0; c < vd->vdev_children; c++)
862			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
863			    offset, size, done, private, priority, flags));
864	}
865
866	return (zio);
867}
868
869zio_t *
870zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
871    void *data, int checksum, zio_done_func_t *done, void *private,
872    int priority, enum zio_flag flags, boolean_t labels)
873{
874	zio_t *zio;
875
876	ASSERT(vd->vdev_children == 0);
877	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
878	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
879	ASSERT3U(offset + size, <=, vd->vdev_psize);
880
881	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
882	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
883	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
884
885	zio->io_prop.zp_checksum = checksum;
886
887	return (zio);
888}
889
890zio_t *
891zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
892    void *data, int checksum, zio_done_func_t *done, void *private,
893    int priority, enum zio_flag flags, boolean_t labels)
894{
895	zio_t *zio;
896
897	ASSERT(vd->vdev_children == 0);
898	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
899	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
900	ASSERT3U(offset + size, <=, vd->vdev_psize);
901
902	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
903	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
904	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
905
906	zio->io_prop.zp_checksum = checksum;
907
908	if (zio_checksum_table[checksum].ci_eck) {
909		/*
910		 * zec checksums are necessarily destructive -- they modify
911		 * the end of the write buffer to hold the verifier/checksum.
912		 * Therefore, we must make a local copy in case the data is
913		 * being written to multiple places in parallel.
914		 */
915		void *wbuf = zio_buf_alloc(size);
916		bcopy(data, wbuf, size);
917		zio_push_transform(zio, wbuf, size, size, NULL);
918	}
919
920	return (zio);
921}
922
923/*
924 * Create a child I/O to do some work for us.
925 */
926zio_t *
927zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
928	void *data, uint64_t size, int type, int priority, enum zio_flag flags,
929	zio_done_func_t *done, void *private)
930{
931	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
932	zio_t *zio;
933
934	ASSERT(vd->vdev_parent ==
935	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
936
937	if (type == ZIO_TYPE_READ && bp != NULL) {
938		/*
939		 * If we have the bp, then the child should perform the
940		 * checksum and the parent need not.  This pushes error
941		 * detection as close to the leaves as possible and
942		 * eliminates redundant checksums in the interior nodes.
943		 */
944		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
945		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
946	}
947
948	if (vd->vdev_children == 0)
949		offset += VDEV_LABEL_START_SIZE;
950
951	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
952
953	/*
954	 * If we've decided to do a repair, the write is not speculative --
955	 * even if the original read was.
956	 */
957	if (flags & ZIO_FLAG_IO_REPAIR)
958		flags &= ~ZIO_FLAG_SPECULATIVE;
959
960	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
961	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
962	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
963
964	return (zio);
965}
966
967zio_t *
968zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
969	int type, int priority, enum zio_flag flags,
970	zio_done_func_t *done, void *private)
971{
972	zio_t *zio;
973
974	ASSERT(vd->vdev_ops->vdev_op_leaf);
975
976	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
977	    data, size, done, private, type, priority,
978	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
979	    vd, offset, NULL,
980	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
981
982	return (zio);
983}
984
985void
986zio_flush(zio_t *zio, vdev_t *vd)
987{
988	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
989	    NULL, NULL, ZIO_PRIORITY_NOW,
990	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
991}
992
993zio_t *
994zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
995{
996
997	ASSERT(vd->vdev_ops->vdev_op_leaf);
998
999	return zio_ioctl(zio, spa, vd, DKIOCTRIM, offset, size,
1000	    NULL, NULL, ZIO_PRIORITY_TRIM,
1001	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
1002}
1003
1004void
1005zio_shrink(zio_t *zio, uint64_t size)
1006{
1007	ASSERT(zio->io_executor == NULL);
1008	ASSERT(zio->io_orig_size == zio->io_size);
1009	ASSERT(size <= zio->io_size);
1010
1011	/*
1012	 * We don't shrink for raidz because of problems with the
1013	 * reconstruction when reading back less than the block size.
1014	 * Note, BP_IS_RAIDZ() assumes no compression.
1015	 */
1016	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1017	if (!BP_IS_RAIDZ(zio->io_bp))
1018		zio->io_orig_size = zio->io_size = size;
1019}
1020
1021/*
1022 * ==========================================================================
1023 * Prepare to read and write logical blocks
1024 * ==========================================================================
1025 */
1026
1027static int
1028zio_read_bp_init(zio_t *zio)
1029{
1030	blkptr_t *bp = zio->io_bp;
1031
1032	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1033	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1034	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1035		uint64_t psize = BP_GET_PSIZE(bp);
1036		void *cbuf = zio_buf_alloc(psize);
1037
1038		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1039	}
1040
1041	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1042		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1043
1044	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1045		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1046
1047	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1048		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1049
1050	return (ZIO_PIPELINE_CONTINUE);
1051}
1052
1053static int
1054zio_write_bp_init(zio_t *zio)
1055{
1056	spa_t *spa = zio->io_spa;
1057	zio_prop_t *zp = &zio->io_prop;
1058	enum zio_compress compress = zp->zp_compress;
1059	blkptr_t *bp = zio->io_bp;
1060	uint64_t lsize = zio->io_size;
1061	uint64_t psize = lsize;
1062	int pass = 1;
1063
1064	/*
1065	 * If our children haven't all reached the ready stage,
1066	 * wait for them and then repeat this pipeline stage.
1067	 */
1068	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1069	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1070		return (ZIO_PIPELINE_STOP);
1071
1072	if (!IO_IS_ALLOCATING(zio))
1073		return (ZIO_PIPELINE_CONTINUE);
1074
1075	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1076
1077	if (zio->io_bp_override) {
1078		ASSERT(bp->blk_birth != zio->io_txg);
1079		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1080
1081		*bp = *zio->io_bp_override;
1082		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1083
1084		/*
1085		 * If we've been overridden and nopwrite is set then
1086		 * set the flag accordingly to indicate that a nopwrite
1087		 * has already occurred.
1088		 */
1089		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1090			ASSERT(!zp->zp_dedup);
1091			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1092			return (ZIO_PIPELINE_CONTINUE);
1093		}
1094
1095		ASSERT(!zp->zp_nopwrite);
1096
1097		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1098			return (ZIO_PIPELINE_CONTINUE);
1099
1100		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1101		    zp->zp_dedup_verify);
1102
1103		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1104			BP_SET_DEDUP(bp, 1);
1105			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1106			return (ZIO_PIPELINE_CONTINUE);
1107		}
1108		zio->io_bp_override = NULL;
1109		BP_ZERO(bp);
1110	}
1111
1112	if (bp->blk_birth == zio->io_txg) {
1113		/*
1114		 * We're rewriting an existing block, which means we're
1115		 * working on behalf of spa_sync().  For spa_sync() to
1116		 * converge, it must eventually be the case that we don't
1117		 * have to allocate new blocks.  But compression changes
1118		 * the blocksize, which forces a reallocate, and makes
1119		 * convergence take longer.  Therefore, after the first
1120		 * few passes, stop compressing to ensure convergence.
1121		 */
1122		pass = spa_sync_pass(spa);
1123
1124		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1125		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1126		ASSERT(!BP_GET_DEDUP(bp));
1127
1128		if (pass >= zfs_sync_pass_dont_compress)
1129			compress = ZIO_COMPRESS_OFF;
1130
1131		/* Make sure someone doesn't change their mind on overwrites */
1132		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1133		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1134	}
1135
1136	if (compress != ZIO_COMPRESS_OFF) {
1137		void *cbuf = zio_buf_alloc(lsize);
1138		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1139		if (psize == 0 || psize == lsize) {
1140			compress = ZIO_COMPRESS_OFF;
1141			zio_buf_free(cbuf, lsize);
1142		} else {
1143			ASSERT(psize < lsize);
1144			zio_push_transform(zio, cbuf, psize, lsize, NULL);
1145		}
1146	}
1147
1148	/*
1149	 * The final pass of spa_sync() must be all rewrites, but the first
1150	 * few passes offer a trade-off: allocating blocks defers convergence,
1151	 * but newly allocated blocks are sequential, so they can be written
1152	 * to disk faster.  Therefore, we allow the first few passes of
1153	 * spa_sync() to allocate new blocks, but force rewrites after that.
1154	 * There should only be a handful of blocks after pass 1 in any case.
