zio.c revision 248571
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/fm/fs/zfs.h>
28#include <sys/spa.h>
29#include <sys/txg.h>
30#include <sys/spa_impl.h>
31#include <sys/vdev_impl.h>
32#include <sys/zio_impl.h>
33#include <sys/zio_compress.h>
34#include <sys/zio_checksum.h>
35#include <sys/dmu_objset.h>
36#include <sys/arc.h>
37#include <sys/ddt.h>
38#include <sys/trim_map.h>
39
40SYSCTL_DECL(_vfs_zfs);
41SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
42static int zio_use_uma = 0;
43TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
44SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
45    "Use uma(9) for ZIO allocations");
46static int zio_exclude_metadata = 0;
47TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
48SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
49    "Exclude metadata buffers from dumps as well");
50
51zio_trim_stats_t zio_trim_stats = {
52	{ "bytes",		KSTAT_DATA_UINT64,
53	  "Number of bytes successfully TRIMmed" },
54	{ "success",		KSTAT_DATA_UINT64,
55	  "Number of successful TRIM requests" },
56	{ "unsupported",	KSTAT_DATA_UINT64,
57	  "Number of TRIM requests that failed because TRIM is not supported" },
58	{ "failed",		KSTAT_DATA_UINT64,
59	  "Number of TRIM requests that failed for reasons other than not supported" },
60};
61
62static kstat_t *zio_trim_ksp;
63
64/*
65 * ==========================================================================
66 * I/O priority table
67 * ==========================================================================
68 */
69uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
70	0,	/* ZIO_PRIORITY_NOW		*/
71	0,	/* ZIO_PRIORITY_SYNC_READ	*/
72	0,	/* ZIO_PRIORITY_SYNC_WRITE	*/
73	0,	/* ZIO_PRIORITY_LOG_WRITE	*/
74	1,	/* ZIO_PRIORITY_CACHE_FILL	*/
75	1,	/* ZIO_PRIORITY_AGG		*/
76	4,	/* ZIO_PRIORITY_FREE		*/
77	4,	/* ZIO_PRIORITY_ASYNC_WRITE	*/
78	6,	/* ZIO_PRIORITY_ASYNC_READ	*/
79	10,	/* ZIO_PRIORITY_RESILVER	*/
80	20,	/* ZIO_PRIORITY_SCRUB		*/
81	2,	/* ZIO_PRIORITY_DDT_PREFETCH	*/
82	30,	/* ZIO_PRIORITY_TRIM		*/
83};
84
85/*
86 * ==========================================================================
87 * I/O type descriptions
88 * ==========================================================================
89 */
90char *zio_type_name[ZIO_TYPES] = {
91	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
92	"zio_ioctl"
93};
94
95/*
96 * ==========================================================================
97 * I/O kmem caches
98 * ==========================================================================
99 */
100kmem_cache_t *zio_cache;
101kmem_cache_t *zio_link_cache;
102kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
103kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
104
105#ifdef _KERNEL
106extern vmem_t *zio_alloc_arena;
107#endif
108extern int zfs_mg_alloc_failures;
109
110/*
111 * The following actions directly effect the spa's sync-to-convergence logic.
112 * The values below define the sync pass when we start performing the action.
113 * Care should be taken when changing these values as they directly impact
114 * spa_sync() performance. Tuning these values may introduce subtle performance
115 * pathologies and should only be done in the context of performance analysis.
116 * These tunables will eventually be removed and replaced with #defines once
117 * enough analysis has been done to determine optimal values.
118 *
119 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
120 * regular blocks are not deferred.
121 */
122int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
123TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
124SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
125    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
126int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
127TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
128SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
129    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
130int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
131TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
132SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
133    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
134
135/*
136 * An allocating zio is one that either currently has the DVA allocate
137 * stage set or will have it later in its lifetime.
138 */
139#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
140
141boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
142
143#ifdef ZFS_DEBUG
144int zio_buf_debug_limit = 16384;
145#else
146int zio_buf_debug_limit = 0;
147#endif
148
149void
150zio_init(void)
151{
152	size_t c;
153	zio_cache = kmem_cache_create("zio_cache",
154	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
155	zio_link_cache = kmem_cache_create("zio_link_cache",
156	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
157
158	/*
159	 * For small buffers, we want a cache for each multiple of
160	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
161	 * for each quarter-power of 2.  For large buffers, we want
162	 * a cache for each multiple of PAGESIZE.
163	 */
164	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
165		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
166		size_t p2 = size;
167		size_t align = 0;
168		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
169
170		while (p2 & (p2 - 1))
171			p2 &= p2 - 1;
172
173#ifdef illumos
174#ifndef _KERNEL
175		/*
176		 * If we are using watchpoints, put each buffer on its own page,
177		 * to eliminate the performance overhead of trapping to the
178		 * kernel when modifying a non-watched buffer that shares the
179		 * page with a watched buffer.
180		 */
181		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
182			continue;
183#endif
184#endif /* illumos */
185		if (size <= 4 * SPA_MINBLOCKSIZE) {
186			align = SPA_MINBLOCKSIZE;
187		} else if (IS_P2ALIGNED(size, PAGESIZE)) {
188			align = PAGESIZE;
189		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
190			align = p2 >> 2;
191		}
192
193		if (align != 0) {
194			char name[36];
195			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
196			zio_buf_cache[c] = kmem_cache_create(name, size,
197			    align, NULL, NULL, NULL, NULL, NULL, cflags);
198
199			/*
200			 * Since zio_data bufs do not appear in crash dumps, we
201			 * pass KMC_NOTOUCH so that no allocator metadata is
202			 * stored with the buffers.
203			 */
204			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
205			zio_data_buf_cache[c] = kmem_cache_create(name, size,
206			    align, NULL, NULL, NULL, NULL, NULL,
207			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
208		}
209	}
210
211	while (--c != 0) {
212		ASSERT(zio_buf_cache[c] != NULL);
213		if (zio_buf_cache[c - 1] == NULL)
214			zio_buf_cache[c - 1] = zio_buf_cache[c];
215
216		ASSERT(zio_data_buf_cache[c] != NULL);
217		if (zio_data_buf_cache[c - 1] == NULL)
218			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
219	}
220
221	/*
222	 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
223	 * to fail 3 times per txg or 8 failures, whichever is greater.
224	 */
225	if (zfs_mg_alloc_failures == 0)
226		zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
227	else if (zfs_mg_alloc_failures < 8)
228		zfs_mg_alloc_failures = 8;
229
230	zio_inject_init();
231
232	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
233	    KSTAT_TYPE_NAMED,
234	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
235	    KSTAT_FLAG_VIRTUAL);
236
237	if (zio_trim_ksp != NULL) {
238		zio_trim_ksp->ks_data = &zio_trim_stats;
239		kstat_install(zio_trim_ksp);
240	}
241}
242
243void
244zio_fini(void)
245{
246	size_t c;
247	kmem_cache_t *last_cache = NULL;
248	kmem_cache_t *last_data_cache = NULL;
249
250	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
251		if (zio_buf_cache[c] != last_cache) {
252			last_cache = zio_buf_cache[c];
253			kmem_cache_destroy(zio_buf_cache[c]);
254		}
255		zio_buf_cache[c] = NULL;
256
257		if (zio_data_buf_cache[c] != last_data_cache) {
258			last_data_cache = zio_data_buf_cache[c];
259			kmem_cache_destroy(zio_data_buf_cache[c]);
260		}
261		zio_data_buf_cache[c] = NULL;
262	}
263
264	kmem_cache_destroy(zio_link_cache);
265	kmem_cache_destroy(zio_cache);
266
267	zio_inject_fini();
268
269	if (zio_trim_ksp != NULL) {
270		kstat_delete(zio_trim_ksp);
271		zio_trim_ksp = NULL;
272	}
273}
274
275/*
276 * ==========================================================================
277 * Allocate and free I/O buffers
278 * ==========================================================================
279 */
280
281/*
282 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
283 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
284 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
285 * excess / transient data in-core during a crashdump.
286 */
287void *
288zio_buf_alloc(size_t size)
289{
290	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
291	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
292
293	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
294
295	if (zio_use_uma)
296		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
297	else
298		return (kmem_alloc(size, KM_SLEEP|flags));
299}
300
301/*
302 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
303 * crashdump if the kernel panics.  This exists so that we will limit the amount
304 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
305 * of kernel heap dumped to disk when the kernel panics)
306 */
307void *
308zio_data_buf_alloc(size_t size)
309{
310	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
311
312	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
313
314	if (zio_use_uma)
315		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
316	else
317		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
318}
319
320void
321zio_buf_free(void *buf, size_t size)
322{
323	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
324
325	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
326
327	if (zio_use_uma)
328		kmem_cache_free(zio_buf_cache[c], buf);
329	else
330		kmem_free(buf, size);
331}
332
333void
334zio_data_buf_free(void *buf, size_t size)
335{
336	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
337
338	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
339
340	if (zio_use_uma)
341		kmem_cache_free(zio_data_buf_cache[c], buf);
342	else
343		kmem_free(buf, size);
344}
345
346/*
347 * ==========================================================================
348 * Push and pop I/O transform buffers
349 * ==========================================================================
350 */
351static void
352zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
353	zio_transform_func_t *transform)
354{
355	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
356
357	zt->zt_orig_data = zio->io_data;
358	zt->zt_orig_size = zio->io_size;
359	zt->zt_bufsize = bufsize;
360	zt->zt_transform = transform;
361
362	zt->zt_next = zio->io_transform_stack;
363	zio->io_transform_stack = zt;
364
365	zio->io_data = data;
366	zio->io_size = size;
367}
368
369static void
370zio_pop_transforms(zio_t *zio)
371{
372	zio_transform_t *zt;
373
374	while ((zt = zio->io_transform_stack) != NULL) {
375		if (zt->zt_transform != NULL)
376			zt->zt_transform(zio,
377			    zt->zt_orig_data, zt->zt_orig_size);
378
379		if (zt->zt_bufsize != 0)
380			zio_buf_free(zio->io_data, zt->zt_bufsize);
381
382		zio->io_data = zt->zt_orig_data;
383		zio->io_size = zt->zt_orig_size;
384		zio->io_transform_stack = zt->zt_next;
385
386		kmem_free(zt, sizeof (zio_transform_t));
387	}
388}
389
390/*
391 * ==========================================================================
392 * I/O transform callbacks for subblocks and decompression
393 * ==========================================================================
394 */
395static void
396zio_subblock(zio_t *zio, void *data, uint64_t size)
397{
398	ASSERT(zio->io_size > size);
399
400	if (zio->io_type == ZIO_TYPE_READ)
401		bcopy(zio->io_data, data, size);
402}
403
404static void
405zio_decompress(zio_t *zio, void *data, uint64_t size)
406{
407	if (zio->io_error == 0 &&
408	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
409	    zio->io_data, data, zio->io_size, size) != 0)
410		zio->io_error = EIO;
411}
412
413/*
414 * ==========================================================================
415 * I/O parent/child relationships and pipeline interlocks
416 * ==========================================================================
417 */
418/*
419 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
420 *        continue calling these functions until they return NULL.
421 *        Otherwise, the next caller will pick up the list walk in
422 *        some indeterminate state.  (Otherwise every caller would
423 *        have to pass in a cookie to keep the state represented by
424 *        io_walk_link, which gets annoying.)
