zio.c revision 219089
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25#include <sys/zfs_context.h>
26#include <sys/fm/fs/zfs.h>
27#include <sys/spa.h>
28#include <sys/txg.h>
29#include <sys/spa_impl.h>
30#include <sys/vdev_impl.h>
31#include <sys/zio_impl.h>
32#include <sys/zio_compress.h>
33#include <sys/zio_checksum.h>
34#include <sys/dmu_objset.h>
35#include <sys/arc.h>
36#include <sys/ddt.h>
37
38SYSCTL_DECL(_vfs_zfs);
39SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
40static int zio_use_uma = 0;
41TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
42SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
43    "Use uma(9) for ZIO allocations");
44
45/*
46 * ==========================================================================
47 * I/O priority table
48 * ==========================================================================
49 */
50uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
51	0,	/* ZIO_PRIORITY_NOW		*/
52	0,	/* ZIO_PRIORITY_SYNC_READ	*/
53	0,	/* ZIO_PRIORITY_SYNC_WRITE	*/
54	0,	/* ZIO_PRIORITY_LOG_WRITE	*/
55	1,	/* ZIO_PRIORITY_CACHE_FILL	*/
56	1,	/* ZIO_PRIORITY_AGG		*/
57	4,	/* ZIO_PRIORITY_FREE		*/
58	4,	/* ZIO_PRIORITY_ASYNC_WRITE	*/
59	6,	/* ZIO_PRIORITY_ASYNC_READ	*/
60	10,	/* ZIO_PRIORITY_RESILVER	*/
61	20,	/* ZIO_PRIORITY_SCRUB		*/
62	2,	/* ZIO_PRIORITY_DDT_PREFETCH	*/
63};
64
65/*
66 * ==========================================================================
67 * I/O type descriptions
68 * ==========================================================================
69 */
70char *zio_type_name[ZIO_TYPES] = {
71	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
72	"zio_ioctl"
73};
74
75/*
76 * ==========================================================================
77 * I/O kmem caches
78 * ==========================================================================
79 */
80kmem_cache_t *zio_cache;
81kmem_cache_t *zio_link_cache;
82kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
84
85#ifdef _KERNEL
86extern vmem_t *zio_alloc_arena;
87#endif
88
89/*
90 * An allocating zio is one that either currently has the DVA allocate
91 * stage set or will have it later in its lifetime.
92 */
93#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
94
95boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
96
97#ifdef ZFS_DEBUG
98int zio_buf_debug_limit = 16384;
99#else
100int zio_buf_debug_limit = 0;
101#endif
102
103void
104zio_init(void)
105{
106	size_t c;
107	zio_cache = kmem_cache_create("zio_cache",
108	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
109	zio_link_cache = kmem_cache_create("zio_link_cache",
110	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
111
112	/*
113	 * For small buffers, we want a cache for each multiple of
114	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
115	 * for each quarter-power of 2.  For large buffers, we want
116	 * a cache for each multiple of PAGESIZE.
117	 */
118	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
119		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
120		size_t p2 = size;
121		size_t align = 0;
122		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
123
124		while (p2 & (p2 - 1))
125			p2 &= p2 - 1;
126
127		if (size <= 4 * SPA_MINBLOCKSIZE) {
128			align = SPA_MINBLOCKSIZE;
129		} else if (P2PHASE(size, PAGESIZE) == 0) {
130			align = PAGESIZE;
131		} else if (P2PHASE(size, p2 >> 2) == 0) {
132			align = p2 >> 2;
133		}
134
135		if (align != 0) {
136			char name[36];
137			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
138			zio_buf_cache[c] = kmem_cache_create(name, size,
139			    align, NULL, NULL, NULL, NULL, NULL, cflags);
140
141			/*
142			 * Since zio_data bufs do not appear in crash dumps, we
143			 * pass KMC_NOTOUCH so that no allocator metadata is
144			 * stored with the buffers.
145			 */
146			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
147			zio_data_buf_cache[c] = kmem_cache_create(name, size,
148			    align, NULL, NULL, NULL, NULL, NULL,
149			    cflags | KMC_NOTOUCH);
150		}
151	}
152
153	while (--c != 0) {
154		ASSERT(zio_buf_cache[c] != NULL);
155		if (zio_buf_cache[c - 1] == NULL)
156			zio_buf_cache[c - 1] = zio_buf_cache[c];
157
158		ASSERT(zio_data_buf_cache[c] != NULL);
159		if (zio_data_buf_cache[c - 1] == NULL)
160			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
161	}
162
163	zio_inject_init();
164}
165
166void
167zio_fini(void)
168{
169	size_t c;
170	kmem_cache_t *last_cache = NULL;
171	kmem_cache_t *last_data_cache = NULL;
172
173	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
174		if (zio_buf_cache[c] != last_cache) {
175			last_cache = zio_buf_cache[c];
176			kmem_cache_destroy(zio_buf_cache[c]);
177		}
178		zio_buf_cache[c] = NULL;
179
180		if (zio_data_buf_cache[c] != last_data_cache) {
181			last_data_cache = zio_data_buf_cache[c];
182			kmem_cache_destroy(zio_data_buf_cache[c]);
183		}
184		zio_data_buf_cache[c] = NULL;
185	}
186
187	kmem_cache_destroy(zio_link_cache);
188	kmem_cache_destroy(zio_cache);
189
190	zio_inject_fini();
191}
192
193/*
194 * ==========================================================================
195 * Allocate and free I/O buffers
196 * ==========================================================================
197 */
198
199/*
200 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
201 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
202 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
203 * excess / transient data in-core during a crashdump.
204 */
205void *
206zio_buf_alloc(size_t size)
207{
208	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
209
210	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
211
212	if (zio_use_uma)
213		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
214	else
215		return (kmem_alloc(size, KM_SLEEP));
216}
217
218/*
219 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
220 * crashdump if the kernel panics.  This exists so that we will limit the amount
221 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
222 * of kernel heap dumped to disk when the kernel panics)
223 */
224void *
225zio_data_buf_alloc(size_t size)
226{
227	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
228
229	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
230
231	if (zio_use_uma)
232		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
233	else
234		return (kmem_alloc(size, KM_SLEEP));
235}
236
237void
238zio_buf_free(void *buf, size_t size)
239{
240	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
241
242	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
243
244	if (zio_use_uma)
245		kmem_cache_free(zio_buf_cache[c], buf);
246	else
247		kmem_free(buf, size);
248}
249
250void
251zio_data_buf_free(void *buf, size_t size)
252{
253	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
254
255	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
256
257	if (zio_use_uma)
258		kmem_cache_free(zio_data_buf_cache[c], buf);
259	else
260		kmem_free(buf, size);
261}
262
263/*
264 * ==========================================================================
265 * Push and pop I/O transform buffers
266 * ==========================================================================
267 */
268static void
269zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
270	zio_transform_func_t *transform)
271{
272	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
273
274	zt->zt_orig_data = zio->io_data;
275	zt->zt_orig_size = zio->io_size;
276	zt->zt_bufsize = bufsize;
277	zt->zt_transform = transform;
278
279	zt->zt_next = zio->io_transform_stack;
280	zio->io_transform_stack = zt;
281
282	zio->io_data = data;
283	zio->io_size = size;
284}
285
286static void
287zio_pop_transforms(zio_t *zio)
288{
289	zio_transform_t *zt;
290
291	while ((zt = zio->io_transform_stack) != NULL) {
292		if (zt->zt_transform != NULL)
293			zt->zt_transform(zio,
294			    zt->zt_orig_data, zt->zt_orig_size);
295
296		if (zt->zt_bufsize != 0)
297			zio_buf_free(zio->io_data, zt->zt_bufsize);
298
299		zio->io_data = zt->zt_orig_data;
300		zio->io_size = zt->zt_orig_size;
301		zio->io_transform_stack = zt->zt_next;
302
303		kmem_free(zt, sizeof (zio_transform_t));
304	}
305}
306
307/*
308 * ==========================================================================
309 * I/O transform callbacks for subblocks and decompression
310 * ==========================================================================
311 */
312static void
313zio_subblock(zio_t *zio, void *data, uint64_t size)
314{
315	ASSERT(zio->io_size > size);
316
317	if (zio->io_type == ZIO_TYPE_READ)
318		bcopy(zio->io_data, data, size);
319}
320
321static void
322zio_decompress(zio_t *zio, void *data, uint64_t size)
323{
324	if (zio->io_error == 0 &&
325	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
326	    zio->io_data, data, zio->io_size, size) != 0)
327		zio->io_error = EIO;
328}
329
330/*
331 * ==========================================================================
332 * I/O parent/child relationships and pipeline interlocks
333 * ==========================================================================
334 */
335/*
336 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
337 *        continue calling these functions until they return NULL.
338 *        Otherwise, the next caller will pick up the list walk in
339 *        some indeterminate state.  (Otherwise every caller would
340 *        have to pass in a cookie to keep the state represented by
341 *        io_walk_link, which gets annoying.)
342 */
343zio_t *
344zio_walk_parents(zio_t *cio)
345{
346	zio_link_t *zl = cio->io_walk_link;
347	list_t *pl = &cio->io_parent_list;
348
349	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
350	cio->io_walk_link = zl;
351
352	if (zl == NULL)
353		return (NULL);
354
355	ASSERT(zl->zl_child == cio);
356	return (zl->zl_parent);
357}
358
359zio_t *
360zio_walk_children(zio_t *pio)
361{
362	zio_link_t *zl = pio->io_walk_link;
363	list_t *cl = &pio->io_child_list;
364
365	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
366	pio->io_walk_link = zl;
367
368	if (zl == NULL)
369		return (NULL);
370
371	ASSERT(zl->zl_parent == pio);
372	return (zl->zl_child);
373}
374
375zio_t *
376zio_unique_parent(zio_t *cio)
377{
378	zio_t *pio = zio_walk_parents(cio);
379
380	VERIFY(zio_walk_parents(cio) == NULL);
381	return (pio);
382}
383
384void
385zio_add_child(zio_t *pio, zio_t *cio)
386{
387	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
388
389	/*
390	 * Logical I/Os can have logical, gang, or vdev children.
391	 * Gang I/Os can have gang or vdev children.
392	 * Vdev I/Os can only have vdev children.
393	 * The following ASSERT captures all of these constraints.
