zio.c revision 253992
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/fm/fs/zfs.h>
28#include <sys/spa.h>
29#include <sys/txg.h>
30#include <sys/spa_impl.h>
31#include <sys/vdev_impl.h>
32#include <sys/zio_impl.h>
33#include <sys/zio_compress.h>
34#include <sys/zio_checksum.h>
35#include <sys/dmu_objset.h>
36#include <sys/arc.h>
37#include <sys/ddt.h>
38#include <sys/trim_map.h>
39
40SYSCTL_DECL(_vfs_zfs);
41SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
42static int zio_use_uma = 0;
43TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
44SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
45    "Use uma(9) for ZIO allocations");
46static int zio_exclude_metadata = 0;
47TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
48SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
49    "Exclude metadata buffers from dumps as well");
50
51zio_trim_stats_t zio_trim_stats = {
52	{ "bytes",		KSTAT_DATA_UINT64,
53	  "Number of bytes successfully TRIMmed" },
54	{ "success",		KSTAT_DATA_UINT64,
55	  "Number of successful TRIM requests" },
56	{ "unsupported",	KSTAT_DATA_UINT64,
57	  "Number of TRIM requests that failed because TRIM is not supported" },
58	{ "failed",		KSTAT_DATA_UINT64,
59	  "Number of TRIM requests that failed for reasons other than not supported" },
60};
61
62static kstat_t *zio_trim_ksp;
63
64/*
65 * ==========================================================================
66 * I/O priority table
67 * ==========================================================================
68 */
69uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
70	0,	/* ZIO_PRIORITY_NOW		*/
71	0,	/* ZIO_PRIORITY_SYNC_READ	*/
72	0,	/* ZIO_PRIORITY_SYNC_WRITE	*/
73	0,	/* ZIO_PRIORITY_LOG_WRITE	*/
74	1,	/* ZIO_PRIORITY_CACHE_FILL	*/
75	1,	/* ZIO_PRIORITY_AGG		*/
76	4,	/* ZIO_PRIORITY_FREE		*/
77	4,	/* ZIO_PRIORITY_ASYNC_WRITE	*/
78	6,	/* ZIO_PRIORITY_ASYNC_READ	*/
79	10,	/* ZIO_PRIORITY_RESILVER	*/
80	20,	/* ZIO_PRIORITY_SCRUB		*/
81	2,	/* ZIO_PRIORITY_DDT_PREFETCH	*/
82	30,	/* ZIO_PRIORITY_TRIM		*/
83};
84
85/*
86 * ==========================================================================
87 * I/O type descriptions
88 * ==========================================================================
89 */
90char *zio_type_name[ZIO_TYPES] = {
91	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
92	"zio_ioctl"
93};
94
95/*
96 * ==========================================================================
97 * I/O kmem caches
98 * ==========================================================================
99 */
100kmem_cache_t *zio_cache;
101kmem_cache_t *zio_link_cache;
102kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
103kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
104
105#ifdef _KERNEL
106extern vmem_t *zio_alloc_arena;
107#endif
108extern int zfs_mg_alloc_failures;
109
110/*
111 * The following actions directly effect the spa's sync-to-convergence logic.
112 * The values below define the sync pass when we start performing the action.
113 * Care should be taken when changing these values as they directly impact
114 * spa_sync() performance. Tuning these values may introduce subtle performance
115 * pathologies and should only be done in the context of performance analysis.
116 * These tunables will eventually be removed and replaced with #defines once
117 * enough analysis has been done to determine optimal values.
118 *
119 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
120 * regular blocks are not deferred.
121 */
122int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
123TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
124SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
125    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
126int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
127TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
128SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
129    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
130int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
131TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
132SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
133    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
134
135/*
136 * An allocating zio is one that either currently has the DVA allocate
137 * stage set or will have it later in its lifetime.
138 */
139#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
140
141boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
142
143#ifdef ZFS_DEBUG
144int zio_buf_debug_limit = 16384;
145#else
146int zio_buf_debug_limit = 0;
147#endif
148
149void
150zio_init(void)
151{
152	size_t c;
153	zio_cache = kmem_cache_create("zio_cache",
154	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
155	zio_link_cache = kmem_cache_create("zio_link_cache",
156	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
157	if (!zio_use_uma)
158		goto out;
159
160	/*
161	 * For small buffers, we want a cache for each multiple of
162	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
163	 * for each quarter-power of 2.  For large buffers, we want
164	 * a cache for each multiple of PAGESIZE.
165	 */
166	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
167		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
168		size_t p2 = size;
169		size_t align = 0;
170		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
171
172		while (p2 & (p2 - 1))
173			p2 &= p2 - 1;
174
175#ifdef illumos
176#ifndef _KERNEL
177		/*
178		 * If we are using watchpoints, put each buffer on its own page,
179		 * to eliminate the performance overhead of trapping to the
180		 * kernel when modifying a non-watched buffer that shares the
181		 * page with a watched buffer.
182		 */
183		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
184			continue;
185#endif
186#endif /* illumos */
187		if (size <= 4 * SPA_MINBLOCKSIZE) {
188			align = SPA_MINBLOCKSIZE;
189		} else if (IS_P2ALIGNED(size, PAGESIZE)) {
190			align = PAGESIZE;
191		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
192			align = p2 >> 2;
193		}
194
195		if (align != 0) {
196			char name[36];
197			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
198			zio_buf_cache[c] = kmem_cache_create(name, size,
199			    align, NULL, NULL, NULL, NULL, NULL, cflags);
200
201			/*
202			 * Since zio_data bufs do not appear in crash dumps, we
203			 * pass KMC_NOTOUCH so that no allocator metadata is
204			 * stored with the buffers.
205			 */
206			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
207			zio_data_buf_cache[c] = kmem_cache_create(name, size,
208			    align, NULL, NULL, NULL, NULL, NULL,
209			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
210		}
211	}
212
213	while (--c != 0) {
214		ASSERT(zio_buf_cache[c] != NULL);
215		if (zio_buf_cache[c - 1] == NULL)
216			zio_buf_cache[c - 1] = zio_buf_cache[c];
217
218		ASSERT(zio_data_buf_cache[c] != NULL);
219		if (zio_data_buf_cache[c - 1] == NULL)
220			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
221	}
222out:
223
224	/*
225	 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
226	 * to fail 3 times per txg or 8 failures, whichever is greater.
227	 */
228	if (zfs_mg_alloc_failures == 0)
229		zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
230	else if (zfs_mg_alloc_failures < 8)
231		zfs_mg_alloc_failures = 8;
232
233	zio_inject_init();
234
235	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
236	    KSTAT_TYPE_NAMED,
237	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
238	    KSTAT_FLAG_VIRTUAL);
239
240	if (zio_trim_ksp != NULL) {
241		zio_trim_ksp->ks_data = &zio_trim_stats;
242		kstat_install(zio_trim_ksp);
243	}
244}
245
246void
247zio_fini(void)
248{
249	size_t c;
250	kmem_cache_t *last_cache = NULL;
251	kmem_cache_t *last_data_cache = NULL;
252
253	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
254		if (zio_buf_cache[c] != last_cache) {
255			last_cache = zio_buf_cache[c];
256			kmem_cache_destroy(zio_buf_cache[c]);
257		}
258		zio_buf_cache[c] = NULL;
259
260		if (zio_data_buf_cache[c] != last_data_cache) {
261			last_data_cache = zio_data_buf_cache[c];
262			kmem_cache_destroy(zio_data_buf_cache[c]);
263		}
264		zio_data_buf_cache[c] = NULL;
265	}
266
267	kmem_cache_destroy(zio_link_cache);
268	kmem_cache_destroy(zio_cache);
269
270	zio_inject_fini();
271
272	if (zio_trim_ksp != NULL) {
273		kstat_delete(zio_trim_ksp);
274		zio_trim_ksp = NULL;
275	}
276}
277
278/*
279 * ==========================================================================
280 * Allocate and free I/O buffers
281 * ==========================================================================
282 */
283
284/*
285 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
286 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
287 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
288 * excess / transient data in-core during a crashdump.
289 */
290void *
291zio_buf_alloc(size_t size)
292{
293	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
294	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
295
296	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
297
298	if (zio_use_uma)
299		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
300	else
301		return (kmem_alloc(size, KM_SLEEP|flags));
302}
303
304/*
305 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
306 * crashdump if the kernel panics.  This exists so that we will limit the amount
307 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
308 * of kernel heap dumped to disk when the kernel panics)
309 */
310void *
311zio_data_buf_alloc(size_t size)
312{
313	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
314
315	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
316
317	if (zio_use_uma)
318		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
319	else
320		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
321}
322
323void
324zio_buf_free(void *buf, size_t size)
325{
326	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
327
328	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
329
330	if (zio_use_uma)
331		kmem_cache_free(zio_buf_cache[c], buf);
332	else
333		kmem_free(buf, size);
334}
335
336void
337zio_data_buf_free(void *buf, size_t size)
338{
339	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
340
341	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
342
343	if (zio_use_uma)
344		kmem_cache_free(zio_data_buf_cache[c], buf);
345	else
346		kmem_free(buf, size);
347}
348
349/*
350 * ==========================================================================
351 * Push and pop I/O transform buffers
352 * ==========================================================================
353 */
354static void
355zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
356	zio_transform_func_t *transform)
357{
358	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
359
360	zt->zt_orig_data = zio->io_data;
361	zt->zt_orig_size = zio->io_size;
362	zt->zt_bufsize = bufsize;
363	zt->zt_transform = transform;
364
365	zt->zt_next = zio->io_transform_stack;
366	zio->io_transform_stack = zt;
367
368	zio->io_data = data;
369	zio->io_size = size;
370}
371
372static void
373zio_pop_transforms(zio_t *zio)
374{
375	zio_transform_t *zt;
376
377	while ((zt = zio->io_transform_stack) != NULL) {
378		if (zt->zt_transform != NULL)
379			zt->zt_transform(zio,
380			    zt->zt_orig_data, zt->zt_orig_size);
381
382		if (zt->zt_bufsize != 0)
383			zio_buf_free(zio->io_data, zt->zt_bufsize);
384
385		zio->io_data = zt->zt_orig_data;
386		zio->io_size = zt->zt_orig_size;
387		zio->io_transform_stack = zt->zt_next;
388
389		kmem_free(zt, sizeof (zio_transform_t));
390	}
391}
392
393/*
394 * ==========================================================================
395 * I/O transform callbacks for subblocks and decompression
396 * ==========================================================================
397 */
398static void
399zio_subblock(zio_t *zio, void *data, uint64_t size)
400{
401	ASSERT(zio->io_size > size);
402
403	if (zio->io_type == ZIO_TYPE_READ)
404		bcopy(zio->io_data, data, size);
405}
406
407static void
408zio_decompress(zio_t *zio, void *data, uint64_t size)
409{
410	if (zio->io_error == 0 &&
411	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
412	    zio->io_data, data, zio->io_size, size) != 0)
413		zio->io_error = SET_ERROR(EIO);
414}
415
416/*
417 * ==========================================================================
418 * I/O parent/child relationships and pipeline interlocks
419 * ==========================================================================
420 */
421/*
422 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
423 *        continue calling these functions until they return NULL.
424 *        Otherwise, the next caller will pick up the list walk in
425 *        some indeterminate state.  (Otherwise every caller would
426 *        have to pass in a cookie to keep the state represented by
427 *        io_walk_link, which gets annoying.)