1155	 */
1156	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1157	    pass >= zfs_sync_pass_rewrite) {
1158		ASSERT(psize != 0);
1159		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1160		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1161		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1162	} else {
1163		BP_ZERO(bp);
1164		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1165	}
1166
1167	if (psize == 0) {
1168		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1169	} else {
1170		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1171		BP_SET_LSIZE(bp, lsize);
1172		BP_SET_PSIZE(bp, psize);
1173		BP_SET_COMPRESS(bp, compress);
1174		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1175		BP_SET_TYPE(bp, zp->zp_type);
1176		BP_SET_LEVEL(bp, zp->zp_level);
1177		BP_SET_DEDUP(bp, zp->zp_dedup);
1178		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1179		if (zp->zp_dedup) {
1180			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1181			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1182			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1183		}
1184		if (zp->zp_nopwrite) {
1185			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1186			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1187			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1188		}
1189	}
1190
1191	return (ZIO_PIPELINE_CONTINUE);
1192}
1193
1194static int
1195zio_free_bp_init(zio_t *zio)
1196{
1197	blkptr_t *bp = zio->io_bp;
1198
1199	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1200		if (BP_GET_DEDUP(bp))
1201			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1202	}
1203
1204	return (ZIO_PIPELINE_CONTINUE);
1205}
1206
1207/*
1208 * ==========================================================================
1209 * Execute the I/O pipeline
1210 * ==========================================================================
1211 */
1212
1213static void
1214zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q, boolean_t cutinline)
1215{
1216	spa_t *spa = zio->io_spa;
1217	zio_type_t t = zio->io_type;
1218	int flags = TQ_SLEEP | (cutinline ? TQ_FRONT : 0);
1219
1220	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1221
1222	/*
1223	 * If we're a config writer or a probe, the normal issue and
1224	 * interrupt threads may all be blocked waiting for the config lock.
1225	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1226	 */
1227	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1228		t = ZIO_TYPE_NULL;
1229
1230	/*
1231	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1232	 */
1233	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1234		t = ZIO_TYPE_NULL;
1235
1236	/*
1237	 * If this is a high priority I/O, then use the high priority taskq.
1238	 */
1239	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1240	    spa->spa_zio_taskq[t][q + 1] != NULL)
1241		q++;
1242
1243	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1244#ifdef _KERNEL
1245	(void) taskq_dispatch_safe(spa->spa_zio_taskq[t][q],
1246	    (task_func_t *)zio_execute, zio, flags, &zio->io_task);
1247#else
1248	(void) taskq_dispatch(spa->spa_zio_taskq[t][q],
1249	    (task_func_t *)zio_execute, zio, flags);
1250#endif
1251}
1252
1253static boolean_t
1254zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
1255{
1256	kthread_t *executor = zio->io_executor;
1257	spa_t *spa = zio->io_spa;
1258
1259	for (zio_type_t t = 0; t < ZIO_TYPES; t++)
1260		if (taskq_member(spa->spa_zio_taskq[t][q], executor))
1261			return (B_TRUE);
1262
1263	return (B_FALSE);
1264}
1265
1266static int
1267zio_issue_async(zio_t *zio)
1268{
1269	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1270
1271	return (ZIO_PIPELINE_STOP);
1272}
1273
1274void
1275zio_interrupt(zio_t *zio)
1276{
1277	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1278}
1279
1280/*
1281 * Execute the I/O pipeline until one of the following occurs:
1282 *
1283 *	(1) the I/O completes
1284 *	(2) the pipeline stalls waiting for dependent child I/Os
1285 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1286 *	(4) the I/O is delegated by vdev-level caching or aggregation
1287 *	(5) the I/O is deferred due to vdev-level queueing
1288 *	(6) the I/O is handed off to another thread.
1289 *
1290 * In all cases, the pipeline stops whenever there's no CPU work; it never
1291 * burns a thread in cv_wait().
1292 *
1293 * There's no locking on io_stage because there's no legitimate way
1294 * for multiple threads to be attempting to process the same I/O.
1295 */
1296static zio_pipe_stage_t *zio_pipeline[];
1297
1298void
1299zio_execute(zio_t *zio)
1300{
1301	zio->io_executor = curthread;
1302
1303	while (zio->io_stage < ZIO_STAGE_DONE) {
1304		enum zio_stage pipeline = zio->io_pipeline;
1305		enum zio_stage stage = zio->io_stage;
1306		int rv;
1307
1308		ASSERT(!MUTEX_HELD(&zio->io_lock));
1309		ASSERT(ISP2(stage));
1310		ASSERT(zio->io_stall == NULL);
1311
1312		do {
1313			stage <<= 1;
1314		} while ((stage & pipeline) == 0);
1315
1316		ASSERT(stage <= ZIO_STAGE_DONE);
1317
1318		/*
1319		 * If we are in interrupt context and this pipeline stage
1320		 * will grab a config lock that is held across I/O,
1321		 * or may wait for an I/O that needs an interrupt thread
1322		 * to complete, issue async to avoid deadlock.
1323		 *
1324		 * For VDEV_IO_START, we cut in line so that the io will
1325		 * be sent to disk promptly.
1326		 */
1327		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1328		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1329			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1330			    zio_requeue_io_start_cut_in_line : B_FALSE;
1331			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1332			return;
1333		}
1334
1335		zio->io_stage = stage;
1336		rv = zio_pipeline[highbit(stage) - 1](zio);
1337
1338		if (rv == ZIO_PIPELINE_STOP)
1339			return;
1340
1341		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1342	}
1343}
1344
1345/*
1346 * ==========================================================================
1347 * Initiate I/O, either sync or async
1348 * ==========================================================================
1349 */
1350int
1351zio_wait(zio_t *zio)
1352{
1353	int error;
1354
1355	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1356	ASSERT(zio->io_executor == NULL);
1357
1358	zio->io_waiter = curthread;
1359
1360	zio_execute(zio);
1361
1362	mutex_enter(&zio->io_lock);
1363	while (zio->io_executor != NULL)
1364		cv_wait(&zio->io_cv, &zio->io_lock);
1365	mutex_exit(&zio->io_lock);
1366
1367	error = zio->io_error;
1368	zio_destroy(zio);
1369
1370	return (error);
1371}
1372
1373void
1374zio_nowait(zio_t *zio)
1375{
1376	ASSERT(zio->io_executor == NULL);
1377
1378	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1379	    zio_unique_parent(zio) == NULL) {
1380		/*
1381		 * This is a logical async I/O with no parent to wait for it.
1382		 * We add it to the spa_async_root_zio "Godfather" I/O which
1383		 * will ensure they complete prior to unloading the pool.
1384		 */
1385		spa_t *spa = zio->io_spa;
1386
1387		zio_add_child(spa->spa_async_zio_root, zio);
1388	}
1389
1390	zio_execute(zio);
1391}
1392
1393/*
1394 * ==========================================================================
1395 * Reexecute or suspend/resume failed I/O
1396 * ==========================================================================
1397 */
1398
1399static void
1400zio_reexecute(zio_t *pio)
1401{
1402	zio_t *cio, *cio_next;
1403
1404	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1405	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1406	ASSERT(pio->io_gang_leader == NULL);
1407	ASSERT(pio->io_gang_tree == NULL);
1408
1409	pio->io_flags = pio->io_orig_flags;
1410	pio->io_stage = pio->io_orig_stage;
1411	pio->io_pipeline = pio->io_orig_pipeline;
1412	pio->io_reexecute = 0;
1413	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1414	pio->io_error = 0;
1415	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1416		pio->io_state[w] = 0;
1417	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1418		pio->io_child_error[c] = 0;
1419
1420	if (IO_IS_ALLOCATING(pio))
1421		BP_ZERO(pio->io_bp);
1422
1423	/*
1424	 * As we reexecute pio's children, new children could be created.
1425	 * New children go to the head of pio's io_child_list, however,
1426	 * so we will (correctly) not reexecute them.  The key is that
1427	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1428	 * cannot be affected by any side effects of reexecuting 'cio'.
1429	 */
1430	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1431		cio_next = zio_walk_children(pio);
1432		mutex_enter(&pio->io_lock);
1433		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1434			pio->io_children[cio->io_child_type][w]++;
1435		mutex_exit(&pio->io_lock);
1436		zio_reexecute(cio);
1437	}
1438
1439	/*
1440	 * Now that all children have been reexecuted, execute the parent.
1441	 * We don't reexecute "The Godfather" I/O here as it's the
1442	 * responsibility of the caller to wait on him.
1443	 */
1444	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1445		zio_execute(pio);
1446}
1447
1448void
1449zio_suspend(spa_t *spa, zio_t *zio)
1450{
1451	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1452		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1453		    "failure and the failure mode property for this pool "
1454		    "is set to panic.", spa_name(spa));
1455
1456	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1457
1458	mutex_enter(&spa->spa_suspend_lock);
1459
1460	if (spa->spa_suspend_zio_root == NULL)
1461		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1462		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1463		    ZIO_FLAG_GODFATHER);
1464
1465	spa->spa_suspended = B_TRUE;
1466
1467	if (zio != NULL) {
1468		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1469		ASSERT(zio != spa->spa_suspend_zio_root);
1470		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1471		ASSERT(zio_unique_parent(zio) == NULL);
1472		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1473		zio_add_child(spa->spa_suspend_zio_root, zio);
1474	}
1475
1476	mutex_exit(&spa->spa_suspend_lock);
1477}
1478
1479int
1480zio_resume(spa_t *spa)
1481{
1482	zio_t *pio;
1483
1484	/*
1485	 * Reexecute all previously suspended i/o.