394	 */
395	ASSERT(cio->io_child_type <= pio->io_child_type);
396
397	zl->zl_parent = pio;
398	zl->zl_child = cio;
399
400	mutex_enter(&cio->io_lock);
401	mutex_enter(&pio->io_lock);
402
403	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
404
405	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
406		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
407
408	list_insert_head(&pio->io_child_list, zl);
409	list_insert_head(&cio->io_parent_list, zl);
410
411	pio->io_child_count++;
412	cio->io_parent_count++;
413
414	mutex_exit(&pio->io_lock);
415	mutex_exit(&cio->io_lock);
416}
417
418static void
419zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
420{
421	ASSERT(zl->zl_parent == pio);
422	ASSERT(zl->zl_child == cio);
423
424	mutex_enter(&cio->io_lock);
425	mutex_enter(&pio->io_lock);
426
427	list_remove(&pio->io_child_list, zl);
428	list_remove(&cio->io_parent_list, zl);
429
430	pio->io_child_count--;
431	cio->io_parent_count--;
432
433	mutex_exit(&pio->io_lock);
434	mutex_exit(&cio->io_lock);
435
436	kmem_cache_free(zio_link_cache, zl);
437}
438
439static boolean_t
440zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
441{
442	uint64_t *countp = &zio->io_children[child][wait];
443	boolean_t waiting = B_FALSE;
444
445	mutex_enter(&zio->io_lock);
446	ASSERT(zio->io_stall == NULL);
447	if (*countp != 0) {
448		zio->io_stage >>= 1;
449		zio->io_stall = countp;
450		waiting = B_TRUE;
451	}
452	mutex_exit(&zio->io_lock);
453
454	return (waiting);
455}
456
457static void
458zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
459{
460	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
461	int *errorp = &pio->io_child_error[zio->io_child_type];
462
463	mutex_enter(&pio->io_lock);
464	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
465		*errorp = zio_worst_error(*errorp, zio->io_error);
466	pio->io_reexecute |= zio->io_reexecute;
467	ASSERT3U(*countp, >, 0);
468	if (--*countp == 0 && pio->io_stall == countp) {
469		pio->io_stall = NULL;
470		mutex_exit(&pio->io_lock);
471		zio_execute(pio);
472	} else {
473		mutex_exit(&pio->io_lock);
474	}
475}
476
477static void
478zio_inherit_child_errors(zio_t *zio, enum zio_child c)
479{
480	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
481		zio->io_error = zio->io_child_error[c];
482}
483
484/*
485 * ==========================================================================
486 * Create the various types of I/O (read, write, free, etc)
487 * ==========================================================================
488 */
489static zio_t *
490zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
491    void *data, uint64_t size, zio_done_func_t *done, void *private,
492    zio_type_t type, int priority, enum zio_flag flags,
493    vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
494    enum zio_stage stage, enum zio_stage pipeline)
495{
496	zio_t *zio;
497
498	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
499	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
500	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
501
502	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
503	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
504	ASSERT(vd || stage == ZIO_STAGE_OPEN);
505
506	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
507	bzero(zio, sizeof (zio_t));
508
509	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
510	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
511
512	list_create(&zio->io_parent_list, sizeof (zio_link_t),
513	    offsetof(zio_link_t, zl_parent_node));
514	list_create(&zio->io_child_list, sizeof (zio_link_t),
515	    offsetof(zio_link_t, zl_child_node));
516
517	if (vd != NULL)
518		zio->io_child_type = ZIO_CHILD_VDEV;
519	else if (flags & ZIO_FLAG_GANG_CHILD)
520		zio->io_child_type = ZIO_CHILD_GANG;
521	else if (flags & ZIO_FLAG_DDT_CHILD)
522		zio->io_child_type = ZIO_CHILD_DDT;
523	else
524		zio->io_child_type = ZIO_CHILD_LOGICAL;
525
526	if (bp != NULL) {
527		zio->io_bp = (blkptr_t *)bp;
528		zio->io_bp_copy = *bp;
529		zio->io_bp_orig = *bp;
530		if (type != ZIO_TYPE_WRITE ||
531		    zio->io_child_type == ZIO_CHILD_DDT)
532			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
533		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
534			zio->io_logical = zio;
535		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
536			pipeline |= ZIO_GANG_STAGES;
537	}
538
539	zio->io_spa = spa;
540	zio->io_txg = txg;
541	zio->io_done = done;
542	zio->io_private = private;
543	zio->io_type = type;
544	zio->io_priority = priority;
545	zio->io_vd = vd;
546	zio->io_offset = offset;
547	zio->io_orig_data = zio->io_data = data;
548	zio->io_orig_size = zio->io_size = size;
549	zio->io_orig_flags = zio->io_flags = flags;
550	zio->io_orig_stage = zio->io_stage = stage;
551	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
552
553	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
554	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
555
556	if (zb != NULL)
557		zio->io_bookmark = *zb;
558
559	if (pio != NULL) {
560		if (zio->io_logical == NULL)
561			zio->io_logical = pio->io_logical;
562		if (zio->io_child_type == ZIO_CHILD_GANG)
563			zio->io_gang_leader = pio->io_gang_leader;
564		zio_add_child(pio, zio);
565	}
566
567	return (zio);
568}
569
570static void
571zio_destroy(zio_t *zio)
572{
573	list_destroy(&zio->io_parent_list);
574	list_destroy(&zio->io_child_list);
575	mutex_destroy(&zio->io_lock);
576	cv_destroy(&zio->io_cv);
577	kmem_cache_free(zio_cache, zio);
578}
579
580zio_t *
581zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
582    void *private, enum zio_flag flags)
583{
584	zio_t *zio;
585
586	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
587	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
588	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
589
590	return (zio);
591}
592
593zio_t *
594zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
595{
596	return (zio_null(NULL, spa, NULL, done, private, flags));
597}
598
599zio_t *
600zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
601    void *data, uint64_t size, zio_done_func_t *done, void *private,
602    int priority, enum zio_flag flags, const zbookmark_t *zb)
603{
604	zio_t *zio;
605
606	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
607	    data, size, done, private,
608	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
609	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
610	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
611
612	return (zio);
613}
614
615zio_t *
616zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
617    void *data, uint64_t size, const zio_prop_t *zp,
618    zio_done_func_t *ready, zio_done_func_t *done, void *private,
619    int priority, enum zio_flag flags, const zbookmark_t *zb)
620{
621	zio_t *zio;
622
623	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
624	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
625	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
626	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
627	    zp->zp_type < DMU_OT_NUMTYPES &&
628	    zp->zp_level < 32 &&
629	    zp->zp_copies > 0 &&
630	    zp->zp_copies <= spa_max_replication(spa) &&
631	    zp->zp_dedup <= 1 &&
632	    zp->zp_dedup_verify <= 1);
633
634	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
635	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
636	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
637	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
638
639	zio->io_ready = ready;
640	zio->io_prop = *zp;
641
642	return (zio);
643}
644
645zio_t *
646zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
647    uint64_t size, zio_done_func_t *done, void *private, int priority,
648    enum zio_flag flags, zbookmark_t *zb)
649{
650	zio_t *zio;
651
652	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
653	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
654	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
655
656	return (zio);
657}
658
659void
660zio_write_override(zio_t *zio, blkptr_t *bp, int copies)
661{
662	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
663	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
664	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
665	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
666
667	zio->io_prop.zp_copies = copies;
668	zio->io_bp_override = bp;
669}
670
671void
672zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
673{
674	bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
675}
676
677zio_t *
678zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
679    enum zio_flag flags)
680{
681	zio_t *zio;
682
683	dprintf_bp(bp, "freeing in txg %llu, pass %u",
684	    (longlong_t)txg, spa->spa_sync_pass);
685
686	ASSERT(!BP_IS_HOLE(bp));
687	ASSERT(spa_syncing_txg(spa) == txg);
688	ASSERT(spa_sync_pass(spa) <= SYNC_PASS_DEFERRED_FREE);
689
690	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
691	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
692	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
693
694	return (zio);
695}
696
697zio_t *
698zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
699    zio_done_func_t *done, void *private, enum zio_flag flags)
700{
701	zio_t *zio;
702
703	/*
704	 * A claim is an allocation of a specific block.  Claims are needed
705	 * to support immediate writes in the intent log.  The issue is that
706	 * immediate writes contain committed data, but in a txg that was
707	 * *not* committed.  Upon opening the pool after an unclean shutdown,
708	 * the intent log claims all blocks that contain immediate write data
709	 * so that the SPA knows they're in use.
710	 *
711	 * All claims *must* be resolved in the first txg -- before the SPA
712	 * starts allocating blocks -- so that nothing is allocated twice.
713	 * If txg == 0 we just verify that the block is claimable.
714	 */
715	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
716	ASSERT(txg == spa_first_txg(spa) || txg == 0);
717	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
718
719	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
720	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
721	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
722
723	return (zio);
724}
725
726zio_t *
727zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
728    zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
729{
730	zio_t *zio;
731	int c;
732
733	if (vd->vdev_children == 0) {
734		zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
735		    ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
736		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
737
738		zio->io_cmd = cmd;
739	} else {
740		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
741
742		for (c = 0; c < vd->vdev_children; c++)
743			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
744			    done, private, priority, flags));
745	}
746
747	return (zio);
748}
749
750zio_t *
751zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
752    void *data, int checksum, zio_done_func_t *done, void *private,
753    int priority, enum zio_flag flags, boolean_t labels)
754{
755	zio_t *zio;
756
757	ASSERT(vd->vdev_children == 0);
758	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
759	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
760	ASSERT3U(offset + size, <=, vd->vdev_psize);
761
762	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
763	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
764	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
765
766	zio->io_prop.zp_checksum = checksum;
767
768	return (zio);
769}
770
771zio_t *
772zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
773    void *data, int checksum, zio_done_func_t *done, void *private,
774    int priority, enum zio_flag flags, boolean_t labels)
775{
776	zio_t *zio;
777
778	ASSERT(vd->vdev_children == 0);
779	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
780	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
781	ASSERT3U(offset + size, <=, vd->vdev_psize);
782
783	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
784	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
785	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
786
787	zio->io_prop.zp_checksum = checksum;
788
789	if (zio_checksum_table[checksum].ci_eck) {
790		/*
791		 * zec checksums are necessarily destructive -- they modify
792		 * the end of the write buffer to hold the verifier/checksum.
793		 * Therefore, we must make a local copy in case the data is
794		 * being written to multiple places in parallel.
795		 */
796		void *wbuf = zio_buf_alloc(size);
797		bcopy(data, wbuf, size);
798		zio_push_transform(zio, wbuf, size, size, NULL);
799	}
800
801	return (zio);
802}
803
804/*
805 * Create a child I/O to do some work for us.
806 */
807zio_t *
808zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
809	void *data, uint64_t size, int type, int priority, enum zio_flag flags,
810	zio_done_func_t *done, void *private)
811{
812	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
813	zio_t *zio;
814
815	ASSERT(vd->vdev_parent ==
816	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
817
818	if (type == ZIO_TYPE_READ && bp != NULL) {
819		/*
820		 * If we have the bp, then the child should perform the
821		 * checksum and the parent need not.  This pushes error
822		 * detection as close to the leaves as possible and
823		 * eliminates redundant checksums in the interior nodes.
