zio.c revision 250149
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/fm/fs/zfs.h>
28#include <sys/spa.h>
29#include <sys/txg.h>
30#include <sys/spa_impl.h>
31#include <sys/vdev_impl.h>
32#include <sys/zio_impl.h>
33#include <sys/zio_compress.h>
34#include <sys/zio_checksum.h>
35#include <sys/dmu_objset.h>
36#include <sys/arc.h>
37#include <sys/ddt.h>
38#include <sys/trim_map.h>
39
40SYSCTL_DECL(_vfs_zfs);
41SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
42static int zio_use_uma = 0;
43TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
44SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
45    "Use uma(9) for ZIO allocations");
46static int zio_exclude_metadata = 0;
47TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
48SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
49    "Exclude metadata buffers from dumps as well");
50
51zio_trim_stats_t zio_trim_stats = {
52	{ "bytes",		KSTAT_DATA_UINT64,
53	  "Number of bytes successfully TRIMmed" },
54	{ "success",		KSTAT_DATA_UINT64,
55	  "Number of successful TRIM requests" },
56	{ "unsupported",	KSTAT_DATA_UINT64,
57	  "Number of TRIM requests that failed because TRIM is not supported" },
58	{ "failed",		KSTAT_DATA_UINT64,
59	  "Number of TRIM requests that failed for reasons other than not supported" },
60};
61
62static kstat_t *zio_trim_ksp;
63
64/*
65 * ==========================================================================
66 * I/O priority table
67 * ==========================================================================
68 */
69uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
70	0,	/* ZIO_PRIORITY_NOW		*/
71	0,	/* ZIO_PRIORITY_SYNC_READ	*/
72	0,	/* ZIO_PRIORITY_SYNC_WRITE	*/
73	0,	/* ZIO_PRIORITY_LOG_WRITE	*/
74	1,	/* ZIO_PRIORITY_CACHE_FILL	*/
75	1,	/* ZIO_PRIORITY_AGG		*/
76	4,	/* ZIO_PRIORITY_FREE		*/
77	4,	/* ZIO_PRIORITY_ASYNC_WRITE	*/
78	6,	/* ZIO_PRIORITY_ASYNC_READ	*/
79	10,	/* ZIO_PRIORITY_RESILVER	*/
80	20,	/* ZIO_PRIORITY_SCRUB		*/
81	2,	/* ZIO_PRIORITY_DDT_PREFETCH	*/
82	30,	/* ZIO_PRIORITY_TRIM		*/
83};
84
85/*
86 * ==========================================================================
87 * I/O type descriptions
88 * ==========================================================================
89 */
90char *zio_type_name[ZIO_TYPES] = {
91	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
92	"zio_ioctl"
93};
94
95/*
96 * ==========================================================================
97 * I/O kmem caches
98 * ==========================================================================
99 */
100kmem_cache_t *zio_cache;
101kmem_cache_t *zio_link_cache;
102kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
103kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
104
105#ifdef _KERNEL
106extern vmem_t *zio_alloc_arena;
107#endif
108extern int zfs_mg_alloc_failures;
109
110/*
111 * The following actions directly effect the spa's sync-to-convergence logic.
112 * The values below define the sync pass when we start performing the action.
113 * Care should be taken when changing these values as they directly impact
114 * spa_sync() performance. Tuning these values may introduce subtle performance
115 * pathologies and should only be done in the context of performance analysis.
116 * These tunables will eventually be removed and replaced with #defines once
117 * enough analysis has been done to determine optimal values.
118 *
119 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
120 * regular blocks are not deferred.
121 */
122int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
123TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
124SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
125    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
126int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
127TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
128SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
129    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
130int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
131TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
132SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
133    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
134
135/*
136 * An allocating zio is one that either currently has the DVA allocate
137 * stage set or will have it later in its lifetime.
138 */
139#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
140
141boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
142
143#ifdef ZFS_DEBUG
144int zio_buf_debug_limit = 16384;
145#else
146int zio_buf_debug_limit = 0;
147#endif
148
149void
150zio_init(void)
151{
152	size_t c;
153	zio_cache = kmem_cache_create("zio_cache",
154	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
155	zio_link_cache = kmem_cache_create("zio_link_cache",
156	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
157	if (!zio_use_uma)
158		goto out;
159
160	/*
161	 * For small buffers, we want a cache for each multiple of
162	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
163	 * for each quarter-power of 2.  For large buffers, we want
164	 * a cache for each multiple of PAGESIZE.
165	 */
166	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
167		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
168		size_t p2 = size;
169		size_t align = 0;
170		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
171
172		while (p2 & (p2 - 1))
173			p2 &= p2 - 1;
174
175#ifdef illumos
176#ifndef _KERNEL
177		/*
178		 * If we are using watchpoints, put each buffer on its own page,
179		 * to eliminate the performance overhead of trapping to the
180		 * kernel when modifying a non-watched buffer that shares the
181		 * page with a watched buffer.
182		 */
183		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
184			continue;
185#endif
186#endif /* illumos */
187		if (size <= 4 * SPA_MINBLOCKSIZE) {
188			align = SPA_MINBLOCKSIZE;
189		} else if (IS_P2ALIGNED(size, PAGESIZE)) {
190			align = PAGESIZE;
191		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
192			align = p2 >> 2;
193		}
194
195		if (align != 0) {
196			char name[36];
197			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
198			zio_buf_cache[c] = kmem_cache_create(name, size,
199			    align, NULL, NULL, NULL, NULL, NULL, cflags);
200
201			/*
202			 * Since zio_data bufs do not appear in crash dumps, we
203			 * pass KMC_NOTOUCH so that no allocator metadata is
204			 * stored with the buffers.
205			 */
206			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
207			zio_data_buf_cache[c] = kmem_cache_create(name, size,
208			    align, NULL, NULL, NULL, NULL, NULL,
209			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
210		}
211	}
212
213	while (--c != 0) {
214		ASSERT(zio_buf_cache[c] != NULL);
215		if (zio_buf_cache[c - 1] == NULL)
216			zio_buf_cache[c - 1] = zio_buf_cache[c];
217
218		ASSERT(zio_data_buf_cache[c] != NULL);
219		if (zio_data_buf_cache[c - 1] == NULL)
220			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
221	}
222out:
223
224	/*
225	 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
226	 * to fail 3 times per txg or 8 failures, whichever is greater.
227	 */
228	if (zfs_mg_alloc_failures == 0)
229		zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
230	else if (zfs_mg_alloc_failures < 8)
231		zfs_mg_alloc_failures = 8;
232
233	zio_inject_init();
234
235	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
236	    KSTAT_TYPE_NAMED,
237	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
238	    KSTAT_FLAG_VIRTUAL);
239
240	if (zio_trim_ksp != NULL) {
241		zio_trim_ksp->ks_data = &zio_trim_stats;
242		kstat_install(zio_trim_ksp);
243	}
244}
245
246void
247zio_fini(void)
248{
249	size_t c;
250	kmem_cache_t *last_cache = NULL;
251	kmem_cache_t *last_data_cache = NULL;
252
253	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
254		if (zio_buf_cache[c] != last_cache) {
255			last_cache = zio_buf_cache[c];
256			kmem_cache_destroy(zio_buf_cache[c]);
257		}
258		zio_buf_cache[c] = NULL;
259
260		if (zio_data_buf_cache[c] != last_data_cache) {
261			last_data_cache = zio_data_buf_cache[c];
262			kmem_cache_destroy(zio_data_buf_cache[c]);
263		}
264		zio_data_buf_cache[c] = NULL;
265	}
266
267	kmem_cache_destroy(zio_link_cache);
268	kmem_cache_destroy(zio_cache);
269
270	zio_inject_fini();
271
272	if (zio_trim_ksp != NULL) {
273		kstat_delete(zio_trim_ksp);
274		zio_trim_ksp = NULL;
275	}
276}
277
278/*
279 * ==========================================================================
280 * Allocate and free I/O buffers
281 * ==========================================================================
282 */
283
284/*
285 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
286 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
287 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
288 * excess / transient data in-core during a crashdump.
289 */
290void *
291zio_buf_alloc(size_t size)
292{
293	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
294	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
295
296	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
297
298	if (zio_use_uma)
299		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
300	else
301		return (kmem_alloc(size, KM_SLEEP|flags));
302}
303
304/*
305 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
306 * crashdump if the kernel panics.  This exists so that we will limit the amount
307 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
308 * of kernel heap dumped to disk when the kernel panics)
309 */
310void *
311zio_data_buf_alloc(size_t size)
312{
313	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
314
315	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
316
317	if (zio_use_uma)
318		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
319	else
320		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
321}
322
323void
324zio_buf_free(void *buf, size_t size)
325{
326	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
327
328	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
329
330	if (zio_use_uma)
331		kmem_cache_free(zio_buf_cache[c], buf);
332	else
333		kmem_free(buf, size);
334}
335
336void
337zio_data_buf_free(void *buf, size_t size)
338{
339	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
340
341	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
342
343	if (zio_use_uma)
344		kmem_cache_free(zio_data_buf_cache[c], buf);
345	else
346		kmem_free(buf, size);
347}
348
349/*
350 * ==========================================================================
351 * Push and pop I/O transform buffers
352 * ==========================================================================
353 */
354static void
355zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
356	zio_transform_func_t *transform)
357{
358	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
359
360	zt->zt_orig_data = zio->io_data;
361	zt->zt_orig_size = zio->io_size;
362	zt->zt_bufsize = bufsize;
363	zt->zt_transform = transform;
364
365	zt->zt_next = zio->io_transform_stack;
366	zio->io_transform_stack = zt;
367
368	zio->io_data = data;
369	zio->io_size = size;
370}
371
372static void
373zio_pop_transforms(zio_t *zio)
374{
375	zio_transform_t *zt;
376
377	while ((zt = zio->io_transform_stack) != NULL) {
378		if (zt->zt_transform != NULL)
379			zt->zt_transform(zio,
380			    zt->zt_orig_data, zt->zt_orig_size);
381
382		if (zt->zt_bufsize != 0)
383			zio_buf_free(zio->io_data, zt->zt_bufsize);
384
385		zio->io_data = zt->zt_orig_data;
386		zio->io_size = zt->zt_orig_size;
387		zio->io_transform_stack = zt->zt_next;
388
389		kmem_free(zt, sizeof (zio_transform_t));
390	}
391}
392
393/*
394 * ==========================================================================
395 * I/O transform callbacks for subblocks and decompression
396 * ==========================================================================
397 */
398static void
399zio_subblock(zio_t *zio, void *data, uint64_t size)
400{
401	ASSERT(zio->io_size > size);
402
403	if (zio->io_type == ZIO_TYPE_READ)
404		bcopy(zio->io_data, data, size);
405}
406
407static void
408zio_decompress(zio_t *zio, void *data, uint64_t size)
409{
410	if (zio->io_error == 0 &&
411	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
412	    zio->io_data, data, zio->io_size, size) != 0)
413		zio->io_error = SET_ERROR(EIO);
414}
415
416/*
417 * ==========================================================================
418 * I/O parent/child relationships and pipeline interlocks
419 * ==========================================================================
420 */
421/*
422 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
423 *        continue calling these functions until they return NULL.
424 *        Otherwise, the next caller will pick up the list walk in
425 *        some indeterminate state.  (Otherwise every caller would
426 *        have to pass in a cookie to keep the state represented by
427 *        io_walk_link, which gets annoying.)