1486	 */
1487	mutex_enter(&spa->spa_suspend_lock);
1488	spa->spa_suspended = B_FALSE;
1489	cv_broadcast(&spa->spa_suspend_cv);
1490	pio = spa->spa_suspend_zio_root;
1491	spa->spa_suspend_zio_root = NULL;
1492	mutex_exit(&spa->spa_suspend_lock);
1493
1494	if (pio == NULL)
1495		return (0);
1496
1497	zio_reexecute(pio);
1498	return (zio_wait(pio));
1499}
1500
1501void
1502zio_resume_wait(spa_t *spa)
1503{
1504	mutex_enter(&spa->spa_suspend_lock);
1505	while (spa_suspended(spa))
1506		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1507	mutex_exit(&spa->spa_suspend_lock);
1508}
1509
1510/*
1511 * ==========================================================================
1512 * Gang blocks.
1513 *
1514 * A gang block is a collection of small blocks that looks to the DMU
1515 * like one large block.  When zio_dva_allocate() cannot find a block
1516 * of the requested size, due to either severe fragmentation or the pool
1517 * being nearly full, it calls zio_write_gang_block() to construct the
1518 * block from smaller fragments.
1519 *
1520 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1521 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1522 * an indirect block: it's an array of block pointers.  It consumes
1523 * only one sector and hence is allocatable regardless of fragmentation.
1524 * The gang header's bps point to its gang members, which hold the data.
1525 *
1526 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1527 * as the verifier to ensure uniqueness of the SHA256 checksum.
1528 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1529 * not the gang header.  This ensures that data block signatures (needed for
1530 * deduplication) are independent of how the block is physically stored.
1531 *
1532 * Gang blocks can be nested: a gang member may itself be a gang block.
1533 * Thus every gang block is a tree in which root and all interior nodes are
1534 * gang headers, and the leaves are normal blocks that contain user data.
1535 * The root of the gang tree is called the gang leader.
1536 *
1537 * To perform any operation (read, rewrite, free, claim) on a gang block,
1538 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1539 * in the io_gang_tree field of the original logical i/o by recursively
1540 * reading the gang leader and all gang headers below it.  This yields
1541 * an in-core tree containing the contents of every gang header and the
1542 * bps for every constituent of the gang block.
1543 *
1544 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1545 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1546 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1547 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1548 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1549 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1550 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1551 * of the gang header plus zio_checksum_compute() of the data to update the
1552 * gang header's blk_cksum as described above.
1553 *
1554 * The two-phase assemble/issue model solves the problem of partial failure --
1555 * what if you'd freed part of a gang block but then couldn't read the
1556 * gang header for another part?  Assembling the entire gang tree first
1557 * ensures that all the necessary gang header I/O has succeeded before
1558 * starting the actual work of free, claim, or write.  Once the gang tree
1559 * is assembled, free and claim are in-memory operations that cannot fail.
1560 *
1561 * In the event that a gang write fails, zio_dva_unallocate() walks the
1562 * gang tree to immediately free (i.e. insert back into the space map)
1563 * everything we've allocated.  This ensures that we don't get ENOSPC
1564 * errors during repeated suspend/resume cycles due to a flaky device.
1565 *
1566 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1567 * the gang tree, we won't modify the block, so we can safely defer the free
1568 * (knowing that the block is still intact).  If we *can* assemble the gang
1569 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1570 * each constituent bp and we can allocate a new block on the next sync pass.
1571 *
1572 * In all cases, the gang tree allows complete recovery from partial failure.
1573 * ==========================================================================
1574 */
1575
1576static zio_t *
1577zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1578{
1579	if (gn != NULL)
1580		return (pio);
1581
1582	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1583	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1584	    &pio->io_bookmark));
1585}
1586
1587zio_t *
1588zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1589{
1590	zio_t *zio;
1591
1592	if (gn != NULL) {
1593		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1594		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1595		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1596		/*
1597		 * As we rewrite each gang header, the pipeline will compute
1598		 * a new gang block header checksum for it; but no one will
1599		 * compute a new data checksum, so we do that here.  The one
1600		 * exception is the gang leader: the pipeline already computed
1601		 * its data checksum because that stage precedes gang assembly.
1602		 * (Presently, nothing actually uses interior data checksums;
1603		 * this is just good hygiene.)
1604		 */
1605		if (gn != pio->io_gang_leader->io_gang_tree) {
1606			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1607			    data, BP_GET_PSIZE(bp));
1608		}
1609		/*
1610		 * If we are here to damage data for testing purposes,
1611		 * leave the GBH alone so that we can detect the damage.
1612		 */
1613		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1614			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1615	} else {
1616		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1617		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1618		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1619	}
1620
1621	return (zio);
1622}
1623
1624/* ARGSUSED */
1625zio_t *
1626zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1627{
1628	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1629	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1630	    ZIO_GANG_CHILD_FLAGS(pio)));
1631}
1632
1633/* ARGSUSED */
1634zio_t *
1635zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1636{
1637	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1638	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1639}
1640
1641static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1642	NULL,
1643	zio_read_gang,
1644	zio_rewrite_gang,
1645	zio_free_gang,
1646	zio_claim_gang,
1647	NULL
1648};
1649
1650static void zio_gang_tree_assemble_done(zio_t *zio);
1651
1652static zio_gang_node_t *
1653zio_gang_node_alloc(zio_gang_node_t **gnpp)
1654{
1655	zio_gang_node_t *gn;
1656
1657	ASSERT(*gnpp == NULL);
1658
1659	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1660	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1661	*gnpp = gn;
1662
1663	return (gn);
1664}
1665
1666static void
1667zio_gang_node_free(zio_gang_node_t **gnpp)
1668{
1669	zio_gang_node_t *gn = *gnpp;
1670
1671	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1672		ASSERT(gn->gn_child[g] == NULL);
1673
1674	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1675	kmem_free(gn, sizeof (*gn));
1676	*gnpp = NULL;
1677}
1678
1679static void
1680zio_gang_tree_free(zio_gang_node_t **gnpp)
1681{
1682	zio_gang_node_t *gn = *gnpp;
1683
1684	if (gn == NULL)
1685		return;
1686
1687	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1688		zio_gang_tree_free(&gn->gn_child[g]);
1689
1690	zio_gang_node_free(gnpp);
1691}
1692
1693static void
1694zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1695{
1696	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1697
1698	ASSERT(gio->io_gang_leader == gio);
1699	ASSERT(BP_IS_GANG(bp));
1700
1701	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1702	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1703	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1704}
1705
1706static void
1707zio_gang_tree_assemble_done(zio_t *zio)
1708{
1709	zio_t *gio = zio->io_gang_leader;
1710	zio_gang_node_t *gn = zio->io_private;
1711	blkptr_t *bp = zio->io_bp;
1712
1713	ASSERT(gio == zio_unique_parent(zio));
1714	ASSERT(zio->io_child_count == 0);
1715
1716	if (zio->io_error)
1717		return;
1718
1719	if (BP_SHOULD_BYTESWAP(bp))
1720		byteswap_uint64_array(zio->io_data, zio->io_size);
1721
1722	ASSERT(zio->io_data == gn->gn_gbh);
1723	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1724	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1725
1726	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1727		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1728		if (!BP_IS_GANG(gbp))
1729			continue;
1730		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1731	}
1732}
1733
1734static void
1735zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1736{
1737	zio_t *gio = pio->io_gang_leader;
1738	zio_t *zio;
1739
1740	ASSERT(BP_IS_GANG(bp) == !!gn);
1741	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1742	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1743
1744	/*
1745	 * If you're a gang header, your data is in gn->gn_gbh.
1746	 * If you're a gang member, your data is in 'data' and gn == NULL.