824		 */
825		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
826		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
827	}
828
829	if (vd->vdev_children == 0)
830		offset += VDEV_LABEL_START_SIZE;
831
832	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
833
834	/*
835	 * If we've decided to do a repair, the write is not speculative --
836	 * even if the original read was.
837	 */
838	if (flags & ZIO_FLAG_IO_REPAIR)
839		flags &= ~ZIO_FLAG_SPECULATIVE;
840
841	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
842	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
843	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
844
845	return (zio);
846}
847
848zio_t *
849zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
850	int type, int priority, enum zio_flag flags,
851	zio_done_func_t *done, void *private)
852{
853	zio_t *zio;
854
855	ASSERT(vd->vdev_ops->vdev_op_leaf);
856
857	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
858	    data, size, done, private, type, priority,
859	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
860	    vd, offset, NULL,
861	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
862
863	return (zio);
864}
865
866void
867zio_flush(zio_t *zio, vdev_t *vd)
868{
869	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
870	    NULL, NULL, ZIO_PRIORITY_NOW,
871	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
872}
873
874void
875zio_shrink(zio_t *zio, uint64_t size)
876{
877	ASSERT(zio->io_executor == NULL);
878	ASSERT(zio->io_orig_size == zio->io_size);
879	ASSERT(size <= zio->io_size);
880
881	/*
882	 * We don't shrink for raidz because of problems with the
883	 * reconstruction when reading back less than the block size.
884	 * Note, BP_IS_RAIDZ() assumes no compression.
885	 */
886	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
887	if (!BP_IS_RAIDZ(zio->io_bp))
888		zio->io_orig_size = zio->io_size = size;
889}
890
891/*
892 * ==========================================================================
893 * Prepare to read and write logical blocks
894 * ==========================================================================
895 */
896
897static int
898zio_read_bp_init(zio_t *zio)
899{
900	blkptr_t *bp = zio->io_bp;
901
902	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
903	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
904	    !(zio->io_flags & ZIO_FLAG_RAW)) {
905		uint64_t psize = BP_GET_PSIZE(bp);
906		void *cbuf = zio_buf_alloc(psize);
907
908		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
909	}
910
911	if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0)
912		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
913
914	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
915		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
916
917	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
918		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
919
920	return (ZIO_PIPELINE_CONTINUE);
921}
922
923static int
924zio_write_bp_init(zio_t *zio)
925{
926	spa_t *spa = zio->io_spa;
927	zio_prop_t *zp = &zio->io_prop;
928	enum zio_compress compress = zp->zp_compress;
929	blkptr_t *bp = zio->io_bp;
930	uint64_t lsize = zio->io_size;
931	uint64_t psize = lsize;
932	int pass = 1;
933
934	/*
935	 * If our children haven't all reached the ready stage,
936	 * wait for them and then repeat this pipeline stage.
937	 */
938	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
939	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
940		return (ZIO_PIPELINE_STOP);
941
942	if (!IO_IS_ALLOCATING(zio))
943		return (ZIO_PIPELINE_CONTINUE);
944
945	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
946
947	if (zio->io_bp_override) {
948		ASSERT(bp->blk_birth != zio->io_txg);
949		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
950
951		*bp = *zio->io_bp_override;
952		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
953
954		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
955			return (ZIO_PIPELINE_CONTINUE);
956
957		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
958		    zp->zp_dedup_verify);
959
960		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
961			BP_SET_DEDUP(bp, 1);
962			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
963			return (ZIO_PIPELINE_CONTINUE);
964		}
965		zio->io_bp_override = NULL;
966		BP_ZERO(bp);
967	}
968
969	if (bp->blk_birth == zio->io_txg) {
970		/*
971		 * We're rewriting an existing block, which means we're
972		 * working on behalf of spa_sync().  For spa_sync() to
973		 * converge, it must eventually be the case that we don't
974		 * have to allocate new blocks.  But compression changes
975		 * the blocksize, which forces a reallocate, and makes
976		 * convergence take longer.  Therefore, after the first
977		 * few passes, stop compressing to ensure convergence.
978		 */
979		pass = spa_sync_pass(spa);
980
981		ASSERT(zio->io_txg == spa_syncing_txg(spa));
982		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
983		ASSERT(!BP_GET_DEDUP(bp));
984
985		if (pass > SYNC_PASS_DONT_COMPRESS)
986			compress = ZIO_COMPRESS_OFF;
987
988		/* Make sure someone doesn't change their mind on overwrites */
989		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
990		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
991	}
992
993	if (compress != ZIO_COMPRESS_OFF) {
994		void *cbuf = zio_buf_alloc(lsize);
995		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
996		if (psize == 0 || psize == lsize) {
997			compress = ZIO_COMPRESS_OFF;
998			zio_buf_free(cbuf, lsize);
999		} else {
1000			ASSERT(psize < lsize);
1001			zio_push_transform(zio, cbuf, psize, lsize, NULL);
1002		}
1003	}
1004
1005	/*
1006	 * The final pass of spa_sync() must be all rewrites, but the first
1007	 * few passes offer a trade-off: allocating blocks defers convergence,
1008	 * but newly allocated blocks are sequential, so they can be written
1009	 * to disk faster.  Therefore, we allow the first few passes of
1010	 * spa_sync() to allocate new blocks, but force rewrites after that.
1011	 * There should only be a handful of blocks after pass 1 in any case.
1012	 */
1013	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1014	    pass > SYNC_PASS_REWRITE) {
1015		ASSERT(psize != 0);
1016		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1017		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1018		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1019	} else {
1020		BP_ZERO(bp);
1021		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1022	}
1023
1024	if (psize == 0) {
1025		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1026	} else {
1027		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1028		BP_SET_LSIZE(bp, lsize);
1029		BP_SET_PSIZE(bp, psize);
1030		BP_SET_COMPRESS(bp, compress);
1031		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1032		BP_SET_TYPE(bp, zp->zp_type);
1033		BP_SET_LEVEL(bp, zp->zp_level);
1034		BP_SET_DEDUP(bp, zp->zp_dedup);
1035		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1036		if (zp->zp_dedup) {
1037			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1038			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1039			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1040		}
1041	}
1042
1043	return (ZIO_PIPELINE_CONTINUE);
1044}
1045
1046static int
1047zio_free_bp_init(zio_t *zio)
1048{
1049	blkptr_t *bp = zio->io_bp;
1050
1051	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1052		if (BP_GET_DEDUP(bp))
1053			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1054	}
1055
1056	return (ZIO_PIPELINE_CONTINUE);
1057}
1058
1059/*
1060 * ==========================================================================
1061 * Execute the I/O pipeline
1062 * ==========================================================================
1063 */
1064
1065static void
1066zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q, boolean_t cutinline)
1067{
1068	spa_t *spa = zio->io_spa;
1069	zio_type_t t = zio->io_type;
1070	int flags = TQ_SLEEP | (cutinline ? TQ_FRONT : 0);
1071#ifdef _KERNEL
1072	struct ostask *task;
1073#endif
1074
1075	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1076
1077#ifdef _KERNEL
1078	if (q == ZIO_TASKQ_ISSUE)
1079		task = &zio->io_task_issue;
1080	else /* if (q == ZIO_TASKQ_INTERRUPT) */
1081		task = &zio->io_task_interrupt;
1082#endif
1083
1084	/*
1085	 * If we're a config writer or a probe, the normal issue and
1086	 * interrupt threads may all be blocked waiting for the config lock.
1087	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1088	 */
1089	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1090		t = ZIO_TYPE_NULL;
1091
1092	/*
1093	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1094	 */
1095	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1096		t = ZIO_TYPE_NULL;
1097
1098	/*
1099	 * If this is a high priority I/O, then use the high priority taskq.
1100	 */
1101	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1102	    spa->spa_zio_taskq[t][q + 1] != NULL)
1103		q++;
1104
1105	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1106#ifdef _KERNEL
1107	(void) taskq_dispatch_safe(spa->spa_zio_taskq[t][q],
1108	    (task_func_t *)zio_execute, zio, flags, task);
1109#else
1110	(void) taskq_dispatch(spa->spa_zio_taskq[t][q],
1111	    (task_func_t *)zio_execute, zio, flags);
1112#endif
1113}
1114
1115static boolean_t
1116zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
1117{
1118	kthread_t *executor = zio->io_executor;
1119	spa_t *spa = zio->io_spa;
1120
1121	for (zio_type_t t = 0; t < ZIO_TYPES; t++)
1122		if (taskq_member(spa->spa_zio_taskq[t][q], executor))
1123			return (B_TRUE);
1124
1125	return (B_FALSE);
1126}
1127
1128static int
1129zio_issue_async(zio_t *zio)
1130{
1131	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1132
1133	return (ZIO_PIPELINE_STOP);
1134}
1135
1136void
1137zio_interrupt(zio_t *zio)
1138{
1139	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1140}
1141
1142/*
1143 * Execute the I/O pipeline until one of the following occurs:
1144 * (1) the I/O completes; (2) the pipeline stalls waiting for
1145 * dependent child I/Os; (3) the I/O issues, so we're waiting
1146 * for an I/O completion interrupt; (4) the I/O is delegated by
1147 * vdev-level caching or aggregation; (5) the I/O is deferred
1148 * due to vdev-level queueing; (6) the I/O is handed off to
1149 * another thread.  In all cases, the pipeline stops whenever
1150 * there's no CPU work; it never burns a thread in cv_wait().
1151 *
1152 * There's no locking on io_stage because there's no legitimate way
1153 * for multiple threads to be attempting to process the same I/O.
1154 */
1155static zio_pipe_stage_t *zio_pipeline[];
1156
1157void
1158zio_execute(zio_t *zio)
1159{
1160	zio->io_executor = curthread;
1161
1162	while (zio->io_stage < ZIO_STAGE_DONE) {
1163		enum zio_stage pipeline = zio->io_pipeline;
1164		enum zio_stage stage = zio->io_stage;
1165		int rv;
1166
1167		ASSERT(!MUTEX_HELD(&zio->io_lock));
1168		ASSERT(ISP2(stage));
1169		ASSERT(zio->io_stall == NULL);
1170
1171		do {
1172			stage <<= 1;
1173		} while ((stage & pipeline) == 0);
1174
1175		ASSERT(stage <= ZIO_STAGE_DONE);
1176
1177		/*
1178		 * If we are in interrupt context and this pipeline stage
1179		 * will grab a config lock that is held across I/O,
1180		 * or may wait for an I/O that needs an interrupt thread
1181		 * to complete, issue async to avoid deadlock.