428 */
429zio_t *
430zio_walk_parents(zio_t *cio)
431{
432	zio_link_t *zl = cio->io_walk_link;
433	list_t *pl = &cio->io_parent_list;
434
435	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
436	cio->io_walk_link = zl;
437
438	if (zl == NULL)
439		return (NULL);
440
441	ASSERT(zl->zl_child == cio);
442	return (zl->zl_parent);
443}
444
445zio_t *
446zio_walk_children(zio_t *pio)
447{
448	zio_link_t *zl = pio->io_walk_link;
449	list_t *cl = &pio->io_child_list;
450
451	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
452	pio->io_walk_link = zl;
453
454	if (zl == NULL)
455		return (NULL);
456
457	ASSERT(zl->zl_parent == pio);
458	return (zl->zl_child);
459}
460
461zio_t *
462zio_unique_parent(zio_t *cio)
463{
464	zio_t *pio = zio_walk_parents(cio);
465
466	VERIFY(zio_walk_parents(cio) == NULL);
467	return (pio);
468}
469
470void
471zio_add_child(zio_t *pio, zio_t *cio)
472{
473	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
474
475	/*
476	 * Logical I/Os can have logical, gang, or vdev children.
477	 * Gang I/Os can have gang or vdev children.
478	 * Vdev I/Os can only have vdev children.
479	 * The following ASSERT captures all of these constraints.
480	 */
481	ASSERT(cio->io_child_type <= pio->io_child_type);
482
483	zl->zl_parent = pio;
484	zl->zl_child = cio;
485
486	mutex_enter(&cio->io_lock);
487	mutex_enter(&pio->io_lock);
488
489	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
490
491	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
492		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
493
494	list_insert_head(&pio->io_child_list, zl);
495	list_insert_head(&cio->io_parent_list, zl);
496
497	pio->io_child_count++;
498	cio->io_parent_count++;
499
500	mutex_exit(&pio->io_lock);
501	mutex_exit(&cio->io_lock);
502}
503
504static void
505zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
506{
507	ASSERT(zl->zl_parent == pio);
508	ASSERT(zl->zl_child == cio);
509
510	mutex_enter(&cio->io_lock);
511	mutex_enter(&pio->io_lock);
512
513	list_remove(&pio->io_child_list, zl);
514	list_remove(&cio->io_parent_list, zl);
515
516	pio->io_child_count--;
517	cio->io_parent_count--;
518
519	mutex_exit(&pio->io_lock);
520	mutex_exit(&cio->io_lock);
521
522	kmem_cache_free(zio_link_cache, zl);
523}
524
525static boolean_t
526zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
527{
528	uint64_t *countp = &zio->io_children[child][wait];
529	boolean_t waiting = B_FALSE;
530
531	mutex_enter(&zio->io_lock);
532	ASSERT(zio->io_stall == NULL);
533	if (*countp != 0) {
534		zio->io_stage >>= 1;
535		zio->io_stall = countp;
536		waiting = B_TRUE;
537	}
538	mutex_exit(&zio->io_lock);
539
540	return (waiting);
541}
542
543static void
544zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
545{
546	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
547	int *errorp = &pio->io_child_error[zio->io_child_type];
548
549	mutex_enter(&pio->io_lock);
550	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
551		*errorp = zio_worst_error(*errorp, zio->io_error);
552	pio->io_reexecute |= zio->io_reexecute;
553	ASSERT3U(*countp, >, 0);
554	if (--*countp == 0 && pio->io_stall == countp) {
555		pio->io_stall = NULL;
556		mutex_exit(&pio->io_lock);
557		zio_execute(pio);
558	} else {
559		mutex_exit(&pio->io_lock);
560	}
561}
562
563static void
564zio_inherit_child_errors(zio_t *zio, enum zio_child c)
565{
566	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
567		zio->io_error = zio->io_child_error[c];
568}
569
570/*
571 * ==========================================================================
572 * Create the various types of I/O (read, write, free, etc)
573 * ==========================================================================
574 */
575static zio_t *
576zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
577    void *data, uint64_t size, zio_done_func_t *done, void *private,
578    zio_type_t type, int priority, enum zio_flag flags,
579    vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
580    enum zio_stage stage, enum zio_stage pipeline)
581{
582	zio_t *zio;
583
584	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
585	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
586	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
587
588	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
589	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
590	ASSERT(vd || stage == ZIO_STAGE_OPEN);
591
592	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
593	bzero(zio, sizeof (zio_t));
594
595	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
596	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
597
598	list_create(&zio->io_parent_list, sizeof (zio_link_t),
599	    offsetof(zio_link_t, zl_parent_node));
600	list_create(&zio->io_child_list, sizeof (zio_link_t),
601	    offsetof(zio_link_t, zl_child_node));
602
603	if (vd != NULL)
604		zio->io_child_type = ZIO_CHILD_VDEV;
605	else if (flags & ZIO_FLAG_GANG_CHILD)
606		zio->io_child_type = ZIO_CHILD_GANG;
607	else if (flags & ZIO_FLAG_DDT_CHILD)
608		zio->io_child_type = ZIO_CHILD_DDT;
609	else
610		zio->io_child_type = ZIO_CHILD_LOGICAL;
611
612	if (bp != NULL) {
613		zio->io_bp = (blkptr_t *)bp;
614		zio->io_bp_copy = *bp;
615		zio->io_bp_orig = *bp;
616		if (type != ZIO_TYPE_WRITE ||
617		    zio->io_child_type == ZIO_CHILD_DDT)
618			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
619		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
620			zio->io_logical = zio;
621		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
622			pipeline |= ZIO_GANG_STAGES;
623	}
624
625	zio->io_spa = spa;
626	zio->io_txg = txg;
627	zio->io_done = done;
628	zio->io_private = private;
629	zio->io_type = type;
630	zio->io_priority = priority;
631	zio->io_vd = vd;
632	zio->io_offset = offset;
633	zio->io_orig_data = zio->io_data = data;
634	zio->io_orig_size = zio->io_size = size;
635	zio->io_orig_flags = zio->io_flags = flags;
636	zio->io_orig_stage = zio->io_stage = stage;
637	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
638
639	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
640	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
641
642	if (zb != NULL)
643		zio->io_bookmark = *zb;
644
645	if (pio != NULL) {
646		if (zio->io_logical == NULL)
647			zio->io_logical = pio->io_logical;
648		if (zio->io_child_type == ZIO_CHILD_GANG)
649			zio->io_gang_leader = pio->io_gang_leader;
650		zio_add_child(pio, zio);
651	}
652
653	return (zio);
654}
655
656static void
657zio_destroy(zio_t *zio)
658{
659	list_destroy(&zio->io_parent_list);
660	list_destroy(&zio->io_child_list);
661	mutex_destroy(&zio->io_lock);
662	cv_destroy(&zio->io_cv);
663	kmem_cache_free(zio_cache, zio);
664}
665
666zio_t *
667zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
668    void *private, enum zio_flag flags)
669{
670	zio_t *zio;
671
672	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
673	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
674	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
675
676	return (zio);
677}
678
679zio_t *
680zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
681{
682	return (zio_null(NULL, spa, NULL, done, private, flags));
683}
684
685zio_t *
686zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
687    void *data, uint64_t size, zio_done_func_t *done, void *private,
688    int priority, enum zio_flag flags, const zbookmark_t *zb)
689{
690	zio_t *zio;
691
692	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
693	    data, size, done, private,
694	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
695	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
696	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
697
698	return (zio);
699}
700
701zio_t *
702zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
703    void *data, uint64_t size, const zio_prop_t *zp,
704    zio_done_func_t *ready, zio_done_func_t *done, void *private,
705    int priority, enum zio_flag flags, const zbookmark_t *zb)
706{
707	zio_t *zio;
708
709	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
710	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
711	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
712	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
713	    DMU_OT_IS_VALID(zp->zp_type) &&
714	    zp->zp_level < 32 &&
715	    zp->zp_copies > 0 &&
716	    zp->zp_copies <= spa_max_replication(spa));
717
718	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
719	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
720	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
721	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
722
723	zio->io_ready = ready;
724	zio->io_prop = *zp;
725
726	return (zio);
727}
728
729zio_t *
730zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
731    uint64_t size, zio_done_func_t *done, void *private, int priority,
732    enum zio_flag flags, zbookmark_t *zb)
733{
734	zio_t *zio;
735
736	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
737	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
738	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
739
740	return (zio);
741}
742
743void
744zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
745{
746	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
747	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
748	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
749	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
750
751	/*
752	 * We must reset the io_prop to match the values that existed
753	 * when the bp was first written by dmu_sync() keeping in mind
754	 * that nopwrite and dedup are mutually exclusive.
755	 */
756	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
757	zio->io_prop.zp_nopwrite = nopwrite;
758	zio->io_prop.zp_copies = copies;
759	zio->io_bp_override = bp;
760}
761
762void
763zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
764{
765	metaslab_check_free(spa, bp);
766	bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
767}
768
769zio_t *
770zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
771    uint64_t size, enum zio_flag flags)
772{
773	zio_t *zio;
774
775	dprintf_bp(bp, "freeing in txg %llu, pass %u",
776	    (longlong_t)txg, spa->spa_sync_pass);
777
778	ASSERT(!BP_IS_HOLE(bp));
779	ASSERT(spa_syncing_txg(spa) == txg);
780	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
781
782	metaslab_check_free(spa, bp);
783
784	zio = zio_create(pio, spa, txg, bp, NULL, size,
785	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
786	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
787
788	return (zio);
789}
790
791zio_t *
792zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
793    zio_done_func_t *done, void *private, enum zio_flag flags)
794{
795	zio_t *zio;
796
797	/*
798	 * A claim is an allocation of a specific block.  Claims are needed
799	 * to support immediate writes in the intent log.  The issue is that
800	 * immediate writes contain committed data, but in a txg that was
801	 * *not* committed.  Upon opening the pool after an unclean shutdown,
802	 * the intent log claims all blocks that contain immediate write data
803	 * so that the SPA knows they're in use.
804	 *
805	 * All claims *must* be resolved in the first txg -- before the SPA
806	 * starts allocating blocks -- so that nothing is allocated twice.
807	 * If txg == 0 we just verify that the block is claimable.
808	 */
809	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
810	ASSERT(txg == spa_first_txg(spa) || txg == 0);
811	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
812
813	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
814	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
815	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
816
817	return (zio);
818}
819
820zio_t *
821zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
822    uint64_t size, zio_done_func_t *done, void *private, int priority,
823    enum zio_flag flags)
824{
825	zio_t *zio;
826	int c;
827
828	if (vd->vdev_children == 0) {
829		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
830		    ZIO_TYPE_IOCTL, priority, flags, vd, offset, NULL,
831		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
832
833		zio->io_cmd = cmd;
834	} else {
835		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
836
837		for (c = 0; c < vd->vdev_children; c++)
838			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
839			    offset, size, done, private, priority, flags));
840	}
841
842	return (zio);
843}
844
845zio_t *
846zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
847    void *data, int checksum, zio_done_func_t *done, void *private,
848    int priority, enum zio_flag flags, boolean_t labels)
849{
850	zio_t *zio;
851
852	ASSERT(vd->vdev_children == 0);
853	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
854	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
855	ASSERT3U(offset + size, <=, vd->vdev_psize);
856
857	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
858	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
859	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
860
861	zio->io_prop.zp_checksum = checksum;
862
863	return (zio);
864}
865
866zio_t *
867zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
868    void *data, int checksum, zio_done_func_t *done, void *private,
869    int priority, enum zio_flag flags, boolean_t labels)
870{
871	zio_t *zio;
872
873	ASSERT(vd->vdev_children == 0);
874	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
875	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
876	ASSERT3U(offset + size, <=, vd->vdev_psize);
877
878	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
879	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
880	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
881
882	zio->io_prop.zp_checksum = checksum;
883
884	if (zio_checksum_table[checksum].ci_eck) {
885		/*
886		 * zec checksums are necessarily destructive -- they modify
887		 * the end of the write buffer to hold the verifier/checksum.
