machdep.c revision 287146
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: releng/10.1/sys/amd64/amd64/machdep.c 287146 2015-08-25 20:48:58Z delphij $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_mp_watchdog.h"
55#include "opt_perfmon.h"
56#include "opt_platform.h"
57#include "opt_sched.h"
58#include "opt_kdtrace.h"
59
60#include <sys/param.h>
61#include <sys/proc.h>
62#include <sys/systm.h>
63#include <sys/bio.h>
64#include <sys/buf.h>
65#include <sys/bus.h>
66#include <sys/callout.h>
67#include <sys/cons.h>
68#include <sys/cpu.h>
69#include <sys/efi.h>
70#include <sys/eventhandler.h>
71#include <sys/exec.h>
72#include <sys/imgact.h>
73#include <sys/kdb.h>
74#include <sys/kernel.h>
75#include <sys/ktr.h>
76#include <sys/linker.h>
77#include <sys/lock.h>
78#include <sys/malloc.h>
79#include <sys/memrange.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/pcpu.h>
83#include <sys/ptrace.h>
84#include <sys/reboot.h>
85#include <sys/rwlock.h>
86#include <sys/sched.h>
87#include <sys/signalvar.h>
88#ifdef SMP
89#include <sys/smp.h>
90#endif
91#include <sys/syscallsubr.h>
92#include <sys/sysctl.h>
93#include <sys/sysent.h>
94#include <sys/sysproto.h>
95#include <sys/ucontext.h>
96#include <sys/vmmeter.h>
97
98#include <vm/vm.h>
99#include <vm/vm_extern.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_page.h>
102#include <vm/vm_map.h>
103#include <vm/vm_object.h>
104#include <vm/vm_pager.h>
105#include <vm/vm_param.h>
106
107#ifdef DDB
108#ifndef KDB
109#error KDB must be enabled in order for DDB to work!
110#endif
111#include <ddb/ddb.h>
112#include <ddb/db_sym.h>
113#endif
114
115#include <net/netisr.h>
116
117#include <machine/clock.h>
118#include <machine/cpu.h>
119#include <machine/cputypes.h>
120#include <machine/intr_machdep.h>
121#include <x86/mca.h>
122#include <machine/md_var.h>
123#include <machine/metadata.h>
124#include <machine/mp_watchdog.h>
125#include <machine/pc/bios.h>
126#include <machine/pcb.h>
127#include <machine/proc.h>
128#include <machine/reg.h>
129#include <machine/sigframe.h>
130#include <machine/specialreg.h>
131#ifdef PERFMON
132#include <machine/perfmon.h>
133#endif
134#include <machine/tss.h>
135#ifdef SMP
136#include <machine/smp.h>
137#endif
138#ifdef FDT
139#include <x86/fdt.h>
140#endif
141
142#ifdef DEV_ATPIC
143#include <x86/isa/icu.h>
144#else
145#include <machine/apicvar.h>
146#endif
147
148#include <isa/isareg.h>
149#include <isa/rtc.h>
150
151/* Sanity check for __curthread() */
152CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
153
154extern u_int64_t hammer_time(u_int64_t, u_int64_t);
155
156extern void printcpuinfo(void);	/* XXX header file */
157extern void identify_cpu(void);
158extern void panicifcpuunsupported(void);
159
160#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
161#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
162
163static void cpu_startup(void *);
164static void get_fpcontext(struct thread *td, mcontext_t *mcp,
165    char *xfpusave, size_t xfpusave_len);
166static int  set_fpcontext(struct thread *td, const mcontext_t *mcp,
167    char *xfpustate, size_t xfpustate_len);
168SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
169
170/*
171 * The file "conf/ldscript.amd64" defines the symbol "kernphys".  Its value is
172 * the physical address at which the kernel is loaded.
173 */
174extern char kernphys[];
175#ifdef DDB
176extern vm_offset_t ksym_start, ksym_end;
177#endif
178
179struct msgbuf *msgbufp;
180
181/* Intel ICH registers */
182#define ICH_PMBASE	0x400
183#define ICH_SMI_EN	ICH_PMBASE + 0x30
184
185int	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
186
187int cold = 1;
188
189long Maxmem = 0;
190long realmem = 0;
191
192/*
193 * The number of PHYSMAP entries must be one less than the number of
194 * PHYSSEG entries because the PHYSMAP entry that spans the largest
195 * physical address that is accessible by ISA DMA is split into two
196 * PHYSSEG entries.
197 */
198#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
199
200vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
201vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
202
203/* must be 2 less so 0 0 can signal end of chunks */
204#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
205#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
206
207struct kva_md_info kmi;
208
209static struct trapframe proc0_tf;
210struct region_descriptor r_gdt, r_idt;
211
212struct pcpu __pcpu[MAXCPU];
213
214struct mtx icu_lock;
215
216struct mem_range_softc mem_range_softc;
217
218struct mtx dt_lock;	/* lock for GDT and LDT */
219
220void (*vmm_resume_p)(void);
221
222static void
223cpu_startup(dummy)
224	void *dummy;
225{
226	uintmax_t memsize;
227	char *sysenv;
228
229	/*
230	 * On MacBooks, we need to disallow the legacy USB circuit to
231	 * generate an SMI# because this can cause several problems,
232	 * namely: incorrect CPU frequency detection and failure to
233	 * start the APs.
234	 * We do this by disabling a bit in the SMI_EN (SMI Control and
235	 * Enable register) of the Intel ICH LPC Interface Bridge.
236	 */
237	sysenv = getenv("smbios.system.product");
238	if (sysenv != NULL) {
239		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
240		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
241		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
242		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
243		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
244		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
245		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
246		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
247			if (bootverbose)
248				printf("Disabling LEGACY_USB_EN bit on "
249				    "Intel ICH.\n");
250			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
251		}
252		freeenv(sysenv);
253	}
254
255	/*
256	 * Good {morning,afternoon,evening,night}.
257	 */
258	startrtclock();
259	printcpuinfo();
260	panicifcpuunsupported();
261#ifdef PERFMON
262	perfmon_init();
263#endif
264
265	/*
266	 * Display physical memory if SMBIOS reports reasonable amount.
267	 */
268	memsize = 0;
269	sysenv = getenv("smbios.memory.enabled");
270	if (sysenv != NULL) {
271		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
272		freeenv(sysenv);
273	}
274	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
275		memsize = ptoa((uintmax_t)Maxmem);
276	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
277	realmem = atop(memsize);
278
279	/*
280	 * Display any holes after the first chunk of extended memory.
281	 */
282	if (bootverbose) {
283		int indx;
284
285		printf("Physical memory chunk(s):\n");
286		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
287			vm_paddr_t size;
288
289			size = phys_avail[indx + 1] - phys_avail[indx];
290			printf(
291			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
292			    (uintmax_t)phys_avail[indx],
293			    (uintmax_t)phys_avail[indx + 1] - 1,
294			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
295		}
296	}
297
298	vm_ksubmap_init(&kmi);
299
300	printf("avail memory = %ju (%ju MB)\n",
301	    ptoa((uintmax_t)cnt.v_free_count),
302	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
303
304	/*
305	 * Set up buffers, so they can be used to read disk labels.