1182		 *
1183		 * For VDEV_IO_START, we cut in line so that the io will
1184		 * be sent to disk promptly.
1185		 */
1186		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1187		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1188			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1189			    zio_requeue_io_start_cut_in_line : B_FALSE;
1190			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1191			return;
1192		}
1193
1194		zio->io_stage = stage;
1195		rv = zio_pipeline[highbit(stage) - 1](zio);
1196
1197		if (rv == ZIO_PIPELINE_STOP)
1198			return;
1199
1200		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1201	}
1202}
1203
1204/*
1205 * ==========================================================================
1206 * Initiate I/O, either sync or async
1207 * ==========================================================================
1208 */
1209int
1210zio_wait(zio_t *zio)
1211{
1212	int error;
1213
1214	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1215	ASSERT(zio->io_executor == NULL);
1216
1217	zio->io_waiter = curthread;
1218
1219	zio_execute(zio);
1220
1221	mutex_enter(&zio->io_lock);
1222	while (zio->io_executor != NULL)
1223		cv_wait(&zio->io_cv, &zio->io_lock);
1224	mutex_exit(&zio->io_lock);
1225
1226	error = zio->io_error;
1227	zio_destroy(zio);
1228
1229	return (error);
1230}
1231
1232void
1233zio_nowait(zio_t *zio)
1234{
1235	ASSERT(zio->io_executor == NULL);
1236
1237	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1238	    zio_unique_parent(zio) == NULL) {
1239		/*
1240		 * This is a logical async I/O with no parent to wait for it.
1241		 * We add it to the spa_async_root_zio "Godfather" I/O which
1242		 * will ensure they complete prior to unloading the pool.
1243		 */
1244		spa_t *spa = zio->io_spa;
1245
1246		zio_add_child(spa->spa_async_zio_root, zio);
1247	}
1248
1249	zio_execute(zio);
1250}
1251
1252/*
1253 * ==========================================================================
1254 * Reexecute or suspend/resume failed I/O
1255 * ==========================================================================
1256 */
1257
1258static void
1259zio_reexecute(zio_t *pio)
1260{
1261	zio_t *cio, *cio_next;
1262
1263	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1264	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1265	ASSERT(pio->io_gang_leader == NULL);
1266	ASSERT(pio->io_gang_tree == NULL);
1267
1268	pio->io_flags = pio->io_orig_flags;
1269	pio->io_stage = pio->io_orig_stage;
1270	pio->io_pipeline = pio->io_orig_pipeline;
1271	pio->io_reexecute = 0;
1272	pio->io_error = 0;
1273	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1274		pio->io_state[w] = 0;
1275	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1276		pio->io_child_error[c] = 0;
1277
1278	if (IO_IS_ALLOCATING(pio))
1279		BP_ZERO(pio->io_bp);
1280
1281	/*
1282	 * As we reexecute pio's children, new children could be created.
1283	 * New children go to the head of pio's io_child_list, however,
1284	 * so we will (correctly) not reexecute them.  The key is that
1285	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1286	 * cannot be affected by any side effects of reexecuting 'cio'.
1287	 */
1288	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1289		cio_next = zio_walk_children(pio);
1290		mutex_enter(&pio->io_lock);
1291		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1292			pio->io_children[cio->io_child_type][w]++;
1293		mutex_exit(&pio->io_lock);
1294		zio_reexecute(cio);
1295	}
1296
1297	/*
1298	 * Now that all children have been reexecuted, execute the parent.
1299	 * We don't reexecute "The Godfather" I/O here as it's the
1300	 * responsibility of the caller to wait on him.
1301	 */
1302	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1303		zio_execute(pio);
1304}
1305
1306void
1307zio_suspend(spa_t *spa, zio_t *zio)
1308{
1309	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1310		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1311		    "failure and the failure mode property for this pool "
1312		    "is set to panic.", spa_name(spa));
1313
1314	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1315
1316	mutex_enter(&spa->spa_suspend_lock);
1317
1318	if (spa->spa_suspend_zio_root == NULL)
1319		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1320		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1321		    ZIO_FLAG_GODFATHER);
1322
1323	spa->spa_suspended = B_TRUE;
1324
1325	if (zio != NULL) {
1326		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1327		ASSERT(zio != spa->spa_suspend_zio_root);
1328		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1329		ASSERT(zio_unique_parent(zio) == NULL);
1330		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1331		zio_add_child(spa->spa_suspend_zio_root, zio);
1332	}
1333
1334	mutex_exit(&spa->spa_suspend_lock);
1335}
1336
1337int
1338zio_resume(spa_t *spa)
1339{
1340	zio_t *pio;
1341
1342	/*
1343	 * Reexecute all previously suspended i/o.
1344	 */
1345	mutex_enter(&spa->spa_suspend_lock);
1346	spa->spa_suspended = B_FALSE;
1347	cv_broadcast(&spa->spa_suspend_cv);
1348	pio = spa->spa_suspend_zio_root;
1349	spa->spa_suspend_zio_root = NULL;
1350	mutex_exit(&spa->spa_suspend_lock);
1351
1352	if (pio == NULL)
1353		return (0);
1354
1355	zio_reexecute(pio);
1356	return (zio_wait(pio));
1357}
1358
1359void
1360zio_resume_wait(spa_t *spa)
1361{
1362	mutex_enter(&spa->spa_suspend_lock);
1363	while (spa_suspended(spa))
1364		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1365	mutex_exit(&spa->spa_suspend_lock);
1366}
1367
1368/*
1369 * ==========================================================================
1370 * Gang blocks.
1371 *
1372 * A gang block is a collection of small blocks that looks to the DMU
1373 * like one large block.  When zio_dva_allocate() cannot find a block
1374 * of the requested size, due to either severe fragmentation or the pool
1375 * being nearly full, it calls zio_write_gang_block() to construct the
1376 * block from smaller fragments.
1377 *
1378 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1379 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1380 * an indirect block: it's an array of block pointers.  It consumes
1381 * only one sector and hence is allocatable regardless of fragmentation.
1382 * The gang header's bps point to its gang members, which hold the data.
1383 *
1384 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1385 * as the verifier to ensure uniqueness of the SHA256 checksum.
1386 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1387 * not the gang header.  This ensures that data block signatures (needed for
1388 * deduplication) are independent of how the block is physically stored.
1389 *
1390 * Gang blocks can be nested: a gang member may itself be a gang block.
1391 * Thus every gang block is a tree in which root and all interior nodes are
1392 * gang headers, and the leaves are normal blocks that contain user data.
1393 * The root of the gang tree is called the gang leader.
1394 *
1395 * To perform any operation (read, rewrite, free, claim) on a gang block,
1396 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1397 * in the io_gang_tree field of the original logical i/o by recursively
1398 * reading the gang leader and all gang headers below it.  This yields
1399 * an in-core tree containing the contents of every gang header and the
1400 * bps for every constituent of the gang block.
1401 *
1402 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1403 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1404 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1405 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1406 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1407 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1408 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1409 * of the gang header plus zio_checksum_compute() of the data to update the
1410 * gang header's blk_cksum as described above.
1411 *
1412 * The two-phase assemble/issue model solves the problem of partial failure --
1413 * what if you'd freed part of a gang block but then couldn't read the
1414 * gang header for another part?  Assembling the entire gang tree first
1415 * ensures that all the necessary gang header I/O has succeeded before
1416 * starting the actual work of free, claim, or write.  Once the gang tree
1417 * is assembled, free and claim are in-memory operations that cannot fail.
1418 *
1419 * In the event that a gang write fails, zio_dva_unallocate() walks the
1420 * gang tree to immediately free (i.e. insert back into the space map)
1421 * everything we've allocated.  This ensures that we don't get ENOSPC
1422 * errors during repeated suspend/resume cycles due to a flaky device.
1423 *
1424 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1425 * the gang tree, we won't modify the block, so we can safely defer the free
1426 * (knowing that the block is still intact).  If we *can* assemble the gang
1427 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1428 * each constituent bp and we can allocate a new block on the next sync pass.
1429 *
1430 * In all cases, the gang tree allows complete recovery from partial failure.
1431 * ==========================================================================
1432 */
1433
1434static zio_t *
1435zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1436{
1437	if (gn != NULL)
1438		return (pio);
1439
1440	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1441	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1442	    &pio->io_bookmark));
1443}
1444
1445zio_t *
1446zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1447{
1448	zio_t *zio;
1449
1450	if (gn != NULL) {
1451		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1452		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1453		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1454		/*
1455		 * As we rewrite each gang header, the pipeline will compute
1456		 * a new gang block header checksum for it; but no one will
1457		 * compute a new data checksum, so we do that here.  The one
1458		 * exception is the gang leader: the pipeline already computed
1459		 * its data checksum because that stage precedes gang assembly.
1460		 * (Presently, nothing actually uses interior data checksums;
1461		 * this is just good hygiene.)
1462		 */
1463		if (gn != pio->io_gang_leader->io_gang_tree) {
1464			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1465			    data, BP_GET_PSIZE(bp));
1466		}
1467		/*
1468		 * If we are here to damage data for testing purposes,
1469		 * leave the GBH alone so that we can detect the damage.
