main.c revision 240335
1/*-
2 * Initial implementation:
3 * Copyright (c) 2001 Robert Drehmel
4 * All rights reserved.
5 *
6 * As long as the above copyright statement and this notice remain
7 * unchanged, you can do what ever you want with this file.
8 */
9/*-
10 * Copyright (c) 2008 - 2012 Marius Strobl <marius@FreeBSD.org>
11 * All rights reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/boot/sparc64/loader/main.c 240335 2012-09-11 04:54:44Z ae $");
37
38/*
39 * FreeBSD/sparc64 kernel loader - machine dependent part
40 *
41 *  - implements copyin and readin functions that map kernel
42 *    pages on demand.  The machine independent code does not
43 *    know the size of the kernel early enough to pre-enter
44 *    TTEs and install just one 4MB mapping seemed to limiting
45 *    to me.
46 */
47
48#include <stand.h>
49#include <sys/param.h>
50#include <sys/exec.h>
51#include <sys/linker.h>
52#include <sys/queue.h>
53#include <sys/types.h>
54#ifdef LOADER_ZFS_SUPPORT
55#include <sys/vtoc.h>
56#include "../zfs/libzfs.h"
57#endif
58
59#include <vm/vm.h>
60#include <machine/asi.h>
61#include <machine/cmt.h>
62#include <machine/cpufunc.h>
63#include <machine/elf.h>
64#include <machine/fireplane.h>
65#include <machine/jbus.h>
66#include <machine/lsu.h>
67#include <machine/metadata.h>
68#include <machine/tte.h>
69#include <machine/tlb.h>
70#include <machine/upa.h>
71#include <machine/ver.h>
72#include <machine/vmparam.h>
73
74#include "bootstrap.h"
75#include "libofw.h"
76#include "dev_net.h"
77
78extern char bootprog_name[], bootprog_rev[], bootprog_date[], bootprog_maker[];
79
80enum {
81	HEAPVA		= 0x800000,
82	HEAPSZ		= 0x1000000,
83	LOADSZ		= 0x1000000	/* for kernel and modules */
84};
85
86/* At least Sun Fire V1280 require page sized allocations to be claimed. */
87CTASSERT(HEAPSZ % PAGE_SIZE == 0);
88
89static struct mmu_ops {
90	void (*tlb_init)(void);
91	int (*mmu_mapin)(vm_offset_t va, vm_size_t len);
92} *mmu_ops;
93
94typedef void kernel_entry_t(vm_offset_t mdp, u_long o1, u_long o2, u_long o3,
95    void *openfirmware);
96
97static inline u_long dtlb_get_data_sun4u(u_int, u_int);
98static int dtlb_enter_sun4u(u_int, u_long data, vm_offset_t);
99static vm_offset_t dtlb_va_to_pa_sun4u(vm_offset_t);
100static inline u_long itlb_get_data_sun4u(u_int, u_int);
101static int itlb_enter_sun4u(u_int, u_long data, vm_offset_t);
102static vm_offset_t itlb_va_to_pa_sun4u(vm_offset_t);
103static void itlb_relocate_locked0_sun4u(void);
104extern vm_offset_t md_load(char *, vm_offset_t *);
105static int sparc64_autoload(void);
106static ssize_t sparc64_readin(const int, vm_offset_t, const size_t);
107static ssize_t sparc64_copyin(const void *, vm_offset_t, size_t);
108static vm_offset_t claim_virt(vm_offset_t, size_t, int);
109static vm_offset_t alloc_phys(size_t, int);
110static int map_phys(int, size_t, vm_offset_t, vm_offset_t);
111static void release_phys(vm_offset_t, u_int);
112static int __elfN(exec)(struct preloaded_file *);
113static int mmu_mapin_sun4u(vm_offset_t, vm_size_t);
114static vm_offset_t init_heap(void);
115static phandle_t find_bsp_sun4u(phandle_t, uint32_t);
116const char *cpu_cpuid_prop_sun4u(void);
117uint32_t cpu_get_mid_sun4u(void);
118static void tlb_init_sun4u(void);
119
120#ifdef LOADER_DEBUG
121typedef u_int64_t tte_t;
122
123static void pmap_print_tlb_sun4u(void);
124static void pmap_print_tte_sun4u(tte_t, tte_t);
125#endif
126
127static struct mmu_ops mmu_ops_sun4u = { tlb_init_sun4u, mmu_mapin_sun4u };
128
129/* sun4u */
130struct tlb_entry *dtlb_store;
131struct tlb_entry *itlb_store;
132u_int dtlb_slot;
133u_int itlb_slot;
134static int cpu_impl;
135static u_int dtlb_slot_max;
136static u_int itlb_slot_max;
137static u_int tlb_locked;
138
139static vm_offset_t curkva = 0;
140static vm_offset_t heapva;
141
142static char bootpath[64];
143static phandle_t root;
144
145/*
146 * Machine dependent structures that the machine independent
147 * loader part uses.