306	 */
307	bufinit();
308	vm_pager_bufferinit();
309
310	cpu_setregs();
311}
312
313/*
314 * Send an interrupt to process.
315 *
316 * Stack is set up to allow sigcode stored
317 * at top to call routine, followed by call
318 * to sigreturn routine below.  After sigreturn
319 * resets the signal mask, the stack, and the
320 * frame pointer, it returns to the user
321 * specified pc, psl.
322 */
323void
324sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
325{
326	struct sigframe sf, *sfp;
327	struct pcb *pcb;
328	struct proc *p;
329	struct thread *td;
330	struct sigacts *psp;
331	char *sp;
332	struct trapframe *regs;
333	char *xfpusave;
334	size_t xfpusave_len;
335	int sig;
336	int oonstack;
337
338	td = curthread;
339	pcb = td->td_pcb;
340	p = td->td_proc;
341	PROC_LOCK_ASSERT(p, MA_OWNED);
342	sig = ksi->ksi_signo;
343	psp = p->p_sigacts;
344	mtx_assert(&psp->ps_mtx, MA_OWNED);
345	regs = td->td_frame;
346	oonstack = sigonstack(regs->tf_rsp);
347
348	if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
349		xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
350		xfpusave = __builtin_alloca(xfpusave_len);
351	} else {
352		xfpusave_len = 0;
353		xfpusave = NULL;
354	}
355
356	/* Save user context. */
357	bzero(&sf, sizeof(sf));
358	sf.sf_uc.uc_sigmask = *mask;
359	sf.sf_uc.uc_stack = td->td_sigstk;
360	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
361	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
362	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
363	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
364	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
365	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
366	fpstate_drop(td);
367	sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
368	sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
369	bzero(sf.sf_uc.uc_mcontext.mc_spare,
370	    sizeof(sf.sf_uc.uc_mcontext.mc_spare));
371	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
372
373	/* Allocate space for the signal handler context. */
374	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
375	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
376		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
377#if defined(COMPAT_43)
378		td->td_sigstk.ss_flags |= SS_ONSTACK;
379#endif
380	} else
381		sp = (char *)regs->tf_rsp - 128;
382	if (xfpusave != NULL) {
383		sp -= xfpusave_len;
384		sp = (char *)((unsigned long)sp & ~0x3Ful);
385		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
386	}
387	sp -= sizeof(struct sigframe);
388	/* Align to 16 bytes. */
389	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
390
391	/* Translate the signal if appropriate. */
392	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
393		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
394
395	/* Build the argument list for the signal handler. */
396	regs->tf_rdi = sig;			/* arg 1 in %rdi */
397	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
398	bzero(&sf.sf_si, sizeof(sf.sf_si));
399	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
400		/* Signal handler installed with SA_SIGINFO. */
401		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
402		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
403
404		/* Fill in POSIX parts */
405		sf.sf_si = ksi->ksi_info;
406		sf.sf_si.si_signo = sig; /* maybe a translated signal */
407		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
408	} else {
409		/* Old FreeBSD-style arguments. */
410		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
411		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
412		sf.sf_ahu.sf_handler = catcher;
413	}
414	mtx_unlock(&psp->ps_mtx);
415	PROC_UNLOCK(p);
416
417	/*
418	 * Copy the sigframe out to the user's stack.
419	 */
420	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
421	    (xfpusave != NULL && copyout(xfpusave,
422	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
423	    != 0)) {
424#ifdef DEBUG
425		printf("process %ld has trashed its stack\n", (long)p->p_pid);
426#endif
427		PROC_LOCK(p);
428		sigexit(td, SIGILL);
429	}
430
431	regs->tf_rsp = (long)sfp;
432	regs->tf_rip = p->p_sysent->sv_sigcode_base;
433	regs->tf_rflags &= ~(PSL_T | PSL_D);
434	regs->tf_cs = _ucodesel;
435	regs->tf_ds = _udatasel;
436	regs->tf_ss = _udatasel;
437	regs->tf_es = _udatasel;
438	regs->tf_fs = _ufssel;
439	regs->tf_gs = _ugssel;
440	regs->tf_flags = TF_HASSEGS;
441	set_pcb_flags(pcb, PCB_FULL_IRET);
442	PROC_LOCK(p);
443	mtx_lock(&psp->ps_mtx);
444}
445
446/*
447 * System call to cleanup state after a signal
448 * has been taken.  Reset signal mask and
449 * stack state from context left by sendsig (above).
450 * Return to previous pc and psl as specified by
451 * context left by sendsig. Check carefully to
452 * make sure that the user has not modified the
453 * state to gain improper privileges.
454 *
455 * MPSAFE
456 */
457int
458sys_sigreturn(td, uap)
459	struct thread *td;
460	struct sigreturn_args /* {
461		const struct __ucontext *sigcntxp;
462	} */ *uap;
463{
464	ucontext_t uc;
465	struct pcb *pcb;
466	struct proc *p;
467	struct trapframe *regs;
468	ucontext_t *ucp;
469	char *xfpustate;
470	size_t xfpustate_len;
471	long rflags;
472	int cs, error, ret;
473	ksiginfo_t ksi;
474
475	pcb = td->td_pcb;
476	p = td->td_proc;
477
478	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
479	if (error != 0) {
480		uprintf("pid %d (%s): sigreturn copyin failed\n",
481		    p->p_pid, td->td_name);
482		return (error);
483	}
484	ucp = &uc;
485	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
486		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
487		    td->td_name, ucp->uc_mcontext.mc_flags);
488		return (EINVAL);
489	}
490	regs = td->td_frame;
491	rflags = ucp->uc_mcontext.mc_rflags;
492	/*
493	 * Don't allow users to change privileged or reserved flags.
494	 */
495	if (!EFL_SECURE(rflags, regs->tf_rflags)) {
496		uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
497		    td->td_name, rflags);
498		return (EINVAL);
499	}
500
501	/*
502	 * Don't allow users to load a valid privileged %cs.  Let the
503	 * hardware check for invalid selectors, excess privilege in
504	 * other selectors, invalid %eip's and invalid %esp's.