1470		 */
1471		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1472			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1473	} else {
1474		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1475		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1476		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1477	}
1478
1479	return (zio);
1480}
1481
1482/* ARGSUSED */
1483zio_t *
1484zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1485{
1486	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1487	    ZIO_GANG_CHILD_FLAGS(pio)));
1488}
1489
1490/* ARGSUSED */
1491zio_t *
1492zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1493{
1494	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1495	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1496}
1497
1498static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1499	NULL,
1500	zio_read_gang,
1501	zio_rewrite_gang,
1502	zio_free_gang,
1503	zio_claim_gang,
1504	NULL
1505};
1506
1507static void zio_gang_tree_assemble_done(zio_t *zio);
1508
1509static zio_gang_node_t *
1510zio_gang_node_alloc(zio_gang_node_t **gnpp)
1511{
1512	zio_gang_node_t *gn;
1513
1514	ASSERT(*gnpp == NULL);
1515
1516	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1517	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1518	*gnpp = gn;
1519
1520	return (gn);
1521}
1522
1523static void
1524zio_gang_node_free(zio_gang_node_t **gnpp)
1525{
1526	zio_gang_node_t *gn = *gnpp;
1527
1528	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1529		ASSERT(gn->gn_child[g] == NULL);
1530
1531	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1532	kmem_free(gn, sizeof (*gn));
1533	*gnpp = NULL;
1534}
1535
1536static void
1537zio_gang_tree_free(zio_gang_node_t **gnpp)
1538{
1539	zio_gang_node_t *gn = *gnpp;
1540
1541	if (gn == NULL)
1542		return;
1543
1544	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1545		zio_gang_tree_free(&gn->gn_child[g]);
1546
1547	zio_gang_node_free(gnpp);
1548}
1549
1550static void
1551zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1552{
1553	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1554
1555	ASSERT(gio->io_gang_leader == gio);
1556	ASSERT(BP_IS_GANG(bp));
1557
1558	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1559	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1560	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1561}
1562
1563static void
1564zio_gang_tree_assemble_done(zio_t *zio)
1565{
1566	zio_t *gio = zio->io_gang_leader;
1567	zio_gang_node_t *gn = zio->io_private;
1568	blkptr_t *bp = zio->io_bp;
1569
1570	ASSERT(gio == zio_unique_parent(zio));
1571	ASSERT(zio->io_child_count == 0);
1572
1573	if (zio->io_error)
1574		return;
1575
1576	if (BP_SHOULD_BYTESWAP(bp))
1577		byteswap_uint64_array(zio->io_data, zio->io_size);
1578
1579	ASSERT(zio->io_data == gn->gn_gbh);
1580	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1581	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1582
1583	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1584		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1585		if (!BP_IS_GANG(gbp))
1586			continue;
1587		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1588	}
1589}
1590
1591static void
1592zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1593{
1594	zio_t *gio = pio->io_gang_leader;
1595	zio_t *zio;
1596
1597	ASSERT(BP_IS_GANG(bp) == !!gn);
1598	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1599	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1600
1601	/*
1602	 * If you're a gang header, your data is in gn->gn_gbh.
1603	 * If you're a gang member, your data is in 'data' and gn == NULL.
1604	 */
1605	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1606
1607	if (gn != NULL) {
1608		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1609
1610		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1611			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1612			if (BP_IS_HOLE(gbp))
1613				continue;
1614			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1615			data = (char *)data + BP_GET_PSIZE(gbp);
1616		}
1617	}
1618
1619	if (gn == gio->io_gang_tree)
1620		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1621
1622	if (zio != pio)
1623		zio_nowait(zio);
1624}
1625
1626static int
1627zio_gang_assemble(zio_t *zio)
1628{
1629	blkptr_t *bp = zio->io_bp;
1630
1631	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1632	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1633
1634	zio->io_gang_leader = zio;
1635
1636	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1637
1638	return (ZIO_PIPELINE_CONTINUE);
1639}
1640
1641static int
1642zio_gang_issue(zio_t *zio)
1643{
1644	blkptr_t *bp = zio->io_bp;
1645
1646	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1647		return (ZIO_PIPELINE_STOP);
1648
1649	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1650	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1651
1652	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1653		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1654	else
1655		zio_gang_tree_free(&zio->io_gang_tree);
1656
1657	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1658
1659	return (ZIO_PIPELINE_CONTINUE);
1660}
1661
1662static void
1663zio_write_gang_member_ready(zio_t *zio)
1664{
1665	zio_t *pio = zio_unique_parent(zio);
1666	zio_t *gio = zio->io_gang_leader;
1667	dva_t *cdva = zio->io_bp->blk_dva;
1668	dva_t *pdva = pio->io_bp->blk_dva;
1669	uint64_t asize;
1670
1671	if (BP_IS_HOLE(zio->io_bp))
1672		return;
1673
1674	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1675
1676	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1677	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1678	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1679	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1680	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1681
1682	mutex_enter(&pio->io_lock);
1683	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1684		ASSERT(DVA_GET_GANG(&pdva[d]));
1685		asize = DVA_GET_ASIZE(&pdva[d]);
1686		asize += DVA_GET_ASIZE(&cdva[d]);
1687		DVA_SET_ASIZE(&pdva[d], asize);
1688	}
1689	mutex_exit(&pio->io_lock);
1690}
1691
1692static int
1693zio_write_gang_block(zio_t *pio)
1694{
1695	spa_t *spa = pio->io_spa;
1696	blkptr_t *bp = pio->io_bp;
1697	zio_t *gio = pio->io_gang_leader;
1698	zio_t *zio;
1699	zio_gang_node_t *gn, **gnpp;
1700	zio_gbh_phys_t *gbh;
1701	uint64_t txg = pio->io_txg;
1702	uint64_t resid = pio->io_size;
1703	uint64_t lsize;
1704	int copies = gio->io_prop.zp_copies;
1705	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1706	zio_prop_t zp;
1707	int error;
1708
1709	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1710	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1711	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1712	if (error) {
1713		pio->io_error = error;
1714		return (ZIO_PIPELINE_CONTINUE);
1715	}
1716
1717	if (pio == gio) {
1718		gnpp = &gio->io_gang_tree;
1719	} else {
1720		gnpp = pio->io_private;
1721		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1722	}
1723
1724	gn = zio_gang_node_alloc(gnpp);
1725	gbh = gn->gn_gbh;
1726	bzero(gbh, SPA_GANGBLOCKSIZE);
1727
1728	/*
1729	 * Create the gang header.
1730	 */
1731	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1732	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1733
1734	/*
1735	 * Create and nowait the gang children.
1736	 */
1737	for (int g = 0; resid != 0; resid -= lsize, g++) {
1738		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1739		    SPA_MINBLOCKSIZE);
1740		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1741
1742		zp.zp_checksum = gio->io_prop.zp_checksum;
1743		zp.zp_compress = ZIO_COMPRESS_OFF;
1744		zp.zp_type = DMU_OT_NONE;
1745		zp.zp_level = 0;
1746		zp.zp_copies = gio->io_prop.zp_copies;
1747		zp.zp_dedup = 0;
1748		zp.zp_dedup_verify = 0;
1749
1750		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1751		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1752		    zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1753		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1754		    &pio->io_bookmark));
1755	}
1756
1757	/*
1758	 * Set pio's pipeline to just wait for zio to finish.
1759	 */
1760	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1761
1762	zio_nowait(zio);
1763
1764	return (ZIO_PIPELINE_CONTINUE);
1765}
1766
1767/*
1768 * ==========================================================================
1769 * Dedup
1770 * ==========================================================================
1771 */
1772static void
1773zio_ddt_child_read_done(zio_t *zio)
1774{
1775	blkptr_t *bp = zio->io_bp;
1776	ddt_entry_t *dde = zio->io_private;
1777	ddt_phys_t *ddp;
1778	zio_t *pio = zio_unique_parent(zio);
1779
1780	mutex_enter(&pio->io_lock);
1781	ddp = ddt_phys_select(dde, bp);
1782	if (zio->io_error == 0)
1783		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1784	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1785		dde->dde_repair_data = zio->io_data;
1786	else
1787		zio_buf_free(zio->io_data, zio->io_size);
1788	mutex_exit(&pio->io_lock);
1789}
1790
1791static int
1792zio_ddt_read_start(zio_t *zio)
1793{
1794	blkptr_t *bp = zio->io_bp;
1795
1796	ASSERT(BP_GET_DEDUP(bp));
1797	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1798	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1799
1800	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1801		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1802		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1803		ddt_phys_t *ddp = dde->dde_phys;
1804		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1805		blkptr_t blk;
1806
1807		ASSERT(zio->io_vsd == NULL);
1808		zio->io_vsd = dde;
1809
1810		if (ddp_self == NULL)
1811			return (ZIO_PIPELINE_CONTINUE);
1812
1813		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1814			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1815				continue;
1816			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1817			    &blk);
1818			zio_nowait(zio_read(zio, zio->io_spa, &blk,
1819			    zio_buf_alloc(zio->io_size), zio->io_size,
1820			    zio_ddt_child_read_done, dde, zio->io_priority,
1821			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1822			    &zio->io_bookmark));
1823		}
1824		return (ZIO_PIPELINE_CONTINUE);
1825	}
1826
1827	zio_nowait(zio_read(zio, zio->io_spa, bp,
1828	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1829	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1830
1831	return (ZIO_PIPELINE_CONTINUE);
1832}
1833
1834static int
1835zio_ddt_read_done(zio_t *zio)
1836{
1837	blkptr_t *bp = zio->io_bp;
1838
1839	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1840		return (ZIO_PIPELINE_STOP);
1841
1842	ASSERT(BP_GET_DEDUP(bp));
1843	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1844	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1845
1846	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1847		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1848		ddt_entry_t *dde = zio->io_vsd;
1849		if (ddt == NULL) {
1850			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1851			return (ZIO_PIPELINE_CONTINUE);
1852		}
1853		if (dde == NULL) {
1854			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1855			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1856			return (ZIO_PIPELINE_STOP);
1857		}
1858		if (dde->dde_repair_data != NULL) {
1859			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1860			zio->io_child_error[ZIO_CHILD_DDT] = 0;
1861		}
1862		ddt_repair_done(ddt, dde);
1863		zio->io_vsd = NULL;
1864	}
1865
1866	ASSERT(zio->io_vsd == NULL);
1867
1868	return (ZIO_PIPELINE_CONTINUE);
1869}
1870
1871static boolean_t
1872zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
1873{
1874	spa_t *spa = zio->io_spa;
1875
1876	/*
1877	 * Note: we compare the original data, not the transformed data,