888		 * Therefore, we must make a local copy in case the data is
889		 * being written to multiple places in parallel.
890		 */
891		void *wbuf = zio_buf_alloc(size);
892		bcopy(data, wbuf, size);
893		zio_push_transform(zio, wbuf, size, size, NULL);
894	}
895
896	return (zio);
897}
898
899/*
900 * Create a child I/O to do some work for us.
901 */
902zio_t *
903zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
904	void *data, uint64_t size, int type, int priority, enum zio_flag flags,
905	zio_done_func_t *done, void *private)
906{
907	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
908	zio_t *zio;
909
910	ASSERT(vd->vdev_parent ==
911	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
912
913	if (type == ZIO_TYPE_READ && bp != NULL) {
914		/*
915		 * If we have the bp, then the child should perform the
916		 * checksum and the parent need not.  This pushes error
917		 * detection as close to the leaves as possible and
918		 * eliminates redundant checksums in the interior nodes.
919		 */
920		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
921		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
922	}
923
924	if (vd->vdev_children == 0)
925		offset += VDEV_LABEL_START_SIZE;
926
927	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
928
929	/*
930	 * If we've decided to do a repair, the write is not speculative --
931	 * even if the original read was.
932	 */
933	if (flags & ZIO_FLAG_IO_REPAIR)
934		flags &= ~ZIO_FLAG_SPECULATIVE;
935
936	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
937	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
938	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
939
940	return (zio);
941}
942
943zio_t *
944zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
945	int type, int priority, enum zio_flag flags,
946	zio_done_func_t *done, void *private)
947{
948	zio_t *zio;
949
950	ASSERT(vd->vdev_ops->vdev_op_leaf);
951
952	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
953	    data, size, done, private, type, priority,
954	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
955	    vd, offset, NULL,
956	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
957
958	return (zio);
959}
960
961void
962zio_flush(zio_t *zio, vdev_t *vd)
963{
964	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
965	    NULL, NULL, ZIO_PRIORITY_NOW,
966	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
967}
968
969zio_t *
970zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
971{
972
973	ASSERT(vd->vdev_ops->vdev_op_leaf);
974
975	return zio_ioctl(zio, spa, vd, DKIOCTRIM, offset, size,
976	    NULL, NULL, ZIO_PRIORITY_TRIM,
977	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
978}
979
980void
981zio_shrink(zio_t *zio, uint64_t size)
982{
983	ASSERT(zio->io_executor == NULL);
984	ASSERT(zio->io_orig_size == zio->io_size);
985	ASSERT(size <= zio->io_size);
986
987	/*
988	 * We don't shrink for raidz because of problems with the
989	 * reconstruction when reading back less than the block size.
990	 * Note, BP_IS_RAIDZ() assumes no compression.
991	 */
992	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
993	if (!BP_IS_RAIDZ(zio->io_bp))
994		zio->io_orig_size = zio->io_size = size;
995}
996
997/*
998 * ==========================================================================
999 * Prepare to read and write logical blocks
1000 * ==========================================================================
1001 */
1002
1003static int
1004zio_read_bp_init(zio_t *zio)
1005{
1006	blkptr_t *bp = zio->io_bp;
1007
1008	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1009	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1010	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1011		uint64_t psize = BP_GET_PSIZE(bp);
1012		void *cbuf = zio_buf_alloc(psize);
1013
1014		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1015	}
1016
1017	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1018		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1019
1020	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1021		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1022
1023	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1024		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1025
1026	return (ZIO_PIPELINE_CONTINUE);
1027}
1028
1029static int
1030zio_write_bp_init(zio_t *zio)
1031{
1032	spa_t *spa = zio->io_spa;
1033	zio_prop_t *zp = &zio->io_prop;
1034	enum zio_compress compress = zp->zp_compress;
1035	blkptr_t *bp = zio->io_bp;
1036	uint64_t lsize = zio->io_size;
1037	uint64_t psize = lsize;
1038	int pass = 1;
1039
1040	/*
1041	 * If our children haven't all reached the ready stage,
1042	 * wait for them and then repeat this pipeline stage.
1043	 */
1044	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1045	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1046		return (ZIO_PIPELINE_STOP);
1047
1048	if (!IO_IS_ALLOCATING(zio))
1049		return (ZIO_PIPELINE_CONTINUE);
1050
1051	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1052
1053	if (zio->io_bp_override) {
1054		ASSERT(bp->blk_birth != zio->io_txg);
1055		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1056
1057		*bp = *zio->io_bp_override;
1058		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1059
1060		/*
1061		 * If we've been overridden and nopwrite is set then
1062		 * set the flag accordingly to indicate that a nopwrite
1063		 * has already occurred.
1064		 */
1065		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1066			ASSERT(!zp->zp_dedup);
1067			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1068			return (ZIO_PIPELINE_CONTINUE);
1069		}
1070
1071		ASSERT(!zp->zp_nopwrite);
1072
1073		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1074			return (ZIO_PIPELINE_CONTINUE);
1075
1076		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1077		    zp->zp_dedup_verify);
1078
1079		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1080			BP_SET_DEDUP(bp, 1);
1081			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1082			return (ZIO_PIPELINE_CONTINUE);
1083		}
1084		zio->io_bp_override = NULL;
1085		BP_ZERO(bp);
1086	}
1087
1088	if (bp->blk_birth == zio->io_txg) {
1089		/*
1090		 * We're rewriting an existing block, which means we're
1091		 * working on behalf of spa_sync().  For spa_sync() to
1092		 * converge, it must eventually be the case that we don't
1093		 * have to allocate new blocks.  But compression changes
1094		 * the blocksize, which forces a reallocate, and makes
1095		 * convergence take longer.  Therefore, after the first
1096		 * few passes, stop compressing to ensure convergence.
1097		 */
1098		pass = spa_sync_pass(spa);
1099
1100		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1101		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1102		ASSERT(!BP_GET_DEDUP(bp));
1103
1104		if (pass >= zfs_sync_pass_dont_compress)
1105			compress = ZIO_COMPRESS_OFF;
1106
1107		/* Make sure someone doesn't change their mind on overwrites */
1108		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1109		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1110	}
1111
1112	if (compress != ZIO_COMPRESS_OFF) {
1113		void *cbuf = zio_buf_alloc(lsize);
1114		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1115		if (psize == 0 || psize == lsize) {
1116			compress = ZIO_COMPRESS_OFF;
1117			zio_buf_free(cbuf, lsize);
1118		} else {
1119			ASSERT(psize < lsize);
1120			zio_push_transform(zio, cbuf, psize, lsize, NULL);
1121		}
1122	}
1123
1124	/*
1125	 * The final pass of spa_sync() must be all rewrites, but the first
1126	 * few passes offer a trade-off: allocating blocks defers convergence,
1127	 * but newly allocated blocks are sequential, so they can be written
1128	 * to disk faster.  Therefore, we allow the first few passes of
1129	 * spa_sync() to allocate new blocks, but force rewrites after that.
1130	 * There should only be a handful of blocks after pass 1 in any case.
1131	 */
1132	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1133	    pass >= zfs_sync_pass_rewrite) {
1134		ASSERT(psize != 0);
1135		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1136		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1137		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1138	} else {
1139		BP_ZERO(bp);
1140		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1141	}
1142
1143	if (psize == 0) {
1144		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1145	} else {
1146		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1147		BP_SET_LSIZE(bp, lsize);
1148		BP_SET_PSIZE(bp, psize);
1149		BP_SET_COMPRESS(bp, compress);
1150		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1151		BP_SET_TYPE(bp, zp->zp_type);
1152		BP_SET_LEVEL(bp, zp->zp_level);
1153		BP_SET_DEDUP(bp, zp->zp_dedup);
1154		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1155		if (zp->zp_dedup) {
1156			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1157			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1158			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1159		}
1160		if (zp->zp_nopwrite) {
1161			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1162			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1163			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1164		}
1165	}
1166
1167	return (ZIO_PIPELINE_CONTINUE);
1168}
1169
1170static int
1171zio_free_bp_init(zio_t *zio)
1172{
1173	blkptr_t *bp = zio->io_bp;
1174
1175	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1176		if (BP_GET_DEDUP(bp))
1177			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1178	}
1179
1180	return (ZIO_PIPELINE_CONTINUE);
1181}
1182
1183/*
1184 * ==========================================================================
1185 * Execute the I/O pipeline
1186 * ==========================================================================
1187 */
1188
1189static void
1190zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q, boolean_t cutinline)
1191{
1192	spa_t *spa = zio->io_spa;
1193	zio_type_t t = zio->io_type;
1194	int flags = TQ_SLEEP | (cutinline ? TQ_FRONT : 0);
1195
1196	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1197
1198	/*
1199	 * If we're a config writer or a probe, the normal issue and
1200	 * interrupt threads may all be blocked waiting for the config lock.
1201	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1202	 */
1203	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1204		t = ZIO_TYPE_NULL;
1205
1206	/*
1207	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1208	 */
1209	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1210		t = ZIO_TYPE_NULL;
1211
1212	/*
1213	 * If this is a high priority I/O, then use the high priority taskq.
1214	 */
1215	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1216	    spa->spa_zio_taskq[t][q + 1] != NULL)
1217		q++;
1218
1219	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1220#ifdef _KERNEL
1221	(void) taskq_dispatch_safe(spa->spa_zio_taskq[t][q],
1222	    (task_func_t *)zio_execute, zio, flags, &zio->io_task);
1223#else
1224	(void) taskq_dispatch(spa->spa_zio_taskq[t][q],
1225	    (task_func_t *)zio_execute, zio, flags);
1226#endif
1227}
1228
1229static boolean_t
1230zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
1231{
1232	kthread_t *executor = zio->io_executor;
1233	spa_t *spa = zio->io_spa;
1234
1235	for (zio_type_t t = 0; t < ZIO_TYPES; t++)
1236		if (taskq_member(spa->spa_zio_taskq[t][q], executor))
1237			return (B_TRUE);
1238
1239	return (B_FALSE);
1240}
1241
1242static int
1243zio_issue_async(zio_t *zio)
1244{
1245	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1246
1247	return (ZIO_PIPELINE_STOP);
1248}
1249
1250void
1251zio_interrupt(zio_t *zio)
1252{
1253	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1254}
1255
1256/*
1257 * Execute the I/O pipeline until one of the following occurs:
1258 * (1) the I/O completes; (2) the pipeline stalls waiting for
1259 * dependent child I/Os; (3) the I/O issues, so we're waiting
1260 * for an I/O completion interrupt; (4) the I/O is delegated by
1261 * vdev-level caching or aggregation; (5) the I/O is deferred
1262 * due to vdev-level queueing; (6) the I/O is handed off to
1263 * another thread.  In all cases, the pipeline stops whenever
1264 * there's no CPU work; it never burns a thread in cv_wait().
1265 *
1266 * There's no locking on io_stage because there's no legitimate way
1267 * for multiple threads to be attempting to process the same I/O.
1268 */
1269static zio_pipe_stage_t *zio_pipeline[];
1270
1271void
1272zio_execute(zio_t *zio)
1273{
1274	zio->io_executor = curthread;
1275
1276	while (zio->io_stage < ZIO_STAGE_DONE) {
1277		enum zio_stage pipeline = zio->io_pipeline;
1278		enum zio_stage stage = zio->io_stage;
1279		int rv;
1280
1281		ASSERT(!MUTEX_HELD(&zio->io_lock));
1282		ASSERT(ISP2(stage));
1283		ASSERT(zio->io_stall == NULL);
1284
1285		do {
1286			stage <<= 1;
1287		} while ((stage & pipeline) == 0);
1288
1289		ASSERT(stage <= ZIO_STAGE_DONE);
1290
1291		/*
1292		 * If we are in interrupt context and this pipeline stage
1293		 * will grab a config lock that is held across I/O,
1294		 * or may wait for an I/O that needs an interrupt thread
1295		 * to complete, issue async to avoid deadlock.