148 */
149struct devsw *devsw[] = {
150#ifdef LOADER_DISK_SUPPORT
151	&ofwdisk,
152#endif
153#ifdef LOADER_NET_SUPPORT
154	&netdev,
155#endif
156#ifdef LOADER_ZFS_SUPPORT
157	&zfs_dev,
158#endif
159	0
160};
161struct arch_switch archsw;
162
163static struct file_format sparc64_elf = {
164	__elfN(loadfile),
165	__elfN(exec)
166};
167struct file_format *file_formats[] = {
168	&sparc64_elf,
169	0
170};
171
172struct fs_ops *file_system[] = {
173#ifdef LOADER_ZFS_SUPPORT
174	&zfs_fsops,
175#endif
176#ifdef LOADER_UFS_SUPPORT
177	&ufs_fsops,
178#endif
179#ifdef LOADER_CD9660_SUPPORT
180	&cd9660_fsops,
181#endif
182#ifdef LOADER_ZIP_SUPPORT
183	&zipfs_fsops,
184#endif
185#ifdef LOADER_GZIP_SUPPORT
186	&gzipfs_fsops,
187#endif
188#ifdef LOADER_BZIP2_SUPPORT
189	&bzipfs_fsops,
190#endif
191#ifdef LOADER_NFS_SUPPORT
192	&nfs_fsops,
193#endif
194#ifdef LOADER_TFTP_SUPPORT
195	&tftp_fsops,
196#endif
197	0
198};
199struct netif_driver *netif_drivers[] = {
200#ifdef LOADER_NET_SUPPORT
201	&ofwnet,
202#endif
203	0
204};
205
206extern struct console ofwconsole;
207struct console *consoles[] = {
208	&ofwconsole,
209	0
210};
211
212#ifdef LOADER_DEBUG
213static int
214watch_phys_set_mask(vm_offset_t pa, u_long mask)
215{
216	u_long lsucr;
217
218	stxa(AA_DMMU_PWPR, ASI_DMMU, pa & (((2UL << 38) - 1) << 3));
219	lsucr = ldxa(0, ASI_LSU_CTL_REG);
220	lsucr = ((lsucr | LSU_PW) & ~LSU_PM_MASK) |
221	    (mask << LSU_PM_SHIFT);
222	stxa(0, ASI_LSU_CTL_REG, lsucr);
223	return (0);
224}
225
226static int
227watch_phys_set(vm_offset_t pa, int sz)
228{
229	u_long off;
230
231	off = (u_long)pa & 7;
232	/* Test for misaligned watch points. */
233	if (off + sz > 8)
234		return (-1);
235	return (watch_phys_set_mask(pa, ((1 << sz) - 1) << off));
236}
237
238
239static int
240watch_virt_set_mask(vm_offset_t va, u_long mask)
241{
242	u_long lsucr;
243
244	stxa(AA_DMMU_VWPR, ASI_DMMU, va & (((2UL << 41) - 1) << 3));
245	lsucr = ldxa(0, ASI_LSU_CTL_REG);
246	lsucr = ((lsucr | LSU_VW) & ~LSU_VM_MASK) |
247	    (mask << LSU_VM_SHIFT);
248	stxa(0, ASI_LSU_CTL_REG, lsucr);
249	return (0);
250}
251
252static int
253watch_virt_set(vm_offset_t va, int sz)
254{
255	u_long off;
256
257	off = (u_long)va & 7;
258	/* Test for misaligned watch points. */
259	if (off + sz > 8)
260		return (-1);
261	return (watch_virt_set_mask(va, ((1 << sz) - 1) << off));
262}
263#endif
264
265/*
266 * archsw functions
267 */
268static int
269sparc64_autoload(void)
270{
271
272	return (0);
273}
274
275static ssize_t
276sparc64_readin(const int fd, vm_offset_t va, const size_t len)
277{
278
279	mmu_ops->mmu_mapin(va, len);
280	return (read(fd, (void *)va, len));