1747	 */
1748	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1749
1750	if (gn != NULL) {
1751		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1752
1753		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1754			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1755			if (BP_IS_HOLE(gbp))
1756				continue;
1757			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1758			data = (char *)data + BP_GET_PSIZE(gbp);
1759		}
1760	}
1761
1762	if (gn == gio->io_gang_tree && gio->io_data != NULL)
1763		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1764
1765	if (zio != pio)
1766		zio_nowait(zio);
1767}
1768
1769static int
1770zio_gang_assemble(zio_t *zio)
1771{
1772	blkptr_t *bp = zio->io_bp;
1773
1774	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1775	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1776
1777	zio->io_gang_leader = zio;
1778
1779	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1780
1781	return (ZIO_PIPELINE_CONTINUE);
1782}
1783
1784static int
1785zio_gang_issue(zio_t *zio)
1786{
1787	blkptr_t *bp = zio->io_bp;
1788
1789	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1790		return (ZIO_PIPELINE_STOP);
1791
1792	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1793	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1794
1795	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1796		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1797	else
1798		zio_gang_tree_free(&zio->io_gang_tree);
1799
1800	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1801
1802	return (ZIO_PIPELINE_CONTINUE);
1803}
1804
1805static void
1806zio_write_gang_member_ready(zio_t *zio)
1807{
1808	zio_t *pio = zio_unique_parent(zio);
1809	zio_t *gio = zio->io_gang_leader;
1810	dva_t *cdva = zio->io_bp->blk_dva;
1811	dva_t *pdva = pio->io_bp->blk_dva;
1812	uint64_t asize;
1813
1814	if (BP_IS_HOLE(zio->io_bp))
1815		return;
1816
1817	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1818
1819	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1820	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1821	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1822	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1823	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1824
1825	mutex_enter(&pio->io_lock);
1826	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1827		ASSERT(DVA_GET_GANG(&pdva[d]));
1828		asize = DVA_GET_ASIZE(&pdva[d]);
1829		asize += DVA_GET_ASIZE(&cdva[d]);
1830		DVA_SET_ASIZE(&pdva[d], asize);
1831	}
1832	mutex_exit(&pio->io_lock);
1833}
1834
1835static int
1836zio_write_gang_block(zio_t *pio)
1837{
1838	spa_t *spa = pio->io_spa;
1839	blkptr_t *bp = pio->io_bp;
1840	zio_t *gio = pio->io_gang_leader;
1841	zio_t *zio;
1842	zio_gang_node_t *gn, **gnpp;
1843	zio_gbh_phys_t *gbh;
1844	uint64_t txg = pio->io_txg;
1845	uint64_t resid = pio->io_size;
1846	uint64_t lsize;
1847	int copies = gio->io_prop.zp_copies;
1848	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1849	zio_prop_t zp;
1850	int error;
1851
1852	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1853	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1854	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1855	if (error) {
1856		pio->io_error = error;
1857		return (ZIO_PIPELINE_CONTINUE);
1858	}
1859
1860	if (pio == gio) {
1861		gnpp = &gio->io_gang_tree;
1862	} else {
1863		gnpp = pio->io_private;
1864		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1865	}
1866
1867	gn = zio_gang_node_alloc(gnpp);
1868	gbh = gn->gn_gbh;
1869	bzero(gbh, SPA_GANGBLOCKSIZE);
1870
1871	/*
1872	 * Create the gang header.
1873	 */
1874	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1875	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1876
1877	/*
1878	 * Create and nowait the gang children.
1879	 */
1880	for (int g = 0; resid != 0; resid -= lsize, g++) {
1881		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1882		    SPA_MINBLOCKSIZE);
1883		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1884
1885		zp.zp_checksum = gio->io_prop.zp_checksum;
1886		zp.zp_compress = ZIO_COMPRESS_OFF;
1887		zp.zp_type = DMU_OT_NONE;
1888		zp.zp_level = 0;
1889		zp.zp_copies = gio->io_prop.zp_copies;
1890		zp.zp_dedup = B_FALSE;
1891		zp.zp_dedup_verify = B_FALSE;
1892		zp.zp_nopwrite = B_FALSE;
1893
1894		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1895		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1896		    zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1897		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1898		    &pio->io_bookmark));
1899	}
1900
1901	/*
1902	 * Set pio's pipeline to just wait for zio to finish.
1903	 */
1904	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1905
1906	zio_nowait(zio);
1907
1908	return (ZIO_PIPELINE_CONTINUE);
1909}
1910
1911/*
1912 * The zio_nop_write stage in the pipeline determines if allocating
1913 * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1914 * such as SHA256, we can compare the checksums of the new data and the old
1915 * to determine if allocating a new block is required.  The nopwrite
1916 * feature can handle writes in either syncing or open context (i.e. zil
1917 * writes) and as a result is mutually exclusive with dedup.
1918 */
1919static int
1920zio_nop_write(zio_t *zio)
1921{
1922	blkptr_t *bp = zio->io_bp;
1923	blkptr_t *bp_orig = &zio->io_bp_orig;
1924	zio_prop_t *zp = &zio->io_prop;
1925
1926	ASSERT(BP_GET_LEVEL(bp) == 0);
1927	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1928	ASSERT(zp->zp_nopwrite);
1929	ASSERT(!zp->zp_dedup);
1930	ASSERT(zio->io_bp_override == NULL);
1931	ASSERT(IO_IS_ALLOCATING(zio));
1932
1933	/*
1934	 * Check to see if the original bp and the new bp have matching
1935	 * characteristics (i.e. same checksum, compression algorithms, etc).
1936	 * If they don't then just continue with the pipeline which will
1937	 * allocate a new bp.
1938	 */
1939	if (BP_IS_HOLE(bp_orig) ||
1940	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1941	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1942	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1943	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1944	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
1945		return (ZIO_PIPELINE_CONTINUE);
1946
1947	/*
1948	 * If the checksums match then reset the pipeline so that we
1949	 * avoid allocating a new bp and issuing any I/O.
1950	 */
1951	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1952		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1953		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1954		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1955		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1956		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1957		    sizeof (uint64_t)) == 0);
1958
1959		*bp = *bp_orig;
1960		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1961		zio->io_flags |= ZIO_FLAG_NOPWRITE;
1962	}
1963
1964	return (ZIO_PIPELINE_CONTINUE);
1965}
1966
1967/*
1968 * ==========================================================================
1969 * Dedup
1970 * ==========================================================================
1971 */
1972static void
1973zio_ddt_child_read_done(zio_t *zio)
1974{
1975	blkptr_t *bp = zio->io_bp;
1976	ddt_entry_t *dde = zio->io_private;
1977	ddt_phys_t *ddp;
1978	zio_t *pio = zio_unique_parent(zio);
1979
1980	mutex_enter(&pio->io_lock);
1981	ddp = ddt_phys_select(dde, bp);
1982	if (zio->io_error == 0)
1983		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1984	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1985		dde->dde_repair_data = zio->io_data;
1986	else
1987		zio_buf_free(zio->io_data, zio->io_size);
1988	mutex_exit(&pio->io_lock);
1989}
1990
1991static int
1992zio_ddt_read_start(zio_t *zio)
1993{
1994	blkptr_t *bp = zio->io_bp;
1995
1996	ASSERT(BP_GET_DEDUP(bp));
1997	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1998	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1999
2000	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2001		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2002		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2003		ddt_phys_t *ddp = dde->dde_phys;
2004		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2005		blkptr_t blk;
2006
2007		ASSERT(zio->io_vsd == NULL);
2008		zio->io_vsd = dde;
2009
2010		if (ddp_self == NULL)
2011			return (ZIO_PIPELINE_CONTINUE);
2012
2013		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2014			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2015				continue;
2016			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2017			    &blk);
2018			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2019			    zio_buf_alloc(zio->io_size), zio->io_size,
2020			    zio_ddt_child_read_done, dde, zio->io_priority,
2021			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2022			    &zio->io_bookmark));
2023		}
2024		return (ZIO_PIPELINE_CONTINUE);
2025	}
2026
2027	zio_nowait(zio_read(zio, zio->io_spa, bp,
2028	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2029	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2030
2031	return (ZIO_PIPELINE_CONTINUE);
2032}
2033
2034static int
2035zio_ddt_read_done(zio_t *zio)
2036{
2037	blkptr_t *bp = zio->io_bp;
2038
2039	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2040		return (ZIO_PIPELINE_STOP);
2041
2042	ASSERT(BP_GET_DEDUP(bp));
2043	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2044	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2045
2046	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2047		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2048		ddt_entry_t *dde = zio->io_vsd;
2049		if (ddt == NULL) {
2050			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2051			return (ZIO_PIPELINE_CONTINUE);
2052		}
2053		if (dde == NULL) {
2054			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2055			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2056			return (ZIO_PIPELINE_STOP);
2057		}
2058		if (dde->dde_repair_data != NULL) {
2059			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2060			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2061		}