428 */
429zio_t *
430zio_walk_parents(zio_t *cio)
431{
432	zio_link_t *zl = cio->io_walk_link;
433	list_t *pl = &cio->io_parent_list;
434
435	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
436	cio->io_walk_link = zl;
437
438	if (zl == NULL)
439		return (NULL);
440
441	ASSERT(zl->zl_child == cio);
442	return (zl->zl_parent);
443}
444
445zio_t *
446zio_walk_children(zio_t *pio)
447{
448	zio_link_t *zl = pio->io_walk_link;
449	list_t *cl = &pio->io_child_list;
450
451	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
452	pio->io_walk_link = zl;
453
454	if (zl == NULL)
455		return (NULL);
456
457	ASSERT(zl->zl_parent == pio);
458	return (zl->zl_child);
459}
460
461zio_t *
462zio_unique_parent(zio_t *cio)
463{
464	zio_t *pio = zio_walk_parents(cio);
465
466	VERIFY(zio_walk_parents(cio) == NULL);
467	return (pio);
468}
469
470void
471zio_add_child(zio_t *pio, zio_t *cio)
472{
473	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
474
475	/*
476	 * Logical I/Os can have logical, gang, or vdev children.
477	 * Gang I/Os can have gang or vdev children.
478	 * Vdev I/Os can only have vdev children.
479	 * The following ASSERT captures all of these constraints.
480	 */
481	ASSERT(cio->io_child_type <= pio->io_child_type);
482
483	zl->zl_parent = pio;
484	zl->zl_child = cio;
485
486	mutex_enter(&cio->io_lock);
487	mutex_enter(&pio->io_lock);
488
489	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
490
491	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
492		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
493
494	list_insert_head(&pio->io_child_list, zl);
495	list_insert_head(&cio->io_parent_list, zl);
496
497	pio->io_child_count++;
498	cio->io_parent_count++;
499
500	mutex_exit(&pio->io_lock);
501	mutex_exit(&cio->io_lock);
502}
503
504static void
505zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
506{
507	ASSERT(zl->zl_parent == pio);
508	ASSERT(zl->zl_child == cio);
509
510	mutex_enter(&cio->io_lock);
511	mutex_enter(&pio->io_lock);
512
513	list_remove(&pio->io_child_list, zl);
514	list_remove(&cio->io_parent_list, zl);
515
516	pio->io_child_count--;
517	cio->io_parent_count--;
518
519	mutex_exit(&pio->io_lock);
520	mutex_exit(&cio->io_lock);
521
522	kmem_cache_free(zio_link_cache, zl);
523}
524
525static boolean_t
526zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
527{
528	uint64_t *countp = &zio->io_children[child][wait];
529	boolean_t waiting = B_FALSE;
530
531	mutex_enter(&zio->io_lock);
532	ASSERT(zio->io_stall == NULL);
533	if (*countp != 0) {
534		zio->io_stage >>= 1;
535		zio->io_stall = countp;
536		waiting = B_TRUE;
537	}
538	mutex_exit(&zio->io_lock);
539
540	return (waiting);
541}
542
543static void
544zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
545{
546	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
547	int *errorp = &pio->io_child_error[zio->io_child_type];
548
549	mutex_enter(&pio->io_lock);
550	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
551		*errorp = zio_worst_error(*errorp, zio->io_error);
552	pio->io_reexecute |= zio->io_reexecute;
553	ASSERT3U(*countp, >, 0);
554	if (--*countp == 0 && pio->io_stall == countp) {
555		pio->io_stall = NULL;
556		mutex_exit(&pio->io_lock);
557		zio_execute(pio);
558	} else {
559		mutex_exit(&pio->io_lock);
560	}
561}
562
563static void
564zio_inherit_child_errors(zio_t *zio, enum zio_child c)
565{
566	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
567		zio->io_error = zio->io_child_error[c];
568}
569
570/*
571 * ==========================================================================
572 * Create the various types of I/O (read, write, free, etc)
573 * ==========================================================================
574 */
575static zio_t *
576zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
577    void *data, uint64_t size, zio_done_func_t *done, void *private,
578    zio_type_t type, int priority, enum zio_flag flags,
579    vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
580    enum zio_stage stage, enum zio_stage pipeline)
581{
582	zio_t *zio;
583
584	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
585	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
586	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
587
588	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
589	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
590	ASSERT(vd || stage == ZIO_STAGE_OPEN);
591
592	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
593	bzero(zio, sizeof (zio_t));
594
595	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
596	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
597
598	list_create(&zio->io_parent_list, sizeof (zio_link_t),
599	    offsetof(zio_link_t, zl_parent_node));
600	list_create(&zio->io_child_list, sizeof (zio_link_t),
601	    offsetof(zio_link_t, zl_child_node));
602
603	if (vd != NULL)
604		zio->io_child_type = ZIO_CHILD_VDEV;
605	else if (flags & ZIO_FLAG_GANG_CHILD)
606		zio->io_child_type = ZIO_CHILD_GANG;
607	else if (flags & ZIO_FLAG_DDT_CHILD)
608		zio->io_child_type = ZIO_CHILD_DDT;
609	else
610		zio->io_child_type = ZIO_CHILD_LOGICAL;
611
612	if (bp != NULL) {
613		zio->io_bp = (blkptr_t *)bp;
614		zio->io_bp_copy = *bp;
615		zio->io_bp_orig = *bp;
616		if (type != ZIO_TYPE_WRITE ||
617		    zio->io_child_type == ZIO_CHILD_DDT)
618			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
619		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
620			zio->io_logical = zio;
621		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
622			pipeline |= ZIO_GANG_STAGES;
623	}
624
625	zio->io_spa = spa;
626	zio->io_txg = txg;
627	zio->io_done = done;
628	zio->io_private = private;
629	zio->io_type = type;
630	zio->io_priority = priority;
631	zio->io_vd = vd;
632	zio->io_offset = offset;
633	zio->io_orig_data = zio->io_data = data;
634	zio->io_orig_size = zio->io_size = size;
635	zio->io_orig_flags = zio->io_flags = flags;
636	zio->io_orig_stage = zio->io_stage = stage;
637	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
638
639	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
640	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
641
642	if (zb != NULL)
643		zio->io_bookmark = *zb;
644
645	if (pio != NULL) {
646		if (zio->io_logical == NULL)
647			zio->io_logical = pio->io_logical;
648		if (zio->io_child_type == ZIO_CHILD_GANG)
649			zio->io_gang_leader = pio->io_gang_leader;
650		zio_add_child(pio, zio);
651	}
652
653	return (zio);
654}
655
656static void
657zio_destroy(zio_t *zio)
658{
659	list_destroy(&zio->io_parent_list);
660	list_destroy(&zio->io_child_list);
661	mutex_destroy(&zio->io_lock);
662	cv_destroy(&zio->io_cv);
663	kmem_cache_free(zio_cache, zio);
664}
665
666zio_t *
667zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
668    void *private, enum zio_flag flags)
669{
670	zio_t *zio;
671
672	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
673	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
674	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
675
676	return (zio);
677}
678
679zio_t *
680zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
681{
682	return (zio_null(NULL, spa, NULL, done, private, flags));
683}
684
685zio_t *
686zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
687    void *data, uint64_t size, zio_done_func_t *done, void *private,
688    int priority, enum zio_flag flags, const zbookmark_t *zb)
689{
690	zio_t *zio;
691
692	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
693	    data, size, done, private,
694	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
695	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
696	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
697
698	return (zio);
699}
700
701zio_t *
702zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
703    void *data, uint64_t size, const zio_prop_t *zp,
704    zio_done_func_t *ready, zio_done_func_t *done, void *private,
705    int priority, enum zio_flag flags, const zbookmark_t *zb)
706{
707	zio_t *zio;
708
709	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
710	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
711	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
712	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
713	    DMU_OT_IS_VALID(zp->zp_type) &&
714	    zp->zp_level < 32 &&
715	    zp->zp_copies > 0 &&
716	    zp->zp_copies <= spa_max_replication(spa));
717
718	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
719	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
720	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
721	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
722
723	zio->io_ready = ready;
724	zio->io_prop = *zp;
725
726	return (zio);
727}
728
729zio_t *
730zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
731    uint64_t size, zio_done_func_t *done, void *private, int priority,
732    enum zio_flag flags, zbookmark_t *zb)
733{
734	zio_t *zio;
735
736	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
737	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
738	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
739
740	return (zio);
741}
742
743void
744zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
745{
746	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
747	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
748	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
749	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
750
751	/*
752	 * We must reset the io_prop to match the values that existed
753	 * when the bp was first written by dmu_sync() keeping in mind
754	 * that nopwrite and dedup are mutually exclusive.
755	 */
756	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
757	zio->io_prop.zp_nopwrite = nopwrite;
758	zio->io_prop.zp_copies = copies;
759	zio->io_bp_override = bp;
760}
761
762void
763zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
764{
765	metaslab_check_free(spa, bp);
766
767	/*
768	 * Frees that are for the currently-syncing txg, are not going to be
769	 * deferred, and which will not need to do a read (i.e. not GANG or
770	 * DEDUP), can be processed immediately.  Otherwise, put them on the
771	 * in-memory list for later processing.
772	 */
773	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
774	    txg != spa->spa_syncing_txg ||
775	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
776		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
777	} else {
778		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
779		    BP_GET_PSIZE(bp), 0)));
780	}
781}
782
783zio_t *
784zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
785    uint64_t size, enum zio_flag flags)
786{
787	zio_t *zio;
788	enum zio_stage stage = ZIO_FREE_PIPELINE;
789
790	dprintf_bp(bp, "freeing in txg %llu, pass %u",
791	    (longlong_t)txg, spa->spa_sync_pass);
792
793	ASSERT(!BP_IS_HOLE(bp));
794	ASSERT(spa_syncing_txg(spa) == txg);
795	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
796
797	metaslab_check_free(spa, bp);
798	arc_freed(spa, bp);
799
800	if (zfs_trim_enabled)
801		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
802		    ZIO_STAGE_VDEV_IO_ASSESS;
803	/*
804	 * GANG and DEDUP blocks can induce a read (for the gang block header,
805	 * or the DDT), so issue them asynchronously so that this thread is
806	 * not tied up.
807	 */
808	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
809		stage |= ZIO_STAGE_ISSUE_ASYNC;
810
811	zio = zio_create(pio, spa, txg, bp, NULL, size,
812	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
813	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
814
815	return (zio);
816}
817
818zio_t *
819zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
820    zio_done_func_t *done, void *private, enum zio_flag flags)
821{
822	zio_t *zio;
823
824	/*
825	 * A claim is an allocation of a specific block.  Claims are needed
826	 * to support immediate writes in the intent log.  The issue is that
827	 * immediate writes contain committed data, but in a txg that was
828	 * *not* committed.  Upon opening the pool after an unclean shutdown,
829	 * the intent log claims all blocks that contain immediate write data
830	 * so that the SPA knows they're in use.
831	 *
832	 * All claims *must* be resolved in the first txg -- before the SPA
833	 * starts allocating blocks -- so that nothing is allocated twice.
834	 * If txg == 0 we just verify that the block is claimable.
835	 */
836	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
837	ASSERT(txg == spa_first_txg(spa) || txg == 0);
838	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
839
840	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
841	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
842	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
843
844	return (zio);
845}
846
847zio_t *
848zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
849    uint64_t size, zio_done_func_t *done, void *private, int priority,
850    enum zio_flag flags)
851{
852	zio_t *zio;
853	int c;
854
855	if (vd->vdev_children == 0) {
856		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
857		    ZIO_TYPE_IOCTL, priority, flags, vd, offset, NULL,
858		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
859
860		zio->io_cmd = cmd;
861	} else {
862		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
863
864		for (c = 0; c < vd->vdev_children; c++)
865			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
866			    offset, size, done, private, priority, flags));
867	}
868
869	return (zio);
870}
871
872zio_t *
873zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
874    void *data, int checksum, zio_done_func_t *done, void *private,
875    int priority, enum zio_flag flags, boolean_t labels)
876{
877	zio_t *zio;
878
879	ASSERT(vd->vdev_children == 0);
880	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
881	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
882	ASSERT3U(offset + size, <=, vd->vdev_psize);
883
884	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
885	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
886	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
887
888	zio->io_prop.zp_checksum = checksum;
889
890	return (zio);
891}
892
893zio_t *
894zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
895    void *data, int checksum, zio_done_func_t *done, void *private,
896    int priority, enum zio_flag flags, boolean_t labels)
897{
898	zio_t *zio;
899
900	ASSERT(vd->vdev_children == 0);
901	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
902	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
903	ASSERT3U(offset + size, <=, vd->vdev_psize);
904
905	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
906	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
907	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
908
909	zio->io_prop.zp_checksum = checksum;
910
911	if (zio_checksum_table[checksum].ci_eck) {
912		/*
913		 * zec checksums are necessarily destructive -- they modify
914		 * the end of the write buffer to hold the verifier/checksum.