1296		 *
1297		 * For VDEV_IO_START, we cut in line so that the io will
1298		 * be sent to disk promptly.
1299		 */
1300		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1301		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1302			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1303			    zio_requeue_io_start_cut_in_line : B_FALSE;
1304			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1305			return;
1306		}
1307
1308		zio->io_stage = stage;
1309		rv = zio_pipeline[highbit(stage) - 1](zio);
1310
1311		if (rv == ZIO_PIPELINE_STOP)
1312			return;
1313
1314		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1315	}
1316}
1317
1318/*
1319 * ==========================================================================
1320 * Initiate I/O, either sync or async
1321 * ==========================================================================
1322 */
1323int
1324zio_wait(zio_t *zio)
1325{
1326	int error;
1327
1328	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1329	ASSERT(zio->io_executor == NULL);
1330
1331	zio->io_waiter = curthread;
1332
1333	zio_execute(zio);
1334
1335	mutex_enter(&zio->io_lock);
1336	while (zio->io_executor != NULL)
1337		cv_wait(&zio->io_cv, &zio->io_lock);
1338	mutex_exit(&zio->io_lock);
1339
1340	error = zio->io_error;
1341	zio_destroy(zio);
1342
1343	return (error);
1344}
1345
1346void
1347zio_nowait(zio_t *zio)
1348{
1349	ASSERT(zio->io_executor == NULL);
1350
1351	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1352	    zio_unique_parent(zio) == NULL) {
1353		/*
1354		 * This is a logical async I/O with no parent to wait for it.
1355		 * We add it to the spa_async_root_zio "Godfather" I/O which
1356		 * will ensure they complete prior to unloading the pool.
1357		 */
1358		spa_t *spa = zio->io_spa;
1359
1360		zio_add_child(spa->spa_async_zio_root, zio);
1361	}
1362
1363	zio_execute(zio);
1364}
1365
1366/*
1367 * ==========================================================================
1368 * Reexecute or suspend/resume failed I/O
1369 * ==========================================================================
1370 */
1371
1372static void
1373zio_reexecute(zio_t *pio)
1374{
1375	zio_t *cio, *cio_next;
1376
1377	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1378	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1379	ASSERT(pio->io_gang_leader == NULL);
1380	ASSERT(pio->io_gang_tree == NULL);
1381
1382	pio->io_flags = pio->io_orig_flags;
1383	pio->io_stage = pio->io_orig_stage;
1384	pio->io_pipeline = pio->io_orig_pipeline;
1385	pio->io_reexecute = 0;
1386	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1387	pio->io_error = 0;
1388	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1389		pio->io_state[w] = 0;
1390	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1391		pio->io_child_error[c] = 0;
1392
1393	if (IO_IS_ALLOCATING(pio))
1394		BP_ZERO(pio->io_bp);
1395
1396	/*
1397	 * As we reexecute pio's children, new children could be created.
1398	 * New children go to the head of pio's io_child_list, however,
1399	 * so we will (correctly) not reexecute them.  The key is that
1400	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1401	 * cannot be affected by any side effects of reexecuting 'cio'.
1402	 */
1403	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1404		cio_next = zio_walk_children(pio);
1405		mutex_enter(&pio->io_lock);
1406		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1407			pio->io_children[cio->io_child_type][w]++;
1408		mutex_exit(&pio->io_lock);
1409		zio_reexecute(cio);
1410	}
1411
1412	/*
1413	 * Now that all children have been reexecuted, execute the parent.
1414	 * We don't reexecute "The Godfather" I/O here as it's the
1415	 * responsibility of the caller to wait on him.
1416	 */
1417	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1418		zio_execute(pio);
1419}
1420
1421void
1422zio_suspend(spa_t *spa, zio_t *zio)
1423{
1424	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1425		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1426		    "failure and the failure mode property for this pool "
1427		    "is set to panic.", spa_name(spa));
1428
1429	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1430
1431	mutex_enter(&spa->spa_suspend_lock);
1432
1433	if (spa->spa_suspend_zio_root == NULL)
1434		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1435		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1436		    ZIO_FLAG_GODFATHER);
1437
1438	spa->spa_suspended = B_TRUE;
1439
1440	if (zio != NULL) {
1441		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1442		ASSERT(zio != spa->spa_suspend_zio_root);
1443		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1444		ASSERT(zio_unique_parent(zio) == NULL);
1445		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1446		zio_add_child(spa->spa_suspend_zio_root, zio);
1447	}
1448
1449	mutex_exit(&spa->spa_suspend_lock);
1450}
1451
1452int
1453zio_resume(spa_t *spa)
1454{
1455	zio_t *pio;
1456
1457	/*
1458	 * Reexecute all previously suspended i/o.
1459	 */
1460	mutex_enter(&spa->spa_suspend_lock);
1461	spa->spa_suspended = B_FALSE;
1462	cv_broadcast(&spa->spa_suspend_cv);
1463	pio = spa->spa_suspend_zio_root;
1464	spa->spa_suspend_zio_root = NULL;
1465	mutex_exit(&spa->spa_suspend_lock);
1466
1467	if (pio == NULL)
1468		return (0);
1469
1470	zio_reexecute(pio);
1471	return (zio_wait(pio));
1472}
1473
1474void
1475zio_resume_wait(spa_t *spa)
1476{
1477	mutex_enter(&spa->spa_suspend_lock);
1478	while (spa_suspended(spa))
1479		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1480	mutex_exit(&spa->spa_suspend_lock);
1481}
1482
1483/*
1484 * ==========================================================================
1485 * Gang blocks.
1486 *
1487 * A gang block is a collection of small blocks that looks to the DMU
1488 * like one large block.  When zio_dva_allocate() cannot find a block
1489 * of the requested size, due to either severe fragmentation or the pool
1490 * being nearly full, it calls zio_write_gang_block() to construct the
1491 * block from smaller fragments.
1492 *
1493 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1494 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1495 * an indirect block: it's an array of block pointers.  It consumes
1496 * only one sector and hence is allocatable regardless of fragmentation.
1497 * The gang header's bps point to its gang members, which hold the data.
1498 *
1499 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1500 * as the verifier to ensure uniqueness of the SHA256 checksum.
1501 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1502 * not the gang header.  This ensures that data block signatures (needed for
1503 * deduplication) are independent of how the block is physically stored.
1504 *
1505 * Gang blocks can be nested: a gang member may itself be a gang block.
1506 * Thus every gang block is a tree in which root and all interior nodes are
1507 * gang headers, and the leaves are normal blocks that contain user data.
1508 * The root of the gang tree is called the gang leader.
1509 *
1510 * To perform any operation (read, rewrite, free, claim) on a gang block,
1511 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1512 * in the io_gang_tree field of the original logical i/o by recursively
1513 * reading the gang leader and all gang headers below it.  This yields
1514 * an in-core tree containing the contents of every gang header and the
1515 * bps for every constituent of the gang block.
1516 *
1517 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1518 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1519 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1520 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1521 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1522 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1523 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1524 * of the gang header plus zio_checksum_compute() of the data to update the
1525 * gang header's blk_cksum as described above.
1526 *
1527 * The two-phase assemble/issue model solves the problem of partial failure --
1528 * what if you'd freed part of a gang block but then couldn't read the
1529 * gang header for another part?  Assembling the entire gang tree first
1530 * ensures that all the necessary gang header I/O has succeeded before
1531 * starting the actual work of free, claim, or write.  Once the gang tree
1532 * is assembled, free and claim are in-memory operations that cannot fail.
1533 *
1534 * In the event that a gang write fails, zio_dva_unallocate() walks the
1535 * gang tree to immediately free (i.e. insert back into the space map)
1536 * everything we've allocated.  This ensures that we don't get ENOSPC
1537 * errors during repeated suspend/resume cycles due to a flaky device.
1538 *
1539 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1540 * the gang tree, we won't modify the block, so we can safely defer the free
1541 * (knowing that the block is still intact).  If we *can* assemble the gang
1542 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1543 * each constituent bp and we can allocate a new block on the next sync pass.
1544 *
1545 * In all cases, the gang tree allows complete recovery from partial failure.
1546 * ==========================================================================
1547 */
1548
1549static zio_t *
1550zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1551{
1552	if (gn != NULL)
1553		return (pio);
1554
1555	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1556	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1557	    &pio->io_bookmark));
1558}
1559
1560zio_t *
1561zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1562{
1563	zio_t *zio;
1564
1565	if (gn != NULL) {
1566		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1567		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1568		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1569		/*
1570		 * As we rewrite each gang header, the pipeline will compute
1571		 * a new gang block header checksum for it; but no one will
1572		 * compute a new data checksum, so we do that here.  The one
1573		 * exception is the gang leader: the pipeline already computed
1574		 * its data checksum because that stage precedes gang assembly.
1575		 * (Presently, nothing actually uses interior data checksums;
1576		 * this is just good hygiene.)
1577		 */
1578		if (gn != pio->io_gang_leader->io_gang_tree) {
1579			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1580			    data, BP_GET_PSIZE(bp));
1581		}
1582		/*
1583		 * If we are here to damage data for testing purposes,
1584		 * leave the GBH alone so that we can detect the damage.
1585		 */
1586		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1587			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1588	} else {
1589		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1590		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1591		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1592	}
1593
1594	return (zio);
1595}
1596
1597/* ARGSUSED */
1598zio_t *
1599zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1600{
1601	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1602	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1603	    ZIO_GANG_CHILD_FLAGS(pio)));
1604}
1605
1606/* ARGSUSED */
1607zio_t *
1608zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1609{
1610	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1611	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1612}
1613
1614static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1615	NULL,
1616	zio_read_gang,
1617	zio_rewrite_gang,
1618	zio_free_gang,
1619	zio_claim_gang,
1620	NULL
1621};
1622
1623static void zio_gang_tree_assemble_done(zio_t *zio);
1624
1625static zio_gang_node_t *
1626zio_gang_node_alloc(zio_gang_node_t **gnpp)
1627{
1628	zio_gang_node_t *gn;
1629
1630	ASSERT(*gnpp == NULL);
1631
1632	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1633	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1634	*gnpp = gn;
1635
1636	return (gn);
1637}
1638
1639static void
1640zio_gang_node_free(zio_gang_node_t **gnpp)
1641{
1642	zio_gang_node_t *gn = *gnpp;
1643
1644	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1645		ASSERT(gn->gn_child[g] == NULL);
1646
1647	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1648	kmem_free(gn, sizeof (*gn));
1649	*gnpp = NULL;
1650}
1651
1652static void
1653zio_gang_tree_free(zio_gang_node_t **gnpp)
1654{
1655	zio_gang_node_t *gn = *gnpp;
1656
1657	if (gn == NULL)
1658		return;
1659
1660	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1661		zio_gang_tree_free(&gn->gn_child[g]);
1662
1663	zio_gang_node_free(gnpp);
1664}
1665
1666static void
1667zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1668{
1669	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1670
1671	ASSERT(gio->io_gang_leader == gio);
1672	ASSERT(BP_IS_GANG(bp));
1673
1674	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1675	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1676	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1677}
1678
1679static void
1680zio_gang_tree_assemble_done(zio_t *zio)
1681{
1682	zio_t *gio = zio->io_gang_leader;
1683	zio_gang_node_t *gn = zio->io_private;
1684	blkptr_t *bp = zio->io_bp;
1685
1686	ASSERT(gio == zio_unique_parent(zio));
1687	ASSERT(zio->io_child_count == 0);
1688
1689	if (zio->io_error)
1690		return;
1691
1692	if (BP_SHOULD_BYTESWAP(bp))
1693		byteswap_uint64_array(zio->io_data, zio->io_size);
1694
1695	ASSERT(zio->io_data == gn->gn_gbh);
1696	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1697	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1698
1699	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1700		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1701		if (!BP_IS_GANG(gbp))
1702			continue;
1703		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1704	}
1705}
1706
1707static void
1708zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1709{
1710	zio_t *gio = pio->io_gang_leader;
1711	zio_t *zio;
1712
1713	ASSERT(BP_IS_GANG(bp) == !!gn);
1714	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1715	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1716
1717	/*
1718	 * If you're a gang header, your data is in gn->gn_gbh.