425 */
426zio_t *
427zio_walk_parents(zio_t *cio)
428{
429	zio_link_t *zl = cio->io_walk_link;
430	list_t *pl = &cio->io_parent_list;
431
432	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
433	cio->io_walk_link = zl;
434
435	if (zl == NULL)
436		return (NULL);
437
438	ASSERT(zl->zl_child == cio);
439	return (zl->zl_parent);
440}
441
442zio_t *
443zio_walk_children(zio_t *pio)
444{
445	zio_link_t *zl = pio->io_walk_link;
446	list_t *cl = &pio->io_child_list;
447
448	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
449	pio->io_walk_link = zl;
450
451	if (zl == NULL)
452		return (NULL);
453
454	ASSERT(zl->zl_parent == pio);
455	return (zl->zl_child);
456}
457
458zio_t *
459zio_unique_parent(zio_t *cio)
460{
461	zio_t *pio = zio_walk_parents(cio);
462
463	VERIFY(zio_walk_parents(cio) == NULL);
464	return (pio);
465}
466
467void
468zio_add_child(zio_t *pio, zio_t *cio)
469{
470	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
471
472	/*
473	 * Logical I/Os can have logical, gang, or vdev children.
474	 * Gang I/Os can have gang or vdev children.
475	 * Vdev I/Os can only have vdev children.
476	 * The following ASSERT captures all of these constraints.
477	 */
478	ASSERT(cio->io_child_type <= pio->io_child_type);
479
480	zl->zl_parent = pio;
481	zl->zl_child = cio;
482
483	mutex_enter(&cio->io_lock);
484	mutex_enter(&pio->io_lock);
485
486	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
487
488	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
489		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
490
491	list_insert_head(&pio->io_child_list, zl);
492	list_insert_head(&cio->io_parent_list, zl);
493
494	pio->io_child_count++;
495	cio->io_parent_count++;
496
497	mutex_exit(&pio->io_lock);
498	mutex_exit(&cio->io_lock);
499}
500
501static void
502zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
503{
504	ASSERT(zl->zl_parent == pio);
505	ASSERT(zl->zl_child == cio);
506
507	mutex_enter(&cio->io_lock);
508	mutex_enter(&pio->io_lock);
509
510	list_remove(&pio->io_child_list, zl);
511	list_remove(&cio->io_parent_list, zl);
512
513	pio->io_child_count--;
514	cio->io_parent_count--;
515
516	mutex_exit(&pio->io_lock);
517	mutex_exit(&cio->io_lock);
518
519	kmem_cache_free(zio_link_cache, zl);
520}
521
522static boolean_t
523zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
524{
525	uint64_t *countp = &zio->io_children[child][wait];
526	boolean_t waiting = B_FALSE;
527
528	mutex_enter(&zio->io_lock);
529	ASSERT(zio->io_stall == NULL);
530	if (*countp != 0) {
531		zio->io_stage >>= 1;
532		zio->io_stall = countp;
533		waiting = B_TRUE;
534	}
535	mutex_exit(&zio->io_lock);
536
537	return (waiting);
538}
539
540static void
541zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
542{
543	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
544	int *errorp = &pio->io_child_error[zio->io_child_type];
545
546	mutex_enter(&pio->io_lock);
547	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
548		*errorp = zio_worst_error(*errorp, zio->io_error);
549	pio->io_reexecute |= zio->io_reexecute;
550	ASSERT3U(*countp, >, 0);
551	if (--*countp == 0 && pio->io_stall == countp) {
552		pio->io_stall = NULL;
553		mutex_exit(&pio->io_lock);
554		zio_execute(pio);
555	} else {
556		mutex_exit(&pio->io_lock);
557	}
558}
559
560static void
561zio_inherit_child_errors(zio_t *zio, enum zio_child c)
562{
563	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
564		zio->io_error = zio->io_child_error[c];
565}
566
567/*
568 * ==========================================================================
569 * Create the various types of I/O (read, write, free, etc)
570 * ==========================================================================
571 */
572static zio_t *
573zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
574    void *data, uint64_t size, zio_done_func_t *done, void *private,
575    zio_type_t type, int priority, enum zio_flag flags,
576    vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
577    enum zio_stage stage, enum zio_stage pipeline)
578{
579	zio_t *zio;
580
581	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
582	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
583	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
584
585	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
586	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
587	ASSERT(vd || stage == ZIO_STAGE_OPEN);
588
589	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
590	bzero(zio, sizeof (zio_t));
591
592	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
593	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
594
595	list_create(&zio->io_parent_list, sizeof (zio_link_t),
596	    offsetof(zio_link_t, zl_parent_node));
597	list_create(&zio->io_child_list, sizeof (zio_link_t),
598	    offsetof(zio_link_t, zl_child_node));
599
600	if (vd != NULL)
601		zio->io_child_type = ZIO_CHILD_VDEV;
602	else if (flags & ZIO_FLAG_GANG_CHILD)
603		zio->io_child_type = ZIO_CHILD_GANG;
604	else if (flags & ZIO_FLAG_DDT_CHILD)
605		zio->io_child_type = ZIO_CHILD_DDT;
606	else
607		zio->io_child_type = ZIO_CHILD_LOGICAL;
608
609	if (bp != NULL) {
610		zio->io_bp = (blkptr_t *)bp;
611		zio->io_bp_copy = *bp;
612		zio->io_bp_orig = *bp;
613		if (type != ZIO_TYPE_WRITE ||
614		    zio->io_child_type == ZIO_CHILD_DDT)
615			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
616		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
617			zio->io_logical = zio;
618		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
619			pipeline |= ZIO_GANG_STAGES;
620	}
621
622	zio->io_spa = spa;
623	zio->io_txg = txg;
624	zio->io_done = done;
625	zio->io_private = private;
626	zio->io_type = type;
627	zio->io_priority = priority;
628	zio->io_vd = vd;
629	zio->io_offset = offset;
630	zio->io_orig_data = zio->io_data = data;
631	zio->io_orig_size = zio->io_size = size;
632	zio->io_orig_flags = zio->io_flags = flags;
633	zio->io_orig_stage = zio->io_stage = stage;
634	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
635
636	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
637	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
638
639	if (zb != NULL)
640		zio->io_bookmark = *zb;
641
642	if (pio != NULL) {
643		if (zio->io_logical == NULL)
644			zio->io_logical = pio->io_logical;
645		if (zio->io_child_type == ZIO_CHILD_GANG)
646			zio->io_gang_leader = pio->io_gang_leader;
647		zio_add_child(pio, zio);
648	}
649
650	return (zio);
651}
652
653static void
654zio_destroy(zio_t *zio)
655{
656	list_destroy(&zio->io_parent_list);
657	list_destroy(&zio->io_child_list);
658	mutex_destroy(&zio->io_lock);
659	cv_destroy(&zio->io_cv);
660	kmem_cache_free(zio_cache, zio);
661}
662
663zio_t *
664zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
665    void *private, enum zio_flag flags)
666{
667	zio_t *zio;
668
669	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
670	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
671	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
672
673	return (zio);
674}
675
676zio_t *
677zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
678{
679	return (zio_null(NULL, spa, NULL, done, private, flags));
680}
681
682zio_t *
683zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
684    void *data, uint64_t size, zio_done_func_t *done, void *private,
685    int priority, enum zio_flag flags, const zbookmark_t *zb)
686{
687	zio_t *zio;
688
689	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
690	    data, size, done, private,
691	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
692	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
693	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
694
695	return (zio);
696}
697
698zio_t *
699zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
700    void *data, uint64_t size, const zio_prop_t *zp,
701    zio_done_func_t *ready, zio_done_func_t *done, void *private,
702    int priority, enum zio_flag flags, const zbookmark_t *zb)
703{
704	zio_t *zio;
705
706	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
707	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
708	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
709	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
710	    DMU_OT_IS_VALID(zp->zp_type) &&
711	    zp->zp_level < 32 &&
712	    zp->zp_copies > 0 &&
713	    zp->zp_copies <= spa_max_replication(spa));
714
715	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
716	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
717	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
718	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
719
720	zio->io_ready = ready;
721	zio->io_prop = *zp;
722
723	return (zio);
724}
725
726zio_t *
727zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
728    uint64_t size, zio_done_func_t *done, void *private, int priority,
729    enum zio_flag flags, zbookmark_t *zb)
730{
731	zio_t *zio;
732
733	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
734	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
735	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
736
737	return (zio);
738}
739
740void
741zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
742{
743	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
744	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
745	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
746	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
747
748	/*
749	 * We must reset the io_prop to match the values that existed
750	 * when the bp was first written by dmu_sync() keeping in mind
751	 * that nopwrite and dedup are mutually exclusive.
752	 */
753	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
754	zio->io_prop.zp_nopwrite = nopwrite;
755	zio->io_prop.zp_copies = copies;
756	zio->io_bp_override = bp;
757}
758
759void
760zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
761{
762	metaslab_check_free(spa, bp);
763	bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
764}
765
766zio_t *
767zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
768    uint64_t size, enum zio_flag flags)
769{
770	zio_t *zio;
771
772	dprintf_bp(bp, "freeing in txg %llu, pass %u",
773	    (longlong_t)txg, spa->spa_sync_pass);
774
775	ASSERT(!BP_IS_HOLE(bp));
776	ASSERT(spa_syncing_txg(spa) == txg);
777	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
778
779	metaslab_check_free(spa, bp);
780
781	zio = zio_create(pio, spa, txg, bp, NULL, size,
782	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
783	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
784
785	return (zio);
786}
787
788zio_t *
789zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
790    zio_done_func_t *done, void *private, enum zio_flag flags)
791{
792	zio_t *zio;
793
794	/*
795	 * A claim is an allocation of a specific block.  Claims are needed
796	 * to support immediate writes in the intent log.  The issue is that
797	 * immediate writes contain committed data, but in a txg that was
798	 * *not* committed.  Upon opening the pool after an unclean shutdown,
799	 * the intent log claims all blocks that contain immediate write data
800	 * so that the SPA knows they're in use.
801	 *
802	 * All claims *must* be resolved in the first txg -- before the SPA
803	 * starts allocating blocks -- so that nothing is allocated twice.
804	 * If txg == 0 we just verify that the block is claimable.
805	 */
806	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
807	ASSERT(txg == spa_first_txg(spa) || txg == 0);
808	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
809
810	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
811	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
812	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
813
814	return (zio);
815}
816
817zio_t *
818zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
819    uint64_t size, zio_done_func_t *done, void *private, int priority,
820    enum zio_flag flags)
821{
822	zio_t *zio;
823	int c;
824
825	if (vd->vdev_children == 0) {
826		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
827		    ZIO_TYPE_IOCTL, priority, flags, vd, offset, NULL,
828		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
829
830		zio->io_cmd = cmd;
831	} else {
832		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
833
834		for (c = 0; c < vd->vdev_children; c++)
835			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
836			    offset, size, done, private, priority, flags));
837	}
838
839	return (zio);
840}
841
842zio_t *
843zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
844    void *data, int checksum, zio_done_func_t *done, void *private,
845    int priority, enum zio_flag flags, boolean_t labels)
846{
847	zio_t *zio;
848
849	ASSERT(vd->vdev_children == 0);
850	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
851	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
852	ASSERT3U(offset + size, <=, vd->vdev_psize);
853
854	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
855	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
856	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
857
858	zio->io_prop.zp_checksum = checksum;
859
860	return (zio);
861}
862
863zio_t *
864zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
865    void *data, int checksum, zio_done_func_t *done, void *private,
866    int priority, enum zio_flag flags, boolean_t labels)
867{
868	zio_t *zio;
869
870	ASSERT(vd->vdev_children == 0);
871	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
872	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
873	ASSERT3U(offset + size, <=, vd->vdev_psize);
874
875	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
876	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
877	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
878
879	zio->io_prop.zp_checksum = checksum;
880
881	if (zio_checksum_table[checksum].ci_eck) {
882		/*
883		 * zec checksums are necessarily destructive -- they modify
884		 * the end of the write buffer to hold the verifier/checksum.