915		 * Therefore, we must make a local copy in case the data is
916		 * being written to multiple places in parallel.
917		 */
918		void *wbuf = zio_buf_alloc(size);
919		bcopy(data, wbuf, size);
920		zio_push_transform(zio, wbuf, size, size, NULL);
921	}
922
923	return (zio);
924}
925
926/*
927 * Create a child I/O to do some work for us.
928 */
929zio_t *
930zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
931	void *data, uint64_t size, int type, int priority, enum zio_flag flags,
932	zio_done_func_t *done, void *private)
933{
934	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
935	zio_t *zio;
936
937	ASSERT(vd->vdev_parent ==
938	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
939
940	if (type == ZIO_TYPE_READ && bp != NULL) {
941		/*
942		 * If we have the bp, then the child should perform the
943		 * checksum and the parent need not.  This pushes error
944		 * detection as close to the leaves as possible and
945		 * eliminates redundant checksums in the interior nodes.
946		 */
947		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
948		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
949	}
950
951	if (vd->vdev_children == 0)
952		offset += VDEV_LABEL_START_SIZE;
953
954	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
955
956	/*
957	 * If we've decided to do a repair, the write is not speculative --
958	 * even if the original read was.
959	 */
960	if (flags & ZIO_FLAG_IO_REPAIR)
961		flags &= ~ZIO_FLAG_SPECULATIVE;
962
963	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
964	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
965	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
966
967	return (zio);
968}
969
970zio_t *
971zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
972	int type, int priority, enum zio_flag flags,
973	zio_done_func_t *done, void *private)
974{
975	zio_t *zio;
976
977	ASSERT(vd->vdev_ops->vdev_op_leaf);
978
979	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
980	    data, size, done, private, type, priority,
981	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
982	    vd, offset, NULL,
983	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
984
985	return (zio);
986}
987
988void
989zio_flush(zio_t *zio, vdev_t *vd)
990{
991	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
992	    NULL, NULL, ZIO_PRIORITY_NOW,
993	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
994}
995
996zio_t *
997zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
998{
999
1000	ASSERT(vd->vdev_ops->vdev_op_leaf);
1001
1002	return zio_ioctl(zio, spa, vd, DKIOCTRIM, offset, size,
1003	    NULL, NULL, ZIO_PRIORITY_TRIM,
1004	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
1005}
1006
1007void
1008zio_shrink(zio_t *zio, uint64_t size)
1009{
1010	ASSERT(zio->io_executor == NULL);
1011	ASSERT(zio->io_orig_size == zio->io_size);
1012	ASSERT(size <= zio->io_size);
1013
1014	/*
1015	 * We don't shrink for raidz because of problems with the
1016	 * reconstruction when reading back less than the block size.
1017	 * Note, BP_IS_RAIDZ() assumes no compression.
1018	 */
1019	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1020	if (!BP_IS_RAIDZ(zio->io_bp))
1021		zio->io_orig_size = zio->io_size = size;
1022}
1023
1024/*
1025 * ==========================================================================
1026 * Prepare to read and write logical blocks
1027 * ==========================================================================
1028 */
1029
1030static int
1031zio_read_bp_init(zio_t *zio)
1032{
1033	blkptr_t *bp = zio->io_bp;
1034
1035	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1036	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1037	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1038		uint64_t psize = BP_GET_PSIZE(bp);
1039		void *cbuf = zio_buf_alloc(psize);
1040
1041		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1042	}
1043
1044	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1045		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1046
1047	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1048		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1049
1050	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1051		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1052
1053	return (ZIO_PIPELINE_CONTINUE);
1054}
1055
1056static int
1057zio_write_bp_init(zio_t *zio)
1058{
1059	spa_t *spa = zio->io_spa;
1060	zio_prop_t *zp = &zio->io_prop;
1061	enum zio_compress compress = zp->zp_compress;
1062	blkptr_t *bp = zio->io_bp;
1063	uint64_t lsize = zio->io_size;
1064	uint64_t psize = lsize;
1065	int pass = 1;
1066
1067	/*
1068	 * If our children haven't all reached the ready stage,
1069	 * wait for them and then repeat this pipeline stage.
1070	 */
1071	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1072	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1073		return (ZIO_PIPELINE_STOP);
1074
1075	if (!IO_IS_ALLOCATING(zio))
1076		return (ZIO_PIPELINE_CONTINUE);
1077
1078	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1079
1080	if (zio->io_bp_override) {
1081		ASSERT(bp->blk_birth != zio->io_txg);
1082		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1083
1084		*bp = *zio->io_bp_override;
1085		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1086
1087		/*
1088		 * If we've been overridden and nopwrite is set then
1089		 * set the flag accordingly to indicate that a nopwrite
1090		 * has already occurred.
1091		 */
1092		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1093			ASSERT(!zp->zp_dedup);
1094			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1095			return (ZIO_PIPELINE_CONTINUE);
1096		}
1097
1098		ASSERT(!zp->zp_nopwrite);
1099
1100		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1101			return (ZIO_PIPELINE_CONTINUE);
1102
1103		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1104		    zp->zp_dedup_verify);
1105
1106		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1107			BP_SET_DEDUP(bp, 1);
1108			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1109			return (ZIO_PIPELINE_CONTINUE);
1110		}
1111		zio->io_bp_override = NULL;
1112		BP_ZERO(bp);
1113	}
1114
1115	if (bp->blk_birth == zio->io_txg) {
1116		/*
1117		 * We're rewriting an existing block, which means we're
1118		 * working on behalf of spa_sync().  For spa_sync() to
1119		 * converge, it must eventually be the case that we don't
1120		 * have to allocate new blocks.  But compression changes
1121		 * the blocksize, which forces a reallocate, and makes
1122		 * convergence take longer.  Therefore, after the first
1123		 * few passes, stop compressing to ensure convergence.
1124		 */
1125		pass = spa_sync_pass(spa);
1126
1127		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1128		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1129		ASSERT(!BP_GET_DEDUP(bp));
1130
1131		if (pass >= zfs_sync_pass_dont_compress)
1132			compress = ZIO_COMPRESS_OFF;
1133
1134		/* Make sure someone doesn't change their mind on overwrites */
1135		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1136		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1137	}
1138
1139	if (compress != ZIO_COMPRESS_OFF) {
1140		void *cbuf = zio_buf_alloc(lsize);
1141		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1142		if (psize == 0 || psize == lsize) {
1143			compress = ZIO_COMPRESS_OFF;
1144			zio_buf_free(cbuf, lsize);
1145		} else {
1146			ASSERT(psize < lsize);
1147			zio_push_transform(zio, cbuf, psize, lsize, NULL);
1148		}
1149	}
1150
1151	/*
1152	 * The final pass of spa_sync() must be all rewrites, but the first
1153	 * few passes offer a trade-off: allocating blocks defers convergence,
1154	 * but newly allocated blocks are sequential, so they can be written
1155	 * to disk faster.  Therefore, we allow the first few passes of
1156	 * spa_sync() to allocate new blocks, but force rewrites after that.
1157	 * There should only be a handful of blocks after pass 1 in any case.
1158	 */
1159	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1160	    pass >= zfs_sync_pass_rewrite) {
1161		ASSERT(psize != 0);
1162		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1163		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1164		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1165	} else {
1166		BP_ZERO(bp);
1167		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1168	}
1169
1170	if (psize == 0) {
1171		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1172	} else {
1173		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1174		BP_SET_LSIZE(bp, lsize);
1175		BP_SET_PSIZE(bp, psize);
1176		BP_SET_COMPRESS(bp, compress);
1177		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1178		BP_SET_TYPE(bp, zp->zp_type);
1179		BP_SET_LEVEL(bp, zp->zp_level);
1180		BP_SET_DEDUP(bp, zp->zp_dedup);
1181		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1182		if (zp->zp_dedup) {
1183			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1184			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1185			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1186		}
1187		if (zp->zp_nopwrite) {
1188			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1189			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1190			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1191		}
1192	}
1193
1194	return (ZIO_PIPELINE_CONTINUE);
1195}
1196
1197static int
1198zio_free_bp_init(zio_t *zio)
1199{
1200	blkptr_t *bp = zio->io_bp;
1201
1202	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1203		if (BP_GET_DEDUP(bp))
1204			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1205	}
1206
1207	return (ZIO_PIPELINE_CONTINUE);
1208}
1209
1210/*
1211 * ==========================================================================
1212 * Execute the I/O pipeline
1213 * ==========================================================================
1214 */
1215
1216static void
1217zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q, boolean_t cutinline)
1218{
1219	spa_t *spa = zio->io_spa;
1220	zio_type_t t = zio->io_type;
1221	int flags = TQ_SLEEP | (cutinline ? TQ_FRONT : 0);
1222
1223	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1224
1225	/*
1226	 * If we're a config writer or a probe, the normal issue and
1227	 * interrupt threads may all be blocked waiting for the config lock.
1228	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1229	 */
1230	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1231		t = ZIO_TYPE_NULL;
1232
1233	/*
1234	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1235	 */
1236	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1237		t = ZIO_TYPE_NULL;
1238
1239	/*
1240	 * If this is a high priority I/O, then use the high priority taskq.
1241	 */
1242	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1243	    spa->spa_zio_taskq[t][q + 1] != NULL)
1244		q++;
1245
1246	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1247#ifdef _KERNEL
1248	(void) taskq_dispatch_safe(spa->spa_zio_taskq[t][q],
1249	    (task_func_t *)zio_execute, zio, flags, &zio->io_task);
1250#else
1251	(void) taskq_dispatch(spa->spa_zio_taskq[t][q],
1252	    (task_func_t *)zio_execute, zio, flags);
1253#endif
1254}
1255
1256static boolean_t
1257zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
1258{
1259	kthread_t *executor = zio->io_executor;
1260	spa_t *spa = zio->io_spa;
1261
1262	for (zio_type_t t = 0; t < ZIO_TYPES; t++)
1263		if (taskq_member(spa->spa_zio_taskq[t][q], executor))
1264			return (B_TRUE);
1265
1266	return (B_FALSE);
1267}
1268
1269static int
1270zio_issue_async(zio_t *zio)
1271{
1272	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1273
1274	return (ZIO_PIPELINE_STOP);
1275}
1276
1277void
1278zio_interrupt(zio_t *zio)
1279{
1280	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1281}
1282
1283/*
1284 * Execute the I/O pipeline until one of the following occurs:
1285 *
1286 *	(1) the I/O completes
1287 *	(2) the pipeline stalls waiting for dependent child I/Os
1288 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1289 *	(4) the I/O is delegated by vdev-level caching or aggregation
1290 *	(5) the I/O is deferred due to vdev-level queueing
1291 *	(6) the I/O is handed off to another thread.
1292 *
1293 * In all cases, the pipeline stops whenever there's no CPU work; it never
1294 * burns a thread in cv_wait().
1295 *
1296 * There's no locking on io_stage because there's no legitimate way
1297 * for multiple threads to be attempting to process the same I/O.