1719	 * If you're a gang member, your data is in 'data' and gn == NULL.
1720	 */
1721	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1722
1723	if (gn != NULL) {
1724		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1725
1726		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1727			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1728			if (BP_IS_HOLE(gbp))
1729				continue;
1730			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1731			data = (char *)data + BP_GET_PSIZE(gbp);
1732		}
1733	}
1734
1735	if (gn == gio->io_gang_tree && gio->io_data != NULL)
1736		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1737
1738	if (zio != pio)
1739		zio_nowait(zio);
1740}
1741
1742static int
1743zio_gang_assemble(zio_t *zio)
1744{
1745	blkptr_t *bp = zio->io_bp;
1746
1747	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1748	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1749
1750	zio->io_gang_leader = zio;
1751
1752	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1753
1754	return (ZIO_PIPELINE_CONTINUE);
1755}
1756
1757static int
1758zio_gang_issue(zio_t *zio)
1759{
1760	blkptr_t *bp = zio->io_bp;
1761
1762	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1763		return (ZIO_PIPELINE_STOP);
1764
1765	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1766	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1767
1768	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1769		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1770	else
1771		zio_gang_tree_free(&zio->io_gang_tree);
1772
1773	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1774
1775	return (ZIO_PIPELINE_CONTINUE);
1776}
1777
1778static void
1779zio_write_gang_member_ready(zio_t *zio)
1780{
1781	zio_t *pio = zio_unique_parent(zio);
1782	zio_t *gio = zio->io_gang_leader;
1783	dva_t *cdva = zio->io_bp->blk_dva;
1784	dva_t *pdva = pio->io_bp->blk_dva;
1785	uint64_t asize;
1786
1787	if (BP_IS_HOLE(zio->io_bp))
1788		return;
1789
1790	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1791
1792	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1793	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1794	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1795	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1796	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1797
1798	mutex_enter(&pio->io_lock);
1799	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1800		ASSERT(DVA_GET_GANG(&pdva[d]));
1801		asize = DVA_GET_ASIZE(&pdva[d]);
1802		asize += DVA_GET_ASIZE(&cdva[d]);
1803		DVA_SET_ASIZE(&pdva[d], asize);
1804	}
1805	mutex_exit(&pio->io_lock);
1806}
1807
1808static int
1809zio_write_gang_block(zio_t *pio)
1810{
1811	spa_t *spa = pio->io_spa;
1812	blkptr_t *bp = pio->io_bp;
1813	zio_t *gio = pio->io_gang_leader;
1814	zio_t *zio;
1815	zio_gang_node_t *gn, **gnpp;
1816	zio_gbh_phys_t *gbh;
1817	uint64_t txg = pio->io_txg;
1818	uint64_t resid = pio->io_size;
1819	uint64_t lsize;
1820	int copies = gio->io_prop.zp_copies;
1821	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1822	zio_prop_t zp;
1823	int error;
1824
1825	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1826	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1827	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1828	if (error) {
1829		pio->io_error = error;
1830		return (ZIO_PIPELINE_CONTINUE);
1831	}
1832
1833	if (pio == gio) {
1834		gnpp = &gio->io_gang_tree;
1835	} else {
1836		gnpp = pio->io_private;
1837		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1838	}
1839
1840	gn = zio_gang_node_alloc(gnpp);
1841	gbh = gn->gn_gbh;
1842	bzero(gbh, SPA_GANGBLOCKSIZE);
1843
1844	/*
1845	 * Create the gang header.
1846	 */
1847	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1848	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1849
1850	/*
1851	 * Create and nowait the gang children.
1852	 */
1853	for (int g = 0; resid != 0; resid -= lsize, g++) {
1854		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1855		    SPA_MINBLOCKSIZE);
1856		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1857
1858		zp.zp_checksum = gio->io_prop.zp_checksum;
1859		zp.zp_compress = ZIO_COMPRESS_OFF;
1860		zp.zp_type = DMU_OT_NONE;
1861		zp.zp_level = 0;
1862		zp.zp_copies = gio->io_prop.zp_copies;
1863		zp.zp_dedup = B_FALSE;
1864		zp.zp_dedup_verify = B_FALSE;
1865		zp.zp_nopwrite = B_FALSE;
1866
1867		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1868		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1869		    zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1870		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1871		    &pio->io_bookmark));
1872	}
1873
1874	/*
1875	 * Set pio's pipeline to just wait for zio to finish.
1876	 */
1877	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1878
1879	zio_nowait(zio);
1880
1881	return (ZIO_PIPELINE_CONTINUE);
1882}
1883
1884/*
1885 * The zio_nop_write stage in the pipeline determines if allocating
1886 * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1887 * such as SHA256, we can compare the checksums of the new data and the old
1888 * to determine if allocating a new block is required.  The nopwrite
1889 * feature can handle writes in either syncing or open context (i.e. zil
1890 * writes) and as a result is mutually exclusive with dedup.
1891 */
1892static int
1893zio_nop_write(zio_t *zio)
1894{
1895	blkptr_t *bp = zio->io_bp;
1896	blkptr_t *bp_orig = &zio->io_bp_orig;
1897	zio_prop_t *zp = &zio->io_prop;
1898
1899	ASSERT(BP_GET_LEVEL(bp) == 0);
1900	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1901	ASSERT(zp->zp_nopwrite);
1902	ASSERT(!zp->zp_dedup);
1903	ASSERT(zio->io_bp_override == NULL);
1904	ASSERT(IO_IS_ALLOCATING(zio));
1905
1906	/*
1907	 * Check to see if the original bp and the new bp have matching
1908	 * characteristics (i.e. same checksum, compression algorithms, etc).
1909	 * If they don't then just continue with the pipeline which will
1910	 * allocate a new bp.
1911	 */
1912	if (BP_IS_HOLE(bp_orig) ||
1913	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1914	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1915	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1916	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1917	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
1918		return (ZIO_PIPELINE_CONTINUE);
1919
1920	/*
1921	 * If the checksums match then reset the pipeline so that we
1922	 * avoid allocating a new bp and issuing any I/O.
1923	 */
1924	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1925		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1926		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1927		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1928		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1929		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1930		    sizeof (uint64_t)) == 0);
1931
1932		*bp = *bp_orig;
1933		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1934		zio->io_flags |= ZIO_FLAG_NOPWRITE;
1935	}
1936
1937	return (ZIO_PIPELINE_CONTINUE);
1938}
1939
1940/*
1941 * ==========================================================================
1942 * Dedup
1943 * ==========================================================================
1944 */
1945static void
1946zio_ddt_child_read_done(zio_t *zio)
1947{
1948	blkptr_t *bp = zio->io_bp;
1949	ddt_entry_t *dde = zio->io_private;
1950	ddt_phys_t *ddp;
1951	zio_t *pio = zio_unique_parent(zio);
1952
1953	mutex_enter(&pio->io_lock);
1954	ddp = ddt_phys_select(dde, bp);
1955	if (zio->io_error == 0)
1956		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1957	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1958		dde->dde_repair_data = zio->io_data;
1959	else
1960		zio_buf_free(zio->io_data, zio->io_size);
1961	mutex_exit(&pio->io_lock);
1962}
1963
1964static int
1965zio_ddt_read_start(zio_t *zio)
1966{
1967	blkptr_t *bp = zio->io_bp;
1968
1969	ASSERT(BP_GET_DEDUP(bp));
1970	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1971	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1972
1973	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1974		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1975		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1976		ddt_phys_t *ddp = dde->dde_phys;
1977		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1978		blkptr_t blk;
1979
1980		ASSERT(zio->io_vsd == NULL);
1981		zio->io_vsd = dde;
1982
1983		if (ddp_self == NULL)
1984			return (ZIO_PIPELINE_CONTINUE);
1985
1986		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1987			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1988				continue;
1989			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1990			    &blk);
1991			zio_nowait(zio_read(zio, zio->io_spa, &blk,
1992			    zio_buf_alloc(zio->io_size), zio->io_size,
1993			    zio_ddt_child_read_done, dde, zio->io_priority,
1994			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1995			    &zio->io_bookmark));
1996		}
1997		return (ZIO_PIPELINE_CONTINUE);
1998	}
1999
2000	zio_nowait(zio_read(zio, zio->io_spa, bp,
2001	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2002	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2003
2004	return (ZIO_PIPELINE_CONTINUE);
2005}
2006
2007static int
2008zio_ddt_read_done(zio_t *zio)
2009{
2010	blkptr_t *bp = zio->io_bp;
2011
2012	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2013		return (ZIO_PIPELINE_STOP);
2014
2015	ASSERT(BP_GET_DEDUP(bp));
2016	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2017	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2018
2019	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2020		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2021		ddt_entry_t *dde = zio->io_vsd;
2022		if (ddt == NULL) {
2023			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2024			return (ZIO_PIPELINE_CONTINUE);
2025		}
2026		if (dde == NULL) {
2027			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2028			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2029			return (ZIO_PIPELINE_STOP);
2030		}
2031		if (dde->dde_repair_data != NULL) {
2032			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2033			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2034		}
2035		ddt_repair_done(ddt, dde);
2036		zio->io_vsd = NULL;
2037	}
2038
2039	ASSERT(zio->io_vsd == NULL);
2040
2041	return (ZIO_PIPELINE_CONTINUE);
2042}
2043
2044static boolean_t
2045zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2046{
2047	spa_t *spa = zio->io_spa;
2048
2049	/*
2050	 * Note: we compare the original data, not the transformed data,
2051	 * because when zio->io_bp is an override bp, we will not have
2052	 * pushed the I/O transforms.  That's an important optimization
2053	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2054	 */
2055	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2056		zio_t *lio = dde->dde_lead_zio[p];
2057
2058		if (lio != NULL) {
2059			return (lio->io_orig_size != zio->io_orig_size ||
2060			    bcmp(zio->io_orig_data, lio->io_orig_data,
2061			    zio->io_orig_size) != 0);
2062		}
2063	}
2064
2065	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2066		ddt_phys_t *ddp = &dde->dde_phys[p];
2067
2068		if (ddp->ddp_phys_birth != 0) {
2069			arc_buf_t *abuf = NULL;
2070			uint32_t aflags = ARC_WAIT;
2071			blkptr_t blk = *zio->io_bp;
2072			int error;
2073
2074			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2075
2076			ddt_exit(ddt);
2077
2078			error = arc_read(NULL, spa, &blk,
2079			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2080			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2081			    &aflags, &zio->io_bookmark);
2082
2083			if (error == 0) {
2084				if (arc_buf_size(abuf) != zio->io_orig_size ||
2085				    bcmp(abuf->b_data, zio->io_orig_data,
2086				    zio->io_orig_size) != 0)
2087					error = SET_ERROR(EEXIST);
2088				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2089			}
2090
2091			ddt_enter(ddt);