281}
282
283static ssize_t
284sparc64_copyin(const void *src, vm_offset_t dest, size_t len)
285{
286
287	mmu_ops->mmu_mapin(dest, len);
288	memcpy((void *)dest, src, len);
289	return (len);
290}
291
292/*
293 * other MD functions
294 */
295static vm_offset_t
296claim_virt(vm_offset_t virt, size_t size, int align)
297{
298	vm_offset_t mva;
299
300	if (OF_call_method("claim", mmu, 3, 1, virt, size, align, &mva) == -1)
301		return ((vm_offset_t)-1);
302	return (mva);
303}
304
305static vm_offset_t
306alloc_phys(size_t size, int align)
307{
308	cell_t phys_hi, phys_low;
309
310	if (OF_call_method("claim", memory, 2, 2, size, align, &phys_low,
311	    &phys_hi) == -1)
312		return ((vm_offset_t)-1);
313	return ((vm_offset_t)phys_hi << 32 | phys_low);
314}
315
316static int
317map_phys(int mode, size_t size, vm_offset_t virt, vm_offset_t phys)
318{
319
320	return (OF_call_method("map", mmu, 5, 0, (uint32_t)phys,
321	    (uint32_t)(phys >> 32), virt, size, mode));
322}
323
324static void
325release_phys(vm_offset_t phys, u_int size)
326{
327
328	(void)OF_call_method("release", memory, 3, 0, (uint32_t)phys,
329	    (uint32_t)(phys >> 32), size);
330}
331
332static int
333__elfN(exec)(struct preloaded_file *fp)
334{
335	struct file_metadata *fmp;
336	vm_offset_t mdp;
337	Elf_Addr entry;
338	Elf_Ehdr *e;
339	int error;
340
341	if ((fmp = file_findmetadata(fp, MODINFOMD_ELFHDR)) == 0)
342		return (EFTYPE);
343	e = (Elf_Ehdr *)&fmp->md_data;
344
345	if ((error = md_load(fp->f_args, &mdp)) != 0)
346		return (error);
347
348	printf("jumping to kernel entry at %#lx.\n", e->e_entry);
349#ifdef LOADER_DEBUG
350	pmap_print_tlb_sun4u();
351#endif
352
353	dev_cleanup();
354
355	entry = e->e_entry;
356
357	OF_release((void *)heapva, HEAPSZ);
358
359	((kernel_entry_t *)entry)(mdp, 0, 0, 0, openfirmware);
360
361	panic("%s: exec returned", __func__);
362}
363
364static inline u_long
365dtlb_get_data_sun4u(u_int tlb, u_int slot)
366{
367	u_long data, pstate;
368
369	slot = TLB_DAR_SLOT(tlb, slot);
370	/*
371	 * We read ASI_DTLB_DATA_ACCESS_REG twice back-to-back in order to
372	 * work around errata of USIII and beyond.
373	 */
374	pstate = rdpr(pstate);
375	wrpr(pstate, pstate & ~PSTATE_IE, 0);
376	(void)ldxa(slot, ASI_DTLB_DATA_ACCESS_REG);
377	data = ldxa(slot, ASI_DTLB_DATA_ACCESS_REG);
378	wrpr(pstate, pstate, 0);
379	return (data);
380}
381
382static inline u_long
383itlb_get_data_sun4u(u_int tlb, u_int slot)
384{
385	u_long data, pstate;
386
387	slot = TLB_DAR_SLOT(tlb, slot);
388	/*
389	 * We read ASI_DTLB_DATA_ACCESS_REG twice back-to-back in order to
390	 * work around errata of USIII and beyond.