1298 */
1299static zio_pipe_stage_t *zio_pipeline[];
1300
1301void
1302zio_execute(zio_t *zio)
1303{
1304	zio->io_executor = curthread;
1305
1306	while (zio->io_stage < ZIO_STAGE_DONE) {
1307		enum zio_stage pipeline = zio->io_pipeline;
1308		enum zio_stage stage = zio->io_stage;
1309		int rv;
1310
1311		ASSERT(!MUTEX_HELD(&zio->io_lock));
1312		ASSERT(ISP2(stage));
1313		ASSERT(zio->io_stall == NULL);
1314
1315		do {
1316			stage <<= 1;
1317		} while ((stage & pipeline) == 0);
1318
1319		ASSERT(stage <= ZIO_STAGE_DONE);
1320
1321		/*
1322		 * If we are in interrupt context and this pipeline stage
1323		 * will grab a config lock that is held across I/O,
1324		 * or may wait for an I/O that needs an interrupt thread
1325		 * to complete, issue async to avoid deadlock.
1326		 *
1327		 * For VDEV_IO_START, we cut in line so that the io will
1328		 * be sent to disk promptly.
1329		 */
1330		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1331		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1332			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1333			    zio_requeue_io_start_cut_in_line : B_FALSE;
1334			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1335			return;
1336		}
1337
1338		zio->io_stage = stage;
1339		rv = zio_pipeline[highbit(stage) - 1](zio);
1340
1341		if (rv == ZIO_PIPELINE_STOP)
1342			return;
1343
1344		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1345	}
1346}
1347
1348/*
1349 * ==========================================================================
1350 * Initiate I/O, either sync or async
1351 * ==========================================================================
1352 */
1353int
1354zio_wait(zio_t *zio)
1355{
1356	int error;
1357
1358	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1359	ASSERT(zio->io_executor == NULL);
1360
1361	zio->io_waiter = curthread;
1362
1363	zio_execute(zio);
1364
1365	mutex_enter(&zio->io_lock);
1366	while (zio->io_executor != NULL)
1367		cv_wait(&zio->io_cv, &zio->io_lock);
1368	mutex_exit(&zio->io_lock);
1369
1370	error = zio->io_error;
1371	zio_destroy(zio);
1372
1373	return (error);
1374}
1375
1376void
1377zio_nowait(zio_t *zio)
1378{
1379	ASSERT(zio->io_executor == NULL);
1380
1381	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1382	    zio_unique_parent(zio) == NULL) {
1383		/*
1384		 * This is a logical async I/O with no parent to wait for it.
1385		 * We add it to the spa_async_root_zio "Godfather" I/O which
1386		 * will ensure they complete prior to unloading the pool.
1387		 */
1388		spa_t *spa = zio->io_spa;
1389
1390		zio_add_child(spa->spa_async_zio_root, zio);
1391	}
1392
1393	zio_execute(zio);
1394}
1395
1396/*
1397 * ==========================================================================
1398 * Reexecute or suspend/resume failed I/O
1399 * ==========================================================================
1400 */
1401
1402static void
1403zio_reexecute(zio_t *pio)
1404{
1405	zio_t *cio, *cio_next;
1406
1407	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1408	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1409	ASSERT(pio->io_gang_leader == NULL);
1410	ASSERT(pio->io_gang_tree == NULL);
1411
1412	pio->io_flags = pio->io_orig_flags;
1413	pio->io_stage = pio->io_orig_stage;
1414	pio->io_pipeline = pio->io_orig_pipeline;
1415	pio->io_reexecute = 0;
1416	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1417	pio->io_error = 0;
1418	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1419		pio->io_state[w] = 0;
1420	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1421		pio->io_child_error[c] = 0;
1422
1423	if (IO_IS_ALLOCATING(pio))
1424		BP_ZERO(pio->io_bp);
1425
1426	/*
1427	 * As we reexecute pio's children, new children could be created.
1428	 * New children go to the head of pio's io_child_list, however,
1429	 * so we will (correctly) not reexecute them.  The key is that
1430	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1431	 * cannot be affected by any side effects of reexecuting 'cio'.
1432	 */
1433	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1434		cio_next = zio_walk_children(pio);
1435		mutex_enter(&pio->io_lock);
1436		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1437			pio->io_children[cio->io_child_type][w]++;
1438		mutex_exit(&pio->io_lock);
1439		zio_reexecute(cio);
1440	}
1441
1442	/*
1443	 * Now that all children have been reexecuted, execute the parent.
1444	 * We don't reexecute "The Godfather" I/O here as it's the
1445	 * responsibility of the caller to wait on him.
1446	 */
1447	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1448		zio_execute(pio);
1449}
1450
1451void
1452zio_suspend(spa_t *spa, zio_t *zio)
1453{
1454	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1455		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1456		    "failure and the failure mode property for this pool "
1457		    "is set to panic.", spa_name(spa));
1458
1459	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1460
1461	mutex_enter(&spa->spa_suspend_lock);
1462
1463	if (spa->spa_suspend_zio_root == NULL)
1464		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1465		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1466		    ZIO_FLAG_GODFATHER);
1467
1468	spa->spa_suspended = B_TRUE;
1469
1470	if (zio != NULL) {
1471		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1472		ASSERT(zio != spa->spa_suspend_zio_root);
1473		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1474		ASSERT(zio_unique_parent(zio) == NULL);
1475		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1476		zio_add_child(spa->spa_suspend_zio_root, zio);
1477	}
1478
1479	mutex_exit(&spa->spa_suspend_lock);
1480}
1481
1482int
1483zio_resume(spa_t *spa)
1484{
1485	zio_t *pio;
1486
1487	/*
1488	 * Reexecute all previously suspended i/o.
1489	 */
1490	mutex_enter(&spa->spa_suspend_lock);
1491	spa->spa_suspended = B_FALSE;
1492	cv_broadcast(&spa->spa_suspend_cv);
1493	pio = spa->spa_suspend_zio_root;
1494	spa->spa_suspend_zio_root = NULL;
1495	mutex_exit(&spa->spa_suspend_lock);
1496
1497	if (pio == NULL)
1498		return (0);
1499
1500	zio_reexecute(pio);
1501	return (zio_wait(pio));
1502}
1503
1504void
1505zio_resume_wait(spa_t *spa)
1506{
1507	mutex_enter(&spa->spa_suspend_lock);
1508	while (spa_suspended(spa))
1509		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1510	mutex_exit(&spa->spa_suspend_lock);
1511}
1512
1513/*
1514 * ==========================================================================
1515 * Gang blocks.
1516 *
1517 * A gang block is a collection of small blocks that looks to the DMU
1518 * like one large block.  When zio_dva_allocate() cannot find a block
1519 * of the requested size, due to either severe fragmentation or the pool
1520 * being nearly full, it calls zio_write_gang_block() to construct the
1521 * block from smaller fragments.
1522 *
1523 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1524 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1525 * an indirect block: it's an array of block pointers.  It consumes
1526 * only one sector and hence is allocatable regardless of fragmentation.
1527 * The gang header's bps point to its gang members, which hold the data.
1528 *
1529 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1530 * as the verifier to ensure uniqueness of the SHA256 checksum.
1531 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1532 * not the gang header.  This ensures that data block signatures (needed for
1533 * deduplication) are independent of how the block is physically stored.
1534 *
1535 * Gang blocks can be nested: a gang member may itself be a gang block.
1536 * Thus every gang block is a tree in which root and all interior nodes are
1537 * gang headers, and the leaves are normal blocks that contain user data.
1538 * The root of the gang tree is called the gang leader.
1539 *
1540 * To perform any operation (read, rewrite, free, claim) on a gang block,
1541 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1542 * in the io_gang_tree field of the original logical i/o by recursively
1543 * reading the gang leader and all gang headers below it.  This yields
1544 * an in-core tree containing the contents of every gang header and the
1545 * bps for every constituent of the gang block.
1546 *
1547 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1548 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1549 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1550 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1551 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1552 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1553 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1554 * of the gang header plus zio_checksum_compute() of the data to update the
1555 * gang header's blk_cksum as described above.
1556 *
1557 * The two-phase assemble/issue model solves the problem of partial failure --
1558 * what if you'd freed part of a gang block but then couldn't read the
1559 * gang header for another part?  Assembling the entire gang tree first
1560 * ensures that all the necessary gang header I/O has succeeded before
1561 * starting the actual work of free, claim, or write.  Once the gang tree
1562 * is assembled, free and claim are in-memory operations that cannot fail.
1563 *
1564 * In the event that a gang write fails, zio_dva_unallocate() walks the
1565 * gang tree to immediately free (i.e. insert back into the space map)
1566 * everything we've allocated.  This ensures that we don't get ENOSPC
1567 * errors during repeated suspend/resume cycles due to a flaky device.
1568 *
1569 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1570 * the gang tree, we won't modify the block, so we can safely defer the free
1571 * (knowing that the block is still intact).  If we *can* assemble the gang
1572 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1573 * each constituent bp and we can allocate a new block on the next sync pass.
1574 *
1575 * In all cases, the gang tree allows complete recovery from partial failure.
1576 * ==========================================================================
1577 */
1578
1579static zio_t *
1580zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1581{
1582	if (gn != NULL)
1583		return (pio);
1584
1585	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1586	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1587	    &pio->io_bookmark));
1588}
1589
1590zio_t *
1591zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1592{
1593	zio_t *zio;
1594
1595	if (gn != NULL) {
1596		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1597		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1598		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1599		/*
1600		 * As we rewrite each gang header, the pipeline will compute
1601		 * a new gang block header checksum for it; but no one will
1602		 * compute a new data checksum, so we do that here.  The one
1603		 * exception is the gang leader: the pipeline already computed
1604		 * its data checksum because that stage precedes gang assembly.
1605		 * (Presently, nothing actually uses interior data checksums;
1606		 * this is just good hygiene.)
1607		 */
1608		if (gn != pio->io_gang_leader->io_gang_tree) {
1609			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1610			    data, BP_GET_PSIZE(bp));
1611		}
1612		/*
1613		 * If we are here to damage data for testing purposes,
1614		 * leave the GBH alone so that we can detect the damage.
1615		 */
1616		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1617			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1618	} else {
1619		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1620		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1621		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1622	}
1623
1624	return (zio);
1625}
1626
1627/* ARGSUSED */
1628zio_t *
1629zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1630{
1631	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1632	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1633	    ZIO_GANG_CHILD_FLAGS(pio)));
1634}
1635
1636/* ARGSUSED */
1637zio_t *
1638zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1639{
1640	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1641	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1642}
1643
1644static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1645	NULL,
1646	zio_read_gang,
1647	zio_rewrite_gang,
1648	zio_free_gang,
1649	zio_claim_gang,
1650	NULL
1651};
1652
1653static void zio_gang_tree_assemble_done(zio_t *zio);
1654
1655static zio_gang_node_t *
1656zio_gang_node_alloc(zio_gang_node_t **gnpp)
1657{
1658	zio_gang_node_t *gn;
1659
1660	ASSERT(*gnpp == NULL);
1661
1662	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1663	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1664	*gnpp = gn;
1665
1666	return (gn);
1667}
1668
1669static void
1670zio_gang_node_free(zio_gang_node_t **gnpp)
1671{
1672	zio_gang_node_t *gn = *gnpp;
1673
1674	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1675		ASSERT(gn->gn_child[g] == NULL);
1676
1677	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1678	kmem_free(gn, sizeof (*gn));
1679	*gnpp = NULL;
1680}
1681
1682static void
1683zio_gang_tree_free(zio_gang_node_t **gnpp)
1684{
1685	zio_gang_node_t *gn = *gnpp;
1686
1687	if (gn == NULL)
1688		return;
1689
1690	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1691		zio_gang_tree_free(&gn->gn_child[g]);
1692
1693	zio_gang_node_free(gnpp);
1694}
1695
1696static void
1697zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1698{
1699	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1700
1701	ASSERT(gio->io_gang_leader == gio);
1702	ASSERT(BP_IS_GANG(bp));
1703
1704	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1705	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1706	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1707}
1708
1709static void
1710zio_gang_tree_assemble_done(zio_t *zio)
1711{
1712	zio_t *gio = zio->io_gang_leader;
1713	zio_gang_node_t *gn = zio->io_private;
1714	blkptr_t *bp = zio->io_bp;
1715
1716	ASSERT(gio == zio_unique_parent(zio));
1717	ASSERT(zio->io_child_count == 0);
1718
1719	if (zio->io_error)
1720		return;
1721
1722	if (BP_SHOULD_BYTESWAP(bp))
1723		byteswap_uint64_array(zio->io_data, zio->io_size);
1724
1725	ASSERT(zio->io_data == gn->gn_gbh);
1726	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1727	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1728
1729	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1730		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1731		if (!BP_IS_GANG(gbp))
1732			continue;
1733		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1734	}
1735}
1736
1737static void
1738zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1739{
1740	zio_t *gio = pio->io_gang_leader;
1741	zio_t *zio;
1742
1743	ASSERT(BP_IS_GANG(bp) == !!gn);
1744	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1745	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1746
1747	/*
1748	 * If you're a gang header, your data is in gn->gn_gbh.