885		 * Therefore, we must make a local copy in case the data is
886		 * being written to multiple places in parallel.
887		 */
888		void *wbuf = zio_buf_alloc(size);
889		bcopy(data, wbuf, size);
890		zio_push_transform(zio, wbuf, size, size, NULL);
891	}
892
893	return (zio);
894}
895
896/*
897 * Create a child I/O to do some work for us.
898 */
899zio_t *
900zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
901	void *data, uint64_t size, int type, int priority, enum zio_flag flags,
902	zio_done_func_t *done, void *private)
903{
904	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
905	zio_t *zio;
906
907	ASSERT(vd->vdev_parent ==
908	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
909
910	if (type == ZIO_TYPE_READ && bp != NULL) {
911		/*
912		 * If we have the bp, then the child should perform the
913		 * checksum and the parent need not.  This pushes error
914		 * detection as close to the leaves as possible and
915		 * eliminates redundant checksums in the interior nodes.
916		 */
917		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
918		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
919	}
920
921	if (vd->vdev_children == 0)
922		offset += VDEV_LABEL_START_SIZE;
923
924	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
925
926	/*
927	 * If we've decided to do a repair, the write is not speculative --
928	 * even if the original read was.
929	 */
930	if (flags & ZIO_FLAG_IO_REPAIR)
931		flags &= ~ZIO_FLAG_SPECULATIVE;
932
933	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
934	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
935	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
936
937	return (zio);
938}
939
940zio_t *
941zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
942	int type, int priority, enum zio_flag flags,
943	zio_done_func_t *done, void *private)
944{
945	zio_t *zio;
946
947	ASSERT(vd->vdev_ops->vdev_op_leaf);
948
949	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
950	    data, size, done, private, type, priority,
951	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
952	    vd, offset, NULL,
953	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
954
955	return (zio);
956}
957
958void
959zio_flush(zio_t *zio, vdev_t *vd)
960{
961	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
962	    NULL, NULL, ZIO_PRIORITY_NOW,
963	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
964}
965
966zio_t *
967zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
968{
969
970	ASSERT(vd->vdev_ops->vdev_op_leaf);
971
972	return zio_ioctl(zio, spa, vd, DKIOCTRIM, offset, size,
973	    NULL, NULL, ZIO_PRIORITY_TRIM,
974	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
975}
976
977void
978zio_shrink(zio_t *zio, uint64_t size)
979{
980	ASSERT(zio->io_executor == NULL);
981	ASSERT(zio->io_orig_size == zio->io_size);
982	ASSERT(size <= zio->io_size);
983
984	/*
985	 * We don't shrink for raidz because of problems with the
986	 * reconstruction when reading back less than the block size.
987	 * Note, BP_IS_RAIDZ() assumes no compression.
988	 */
989	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
990	if (!BP_IS_RAIDZ(zio->io_bp))
991		zio->io_orig_size = zio->io_size = size;
992}
993
994/*
995 * ==========================================================================
996 * Prepare to read and write logical blocks
997 * ==========================================================================
998 */
999
1000static int
1001zio_read_bp_init(zio_t *zio)
1002{
1003	blkptr_t *bp = zio->io_bp;
1004
1005	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1006	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1007	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1008		uint64_t psize = BP_GET_PSIZE(bp);
1009		void *cbuf = zio_buf_alloc(psize);
1010
1011		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1012	}
1013
1014	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1015		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1016
1017	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1018		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1019
1020	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1021		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1022
1023	return (ZIO_PIPELINE_CONTINUE);
1024}
1025
1026static int
1027zio_write_bp_init(zio_t *zio)
1028{
1029	spa_t *spa = zio->io_spa;
1030	zio_prop_t *zp = &zio->io_prop;
1031	enum zio_compress compress = zp->zp_compress;
1032	blkptr_t *bp = zio->io_bp;
1033	uint64_t lsize = zio->io_size;
1034	uint64_t psize = lsize;
1035	int pass = 1;
1036
1037	/*
1038	 * If our children haven't all reached the ready stage,
1039	 * wait for them and then repeat this pipeline stage.
1040	 */
1041	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1042	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1043		return (ZIO_PIPELINE_STOP);
1044
1045	if (!IO_IS_ALLOCATING(zio))
1046		return (ZIO_PIPELINE_CONTINUE);
1047
1048	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1049
1050	if (zio->io_bp_override) {
1051		ASSERT(bp->blk_birth != zio->io_txg);
1052		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1053
1054		*bp = *zio->io_bp_override;
1055		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1056
1057		/*
1058		 * If we've been overridden and nopwrite is set then
1059		 * set the flag accordingly to indicate that a nopwrite
1060		 * has already occurred.
1061		 */
1062		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1063			ASSERT(!zp->zp_dedup);
1064			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1065			return (ZIO_PIPELINE_CONTINUE);
1066		}
1067
1068		ASSERT(!zp->zp_nopwrite);
1069
1070		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1071			return (ZIO_PIPELINE_CONTINUE);
1072
1073		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1074		    zp->zp_dedup_verify);
1075
1076		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1077			BP_SET_DEDUP(bp, 1);
1078			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1079			return (ZIO_PIPELINE_CONTINUE);
1080		}
1081		zio->io_bp_override = NULL;
1082		BP_ZERO(bp);
1083	}
1084
1085	if (bp->blk_birth == zio->io_txg) {
1086		/*
1087		 * We're rewriting an existing block, which means we're
1088		 * working on behalf of spa_sync().  For spa_sync() to
1089		 * converge, it must eventually be the case that we don't
1090		 * have to allocate new blocks.  But compression changes
1091		 * the blocksize, which forces a reallocate, and makes
1092		 * convergence take longer.  Therefore, after the first
1093		 * few passes, stop compressing to ensure convergence.
1094		 */
1095		pass = spa_sync_pass(spa);
1096
1097		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1098		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1099		ASSERT(!BP_GET_DEDUP(bp));
1100
1101		if (pass >= zfs_sync_pass_dont_compress)
1102			compress = ZIO_COMPRESS_OFF;
1103
1104		/* Make sure someone doesn't change their mind on overwrites */
1105		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1106		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1107	}
1108
1109	if (compress != ZIO_COMPRESS_OFF) {
1110		void *cbuf = zio_buf_alloc(lsize);
1111		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1112		if (psize == 0 || psize == lsize) {
1113			compress = ZIO_COMPRESS_OFF;
1114			zio_buf_free(cbuf, lsize);
1115		} else {
1116			ASSERT(psize < lsize);
1117			zio_push_transform(zio, cbuf, psize, lsize, NULL);
1118		}
1119	}
1120
1121	/*
1122	 * The final pass of spa_sync() must be all rewrites, but the first
1123	 * few passes offer a trade-off: allocating blocks defers convergence,
1124	 * but newly allocated blocks are sequential, so they can be written
1125	 * to disk faster.  Therefore, we allow the first few passes of
1126	 * spa_sync() to allocate new blocks, but force rewrites after that.
1127	 * There should only be a handful of blocks after pass 1 in any case.
1128	 */
1129	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1130	    pass >= zfs_sync_pass_rewrite) {
1131		ASSERT(psize != 0);
1132		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1133		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1134		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1135	} else {
1136		BP_ZERO(bp);
1137		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1138	}
1139
1140	if (psize == 0) {
1141		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1142	} else {
1143		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1144		BP_SET_LSIZE(bp, lsize);
1145		BP_SET_PSIZE(bp, psize);
1146		BP_SET_COMPRESS(bp, compress);
1147		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1148		BP_SET_TYPE(bp, zp->zp_type);
1149		BP_SET_LEVEL(bp, zp->zp_level);
1150		BP_SET_DEDUP(bp, zp->zp_dedup);
1151		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1152		if (zp->zp_dedup) {
1153			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1154			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1155			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1156		}
1157		if (zp->zp_nopwrite) {
1158			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1159			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1160			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1161		}
1162	}
1163
1164	return (ZIO_PIPELINE_CONTINUE);
1165}
1166
1167static int
1168zio_free_bp_init(zio_t *zio)
1169{
1170	blkptr_t *bp = zio->io_bp;
1171
1172	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1173		if (BP_GET_DEDUP(bp))
1174			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1175	}
1176
1177	return (ZIO_PIPELINE_CONTINUE);
1178}
1179
1180/*
1181 * ==========================================================================
1182 * Execute the I/O pipeline
1183 * ==========================================================================
1184 */
1185
1186static void
1187zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q, boolean_t cutinline)
1188{
1189	spa_t *spa = zio->io_spa;
1190	zio_type_t t = zio->io_type;
1191	int flags = TQ_SLEEP | (cutinline ? TQ_FRONT : 0);
1192
1193	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1194
1195	/*
1196	 * If we're a config writer or a probe, the normal issue and
1197	 * interrupt threads may all be blocked waiting for the config lock.
1198	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1199	 */
1200	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1201		t = ZIO_TYPE_NULL;
1202
1203	/*
1204	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1205	 */
1206	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1207		t = ZIO_TYPE_NULL;
1208
1209	/*
1210	 * If this is a high priority I/O, then use the high priority taskq.
1211	 */
1212	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1213	    spa->spa_zio_taskq[t][q + 1] != NULL)
1214		q++;
1215
1216	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1217#ifdef _KERNEL
1218	(void) taskq_dispatch_safe(spa->spa_zio_taskq[t][q],
1219	    (task_func_t *)zio_execute, zio, flags, &zio->io_task);
1220#else
1221	(void) taskq_dispatch(spa->spa_zio_taskq[t][q],
1222	    (task_func_t *)zio_execute, zio, flags);
1223#endif
1224}
1225
1226static boolean_t
1227zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
1228{
1229	kthread_t *executor = zio->io_executor;
1230	spa_t *spa = zio->io_spa;
1231
1232	for (zio_type_t t = 0; t < ZIO_TYPES; t++)
1233		if (taskq_member(spa->spa_zio_taskq[t][q], executor))
1234			return (B_TRUE);
1235
1236	return (B_FALSE);
1237}
1238
1239static int
1240zio_issue_async(zio_t *zio)
1241{
1242	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1243
1244	return (ZIO_PIPELINE_STOP);
1245}
1246
1247void
1248zio_interrupt(zio_t *zio)
1249{
1250	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1251}
1252
1253/*
1254 * Execute the I/O pipeline until one of the following occurs:
1255 * (1) the I/O completes; (2) the pipeline stalls waiting for
1256 * dependent child I/Os; (3) the I/O issues, so we're waiting
1257 * for an I/O completion interrupt; (4) the I/O is delegated by
1258 * vdev-level caching or aggregation; (5) the I/O is deferred
1259 * due to vdev-level queueing; (6) the I/O is handed off to
1260 * another thread.  In all cases, the pipeline stops whenever
1261 * there's no CPU work; it never burns a thread in cv_wait().
1262 *
1263 * There's no locking on io_stage because there's no legitimate way
1264 * for multiple threads to be attempting to process the same I/O.
1265 */
1266static zio_pipe_stage_t *zio_pipeline[];
1267
1268void
1269zio_execute(zio_t *zio)
1270{
1271	zio->io_executor = curthread;
1272
1273	while (zio->io_stage < ZIO_STAGE_DONE) {
1274		enum zio_stage pipeline = zio->io_pipeline;
1275		enum zio_stage stage = zio->io_stage;
1276		int rv;
1277
1278		ASSERT(!MUTEX_HELD(&zio->io_lock));
1279		ASSERT(ISP2(stage));
1280		ASSERT(zio->io_stall == NULL);
1281
1282		do {
1283			stage <<= 1;
1284		} while ((stage & pipeline) == 0);
1285
1286		ASSERT(stage <= ZIO_STAGE_DONE);
1287
1288		/*
1289		 * If we are in interrupt context and this pipeline stage
1290		 * will grab a config lock that is held across I/O,
1291		 * or may wait for an I/O that needs an interrupt thread
1292		 * to complete, issue async to avoid deadlock.