505	 */
506	cs = ucp->uc_mcontext.mc_cs;
507	if (!CS_SECURE(cs)) {
508		uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
509		    td->td_name, cs);
510		ksiginfo_init_trap(&ksi);
511		ksi.ksi_signo = SIGBUS;
512		ksi.ksi_code = BUS_OBJERR;
513		ksi.ksi_trapno = T_PROTFLT;
514		ksi.ksi_addr = (void *)regs->tf_rip;
515		trapsignal(td, &ksi);
516		return (EINVAL);
517	}
518
519	if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
520		xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
521		if (xfpustate_len > cpu_max_ext_state_size -
522		    sizeof(struct savefpu)) {
523			uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
524			    p->p_pid, td->td_name, xfpustate_len);
525			return (EINVAL);
526		}
527		xfpustate = __builtin_alloca(xfpustate_len);
528		error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
529		    xfpustate, xfpustate_len);
530		if (error != 0) {
531			uprintf(
532	"pid %d (%s): sigreturn copying xfpustate failed\n",
533			    p->p_pid, td->td_name);
534			return (error);
535		}
536	} else {
537		xfpustate = NULL;
538		xfpustate_len = 0;
539	}
540	ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
541	if (ret != 0) {
542		uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
543		    p->p_pid, td->td_name, ret);
544		return (ret);
545	}
546	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
547	pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
548	pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
549
550#if defined(COMPAT_43)
551	if (ucp->uc_mcontext.mc_onstack & 1)
552		td->td_sigstk.ss_flags |= SS_ONSTACK;
553	else
554		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
555#endif
556
557	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
558	set_pcb_flags(pcb, PCB_FULL_IRET);
559	return (EJUSTRETURN);
560}
561
562#ifdef COMPAT_FREEBSD4
563int
564freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
565{
566
567	return sys_sigreturn(td, (struct sigreturn_args *)uap);
568}
569#endif
570
571
572/*
573 * Machine dependent boot() routine
574 *
575 * I haven't seen anything to put here yet
576 * Possibly some stuff might be grafted back here from boot()
577 */
578void
579cpu_boot(int howto)
580{
581}
582
583/*
584 * Flush the D-cache for non-DMA I/O so that the I-cache can
585 * be made coherent later.
586 */
587void
588cpu_flush_dcache(void *ptr, size_t len)
589{
590	/* Not applicable */
591}
592
593/* Get current clock frequency for the given cpu id. */
594int
595cpu_est_clockrate(int cpu_id, uint64_t *rate)
596{
597	uint64_t tsc1, tsc2;
598	uint64_t acnt, mcnt, perf;
599	register_t reg;
600
601	if (pcpu_find(cpu_id) == NULL || rate == NULL)
602		return (EINVAL);
603
604	/*
605	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
606	 * DELAY(9) based logic fails.
607	 */
608	if (tsc_is_invariant && !tsc_perf_stat)
609		return (EOPNOTSUPP);
610
611#ifdef SMP
612	if (smp_cpus > 1) {
613		/* Schedule ourselves on the indicated cpu. */
614		thread_lock(curthread);
615		sched_bind(curthread, cpu_id);
616		thread_unlock(curthread);
617	}
618#endif
619
620	/* Calibrate by measuring a short delay. */
621	reg = intr_disable();
622	if (tsc_is_invariant) {
623		wrmsr(MSR_MPERF, 0);
624		wrmsr(MSR_APERF, 0);
625		tsc1 = rdtsc();
626		DELAY(1000);
627		mcnt = rdmsr(MSR_MPERF);
628		acnt = rdmsr(MSR_APERF);
629		tsc2 = rdtsc();
630		intr_restore(reg);
631		perf = 1000 * acnt / mcnt;
632		*rate = (tsc2 - tsc1) * perf;
633	} else {
634		tsc1 = rdtsc();
635		DELAY(1000);
636		tsc2 = rdtsc();
637		intr_restore(reg);
638		*rate = (tsc2 - tsc1) * 1000;
639	}
640
641#ifdef SMP
642	if (smp_cpus > 1) {
643		thread_lock(curthread);
644		sched_unbind(curthread);
645		thread_unlock(curthread);
646	}
647#endif
648
649	return (0);
650}
651
652/*
653 * Shutdown the CPU as much as possible
654 */
655void
656cpu_halt(void)
657{
658	for (;;)
659		halt();
660}
661
662void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
663static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
664static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
665TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
666SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
667    0, "Use MONITOR/MWAIT for short idle");
668
669#define	STATE_RUNNING	0x0
670#define	STATE_MWAIT	0x1
671#define	STATE_SLEEPING	0x2
672
673static void
674cpu_idle_acpi(sbintime_t sbt)
675{
676	int *state;
677
678	state = (int *)PCPU_PTR(monitorbuf);
679	*state = STATE_SLEEPING;
680
681	/* See comments in cpu_idle_hlt(). */
682	disable_intr();
683	if (sched_runnable())
684		enable_intr();
685	else if (cpu_idle_hook)
686		cpu_idle_hook(sbt);
687	else
688		__asm __volatile("sti; hlt");
689	*state = STATE_RUNNING;
690}
691
692static void
693cpu_idle_hlt(sbintime_t sbt)
694{
695	int *state;
696
697	state = (int *)PCPU_PTR(monitorbuf);
698	*state = STATE_SLEEPING;
699
700	/*
701	 * Since we may be in a critical section from cpu_idle(), if
702	 * an interrupt fires during that critical section we may have
703	 * a pending preemption.  If the CPU halts, then that thread
704	 * may not execute until a later interrupt awakens the CPU.
705	 * To handle this race, check for a runnable thread after
706	 * disabling interrupts and immediately return if one is
707	 * found.  Also, we must absolutely guarentee that hlt is
708	 * the next instruction after sti.  This ensures that any
709	 * interrupt that fires after the call to disable_intr() will
710	 * immediately awaken the CPU from hlt.  Finally, please note
711	 * that on x86 this works fine because of interrupts enabled only
712	 * after the instruction following sti takes place, while IF is set
713	 * to 1 immediately, allowing hlt instruction to acknowledge the
714	 * interrupt.
715	 */
716	disable_intr();
717	if (sched_runnable())
718		enable_intr();
719	else
720		__asm __volatile("sti; hlt");
721	*state = STATE_RUNNING;
722}
723
724/*
725 * MWAIT cpu power states.  Lower 4 bits are sub-states.
726 */
727#define	MWAIT_C0	0xf0
728#define	MWAIT_C1	0x00
729#define	MWAIT_C2	0x10
730#define	MWAIT_C3	0x20
731#define	MWAIT_C4	0x30
732
733static void
734cpu_idle_mwait(sbintime_t sbt)
735{
736	int *state;
737
738	state = (int *)PCPU_PTR(monitorbuf);
739	*state = STATE_MWAIT;
740
741	/* See comments in cpu_idle_hlt(). */
742	disable_intr();
743	if (sched_runnable()) {
744		enable_intr();
745		*state = STATE_RUNNING;
746		return;
747	}
748	cpu_monitor(state, 0, 0);
749	if (*state == STATE_MWAIT)
750		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
751	else
752		enable_intr();
753	*state = STATE_RUNNING;
754}
755
756static void
757cpu_idle_spin(sbintime_t sbt)
758{
759	int *state;
760	int i;
761
762	state = (int *)PCPU_PTR(monitorbuf);
763	*state = STATE_RUNNING;
764
765	/*
766	 * The sched_runnable() call is racy but as long as there is
767	 * a loop missing it one time will have just a little impact if any
768	 * (and it is much better than missing the check at all).