1749	 * If you're a gang member, your data is in 'data' and gn == NULL.
1750	 */
1751	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1752
1753	if (gn != NULL) {
1754		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1755
1756		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1757			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1758			if (BP_IS_HOLE(gbp))
1759				continue;
1760			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1761			data = (char *)data + BP_GET_PSIZE(gbp);
1762		}
1763	}
1764
1765	if (gn == gio->io_gang_tree && gio->io_data != NULL)
1766		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1767
1768	if (zio != pio)
1769		zio_nowait(zio);
1770}
1771
1772static int
1773zio_gang_assemble(zio_t *zio)
1774{
1775	blkptr_t *bp = zio->io_bp;
1776
1777	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1778	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1779
1780	zio->io_gang_leader = zio;
1781
1782	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1783
1784	return (ZIO_PIPELINE_CONTINUE);
1785}
1786
1787static int
1788zio_gang_issue(zio_t *zio)
1789{
1790	blkptr_t *bp = zio->io_bp;
1791
1792	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1793		return (ZIO_PIPELINE_STOP);
1794
1795	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1796	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1797
1798	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1799		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1800	else
1801		zio_gang_tree_free(&zio->io_gang_tree);
1802
1803	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1804
1805	return (ZIO_PIPELINE_CONTINUE);
1806}
1807
1808static void
1809zio_write_gang_member_ready(zio_t *zio)
1810{
1811	zio_t *pio = zio_unique_parent(zio);
1812	zio_t *gio = zio->io_gang_leader;
1813	dva_t *cdva = zio->io_bp->blk_dva;
1814	dva_t *pdva = pio->io_bp->blk_dva;
1815	uint64_t asize;
1816
1817	if (BP_IS_HOLE(zio->io_bp))
1818		return;
1819
1820	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1821
1822	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1823	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1824	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1825	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1826	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1827
1828	mutex_enter(&pio->io_lock);
1829	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1830		ASSERT(DVA_GET_GANG(&pdva[d]));
1831		asize = DVA_GET_ASIZE(&pdva[d]);
1832		asize += DVA_GET_ASIZE(&cdva[d]);
1833		DVA_SET_ASIZE(&pdva[d], asize);
1834	}
1835	mutex_exit(&pio->io_lock);
1836}
1837
1838static int
1839zio_write_gang_block(zio_t *pio)
1840{
1841	spa_t *spa = pio->io_spa;
1842	blkptr_t *bp = pio->io_bp;
1843	zio_t *gio = pio->io_gang_leader;
1844	zio_t *zio;
1845	zio_gang_node_t *gn, **gnpp;
1846	zio_gbh_phys_t *gbh;
1847	uint64_t txg = pio->io_txg;
1848	uint64_t resid = pio->io_size;
1849	uint64_t lsize;
1850	int copies = gio->io_prop.zp_copies;
1851	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1852	zio_prop_t zp;
1853	int error;
1854
1855	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1856	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1857	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1858	if (error) {
1859		pio->io_error = error;
1860		return (ZIO_PIPELINE_CONTINUE);
1861	}
1862
1863	if (pio == gio) {
1864		gnpp = &gio->io_gang_tree;
1865	} else {
1866		gnpp = pio->io_private;
1867		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1868	}
1869
1870	gn = zio_gang_node_alloc(gnpp);
1871	gbh = gn->gn_gbh;
1872	bzero(gbh, SPA_GANGBLOCKSIZE);
1873
1874	/*
1875	 * Create the gang header.
1876	 */
1877	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1878	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1879
1880	/*
1881	 * Create and nowait the gang children.
1882	 */
1883	for (int g = 0; resid != 0; resid -= lsize, g++) {
1884		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1885		    SPA_MINBLOCKSIZE);
1886		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1887
1888		zp.zp_checksum = gio->io_prop.zp_checksum;
1889		zp.zp_compress = ZIO_COMPRESS_OFF;
1890		zp.zp_type = DMU_OT_NONE;
1891		zp.zp_level = 0;
1892		zp.zp_copies = gio->io_prop.zp_copies;
1893		zp.zp_dedup = B_FALSE;
1894		zp.zp_dedup_verify = B_FALSE;
1895		zp.zp_nopwrite = B_FALSE;
1896
1897		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1898		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1899		    zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1900		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1901		    &pio->io_bookmark));
1902	}
1903
1904	/*
1905	 * Set pio's pipeline to just wait for zio to finish.
1906	 */
1907	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1908
1909	zio_nowait(zio);
1910
1911	return (ZIO_PIPELINE_CONTINUE);
1912}
1913
1914/*
1915 * The zio_nop_write stage in the pipeline determines if allocating
1916 * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1917 * such as SHA256, we can compare the checksums of the new data and the old
1918 * to determine if allocating a new block is required.  The nopwrite
1919 * feature can handle writes in either syncing or open context (i.e. zil
1920 * writes) and as a result is mutually exclusive with dedup.
1921 */
1922static int
1923zio_nop_write(zio_t *zio)
1924{
1925	blkptr_t *bp = zio->io_bp;
1926	blkptr_t *bp_orig = &zio->io_bp_orig;
1927	zio_prop_t *zp = &zio->io_prop;
1928
1929	ASSERT(BP_GET_LEVEL(bp) == 0);
1930	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1931	ASSERT(zp->zp_nopwrite);
1932	ASSERT(!zp->zp_dedup);
1933	ASSERT(zio->io_bp_override == NULL);
1934	ASSERT(IO_IS_ALLOCATING(zio));
1935
1936	/*
1937	 * Check to see if the original bp and the new bp have matching
1938	 * characteristics (i.e. same checksum, compression algorithms, etc).
1939	 * If they don't then just continue with the pipeline which will
1940	 * allocate a new bp.
1941	 */
1942	if (BP_IS_HOLE(bp_orig) ||
1943	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1944	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1945	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1946	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1947	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
1948		return (ZIO_PIPELINE_CONTINUE);
1949
1950	/*
1951	 * If the checksums match then reset the pipeline so that we
1952	 * avoid allocating a new bp and issuing any I/O.
1953	 */
1954	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1955		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1956		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1957		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1958		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1959		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1960		    sizeof (uint64_t)) == 0);
1961
1962		*bp = *bp_orig;
1963		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1964		zio->io_flags |= ZIO_FLAG_NOPWRITE;
1965	}
1966
1967	return (ZIO_PIPELINE_CONTINUE);
1968}
1969
1970/*
1971 * ==========================================================================
1972 * Dedup
1973 * ==========================================================================
1974 */
1975static void
1976zio_ddt_child_read_done(zio_t *zio)
1977{
1978	blkptr_t *bp = zio->io_bp;
1979	ddt_entry_t *dde = zio->io_private;
1980	ddt_phys_t *ddp;
1981	zio_t *pio = zio_unique_parent(zio);
1982
1983	mutex_enter(&pio->io_lock);
1984	ddp = ddt_phys_select(dde, bp);
1985	if (zio->io_error == 0)
1986		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1987	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1988		dde->dde_repair_data = zio->io_data;
1989	else
1990		zio_buf_free(zio->io_data, zio->io_size);
1991	mutex_exit(&pio->io_lock);
1992}
1993
1994static int
1995zio_ddt_read_start(zio_t *zio)
1996{
1997	blkptr_t *bp = zio->io_bp;
1998
1999	ASSERT(BP_GET_DEDUP(bp));
2000	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2001	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2002
2003	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2004		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2005		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2006		ddt_phys_t *ddp = dde->dde_phys;
2007		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2008		blkptr_t blk;
2009
2010		ASSERT(zio->io_vsd == NULL);
2011		zio->io_vsd = dde;
2012
2013		if (ddp_self == NULL)
2014			return (ZIO_PIPELINE_CONTINUE);
2015
2016		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2017			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2018				continue;
2019			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2020			    &blk);
2021			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2022			    zio_buf_alloc(zio->io_size), zio->io_size,
2023			    zio_ddt_child_read_done, dde, zio->io_priority,
2024			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2025			    &zio->io_bookmark));
2026		}
2027		return (ZIO_PIPELINE_CONTINUE);
2028	}
2029
2030	zio_nowait(zio_read(zio, zio->io_spa, bp,
2031	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2032	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2033
2034	return (ZIO_PIPELINE_CONTINUE);
2035}
2036
2037static int
2038zio_ddt_read_done(zio_t *zio)
2039{
2040	blkptr_t *bp = zio->io_bp;
2041
2042	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2043		return (ZIO_PIPELINE_STOP);
2044
2045	ASSERT(BP_GET_DEDUP(bp));
2046	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2047	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2048
2049	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2050		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2051		ddt_entry_t *dde = zio->io_vsd;
2052		if (ddt == NULL) {
2053			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2054			return (ZIO_PIPELINE_CONTINUE);
2055		}
2056		if (dde == NULL) {
2057			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2058			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2059			return (ZIO_PIPELINE_STOP);
2060		}
2061		if (dde->dde_repair_data != NULL) {
2062			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2063			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2064		}
2065		ddt_repair_done(ddt, dde);
2066		zio->io_vsd = NULL;
2067	}
2068
2069	ASSERT(zio->io_vsd == NULL);
2070
2071	return (ZIO_PIPELINE_CONTINUE);
2072}
2073
2074static boolean_t
2075zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2076{
2077	spa_t *spa = zio->io_spa;
2078
2079	/*
2080	 * Note: we compare the original data, not the transformed data,
2081	 * because when zio->io_bp is an override bp, we will not have
2082	 * pushed the I/O transforms.  That's an important optimization
2083	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2084	 */
2085	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2086		zio_t *lio = dde->dde_lead_zio[p];
2087
2088		if (lio != NULL) {
2089			return (lio->io_orig_size != zio->io_orig_size ||
2090			    bcmp(zio->io_orig_data, lio->io_orig_data,
2091			    zio->io_orig_size) != 0);
2092		}
2093	}
2094
2095	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2096		ddt_phys_t *ddp = &dde->dde_phys[p];
2097
2098		if (ddp->ddp_phys_birth != 0) {
2099			arc_buf_t *abuf = NULL;
2100			uint32_t aflags = ARC_WAIT;
2101			blkptr_t blk = *zio->io_bp;
2102			int error;
2103
2104			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2105
2106			ddt_exit(ddt);
2107
2108			error = arc_read(NULL, spa, &blk,
2109			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2110			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2111			    &aflags, &zio->io_bookmark);
2112
2113			if (error == 0) {
2114				if (arc_buf_size(abuf) != zio->io_orig_size ||
2115				    bcmp(abuf->b_data, zio->io_orig_data,
2116				    zio->io_orig_size) != 0)
2117					error = SET_ERROR(EEXIST);
2118				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2119			}
2120