1878	 * because when zio->io_bp is an override bp, we will not have
1879	 * pushed the I/O transforms.  That's an important optimization
1880	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
1881	 */
1882	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1883		zio_t *lio = dde->dde_lead_zio[p];
1884
1885		if (lio != NULL) {
1886			return (lio->io_orig_size != zio->io_orig_size ||
1887			    bcmp(zio->io_orig_data, lio->io_orig_data,
1888			    zio->io_orig_size) != 0);
1889		}
1890	}
1891
1892	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1893		ddt_phys_t *ddp = &dde->dde_phys[p];
1894
1895		if (ddp->ddp_phys_birth != 0) {
1896			arc_buf_t *abuf = NULL;
1897			uint32_t aflags = ARC_WAIT;
1898			blkptr_t blk = *zio->io_bp;
1899			int error;
1900
1901			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
1902
1903			ddt_exit(ddt);
1904
1905			error = arc_read_nolock(NULL, spa, &blk,
1906			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
1907			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1908			    &aflags, &zio->io_bookmark);
1909
1910			if (error == 0) {
1911				if (arc_buf_size(abuf) != zio->io_orig_size ||
1912				    bcmp(abuf->b_data, zio->io_orig_data,
1913				    zio->io_orig_size) != 0)
1914					error = EEXIST;
1915				VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
1916			}
1917
1918			ddt_enter(ddt);
1919			return (error != 0);
1920		}
1921	}
1922
1923	return (B_FALSE);
1924}
1925
1926static void
1927zio_ddt_child_write_ready(zio_t *zio)
1928{
1929	int p = zio->io_prop.zp_copies;
1930	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
1931	ddt_entry_t *dde = zio->io_private;
1932	ddt_phys_t *ddp = &dde->dde_phys[p];
1933	zio_t *pio;
1934
1935	if (zio->io_error)
1936		return;
1937
1938	ddt_enter(ddt);
1939
1940	ASSERT(dde->dde_lead_zio[p] == zio);
1941
1942	ddt_phys_fill(ddp, zio->io_bp);
1943
1944	while ((pio = zio_walk_parents(zio)) != NULL)
1945		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
1946
1947	ddt_exit(ddt);
1948}
1949
1950static void
1951zio_ddt_child_write_done(zio_t *zio)
1952{
1953	int p = zio->io_prop.zp_copies;
1954	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
1955	ddt_entry_t *dde = zio->io_private;
1956	ddt_phys_t *ddp = &dde->dde_phys[p];
1957
1958	ddt_enter(ddt);
1959
1960	ASSERT(ddp->ddp_refcnt == 0);
1961	ASSERT(dde->dde_lead_zio[p] == zio);
1962	dde->dde_lead_zio[p] = NULL;
1963
1964	if (zio->io_error == 0) {
1965		while (zio_walk_parents(zio) != NULL)
1966			ddt_phys_addref(ddp);
1967	} else {
1968		ddt_phys_clear(ddp);
1969	}
1970
1971	ddt_exit(ddt);
1972}
1973
1974static void
1975zio_ddt_ditto_write_done(zio_t *zio)
1976{
1977	int p = DDT_PHYS_DITTO;
1978	zio_prop_t *zp = &zio->io_prop;
1979	blkptr_t *bp = zio->io_bp;
1980	ddt_t *ddt = ddt_select(zio->io_spa, bp);
1981	ddt_entry_t *dde = zio->io_private;
1982	ddt_phys_t *ddp = &dde->dde_phys[p];
1983	ddt_key_t *ddk = &dde->dde_key;
1984
1985	ddt_enter(ddt);
1986
1987	ASSERT(ddp->ddp_refcnt == 0);
1988	ASSERT(dde->dde_lead_zio[p] == zio);
1989	dde->dde_lead_zio[p] = NULL;
1990
1991	if (zio->io_error == 0) {
1992		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
1993		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
1994		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
1995		if (ddp->ddp_phys_birth != 0)
1996			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
1997		ddt_phys_fill(ddp, bp);
1998	}
1999
2000	ddt_exit(ddt);
2001}
2002
2003static int
2004zio_ddt_write(zio_t *zio)
2005{
2006	spa_t *spa = zio->io_spa;
2007	blkptr_t *bp = zio->io_bp;
2008	uint64_t txg = zio->io_txg;
2009	zio_prop_t *zp = &zio->io_prop;
2010	int p = zp->zp_copies;
2011	int ditto_copies;
2012	zio_t *cio = NULL;
2013	zio_t *dio = NULL;
2014	ddt_t *ddt = ddt_select(spa, bp);
2015	ddt_entry_t *dde;
2016	ddt_phys_t *ddp;
2017
2018	ASSERT(BP_GET_DEDUP(bp));
2019	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2020	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2021
2022	ddt_enter(ddt);
2023	dde = ddt_lookup(ddt, bp, B_TRUE);
2024	ddp = &dde->dde_phys[p];
2025
2026	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2027		/*
2028		 * If we're using a weak checksum, upgrade to a strong checksum
2029		 * and try again.  If we're already using a strong checksum,
2030		 * we can't resolve it, so just convert to an ordinary write.
2031		 * (And automatically e-mail a paper to Nature?)
2032		 */
2033		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2034			zp->zp_checksum = spa_dedup_checksum(spa);
2035			zio_pop_transforms(zio);
2036			zio->io_stage = ZIO_STAGE_OPEN;
2037			BP_ZERO(bp);
2038		} else {
2039			zp->zp_dedup = 0;
2040		}
2041		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2042		ddt_exit(ddt);
2043		return (ZIO_PIPELINE_CONTINUE);
2044	}
2045
2046	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2047	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2048
2049	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2050	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2051		zio_prop_t czp = *zp;
2052
2053		czp.zp_copies = ditto_copies;
2054
2055		/*
2056		 * If we arrived here with an override bp, we won't have run
2057		 * the transform stack, so we won't have the data we need to
2058		 * generate a child i/o.  So, toss the override bp and restart.
2059		 * This is safe, because using the override bp is just an
2060		 * optimization; and it's rare, so the cost doesn't matter.
2061		 */
2062		if (zio->io_bp_override) {
2063			zio_pop_transforms(zio);
2064			zio->io_stage = ZIO_STAGE_OPEN;
2065			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2066			zio->io_bp_override = NULL;
2067			BP_ZERO(bp);
2068			ddt_exit(ddt);
2069			return (ZIO_PIPELINE_CONTINUE);
2070		}
2071
2072		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2073		    zio->io_orig_size, &czp, NULL,
2074		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2075		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2076
2077		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2078		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2079	}
2080
2081	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2082		if (ddp->ddp_phys_birth != 0)
2083			ddt_bp_fill(ddp, bp, txg);
2084		if (dde->dde_lead_zio[p] != NULL)
2085			zio_add_child(zio, dde->dde_lead_zio[p]);
2086		else
2087			ddt_phys_addref(ddp);
2088	} else if (zio->io_bp_override) {
2089		ASSERT(bp->blk_birth == txg);
2090		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2091		ddt_phys_fill(ddp, bp);
2092		ddt_phys_addref(ddp);
2093	} else {
2094		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2095		    zio->io_orig_size, zp, zio_ddt_child_write_ready,
2096		    zio_ddt_child_write_done, dde, zio->io_priority,
2097		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2098
2099		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2100		dde->dde_lead_zio[p] = cio;
2101	}
2102
2103	ddt_exit(ddt);
2104
2105	if (cio)
2106		zio_nowait(cio);
2107	if (dio)
2108		zio_nowait(dio);
2109
2110	return (ZIO_PIPELINE_CONTINUE);
2111}
2112
2113ddt_entry_t *freedde; /* for debugging */
2114
2115static int
2116zio_ddt_free(zio_t *zio)
2117{
2118	spa_t *spa = zio->io_spa;
2119	blkptr_t *bp = zio->io_bp;
2120	ddt_t *ddt = ddt_select(spa, bp);
2121	ddt_entry_t *dde;
2122	ddt_phys_t *ddp;
2123
2124	ASSERT(BP_GET_DEDUP(bp));
2125	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2126
2127	ddt_enter(ddt);
2128	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2129	ddp = ddt_phys_select(dde, bp);
2130	ddt_phys_decref(ddp);
2131	ddt_exit(ddt);
2132
2133	return (ZIO_PIPELINE_CONTINUE);
2134}
2135
2136/*
2137 * ==========================================================================
2138 * Allocate and free blocks
2139 * ==========================================================================
2140 */
2141static int
2142zio_dva_allocate(zio_t *zio)
2143{
2144	spa_t *spa = zio->io_spa;
2145	metaslab_class_t *mc = spa_normal_class(spa);
2146	blkptr_t *bp = zio->io_bp;
2147	int error;
2148
2149	if (zio->io_gang_leader == NULL) {
2150		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2151		zio->io_gang_leader = zio;
2152	}
2153
2154	ASSERT(BP_IS_HOLE(bp));
2155	ASSERT3U(BP_GET_NDVAS(bp), ==, 0);
2156	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2157	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2158	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2159
2160	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2161	    zio->io_prop.zp_copies, zio->io_txg, NULL, 0);
2162
2163	if (error) {
2164		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2165			return (zio_write_gang_block(zio));
2166		zio->io_error = error;
2167	}
2168
2169	return (ZIO_PIPELINE_CONTINUE);
2170}
2171
2172static int
2173zio_dva_free(zio_t *zio)
2174{
2175	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2176
2177	return (ZIO_PIPELINE_CONTINUE);
2178}
2179
2180static int
2181zio_dva_claim(zio_t *zio)
2182{
2183	int error;
2184
2185	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2186	if (error)
2187		zio->io_error = error;
2188
2189	return (ZIO_PIPELINE_CONTINUE);
2190}
2191
2192/*
2193 * Undo an allocation.  This is used by zio_done() when an I/O fails
2194 * and we want to give back the block we just allocated.
2195 * This handles both normal blocks and gang blocks.
2196 */
2197static void
2198zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2199{
2200	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2201	ASSERT(zio->io_bp_override == NULL);
2202
2203	if (!BP_IS_HOLE(bp))
2204		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2205
2206	if (gn != NULL) {
2207		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2208			zio_dva_unallocate(zio, gn->gn_child[g],
2209			    &gn->gn_gbh->zg_blkptr[g]);
2210		}
2211	}
2212}
2213
2214/*
2215 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2216 */
2217int
2218zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2219    uint64_t size, boolean_t use_slog)
2220{
2221	int error = 1;
2222
2223	ASSERT(txg > spa_syncing_txg(spa));
2224
2225	if (use_slog)
2226		error = metaslab_alloc(spa, spa_log_class(spa), size,
2227		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID);
2228
2229	if (error)
2230		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2231		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID);
2232
2233	if (error == 0) {
2234		BP_SET_LSIZE(new_bp, size);
2235		BP_SET_PSIZE(new_bp, size);
2236		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2237		BP_SET_CHECKSUM(new_bp,
2238		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2239		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2240		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2241		BP_SET_LEVEL(new_bp, 0);
2242		BP_SET_DEDUP(new_bp, 0);
2243		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2244	}
2245
2246	return (error);
2247}
2248
2249/*
2250 * Free an intent log block.
2251 */
2252void
2253zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2254{
2255	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2256	ASSERT(!BP_IS_GANG(bp));
2257
2258	zio_free(spa, txg, bp);
2259}
2260
2261/*
2262 * ==========================================================================
2263 * Read and write to physical devices
2264 * ==========================================================================
2265 */
2266static int
2267zio_vdev_io_start(zio_t *zio)
2268{
2269	vdev_t *vd = zio->io_vd;
2270	uint64_t align;
2271	spa_t *spa = zio->io_spa;
2272
2273	ASSERT(zio->io_error == 0);
2274	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2275
2276	if (vd == NULL) {
2277		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2278			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2279
2280		/*
2281		 * The mirror_ops handle multiple DVAs in a single BP.