2092			return (error != 0);
2093		}
2094	}
2095
2096	return (B_FALSE);
2097}
2098
2099static void
2100zio_ddt_child_write_ready(zio_t *zio)
2101{
2102	int p = zio->io_prop.zp_copies;
2103	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2104	ddt_entry_t *dde = zio->io_private;
2105	ddt_phys_t *ddp = &dde->dde_phys[p];
2106	zio_t *pio;
2107
2108	if (zio->io_error)
2109		return;
2110
2111	ddt_enter(ddt);
2112
2113	ASSERT(dde->dde_lead_zio[p] == zio);
2114
2115	ddt_phys_fill(ddp, zio->io_bp);
2116
2117	while ((pio = zio_walk_parents(zio)) != NULL)
2118		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2119
2120	ddt_exit(ddt);
2121}
2122
2123static void
2124zio_ddt_child_write_done(zio_t *zio)
2125{
2126	int p = zio->io_prop.zp_copies;
2127	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2128	ddt_entry_t *dde = zio->io_private;
2129	ddt_phys_t *ddp = &dde->dde_phys[p];
2130
2131	ddt_enter(ddt);
2132
2133	ASSERT(ddp->ddp_refcnt == 0);
2134	ASSERT(dde->dde_lead_zio[p] == zio);
2135	dde->dde_lead_zio[p] = NULL;
2136
2137	if (zio->io_error == 0) {
2138		while (zio_walk_parents(zio) != NULL)
2139			ddt_phys_addref(ddp);
2140	} else {
2141		ddt_phys_clear(ddp);
2142	}
2143
2144	ddt_exit(ddt);
2145}
2146
2147static void
2148zio_ddt_ditto_write_done(zio_t *zio)
2149{
2150	int p = DDT_PHYS_DITTO;
2151	zio_prop_t *zp = &zio->io_prop;
2152	blkptr_t *bp = zio->io_bp;
2153	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2154	ddt_entry_t *dde = zio->io_private;
2155	ddt_phys_t *ddp = &dde->dde_phys[p];
2156	ddt_key_t *ddk = &dde->dde_key;
2157
2158	ddt_enter(ddt);
2159
2160	ASSERT(ddp->ddp_refcnt == 0);
2161	ASSERT(dde->dde_lead_zio[p] == zio);
2162	dde->dde_lead_zio[p] = NULL;
2163
2164	if (zio->io_error == 0) {
2165		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2166		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2167		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2168		if (ddp->ddp_phys_birth != 0)
2169			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2170		ddt_phys_fill(ddp, bp);
2171	}
2172
2173	ddt_exit(ddt);
2174}
2175
2176static int
2177zio_ddt_write(zio_t *zio)
2178{
2179	spa_t *spa = zio->io_spa;
2180	blkptr_t *bp = zio->io_bp;
2181	uint64_t txg = zio->io_txg;
2182	zio_prop_t *zp = &zio->io_prop;
2183	int p = zp->zp_copies;
2184	int ditto_copies;
2185	zio_t *cio = NULL;
2186	zio_t *dio = NULL;
2187	ddt_t *ddt = ddt_select(spa, bp);
2188	ddt_entry_t *dde;
2189	ddt_phys_t *ddp;
2190
2191	ASSERT(BP_GET_DEDUP(bp));
2192	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2193	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2194
2195	ddt_enter(ddt);
2196	dde = ddt_lookup(ddt, bp, B_TRUE);
2197	ddp = &dde->dde_phys[p];
2198
2199	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2200		/*
2201		 * If we're using a weak checksum, upgrade to a strong checksum
2202		 * and try again.  If we're already using a strong checksum,
2203		 * we can't resolve it, so just convert to an ordinary write.
2204		 * (And automatically e-mail a paper to Nature?)
2205		 */
2206		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2207			zp->zp_checksum = spa_dedup_checksum(spa);
2208			zio_pop_transforms(zio);
2209			zio->io_stage = ZIO_STAGE_OPEN;
2210			BP_ZERO(bp);
2211		} else {
2212			zp->zp_dedup = B_FALSE;
2213		}
2214		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2215		ddt_exit(ddt);
2216		return (ZIO_PIPELINE_CONTINUE);
2217	}
2218
2219	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2220	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2221
2222	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2223	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2224		zio_prop_t czp = *zp;
2225
2226		czp.zp_copies = ditto_copies;
2227
2228		/*
2229		 * If we arrived here with an override bp, we won't have run
2230		 * the transform stack, so we won't have the data we need to
2231		 * generate a child i/o.  So, toss the override bp and restart.
2232		 * This is safe, because using the override bp is just an
2233		 * optimization; and it's rare, so the cost doesn't matter.
2234		 */
2235		if (zio->io_bp_override) {
2236			zio_pop_transforms(zio);
2237			zio->io_stage = ZIO_STAGE_OPEN;
2238			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2239			zio->io_bp_override = NULL;
2240			BP_ZERO(bp);
2241			ddt_exit(ddt);
2242			return (ZIO_PIPELINE_CONTINUE);
2243		}
2244
2245		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2246		    zio->io_orig_size, &czp, NULL,
2247		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2248		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2249
2250		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2251		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2252	}
2253
2254	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2255		if (ddp->ddp_phys_birth != 0)
2256			ddt_bp_fill(ddp, bp, txg);
2257		if (dde->dde_lead_zio[p] != NULL)
2258			zio_add_child(zio, dde->dde_lead_zio[p]);
2259		else
2260			ddt_phys_addref(ddp);
2261	} else if (zio->io_bp_override) {
2262		ASSERT(bp->blk_birth == txg);
2263		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2264		ddt_phys_fill(ddp, bp);
2265		ddt_phys_addref(ddp);
2266	} else {
2267		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2268		    zio->io_orig_size, zp, zio_ddt_child_write_ready,
2269		    zio_ddt_child_write_done, dde, zio->io_priority,
2270		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2271
2272		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2273		dde->dde_lead_zio[p] = cio;
2274	}
2275
2276	ddt_exit(ddt);
2277
2278	if (cio)
2279		zio_nowait(cio);
2280	if (dio)
2281		zio_nowait(dio);
2282
2283	return (ZIO_PIPELINE_CONTINUE);
2284}
2285
2286ddt_entry_t *freedde; /* for debugging */
2287
2288static int
2289zio_ddt_free(zio_t *zio)
2290{
2291	spa_t *spa = zio->io_spa;
2292	blkptr_t *bp = zio->io_bp;
2293	ddt_t *ddt = ddt_select(spa, bp);
2294	ddt_entry_t *dde;
2295	ddt_phys_t *ddp;
2296
2297	ASSERT(BP_GET_DEDUP(bp));
2298	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2299
2300	ddt_enter(ddt);
2301	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2302	ddp = ddt_phys_select(dde, bp);
2303	ddt_phys_decref(ddp);
2304	ddt_exit(ddt);
2305
2306	return (ZIO_PIPELINE_CONTINUE);
2307}
2308
2309/*
2310 * ==========================================================================
2311 * Allocate and free blocks
2312 * ==========================================================================
2313 */
2314static int
2315zio_dva_allocate(zio_t *zio)
2316{
2317	spa_t *spa = zio->io_spa;
2318	metaslab_class_t *mc = spa_normal_class(spa);
2319	blkptr_t *bp = zio->io_bp;
2320	int error;
2321	int flags = 0;
2322
2323	if (zio->io_gang_leader == NULL) {
2324		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2325		zio->io_gang_leader = zio;
2326	}
2327
2328	ASSERT(BP_IS_HOLE(bp));
2329	ASSERT0(BP_GET_NDVAS(bp));
2330	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2331	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2332	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2333
2334	/*
2335	 * The dump device does not support gang blocks so allocation on
2336	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2337	 * the "fast" gang feature.
2338	 */
2339	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2340	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2341	    METASLAB_GANG_CHILD : 0;
2342	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2343	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2344
2345	if (error) {
2346		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2347		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2348		    error);
2349		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2350			return (zio_write_gang_block(zio));
2351		zio->io_error = error;
2352	}
2353
2354	return (ZIO_PIPELINE_CONTINUE);
2355}
2356
2357static int
2358zio_dva_free(zio_t *zio)
2359{
2360	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2361
2362	return (ZIO_PIPELINE_CONTINUE);
2363}
2364
2365static int
2366zio_dva_claim(zio_t *zio)
2367{
2368	int error;
2369
2370	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2371	if (error)
2372		zio->io_error = error;
2373
2374	return (ZIO_PIPELINE_CONTINUE);
2375}
2376
2377/*
2378 * Undo an allocation.  This is used by zio_done() when an I/O fails
2379 * and we want to give back the block we just allocated.
2380 * This handles both normal blocks and gang blocks.
2381 */
2382static void
2383zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2384{
2385	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2386	ASSERT(zio->io_bp_override == NULL);
2387
2388	if (!BP_IS_HOLE(bp))
2389		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2390
2391	if (gn != NULL) {
2392		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2393			zio_dva_unallocate(zio, gn->gn_child[g],
2394			    &gn->gn_gbh->zg_blkptr[g]);
2395		}
2396	}
2397}
2398
2399/*
2400 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2401 */
2402int
2403zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2404    uint64_t size, boolean_t use_slog)
2405{
2406	int error = 1;
2407
2408	ASSERT(txg > spa_syncing_txg(spa));
2409
2410	/*
2411	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2412	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2413	 * when allocating them.
2414	 */
2415	if (use_slog) {
2416		error = metaslab_alloc(spa, spa_log_class(spa), size,
2417		    new_bp, 1, txg, old_bp,
2418		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2419	}
2420
2421	if (error) {
2422		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2423		    new_bp, 1, txg, old_bp,
2424		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2425	}
2426
2427	if (error == 0) {
2428		BP_SET_LSIZE(new_bp, size);
2429		BP_SET_PSIZE(new_bp, size);
2430		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2431		BP_SET_CHECKSUM(new_bp,
2432		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2433		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2434		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2435		BP_SET_LEVEL(new_bp, 0);
2436		BP_SET_DEDUP(new_bp, 0);
2437		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2438	}
2439
2440	return (error);
2441}
2442
2443/*
2444 * Free an intent log block.
2445 */
2446void
2447zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2448{
2449	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2450	ASSERT(!BP_IS_GANG(bp));
2451
2452	zio_free(spa, txg, bp);
2453}
2454
2455/*
2456 * ==========================================================================
2457 * Read, write and delete to physical devices
2458 * ==========================================================================
2459 */
2460static int
2461zio_vdev_io_start(zio_t *zio)
2462{
2463	vdev_t *vd = zio->io_vd;
2464	uint64_t align;
2465	spa_t *spa = zio->io_spa;
2466
2467	ASSERT(zio->io_error == 0);
2468	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2469
2470	if (vd == NULL) {
2471		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2472			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2473
2474		/*
2475		 * The mirror_ops handle multiple DVAs in a single BP.
2476		 */
2477		return (vdev_mirror_ops.vdev_op_io_start(zio));
2478	}
2479
2480	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE) {
2481		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
2482		return (ZIO_PIPELINE_CONTINUE);
2483	}
2484
2485	/*
2486	 * We keep track of time-sensitive I/Os so that the scan thread
2487	 * can quickly react to certain workloads.  In particular, we care
2488	 * about non-scrubbing, top-level reads and writes with the following
2489	 * characteristics:
2490	 * 	- synchronous writes of user data to non-slog devices
2491	 *	- any reads of user data
2492	 * When these conditions are met, adjust the timestamp of spa_last_io
2493	 * which allows the scan thread to adjust its workload accordingly.