2121			ddt_enter(ddt);
2122			return (error != 0);
2123		}
2124	}
2125
2126	return (B_FALSE);
2127}
2128
2129static void
2130zio_ddt_child_write_ready(zio_t *zio)
2131{
2132	int p = zio->io_prop.zp_copies;
2133	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2134	ddt_entry_t *dde = zio->io_private;
2135	ddt_phys_t *ddp = &dde->dde_phys[p];
2136	zio_t *pio;
2137
2138	if (zio->io_error)
2139		return;
2140
2141	ddt_enter(ddt);
2142
2143	ASSERT(dde->dde_lead_zio[p] == zio);
2144
2145	ddt_phys_fill(ddp, zio->io_bp);
2146
2147	while ((pio = zio_walk_parents(zio)) != NULL)
2148		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2149
2150	ddt_exit(ddt);
2151}
2152
2153static void
2154zio_ddt_child_write_done(zio_t *zio)
2155{
2156	int p = zio->io_prop.zp_copies;
2157	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2158	ddt_entry_t *dde = zio->io_private;
2159	ddt_phys_t *ddp = &dde->dde_phys[p];
2160
2161	ddt_enter(ddt);
2162
2163	ASSERT(ddp->ddp_refcnt == 0);
2164	ASSERT(dde->dde_lead_zio[p] == zio);
2165	dde->dde_lead_zio[p] = NULL;
2166
2167	if (zio->io_error == 0) {
2168		while (zio_walk_parents(zio) != NULL)
2169			ddt_phys_addref(ddp);
2170	} else {
2171		ddt_phys_clear(ddp);
2172	}
2173
2174	ddt_exit(ddt);
2175}
2176
2177static void
2178zio_ddt_ditto_write_done(zio_t *zio)
2179{
2180	int p = DDT_PHYS_DITTO;
2181	zio_prop_t *zp = &zio->io_prop;
2182	blkptr_t *bp = zio->io_bp;
2183	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2184	ddt_entry_t *dde = zio->io_private;
2185	ddt_phys_t *ddp = &dde->dde_phys[p];
2186	ddt_key_t *ddk = &dde->dde_key;
2187
2188	ddt_enter(ddt);
2189
2190	ASSERT(ddp->ddp_refcnt == 0);
2191	ASSERT(dde->dde_lead_zio[p] == zio);
2192	dde->dde_lead_zio[p] = NULL;
2193
2194	if (zio->io_error == 0) {
2195		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2196		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2197		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2198		if (ddp->ddp_phys_birth != 0)
2199			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2200		ddt_phys_fill(ddp, bp);
2201	}
2202
2203	ddt_exit(ddt);
2204}
2205
2206static int
2207zio_ddt_write(zio_t *zio)
2208{
2209	spa_t *spa = zio->io_spa;
2210	blkptr_t *bp = zio->io_bp;
2211	uint64_t txg = zio->io_txg;
2212	zio_prop_t *zp = &zio->io_prop;
2213	int p = zp->zp_copies;
2214	int ditto_copies;
2215	zio_t *cio = NULL;
2216	zio_t *dio = NULL;
2217	ddt_t *ddt = ddt_select(spa, bp);
2218	ddt_entry_t *dde;
2219	ddt_phys_t *ddp;
2220
2221	ASSERT(BP_GET_DEDUP(bp));
2222	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2223	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2224
2225	ddt_enter(ddt);
2226	dde = ddt_lookup(ddt, bp, B_TRUE);
2227	ddp = &dde->dde_phys[p];
2228
2229	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2230		/*
2231		 * If we're using a weak checksum, upgrade to a strong checksum
2232		 * and try again.  If we're already using a strong checksum,
2233		 * we can't resolve it, so just convert to an ordinary write.
2234		 * (And automatically e-mail a paper to Nature?)
2235		 */
2236		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2237			zp->zp_checksum = spa_dedup_checksum(spa);
2238			zio_pop_transforms(zio);
2239			zio->io_stage = ZIO_STAGE_OPEN;
2240			BP_ZERO(bp);
2241		} else {
2242			zp->zp_dedup = B_FALSE;
2243		}
2244		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2245		ddt_exit(ddt);
2246		return (ZIO_PIPELINE_CONTINUE);
2247	}
2248
2249	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2250	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2251
2252	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2253	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2254		zio_prop_t czp = *zp;
2255
2256		czp.zp_copies = ditto_copies;
2257
2258		/*
2259		 * If we arrived here with an override bp, we won't have run
2260		 * the transform stack, so we won't have the data we need to
2261		 * generate a child i/o.  So, toss the override bp and restart.
2262		 * This is safe, because using the override bp is just an
2263		 * optimization; and it's rare, so the cost doesn't matter.
2264		 */
2265		if (zio->io_bp_override) {
2266			zio_pop_transforms(zio);
2267			zio->io_stage = ZIO_STAGE_OPEN;
2268			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2269			zio->io_bp_override = NULL;
2270			BP_ZERO(bp);
2271			ddt_exit(ddt);
2272			return (ZIO_PIPELINE_CONTINUE);
2273		}
2274
2275		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2276		    zio->io_orig_size, &czp, NULL,
2277		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2278		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2279
2280		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2281		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2282	}
2283
2284	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2285		if (ddp->ddp_phys_birth != 0)
2286			ddt_bp_fill(ddp, bp, txg);
2287		if (dde->dde_lead_zio[p] != NULL)
2288			zio_add_child(zio, dde->dde_lead_zio[p]);
2289		else
2290			ddt_phys_addref(ddp);
2291	} else if (zio->io_bp_override) {
2292		ASSERT(bp->blk_birth == txg);
2293		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2294		ddt_phys_fill(ddp, bp);
2295		ddt_phys_addref(ddp);
2296	} else {
2297		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2298		    zio->io_orig_size, zp, zio_ddt_child_write_ready,
2299		    zio_ddt_child_write_done, dde, zio->io_priority,
2300		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2301
2302		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2303		dde->dde_lead_zio[p] = cio;
2304	}
2305
2306	ddt_exit(ddt);
2307
2308	if (cio)
2309		zio_nowait(cio);
2310	if (dio)
2311		zio_nowait(dio);
2312
2313	return (ZIO_PIPELINE_CONTINUE);
2314}
2315
2316ddt_entry_t *freedde; /* for debugging */
2317
2318static int
2319zio_ddt_free(zio_t *zio)
2320{
2321	spa_t *spa = zio->io_spa;
2322	blkptr_t *bp = zio->io_bp;
2323	ddt_t *ddt = ddt_select(spa, bp);
2324	ddt_entry_t *dde;
2325	ddt_phys_t *ddp;
2326
2327	ASSERT(BP_GET_DEDUP(bp));
2328	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2329
2330	ddt_enter(ddt);
2331	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2332	ddp = ddt_phys_select(dde, bp);
2333	ddt_phys_decref(ddp);
2334	ddt_exit(ddt);
2335
2336	return (ZIO_PIPELINE_CONTINUE);
2337}
2338
2339/*
2340 * ==========================================================================
2341 * Allocate and free blocks
2342 * ==========================================================================
2343 */
2344static int
2345zio_dva_allocate(zio_t *zio)
2346{
2347	spa_t *spa = zio->io_spa;
2348	metaslab_class_t *mc = spa_normal_class(spa);
2349	blkptr_t *bp = zio->io_bp;
2350	int error;
2351	int flags = 0;
2352
2353	if (zio->io_gang_leader == NULL) {
2354		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2355		zio->io_gang_leader = zio;
2356	}
2357
2358	ASSERT(BP_IS_HOLE(bp));
2359	ASSERT0(BP_GET_NDVAS(bp));
2360	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2361	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2362	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2363
2364	/*
2365	 * The dump device does not support gang blocks so allocation on
2366	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2367	 * the "fast" gang feature.
2368	 */
2369	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2370	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2371	    METASLAB_GANG_CHILD : 0;
2372	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2373	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2374
2375	if (error) {
2376		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2377		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2378		    error);
2379		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2380			return (zio_write_gang_block(zio));
2381		zio->io_error = error;
2382	}
2383
2384	return (ZIO_PIPELINE_CONTINUE);
2385}
2386
2387static int
2388zio_dva_free(zio_t *zio)
2389{
2390	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2391
2392	return (ZIO_PIPELINE_CONTINUE);
2393}
2394
2395static int
2396zio_dva_claim(zio_t *zio)
2397{
2398	int error;
2399
2400	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2401	if (error)
2402		zio->io_error = error;
2403
2404	return (ZIO_PIPELINE_CONTINUE);
2405}
2406
2407/*
2408 * Undo an allocation.  This is used by zio_done() when an I/O fails
2409 * and we want to give back the block we just allocated.
2410 * This handles both normal blocks and gang blocks.
2411 */
2412static void
2413zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2414{
2415	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2416	ASSERT(zio->io_bp_override == NULL);
2417
2418	if (!BP_IS_HOLE(bp))
2419		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2420
2421	if (gn != NULL) {
2422		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2423			zio_dva_unallocate(zio, gn->gn_child[g],
2424			    &gn->gn_gbh->zg_blkptr[g]);
2425		}
2426	}
2427}
2428
2429/*
2430 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2431 */
2432int
2433zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2434    uint64_t size, boolean_t use_slog)
2435{
2436	int error = 1;
2437
2438	ASSERT(txg > spa_syncing_txg(spa));
2439
2440	/*
2441	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2442	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2443	 * when allocating them.
2444	 */
2445	if (use_slog) {
2446		error = metaslab_alloc(spa, spa_log_class(spa), size,
2447		    new_bp, 1, txg, old_bp,
2448		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2449	}
2450
2451	if (error) {
2452		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2453		    new_bp, 1, txg, old_bp,
2454		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2455	}
2456
2457	if (error == 0) {
2458		BP_SET_LSIZE(new_bp, size);
2459		BP_SET_PSIZE(new_bp, size);
2460		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2461		BP_SET_CHECKSUM(new_bp,
2462		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2463		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2464		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2465		BP_SET_LEVEL(new_bp, 0);
2466		BP_SET_DEDUP(new_bp, 0);
2467		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2468	}
2469
2470	return (error);
2471}
2472
2473/*
2474 * Free an intent log block.
2475 */
2476void
2477zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2478{
2479	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2480	ASSERT(!BP_IS_GANG(bp));
2481
2482	zio_free(spa, txg, bp);
2483}
2484
2485/*
2486 * ==========================================================================
2487 * Read, write and delete to physical devices
2488 * ==========================================================================
2489 */
2490static int
2491zio_vdev_io_start(zio_t *zio)
2492{
2493	vdev_t *vd = zio->io_vd;
2494	uint64_t align;
2495	spa_t *spa = zio->io_spa;
2496
2497	ASSERT(zio->io_error == 0);
2498	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2499
2500	if (vd == NULL) {
2501		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2502			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2503
2504		/*
2505		 * The mirror_ops handle multiple DVAs in a single BP.
2506		 */
2507		return (vdev_mirror_ops.vdev_op_io_start(zio));
2508	}
2509
2510	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE) {
2511		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
2512		return (ZIO_PIPELINE_CONTINUE);
2513	}
2514
2515	/*
2516	 * We keep track of time-sensitive I/Os so that the scan thread
2517	 * can quickly react to certain workloads.  In particular, we care
2518	 * about non-scrubbing, top-level reads and writes with the following
2519	 * characteristics:
2520	 * 	- synchronous writes of user data to non-slog devices
2521	 *	- any reads of user data
2522	 * When these conditions are met, adjust the timestamp of spa_last_io
2523	 * which allows the scan thread to adjust its workload accordingly.