1293		 *
1294		 * For VDEV_IO_START, we cut in line so that the io will
1295		 * be sent to disk promptly.
1296		 */
1297		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1298		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1299			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1300			    zio_requeue_io_start_cut_in_line : B_FALSE;
1301			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1302			return;
1303		}
1304
1305		zio->io_stage = stage;
1306		rv = zio_pipeline[highbit(stage) - 1](zio);
1307
1308		if (rv == ZIO_PIPELINE_STOP)
1309			return;
1310
1311		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1312	}
1313}
1314
1315/*
1316 * ==========================================================================
1317 * Initiate I/O, either sync or async
1318 * ==========================================================================
1319 */
1320int
1321zio_wait(zio_t *zio)
1322{
1323	int error;
1324
1325	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1326	ASSERT(zio->io_executor == NULL);
1327
1328	zio->io_waiter = curthread;
1329
1330	zio_execute(zio);
1331
1332	mutex_enter(&zio->io_lock);
1333	while (zio->io_executor != NULL)
1334		cv_wait(&zio->io_cv, &zio->io_lock);
1335	mutex_exit(&zio->io_lock);
1336
1337	error = zio->io_error;
1338	zio_destroy(zio);
1339
1340	return (error);
1341}
1342
1343void
1344zio_nowait(zio_t *zio)
1345{
1346	ASSERT(zio->io_executor == NULL);
1347
1348	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1349	    zio_unique_parent(zio) == NULL) {
1350		/*
1351		 * This is a logical async I/O with no parent to wait for it.
1352		 * We add it to the spa_async_root_zio "Godfather" I/O which
1353		 * will ensure they complete prior to unloading the pool.
1354		 */
1355		spa_t *spa = zio->io_spa;
1356
1357		zio_add_child(spa->spa_async_zio_root, zio);
1358	}
1359
1360	zio_execute(zio);
1361}
1362
1363/*
1364 * ==========================================================================
1365 * Reexecute or suspend/resume failed I/O
1366 * ==========================================================================
1367 */
1368
1369static void
1370zio_reexecute(zio_t *pio)
1371{
1372	zio_t *cio, *cio_next;
1373
1374	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1375	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1376	ASSERT(pio->io_gang_leader == NULL);
1377	ASSERT(pio->io_gang_tree == NULL);
1378
1379	pio->io_flags = pio->io_orig_flags;
1380	pio->io_stage = pio->io_orig_stage;
1381	pio->io_pipeline = pio->io_orig_pipeline;
1382	pio->io_reexecute = 0;
1383	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1384	pio->io_error = 0;
1385	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1386		pio->io_state[w] = 0;
1387	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1388		pio->io_child_error[c] = 0;
1389
1390	if (IO_IS_ALLOCATING(pio))
1391		BP_ZERO(pio->io_bp);
1392
1393	/*
1394	 * As we reexecute pio's children, new children could be created.
1395	 * New children go to the head of pio's io_child_list, however,
1396	 * so we will (correctly) not reexecute them.  The key is that
1397	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1398	 * cannot be affected by any side effects of reexecuting 'cio'.
1399	 */
1400	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1401		cio_next = zio_walk_children(pio);
1402		mutex_enter(&pio->io_lock);
1403		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1404			pio->io_children[cio->io_child_type][w]++;
1405		mutex_exit(&pio->io_lock);
1406		zio_reexecute(cio);
1407	}
1408
1409	/*
1410	 * Now that all children have been reexecuted, execute the parent.
1411	 * We don't reexecute "The Godfather" I/O here as it's the
1412	 * responsibility of the caller to wait on him.
1413	 */
1414	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1415		zio_execute(pio);
1416}
1417
1418void
1419zio_suspend(spa_t *spa, zio_t *zio)
1420{
1421	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1422		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1423		    "failure and the failure mode property for this pool "
1424		    "is set to panic.", spa_name(spa));
1425
1426	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1427
1428	mutex_enter(&spa->spa_suspend_lock);
1429
1430	if (spa->spa_suspend_zio_root == NULL)
1431		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1432		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1433		    ZIO_FLAG_GODFATHER);
1434
1435	spa->spa_suspended = B_TRUE;
1436
1437	if (zio != NULL) {
1438		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1439		ASSERT(zio != spa->spa_suspend_zio_root);
1440		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1441		ASSERT(zio_unique_parent(zio) == NULL);
1442		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1443		zio_add_child(spa->spa_suspend_zio_root, zio);
1444	}
1445
1446	mutex_exit(&spa->spa_suspend_lock);
1447}
1448
1449int
1450zio_resume(spa_t *spa)
1451{
1452	zio_t *pio;
1453
1454	/*
1455	 * Reexecute all previously suspended i/o.
1456	 */
1457	mutex_enter(&spa->spa_suspend_lock);
1458	spa->spa_suspended = B_FALSE;
1459	cv_broadcast(&spa->spa_suspend_cv);
1460	pio = spa->spa_suspend_zio_root;
1461	spa->spa_suspend_zio_root = NULL;
1462	mutex_exit(&spa->spa_suspend_lock);
1463
1464	if (pio == NULL)
1465		return (0);
1466
1467	zio_reexecute(pio);
1468	return (zio_wait(pio));
1469}
1470
1471void
1472zio_resume_wait(spa_t *spa)
1473{
1474	mutex_enter(&spa->spa_suspend_lock);
1475	while (spa_suspended(spa))
1476		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1477	mutex_exit(&spa->spa_suspend_lock);
1478}
1479
1480/*
1481 * ==========================================================================
1482 * Gang blocks.
1483 *
1484 * A gang block is a collection of small blocks that looks to the DMU
1485 * like one large block.  When zio_dva_allocate() cannot find a block
1486 * of the requested size, due to either severe fragmentation or the pool
1487 * being nearly full, it calls zio_write_gang_block() to construct the
1488 * block from smaller fragments.
1489 *
1490 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1491 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1492 * an indirect block: it's an array of block pointers.  It consumes
1493 * only one sector and hence is allocatable regardless of fragmentation.
1494 * The gang header's bps point to its gang members, which hold the data.
1495 *
1496 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1497 * as the verifier to ensure uniqueness of the SHA256 checksum.
1498 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1499 * not the gang header.  This ensures that data block signatures (needed for
1500 * deduplication) are independent of how the block is physically stored.
1501 *
1502 * Gang blocks can be nested: a gang member may itself be a gang block.
1503 * Thus every gang block is a tree in which root and all interior nodes are
1504 * gang headers, and the leaves are normal blocks that contain user data.
1505 * The root of the gang tree is called the gang leader.
1506 *
1507 * To perform any operation (read, rewrite, free, claim) on a gang block,
1508 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1509 * in the io_gang_tree field of the original logical i/o by recursively
1510 * reading the gang leader and all gang headers below it.  This yields
1511 * an in-core tree containing the contents of every gang header and the
1512 * bps for every constituent of the gang block.
1513 *
1514 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1515 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1516 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1517 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1518 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1519 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1520 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1521 * of the gang header plus zio_checksum_compute() of the data to update the
1522 * gang header's blk_cksum as described above.
1523 *
1524 * The two-phase assemble/issue model solves the problem of partial failure --
1525 * what if you'd freed part of a gang block but then couldn't read the
1526 * gang header for another part?  Assembling the entire gang tree first
1527 * ensures that all the necessary gang header I/O has succeeded before
1528 * starting the actual work of free, claim, or write.  Once the gang tree
1529 * is assembled, free and claim are in-memory operations that cannot fail.
1530 *
1531 * In the event that a gang write fails, zio_dva_unallocate() walks the
1532 * gang tree to immediately free (i.e. insert back into the space map)
1533 * everything we've allocated.  This ensures that we don't get ENOSPC
1534 * errors during repeated suspend/resume cycles due to a flaky device.
1535 *
1536 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1537 * the gang tree, we won't modify the block, so we can safely defer the free
1538 * (knowing that the block is still intact).  If we *can* assemble the gang
1539 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1540 * each constituent bp and we can allocate a new block on the next sync pass.
1541 *
1542 * In all cases, the gang tree allows complete recovery from partial failure.
1543 * ==========================================================================
1544 */
1545
1546static zio_t *
1547zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1548{
1549	if (gn != NULL)
1550		return (pio);
1551
1552	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1553	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1554	    &pio->io_bookmark));
1555}
1556
1557zio_t *
1558zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1559{
1560	zio_t *zio;
1561
1562	if (gn != NULL) {
1563		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1564		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1565		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1566		/*
1567		 * As we rewrite each gang header, the pipeline will compute
1568		 * a new gang block header checksum for it; but no one will
1569		 * compute a new data checksum, so we do that here.  The one
1570		 * exception is the gang leader: the pipeline already computed
1571		 * its data checksum because that stage precedes gang assembly.
1572		 * (Presently, nothing actually uses interior data checksums;
1573		 * this is just good hygiene.)
1574		 */
1575		if (gn != pio->io_gang_leader->io_gang_tree) {
1576			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1577			    data, BP_GET_PSIZE(bp));
1578		}
1579		/*
1580		 * If we are here to damage data for testing purposes,
1581		 * leave the GBH alone so that we can detect the damage.
1582		 */
1583		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1584			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1585	} else {
1586		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1587		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1588		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1589	}
1590
1591	return (zio);
1592}
1593
1594/* ARGSUSED */
1595zio_t *
1596zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1597{
1598	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1599	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1600	    ZIO_GANG_CHILD_FLAGS(pio)));
1601}
1602
1603/* ARGSUSED */
1604zio_t *
1605zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1606{
1607	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1608	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1609}
1610
1611static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1612	NULL,
1613	zio_read_gang,
1614	zio_rewrite_gang,
1615	zio_free_gang,
1616	zio_claim_gang,
1617	NULL
1618};
1619
1620static void zio_gang_tree_assemble_done(zio_t *zio);
1621
1622static zio_gang_node_t *
1623zio_gang_node_alloc(zio_gang_node_t **gnpp)
1624{
1625	zio_gang_node_t *gn;
1626
1627	ASSERT(*gnpp == NULL);
1628
1629	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1630	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1631	*gnpp = gn;
1632
1633	return (gn);
1634}
1635
1636static void
1637zio_gang_node_free(zio_gang_node_t **gnpp)
1638{
1639	zio_gang_node_t *gn = *gnpp;
1640
1641	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1642		ASSERT(gn->gn_child[g] == NULL);
1643
1644	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1645	kmem_free(gn, sizeof (*gn));
1646	*gnpp = NULL;
1647}
1648
1649static void
1650zio_gang_tree_free(zio_gang_node_t **gnpp)
1651{
1652	zio_gang_node_t *gn = *gnpp;
1653
1654	if (gn == NULL)
1655		return;
1656
1657	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1658		zio_gang_tree_free(&gn->gn_child[g]);
1659
1660	zio_gang_node_free(gnpp);
1661}
1662
1663static void
1664zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1665{
1666	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1667
1668	ASSERT(gio->io_gang_leader == gio);
1669	ASSERT(BP_IS_GANG(bp));
1670
1671	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1672	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1673	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1674}
1675
1676static void
1677zio_gang_tree_assemble_done(zio_t *zio)
1678{
1679	zio_t *gio = zio->io_gang_leader;
1680	zio_gang_node_t *gn = zio->io_private;
1681	blkptr_t *bp = zio->io_bp;
1682
1683	ASSERT(gio == zio_unique_parent(zio));
1684	ASSERT(zio->io_child_count == 0);
1685
1686	if (zio->io_error)
1687		return;
1688
1689	if (BP_SHOULD_BYTESWAP(bp))
1690		byteswap_uint64_array(zio->io_data, zio->io_size);
1691
1692	ASSERT(zio->io_data == gn->gn_gbh);
1693	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1694	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1695
1696	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1697		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1698		if (!BP_IS_GANG(gbp))
1699			continue;
1700		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1701	}
1702}
1703
1704static void
1705zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1706{
1707	zio_t *gio = pio->io_gang_leader;
1708	zio_t *zio;
1709
1710	ASSERT(BP_IS_GANG(bp) == !!gn);
1711	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1712	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1713
1714	/*
1715	 * If you're a gang header, your data is in gn->gn_gbh.