769	 */
770	for (i = 0; i < 1000; i++) {
771		if (sched_runnable())
772			return;
773		cpu_spinwait();
774	}
775}
776
777/*
778 * C1E renders the local APIC timer dead, so we disable it by
779 * reading the Interrupt Pending Message register and clearing
780 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
781 *
782 * Reference:
783 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
784 *   #32559 revision 3.00+
785 */
786#define	MSR_AMDK8_IPM		0xc0010055
787#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
788#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
789#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
790
791static void
792cpu_probe_amdc1e(void)
793{
794
795	/*
796	 * Detect the presence of C1E capability mostly on latest
797	 * dual-cores (or future) k8 family.
798	 */
799	if (cpu_vendor_id == CPU_VENDOR_AMD &&
800	    (cpu_id & 0x00000f00) == 0x00000f00 &&
801	    (cpu_id & 0x0fff0000) >=  0x00040000) {
802		cpu_ident_amdc1e = 1;
803	}
804}
805
806void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
807
808void
809cpu_idle(int busy)
810{
811	uint64_t msr;
812	sbintime_t sbt = -1;
813
814	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
815	    busy, curcpu);
816#ifdef MP_WATCHDOG
817	ap_watchdog(PCPU_GET(cpuid));
818#endif
819	/* If we are busy - try to use fast methods. */
820	if (busy) {
821		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
822			cpu_idle_mwait(busy);
823			goto out;
824		}
825	}
826
827	/* If we have time - switch timers into idle mode. */
828	if (!busy) {
829		critical_enter();
830		sbt = cpu_idleclock();
831	}
832
833	/* Apply AMD APIC timer C1E workaround. */
834	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
835		msr = rdmsr(MSR_AMDK8_IPM);
836		if (msr & AMDK8_CMPHALT)
837			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
838	}
839
840	/* Call main idle method. */
841	cpu_idle_fn(sbt);
842
843	/* Switch timers mack into active mode. */
844	if (!busy) {
845		cpu_activeclock();
846		critical_exit();
847	}
848out:
849	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
850	    busy, curcpu);
851}
852
853int
854cpu_idle_wakeup(int cpu)
855{
856	struct pcpu *pcpu;
857	int *state;
858
859	pcpu = pcpu_find(cpu);
860	state = (int *)pcpu->pc_monitorbuf;
861	/*
862	 * This doesn't need to be atomic since missing the race will
863	 * simply result in unnecessary IPIs.
864	 */
865	if (*state == STATE_SLEEPING)
866		return (0);
867	if (*state == STATE_MWAIT)
868		*state = STATE_RUNNING;
869	return (1);
870}
871
872/*
873 * Ordered by speed/power consumption.
874 */
875struct {
876	void	*id_fn;
877	char	*id_name;
878} idle_tbl[] = {
879	{ cpu_idle_spin, "spin" },
880	{ cpu_idle_mwait, "mwait" },
881	{ cpu_idle_hlt, "hlt" },
882	{ cpu_idle_acpi, "acpi" },
883	{ NULL, NULL }
884};
885
886static int
887idle_sysctl_available(SYSCTL_HANDLER_ARGS)
888{
889	char *avail, *p;
890	int error;
891	int i;
892
893	avail = malloc(256, M_TEMP, M_WAITOK);
894	p = avail;
895	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
896		if (strstr(idle_tbl[i].id_name, "mwait") &&
897		    (cpu_feature2 & CPUID2_MON) == 0)
898			continue;
899		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
900		    cpu_idle_hook == NULL)
901			continue;
902		p += sprintf(p, "%s%s", p != avail ? ", " : "",
903		    idle_tbl[i].id_name);
904	}
905	error = sysctl_handle_string(oidp, avail, 0, req);
906	free(avail, M_TEMP);
907	return (error);
908}
909
910SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
911    0, 0, idle_sysctl_available, "A", "list of available idle functions");
912
913static int
914idle_sysctl(SYSCTL_HANDLER_ARGS)
915{
916	char buf[16];
917	int error;
918	char *p;
919	int i;
920
921	p = "unknown";
922	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
923		if (idle_tbl[i].id_fn == cpu_idle_fn) {
924			p = idle_tbl[i].id_name;
925			break;
926		}
927	}
928	strncpy(buf, p, sizeof(buf));
929	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
930	if (error != 0 || req->newptr == NULL)
931		return (error);
932	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
933		if (strstr(idle_tbl[i].id_name, "mwait") &&
934		    (cpu_feature2 & CPUID2_MON) == 0)
935			continue;
936		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
937		    cpu_idle_hook == NULL)
938			continue;
939		if (strcmp(idle_tbl[i].id_name, buf))
940			continue;
941		cpu_idle_fn = idle_tbl[i].id_fn;
942		return (0);
943	}
944	return (EINVAL);
945}
946
947SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
948    idle_sysctl, "A", "currently selected idle function");
949
950/*
951 * Reset registers to default values on exec.
952 */
953void
954exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
955{
956	struct trapframe *regs = td->td_frame;
957	struct pcb *pcb = td->td_pcb;
958
959	mtx_lock(&dt_lock);
960	if (td->td_proc->p_md.md_ldt != NULL)
961		user_ldt_free(td);
962	else
963		mtx_unlock(&dt_lock);
964
965	pcb->pcb_fsbase = 0;
966	pcb->pcb_gsbase = 0;
967	clear_pcb_flags(pcb, PCB_32BIT);
968	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
969	set_pcb_flags(pcb, PCB_FULL_IRET);
970
971	bzero((char *)regs, sizeof(struct trapframe));
972	regs->tf_rip = imgp->entry_addr;
973	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
974	regs->tf_rdi = stack;		/* argv */
975	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
976	regs->tf_ss = _udatasel;
977	regs->tf_cs = _ucodesel;
978	regs->tf_ds = _udatasel;
979	regs->tf_es = _udatasel;
980	regs->tf_fs = _ufssel;
981	regs->tf_gs = _ugssel;
982	regs->tf_flags = TF_HASSEGS;
983	td->td_retval[1] = 0;
984
985	/*
986	 * Reset the hardware debug registers if they were in use.
987	 * They won't have any meaning for the newly exec'd process.
988	 */
989	if (pcb->pcb_flags & PCB_DBREGS) {
990		pcb->pcb_dr0 = 0;
991		pcb->pcb_dr1 = 0;
992		pcb->pcb_dr2 = 0;
993		pcb->pcb_dr3 = 0;
994		pcb->pcb_dr6 = 0;
995		pcb->pcb_dr7 = 0;
996		if (pcb == curpcb) {
997			/*
998			 * Clear the debug registers on the running
999			 * CPU, otherwise they will end up affecting
1000			 * the next process we switch to.
1001			 */
1002			reset_dbregs();
1003		}
1004		clear_pcb_flags(pcb, PCB_DBREGS);
1005	}
1006
1007	/*
1008	 * Drop the FP state if we hold it, so that the process gets a
1009	 * clean FP state if it uses the FPU again.