2524	 */
2525	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2526	    vd == vd->vdev_top && !vd->vdev_islog &&
2527	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2528	    zio->io_txg != spa_syncing_txg(spa)) {
2529		uint64_t old = spa->spa_last_io;
2530		uint64_t new = ddi_get_lbolt64();
2531		if (old != new)
2532			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2533	}
2534
2535	align = 1ULL << vd->vdev_top->vdev_ashift;
2536
2537	if (P2PHASE(zio->io_size, align) != 0) {
2538		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2539		char *abuf = NULL;
2540		if (zio->io_type == ZIO_TYPE_READ ||
2541		    zio->io_type == ZIO_TYPE_WRITE)
2542			abuf = zio_buf_alloc(asize);
2543		ASSERT(vd == vd->vdev_top);
2544		if (zio->io_type == ZIO_TYPE_WRITE) {
2545			bcopy(zio->io_data, abuf, zio->io_size);
2546			bzero(abuf + zio->io_size, asize - zio->io_size);
2547		}
2548		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
2549		    zio_subblock);
2550	}
2551
2552	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2553	ASSERT(P2PHASE(zio->io_size, align) == 0);
2554	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
2555
2556	/*
2557	 * If this is a repair I/O, and there's no self-healing involved --
2558	 * that is, we're just resilvering what we expect to resilver --
2559	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2560	 * This prevents spurious resilvering with nested replication.
2561	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2562	 * A is out of date, we'll read from C+D, then use the data to
2563	 * resilver A+B -- but we don't actually want to resilver B, just A.
2564	 * The top-level mirror has no way to know this, so instead we just
2565	 * discard unnecessary repairs as we work our way down the vdev tree.
2566	 * The same logic applies to any form of nested replication:
2567	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2568	 */
2569	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2570	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2571	    zio->io_txg != 0 &&	/* not a delegated i/o */
2572	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2573		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2574		zio_vdev_io_bypass(zio);
2575		return (ZIO_PIPELINE_CONTINUE);
2576	}
2577
2578	if (vd->vdev_ops->vdev_op_leaf &&
2579	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2580
2581		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2582			return (ZIO_PIPELINE_CONTINUE);
2583
2584		if ((zio = vdev_queue_io(zio)) == NULL)
2585			return (ZIO_PIPELINE_STOP);
2586
2587		if (!vdev_accessible(vd, zio)) {
2588			zio->io_error = SET_ERROR(ENXIO);
2589			zio_interrupt(zio);
2590			return (ZIO_PIPELINE_STOP);
2591		}
2592	}
2593
2594	/*
2595	 * Note that we ignore repair writes for TRIM because they can conflict
2596	 * with normal writes. This isn't an issue because, by definition, we
2597	 * only repair blocks that aren't freed.
2598	 */
2599	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_WRITE &&
2600	    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2601		if (!trim_map_write_start(zio))
2602			return (ZIO_PIPELINE_STOP);
2603	}
2604
2605	return (vd->vdev_ops->vdev_op_io_start(zio));
2606}
2607
2608static int
2609zio_vdev_io_done(zio_t *zio)
2610{
2611	vdev_t *vd = zio->io_vd;
2612	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2613	boolean_t unexpected_error = B_FALSE;
2614
2615	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2616		return (ZIO_PIPELINE_STOP);
2617
2618	ASSERT(zio->io_type == ZIO_TYPE_READ ||
2619	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
2620
2621	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2622	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2623
2624		if (zio->io_type == ZIO_TYPE_WRITE &&
2625		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
2626			trim_map_write_done(zio);
2627
2628		vdev_queue_io_done(zio);
2629
2630		if (zio->io_type == ZIO_TYPE_WRITE)
2631			vdev_cache_write(zio);
2632
2633		if (zio_injection_enabled && zio->io_error == 0)
2634			zio->io_error = zio_handle_device_injection(vd,
2635			    zio, EIO);
2636
2637		if (zio_injection_enabled && zio->io_error == 0)
2638			zio->io_error = zio_handle_label_injection(zio, EIO);
2639
2640		if (zio->io_error) {
2641			if (!vdev_accessible(vd, zio)) {
2642				zio->io_error = SET_ERROR(ENXIO);
2643			} else {
2644				unexpected_error = B_TRUE;
2645			}
2646		}
2647	}
2648
2649	ops->vdev_op_io_done(zio);
2650
2651	if (unexpected_error)
2652		VERIFY(vdev_probe(vd, zio) == NULL);
2653
2654	return (ZIO_PIPELINE_CONTINUE);
2655}
2656
2657/*
2658 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2659 * disk, and use that to finish the checksum ereport later.
2660 */
2661static void
2662zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2663    const void *good_buf)
2664{
2665	/* no processing needed */
2666	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2667}
2668
2669/*ARGSUSED*/
2670void
2671zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2672{
2673	void *buf = zio_buf_alloc(zio->io_size);
2674
2675	bcopy(zio->io_data, buf, zio->io_size);
2676
2677	zcr->zcr_cbinfo = zio->io_size;
2678	zcr->zcr_cbdata = buf;
2679	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2680	zcr->zcr_free = zio_buf_free;
2681}
2682
2683static int
2684zio_vdev_io_assess(zio_t *zio)
2685{
2686	vdev_t *vd = zio->io_vd;
2687
2688	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2689		return (ZIO_PIPELINE_STOP);
2690
2691	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2692		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2693
2694	if (zio->io_vsd != NULL) {
2695		zio->io_vsd_ops->vsd_free(zio);
2696		zio->io_vsd = NULL;
2697	}
2698
2699	if (zio_injection_enabled && zio->io_error == 0)
2700		zio->io_error = zio_handle_fault_injection(zio, EIO);
2701
2702	if (zio->io_type == ZIO_TYPE_IOCTL && zio->io_cmd == DKIOCTRIM)
2703		switch (zio->io_error) {
2704		case 0:
2705			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
2706			ZIO_TRIM_STAT_BUMP(success);
2707			break;
2708		case EOPNOTSUPP:
2709			ZIO_TRIM_STAT_BUMP(unsupported);
2710			break;
2711		default:
2712			ZIO_TRIM_STAT_BUMP(failed);
2713			break;
2714		}
2715
2716	/*
2717	 * If the I/O failed, determine whether we should attempt to retry it.
2718	 *
2719	 * On retry, we cut in line in the issue queue, since we don't want
2720	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2721	 */
2722	if (zio->io_error && vd == NULL &&
2723	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2724		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2725		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2726		zio->io_error = 0;
2727		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2728		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2729		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2730		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2731		    zio_requeue_io_start_cut_in_line);
2732		return (ZIO_PIPELINE_STOP);
2733	}
2734
2735	/*
2736	 * If we got an error on a leaf device, convert it to ENXIO
2737	 * if the device is not accessible at all.
2738	 */
2739	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2740	    !vdev_accessible(vd, zio))
2741		zio->io_error = SET_ERROR(ENXIO);
2742
2743	/*
2744	 * If we can't write to an interior vdev (mirror or RAID-Z),
2745	 * set vdev_cant_write so that we stop trying to allocate from it.
2746	 */
2747	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2748	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2749		vd->vdev_cant_write = B_TRUE;
2750	}
2751
2752	if (zio->io_error)
2753		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2754
2755	return (ZIO_PIPELINE_CONTINUE);
2756}
2757
2758void
2759zio_vdev_io_reissue(zio_t *zio)
2760{
2761	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2762	ASSERT(zio->io_error == 0);
2763
2764	zio->io_stage >>= 1;
2765}
2766
2767void
2768zio_vdev_io_redone(zio_t *zio)
2769{
2770	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2771
2772	zio->io_stage >>= 1;
2773}
2774
2775void
2776zio_vdev_io_bypass(zio_t *zio)
2777{
2778	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2779	ASSERT(zio->io_error == 0);
2780
2781	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2782	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2783}
2784
2785/*
2786 * ==========================================================================
2787 * Generate and verify checksums
2788 * ==========================================================================
2789 */
2790static int
2791zio_checksum_generate(zio_t *zio)
2792{
2793	blkptr_t *bp = zio->io_bp;
2794	enum zio_checksum checksum;
2795
2796	if (bp == NULL) {
2797		/*
2798		 * This is zio_write_phys().
2799		 * We're either generating a label checksum, or none at all.
2800		 */
2801		checksum = zio->io_prop.zp_checksum;
2802
2803		if (checksum == ZIO_CHECKSUM_OFF)
2804			return (ZIO_PIPELINE_CONTINUE);
2805
2806		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2807	} else {
2808		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2809			ASSERT(!IO_IS_ALLOCATING(zio));
2810			checksum = ZIO_CHECKSUM_GANG_HEADER;
2811		} else {
2812			checksum = BP_GET_CHECKSUM(bp);
2813		}
2814	}
2815
2816	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2817
2818	return (ZIO_PIPELINE_CONTINUE);
2819}
2820
2821static int
2822zio_checksum_verify(zio_t *zio)
2823{
2824	zio_bad_cksum_t info;
2825	blkptr_t *bp = zio->io_bp;
2826	int error;
2827
2828	ASSERT(zio->io_vd != NULL);
2829
2830	if (bp == NULL) {
2831		/*
2832		 * This is zio_read_phys().
2833		 * We're either verifying a label checksum, or nothing at all.
2834		 */
2835		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2836			return (ZIO_PIPELINE_CONTINUE);
2837
2838		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2839	}
2840
2841	if ((error = zio_checksum_error(zio, &info)) != 0) {
2842		zio->io_error = error;
2843		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2844			zfs_ereport_start_checksum(zio->io_spa,
2845			    zio->io_vd, zio, zio->io_offset,
2846			    zio->io_size, NULL, &info);
2847		}
2848	}
2849
2850	return (ZIO_PIPELINE_CONTINUE);
2851}
2852
2853/*
2854 * Called by RAID-Z to ensure we don't compute the checksum twice.
2855 */
2856void
2857zio_checksum_verified(zio_t *zio)
2858{
2859	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2860}
2861
2862/*
2863 * ==========================================================================
2864 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2865 * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2866 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2867 * indicate errors that are specific to one I/O, and most likely permanent.
2868 * Any other error is presumed to be worse because we weren't expecting it.
2869 * ==========================================================================
2870 */
2871int
2872zio_worst_error(int e1, int e2)
2873{
2874	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2875	int r1, r2;
2876
2877	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2878		if (e1 == zio_error_rank[r1])
2879			break;
2880
2881	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2882		if (e2 == zio_error_rank[r2])
2883			break;
2884
2885	return (r1 > r2 ? e1 : e2);
2886}
2887
2888/*
2889 * ==========================================================================
2890 * I/O completion
2891 * ==========================================================================
2892 */
2893static int
2894zio_ready(zio_t *zio)
2895{
2896	blkptr_t *bp = zio->io_bp;
2897	zio_t *pio, *pio_next;
2898
2899	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2900	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2901		return (ZIO_PIPELINE_STOP);
2902
2903	if (zio->io_ready) {
2904		ASSERT(IO_IS_ALLOCATING(zio));
2905		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2906		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
2907		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2908
2909		zio->io_ready(zio);
2910	}
2911
2912	if (bp != NULL && bp != &zio->io_bp_copy)
2913		zio->io_bp_copy = *bp;
2914
2915	if (zio->io_error)
2916		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2917
2918	mutex_enter(&zio->io_lock);
2919	zio->io_state[ZIO_WAIT_READY] = 1;
2920	pio = zio_walk_parents(zio);
2921	mutex_exit(&zio->io_lock);
2922
2923	/*
2924	 * As we notify zio's parents, new parents could be added.