2494	 */
2495	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2496	    vd == vd->vdev_top && !vd->vdev_islog &&
2497	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2498	    zio->io_txg != spa_syncing_txg(spa)) {
2499		uint64_t old = spa->spa_last_io;
2500		uint64_t new = ddi_get_lbolt64();
2501		if (old != new)
2502			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2503	}
2504
2505	align = 1ULL << vd->vdev_top->vdev_ashift;
2506
2507	if (P2PHASE(zio->io_size, align) != 0) {
2508		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2509		char *abuf = NULL;
2510		if (zio->io_type == ZIO_TYPE_READ ||
2511		    zio->io_type == ZIO_TYPE_WRITE)
2512			abuf = zio_buf_alloc(asize);
2513		ASSERT(vd == vd->vdev_top);
2514		if (zio->io_type == ZIO_TYPE_WRITE) {
2515			bcopy(zio->io_data, abuf, zio->io_size);
2516			bzero(abuf + zio->io_size, asize - zio->io_size);
2517		}
2518		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
2519		    zio_subblock);
2520	}
2521
2522	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2523	ASSERT(P2PHASE(zio->io_size, align) == 0);
2524	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
2525
2526	/*
2527	 * If this is a repair I/O, and there's no self-healing involved --
2528	 * that is, we're just resilvering what we expect to resilver --
2529	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2530	 * This prevents spurious resilvering with nested replication.
2531	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2532	 * A is out of date, we'll read from C+D, then use the data to
2533	 * resilver A+B -- but we don't actually want to resilver B, just A.
2534	 * The top-level mirror has no way to know this, so instead we just
2535	 * discard unnecessary repairs as we work our way down the vdev tree.
2536	 * The same logic applies to any form of nested replication:
2537	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2538	 */
2539	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2540	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2541	    zio->io_txg != 0 &&	/* not a delegated i/o */
2542	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2543		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2544		zio_vdev_io_bypass(zio);
2545		return (ZIO_PIPELINE_CONTINUE);
2546	}
2547
2548	if (vd->vdev_ops->vdev_op_leaf &&
2549	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2550
2551		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2552			return (ZIO_PIPELINE_CONTINUE);
2553
2554		if ((zio = vdev_queue_io(zio)) == NULL)
2555			return (ZIO_PIPELINE_STOP);
2556
2557		if (!vdev_accessible(vd, zio)) {
2558			zio->io_error = SET_ERROR(ENXIO);
2559			zio_interrupt(zio);
2560			return (ZIO_PIPELINE_STOP);
2561		}
2562	}
2563
2564	/*
2565	 * Note that we ignore repair writes for TRIM because they can conflict
2566	 * with normal writes. This isn't an issue because, by definition, we
2567	 * only repair blocks that aren't freed.
2568	 */
2569	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_WRITE &&
2570	    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2571		if (!trim_map_write_start(zio))
2572			return (ZIO_PIPELINE_STOP);
2573	}
2574
2575	return (vd->vdev_ops->vdev_op_io_start(zio));
2576}
2577
2578static int
2579zio_vdev_io_done(zio_t *zio)
2580{
2581	vdev_t *vd = zio->io_vd;
2582	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2583	boolean_t unexpected_error = B_FALSE;
2584
2585	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2586		return (ZIO_PIPELINE_STOP);
2587
2588	ASSERT(zio->io_type == ZIO_TYPE_READ ||
2589	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
2590
2591	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2592	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2593
2594		if (zio->io_type == ZIO_TYPE_WRITE &&
2595		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
2596			trim_map_write_done(zio);
2597
2598		vdev_queue_io_done(zio);
2599
2600		if (zio->io_type == ZIO_TYPE_WRITE)
2601			vdev_cache_write(zio);
2602
2603		if (zio_injection_enabled && zio->io_error == 0)
2604			zio->io_error = zio_handle_device_injection(vd,
2605			    zio, EIO);
2606
2607		if (zio_injection_enabled && zio->io_error == 0)
2608			zio->io_error = zio_handle_label_injection(zio, EIO);
2609
2610		if (zio->io_error) {
2611			if (!vdev_accessible(vd, zio)) {
2612				zio->io_error = SET_ERROR(ENXIO);
2613			} else {
2614				unexpected_error = B_TRUE;
2615			}
2616		}
2617	}
2618
2619	ops->vdev_op_io_done(zio);
2620
2621	if (unexpected_error)
2622		VERIFY(vdev_probe(vd, zio) == NULL);
2623
2624	return (ZIO_PIPELINE_CONTINUE);
2625}
2626
2627/*
2628 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2629 * disk, and use that to finish the checksum ereport later.
2630 */
2631static void
2632zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2633    const void *good_buf)
2634{
2635	/* no processing needed */
2636	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2637}
2638
2639/*ARGSUSED*/
2640void
2641zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2642{
2643	void *buf = zio_buf_alloc(zio->io_size);
2644
2645	bcopy(zio->io_data, buf, zio->io_size);
2646
2647	zcr->zcr_cbinfo = zio->io_size;
2648	zcr->zcr_cbdata = buf;
2649	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2650	zcr->zcr_free = zio_buf_free;
2651}
2652
2653static int
2654zio_vdev_io_assess(zio_t *zio)
2655{
2656	vdev_t *vd = zio->io_vd;
2657
2658	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2659		return (ZIO_PIPELINE_STOP);
2660
2661	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2662		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2663
2664	if (zio->io_vsd != NULL) {
2665		zio->io_vsd_ops->vsd_free(zio);
2666		zio->io_vsd = NULL;
2667	}
2668
2669	if (zio_injection_enabled && zio->io_error == 0)
2670		zio->io_error = zio_handle_fault_injection(zio, EIO);
2671
2672	if (zio->io_type == ZIO_TYPE_IOCTL && zio->io_cmd == DKIOCTRIM)
2673		switch (zio->io_error) {
2674		case 0:
2675			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
2676			ZIO_TRIM_STAT_BUMP(success);
2677			break;
2678		case EOPNOTSUPP:
2679			ZIO_TRIM_STAT_BUMP(unsupported);
2680			break;
2681		default:
2682			ZIO_TRIM_STAT_BUMP(failed);
2683			break;
2684		}
2685
2686	/*
2687	 * If the I/O failed, determine whether we should attempt to retry it.
2688	 *
2689	 * On retry, we cut in line in the issue queue, since we don't want
2690	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2691	 */
2692	if (zio->io_error && vd == NULL &&
2693	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2694		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2695		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2696		zio->io_error = 0;
2697		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2698		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2699		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2700		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2701		    zio_requeue_io_start_cut_in_line);
2702		return (ZIO_PIPELINE_STOP);
2703	}
2704
2705	/*
2706	 * If we got an error on a leaf device, convert it to ENXIO
2707	 * if the device is not accessible at all.
2708	 */
2709	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2710	    !vdev_accessible(vd, zio))
2711		zio->io_error = SET_ERROR(ENXIO);
2712
2713	/*
2714	 * If we can't write to an interior vdev (mirror or RAID-Z),
2715	 * set vdev_cant_write so that we stop trying to allocate from it.
2716	 */
2717	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2718	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2719		vd->vdev_cant_write = B_TRUE;
2720	}
2721
2722	if (zio->io_error)
2723		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2724
2725	return (ZIO_PIPELINE_CONTINUE);
2726}
2727
2728void
2729zio_vdev_io_reissue(zio_t *zio)
2730{
2731	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2732	ASSERT(zio->io_error == 0);
2733
2734	zio->io_stage >>= 1;
2735}
2736
2737void
2738zio_vdev_io_redone(zio_t *zio)
2739{
2740	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2741
2742	zio->io_stage >>= 1;
2743}
2744
2745void
2746zio_vdev_io_bypass(zio_t *zio)
2747{
2748	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2749	ASSERT(zio->io_error == 0);
2750
2751	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2752	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2753}
2754
2755/*
2756 * ==========================================================================
2757 * Generate and verify checksums
2758 * ==========================================================================
2759 */
2760static int
2761zio_checksum_generate(zio_t *zio)
2762{
2763	blkptr_t *bp = zio->io_bp;
2764	enum zio_checksum checksum;
2765
2766	if (bp == NULL) {
2767		/*
2768		 * This is zio_write_phys().
2769		 * We're either generating a label checksum, or none at all.
2770		 */
2771		checksum = zio->io_prop.zp_checksum;
2772
2773		if (checksum == ZIO_CHECKSUM_OFF)
2774			return (ZIO_PIPELINE_CONTINUE);
2775
2776		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2777	} else {
2778		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2779			ASSERT(!IO_IS_ALLOCATING(zio));
2780			checksum = ZIO_CHECKSUM_GANG_HEADER;
2781		} else {
2782			checksum = BP_GET_CHECKSUM(bp);
2783		}
2784	}
2785
2786	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2787
2788	return (ZIO_PIPELINE_CONTINUE);
2789}
2790
2791static int
2792zio_checksum_verify(zio_t *zio)
2793{
2794	zio_bad_cksum_t info;
2795	blkptr_t *bp = zio->io_bp;
2796	int error;
2797
2798	ASSERT(zio->io_vd != NULL);
2799
2800	if (bp == NULL) {
2801		/*
2802		 * This is zio_read_phys().
2803		 * We're either verifying a label checksum, or nothing at all.
2804		 */
2805		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2806			return (ZIO_PIPELINE_CONTINUE);
2807
2808		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2809	}
2810
2811	if ((error = zio_checksum_error(zio, &info)) != 0) {
2812		zio->io_error = error;
2813		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2814			zfs_ereport_start_checksum(zio->io_spa,
2815			    zio->io_vd, zio, zio->io_offset,
2816			    zio->io_size, NULL, &info);
2817		}
2818	}
2819
2820	return (ZIO_PIPELINE_CONTINUE);
2821}
2822
2823/*
2824 * Called by RAID-Z to ensure we don't compute the checksum twice.
2825 */
2826void
2827zio_checksum_verified(zio_t *zio)
2828{
2829	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2830}
2831
2832/*
2833 * ==========================================================================
2834 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2835 * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2836 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2837 * indicate errors that are specific to one I/O, and most likely permanent.
2838 * Any other error is presumed to be worse because we weren't expecting it.
2839 * ==========================================================================
2840 */
2841int
2842zio_worst_error(int e1, int e2)
2843{
2844	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2845	int r1, r2;
2846
2847	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2848		if (e1 == zio_error_rank[r1])
2849			break;
2850
2851	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2852		if (e2 == zio_error_rank[r2])
2853			break;
2854
2855	return (r1 > r2 ? e1 : e2);
2856}
2857
2858/*
2859 * ==========================================================================
2860 * I/O completion
2861 * ==========================================================================
2862 */
2863static int
2864zio_ready(zio_t *zio)
2865{
2866	blkptr_t *bp = zio->io_bp;
2867	zio_t *pio, *pio_next;
2868
2869	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2870	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2871		return (ZIO_PIPELINE_STOP);
2872
2873	if (zio->io_ready) {
2874		ASSERT(IO_IS_ALLOCATING(zio));
2875		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2876		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
2877		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2878
2879		zio->io_ready(zio);
2880	}
2881
2882	if (bp != NULL && bp != &zio->io_bp_copy)
2883		zio->io_bp_copy = *bp;
2884
2885	if (zio->io_error)
2886		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2887
2888	mutex_enter(&zio->io_lock);
2889	zio->io_state[ZIO_WAIT_READY] = 1;
2890	pio = zio_walk_parents(zio);
2891	mutex_exit(&zio->io_lock);
2892
2893	/*
2894	 * As we notify zio's parents, new parents could be added.