1716	 * If you're a gang member, your data is in 'data' and gn == NULL.
1717	 */
1718	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1719
1720	if (gn != NULL) {
1721		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1722
1723		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1724			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1725			if (BP_IS_HOLE(gbp))
1726				continue;
1727			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1728			data = (char *)data + BP_GET_PSIZE(gbp);
1729		}
1730	}
1731
1732	if (gn == gio->io_gang_tree && gio->io_data != NULL)
1733		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1734
1735	if (zio != pio)
1736		zio_nowait(zio);
1737}
1738
1739static int
1740zio_gang_assemble(zio_t *zio)
1741{
1742	blkptr_t *bp = zio->io_bp;
1743
1744	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1745	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1746
1747	zio->io_gang_leader = zio;
1748
1749	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1750
1751	return (ZIO_PIPELINE_CONTINUE);
1752}
1753
1754static int
1755zio_gang_issue(zio_t *zio)
1756{
1757	blkptr_t *bp = zio->io_bp;
1758
1759	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1760		return (ZIO_PIPELINE_STOP);
1761
1762	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1763	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1764
1765	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1766		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1767	else
1768		zio_gang_tree_free(&zio->io_gang_tree);
1769
1770	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1771
1772	return (ZIO_PIPELINE_CONTINUE);
1773}
1774
1775static void
1776zio_write_gang_member_ready(zio_t *zio)
1777{
1778	zio_t *pio = zio_unique_parent(zio);
1779	zio_t *gio = zio->io_gang_leader;
1780	dva_t *cdva = zio->io_bp->blk_dva;
1781	dva_t *pdva = pio->io_bp->blk_dva;
1782	uint64_t asize;
1783
1784	if (BP_IS_HOLE(zio->io_bp))
1785		return;
1786
1787	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1788
1789	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1790	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1791	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1792	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1793	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1794
1795	mutex_enter(&pio->io_lock);
1796	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1797		ASSERT(DVA_GET_GANG(&pdva[d]));
1798		asize = DVA_GET_ASIZE(&pdva[d]);
1799		asize += DVA_GET_ASIZE(&cdva[d]);
1800		DVA_SET_ASIZE(&pdva[d], asize);
1801	}
1802	mutex_exit(&pio->io_lock);
1803}
1804
1805static int
1806zio_write_gang_block(zio_t *pio)
1807{
1808	spa_t *spa = pio->io_spa;
1809	blkptr_t *bp = pio->io_bp;
1810	zio_t *gio = pio->io_gang_leader;
1811	zio_t *zio;
1812	zio_gang_node_t *gn, **gnpp;
1813	zio_gbh_phys_t *gbh;
1814	uint64_t txg = pio->io_txg;
1815	uint64_t resid = pio->io_size;
1816	uint64_t lsize;
1817	int copies = gio->io_prop.zp_copies;
1818	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1819	zio_prop_t zp;
1820	int error;
1821
1822	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1823	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1824	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1825	if (error) {
1826		pio->io_error = error;
1827		return (ZIO_PIPELINE_CONTINUE);
1828	}
1829
1830	if (pio == gio) {
1831		gnpp = &gio->io_gang_tree;
1832	} else {
1833		gnpp = pio->io_private;
1834		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1835	}
1836
1837	gn = zio_gang_node_alloc(gnpp);
1838	gbh = gn->gn_gbh;
1839	bzero(gbh, SPA_GANGBLOCKSIZE);
1840
1841	/*
1842	 * Create the gang header.
1843	 */
1844	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1845	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1846
1847	/*
1848	 * Create and nowait the gang children.
1849	 */
1850	for (int g = 0; resid != 0; resid -= lsize, g++) {
1851		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1852		    SPA_MINBLOCKSIZE);
1853		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1854
1855		zp.zp_checksum = gio->io_prop.zp_checksum;
1856		zp.zp_compress = ZIO_COMPRESS_OFF;
1857		zp.zp_type = DMU_OT_NONE;
1858		zp.zp_level = 0;
1859		zp.zp_copies = gio->io_prop.zp_copies;
1860		zp.zp_dedup = B_FALSE;
1861		zp.zp_dedup_verify = B_FALSE;
1862		zp.zp_nopwrite = B_FALSE;
1863
1864		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1865		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1866		    zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1867		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1868		    &pio->io_bookmark));
1869	}
1870
1871	/*
1872	 * Set pio's pipeline to just wait for zio to finish.
1873	 */
1874	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1875
1876	zio_nowait(zio);
1877
1878	return (ZIO_PIPELINE_CONTINUE);
1879}
1880
1881/*
1882 * The zio_nop_write stage in the pipeline determines if allocating
1883 * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1884 * such as SHA256, we can compare the checksums of the new data and the old
1885 * to determine if allocating a new block is required.  The nopwrite
1886 * feature can handle writes in either syncing or open context (i.e. zil
1887 * writes) and as a result is mutually exclusive with dedup.
1888 */
1889static int
1890zio_nop_write(zio_t *zio)
1891{
1892	blkptr_t *bp = zio->io_bp;
1893	blkptr_t *bp_orig = &zio->io_bp_orig;
1894	zio_prop_t *zp = &zio->io_prop;
1895
1896	ASSERT(BP_GET_LEVEL(bp) == 0);
1897	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1898	ASSERT(zp->zp_nopwrite);
1899	ASSERT(!zp->zp_dedup);
1900	ASSERT(zio->io_bp_override == NULL);
1901	ASSERT(IO_IS_ALLOCATING(zio));
1902
1903	/*
1904	 * Check to see if the original bp and the new bp have matching
1905	 * characteristics (i.e. same checksum, compression algorithms, etc).
1906	 * If they don't then just continue with the pipeline which will
1907	 * allocate a new bp.
1908	 */
1909	if (BP_IS_HOLE(bp_orig) ||
1910	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1911	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1912	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1913	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1914	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
1915		return (ZIO_PIPELINE_CONTINUE);
1916
1917	/*
1918	 * If the checksums match then reset the pipeline so that we
1919	 * avoid allocating a new bp and issuing any I/O.
1920	 */
1921	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1922		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1923		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1924		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1925		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1926		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1927		    sizeof (uint64_t)) == 0);
1928
1929		*bp = *bp_orig;
1930		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1931		zio->io_flags |= ZIO_FLAG_NOPWRITE;
1932	}
1933
1934	return (ZIO_PIPELINE_CONTINUE);
1935}
1936
1937/*
1938 * ==========================================================================
1939 * Dedup
1940 * ==========================================================================
1941 */
1942static void
1943zio_ddt_child_read_done(zio_t *zio)
1944{
1945	blkptr_t *bp = zio->io_bp;
1946	ddt_entry_t *dde = zio->io_private;
1947	ddt_phys_t *ddp;
1948	zio_t *pio = zio_unique_parent(zio);
1949
1950	mutex_enter(&pio->io_lock);
1951	ddp = ddt_phys_select(dde, bp);
1952	if (zio->io_error == 0)
1953		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1954	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1955		dde->dde_repair_data = zio->io_data;
1956	else
1957		zio_buf_free(zio->io_data, zio->io_size);
1958	mutex_exit(&pio->io_lock);
1959}
1960
1961static int
1962zio_ddt_read_start(zio_t *zio)
1963{
1964	blkptr_t *bp = zio->io_bp;
1965
1966	ASSERT(BP_GET_DEDUP(bp));
1967	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1968	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1969
1970	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1971		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1972		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1973		ddt_phys_t *ddp = dde->dde_phys;
1974		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1975		blkptr_t blk;
1976
1977		ASSERT(zio->io_vsd == NULL);
1978		zio->io_vsd = dde;
1979
1980		if (ddp_self == NULL)
1981			return (ZIO_PIPELINE_CONTINUE);
1982
1983		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1984			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1985				continue;
1986			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1987			    &blk);
1988			zio_nowait(zio_read(zio, zio->io_spa, &blk,
1989			    zio_buf_alloc(zio->io_size), zio->io_size,
1990			    zio_ddt_child_read_done, dde, zio->io_priority,
1991			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1992			    &zio->io_bookmark));
1993		}
1994		return (ZIO_PIPELINE_CONTINUE);
1995	}
1996
1997	zio_nowait(zio_read(zio, zio->io_spa, bp,
1998	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1999	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2000
2001	return (ZIO_PIPELINE_CONTINUE);
2002}
2003
2004static int
2005zio_ddt_read_done(zio_t *zio)
2006{
2007	blkptr_t *bp = zio->io_bp;
2008
2009	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2010		return (ZIO_PIPELINE_STOP);
2011
2012	ASSERT(BP_GET_DEDUP(bp));
2013	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2014	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2015
2016	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2017		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2018		ddt_entry_t *dde = zio->io_vsd;
2019		if (ddt == NULL) {
2020			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2021			return (ZIO_PIPELINE_CONTINUE);
2022		}
2023		if (dde == NULL) {
2024			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2025			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2026			return (ZIO_PIPELINE_STOP);
2027		}
2028		if (dde->dde_repair_data != NULL) {
2029			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2030			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2031		}
2032		ddt_repair_done(ddt, dde);
2033		zio->io_vsd = NULL;
2034	}
2035
2036	ASSERT(zio->io_vsd == NULL);
2037
2038	return (ZIO_PIPELINE_CONTINUE);
2039}
2040
2041static boolean_t
2042zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2043{
2044	spa_t *spa = zio->io_spa;
2045
2046	/*
2047	 * Note: we compare the original data, not the transformed data,
2048	 * because when zio->io_bp is an override bp, we will not have
2049	 * pushed the I/O transforms.  That's an important optimization
2050	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2051	 */
2052	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2053		zio_t *lio = dde->dde_lead_zio[p];
2054
2055		if (lio != NULL) {
2056			return (lio->io_orig_size != zio->io_orig_size ||
2057			    bcmp(zio->io_orig_data, lio->io_orig_data,
2058			    zio->io_orig_size) != 0);
2059		}
2060	}
2061
2062	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2063		ddt_phys_t *ddp = &dde->dde_phys[p];
2064
2065		if (ddp->ddp_phys_birth != 0) {
2066			arc_buf_t *abuf = NULL;
2067			uint32_t aflags = ARC_WAIT;
2068			blkptr_t blk = *zio->io_bp;
2069			int error;
2070
2071			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2072
2073			ddt_exit(ddt);
2074
2075			error = arc_read(NULL, spa, &blk,
2076			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2077			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2078			    &aflags, &zio->io_bookmark);
2079
2080			if (error == 0) {
2081				if (arc_buf_size(abuf) != zio->io_orig_size ||
2082				    bcmp(abuf->b_data, zio->io_orig_data,
2083				    zio->io_orig_size) != 0)
2084					error = EEXIST;
2085				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2086			}
2087