2062		ddt_repair_done(ddt, dde);
2063		zio->io_vsd = NULL;
2064	}
2065
2066	ASSERT(zio->io_vsd == NULL);
2067
2068	return (ZIO_PIPELINE_CONTINUE);
2069}
2070
2071static boolean_t
2072zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2073{
2074	spa_t *spa = zio->io_spa;
2075
2076	/*
2077	 * Note: we compare the original data, not the transformed data,
2078	 * because when zio->io_bp is an override bp, we will not have
2079	 * pushed the I/O transforms.  That's an important optimization
2080	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2081	 */
2082	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2083		zio_t *lio = dde->dde_lead_zio[p];
2084
2085		if (lio != NULL) {
2086			return (lio->io_orig_size != zio->io_orig_size ||
2087			    bcmp(zio->io_orig_data, lio->io_orig_data,
2088			    zio->io_orig_size) != 0);
2089		}
2090	}
2091
2092	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2093		ddt_phys_t *ddp = &dde->dde_phys[p];
2094
2095		if (ddp->ddp_phys_birth != 0) {
2096			arc_buf_t *abuf = NULL;
2097			uint32_t aflags = ARC_WAIT;
2098			blkptr_t blk = *zio->io_bp;
2099			int error;
2100
2101			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2102
2103			ddt_exit(ddt);
2104
2105			error = arc_read(NULL, spa, &blk,
2106			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2107			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2108			    &aflags, &zio->io_bookmark);
2109
2110			if (error == 0) {
2111				if (arc_buf_size(abuf) != zio->io_orig_size ||
2112				    bcmp(abuf->b_data, zio->io_orig_data,
2113				    zio->io_orig_size) != 0)
2114					error = SET_ERROR(EEXIST);
2115				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2116			}
2117
2118			ddt_enter(ddt);
2119			return (error != 0);
2120		}
2121	}
2122
2123	return (B_FALSE);
2124}
2125
2126static void
2127zio_ddt_child_write_ready(zio_t *zio)
2128{
2129	int p = zio->io_prop.zp_copies;
2130	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2131	ddt_entry_t *dde = zio->io_private;
2132	ddt_phys_t *ddp = &dde->dde_phys[p];
2133	zio_t *pio;
2134
2135	if (zio->io_error)
2136		return;
2137
2138	ddt_enter(ddt);
2139
2140	ASSERT(dde->dde_lead_zio[p] == zio);
2141
2142	ddt_phys_fill(ddp, zio->io_bp);
2143
2144	while ((pio = zio_walk_parents(zio)) != NULL)
2145		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2146
2147	ddt_exit(ddt);
2148}
2149
2150static void
2151zio_ddt_child_write_done(zio_t *zio)
2152{
2153	int p = zio->io_prop.zp_copies;
2154	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2155	ddt_entry_t *dde = zio->io_private;
2156	ddt_phys_t *ddp = &dde->dde_phys[p];
2157
2158	ddt_enter(ddt);
2159
2160	ASSERT(ddp->ddp_refcnt == 0);
2161	ASSERT(dde->dde_lead_zio[p] == zio);
2162	dde->dde_lead_zio[p] = NULL;
2163
2164	if (zio->io_error == 0) {
2165		while (zio_walk_parents(zio) != NULL)
2166			ddt_phys_addref(ddp);
2167	} else {
2168		ddt_phys_clear(ddp);
2169	}
2170
2171	ddt_exit(ddt);
2172}
2173
2174static void
2175zio_ddt_ditto_write_done(zio_t *zio)
2176{
2177	int p = DDT_PHYS_DITTO;
2178	zio_prop_t *zp = &zio->io_prop;
2179	blkptr_t *bp = zio->io_bp;
2180	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2181	ddt_entry_t *dde = zio->io_private;
2182	ddt_phys_t *ddp = &dde->dde_phys[p];
2183	ddt_key_t *ddk = &dde->dde_key;
2184
2185	ddt_enter(ddt);
2186
2187	ASSERT(ddp->ddp_refcnt == 0);
2188	ASSERT(dde->dde_lead_zio[p] == zio);
2189	dde->dde_lead_zio[p] = NULL;
2190
2191	if (zio->io_error == 0) {
2192		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2193		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2194		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2195		if (ddp->ddp_phys_birth != 0)
2196			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2197		ddt_phys_fill(ddp, bp);
2198	}
2199
2200	ddt_exit(ddt);
2201}
2202
2203static int
2204zio_ddt_write(zio_t *zio)
2205{
2206	spa_t *spa = zio->io_spa;
2207	blkptr_t *bp = zio->io_bp;
2208	uint64_t txg = zio->io_txg;
2209	zio_prop_t *zp = &zio->io_prop;
2210	int p = zp->zp_copies;
2211	int ditto_copies;
2212	zio_t *cio = NULL;
2213	zio_t *dio = NULL;
2214	ddt_t *ddt = ddt_select(spa, bp);
2215	ddt_entry_t *dde;
2216	ddt_phys_t *ddp;
2217
2218	ASSERT(BP_GET_DEDUP(bp));
2219	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2220	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2221
2222	ddt_enter(ddt);
2223	dde = ddt_lookup(ddt, bp, B_TRUE);
2224	ddp = &dde->dde_phys[p];
2225
2226	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2227		/*
2228		 * If we're using a weak checksum, upgrade to a strong checksum
2229		 * and try again.  If we're already using a strong checksum,
2230		 * we can't resolve it, so just convert to an ordinary write.
2231		 * (And automatically e-mail a paper to Nature?)
2232		 */
2233		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2234			zp->zp_checksum = spa_dedup_checksum(spa);
2235			zio_pop_transforms(zio);
2236			zio->io_stage = ZIO_STAGE_OPEN;
2237			BP_ZERO(bp);
2238		} else {
2239			zp->zp_dedup = B_FALSE;
2240		}
2241		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2242		ddt_exit(ddt);
2243		return (ZIO_PIPELINE_CONTINUE);
2244	}
2245
2246	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2247	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2248
2249	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2250	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2251		zio_prop_t czp = *zp;
2252
2253		czp.zp_copies = ditto_copies;
2254
2255		/*
2256		 * If we arrived here with an override bp, we won't have run
2257		 * the transform stack, so we won't have the data we need to
2258		 * generate a child i/o.  So, toss the override bp and restart.
2259		 * This is safe, because using the override bp is just an
2260		 * optimization; and it's rare, so the cost doesn't matter.
2261		 */
2262		if (zio->io_bp_override) {
2263			zio_pop_transforms(zio);
2264			zio->io_stage = ZIO_STAGE_OPEN;
2265			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2266			zio->io_bp_override = NULL;
2267			BP_ZERO(bp);
2268			ddt_exit(ddt);
2269			return (ZIO_PIPELINE_CONTINUE);
2270		}
2271
2272		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2273		    zio->io_orig_size, &czp, NULL,
2274		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2275		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2276
2277		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2278		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2279	}
2280
2281	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2282		if (ddp->ddp_phys_birth != 0)
2283			ddt_bp_fill(ddp, bp, txg);
2284		if (dde->dde_lead_zio[p] != NULL)
2285			zio_add_child(zio, dde->dde_lead_zio[p]);
2286		else
2287			ddt_phys_addref(ddp);
2288	} else if (zio->io_bp_override) {
2289		ASSERT(bp->blk_birth == txg);
2290		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2291		ddt_phys_fill(ddp, bp);
2292		ddt_phys_addref(ddp);
2293	} else {
2294		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2295		    zio->io_orig_size, zp, zio_ddt_child_write_ready,
2296		    zio_ddt_child_write_done, dde, zio->io_priority,
2297		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2298
2299		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2300		dde->dde_lead_zio[p] = cio;
2301	}
2302
2303	ddt_exit(ddt);
2304
2305	if (cio)
2306		zio_nowait(cio);
2307	if (dio)
2308		zio_nowait(dio);
2309
2310	return (ZIO_PIPELINE_CONTINUE);
2311}
2312
2313ddt_entry_t *freedde; /* for debugging */
2314
2315static int
2316zio_ddt_free(zio_t *zio)
2317{
2318	spa_t *spa = zio->io_spa;
2319	blkptr_t *bp = zio->io_bp;
2320	ddt_t *ddt = ddt_select(spa, bp);
2321	ddt_entry_t *dde;
2322	ddt_phys_t *ddp;
2323
2324	ASSERT(BP_GET_DEDUP(bp));
2325	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2326
2327	ddt_enter(ddt);
2328	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2329	ddp = ddt_phys_select(dde, bp);
2330	ddt_phys_decref(ddp);
2331	ddt_exit(ddt);
2332
2333	return (ZIO_PIPELINE_CONTINUE);
2334}
2335
2336/*
2337 * ==========================================================================
2338 * Allocate and free blocks
2339 * ==========================================================================
2340 */
2341static int
2342zio_dva_allocate(zio_t *zio)
2343{
2344	spa_t *spa = zio->io_spa;
2345	metaslab_class_t *mc = spa_normal_class(spa);
2346	blkptr_t *bp = zio->io_bp;
2347	int error;
2348	int flags = 0;
2349
2350	if (zio->io_gang_leader == NULL) {
2351		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2352		zio->io_gang_leader = zio;
2353	}
2354
2355	ASSERT(BP_IS_HOLE(bp));
2356	ASSERT0(BP_GET_NDVAS(bp));
2357	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2358	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2359	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2360
2361	/*
2362	 * The dump device does not support gang blocks so allocation on
2363	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2364	 * the "fast" gang feature.
2365	 */
2366	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2367	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2368	    METASLAB_GANG_CHILD : 0;
2369	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2370	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2371
2372	if (error) {
2373		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2374		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2375		    error);
2376		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2377			return (zio_write_gang_block(zio));
2378		zio->io_error = error;
2379	}
2380
2381	return (ZIO_PIPELINE_CONTINUE);
2382}
2383
2384static int
2385zio_dva_free(zio_t *zio)
2386{
2387	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2388
2389	return (ZIO_PIPELINE_CONTINUE);
2390}
2391
2392static int
2393zio_dva_claim(zio_t *zio)
2394{
2395	int error;
2396
2397	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2398	if (error)
2399		zio->io_error = error;
2400
2401	return (ZIO_PIPELINE_CONTINUE);
2402}
2403
2404/*
2405 * Undo an allocation.  This is used by zio_done() when an I/O fails
2406 * and we want to give back the block we just allocated.