2925	 * New parents go to the head of zio's io_parent_list, however,
2926	 * so we will (correctly) not notify them.  The remainder of zio's
2927	 * io_parent_list, from 'pio_next' onward, cannot change because
2928	 * all parents must wait for us to be done before they can be done.
2929	 */
2930	for (; pio != NULL; pio = pio_next) {
2931		pio_next = zio_walk_parents(zio);
2932		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2933	}
2934
2935	if (zio->io_flags & ZIO_FLAG_NODATA) {
2936		if (BP_IS_GANG(bp)) {
2937			zio->io_flags &= ~ZIO_FLAG_NODATA;
2938		} else {
2939			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2940			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2941		}
2942	}
2943
2944	if (zio_injection_enabled &&
2945	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2946		zio_handle_ignored_writes(zio);
2947
2948	return (ZIO_PIPELINE_CONTINUE);
2949}
2950
2951static int
2952zio_done(zio_t *zio)
2953{
2954	spa_t *spa = zio->io_spa;
2955	zio_t *lio = zio->io_logical;
2956	blkptr_t *bp = zio->io_bp;
2957	vdev_t *vd = zio->io_vd;
2958	uint64_t psize = zio->io_size;
2959	zio_t *pio, *pio_next;
2960
2961	/*
2962	 * If our children haven't all completed,
2963	 * wait for them and then repeat this pipeline stage.
2964	 */
2965	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2966	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2967	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2968	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2969		return (ZIO_PIPELINE_STOP);
2970
2971	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2972		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2973			ASSERT(zio->io_children[c][w] == 0);
2974
2975	if (bp != NULL) {
2976		ASSERT(bp->blk_pad[0] == 0);
2977		ASSERT(bp->blk_pad[1] == 0);
2978		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2979		    (bp == zio_unique_parent(zio)->io_bp));
2980		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2981		    zio->io_bp_override == NULL &&
2982		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2983			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2984			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2985			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2986			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2987		}
2988		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2989			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2990	}
2991
2992	/*
2993	 * If there were child vdev/gang/ddt errors, they apply to us now.
2994	 */
2995	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2996	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2997	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2998
2999	/*
3000	 * If the I/O on the transformed data was successful, generate any
3001	 * checksum reports now while we still have the transformed data.
3002	 */
3003	if (zio->io_error == 0) {
3004		while (zio->io_cksum_report != NULL) {
3005			zio_cksum_report_t *zcr = zio->io_cksum_report;
3006			uint64_t align = zcr->zcr_align;
3007			uint64_t asize = P2ROUNDUP(psize, align);
3008			char *abuf = zio->io_data;
3009
3010			if (asize != psize) {
3011				abuf = zio_buf_alloc(asize);
3012				bcopy(zio->io_data, abuf, psize);
3013				bzero(abuf + psize, asize - psize);
3014			}
3015
3016			zio->io_cksum_report = zcr->zcr_next;
3017			zcr->zcr_next = NULL;
3018			zcr->zcr_finish(zcr, abuf);
3019			zfs_ereport_free_checksum(zcr);
3020
3021			if (asize != psize)
3022				zio_buf_free(abuf, asize);
3023		}
3024	}
3025
3026	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3027
3028	vdev_stat_update(zio, psize);
3029
3030	if (zio->io_error) {
3031		/*
3032		 * If this I/O is attached to a particular vdev,
3033		 * generate an error message describing the I/O failure
3034		 * at the block level.  We ignore these errors if the
3035		 * device is currently unavailable.
3036		 */
3037		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3038			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3039
3040		if ((zio->io_error == EIO || !(zio->io_flags &
3041		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3042		    zio == lio) {
3043			/*
3044			 * For logical I/O requests, tell the SPA to log the
3045			 * error and generate a logical data ereport.
3046			 */
3047			spa_log_error(spa, zio);
3048			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3049			    0, 0);
3050		}
3051	}
3052
3053	if (zio->io_error && zio == lio) {
3054		/*
3055		 * Determine whether zio should be reexecuted.  This will
3056		 * propagate all the way to the root via zio_notify_parent().
3057		 */
3058		ASSERT(vd == NULL && bp != NULL);
3059		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3060
3061		if (IO_IS_ALLOCATING(zio) &&
3062		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3063			if (zio->io_error != ENOSPC)
3064				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3065			else
3066				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3067		}
3068
3069		if ((zio->io_type == ZIO_TYPE_READ ||
3070		    zio->io_type == ZIO_TYPE_FREE) &&
3071		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3072		    zio->io_error == ENXIO &&
3073		    spa_load_state(spa) == SPA_LOAD_NONE &&
3074		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3075			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3076
3077		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3078			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3079
3080		/*
3081		 * Here is a possibly good place to attempt to do
3082		 * either combinatorial reconstruction or error correction
3083		 * based on checksums.  It also might be a good place
3084		 * to send out preliminary ereports before we suspend
3085		 * processing.
3086		 */
3087	}
3088
3089	/*
3090	 * If there were logical child errors, they apply to us now.
3091	 * We defer this until now to avoid conflating logical child
3092	 * errors with errors that happened to the zio itself when
3093	 * updating vdev stats and reporting FMA events above.
3094	 */
3095	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3096
3097	if ((zio->io_error || zio->io_reexecute) &&
3098	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3099	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3100		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3101
3102	zio_gang_tree_free(&zio->io_gang_tree);
3103
3104	/*
3105	 * Godfather I/Os should never suspend.
3106	 */
3107	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3108	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3109		zio->io_reexecute = 0;
3110
3111	if (zio->io_reexecute) {
3112		/*
3113		 * This is a logical I/O that wants to reexecute.
3114		 *
3115		 * Reexecute is top-down.  When an i/o fails, if it's not
3116		 * the root, it simply notifies its parent and sticks around.
3117		 * The parent, seeing that it still has children in zio_done(),
3118		 * does the same.  This percolates all the way up to the root.
3119		 * The root i/o will reexecute or suspend the entire tree.
3120		 *
3121		 * This approach ensures that zio_reexecute() honors
3122		 * all the original i/o dependency relationships, e.g.
3123		 * parents not executing until children are ready.
3124		 */
3125		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3126
3127		zio->io_gang_leader = NULL;
3128
3129		mutex_enter(&zio->io_lock);
3130		zio->io_state[ZIO_WAIT_DONE] = 1;
3131		mutex_exit(&zio->io_lock);
3132
3133		/*
3134		 * "The Godfather" I/O monitors its children but is
3135		 * not a true parent to them. It will track them through
3136		 * the pipeline but severs its ties whenever they get into
3137		 * trouble (e.g. suspended). This allows "The Godfather"
3138		 * I/O to return status without blocking.
3139		 */
3140		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3141			zio_link_t *zl = zio->io_walk_link;
3142			pio_next = zio_walk_parents(zio);
3143
3144			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3145			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3146				zio_remove_child(pio, zio, zl);
3147				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3148			}
3149		}
3150
3151		if ((pio = zio_unique_parent(zio)) != NULL) {
3152			/*
3153			 * We're not a root i/o, so there's nothing to do
3154			 * but notify our parent.  Don't propagate errors
3155			 * upward since we haven't permanently failed yet.
3156			 */
3157			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3158			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3159			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3160		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3161			/*
3162			 * We'd fail again if we reexecuted now, so suspend
3163			 * until conditions improve (e.g. device comes online).
3164			 */
3165			zio_suspend(spa, zio);
3166		} else {
3167			/*
3168			 * Reexecution is potentially a huge amount of work.
3169			 * Hand it off to the otherwise-unused claim taskq.
3170			 */
3171#ifdef _KERNEL
3172			(void) taskq_dispatch_safe(
3173			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
3174			    (task_func_t *)zio_reexecute, zio, TQ_SLEEP,
3175			    &zio->io_task);
3176#else
3177			(void) taskq_dispatch(
3178			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
3179			    (task_func_t *)zio_reexecute, zio, TQ_SLEEP);
3180#endif
3181		}
3182		return (ZIO_PIPELINE_STOP);
3183	}
3184
3185	ASSERT(zio->io_child_count == 0);
3186	ASSERT(zio->io_reexecute == 0);
3187	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3188
3189	/*
3190	 * Report any checksum errors, since the I/O is complete.
3191	 */
3192	while (zio->io_cksum_report != NULL) {
3193		zio_cksum_report_t *zcr = zio->io_cksum_report;
3194		zio->io_cksum_report = zcr->zcr_next;
3195		zcr->zcr_next = NULL;
3196		zcr->zcr_finish(zcr, NULL);
3197		zfs_ereport_free_checksum(zcr);
3198	}
3199
3200	/*
3201	 * It is the responsibility of the done callback to ensure that this
3202	 * particular zio is no longer discoverable for adoption, and as
3203	 * such, cannot acquire any new parents.
3204	 */
3205	if (zio->io_done)
3206		zio->io_done(zio);
3207
3208	mutex_enter(&zio->io_lock);
3209	zio->io_state[ZIO_WAIT_DONE] = 1;
3210	mutex_exit(&zio->io_lock);
3211
3212	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3213		zio_link_t *zl = zio->io_walk_link;
3214		pio_next = zio_walk_parents(zio);
3215		zio_remove_child(pio, zio, zl);
3216		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3217	}
3218
3219	if (zio->io_waiter != NULL) {
3220		mutex_enter(&zio->io_lock);
3221		zio->io_executor = NULL;
3222		cv_broadcast(&zio->io_cv);
3223		mutex_exit(&zio->io_lock);
3224	} else {
3225		zio_destroy(zio);
3226	}
3227
3228	return (ZIO_PIPELINE_STOP);
3229}
3230
3231/*
3232 * ==========================================================================
3233 * I/O pipeline definition
3234 * ==========================================================================
3235 */
3236static zio_pipe_stage_t *zio_pipeline[] = {
3237	NULL,
3238	zio_read_bp_init,
3239	zio_free_bp_init,
3240	zio_issue_async,
3241	zio_write_bp_init,
3242	zio_checksum_generate,
3243	zio_nop_write,
3244	zio_ddt_read_start,
3245	zio_ddt_read_done,
3246	zio_ddt_write,
3247	zio_ddt_free,
3248	zio_gang_assemble,
3249	zio_gang_issue,
3250	zio_dva_allocate,
3251	zio_dva_free,
3252	zio_dva_claim,
3253	zio_ready,
3254	zio_vdev_io_start,
3255	zio_vdev_io_done,
3256	zio_vdev_io_assess,
3257	zio_checksum_verify,
3258	zio_done
3259};
3260
3261/* dnp is the dnode for zb1->zb_object */
3262boolean_t
3263zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3264    const zbookmark_t *zb2)
3265{
3266	uint64_t zb1nextL0, zb2thisobj;
3267
3268	ASSERT(zb1->zb_objset == zb2->zb_objset);
3269	ASSERT(zb2->zb_level == 0);
3270
3271	/*
3272	 * A bookmark in the deadlist is considered to be after
3273	 * everything else.
3274	 */
3275	if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3276		return (B_TRUE);
3277
3278	/* The objset_phys_t isn't before anything. */
3279	if (dnp == NULL)
3280		return (B_FALSE);
3281
3282	zb1nextL0 = (zb1->zb_blkid + 1) <<
3283	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3284
3285	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3286	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3287
3288	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3289		uint64_t nextobj = zb1nextL0 *
3290		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3291		return (nextobj <= zb2thisobj);
3292	}
3293
3294	if (zb1->zb_object < zb2thisobj)
3295		return (B_TRUE);
3296	if (zb1->zb_object > zb2thisobj)
3297		return (B_FALSE);
3298	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3299		return (B_FALSE);
3300	return (zb1nextL0 <= zb2->zb_blkid);
3301}
3302