2088			ddt_enter(ddt);
2089			return (error != 0);
2090		}
2091	}
2092
2093	return (B_FALSE);
2094}
2095
2096static void
2097zio_ddt_child_write_ready(zio_t *zio)
2098{
2099	int p = zio->io_prop.zp_copies;
2100	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2101	ddt_entry_t *dde = zio->io_private;
2102	ddt_phys_t *ddp = &dde->dde_phys[p];
2103	zio_t *pio;
2104
2105	if (zio->io_error)
2106		return;
2107
2108	ddt_enter(ddt);
2109
2110	ASSERT(dde->dde_lead_zio[p] == zio);
2111
2112	ddt_phys_fill(ddp, zio->io_bp);
2113
2114	while ((pio = zio_walk_parents(zio)) != NULL)
2115		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2116
2117	ddt_exit(ddt);
2118}
2119
2120static void
2121zio_ddt_child_write_done(zio_t *zio)
2122{
2123	int p = zio->io_prop.zp_copies;
2124	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2125	ddt_entry_t *dde = zio->io_private;
2126	ddt_phys_t *ddp = &dde->dde_phys[p];
2127
2128	ddt_enter(ddt);
2129
2130	ASSERT(ddp->ddp_refcnt == 0);
2131	ASSERT(dde->dde_lead_zio[p] == zio);
2132	dde->dde_lead_zio[p] = NULL;
2133
2134	if (zio->io_error == 0) {
2135		while (zio_walk_parents(zio) != NULL)
2136			ddt_phys_addref(ddp);
2137	} else {
2138		ddt_phys_clear(ddp);
2139	}
2140
2141	ddt_exit(ddt);
2142}
2143
2144static void
2145zio_ddt_ditto_write_done(zio_t *zio)
2146{
2147	int p = DDT_PHYS_DITTO;
2148	zio_prop_t *zp = &zio->io_prop;
2149	blkptr_t *bp = zio->io_bp;
2150	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2151	ddt_entry_t *dde = zio->io_private;
2152	ddt_phys_t *ddp = &dde->dde_phys[p];
2153	ddt_key_t *ddk = &dde->dde_key;
2154
2155	ddt_enter(ddt);
2156
2157	ASSERT(ddp->ddp_refcnt == 0);
2158	ASSERT(dde->dde_lead_zio[p] == zio);
2159	dde->dde_lead_zio[p] = NULL;
2160
2161	if (zio->io_error == 0) {
2162		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2163		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2164		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2165		if (ddp->ddp_phys_birth != 0)
2166			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2167		ddt_phys_fill(ddp, bp);
2168	}
2169
2170	ddt_exit(ddt);
2171}
2172
2173static int
2174zio_ddt_write(zio_t *zio)
2175{
2176	spa_t *spa = zio->io_spa;
2177	blkptr_t *bp = zio->io_bp;
2178	uint64_t txg = zio->io_txg;
2179	zio_prop_t *zp = &zio->io_prop;
2180	int p = zp->zp_copies;
2181	int ditto_copies;
2182	zio_t *cio = NULL;
2183	zio_t *dio = NULL;
2184	ddt_t *ddt = ddt_select(spa, bp);
2185	ddt_entry_t *dde;
2186	ddt_phys_t *ddp;
2187
2188	ASSERT(BP_GET_DEDUP(bp));
2189	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2190	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2191
2192	ddt_enter(ddt);
2193	dde = ddt_lookup(ddt, bp, B_TRUE);
2194	ddp = &dde->dde_phys[p];
2195
2196	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2197		/*
2198		 * If we're using a weak checksum, upgrade to a strong checksum
2199		 * and try again.  If we're already using a strong checksum,
2200		 * we can't resolve it, so just convert to an ordinary write.
2201		 * (And automatically e-mail a paper to Nature?)
2202		 */
2203		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2204			zp->zp_checksum = spa_dedup_checksum(spa);
2205			zio_pop_transforms(zio);
2206			zio->io_stage = ZIO_STAGE_OPEN;
2207			BP_ZERO(bp);
2208		} else {
2209			zp->zp_dedup = B_FALSE;
2210		}
2211		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2212		ddt_exit(ddt);
2213		return (ZIO_PIPELINE_CONTINUE);
2214	}
2215
2216	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2217	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2218
2219	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2220	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2221		zio_prop_t czp = *zp;
2222
2223		czp.zp_copies = ditto_copies;
2224
2225		/*
2226		 * If we arrived here with an override bp, we won't have run
2227		 * the transform stack, so we won't have the data we need to
2228		 * generate a child i/o.  So, toss the override bp and restart.
2229		 * This is safe, because using the override bp is just an
2230		 * optimization; and it's rare, so the cost doesn't matter.
2231		 */
2232		if (zio->io_bp_override) {
2233			zio_pop_transforms(zio);
2234			zio->io_stage = ZIO_STAGE_OPEN;
2235			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2236			zio->io_bp_override = NULL;
2237			BP_ZERO(bp);
2238			ddt_exit(ddt);
2239			return (ZIO_PIPELINE_CONTINUE);
2240		}
2241
2242		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2243		    zio->io_orig_size, &czp, NULL,
2244		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2245		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2246
2247		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2248		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2249	}
2250
2251	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2252		if (ddp->ddp_phys_birth != 0)
2253			ddt_bp_fill(ddp, bp, txg);
2254		if (dde->dde_lead_zio[p] != NULL)
2255			zio_add_child(zio, dde->dde_lead_zio[p]);
2256		else
2257			ddt_phys_addref(ddp);
2258	} else if (zio->io_bp_override) {
2259		ASSERT(bp->blk_birth == txg);
2260		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2261		ddt_phys_fill(ddp, bp);
2262		ddt_phys_addref(ddp);
2263	} else {
2264		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2265		    zio->io_orig_size, zp, zio_ddt_child_write_ready,
2266		    zio_ddt_child_write_done, dde, zio->io_priority,
2267		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2268
2269		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2270		dde->dde_lead_zio[p] = cio;
2271	}
2272
2273	ddt_exit(ddt);
2274
2275	if (cio)
2276		zio_nowait(cio);
2277	if (dio)
2278		zio_nowait(dio);
2279
2280	return (ZIO_PIPELINE_CONTINUE);
2281}
2282
2283ddt_entry_t *freedde; /* for debugging */
2284
2285static int
2286zio_ddt_free(zio_t *zio)
2287{
2288	spa_t *spa = zio->io_spa;
2289	blkptr_t *bp = zio->io_bp;
2290	ddt_t *ddt = ddt_select(spa, bp);
2291	ddt_entry_t *dde;
2292	ddt_phys_t *ddp;
2293
2294	ASSERT(BP_GET_DEDUP(bp));
2295	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2296
2297	ddt_enter(ddt);
2298	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2299	ddp = ddt_phys_select(dde, bp);
2300	ddt_phys_decref(ddp);
2301	ddt_exit(ddt);
2302
2303	return (ZIO_PIPELINE_CONTINUE);
2304}
2305
2306/*
2307 * ==========================================================================
2308 * Allocate and free blocks
2309 * ==========================================================================
2310 */
2311static int
2312zio_dva_allocate(zio_t *zio)
2313{
2314	spa_t *spa = zio->io_spa;
2315	metaslab_class_t *mc = spa_normal_class(spa);
2316	blkptr_t *bp = zio->io_bp;
2317	int error;
2318	int flags = 0;
2319
2320	if (zio->io_gang_leader == NULL) {
2321		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2322		zio->io_gang_leader = zio;
2323	}
2324
2325	ASSERT(BP_IS_HOLE(bp));
2326	ASSERT0(BP_GET_NDVAS(bp));
2327	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2328	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2329	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2330
2331	/*
2332	 * The dump device does not support gang blocks so allocation on
2333	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2334	 * the "fast" gang feature.
2335	 */
2336	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2337	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2338	    METASLAB_GANG_CHILD : 0;
2339	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2340	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2341
2342	if (error) {
2343		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2344		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2345		    error);
2346		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2347			return (zio_write_gang_block(zio));
2348		zio->io_error = error;
2349	}
2350
2351	return (ZIO_PIPELINE_CONTINUE);
2352}
2353
2354static int
2355zio_dva_free(zio_t *zio)
2356{
2357	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2358
2359	return (ZIO_PIPELINE_CONTINUE);
2360}
2361
2362static int
2363zio_dva_claim(zio_t *zio)
2364{
2365	int error;
2366
2367	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2368	if (error)
2369		zio->io_error = error;
2370
2371	return (ZIO_PIPELINE_CONTINUE);
2372}
2373
2374/*
2375 * Undo an allocation.  This is used by zio_done() when an I/O fails
2376 * and we want to give back the block we just allocated.
2377 * This handles both normal blocks and gang blocks.
2378 */
2379static void
2380zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2381{
2382	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2383	ASSERT(zio->io_bp_override == NULL);
2384
2385	if (!BP_IS_HOLE(bp))
2386		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2387
2388	if (gn != NULL) {
2389		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2390			zio_dva_unallocate(zio, gn->gn_child[g],
2391			    &gn->gn_gbh->zg_blkptr[g]);
2392		}
2393	}
2394}
2395
2396/*
2397 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2398 */
2399int
2400zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2401    uint64_t size, boolean_t use_slog)
2402{
2403	int error = 1;
2404
2405	ASSERT(txg > spa_syncing_txg(spa));
2406
2407	/*
2408	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2409	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2410	 * when allocating them.
2411	 */
2412	if (use_slog) {
2413		error = metaslab_alloc(spa, spa_log_class(spa), size,
2414		    new_bp, 1, txg, old_bp,
2415		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2416	}
2417
2418	if (error) {
2419		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2420		    new_bp, 1, txg, old_bp,
2421		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2422	}
2423
2424	if (error == 0) {
2425		BP_SET_LSIZE(new_bp, size);
2426		BP_SET_PSIZE(new_bp, size);
2427		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2428		BP_SET_CHECKSUM(new_bp,
2429		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2430		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2431		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2432		BP_SET_LEVEL(new_bp, 0);
2433		BP_SET_DEDUP(new_bp, 0);
2434		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2435	}
2436
2437	return (error);
2438}
2439
2440/*
2441 * Free an intent log block.
2442 */
2443void
2444zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2445{
2446	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2447	ASSERT(!BP_IS_GANG(bp));
2448
2449	zio_free(spa, txg, bp);
2450}
2451
2452/*
2453 * ==========================================================================
2454 * Read, write and delete to physical devices
2455 * ==========================================================================
2456 */
2457static int
2458zio_vdev_io_start(zio_t *zio)
2459{
2460	vdev_t *vd = zio->io_vd;
2461	uint64_t align;
2462	spa_t *spa = zio->io_spa;
2463
2464	ASSERT(zio->io_error == 0);
2465	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2466
2467	if (vd == NULL) {
2468		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2469			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2470
2471		/*
2472		 * The mirror_ops handle multiple DVAs in a single BP.
2473		 */
2474		return (vdev_mirror_ops.vdev_op_io_start(zio));
2475	}
2476
2477	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE) {
2478		trim_map_free(zio);
2479		return (ZIO_PIPELINE_CONTINUE);
2480	}
2481
2482	/*
2483	 * We keep track of time-sensitive I/Os so that the scan thread
2484	 * can quickly react to certain workloads.  In particular, we care
2485	 * about non-scrubbing, top-level reads and writes with the following
2486	 * characteristics:
2487	 * 	- synchronous writes of user data to non-slog devices
2488	 *	- any reads of user data
2489	 * When these conditions are met, adjust the timestamp of spa_last_io
2490	 * which allows the scan thread to adjust its workload accordingly.