1010	 */
1011	fpstate_drop(td);
1012}
1013
1014void
1015cpu_setregs(void)
1016{
1017	register_t cr0;
1018
1019	cr0 = rcr0();
1020	/*
1021	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
1022	 * BSP.  See the comments there about why we set them.
1023	 */
1024	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1025	load_cr0(cr0);
1026}
1027
1028/*
1029 * Initialize amd64 and configure to run kernel
1030 */
1031
1032/*
1033 * Initialize segments & interrupt table
1034 */
1035
1036struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
1037static struct gate_descriptor idt0[NIDT];
1038struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1039
1040static char dblfault_stack[PAGE_SIZE] __aligned(16);
1041
1042static char nmi0_stack[PAGE_SIZE] __aligned(16);
1043CTASSERT(sizeof(struct nmi_pcpu) == 16);
1044
1045struct amd64tss common_tss[MAXCPU];
1046
1047/*
1048 * Software prototypes -- in more palatable form.
1049 *
1050 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
1051 * slots as corresponding segments for i386 kernel.
1052 */
1053struct soft_segment_descriptor gdt_segs[] = {
1054/* GNULL_SEL	0 Null Descriptor */
1055{	.ssd_base = 0x0,
1056	.ssd_limit = 0x0,
1057	.ssd_type = 0,
1058	.ssd_dpl = 0,
1059	.ssd_p = 0,
1060	.ssd_long = 0,
1061	.ssd_def32 = 0,
1062	.ssd_gran = 0		},
1063/* GNULL2_SEL	1 Null Descriptor */
1064{	.ssd_base = 0x0,
1065	.ssd_limit = 0x0,
1066	.ssd_type = 0,
1067	.ssd_dpl = 0,
1068	.ssd_p = 0,
1069	.ssd_long = 0,
1070	.ssd_def32 = 0,
1071	.ssd_gran = 0		},
1072/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
1073{	.ssd_base = 0x0,
1074	.ssd_limit = 0xfffff,
1075	.ssd_type = SDT_MEMRWA,
1076	.ssd_dpl = SEL_UPL,
1077	.ssd_p = 1,
1078	.ssd_long = 0,
1079	.ssd_def32 = 1,
1080	.ssd_gran = 1		},
1081/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
1082{	.ssd_base = 0x0,
1083	.ssd_limit = 0xfffff,
1084	.ssd_type = SDT_MEMRWA,
1085	.ssd_dpl = SEL_UPL,
1086	.ssd_p = 1,
1087	.ssd_long = 0,
1088	.ssd_def32 = 1,
1089	.ssd_gran = 1		},
1090/* GCODE_SEL	4 Code Descriptor for kernel */
1091{	.ssd_base = 0x0,
1092	.ssd_limit = 0xfffff,
1093	.ssd_type = SDT_MEMERA,
1094	.ssd_dpl = SEL_KPL,
1095	.ssd_p = 1,
1096	.ssd_long = 1,
1097	.ssd_def32 = 0,
1098	.ssd_gran = 1		},
1099/* GDATA_SEL	5 Data Descriptor for kernel */
1100{	.ssd_base = 0x0,
1101	.ssd_limit = 0xfffff,
1102	.ssd_type = SDT_MEMRWA,
1103	.ssd_dpl = SEL_KPL,
1104	.ssd_p = 1,
1105	.ssd_long = 1,
1106	.ssd_def32 = 0,
1107	.ssd_gran = 1		},
1108/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1109{	.ssd_base = 0x0,
1110	.ssd_limit = 0xfffff,
1111	.ssd_type = SDT_MEMERA,
1112	.ssd_dpl = SEL_UPL,
1113	.ssd_p = 1,
1114	.ssd_long = 0,
1115	.ssd_def32 = 1,
1116	.ssd_gran = 1		},
1117/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1118{	.ssd_base = 0x0,
1119	.ssd_limit = 0xfffff,
1120	.ssd_type = SDT_MEMRWA,
1121	.ssd_dpl = SEL_UPL,
1122	.ssd_p = 1,
1123	.ssd_long = 0,
1124	.ssd_def32 = 1,
1125	.ssd_gran = 1		},
1126/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1127{	.ssd_base = 0x0,
1128	.ssd_limit = 0xfffff,
1129	.ssd_type = SDT_MEMERA,
1130	.ssd_dpl = SEL_UPL,
1131	.ssd_p = 1,
1132	.ssd_long = 1,
1133	.ssd_def32 = 0,
1134	.ssd_gran = 1		},
1135/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1136{	.ssd_base = 0x0,
1137	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1138	.ssd_type = SDT_SYSTSS,
1139	.ssd_dpl = SEL_KPL,
1140	.ssd_p = 1,
1141	.ssd_long = 0,
1142	.ssd_def32 = 0,
1143	.ssd_gran = 0		},
1144/* Actually, the TSS is a system descriptor which is double size */
1145{	.ssd_base = 0x0,
1146	.ssd_limit = 0x0,
1147	.ssd_type = 0,
1148	.ssd_dpl = 0,
1149	.ssd_p = 0,
1150	.ssd_long = 0,
1151	.ssd_def32 = 0,
1152	.ssd_gran = 0		},
1153/* GUSERLDT_SEL	11 LDT Descriptor */
1154{	.ssd_base = 0x0,
1155	.ssd_limit = 0x0,
1156	.ssd_type = 0,
1157	.ssd_dpl = 0,
1158	.ssd_p = 0,
1159	.ssd_long = 0,
1160	.ssd_def32 = 0,
1161	.ssd_gran = 0		},
1162/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1163{	.ssd_base = 0x0,
1164	.ssd_limit = 0x0,
1165	.ssd_type = 0,
1166	.ssd_dpl = 0,
1167	.ssd_p = 0,
1168	.ssd_long = 0,
1169	.ssd_def32 = 0,
1170	.ssd_gran = 0		},
1171};
1172
1173void
1174setidt(idx, func, typ, dpl, ist)
1175	int idx;
1176	inthand_t *func;
1177	int typ;
1178	int dpl;
1179	int ist;
1180{
1181	struct gate_descriptor *ip;
1182
1183	ip = idt + idx;
1184	ip->gd_looffset = (uintptr_t)func;
1185	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1186	ip->gd_ist = ist;
1187	ip->gd_xx = 0;
1188	ip->gd_type = typ;
1189	ip->gd_dpl = dpl;
1190	ip->gd_p = 1;
1191	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1192}
1193
1194extern inthand_t
1195	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1196	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1197	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1198	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1199	IDTVEC(xmm), IDTVEC(dblfault),
1200#ifdef KDTRACE_HOOKS
1201	IDTVEC(dtrace_ret),
1202#endif
1203#ifdef XENHVM
1204	IDTVEC(xen_intr_upcall),
1205#endif
1206	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1207
1208#ifdef DDB
1209/*
1210 * Display the index and function name of any IDT entries that don't use
1211 * the default 'rsvd' entry point.