391	 */
392	pstate = rdpr(pstate);
393	wrpr(pstate, pstate & ~PSTATE_IE, 0);
394	(void)ldxa(slot, ASI_ITLB_DATA_ACCESS_REG);
395	data = ldxa(slot, ASI_ITLB_DATA_ACCESS_REG);
396	wrpr(pstate, pstate, 0);
397	return (data);
398}
399
400static vm_offset_t
401dtlb_va_to_pa_sun4u(vm_offset_t va)
402{
403	u_long pstate, reg;
404	u_int i, tlb;
405
406	pstate = rdpr(pstate);
407	wrpr(pstate, pstate & ~PSTATE_IE, 0);
408	for (i = 0; i < dtlb_slot_max; i++) {
409		reg = ldxa(TLB_DAR_SLOT(tlb_locked, i),
410		    ASI_DTLB_TAG_READ_REG);
411		if (TLB_TAR_VA(reg) != va)
412			continue;
413		reg = dtlb_get_data_sun4u(tlb_locked, i);
414		wrpr(pstate, pstate, 0);
415		reg >>= TD_PA_SHIFT;
416		if (cpu_impl == CPU_IMPL_SPARC64V ||
417		    cpu_impl >= CPU_IMPL_ULTRASPARCIII)
418			return (reg & TD_PA_CH_MASK);
419		return (reg & TD_PA_SF_MASK);
420	}
421	wrpr(pstate, pstate, 0);
422	return (-1);
423}
424
425static vm_offset_t
426itlb_va_to_pa_sun4u(vm_offset_t va)
427{
428	u_long pstate, reg;
429	int i;
430
431	pstate = rdpr(pstate);
432	wrpr(pstate, pstate & ~PSTATE_IE, 0);
433	for (i = 0; i < itlb_slot_max; i++) {
434		reg = ldxa(TLB_DAR_SLOT(tlb_locked, i),
435		    ASI_ITLB_TAG_READ_REG);
436		if (TLB_TAR_VA(reg) != va)
437			continue;
438		reg = itlb_get_data_sun4u(tlb_locked, i);
439		wrpr(pstate, pstate, 0);
440		reg >>= TD_PA_SHIFT;
441		if (cpu_impl == CPU_IMPL_SPARC64V ||
442		    cpu_impl >= CPU_IMPL_ULTRASPARCIII)
443			return (reg & TD_PA_CH_MASK);
444		return (reg & TD_PA_SF_MASK);
445	}
446	wrpr(pstate, pstate, 0);
447	return (-1);
448}
449
450static int
451dtlb_enter_sun4u(u_int index, u_long data, vm_offset_t virt)
452{
453
454	return (OF_call_method("SUNW,dtlb-load", mmu, 3, 0, index, data,
455	    virt));
456}
457
458static int
459itlb_enter_sun4u(u_int index, u_long data, vm_offset_t virt)
460{
461
462	if (cpu_impl == CPU_IMPL_ULTRASPARCIIIp && index == 0 &&
463	    (data & TD_L) != 0)
464		panic("%s: won't enter locked TLB entry at index 0 on USIII+",
465		    __func__);
466	return (OF_call_method("SUNW,itlb-load", mmu, 3, 0, index, data,
467	    virt));
468}
469
470static void
471itlb_relocate_locked0_sun4u(void)
472{
473	u_long data, pstate, tag;
474	int i;
475
476	if (cpu_impl != CPU_IMPL_ULTRASPARCIIIp)
477		return;
478
479	pstate = rdpr(pstate);
480	wrpr(pstate, pstate & ~PSTATE_IE, 0);
481
482	data = itlb_get_data_sun4u(tlb_locked, 0);
483	if ((data & (TD_V | TD_L)) != (TD_V | TD_L)) {
484		wrpr(pstate, pstate, 0);
485		return;
486	}
487
488	/* Flush the mapping of slot 0. */
489	tag = ldxa(TLB_DAR_SLOT(tlb_locked, 0), ASI_ITLB_TAG_READ_REG);
490	stxa(TLB_DEMAP_VA(TLB_TAR_VA(tag)) | TLB_DEMAP_PRIMARY |
491	    TLB_DEMAP_PAGE, ASI_IMMU_DEMAP, 0);
492	flush(0);	/* The USIII-family ignores the address. */
493
494	/*
495	 * Search a replacement slot != 0 and enter the data and tag
496	 * that formerly were in slot 0.
497	 */
498	for (i = 1; i < itlb_slot_max; i++) {
499		if ((itlb_get_data_sun4u(tlb_locked, i) & TD_V) != 0)
500			continue;
501
502		stxa(AA_IMMU_TAR, ASI_IMMU, tag);
503		stxa(TLB_DAR_SLOT(tlb_locked, i), ASI_ITLB_DATA_ACCESS_REG,
504		    data);
505		flush(0);	/* The USIII-family ignores the address. */
506		break;
507	}
508	wrpr(pstate, pstate, 0);
509	if (i == itlb_slot_max)
510		panic("%s: could not find a replacement slot", __func__);
511}
512
513static int
514mmu_mapin_sun4u(vm_offset_t va, vm_size_t len)
515{
516	vm_offset_t pa, mva;
517	u_long data;
518	u_int index;
519
520	if (va + len > curkva)
521		curkva = va + len;
522
523	pa = (vm_offset_t)-1;
524	len += va & PAGE_MASK_4M;
525	va &= ~PAGE_MASK_4M;
526	while (len) {
527		if (dtlb_va_to_pa_sun4u(va) == (vm_offset_t)-1 ||
528		    itlb_va_to_pa_sun4u(va) == (vm_offset_t)-1) {
529			/* Allocate a physical page, claim the virtual area. */
530			if (pa == (vm_offset_t)-1) {
531				pa = alloc_phys(PAGE_SIZE_4M, PAGE_SIZE_4M);
532				if (pa == (vm_offset_t)-1)
533					panic("%s: out of memory", __func__);
534				mva = claim_virt(va, PAGE_SIZE_4M, 0);
535				if (mva != va)
536					panic("%s: can't claim virtual page "
537					    "(wanted %#lx, got %#lx)",
538					    __func__, va, mva);
539				/*
540				 * The mappings may have changed, be paranoid.