2895	 * New parents go to the head of zio's io_parent_list, however,
2896	 * so we will (correctly) not notify them.  The remainder of zio's
2897	 * io_parent_list, from 'pio_next' onward, cannot change because
2898	 * all parents must wait for us to be done before they can be done.
2899	 */
2900	for (; pio != NULL; pio = pio_next) {
2901		pio_next = zio_walk_parents(zio);
2902		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2903	}
2904
2905	if (zio->io_flags & ZIO_FLAG_NODATA) {
2906		if (BP_IS_GANG(bp)) {
2907			zio->io_flags &= ~ZIO_FLAG_NODATA;
2908		} else {
2909			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2910			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2911		}
2912	}
2913
2914	if (zio_injection_enabled &&
2915	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2916		zio_handle_ignored_writes(zio);
2917
2918	return (ZIO_PIPELINE_CONTINUE);
2919}
2920
2921static int
2922zio_done(zio_t *zio)
2923{
2924	spa_t *spa = zio->io_spa;
2925	zio_t *lio = zio->io_logical;
2926	blkptr_t *bp = zio->io_bp;
2927	vdev_t *vd = zio->io_vd;
2928	uint64_t psize = zio->io_size;
2929	zio_t *pio, *pio_next;
2930
2931	/*
2932	 * If our children haven't all completed,
2933	 * wait for them and then repeat this pipeline stage.
2934	 */
2935	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2936	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2937	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2938	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2939		return (ZIO_PIPELINE_STOP);
2940
2941	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2942		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2943			ASSERT(zio->io_children[c][w] == 0);
2944
2945	if (bp != NULL) {
2946		ASSERT(bp->blk_pad[0] == 0);
2947		ASSERT(bp->blk_pad[1] == 0);
2948		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2949		    (bp == zio_unique_parent(zio)->io_bp));
2950		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2951		    zio->io_bp_override == NULL &&
2952		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2953			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2954			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2955			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2956			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2957		}
2958		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2959			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2960	}
2961
2962	/*
2963	 * If there were child vdev/gang/ddt errors, they apply to us now.
2964	 */
2965	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2966	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2967	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2968
2969	/*
2970	 * If the I/O on the transformed data was successful, generate any
2971	 * checksum reports now while we still have the transformed data.
2972	 */
2973	if (zio->io_error == 0) {
2974		while (zio->io_cksum_report != NULL) {
2975			zio_cksum_report_t *zcr = zio->io_cksum_report;
2976			uint64_t align = zcr->zcr_align;
2977			uint64_t asize = P2ROUNDUP(psize, align);
2978			char *abuf = zio->io_data;
2979
2980			if (asize != psize) {
2981				abuf = zio_buf_alloc(asize);
2982				bcopy(zio->io_data, abuf, psize);
2983				bzero(abuf + psize, asize - psize);
2984			}
2985
2986			zio->io_cksum_report = zcr->zcr_next;
2987			zcr->zcr_next = NULL;
2988			zcr->zcr_finish(zcr, abuf);
2989			zfs_ereport_free_checksum(zcr);
2990
2991			if (asize != psize)
2992				zio_buf_free(abuf, asize);
2993		}
2994	}
2995
2996	zio_pop_transforms(zio);	/* note: may set zio->io_error */
2997
2998	vdev_stat_update(zio, psize);
2999
3000	if (zio->io_error) {
3001		/*
3002		 * If this I/O is attached to a particular vdev,
3003		 * generate an error message describing the I/O failure
3004		 * at the block level.  We ignore these errors if the
3005		 * device is currently unavailable.
3006		 */
3007		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3008			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3009
3010		if ((zio->io_error == EIO || !(zio->io_flags &
3011		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3012		    zio == lio) {
3013			/*
3014			 * For logical I/O requests, tell the SPA to log the
3015			 * error and generate a logical data ereport.
3016			 */
3017			spa_log_error(spa, zio);
3018			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3019			    0, 0);
3020		}
3021	}
3022
3023	if (zio->io_error && zio == lio) {
3024		/*
3025		 * Determine whether zio should be reexecuted.  This will
3026		 * propagate all the way to the root via zio_notify_parent().
3027		 */
3028		ASSERT(vd == NULL && bp != NULL);
3029		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3030
3031		if (IO_IS_ALLOCATING(zio) &&
3032		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3033			if (zio->io_error != ENOSPC)
3034				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3035			else
3036				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3037		}
3038
3039		if ((zio->io_type == ZIO_TYPE_READ ||
3040		    zio->io_type == ZIO_TYPE_FREE) &&
3041		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3042		    zio->io_error == ENXIO &&
3043		    spa_load_state(spa) == SPA_LOAD_NONE &&
3044		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3045			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3046
3047		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3048			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3049
3050		/*
3051		 * Here is a possibly good place to attempt to do
3052		 * either combinatorial reconstruction or error correction
3053		 * based on checksums.  It also might be a good place
3054		 * to send out preliminary ereports before we suspend
3055		 * processing.
3056		 */
3057	}
3058
3059	/*
3060	 * If there were logical child errors, they apply to us now.
3061	 * We defer this until now to avoid conflating logical child
3062	 * errors with errors that happened to the zio itself when
3063	 * updating vdev stats and reporting FMA events above.
3064	 */
3065	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3066
3067	if ((zio->io_error || zio->io_reexecute) &&
3068	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3069	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3070		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3071
3072	zio_gang_tree_free(&zio->io_gang_tree);
3073
3074	/*
3075	 * Godfather I/Os should never suspend.
3076	 */
3077	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3078	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3079		zio->io_reexecute = 0;
3080
3081	if (zio->io_reexecute) {
3082		/*
3083		 * This is a logical I/O that wants to reexecute.
3084		 *
3085		 * Reexecute is top-down.  When an i/o fails, if it's not
3086		 * the root, it simply notifies its parent and sticks around.
3087		 * The parent, seeing that it still has children in zio_done(),
3088		 * does the same.  This percolates all the way up to the root.
3089		 * The root i/o will reexecute or suspend the entire tree.
3090		 *
3091		 * This approach ensures that zio_reexecute() honors
3092		 * all the original i/o dependency relationships, e.g.
3093		 * parents not executing until children are ready.
3094		 */
3095		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3096
3097		zio->io_gang_leader = NULL;
3098
3099		mutex_enter(&zio->io_lock);
3100		zio->io_state[ZIO_WAIT_DONE] = 1;
3101		mutex_exit(&zio->io_lock);
3102
3103		/*
3104		 * "The Godfather" I/O monitors its children but is
3105		 * not a true parent to them. It will track them through
3106		 * the pipeline but severs its ties whenever they get into
3107		 * trouble (e.g. suspended). This allows "The Godfather"
3108		 * I/O to return status without blocking.
3109		 */
3110		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3111			zio_link_t *zl = zio->io_walk_link;
3112			pio_next = zio_walk_parents(zio);
3113
3114			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3115			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3116				zio_remove_child(pio, zio, zl);
3117				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3118			}
3119		}
3120
3121		if ((pio = zio_unique_parent(zio)) != NULL) {
3122			/*
3123			 * We're not a root i/o, so there's nothing to do
3124			 * but notify our parent.  Don't propagate errors
3125			 * upward since we haven't permanently failed yet.
3126			 */
3127			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3128			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3129			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3130		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3131			/*
3132			 * We'd fail again if we reexecuted now, so suspend
3133			 * until conditions improve (e.g. device comes online).
3134			 */
3135			zio_suspend(spa, zio);
3136		} else {
3137			/*
3138			 * Reexecution is potentially a huge amount of work.
3139			 * Hand it off to the otherwise-unused claim taskq.
3140			 */
3141#ifdef _KERNEL
3142			(void) taskq_dispatch_safe(
3143			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
3144			    (task_func_t *)zio_reexecute, zio, TQ_SLEEP,
3145			    &zio->io_task);
3146#else
3147			(void) taskq_dispatch(
3148			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
3149			    (task_func_t *)zio_reexecute, zio, TQ_SLEEP);
3150#endif
3151		}
3152		return (ZIO_PIPELINE_STOP);
3153	}
3154
3155	ASSERT(zio->io_child_count == 0);
3156	ASSERT(zio->io_reexecute == 0);
3157	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3158
3159	/*
3160	 * Report any checksum errors, since the I/O is complete.
3161	 */
3162	while (zio->io_cksum_report != NULL) {
3163		zio_cksum_report_t *zcr = zio->io_cksum_report;
3164		zio->io_cksum_report = zcr->zcr_next;
3165		zcr->zcr_next = NULL;
3166		zcr->zcr_finish(zcr, NULL);
3167		zfs_ereport_free_checksum(zcr);
3168	}
3169
3170	/*
3171	 * It is the responsibility of the done callback to ensure that this
3172	 * particular zio is no longer discoverable for adoption, and as
3173	 * such, cannot acquire any new parents.
3174	 */
3175	if (zio->io_done)
3176		zio->io_done(zio);
3177
3178	mutex_enter(&zio->io_lock);
3179	zio->io_state[ZIO_WAIT_DONE] = 1;
3180	mutex_exit(&zio->io_lock);
3181
3182	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3183		zio_link_t *zl = zio->io_walk_link;
3184		pio_next = zio_walk_parents(zio);
3185		zio_remove_child(pio, zio, zl);
3186		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3187	}
3188
3189	if (zio->io_waiter != NULL) {
3190		mutex_enter(&zio->io_lock);
3191		zio->io_executor = NULL;
3192		cv_broadcast(&zio->io_cv);
3193		mutex_exit(&zio->io_lock);
3194	} else {
3195		zio_destroy(zio);
3196	}
3197
3198	return (ZIO_PIPELINE_STOP);
3199}
3200
3201/*
3202 * ==========================================================================
3203 * I/O pipeline definition
3204 * ==========================================================================
3205 */
3206static zio_pipe_stage_t *zio_pipeline[] = {
3207	NULL,
3208	zio_read_bp_init,
3209	zio_free_bp_init,
3210	zio_issue_async,
3211	zio_write_bp_init,
3212	zio_checksum_generate,
3213	zio_nop_write,
3214	zio_ddt_read_start,
3215	zio_ddt_read_done,
3216	zio_ddt_write,
3217	zio_ddt_free,
3218	zio_gang_assemble,
3219	zio_gang_issue,
3220	zio_dva_allocate,
3221	zio_dva_free,
3222	zio_dva_claim,
3223	zio_ready,
3224	zio_vdev_io_start,
3225	zio_vdev_io_done,
3226	zio_vdev_io_assess,
3227	zio_checksum_verify,
3228	zio_done
3229};
3230
3231/* dnp is the dnode for zb1->zb_object */
3232boolean_t
3233zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3234    const zbookmark_t *zb2)
3235{
3236	uint64_t zb1nextL0, zb2thisobj;
3237
3238	ASSERT(zb1->zb_objset == zb2->zb_objset);
3239	ASSERT(zb2->zb_level == 0);
3240
3241	/*
3242	 * A bookmark in the deadlist is considered to be after
3243	 * everything else.
3244	 */
3245	if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3246		return (B_TRUE);
3247
3248	/* The objset_phys_t isn't before anything. */
3249	if (dnp == NULL)
3250		return (B_FALSE);
3251
3252	zb1nextL0 = (zb1->zb_blkid + 1) <<
3253	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3254
3255	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3256	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3257
3258	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3259		uint64_t nextobj = zb1nextL0 *
3260		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3261		return (nextobj <= zb2thisobj);
3262	}
3263
3264	if (zb1->zb_object < zb2thisobj)
3265		return (B_TRUE);
3266	if (zb1->zb_object > zb2thisobj)
3267		return (B_FALSE);
3268	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3269		return (B_FALSE);
3270	return (zb1nextL0 <= zb2->zb_blkid);
3271}
3272