2282		 */
2283		return (vdev_mirror_ops.vdev_op_io_start(zio));
2284	}
2285
2286	/*
2287	 * We keep track of time-sensitive I/Os so that the scan thread
2288	 * can quickly react to certain workloads.  In particular, we care
2289	 * about non-scrubbing, top-level reads and writes with the following
2290	 * characteristics:
2291	 * 	- synchronous writes of user data to non-slog devices
2292	 *	- any reads of user data
2293	 * When these conditions are met, adjust the timestamp of spa_last_io
2294	 * which allows the scan thread to adjust its workload accordingly.
2295	 */
2296	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2297	    vd == vd->vdev_top && !vd->vdev_islog &&
2298	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2299	    zio->io_txg != spa_syncing_txg(spa)) {
2300		uint64_t old = spa->spa_last_io;
2301		uint64_t new = ddi_get_lbolt64();
2302		if (old != new)
2303			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2304	}
2305
2306	align = 1ULL << vd->vdev_top->vdev_ashift;
2307
2308	if (P2PHASE(zio->io_size, align) != 0) {
2309		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2310		char *abuf = zio_buf_alloc(asize);
2311		ASSERT(vd == vd->vdev_top);
2312		if (zio->io_type == ZIO_TYPE_WRITE) {
2313			bcopy(zio->io_data, abuf, zio->io_size);
2314			bzero(abuf + zio->io_size, asize - zio->io_size);
2315		}
2316		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2317	}
2318
2319	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2320	ASSERT(P2PHASE(zio->io_size, align) == 0);
2321	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2322
2323	/*
2324	 * If this is a repair I/O, and there's no self-healing involved --
2325	 * that is, we're just resilvering what we expect to resilver --
2326	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2327	 * This prevents spurious resilvering with nested replication.
2328	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2329	 * A is out of date, we'll read from C+D, then use the data to
2330	 * resilver A+B -- but we don't actually want to resilver B, just A.
2331	 * The top-level mirror has no way to know this, so instead we just
2332	 * discard unnecessary repairs as we work our way down the vdev tree.
2333	 * The same logic applies to any form of nested replication:
2334	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2335	 */
2336	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2337	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2338	    zio->io_txg != 0 &&	/* not a delegated i/o */
2339	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2340		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2341		zio_vdev_io_bypass(zio);
2342		return (ZIO_PIPELINE_CONTINUE);
2343	}
2344
2345	if (vd->vdev_ops->vdev_op_leaf &&
2346	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2347
2348		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2349			return (ZIO_PIPELINE_CONTINUE);
2350
2351		if ((zio = vdev_queue_io(zio)) == NULL)
2352			return (ZIO_PIPELINE_STOP);
2353
2354		if (!vdev_accessible(vd, zio)) {
2355			zio->io_error = ENXIO;
2356			zio_interrupt(zio);
2357			return (ZIO_PIPELINE_STOP);
2358		}
2359	}
2360
2361	return (vd->vdev_ops->vdev_op_io_start(zio));
2362}
2363
2364static int
2365zio_vdev_io_done(zio_t *zio)
2366{
2367	vdev_t *vd = zio->io_vd;
2368	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2369	boolean_t unexpected_error = B_FALSE;
2370
2371	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2372		return (ZIO_PIPELINE_STOP);
2373
2374	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2375
2376	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2377
2378		vdev_queue_io_done(zio);
2379
2380		if (zio->io_type == ZIO_TYPE_WRITE)
2381			vdev_cache_write(zio);
2382
2383		if (zio_injection_enabled && zio->io_error == 0)
2384			zio->io_error = zio_handle_device_injection(vd,
2385			    zio, EIO);
2386
2387		if (zio_injection_enabled && zio->io_error == 0)
2388			zio->io_error = zio_handle_label_injection(zio, EIO);
2389
2390		if (zio->io_error) {
2391			if (!vdev_accessible(vd, zio)) {
2392				zio->io_error = ENXIO;
2393			} else {
2394				unexpected_error = B_TRUE;
2395			}
2396		}
2397	}
2398
2399	ops->vdev_op_io_done(zio);
2400
2401	if (unexpected_error)
2402		VERIFY(vdev_probe(vd, zio) == NULL);
2403
2404	return (ZIO_PIPELINE_CONTINUE);
2405}
2406
2407/*
2408 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2409 * disk, and use that to finish the checksum ereport later.
2410 */
2411static void
2412zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2413    const void *good_buf)
2414{
2415	/* no processing needed */
2416	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2417}
2418
2419/*ARGSUSED*/
2420void
2421zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2422{
2423	void *buf = zio_buf_alloc(zio->io_size);
2424
2425	bcopy(zio->io_data, buf, zio->io_size);
2426
2427	zcr->zcr_cbinfo = zio->io_size;
2428	zcr->zcr_cbdata = buf;
2429	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2430	zcr->zcr_free = zio_buf_free;
2431}
2432
2433static int
2434zio_vdev_io_assess(zio_t *zio)
2435{
2436	vdev_t *vd = zio->io_vd;
2437
2438	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2439		return (ZIO_PIPELINE_STOP);
2440
2441	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2442		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2443
2444	if (zio->io_vsd != NULL) {
2445		zio->io_vsd_ops->vsd_free(zio);
2446		zio->io_vsd = NULL;
2447	}
2448
2449	if (zio_injection_enabled && zio->io_error == 0)
2450		zio->io_error = zio_handle_fault_injection(zio, EIO);
2451
2452	/*
2453	 * If the I/O failed, determine whether we should attempt to retry it.
2454	 *
2455	 * On retry, we cut in line in the issue queue, since we don't want
2456	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2457	 */
2458	if (zio->io_error && vd == NULL &&
2459	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2460		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2461		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2462		zio->io_error = 0;
2463		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2464		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2465		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2466		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2467		    zio_requeue_io_start_cut_in_line);
2468		return (ZIO_PIPELINE_STOP);
2469	}
2470
2471	/*
2472	 * If we got an error on a leaf device, convert it to ENXIO
2473	 * if the device is not accessible at all.
2474	 */
2475	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2476	    !vdev_accessible(vd, zio))
2477		zio->io_error = ENXIO;
2478
2479	/*
2480	 * If we can't write to an interior vdev (mirror or RAID-Z),
2481	 * set vdev_cant_write so that we stop trying to allocate from it.
2482	 */
2483	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2484	    vd != NULL && !vd->vdev_ops->vdev_op_leaf)
2485		vd->vdev_cant_write = B_TRUE;
2486
2487	if (zio->io_error)
2488		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2489
2490	return (ZIO_PIPELINE_CONTINUE);
2491}
2492
2493void
2494zio_vdev_io_reissue(zio_t *zio)
2495{
2496	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2497	ASSERT(zio->io_error == 0);
2498
2499	zio->io_stage >>= 1;
2500}
2501
2502void
2503zio_vdev_io_redone(zio_t *zio)
2504{
2505	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2506
2507	zio->io_stage >>= 1;
2508}
2509
2510void
2511zio_vdev_io_bypass(zio_t *zio)
2512{
2513	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2514	ASSERT(zio->io_error == 0);
2515
2516	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2517	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2518}
2519
2520/*
2521 * ==========================================================================
2522 * Generate and verify checksums
2523 * ==========================================================================
2524 */
2525static int
2526zio_checksum_generate(zio_t *zio)
2527{
2528	blkptr_t *bp = zio->io_bp;
2529	enum zio_checksum checksum;
2530
2531	if (bp == NULL) {
2532		/*
2533		 * This is zio_write_phys().
2534		 * We're either generating a label checksum, or none at all.
2535		 */
2536		checksum = zio->io_prop.zp_checksum;
2537
2538		if (checksum == ZIO_CHECKSUM_OFF)
2539			return (ZIO_PIPELINE_CONTINUE);
2540
2541		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2542	} else {
2543		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2544			ASSERT(!IO_IS_ALLOCATING(zio));
2545			checksum = ZIO_CHECKSUM_GANG_HEADER;
2546		} else {
2547			checksum = BP_GET_CHECKSUM(bp);
2548		}
2549	}
2550
2551	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2552
2553	return (ZIO_PIPELINE_CONTINUE);
2554}
2555
2556static int
2557zio_checksum_verify(zio_t *zio)
2558{
2559	zio_bad_cksum_t info;
2560	blkptr_t *bp = zio->io_bp;
2561	int error;
2562
2563	ASSERT(zio->io_vd != NULL);
2564
2565	if (bp == NULL) {
2566		/*
2567		 * This is zio_read_phys().
2568		 * We're either verifying a label checksum, or nothing at all.
2569		 */
2570		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2571			return (ZIO_PIPELINE_CONTINUE);
2572
2573		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2574	}
2575
2576	if ((error = zio_checksum_error(zio, &info)) != 0) {
2577		zio->io_error = error;
2578		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2579			zfs_ereport_start_checksum(zio->io_spa,
2580			    zio->io_vd, zio, zio->io_offset,
2581			    zio->io_size, NULL, &info);
2582		}
2583	}
2584
2585	return (ZIO_PIPELINE_CONTINUE);
2586}
2587
2588/*
2589 * Called by RAID-Z to ensure we don't compute the checksum twice.
2590 */
2591void
2592zio_checksum_verified(zio_t *zio)
2593{
2594	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2595}
2596
2597/*
2598 * ==========================================================================
2599 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2600 * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2601 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2602 * indicate errors that are specific to one I/O, and most likely permanent.
2603 * Any other error is presumed to be worse because we weren't expecting it.
2604 * ==========================================================================
2605 */
2606int
2607zio_worst_error(int e1, int e2)
2608{
2609	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2610	int r1, r2;
2611
2612	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2613		if (e1 == zio_error_rank[r1])
2614			break;
2615
2616	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2617		if (e2 == zio_error_rank[r2])
2618			break;
2619
2620	return (r1 > r2 ? e1 : e2);
2621}
2622
2623/*
2624 * ==========================================================================
2625 * I/O completion
2626 * ==========================================================================
2627 */
2628static int
2629zio_ready(zio_t *zio)
2630{
2631	blkptr_t *bp = zio->io_bp;
2632	zio_t *pio, *pio_next;
2633
2634	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2635	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2636		return (ZIO_PIPELINE_STOP);
2637
2638	if (zio->io_ready) {
2639		ASSERT(IO_IS_ALLOCATING(zio));
2640		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2641		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2642
2643		zio->io_ready(zio);
2644	}
2645
2646	if (bp != NULL && bp != &zio->io_bp_copy)
2647		zio->io_bp_copy = *bp;
2648
2649	if (zio->io_error)
2650		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2651
2652	mutex_enter(&zio->io_lock);
2653	zio->io_state[ZIO_WAIT_READY] = 1;
2654	pio = zio_walk_parents(zio);
2655	mutex_exit(&zio->io_lock);
2656
2657	/*
2658	 * As we notify zio's parents, new parents could be added.