2491	 */
2492	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2493	    vd == vd->vdev_top && !vd->vdev_islog &&
2494	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2495	    zio->io_txg != spa_syncing_txg(spa)) {
2496		uint64_t old = spa->spa_last_io;
2497		uint64_t new = ddi_get_lbolt64();
2498		if (old != new)
2499			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2500	}
2501
2502	align = 1ULL << vd->vdev_top->vdev_ashift;
2503
2504	if (P2PHASE(zio->io_size, align) != 0) {
2505		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2506		char *abuf = NULL;
2507		if (zio->io_type == ZIO_TYPE_READ ||
2508		    zio->io_type == ZIO_TYPE_WRITE)
2509			abuf = zio_buf_alloc(asize);
2510		ASSERT(vd == vd->vdev_top);
2511		if (zio->io_type == ZIO_TYPE_WRITE) {
2512			bcopy(zio->io_data, abuf, zio->io_size);
2513			bzero(abuf + zio->io_size, asize - zio->io_size);
2514		}
2515		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
2516		    zio_subblock);
2517	}
2518
2519	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2520	ASSERT(P2PHASE(zio->io_size, align) == 0);
2521	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
2522
2523	/*
2524	 * If this is a repair I/O, and there's no self-healing involved --
2525	 * that is, we're just resilvering what we expect to resilver --
2526	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2527	 * This prevents spurious resilvering with nested replication.
2528	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2529	 * A is out of date, we'll read from C+D, then use the data to
2530	 * resilver A+B -- but we don't actually want to resilver B, just A.
2531	 * The top-level mirror has no way to know this, so instead we just
2532	 * discard unnecessary repairs as we work our way down the vdev tree.
2533	 * The same logic applies to any form of nested replication:
2534	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2535	 */
2536	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2537	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2538	    zio->io_txg != 0 &&	/* not a delegated i/o */
2539	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2540		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2541		zio_vdev_io_bypass(zio);
2542		return (ZIO_PIPELINE_CONTINUE);
2543	}
2544
2545	if (vd->vdev_ops->vdev_op_leaf &&
2546	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2547
2548		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2549			return (ZIO_PIPELINE_CONTINUE);
2550
2551		if ((zio = vdev_queue_io(zio)) == NULL)
2552			return (ZIO_PIPELINE_STOP);
2553
2554		if (!vdev_accessible(vd, zio)) {
2555			zio->io_error = ENXIO;
2556			zio_interrupt(zio);
2557			return (ZIO_PIPELINE_STOP);
2558		}
2559	}
2560
2561	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_WRITE) {
2562		if (!trim_map_write_start(zio))
2563			return (ZIO_PIPELINE_STOP);
2564	}
2565
2566	return (vd->vdev_ops->vdev_op_io_start(zio));
2567}
2568
2569static int
2570zio_vdev_io_done(zio_t *zio)
2571{
2572	vdev_t *vd = zio->io_vd;
2573	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2574	boolean_t unexpected_error = B_FALSE;
2575
2576	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2577		return (ZIO_PIPELINE_STOP);
2578
2579	ASSERT(zio->io_type == ZIO_TYPE_READ ||
2580	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
2581
2582	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2583	    zio->io_type == ZIO_TYPE_WRITE) {
2584		trim_map_write_done(zio);
2585	}
2586
2587	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2588	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2589
2590		vdev_queue_io_done(zio);
2591
2592		if (zio->io_type == ZIO_TYPE_WRITE)
2593			vdev_cache_write(zio);
2594
2595		if (zio_injection_enabled && zio->io_error == 0)
2596			zio->io_error = zio_handle_device_injection(vd,
2597			    zio, EIO);
2598
2599		if (zio_injection_enabled && zio->io_error == 0)
2600			zio->io_error = zio_handle_label_injection(zio, EIO);
2601
2602		if (zio->io_error) {
2603			if (!vdev_accessible(vd, zio)) {
2604				zio->io_error = ENXIO;
2605			} else {
2606				unexpected_error = B_TRUE;
2607			}
2608		}
2609	}
2610
2611	ops->vdev_op_io_done(zio);
2612
2613	if (unexpected_error)
2614		VERIFY(vdev_probe(vd, zio) == NULL);
2615
2616	return (ZIO_PIPELINE_CONTINUE);
2617}
2618
2619/*
2620 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2621 * disk, and use that to finish the checksum ereport later.
2622 */
2623static void
2624zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2625    const void *good_buf)
2626{
2627	/* no processing needed */
2628	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2629}
2630
2631/*ARGSUSED*/
2632void
2633zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2634{
2635	void *buf = zio_buf_alloc(zio->io_size);
2636
2637	bcopy(zio->io_data, buf, zio->io_size);
2638
2639	zcr->zcr_cbinfo = zio->io_size;
2640	zcr->zcr_cbdata = buf;
2641	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2642	zcr->zcr_free = zio_buf_free;
2643}
2644
2645static int
2646zio_vdev_io_assess(zio_t *zio)
2647{
2648	vdev_t *vd = zio->io_vd;
2649
2650	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2651		return (ZIO_PIPELINE_STOP);
2652
2653	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2654		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2655
2656	if (zio->io_vsd != NULL) {
2657		zio->io_vsd_ops->vsd_free(zio);
2658		zio->io_vsd = NULL;
2659	}
2660
2661	if (zio_injection_enabled && zio->io_error == 0)
2662		zio->io_error = zio_handle_fault_injection(zio, EIO);
2663
2664	if (zio->io_type == ZIO_TYPE_IOCTL && zio->io_cmd == DKIOCTRIM)
2665		switch (zio->io_error) {
2666		case 0:
2667			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
2668			ZIO_TRIM_STAT_BUMP(success);
2669			break;
2670		case EOPNOTSUPP:
2671			ZIO_TRIM_STAT_BUMP(unsupported);
2672			break;
2673		default:
2674			ZIO_TRIM_STAT_BUMP(failed);
2675			break;
2676		}
2677
2678	/*
2679	 * If the I/O failed, determine whether we should attempt to retry it.
2680	 *
2681	 * On retry, we cut in line in the issue queue, since we don't want
2682	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2683	 */
2684	if (zio->io_error && vd == NULL &&
2685	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2686		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2687		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2688		zio->io_error = 0;
2689		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2690		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2691		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2692		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2693		    zio_requeue_io_start_cut_in_line);
2694		return (ZIO_PIPELINE_STOP);
2695	}
2696
2697	/*
2698	 * If we got an error on a leaf device, convert it to ENXIO
2699	 * if the device is not accessible at all.
2700	 */
2701	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2702	    !vdev_accessible(vd, zio))
2703		zio->io_error = ENXIO;
2704
2705	/*
2706	 * If we can't write to an interior vdev (mirror or RAID-Z),
2707	 * set vdev_cant_write so that we stop trying to allocate from it.
2708	 */
2709	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2710	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2711		vd->vdev_cant_write = B_TRUE;
2712	}
2713
2714	if (zio->io_error)
2715		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2716
2717	return (ZIO_PIPELINE_CONTINUE);
2718}
2719
2720void
2721zio_vdev_io_reissue(zio_t *zio)
2722{
2723	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2724	ASSERT(zio->io_error == 0);
2725
2726	zio->io_stage >>= 1;
2727}
2728
2729void
2730zio_vdev_io_redone(zio_t *zio)
2731{
2732	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2733
2734	zio->io_stage >>= 1;
2735}
2736
2737void
2738zio_vdev_io_bypass(zio_t *zio)
2739{
2740	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2741	ASSERT(zio->io_error == 0);
2742
2743	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2744	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2745}
2746
2747/*
2748 * ==========================================================================
2749 * Generate and verify checksums
2750 * ==========================================================================
2751 */
2752static int
2753zio_checksum_generate(zio_t *zio)
2754{
2755	blkptr_t *bp = zio->io_bp;
2756	enum zio_checksum checksum;
2757
2758	if (bp == NULL) {
2759		/*
2760		 * This is zio_write_phys().
2761		 * We're either generating a label checksum, or none at all.
2762		 */
2763		checksum = zio->io_prop.zp_checksum;
2764
2765		if (checksum == ZIO_CHECKSUM_OFF)
2766			return (ZIO_PIPELINE_CONTINUE);
2767
2768		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2769	} else {
2770		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2771			ASSERT(!IO_IS_ALLOCATING(zio));
2772			checksum = ZIO_CHECKSUM_GANG_HEADER;
2773		} else {
2774			checksum = BP_GET_CHECKSUM(bp);
2775		}
2776	}
2777
2778	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2779
2780	return (ZIO_PIPELINE_CONTINUE);
2781}
2782
2783static int
2784zio_checksum_verify(zio_t *zio)
2785{
2786	zio_bad_cksum_t info;
2787	blkptr_t *bp = zio->io_bp;
2788	int error;
2789
2790	ASSERT(zio->io_vd != NULL);
2791
2792	if (bp == NULL) {
2793		/*
2794		 * This is zio_read_phys().
2795		 * We're either verifying a label checksum, or nothing at all.
2796		 */
2797		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2798			return (ZIO_PIPELINE_CONTINUE);
2799
2800		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2801	}
2802
2803	if ((error = zio_checksum_error(zio, &info)) != 0) {
2804		zio->io_error = error;
2805		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2806			zfs_ereport_start_checksum(zio->io_spa,
2807			    zio->io_vd, zio, zio->io_offset,
2808			    zio->io_size, NULL, &info);
2809		}
2810	}
2811
2812	return (ZIO_PIPELINE_CONTINUE);
2813}
2814
2815/*
2816 * Called by RAID-Z to ensure we don't compute the checksum twice.
2817 */
2818void
2819zio_checksum_verified(zio_t *zio)
2820{
2821	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2822}
2823
2824/*
2825 * ==========================================================================
2826 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2827 * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2828 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2829 * indicate errors that are specific to one I/O, and most likely permanent.
2830 * Any other error is presumed to be worse because we weren't expecting it.
2831 * ==========================================================================
2832 */
2833int
2834zio_worst_error(int e1, int e2)
2835{
2836	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2837	int r1, r2;
2838
2839	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2840		if (e1 == zio_error_rank[r1])
2841			break;
2842
2843	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2844		if (e2 == zio_error_rank[r2])
2845			break;
2846
2847	return (r1 > r2 ? e1 : e2);
2848}
2849
2850/*
2851 * ==========================================================================
2852 * I/O completion
2853 * ==========================================================================
2854 */
2855static int
2856zio_ready(zio_t *zio)
2857{
2858	blkptr_t *bp = zio->io_bp;
2859	zio_t *pio, *pio_next;
2860
2861	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2862	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2863		return (ZIO_PIPELINE_STOP);
2864
2865	if (zio->io_ready) {
2866		ASSERT(IO_IS_ALLOCATING(zio));
2867		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2868		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
2869		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2870
2871		zio->io_ready(zio);
2872	}
2873
2874	if (bp != NULL && bp != &zio->io_bp_copy)
2875		zio->io_bp_copy = *bp;
2876
2877	if (zio->io_error)
2878		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2879
2880	mutex_enter(&zio->io_lock);
2881	zio->io_state[ZIO_WAIT_READY] = 1;
2882	pio = zio_walk_parents(zio);
2883	mutex_exit(&zio->io_lock);
2884
2885	/*
2886	 * As we notify zio's parents, new parents could be added.
2887	 * New parents go to the head of zio's io_parent_list, however,
2888	 * so we will (correctly) not notify them.  The remainder of zio's
2889	 * io_parent_list, from 'pio_next' onward, cannot change because
2890	 * all parents must wait for us to be done before they can be done.