541				 */
542				continue;
543			}
544			/*
545			 * Actually, we can only allocate two pages less at
546			 * most (depending on the kernel TSB size).
547			 */
548			if (dtlb_slot >= dtlb_slot_max)
549				panic("%s: out of dtlb_slots", __func__);
550			if (itlb_slot >= itlb_slot_max)
551				panic("%s: out of itlb_slots", __func__);
552			data = TD_V | TD_4M | TD_PA(pa) | TD_L | TD_CP |
553			    TD_CV | TD_P | TD_W;
554			dtlb_store[dtlb_slot].te_pa = pa;
555			dtlb_store[dtlb_slot].te_va = va;
556			index = dtlb_slot_max - dtlb_slot - 1;
557			if (dtlb_enter_sun4u(index, data, va) < 0)
558				panic("%s: can't enter dTLB slot %d data "
559				    "%#lx va %#lx", __func__, index, data,
560				    va);
561			dtlb_slot++;
562			itlb_store[itlb_slot].te_pa = pa;
563			itlb_store[itlb_slot].te_va = va;
564			index = itlb_slot_max - itlb_slot - 1;
565			if (itlb_enter_sun4u(index, data, va) < 0)
566				panic("%s: can't enter iTLB slot %d data "
567				    "%#lx va %#lxd", __func__, index, data,
568				    va);
569			itlb_slot++;
570			pa = (vm_offset_t)-1;
571		}
572		len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
573		va += PAGE_SIZE_4M;
574	}
575	if (pa != (vm_offset_t)-1)
576		release_phys(pa, PAGE_SIZE_4M);
577	return (0);
578}
579
580static vm_offset_t
581init_heap(void)
582{
583
584	/* There is no need for continuous physical heap memory. */
585	heapva = (vm_offset_t)OF_claim((void *)HEAPVA, HEAPSZ, 32);
586	return (heapva);
587}
588
589static phandle_t
590find_bsp_sun4u(phandle_t node, uint32_t bspid)
591{
592	char type[sizeof("cpu")];
593	phandle_t child;
594	uint32_t cpuid;
595
596	for (; node > 0; node = OF_peer(node)) {
597		child = OF_child(node);
598		if (child > 0) {
599			child = find_bsp_sun4u(child, bspid);
600			if (child > 0)
601				return (child);
602		} else {
603			if (OF_getprop(node, "device_type", type,
604			    sizeof(type)) <= 0)
605				continue;
606			if (strcmp(type, "cpu") != 0)
607				continue;
608			if (OF_getprop(node, cpu_cpuid_prop_sun4u(), &cpuid,
609			    sizeof(cpuid)) <= 0)
610				continue;
611			if (cpuid == bspid)
612				return (node);
613		}
614	}
615	return (0);
616}
617
618const char *
619cpu_cpuid_prop_sun4u(void)
620{
621
622	switch (cpu_impl) {
623	case CPU_IMPL_SPARC64:
624	case CPU_IMPL_SPARC64V:
625	case CPU_IMPL_ULTRASPARCI:
626	case CPU_IMPL_ULTRASPARCII:
627	case CPU_IMPL_ULTRASPARCIIi:
628	case CPU_IMPL_ULTRASPARCIIe:
629		return ("upa-portid");
630	case CPU_IMPL_ULTRASPARCIII:
631	case CPU_IMPL_ULTRASPARCIIIp:
632	case CPU_IMPL_ULTRASPARCIIIi:
633	case CPU_IMPL_ULTRASPARCIIIip:
634		return ("portid");
635	case CPU_IMPL_ULTRASPARCIV:
636	case CPU_IMPL_ULTRASPARCIVp:
637		return ("cpuid");
638	default:
639		return ("");
640	}
641}
642
643uint32_t
644cpu_get_mid_sun4u(void)
645{
646
647	switch (cpu_impl) {
648	case CPU_IMPL_SPARC64:
649	case CPU_IMPL_SPARC64V:
650	case CPU_IMPL_ULTRASPARCI:
651	case CPU_IMPL_ULTRASPARCII:
652	case CPU_IMPL_ULTRASPARCIIi:
653	case CPU_IMPL_ULTRASPARCIIe:
654		return (UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG)));
655	case CPU_IMPL_ULTRASPARCIII:
656	case CPU_IMPL_ULTRASPARCIIIp:
657		return (FIREPLANE_CR_GET_AID(ldxa(AA_FIREPLANE_CONFIG,
658		    ASI_FIREPLANE_CONFIG_REG)));
659	case CPU_IMPL_ULTRASPARCIIIi:
660	case CPU_IMPL_ULTRASPARCIIIip:
661		return (JBUS_CR_GET_JID(ldxa(0, ASI_JBUS_CONFIG_REG)));
662	case CPU_IMPL_ULTRASPARCIV:
663	case CPU_IMPL_ULTRASPARCIVp:
664		return (INTR_ID_GET_ID(ldxa(AA_INTR_ID, ASI_INTR_ID)));
665	default:
666		return (0);
667	}
668}
669
670static void
671tlb_init_sun4u(void)
672{
673	phandle_t bsp;
674
675	cpu_impl = VER_IMPL(rdpr(ver));
676	switch (cpu_impl) {
677	case CPU_IMPL_SPARC64:
678	case CPU_IMPL_ULTRASPARCI:
679	case CPU_IMPL_ULTRASPARCII:
680	case CPU_IMPL_ULTRASPARCIIi:
681	case CPU_IMPL_ULTRASPARCIIe:
682		tlb_locked = TLB_DAR_T32;
683		break;
684	case CPU_IMPL_ULTRASPARCIII:
685	case CPU_IMPL_ULTRASPARCIIIp:
686	case CPU_IMPL_ULTRASPARCIIIi:
687	case CPU_IMPL_ULTRASPARCIIIip:
688	case CPU_IMPL_ULTRASPARCIV:
689	case CPU_IMPL_ULTRASPARCIVp:
690		tlb_locked = TLB_DAR_T16;
691		break;
692	case CPU_IMPL_SPARC64V:
693		tlb_locked = TLB_DAR_FTLB;
694		break;
695	}
696	bsp = find_bsp_sun4u(OF_child(root), cpu_get_mid_sun4u());
697	if (bsp == 0)
698		panic("%s: no node for bootcpu?!?!", __func__);
699
700	if (OF_getprop(bsp, "#dtlb-entries", &dtlb_slot_max,
701	    sizeof(dtlb_slot_max)) == -1 ||
702	    OF_getprop(bsp, "#itlb-entries", &itlb_slot_max,
703	    sizeof(itlb_slot_max)) == -1)
704		panic("%s: can't get TLB slot max.", __func__);
705
706	if (cpu_impl == CPU_IMPL_ULTRASPARCIIIp) {
707#ifdef LOADER_DEBUG
708		printf("pre fixup:\n");
709		pmap_print_tlb_sun4u();
710#endif
711
712		/*
713		 * Relocate the locked entry in it16 slot 0 (if existent)
714		 * as part of working around Cheetah+ erratum 34.
715		 */
716		itlb_relocate_locked0_sun4u();
717
718#ifdef LOADER_DEBUG
719		printf("post fixup:\n");
720		pmap_print_tlb_sun4u();
721#endif
722	}
723
724	dtlb_store = malloc(dtlb_slot_max * sizeof(*dtlb_store));
725	itlb_store = malloc(itlb_slot_max * sizeof(*itlb_store));
726	if (dtlb_store == NULL || itlb_store == NULL)
727		panic("%s: can't allocate TLB store", __func__);
728}
729
730#ifdef LOADER_ZFS_SUPPORT
731static void
732sparc64_zfs_probe(void)
733{
734	struct vtoc8 vtoc;
735	struct zfs_devdesc zfs_currdev;
736	char alias[64], devname[sizeof(alias) + sizeof(":x") - 1];
737	char type[sizeof("device_type")];
738	char *bdev, *dev, *odev;
739	uint64_t guid;
740	int fd, len, part;
741	phandle_t aliases, options;
742
743	/* Get the GUID of the ZFS pool on the boot device. */
744	guid = 0;
745	zfs_probe_dev(bootpath, &guid);
746
747	/*
748	 * Get the GUIDs of the ZFS pools on any additional disks listed in
749	 * the boot-device environment variable.