2659	 * New parents go to the head of zio's io_parent_list, however,
2660	 * so we will (correctly) not notify them.  The remainder of zio's
2661	 * io_parent_list, from 'pio_next' onward, cannot change because
2662	 * all parents must wait for us to be done before they can be done.
2663	 */
2664	for (; pio != NULL; pio = pio_next) {
2665		pio_next = zio_walk_parents(zio);
2666		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2667	}
2668
2669	if (zio->io_flags & ZIO_FLAG_NODATA) {
2670		if (BP_IS_GANG(bp)) {
2671			zio->io_flags &= ~ZIO_FLAG_NODATA;
2672		} else {
2673			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2674			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2675		}
2676	}
2677
2678	if (zio_injection_enabled &&
2679	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2680		zio_handle_ignored_writes(zio);
2681
2682	return (ZIO_PIPELINE_CONTINUE);
2683}
2684
2685static int
2686zio_done(zio_t *zio)
2687{
2688	spa_t *spa = zio->io_spa;
2689	zio_t *lio = zio->io_logical;
2690	blkptr_t *bp = zio->io_bp;
2691	vdev_t *vd = zio->io_vd;
2692	uint64_t psize = zio->io_size;
2693	zio_t *pio, *pio_next;
2694
2695	/*
2696	 * If our children haven't all completed,
2697	 * wait for them and then repeat this pipeline stage.
2698	 */
2699	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2700	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2701	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2702	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2703		return (ZIO_PIPELINE_STOP);
2704
2705	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2706		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2707			ASSERT(zio->io_children[c][w] == 0);
2708
2709	if (bp != NULL) {
2710		ASSERT(bp->blk_pad[0] == 0);
2711		ASSERT(bp->blk_pad[1] == 0);
2712		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2713		    (bp == zio_unique_parent(zio)->io_bp));
2714		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2715		    zio->io_bp_override == NULL &&
2716		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2717			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2718			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2719			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2720			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2721		}
2722	}
2723
2724	/*
2725	 * If there were child vdev/gang/ddt errors, they apply to us now.
2726	 */
2727	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2728	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2729	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2730
2731	/*
2732	 * If the I/O on the transformed data was successful, generate any
2733	 * checksum reports now while we still have the transformed data.
2734	 */
2735	if (zio->io_error == 0) {
2736		while (zio->io_cksum_report != NULL) {
2737			zio_cksum_report_t *zcr = zio->io_cksum_report;
2738			uint64_t align = zcr->zcr_align;
2739			uint64_t asize = P2ROUNDUP(psize, align);
2740			char *abuf = zio->io_data;
2741
2742			if (asize != psize) {
2743				abuf = zio_buf_alloc(asize);
2744				bcopy(zio->io_data, abuf, psize);
2745				bzero(abuf + psize, asize - psize);
2746			}
2747
2748			zio->io_cksum_report = zcr->zcr_next;
2749			zcr->zcr_next = NULL;
2750			zcr->zcr_finish(zcr, abuf);
2751			zfs_ereport_free_checksum(zcr);
2752
2753			if (asize != psize)
2754				zio_buf_free(abuf, asize);
2755		}
2756	}
2757
2758	zio_pop_transforms(zio);	/* note: may set zio->io_error */
2759
2760	vdev_stat_update(zio, psize);
2761
2762	if (zio->io_error) {
2763		/*
2764		 * If this I/O is attached to a particular vdev,
2765		 * generate an error message describing the I/O failure
2766		 * at the block level.  We ignore these errors if the
2767		 * device is currently unavailable.
2768		 */
2769		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2770			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2771
2772		if ((zio->io_error == EIO || !(zio->io_flags &
2773		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2774		    zio == lio) {
2775			/*
2776			 * For logical I/O requests, tell the SPA to log the
2777			 * error and generate a logical data ereport.
2778			 */
2779			spa_log_error(spa, zio);
2780			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2781			    0, 0);
2782		}
2783	}
2784
2785	if (zio->io_error && zio == lio) {
2786		/*
2787		 * Determine whether zio should be reexecuted.  This will
2788		 * propagate all the way to the root via zio_notify_parent().
2789		 */
2790		ASSERT(vd == NULL && bp != NULL);
2791		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2792
2793		if (IO_IS_ALLOCATING(zio) &&
2794		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2795			if (zio->io_error != ENOSPC)
2796				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2797			else
2798				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2799		}
2800
2801		if ((zio->io_type == ZIO_TYPE_READ ||
2802		    zio->io_type == ZIO_TYPE_FREE) &&
2803		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2804		    zio->io_error == ENXIO &&
2805		    spa_load_state(spa) == SPA_LOAD_NONE &&
2806		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2807			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2808
2809		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2810			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2811
2812		/*
2813		 * Here is a possibly good place to attempt to do
2814		 * either combinatorial reconstruction or error correction
2815		 * based on checksums.  It also might be a good place
2816		 * to send out preliminary ereports before we suspend
2817		 * processing.
2818		 */
2819	}
2820
2821	/*
2822	 * If there were logical child errors, they apply to us now.
2823	 * We defer this until now to avoid conflating logical child
2824	 * errors with errors that happened to the zio itself when
2825	 * updating vdev stats and reporting FMA events above.
2826	 */
2827	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2828
2829	if ((zio->io_error || zio->io_reexecute) &&
2830	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2831	    !(zio->io_flags & ZIO_FLAG_IO_REWRITE))
2832		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2833
2834	zio_gang_tree_free(&zio->io_gang_tree);
2835
2836	/*
2837	 * Godfather I/Os should never suspend.
2838	 */
2839	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2840	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2841		zio->io_reexecute = 0;
2842
2843	if (zio->io_reexecute) {
2844		/*
2845		 * This is a logical I/O that wants to reexecute.
2846		 *
2847		 * Reexecute is top-down.  When an i/o fails, if it's not
2848		 * the root, it simply notifies its parent and sticks around.
2849		 * The parent, seeing that it still has children in zio_done(),
2850		 * does the same.  This percolates all the way up to the root.
2851		 * The root i/o will reexecute or suspend the entire tree.
2852		 *
2853		 * This approach ensures that zio_reexecute() honors
2854		 * all the original i/o dependency relationships, e.g.
2855		 * parents not executing until children are ready.
2856		 */
2857		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2858
2859		zio->io_gang_leader = NULL;
2860
2861		mutex_enter(&zio->io_lock);
2862		zio->io_state[ZIO_WAIT_DONE] = 1;
2863		mutex_exit(&zio->io_lock);
2864
2865		/*
2866		 * "The Godfather" I/O monitors its children but is
2867		 * not a true parent to them. It will track them through
2868		 * the pipeline but severs its ties whenever they get into
2869		 * trouble (e.g. suspended). This allows "The Godfather"
2870		 * I/O to return status without blocking.
2871		 */
2872		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
2873			zio_link_t *zl = zio->io_walk_link;
2874			pio_next = zio_walk_parents(zio);
2875
2876			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
2877			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
2878				zio_remove_child(pio, zio, zl);
2879				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2880			}
2881		}
2882
2883		if ((pio = zio_unique_parent(zio)) != NULL) {
2884			/*
2885			 * We're not a root i/o, so there's nothing to do
2886			 * but notify our parent.  Don't propagate errors
2887			 * upward since we haven't permanently failed yet.
2888			 */
2889			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2890			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
2891			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2892		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
2893			/*
2894			 * We'd fail again if we reexecuted now, so suspend
2895			 * until conditions improve (e.g. device comes online).
2896			 */
2897			zio_suspend(spa, zio);
2898		} else {
2899			/*
2900			 * Reexecution is potentially a huge amount of work.
2901			 * Hand it off to the otherwise-unused claim taskq.
2902			 */
2903#ifdef _KERNEL
2904			(void) taskq_dispatch_safe(
2905			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
2906			    (task_func_t *)zio_reexecute, zio, TQ_SLEEP,
2907			    &zio->io_task_issue);
2908#else
2909			(void) taskq_dispatch(
2910			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
2911			    (task_func_t *)zio_reexecute, zio, TQ_SLEEP);
2912#endif
2913		}
2914		return (ZIO_PIPELINE_STOP);
2915	}
2916
2917	ASSERT(zio->io_child_count == 0);
2918	ASSERT(zio->io_reexecute == 0);
2919	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
2920
2921	/*
2922	 * Report any checksum errors, since the I/O is complete.
2923	 */
2924	while (zio->io_cksum_report != NULL) {
2925		zio_cksum_report_t *zcr = zio->io_cksum_report;
2926		zio->io_cksum_report = zcr->zcr_next;
2927		zcr->zcr_next = NULL;
2928		zcr->zcr_finish(zcr, NULL);
2929		zfs_ereport_free_checksum(zcr);
2930	}
2931
2932	/*
2933	 * It is the responsibility of the done callback to ensure that this
2934	 * particular zio is no longer discoverable for adoption, and as
2935	 * such, cannot acquire any new parents.
2936	 */
2937	if (zio->io_done)
2938		zio->io_done(zio);
2939
2940	mutex_enter(&zio->io_lock);
2941	zio->io_state[ZIO_WAIT_DONE] = 1;
2942	mutex_exit(&zio->io_lock);
2943
2944	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
2945		zio_link_t *zl = zio->io_walk_link;
2946		pio_next = zio_walk_parents(zio);
2947		zio_remove_child(pio, zio, zl);
2948		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2949	}
2950
2951	if (zio->io_waiter != NULL) {
2952		mutex_enter(&zio->io_lock);
2953		zio->io_executor = NULL;
2954		cv_broadcast(&zio->io_cv);
2955		mutex_exit(&zio->io_lock);
2956	} else {
2957		zio_destroy(zio);
2958	}
2959
2960	return (ZIO_PIPELINE_STOP);
2961}
2962
2963/*
2964 * ==========================================================================
2965 * I/O pipeline definition
2966 * ==========================================================================
2967 */
2968static zio_pipe_stage_t *zio_pipeline[] = {
2969	NULL,
2970	zio_read_bp_init,
2971	zio_free_bp_init,
2972	zio_issue_async,
2973	zio_write_bp_init,
2974	zio_checksum_generate,
2975	zio_ddt_read_start,
2976	zio_ddt_read_done,
2977	zio_ddt_write,
2978	zio_ddt_free,
2979	zio_gang_assemble,
2980	zio_gang_issue,
2981	zio_dva_allocate,
2982	zio_dva_free,
2983	zio_dva_claim,
2984	zio_ready,
2985	zio_vdev_io_start,
2986	zio_vdev_io_done,
2987	zio_vdev_io_assess,
2988	zio_checksum_verify,
2989	zio_done
2990};
2991