2407 * This handles both normal blocks and gang blocks.
2408 */
2409static void
2410zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2411{
2412	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2413	ASSERT(zio->io_bp_override == NULL);
2414
2415	if (!BP_IS_HOLE(bp))
2416		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2417
2418	if (gn != NULL) {
2419		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2420			zio_dva_unallocate(zio, gn->gn_child[g],
2421			    &gn->gn_gbh->zg_blkptr[g]);
2422		}
2423	}
2424}
2425
2426/*
2427 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2428 */
2429int
2430zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2431    uint64_t size, boolean_t use_slog)
2432{
2433	int error = 1;
2434
2435	ASSERT(txg > spa_syncing_txg(spa));
2436
2437	/*
2438	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2439	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2440	 * when allocating them.
2441	 */
2442	if (use_slog) {
2443		error = metaslab_alloc(spa, spa_log_class(spa), size,
2444		    new_bp, 1, txg, old_bp,
2445		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2446	}
2447
2448	if (error) {
2449		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2450		    new_bp, 1, txg, old_bp,
2451		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2452	}
2453
2454	if (error == 0) {
2455		BP_SET_LSIZE(new_bp, size);
2456		BP_SET_PSIZE(new_bp, size);
2457		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2458		BP_SET_CHECKSUM(new_bp,
2459		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2460		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2461		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2462		BP_SET_LEVEL(new_bp, 0);
2463		BP_SET_DEDUP(new_bp, 0);
2464		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2465	}
2466
2467	return (error);
2468}
2469
2470/*
2471 * Free an intent log block.
2472 */
2473void
2474zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2475{
2476	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2477	ASSERT(!BP_IS_GANG(bp));
2478
2479	zio_free(spa, txg, bp);
2480}
2481
2482/*
2483 * ==========================================================================
2484 * Read, write and delete to physical devices
2485 * ==========================================================================
2486 */
2487static int
2488zio_vdev_io_start(zio_t *zio)
2489{
2490	vdev_t *vd = zio->io_vd;
2491	uint64_t align;
2492	spa_t *spa = zio->io_spa;
2493
2494	ASSERT(zio->io_error == 0);
2495	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2496
2497	if (vd == NULL) {
2498		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2499			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2500
2501		/*
2502		 * The mirror_ops handle multiple DVAs in a single BP.
2503		 */
2504		return (vdev_mirror_ops.vdev_op_io_start(zio));
2505	}
2506
2507	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE) {
2508		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
2509		return (ZIO_PIPELINE_CONTINUE);
2510	}
2511
2512	/*
2513	 * We keep track of time-sensitive I/Os so that the scan thread
2514	 * can quickly react to certain workloads.  In particular, we care
2515	 * about non-scrubbing, top-level reads and writes with the following
2516	 * characteristics:
2517	 * 	- synchronous writes of user data to non-slog devices
2518	 *	- any reads of user data
2519	 * When these conditions are met, adjust the timestamp of spa_last_io
2520	 * which allows the scan thread to adjust its workload accordingly.
2521	 */
2522	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2523	    vd == vd->vdev_top && !vd->vdev_islog &&
2524	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2525	    zio->io_txg != spa_syncing_txg(spa)) {
2526		uint64_t old = spa->spa_last_io;
2527		uint64_t new = ddi_get_lbolt64();
2528		if (old != new)
2529			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2530	}
2531
2532	align = 1ULL << vd->vdev_top->vdev_ashift;
2533
2534	if (P2PHASE(zio->io_size, align) != 0) {
2535		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2536		char *abuf = NULL;
2537		if (zio->io_type == ZIO_TYPE_READ ||
2538		    zio->io_type == ZIO_TYPE_WRITE)
2539			abuf = zio_buf_alloc(asize);
2540		ASSERT(vd == vd->vdev_top);
2541		if (zio->io_type == ZIO_TYPE_WRITE) {
2542			bcopy(zio->io_data, abuf, zio->io_size);
2543			bzero(abuf + zio->io_size, asize - zio->io_size);
2544		}
2545		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
2546		    zio_subblock);
2547	}
2548
2549	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2550	ASSERT(P2PHASE(zio->io_size, align) == 0);
2551	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
2552
2553	/*
2554	 * If this is a repair I/O, and there's no self-healing involved --
2555	 * that is, we're just resilvering what we expect to resilver --
2556	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2557	 * This prevents spurious resilvering with nested replication.
2558	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2559	 * A is out of date, we'll read from C+D, then use the data to
2560	 * resilver A+B -- but we don't actually want to resilver B, just A.
2561	 * The top-level mirror has no way to know this, so instead we just
2562	 * discard unnecessary repairs as we work our way down the vdev tree.
2563	 * The same logic applies to any form of nested replication:
2564	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2565	 */
2566	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2567	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2568	    zio->io_txg != 0 &&	/* not a delegated i/o */
2569	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2570		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2571		zio_vdev_io_bypass(zio);
2572		return (ZIO_PIPELINE_CONTINUE);
2573	}
2574
2575	if (vd->vdev_ops->vdev_op_leaf &&
2576	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2577
2578		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2579			return (ZIO_PIPELINE_CONTINUE);
2580
2581		if ((zio = vdev_queue_io(zio)) == NULL)
2582			return (ZIO_PIPELINE_STOP);
2583
2584		if (!vdev_accessible(vd, zio)) {
2585			zio->io_error = SET_ERROR(ENXIO);
2586			zio_interrupt(zio);
2587			return (ZIO_PIPELINE_STOP);
2588		}
2589	}
2590
2591	/*
2592	 * Note that we ignore repair writes for TRIM because they can conflict
2593	 * with normal writes. This isn't an issue because, by definition, we
2594	 * only repair blocks that aren't freed.
2595	 */
2596	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_WRITE &&
2597	    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2598		if (!trim_map_write_start(zio))
2599			return (ZIO_PIPELINE_STOP);
2600	}
2601
2602	return (vd->vdev_ops->vdev_op_io_start(zio));
2603}
2604
2605static int
2606zio_vdev_io_done(zio_t *zio)
2607{
2608	vdev_t *vd = zio->io_vd;
2609	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2610	boolean_t unexpected_error = B_FALSE;
2611
2612	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2613		return (ZIO_PIPELINE_STOP);
2614
2615	ASSERT(zio->io_type == ZIO_TYPE_READ ||
2616	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
2617
2618	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2619	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2620
2621		if (zio->io_type == ZIO_TYPE_WRITE &&
2622		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
2623			trim_map_write_done(zio);
2624
2625		vdev_queue_io_done(zio);
2626
2627		if (zio->io_type == ZIO_TYPE_WRITE)
2628			vdev_cache_write(zio);
2629
2630		if (zio_injection_enabled && zio->io_error == 0)
2631			zio->io_error = zio_handle_device_injection(vd,
2632			    zio, EIO);
2633
2634		if (zio_injection_enabled && zio->io_error == 0)
2635			zio->io_error = zio_handle_label_injection(zio, EIO);
2636
2637		if (zio->io_error) {
2638			if (!vdev_accessible(vd, zio)) {
2639				zio->io_error = SET_ERROR(ENXIO);
2640			} else {
2641				unexpected_error = B_TRUE;
2642			}
2643		}
2644	}
2645
2646	ops->vdev_op_io_done(zio);
2647
2648	if (unexpected_error)
2649		VERIFY(vdev_probe(vd, zio) == NULL);
2650
2651	return (ZIO_PIPELINE_CONTINUE);
2652}
2653
2654/*
2655 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2656 * disk, and use that to finish the checksum ereport later.
2657 */
2658static void
2659zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2660    const void *good_buf)
2661{
2662	/* no processing needed */
2663	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2664}
2665
2666/*ARGSUSED*/
2667void
2668zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2669{
2670	void *buf = zio_buf_alloc(zio->io_size);
2671
2672	bcopy(zio->io_data, buf, zio->io_size);
2673
2674	zcr->zcr_cbinfo = zio->io_size;
2675	zcr->zcr_cbdata = buf;
2676	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2677	zcr->zcr_free = zio_buf_free;
2678}
2679
2680static int
2681zio_vdev_io_assess(zio_t *zio)
2682{
2683	vdev_t *vd = zio->io_vd;
2684
2685	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2686		return (ZIO_PIPELINE_STOP);
2687
2688	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2689		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2690
2691	if (zio->io_vsd != NULL) {
2692		zio->io_vsd_ops->vsd_free(zio);
2693		zio->io_vsd = NULL;
2694	}
2695
2696	if (zio_injection_enabled && zio->io_error == 0)
2697		zio->io_error = zio_handle_fault_injection(zio, EIO);
2698
2699	if (zio->io_type == ZIO_TYPE_IOCTL && zio->io_cmd == DKIOCTRIM)
2700		switch (zio->io_error) {
2701		case 0:
2702			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
2703			ZIO_TRIM_STAT_BUMP(success);
2704			break;
2705		case EOPNOTSUPP:
2706			ZIO_TRIM_STAT_BUMP(unsupported);
2707			break;
2708		default:
2709			ZIO_TRIM_STAT_BUMP(failed);
2710			break;
2711		}
2712
2713	/*
2714	 * If the I/O failed, determine whether we should attempt to retry it.