750	 */
751	if ((aliases = OF_finddevice("/aliases")) == -1)
752		goto out;
753	options = OF_finddevice("/options");
754	len = OF_getproplen(options, "boot-device");
755	if (len <= 0)
756		goto out;
757	bdev = odev = malloc(len + 1);
758	if (bdev == NULL)
759		goto out;
760	if (OF_getprop(options, "boot-device", bdev, len) <= 0)
761		goto out;
762	bdev[len] = '\0';
763	while ((dev = strsep(&bdev, " ")) != NULL) {
764		if (*dev == '\0')
765			continue;
766		strcpy(alias, dev);
767		(void)OF_getprop(aliases, dev, alias, sizeof(alias));
768		/*
769		 * Don't probe the boot disk twice.  Note that bootpath
770		 * includes the partition specifier.
771		 */
772		if (strncmp(alias, bootpath, strlen(alias)) == 0)
773			continue;
774		if (OF_getprop(OF_finddevice(alias), "device_type", type,
775		    sizeof(type)) == -1)
776			continue;
777		if (strcmp(type, "block") != 0)
778			continue;
779
780		/* Find freebsd-zfs slices in the VTOC. */
781		fd = open(alias, O_RDONLY);
782		if (fd == -1)
783			continue;
784		lseek(fd, 0, SEEK_SET);
785		if (read(fd, &vtoc, sizeof(vtoc)) != sizeof(vtoc)) {
786			close(fd);
787			continue;
788		}
789		close(fd);
790
791		for (part = 0; part < 8; part++) {
792			if (part == 2 || vtoc.part[part].tag !=
793			    VTOC_TAG_FREEBSD_ZFS)
794				continue;
795			(void)sprintf(devname, "%s:%c", alias, part + 'a');
796			if (zfs_probe_dev(devname, NULL) == ENXIO)
797				break;
798		}
799	}
800	free(odev);
801
802 out:
803	if (guid != 0) {
804		zfs_currdev.pool_guid = guid;
805		zfs_currdev.root_guid = 0;
806		zfs_currdev.d_dev = &zfs_dev;
807		zfs_currdev.d_type = zfs_currdev.d_dev->dv_type;
808		(void)strncpy(bootpath, zfs_fmtdev(&zfs_currdev),
809		    sizeof(bootpath) - 1);
810		bootpath[sizeof(bootpath) - 1] = '\0';
811	}
812}
813#endif /* LOADER_ZFS_SUPPORT */
814
815int
816main(int (*openfirm)(void *))
817{
818	char compatible[32];
819	struct devsw **dp;
820
821	/*
822	 * Tell the Open Firmware functions where they find the OFW gate.
823	 */
824	OF_init(openfirm);
825
826	archsw.arch_getdev = ofw_getdev;
827	archsw.arch_copyin = sparc64_copyin;
828	archsw.arch_copyout = ofw_copyout;
829	archsw.arch_readin = sparc64_readin;
830	archsw.arch_autoload = sparc64_autoload;
831#ifdef LOADER_ZFS_SUPPORT
832	archsw.arch_zfs_probe = sparc64_zfs_probe;
833#endif
834
835	if (init_heap() == (vm_offset_t)-1)
836		OF_exit();
837	setheap((void *)heapva, (void *)(heapva + HEAPSZ));
838
839	/*
840	 * Probe for a console.
841	 */
842	cons_probe();
843
844	if ((root = OF_peer(0)) == -1)
845		panic("%s: can't get root phandle", __func__);
846	OF_getprop(root, "compatible", compatible, sizeof(compatible));
847	mmu_ops = &mmu_ops_sun4u;
848
849	mmu_ops->tlb_init();
850
851	/*
852	 * Set up the current device.
853	 */
854	OF_getprop(chosen, "bootpath", bootpath, sizeof(bootpath));
855
856	/*
857	 * Sun compatible bootable CD-ROMs have a disk label placed
858	 * before the cd9660 data, with the actual filesystem being
859	 * in the first partition, while the other partitions contain
860	 * pseudo disk labels with embedded boot blocks for different
861	 * architectures, which may be followed by UFS filesystems.
862	 * The firmware will set the boot path to the partition it
863	 * boots from ('f' in the sun4u case), but we want the kernel
864	 * to be loaded from the cd9660 fs ('a'), so the boot path
865	 * needs to be altered.