2891	 */
2892	for (; pio != NULL; pio = pio_next) {
2893		pio_next = zio_walk_parents(zio);
2894		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2895	}
2896
2897	if (zio->io_flags & ZIO_FLAG_NODATA) {
2898		if (BP_IS_GANG(bp)) {
2899			zio->io_flags &= ~ZIO_FLAG_NODATA;
2900		} else {
2901			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2902			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2903		}
2904	}
2905
2906	if (zio_injection_enabled &&
2907	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2908		zio_handle_ignored_writes(zio);
2909
2910	return (ZIO_PIPELINE_CONTINUE);
2911}
2912
2913static int
2914zio_done(zio_t *zio)
2915{
2916	spa_t *spa = zio->io_spa;
2917	zio_t *lio = zio->io_logical;
2918	blkptr_t *bp = zio->io_bp;
2919	vdev_t *vd = zio->io_vd;
2920	uint64_t psize = zio->io_size;
2921	zio_t *pio, *pio_next;
2922
2923	/*
2924	 * If our children haven't all completed,
2925	 * wait for them and then repeat this pipeline stage.
2926	 */
2927	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2928	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2929	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2930	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2931		return (ZIO_PIPELINE_STOP);
2932
2933	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2934		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2935			ASSERT(zio->io_children[c][w] == 0);
2936
2937	if (bp != NULL) {
2938		ASSERT(bp->blk_pad[0] == 0);
2939		ASSERT(bp->blk_pad[1] == 0);
2940		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2941		    (bp == zio_unique_parent(zio)->io_bp));
2942		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2943		    zio->io_bp_override == NULL &&
2944		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2945			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2946			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2947			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2948			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2949		}
2950		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2951			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2952	}
2953
2954	/*
2955	 * If there were child vdev/gang/ddt errors, they apply to us now.
2956	 */
2957	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2958	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2959	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2960
2961	/*
2962	 * If the I/O on the transformed data was successful, generate any
2963	 * checksum reports now while we still have the transformed data.
2964	 */
2965	if (zio->io_error == 0) {
2966		while (zio->io_cksum_report != NULL) {
2967			zio_cksum_report_t *zcr = zio->io_cksum_report;
2968			uint64_t align = zcr->zcr_align;
2969			uint64_t asize = P2ROUNDUP(psize, align);
2970			char *abuf = zio->io_data;
2971
2972			if (asize != psize) {
2973				abuf = zio_buf_alloc(asize);
2974				bcopy(zio->io_data, abuf, psize);
2975				bzero(abuf + psize, asize - psize);
2976			}
2977
2978			zio->io_cksum_report = zcr->zcr_next;
2979			zcr->zcr_next = NULL;
2980			zcr->zcr_finish(zcr, abuf);
2981			zfs_ereport_free_checksum(zcr);
2982
2983			if (asize != psize)
2984				zio_buf_free(abuf, asize);
2985		}
2986	}
2987
2988	zio_pop_transforms(zio);	/* note: may set zio->io_error */
2989
2990	vdev_stat_update(zio, psize);
2991
2992	if (zio->io_error) {
2993		/*
2994		 * If this I/O is attached to a particular vdev,
2995		 * generate an error message describing the I/O failure
2996		 * at the block level.  We ignore these errors if the
2997		 * device is currently unavailable.
2998		 */
2999		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3000			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3001
3002		if ((zio->io_error == EIO || !(zio->io_flags &
3003		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3004		    zio == lio) {
3005			/*
3006			 * For logical I/O requests, tell the SPA to log the
3007			 * error and generate a logical data ereport.
3008			 */
3009			spa_log_error(spa, zio);
3010			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3011			    0, 0);
3012		}
3013	}
3014
3015	if (zio->io_error && zio == lio) {
3016		/*
3017		 * Determine whether zio should be reexecuted.  This will
3018		 * propagate all the way to the root via zio_notify_parent().
3019		 */
3020		ASSERT(vd == NULL && bp != NULL);
3021		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3022
3023		if (IO_IS_ALLOCATING(zio) &&
3024		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3025			if (zio->io_error != ENOSPC)
3026				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3027			else
3028				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3029		}
3030
3031		if ((zio->io_type == ZIO_TYPE_READ ||
3032		    zio->io_type == ZIO_TYPE_FREE) &&
3033		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3034		    zio->io_error == ENXIO &&
3035		    spa_load_state(spa) == SPA_LOAD_NONE &&
3036		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3037			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3038
3039		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3040			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3041
3042		/*
3043		 * Here is a possibly good place to attempt to do
3044		 * either combinatorial reconstruction or error correction
3045		 * based on checksums.  It also might be a good place
3046		 * to send out preliminary ereports before we suspend
3047		 * processing.
3048		 */
3049	}
3050
3051	/*
3052	 * If there were logical child errors, they apply to us now.
3053	 * We defer this until now to avoid conflating logical child
3054	 * errors with errors that happened to the zio itself when
3055	 * updating vdev stats and reporting FMA events above.
3056	 */
3057	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3058
3059	if ((zio->io_error || zio->io_reexecute) &&
3060	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3061	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3062		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3063
3064	zio_gang_tree_free(&zio->io_gang_tree);
3065
3066	/*
3067	 * Godfather I/Os should never suspend.
3068	 */
3069	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3070	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3071		zio->io_reexecute = 0;
3072
3073	if (zio->io_reexecute) {
3074		/*
3075		 * This is a logical I/O that wants to reexecute.
3076		 *
3077		 * Reexecute is top-down.  When an i/o fails, if it's not
3078		 * the root, it simply notifies its parent and sticks around.
3079		 * The parent, seeing that it still has children in zio_done(),
3080		 * does the same.  This percolates all the way up to the root.
3081		 * The root i/o will reexecute or suspend the entire tree.
3082		 *
3083		 * This approach ensures that zio_reexecute() honors
3084		 * all the original i/o dependency relationships, e.g.
3085		 * parents not executing until children are ready.
3086		 */
3087		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3088
3089		zio->io_gang_leader = NULL;
3090
3091		mutex_enter(&zio->io_lock);
3092		zio->io_state[ZIO_WAIT_DONE] = 1;
3093		mutex_exit(&zio->io_lock);
3094
3095		/*
3096		 * "The Godfather" I/O monitors its children but is
3097		 * not a true parent to them. It will track them through
3098		 * the pipeline but severs its ties whenever they get into
3099		 * trouble (e.g. suspended). This allows "The Godfather"
3100		 * I/O to return status without blocking.
3101		 */
3102		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3103			zio_link_t *zl = zio->io_walk_link;
3104			pio_next = zio_walk_parents(zio);
3105
3106			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3107			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3108				zio_remove_child(pio, zio, zl);
3109				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3110			}
3111		}
3112
3113		if ((pio = zio_unique_parent(zio)) != NULL) {
3114			/*
3115			 * We're not a root i/o, so there's nothing to do
3116			 * but notify our parent.  Don't propagate errors
3117			 * upward since we haven't permanently failed yet.
3118			 */
3119			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3120			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3121			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3122		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3123			/*
3124			 * We'd fail again if we reexecuted now, so suspend
3125			 * until conditions improve (e.g. device comes online).
3126			 */
3127			zio_suspend(spa, zio);
3128		} else {
3129			/*
3130			 * Reexecution is potentially a huge amount of work.
3131			 * Hand it off to the otherwise-unused claim taskq.
3132			 */
3133#ifdef _KERNEL
3134			(void) taskq_dispatch_safe(
3135			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
3136			    (task_func_t *)zio_reexecute, zio, TQ_SLEEP,
3137			    &zio->io_task);
3138#else
3139			(void) taskq_dispatch(
3140			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
3141			    (task_func_t *)zio_reexecute, zio, TQ_SLEEP);
3142#endif
3143		}
3144		return (ZIO_PIPELINE_STOP);
3145	}
3146
3147	ASSERT(zio->io_child_count == 0);
3148	ASSERT(zio->io_reexecute == 0);
3149	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3150
3151	/*
3152	 * Report any checksum errors, since the I/O is complete.
3153	 */
3154	while (zio->io_cksum_report != NULL) {
3155		zio_cksum_report_t *zcr = zio->io_cksum_report;
3156		zio->io_cksum_report = zcr->zcr_next;
3157		zcr->zcr_next = NULL;
3158		zcr->zcr_finish(zcr, NULL);
3159		zfs_ereport_free_checksum(zcr);
3160	}
3161
3162	/*
3163	 * It is the responsibility of the done callback to ensure that this
3164	 * particular zio is no longer discoverable for adoption, and as
3165	 * such, cannot acquire any new parents.
3166	 */
3167	if (zio->io_done)
3168		zio->io_done(zio);
3169
3170	mutex_enter(&zio->io_lock);
3171	zio->io_state[ZIO_WAIT_DONE] = 1;
3172	mutex_exit(&zio->io_lock);
3173
3174	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3175		zio_link_t *zl = zio->io_walk_link;
3176		pio_next = zio_walk_parents(zio);
3177		zio_remove_child(pio, zio, zl);
3178		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3179	}
3180
3181	if (zio->io_waiter != NULL) {
3182		mutex_enter(&zio->io_lock);
3183		zio->io_executor = NULL;
3184		cv_broadcast(&zio->io_cv);
3185		mutex_exit(&zio->io_lock);
3186	} else {
3187		zio_destroy(zio);
3188	}
3189
3190	return (ZIO_PIPELINE_STOP);
3191}
3192
3193/*
3194 * ==========================================================================
3195 * I/O pipeline definition
3196 * ==========================================================================
3197 */
3198static zio_pipe_stage_t *zio_pipeline[] = {
3199	NULL,
3200	zio_read_bp_init,
3201	zio_free_bp_init,
3202	zio_issue_async,
3203	zio_write_bp_init,
3204	zio_checksum_generate,
3205	zio_nop_write,
3206	zio_ddt_read_start,
3207	zio_ddt_read_done,
3208	zio_ddt_write,
3209	zio_ddt_free,
3210	zio_gang_assemble,
3211	zio_gang_issue,
3212	zio_dva_allocate,
3213	zio_dva_free,
3214	zio_dva_claim,
3215	zio_ready,
3216	zio_vdev_io_start,
3217	zio_vdev_io_done,
3218	zio_vdev_io_assess,
3219	zio_checksum_verify,
3220	zio_done
3221};
3222
3223/* dnp is the dnode for zb1->zb_object */
3224boolean_t
3225zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3226    const zbookmark_t *zb2)
3227{
3228	uint64_t zb1nextL0, zb2thisobj;
3229
3230	ASSERT(zb1->zb_objset == zb2->zb_objset);
3231	ASSERT(zb2->zb_level == 0);
3232
3233	/*
3234	 * A bookmark in the deadlist is considered to be after
3235	 * everything else.
3236	 */
3237	if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3238		return (B_TRUE);
3239
3240	/* The objset_phys_t isn't before anything. */
3241	if (dnp == NULL)
3242		return (B_FALSE);
3243
3244	zb1nextL0 = (zb1->zb_blkid + 1) <<
3245	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3246
3247	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3248	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3249
3250	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3251		uint64_t nextobj = zb1nextL0 *
3252		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3253		return (nextobj <= zb2thisobj);
3254	}
3255
3256	if (zb1->zb_object < zb2thisobj)
3257		return (B_TRUE);
3258	if (zb1->zb_object > zb2thisobj)
3259		return (B_FALSE);
3260	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3261		return (B_FALSE);
3262	return (zb1nextL0 <= zb2->zb_blkid);
3263}
3264