2715	 *
2716	 * On retry, we cut in line in the issue queue, since we don't want
2717	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2718	 */
2719	if (zio->io_error && vd == NULL &&
2720	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2721		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2722		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2723		zio->io_error = 0;
2724		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2725		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2726		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2727		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2728		    zio_requeue_io_start_cut_in_line);
2729		return (ZIO_PIPELINE_STOP);
2730	}
2731
2732	/*
2733	 * If we got an error on a leaf device, convert it to ENXIO
2734	 * if the device is not accessible at all.
2735	 */
2736	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2737	    !vdev_accessible(vd, zio))
2738		zio->io_error = SET_ERROR(ENXIO);
2739
2740	/*
2741	 * If we can't write to an interior vdev (mirror or RAID-Z),
2742	 * set vdev_cant_write so that we stop trying to allocate from it.
2743	 */
2744	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2745	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2746		vd->vdev_cant_write = B_TRUE;
2747	}
2748
2749	if (zio->io_error)
2750		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2751
2752	return (ZIO_PIPELINE_CONTINUE);
2753}
2754
2755void
2756zio_vdev_io_reissue(zio_t *zio)
2757{
2758	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2759	ASSERT(zio->io_error == 0);
2760
2761	zio->io_stage >>= 1;
2762}
2763
2764void
2765zio_vdev_io_redone(zio_t *zio)
2766{
2767	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2768
2769	zio->io_stage >>= 1;
2770}
2771
2772void
2773zio_vdev_io_bypass(zio_t *zio)
2774{
2775	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2776	ASSERT(zio->io_error == 0);
2777
2778	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2779	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2780}
2781
2782/*
2783 * ==========================================================================
2784 * Generate and verify checksums
2785 * ==========================================================================
2786 */
2787static int
2788zio_checksum_generate(zio_t *zio)
2789{
2790	blkptr_t *bp = zio->io_bp;
2791	enum zio_checksum checksum;
2792
2793	if (bp == NULL) {
2794		/*
2795		 * This is zio_write_phys().
2796		 * We're either generating a label checksum, or none at all.
2797		 */
2798		checksum = zio->io_prop.zp_checksum;
2799
2800		if (checksum == ZIO_CHECKSUM_OFF)
2801			return (ZIO_PIPELINE_CONTINUE);
2802
2803		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2804	} else {
2805		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2806			ASSERT(!IO_IS_ALLOCATING(zio));
2807			checksum = ZIO_CHECKSUM_GANG_HEADER;
2808		} else {
2809			checksum = BP_GET_CHECKSUM(bp);
2810		}
2811	}
2812
2813	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2814
2815	return (ZIO_PIPELINE_CONTINUE);
2816}
2817
2818static int
2819zio_checksum_verify(zio_t *zio)
2820{
2821	zio_bad_cksum_t info;
2822	blkptr_t *bp = zio->io_bp;
2823	int error;
2824
2825	ASSERT(zio->io_vd != NULL);
2826
2827	if (bp == NULL) {
2828		/*
2829		 * This is zio_read_phys().
2830		 * We're either verifying a label checksum, or nothing at all.
2831		 */
2832		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2833			return (ZIO_PIPELINE_CONTINUE);
2834
2835		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2836	}
2837
2838	if ((error = zio_checksum_error(zio, &info)) != 0) {
2839		zio->io_error = error;
2840		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2841			zfs_ereport_start_checksum(zio->io_spa,
2842			    zio->io_vd, zio, zio->io_offset,
2843			    zio->io_size, NULL, &info);
2844		}
2845	}
2846
2847	return (ZIO_PIPELINE_CONTINUE);
2848}
2849
2850/*
2851 * Called by RAID-Z to ensure we don't compute the checksum twice.
2852 */
2853void
2854zio_checksum_verified(zio_t *zio)
2855{
2856	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2857}
2858
2859/*
2860 * ==========================================================================
2861 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2862 * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2863 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2864 * indicate errors that are specific to one I/O, and most likely permanent.
2865 * Any other error is presumed to be worse because we weren't expecting it.
2866 * ==========================================================================
2867 */
2868int
2869zio_worst_error(int e1, int e2)
2870{
2871	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2872	int r1, r2;
2873
2874	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2875		if (e1 == zio_error_rank[r1])
2876			break;
2877
2878	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2879		if (e2 == zio_error_rank[r2])
2880			break;
2881
2882	return (r1 > r2 ? e1 : e2);
2883}
2884
2885/*
2886 * ==========================================================================
2887 * I/O completion
2888 * ==========================================================================
2889 */
2890static int
2891zio_ready(zio_t *zio)
2892{
2893	blkptr_t *bp = zio->io_bp;
2894	zio_t *pio, *pio_next;
2895
2896	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2897	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2898		return (ZIO_PIPELINE_STOP);
2899
2900	if (zio->io_ready) {
2901		ASSERT(IO_IS_ALLOCATING(zio));
2902		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2903		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
2904		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2905
2906		zio->io_ready(zio);
2907	}
2908
2909	if (bp != NULL && bp != &zio->io_bp_copy)
2910		zio->io_bp_copy = *bp;
2911
2912	if (zio->io_error)
2913		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2914
2915	mutex_enter(&zio->io_lock);
2916	zio->io_state[ZIO_WAIT_READY] = 1;
2917	pio = zio_walk_parents(zio);
2918	mutex_exit(&zio->io_lock);
2919
2920	/*
2921	 * As we notify zio's parents, new parents could be added.
2922	 * New parents go to the head of zio's io_parent_list, however,
2923	 * so we will (correctly) not notify them.  The remainder of zio's
2924	 * io_parent_list, from 'pio_next' onward, cannot change because
2925	 * all parents must wait for us to be done before they can be done.
2926	 */
2927	for (; pio != NULL; pio = pio_next) {
2928		pio_next = zio_walk_parents(zio);
2929		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2930	}
2931
2932	if (zio->io_flags & ZIO_FLAG_NODATA) {
2933		if (BP_IS_GANG(bp)) {
2934			zio->io_flags &= ~ZIO_FLAG_NODATA;
2935		} else {
2936			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2937			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2938		}
2939	}
2940
2941	if (zio_injection_enabled &&
2942	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2943		zio_handle_ignored_writes(zio);
2944
2945	return (ZIO_PIPELINE_CONTINUE);
2946}
2947
2948static int
2949zio_done(zio_t *zio)
2950{
2951	spa_t *spa = zio->io_spa;
2952	zio_t *lio = zio->io_logical;
2953	blkptr_t *bp = zio->io_bp;
2954	vdev_t *vd = zio->io_vd;
2955	uint64_t psize = zio->io_size;
2956	zio_t *pio, *pio_next;
2957
2958	/*
2959	 * If our children haven't all completed,
2960	 * wait for them and then repeat this pipeline stage.
2961	 */
2962	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2963	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2964	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2965	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2966		return (ZIO_PIPELINE_STOP);
2967
2968	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2969		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2970			ASSERT(zio->io_children[c][w] == 0);
2971
2972	if (bp != NULL) {
2973		ASSERT(bp->blk_pad[0] == 0);
2974		ASSERT(bp->blk_pad[1] == 0);
2975		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2976		    (bp == zio_unique_parent(zio)->io_bp));
2977		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2978		    zio->io_bp_override == NULL &&
2979		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2980			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2981			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2982			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2983			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2984		}
2985		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2986			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2987	}
2988
2989	/*
2990	 * If there were child vdev/gang/ddt errors, they apply to us now.
2991	 */
2992	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2993	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2994	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2995
2996	/*
2997	 * If the I/O on the transformed data was successful, generate any
2998	 * checksum reports now while we still have the transformed data.
2999	 */
3000	if (zio->io_error == 0) {
3001		while (zio->io_cksum_report != NULL) {
3002			zio_cksum_report_t *zcr = zio->io_cksum_report;
3003			uint64_t align = zcr->zcr_align;
3004			uint64_t asize = P2ROUNDUP(psize, align);
3005			char *abuf = zio->io_data;
3006
3007			if (asize != psize) {
3008				abuf = zio_buf_alloc(asize);
3009				bcopy(zio->io_data, abuf, psize);
3010				bzero(abuf + psize, asize - psize);
3011			}
3012
3013			zio->io_cksum_report = zcr->zcr_next;
3014			zcr->zcr_next = NULL;
3015			zcr->zcr_finish(zcr, abuf);
3016			zfs_ereport_free_checksum(zcr);
3017
3018			if (asize != psize)
3019				zio_buf_free(abuf, asize);
3020		}
3021	}
3022
3023	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3024
3025	vdev_stat_update(zio, psize);
3026
3027	if (zio->io_error) {
3028		/*
3029		 * If this I/O is attached to a particular vdev,
3030		 * generate an error message describing the I/O failure
3031		 * at the block level.  We ignore these errors if the
3032		 * device is currently unavailable.