866	 */
867	if (bootpath[strlen(bootpath) - 2] == ':' &&
868	    bootpath[strlen(bootpath) - 1] == 'f' &&
869	    strstr(bootpath, "cdrom") != NULL) {
870		bootpath[strlen(bootpath) - 1] = 'a';
871		printf("Boot path set to %s\n", bootpath);
872	}
873
874	/*
875	 * Initialize devices.
876	 */
877	for (dp = devsw; *dp != 0; dp++)
878		if ((*dp)->dv_init != 0)
879			(*dp)->dv_init();
880
881	/*
882	 * Now that sparc64_zfs_probe() might have altered bootpath,
883	 * export it.
884	 */
885	env_setenv("currdev", EV_VOLATILE, bootpath,
886	    ofw_setcurrdev, env_nounset);
887	env_setenv("loaddev", EV_VOLATILE, bootpath,
888	    env_noset, env_nounset);
889
890	printf("\n");
891	printf("%s, Revision %s\n", bootprog_name, bootprog_rev);
892	printf("(%s, %s)\n", bootprog_maker, bootprog_date);
893	printf("bootpath=\"%s\"\n", bootpath);
894
895	/* Give control to the machine independent loader code. */
896	interact();
897	return (1);
898}
899
900COMMAND_SET(heap, "heap", "show heap usage", command_heap);
901
902static int
903command_heap(int argc, char *argv[])
904{
905
906	mallocstats();
907	printf("heap base at %p, top at %p, upper limit at %p\n", heapva,
908	    sbrk(0), heapva + HEAPSZ);
909	return(CMD_OK);
910}
911
912COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
913
914static int
915command_reboot(int argc, char *argv[])
916{
917	int i;
918
919	for (i = 0; devsw[i] != NULL; ++i)
920		if (devsw[i]->dv_cleanup != NULL)
921			(devsw[i]->dv_cleanup)();
922
923	printf("Rebooting...\n");
924	OF_exit();
925}
926
927/* provide this for panic, as it's not in the startup code */
928void
929exit(int code)
930{
931
932	OF_exit();
933}
934
935#ifdef LOADER_DEBUG
936static const char *const page_sizes[] = {
937	"  8k", " 64k", "512k", "  4m"
938};
939
940static void
941pmap_print_tte_sun4u(tte_t tag, tte_t tte)
942{
943
944	printf("%s %s ",
945	    page_sizes[(tte >> TD_SIZE_SHIFT) & TD_SIZE_MASK],
946	    tag & TD_G ? "G" : " ");
947	printf(tte & TD_W ? "W " : "  ");
948	printf(tte & TD_P ? "\e[33mP\e[0m " : "  ");
949	printf(tte & TD_E ? "E " : "  ");
950	printf(tte & TD_CV ? "CV " : "   ");
951	printf(tte & TD_CP ? "CP " : "   ");
952	printf(tte & TD_L ? "\e[32mL\e[0m " : "  ");
953	printf(tte & TD_IE ? "IE " : "   ");
954	printf(tte & TD_NFO ? "NFO " : "    ");
955	printf("pa=0x%lx va=0x%lx ctx=%ld\n",
956	    TD_PA(tte), TLB_TAR_VA(tag), TLB_TAR_CTX(tag));
957}
958
959static void
960pmap_print_tlb_sun4u(void)
961{
962	tte_t tag, tte;
963	u_long pstate;
964	int i;
965
966	pstate = rdpr(pstate);
967	for (i = 0; i < itlb_slot_max; i++) {
968		wrpr(pstate, pstate & ~PSTATE_IE, 0);
969		tte = itlb_get_data_sun4u(tlb_locked, i);
970		wrpr(pstate, pstate, 0);
971		if (!(tte & TD_V))
972			continue;
973		tag = ldxa(TLB_DAR_SLOT(tlb_locked, i),
974		    ASI_ITLB_TAG_READ_REG);
975		printf("iTLB-%2u: ", i);
976		pmap_print_tte_sun4u(tag, tte);
977	}
978	for (i = 0; i < dtlb_slot_max; i++) {
979		wrpr(pstate, pstate & ~PSTATE_IE, 0);
980		tte = dtlb_get_data_sun4u(tlb_locked, i);
981		wrpr(pstate, pstate, 0);
982		if (!(tte & TD_V))
983			continue;
984		tag = ldxa(TLB_DAR_SLOT(tlb_locked, i),
985		    ASI_DTLB_TAG_READ_REG);
986		printf("dTLB-%2u: ", i);
987		pmap_print_tte_sun4u(tag, tte);
988	}
989}
990#endif
991