1212 */
1213DB_SHOW_COMMAND(idt, db_show_idt)
1214{
1215	struct gate_descriptor *ip;
1216	int idx;
1217	uintptr_t func;
1218
1219	ip = idt;
1220	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1221		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1222		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1223			db_printf("%3d\t", idx);
1224			db_printsym(func, DB_STGY_PROC);
1225			db_printf("\n");
1226		}
1227		ip++;
1228	}
1229}
1230
1231/* Show privileged registers. */
1232DB_SHOW_COMMAND(sysregs, db_show_sysregs)
1233{
1234	struct {
1235		uint16_t limit;
1236		uint64_t base;
1237	} __packed idtr, gdtr;
1238	uint16_t ldt, tr;
1239
1240	__asm __volatile("sidt %0" : "=m" (idtr));
1241	db_printf("idtr\t0x%016lx/%04x\n",
1242	    (u_long)idtr.base, (u_int)idtr.limit);
1243	__asm __volatile("sgdt %0" : "=m" (gdtr));
1244	db_printf("gdtr\t0x%016lx/%04x\n",
1245	    (u_long)gdtr.base, (u_int)gdtr.limit);
1246	__asm __volatile("sldt %0" : "=r" (ldt));
1247	db_printf("ldtr\t0x%04x\n", ldt);
1248	__asm __volatile("str %0" : "=r" (tr));
1249	db_printf("tr\t0x%04x\n", tr);
1250	db_printf("cr0\t0x%016lx\n", rcr0());
1251	db_printf("cr2\t0x%016lx\n", rcr2());
1252	db_printf("cr3\t0x%016lx\n", rcr3());
1253	db_printf("cr4\t0x%016lx\n", rcr4());
1254	db_printf("EFER\t%016lx\n", rdmsr(MSR_EFER));
1255	db_printf("FEATURES_CTL\t%016lx\n", rdmsr(MSR_IA32_FEATURE_CONTROL));
1256	db_printf("DEBUG_CTL\t%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
1257	db_printf("PAT\t%016lx\n", rdmsr(MSR_PAT));
1258	db_printf("GSBASE\t%016lx\n", rdmsr(MSR_GSBASE));
1259}
1260#endif
1261
1262void
1263sdtossd(sd, ssd)
1264	struct user_segment_descriptor *sd;
1265	struct soft_segment_descriptor *ssd;
1266{
1267
1268	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1269	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1270	ssd->ssd_type  = sd->sd_type;
1271	ssd->ssd_dpl   = sd->sd_dpl;
1272	ssd->ssd_p     = sd->sd_p;
1273	ssd->ssd_long  = sd->sd_long;
1274	ssd->ssd_def32 = sd->sd_def32;
1275	ssd->ssd_gran  = sd->sd_gran;
1276}
1277
1278void
1279ssdtosd(ssd, sd)
1280	struct soft_segment_descriptor *ssd;
1281	struct user_segment_descriptor *sd;
1282{
1283
1284	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1285	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1286	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1287	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1288	sd->sd_type  = ssd->ssd_type;
1289	sd->sd_dpl   = ssd->ssd_dpl;
1290	sd->sd_p     = ssd->ssd_p;
1291	sd->sd_long  = ssd->ssd_long;
1292	sd->sd_def32 = ssd->ssd_def32;
1293	sd->sd_gran  = ssd->ssd_gran;
1294}
1295
1296void
1297ssdtosyssd(ssd, sd)
1298	struct soft_segment_descriptor *ssd;
1299	struct system_segment_descriptor *sd;
1300{
1301
1302	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1303	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1304	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1305	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1306	sd->sd_type  = ssd->ssd_type;
1307	sd->sd_dpl   = ssd->ssd_dpl;
1308	sd->sd_p     = ssd->ssd_p;
1309	sd->sd_gran  = ssd->ssd_gran;
1310}
1311
1312#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1313#include <isa/isavar.h>
1314#include <isa/isareg.h>
1315/*
1316 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1317 * and is only suitable for use at probe time.
1318 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1319 * It shouldn't be here.  There should probably be an APIC centric
1320 * implementation in the apic driver code, if at all.
1321 */
1322intrmask_t
1323isa_irq_pending(void)
1324{
1325	u_char irr1;
1326	u_char irr2;
1327
1328	irr1 = inb(IO_ICU1);
1329	irr2 = inb(IO_ICU2);
1330	return ((irr2 << 8) | irr1);
1331}
1332#endif
1333
1334u_int basemem;
1335
1336static int
1337add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
1338    int *physmap_idxp)
1339{
1340	int i, insert_idx, physmap_idx;
1341
1342	physmap_idx = *physmap_idxp;
1343
1344	if (length == 0)
1345		return (1);
1346
1347	/*
1348	 * Find insertion point while checking for overlap.  Start off by
1349	 * assuming the new entry will be added to the end.
1350	 */
1351	insert_idx = physmap_idx + 2;
1352	for (i = 0; i <= physmap_idx; i += 2) {
1353		if (base < physmap[i + 1]) {
1354			if (base + length <= physmap[i]) {
1355				insert_idx = i;
1356				break;
1357			}
1358			if (boothowto & RB_VERBOSE)
1359				printf(
1360		    "Overlapping memory regions, ignoring second region\n");
1361			return (1);
1362		}
1363	}
1364
1365	/* See if we can prepend to the next entry. */
1366	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
1367		physmap[insert_idx] = base;
1368		return (1);
1369	}
1370
1371	/* See if we can append to the previous entry. */
1372	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
1373		physmap[insert_idx - 1] += length;
1374		return (1);
1375	}
1376
1377	physmap_idx += 2;
1378	*physmap_idxp = physmap_idx;
1379	if (physmap_idx == PHYSMAP_SIZE) {
1380		printf(
1381		"Too many segments in the physical address map, giving up\n");
1382		return (0);
1383	}
1384
1385	/*
1386	 * Move the last 'N' entries down to make room for the new
1387	 * entry if needed.
1388	 */
1389	for (i = physmap_idx; i > insert_idx; i -= 2) {
1390		physmap[i] = physmap[i - 2];
1391		physmap[i + 1] = physmap[i - 1];
1392	}
1393
1394	/* Insert the new entry. */
1395	physmap[insert_idx] = base;
1396	physmap[insert_idx + 1] = base + length;
1397	return (1);
1398}
1399
1400static void
1401add_smap_entries(struct bios_smap *smapbase, vm_paddr_t *physmap,
1402    int *physmap_idx)
1403{
1404	struct bios_smap *smap, *smapend;
1405	u_int32_t smapsize;
1406
1407	/*
1408	 * Memory map from INT 15:E820.
1409	 *
1410	 * subr_module.c says:
1411	 * "Consumer may safely assume that size value precedes data."
1412	 * ie: an int32_t immediately precedes smap.