3033		 */
3034		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3035			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3036
3037		if ((zio->io_error == EIO || !(zio->io_flags &
3038		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3039		    zio == lio) {
3040			/*
3041			 * For logical I/O requests, tell the SPA to log the
3042			 * error and generate a logical data ereport.
3043			 */
3044			spa_log_error(spa, zio);
3045			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3046			    0, 0);
3047		}
3048	}
3049
3050	if (zio->io_error && zio == lio) {
3051		/*
3052		 * Determine whether zio should be reexecuted.  This will
3053		 * propagate all the way to the root via zio_notify_parent().
3054		 */
3055		ASSERT(vd == NULL && bp != NULL);
3056		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3057
3058		if (IO_IS_ALLOCATING(zio) &&
3059		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3060			if (zio->io_error != ENOSPC)
3061				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3062			else
3063				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3064		}
3065
3066		if ((zio->io_type == ZIO_TYPE_READ ||
3067		    zio->io_type == ZIO_TYPE_FREE) &&
3068		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3069		    zio->io_error == ENXIO &&
3070		    spa_load_state(spa) == SPA_LOAD_NONE &&
3071		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3072			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3073
3074		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3075			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3076
3077		/*
3078		 * Here is a possibly good place to attempt to do
3079		 * either combinatorial reconstruction or error correction
3080		 * based on checksums.  It also might be a good place
3081		 * to send out preliminary ereports before we suspend
3082		 * processing.
3083		 */
3084	}
3085
3086	/*
3087	 * If there were logical child errors, they apply to us now.
3088	 * We defer this until now to avoid conflating logical child
3089	 * errors with errors that happened to the zio itself when
3090	 * updating vdev stats and reporting FMA events above.
3091	 */
3092	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3093
3094	if ((zio->io_error || zio->io_reexecute) &&
3095	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3096	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3097		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3098
3099	zio_gang_tree_free(&zio->io_gang_tree);
3100
3101	/*
3102	 * Godfather I/Os should never suspend.
3103	 */
3104	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3105	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3106		zio->io_reexecute = 0;
3107
3108	if (zio->io_reexecute) {
3109		/*
3110		 * This is a logical I/O that wants to reexecute.
3111		 *
3112		 * Reexecute is top-down.  When an i/o fails, if it's not
3113		 * the root, it simply notifies its parent and sticks around.
3114		 * The parent, seeing that it still has children in zio_done(),
3115		 * does the same.  This percolates all the way up to the root.
3116		 * The root i/o will reexecute or suspend the entire tree.
3117		 *
3118		 * This approach ensures that zio_reexecute() honors
3119		 * all the original i/o dependency relationships, e.g.
3120		 * parents not executing until children are ready.
3121		 */
3122		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3123
3124		zio->io_gang_leader = NULL;
3125
3126		mutex_enter(&zio->io_lock);
3127		zio->io_state[ZIO_WAIT_DONE] = 1;
3128		mutex_exit(&zio->io_lock);
3129
3130		/*
3131		 * "The Godfather" I/O monitors its children but is
3132		 * not a true parent to them. It will track them through
3133		 * the pipeline but severs its ties whenever they get into
3134		 * trouble (e.g. suspended). This allows "The Godfather"
3135		 * I/O to return status without blocking.
3136		 */
3137		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3138			zio_link_t *zl = zio->io_walk_link;
3139			pio_next = zio_walk_parents(zio);
3140
3141			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3142			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3143				zio_remove_child(pio, zio, zl);
3144				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3145			}
3146		}
3147
3148		if ((pio = zio_unique_parent(zio)) != NULL) {
3149			/*
3150			 * We're not a root i/o, so there's nothing to do
3151			 * but notify our parent.  Don't propagate errors
3152			 * upward since we haven't permanently failed yet.
3153			 */
3154			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3155			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3156			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3157		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3158			/*
3159			 * We'd fail again if we reexecuted now, so suspend
3160			 * until conditions improve (e.g. device comes online).
3161			 */
3162			zio_suspend(spa, zio);
3163		} else {
3164			/*
3165			 * Reexecution is potentially a huge amount of work.
3166			 * Hand it off to the otherwise-unused claim taskq.
3167			 */
3168#ifdef _KERNEL
3169			(void) taskq_dispatch_safe(
3170			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
3171			    (task_func_t *)zio_reexecute, zio, TQ_SLEEP,
3172			    &zio->io_task);
3173#else
3174			(void) taskq_dispatch(
3175			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
3176			    (task_func_t *)zio_reexecute, zio, TQ_SLEEP);
3177#endif
3178		}
3179		return (ZIO_PIPELINE_STOP);
3180	}
3181
3182	ASSERT(zio->io_child_count == 0);
3183	ASSERT(zio->io_reexecute == 0);
3184	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3185
3186	/*
3187	 * Report any checksum errors, since the I/O is complete.
3188	 */
3189	while (zio->io_cksum_report != NULL) {
3190		zio_cksum_report_t *zcr = zio->io_cksum_report;
3191		zio->io_cksum_report = zcr->zcr_next;
3192		zcr->zcr_next = NULL;
3193		zcr->zcr_finish(zcr, NULL);
3194		zfs_ereport_free_checksum(zcr);
3195	}
3196
3197	/*
3198	 * It is the responsibility of the done callback to ensure that this
3199	 * particular zio is no longer discoverable for adoption, and as
3200	 * such, cannot acquire any new parents.
3201	 */
3202	if (zio->io_done)
3203		zio->io_done(zio);
3204
3205	mutex_enter(&zio->io_lock);
3206	zio->io_state[ZIO_WAIT_DONE] = 1;
3207	mutex_exit(&zio->io_lock);
3208
3209	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3210		zio_link_t *zl = zio->io_walk_link;
3211		pio_next = zio_walk_parents(zio);
3212		zio_remove_child(pio, zio, zl);
3213		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3214	}
3215
3216	if (zio->io_waiter != NULL) {
3217		mutex_enter(&zio->io_lock);
3218		zio->io_executor = NULL;
3219		cv_broadcast(&zio->io_cv);
3220		mutex_exit(&zio->io_lock);
3221	} else {
3222		zio_destroy(zio);
3223	}
3224
3225	return (ZIO_PIPELINE_STOP);
3226}
3227
3228/*
3229 * ==========================================================================
3230 * I/O pipeline definition
3231 * ==========================================================================
3232 */
3233static zio_pipe_stage_t *zio_pipeline[] = {
3234	NULL,
3235	zio_read_bp_init,
3236	zio_free_bp_init,
3237	zio_issue_async,
3238	zio_write_bp_init,
3239	zio_checksum_generate,
3240	zio_nop_write,
3241	zio_ddt_read_start,
3242	zio_ddt_read_done,
3243	zio_ddt_write,
3244	zio_ddt_free,
3245	zio_gang_assemble,
3246	zio_gang_issue,
3247	zio_dva_allocate,
3248	zio_dva_free,
3249	zio_dva_claim,
3250	zio_ready,
3251	zio_vdev_io_start,
3252	zio_vdev_io_done,
3253	zio_vdev_io_assess,
3254	zio_checksum_verify,
3255	zio_done
3256};
3257
3258/* dnp is the dnode for zb1->zb_object */
3259boolean_t
3260zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3261    const zbookmark_t *zb2)
3262{
3263	uint64_t zb1nextL0, zb2thisobj;
3264
3265	ASSERT(zb1->zb_objset == zb2->zb_objset);
3266	ASSERT(zb2->zb_level == 0);
3267
3268	/*
3269	 * A bookmark in the deadlist is considered to be after
3270	 * everything else.
3271	 */
3272	if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3273		return (B_TRUE);
3274
3275	/* The objset_phys_t isn't before anything. */
3276	if (dnp == NULL)
3277		return (B_FALSE);
3278
3279	zb1nextL0 = (zb1->zb_blkid + 1) <<
3280	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3281
3282	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3283	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3284
3285	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3286		uint64_t nextobj = zb1nextL0 *
3287		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3288		return (nextobj <= zb2thisobj);
3289	}
3290
3291	if (zb1->zb_object < zb2thisobj)
3292		return (B_TRUE);
3293	if (zb1->zb_object > zb2thisobj)
3294		return (B_FALSE);
3295	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3296		return (B_FALSE);
3297	return (zb1nextL0 <= zb2->zb_blkid);
3298}
3299