1413	 */
1414	smapsize = *((u_int32_t *)smapbase - 1);
1415	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1416
1417	for (smap = smapbase; smap < smapend; smap++) {
1418		if (boothowto & RB_VERBOSE)
1419			printf("SMAP type=%02x base=%016lx len=%016lx\n",
1420			    smap->type, smap->base, smap->length);
1421
1422		if (smap->type != SMAP_TYPE_MEMORY)
1423			continue;
1424
1425		if (!add_physmap_entry(smap->base, smap->length, physmap,
1426		    physmap_idx))
1427			break;
1428	}
1429}
1430
1431#define efi_next_descriptor(ptr, size) \
1432	((struct efi_md *)(((uint8_t *) ptr) + size))
1433
1434static void
1435add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap,
1436    int *physmap_idx)
1437{
1438	struct efi_md *map, *p;
1439	const char *type;
1440	size_t efisz;
1441	int ndesc, i;
1442
1443	static const char *types[] = {
1444		"Reserved",
1445		"LoaderCode",
1446		"LoaderData",
1447		"BootServicesCode",
1448		"BootServicesData",
1449		"RuntimeServicesCode",
1450		"RuntimeServicesData",
1451		"ConventionalMemory",
1452		"UnusableMemory",
1453		"ACPIReclaimMemory",
1454		"ACPIMemoryNVS",
1455		"MemoryMappedIO",
1456		"MemoryMappedIOPortSpace",
1457		"PalCode"
1458	};
1459
1460	/*
1461	 * Memory map data provided by UEFI via the GetMemoryMap
1462	 * Boot Services API.
1463	 */
1464	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1465	map = (struct efi_md *)((uint8_t *)efihdr + efisz);
1466
1467	if (efihdr->descriptor_size == 0)
1468		return;
1469	ndesc = efihdr->memory_size / efihdr->descriptor_size;
1470
1471	if (boothowto & RB_VERBOSE)
1472		printf("%23s %12s %12s %8s %4s\n",
1473		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1474
1475	for (i = 0, p = map; i < ndesc; i++,
1476	    p = efi_next_descriptor(p, efihdr->descriptor_size)) {
1477		if (boothowto & RB_VERBOSE) {
1478			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1479				type = types[p->md_type];
1480			else
1481				type = "<INVALID>";
1482			printf("%23s %012lx %12p %08lx ", type, p->md_phys,
1483			    p->md_virt, p->md_pages);
1484			if (p->md_attr & EFI_MD_ATTR_UC)
1485				printf("UC ");
1486			if (p->md_attr & EFI_MD_ATTR_WC)
1487				printf("WC ");
1488			if (p->md_attr & EFI_MD_ATTR_WT)
1489				printf("WT ");
1490			if (p->md_attr & EFI_MD_ATTR_WB)
1491				printf("WB ");
1492			if (p->md_attr & EFI_MD_ATTR_UCE)
1493				printf("UCE ");
1494			if (p->md_attr & EFI_MD_ATTR_WP)
1495				printf("WP ");
1496			if (p->md_attr & EFI_MD_ATTR_RP)
1497				printf("RP ");
1498			if (p->md_attr & EFI_MD_ATTR_XP)
1499				printf("XP ");
1500			if (p->md_attr & EFI_MD_ATTR_RT)
1501				printf("RUNTIME");
1502			printf("\n");
1503		}
1504
1505		switch (p->md_type) {
1506		case EFI_MD_TYPE_CODE:
1507		case EFI_MD_TYPE_DATA:
1508		case EFI_MD_TYPE_BS_CODE:
1509		case EFI_MD_TYPE_BS_DATA:
1510		case EFI_MD_TYPE_FREE:
1511			/*
1512			 * We're allowed to use any entry with these types.
1513			 */
1514			break;
1515		default:
1516			continue;
1517		}
1518
1519		if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE),
1520		    physmap, physmap_idx))
1521			break;
1522	}
1523}
1524
1525static char bootmethod[16] = "";
1526SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1527    "System firmware boot method");
1528
1529/*
1530 * Populate the (physmap) array with base/bound pairs describing the
1531 * available physical memory in the system, then test this memory and
1532 * build the phys_avail array describing the actually-available memory.
1533 *
1534 * Total memory size may be set by the kernel environment variable
1535 * hw.physmem or the compile-time define MAXMEM.
1536 *
1537 * XXX first should be vm_paddr_t.
1538 */
1539static void
1540getmemsize(caddr_t kmdp, u_int64_t first)
1541{
1542	int i, physmap_idx, pa_indx, da_indx;
1543	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1544	u_long physmem_start, physmem_tunable, memtest;
1545	pt_entry_t *pte;
1546	struct bios_smap *smapbase;
1547	struct efi_map_header *efihdr;
1548	quad_t dcons_addr, dcons_size;
1549
1550	bzero(physmap, sizeof(physmap));
1551	basemem = 0;
1552	physmap_idx = 0;
1553
1554	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1555	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1556	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1557	    MODINFO_METADATA | MODINFOMD_SMAP);
1558
1559	if (efihdr != NULL) {
1560		add_efi_map_entries(efihdr, physmap, &physmap_idx);
1561		strlcpy(bootmethod, "UEFI", sizeof(bootmethod));
1562	} else if (smapbase != NULL) {
1563		add_smap_entries(smapbase, physmap, &physmap_idx);
1564		strlcpy(bootmethod, "BIOS", sizeof(bootmethod));
1565	} else {
1566		panic("No BIOS smap or EFI map info from loader!");
1567	}
1568
1569	/*
1570	 * Find the 'base memory' segment for SMP
1571	 */
1572	basemem = 0;
1573	for (i = 0; i <= physmap_idx; i += 2) {
1574		if (physmap[i] == 0x00000000) {
1575			basemem = physmap[i + 1] / 1024;
1576			break;
1577		}
1578	}
1579	if (basemem == 0)
1580		panic("BIOS smap did not include a basemem segment!");
1581
1582#ifdef SMP
1583	/* make hole for AP bootstrap code */
1584	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1585#endif
1586
1587	/*
1588	 * Maxmem isn't the "maximum memory", it's one larger than the
1589	 * highest page of the physical address space.  It should be
1590	 * called something like "Maxphyspage".  We may adjust this
1591	 * based on ``hw.physmem'' and the results of the memory test.
1592	 */
1593	Maxmem = atop(physmap[physmap_idx + 1]);
1594
1595#ifdef MAXMEM
1596	Maxmem = MAXMEM / 4;
1597#endif
1598
1599	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1600		Maxmem = atop(physmem_tunable);
1601
1602	/*
1603	 * By default enable the memory test on real hardware, and disable
1604	 * it if we appear to be running in a VM.  This avoids touching all
1605	 * pages unnecessarily, which doesn't matter on real hardware but is
1606	 * bad for shared VM hosts.  Use a general name so that
1607	 * one could eventually do more with the code than just disable it.
1608	 */
1609	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
1610	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1611
1612	/*
1613	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1614	 * in the system.
1615	 */
1616	if (Maxmem > atop(physmap[physmap_idx + 1]))
1617		Maxmem = atop(physmap[physmap_idx + 1]);
1618
1619	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1620	    (boothowto & RB_VERBOSE))
1621		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1622
1623	/* call pmap initialization to make new kernel address space */
1624	pmap_bootstrap(&first);
1625
1626	/*
1627	 * Size up each available chunk of physical memory.
1628	 *
1629	 * XXX Some BIOSes corrupt low 64KB between suspend and resume.
1630	 * By default, mask off the first 16 pages unless we appear to be
1631	 * running in a VM.
1632	 */
1633	physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
1634	TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
1635	if (physmem_start < PAGE_SIZE)
1636		physmap[0] = PAGE_SIZE;
1637	else if (physmem_start >= physmap[1])
1638		physmap[0] = round_page(physmap[1] - PAGE_SIZE);
1639	else
1640		physmap[0] = round_page(physmem_start);
1641	pa_indx = 0;
1642	da_indx = 1;
1643	phys_avail[pa_indx++] = physmap[0];
1644	phys_avail[pa_indx] = physmap[0];
1645	dump_avail[da_indx] = physmap[0];
1646	pte = CMAP1;
1647
1648	/*
1649	 * Get dcons buffer address
1650	 */
1651	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1652	    getenv_quad("dcons.size", &dcons_size) == 0)
1653		dcons_addr = 0;
1654
1655	/*
1656	 * physmap is in bytes, so when converting to page boundaries,
1657	 * round up the start address and round down the end address.
1658	 */
1659	for (i = 0; i <= physmap_idx; i += 2) {
1660		vm_paddr_t end;
1661
1662		end = ptoa((vm_paddr_t)Maxmem);
1663		if (physmap[i + 1] < end)
1664			end = trunc_page(physmap[i + 1]);
1665		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1666			int tmp, page_bad, full;
1667			int *ptr = (int *)CADDR1;
1668
1669			full = FALSE;
1670			/*
1671			 * block out kernel memory as not available.
1672			 */
1673			if (pa >= (vm_paddr_t)kernphys && pa < first)
1674				goto do_dump_avail;
1675
1676			/*
1677			 * block out dcons buffer
1678			 */
1679			if (dcons_addr > 0
1680			    && pa >= trunc_page(dcons_addr)
1681			    && pa < dcons_addr + dcons_size)
1682				goto do_dump_avail;
1683
1684			page_bad = FALSE;
1685			if (memtest == 0)
1686				goto skip_memtest;
1687
1688			/*
1689			 * map page into kernel: valid, read/write,non-cacheable
1690			 */
1691			*pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD;
1692			invltlb();
1693
1694			tmp = *(int *)ptr;
1695			/*
1696			 * Test for alternating 1's and 0's
1697			 */
1698			*(volatile int *)ptr = 0xaaaaaaaa;
1699			if (*(volatile int *)ptr != 0xaaaaaaaa)
1700				page_bad = TRUE;
1701			/*
1702			 * Test for alternating 0's and 1's
1703			 */
1704			*(volatile int *)ptr = 0x55555555;
1705			if (*(volatile int *)ptr != 0x55555555)
1706				page_bad = TRUE;
1707			/*
1708			 * Test for all 1's
1709			 */
1710			*(volatile int *)ptr = 0xffffffff;
1711			if (*(volatile int *)ptr != 0xffffffff)
1712				page_bad = TRUE;
1713			/*
1714			 * Test for all 0's
1715			 */
1716			*(volatile int *)ptr = 0x0;
1717			if (*(volatile int *)ptr != 0x0)
1718				page_bad = TRUE;
1719			/*
1720			 * Restore original value.
1721			 */
1722			*(int *)ptr = tmp;
1723
1724skip_memtest:
1725			/*
1726			 * Adjust array of valid/good pages.
1727			 */
1728			if (page_bad == TRUE)
1729				continue;
1730			/*
1731			 * If this good page is a continuation of the
1732			 * previous set of good pages, then just increase
1733			 * the end pointer. Otherwise start a new chunk.
1734			 * Note that "end" points one higher than end,
1735			 * making the range >= start and < end.
1736			 * If we're also doing a speculative memory
1737			 * test and we at or past the end, bump up Maxmem
1738			 * so that we keep going. The first bad page
1739			 * will terminate the loop.
1740			 */
1741			if (phys_avail[pa_indx] == pa) {
1742				phys_avail[pa_indx] += PAGE_SIZE;
1743			} else {
1744				pa_indx++;
1745				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1746					printf(
1747		"Too many holes in the physical address space, giving up\n");
1748					pa_indx--;
1749					full = TRUE;
1750					goto do_dump_avail;
1751				}
1752				phys_avail[pa_indx++] = pa;	/* start */
1753				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1754			}
1755			physmem++;
1756do_dump_avail:
1757			if (dump_avail[da_indx] == pa) {
1758				dump_avail[da_indx] += PAGE_SIZE;
1759			} else {
1760				da_indx++;
1761				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1762					da_indx--;
1763					goto do_next;
1764				}
1765				dump_avail[da_indx++] = pa; /* start */
1766				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1767			}
1768do_next:
1769			if (full)
1770				break;
1771		}
1772	}
1773	*pte = 0;
1774	invltlb();
1775
1776	/*
1777	 * XXX
1778	 * The last chunk must contain at least one page plus the message
1779	 * buffer to avoid complicating other code (message buffer address
1780	 * calculation, etc.).
1781	 */
1782	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1783	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1784		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1785		phys_avail[pa_indx--] = 0;
1786		phys_avail[pa_indx--] = 0;
1787	}
1788
1789	Maxmem = atop(phys_avail[pa_indx]);
1790
1791	/* Trim off space for the message buffer. */
1792	phys_avail[pa_indx] -= round_page(msgbufsize);
1793
1794	/* Map the message buffer. */
1795	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1796}
1797
1798u_int64_t
1799hammer_time(u_int64_t modulep, u_int64_t physfree)
1800{
1801	caddr_t kmdp;
1802	int gsel_tss, x;
1803	struct pcpu *pc;
1804	struct nmi_pcpu *np;
1805	struct xstate_hdr *xhdr;
1806	u_int64_t msr;
1807	char *env;
1808	size_t kstack0_sz;
1809
1810	thread0.td_kstack = physfree + KERNBASE;
1811	thread0.td_kstack_pages = KSTACK_PAGES;
1812	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
1813	bzero((void *)thread0.td_kstack, kstack0_sz);
1814	physfree += kstack0_sz;
1815
1816	/*
1817 	 * This may be done better later if it gets more high level
1818 	 * components in it. If so just link td->td_proc here.
1819	 */
1820	proc_linkup0(&proc0, &thread0);
1821
1822	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1823	preload_bootstrap_relocate(KERNBASE);
1824	kmdp = preload_search_by_type("elf kernel");
1825	if (kmdp == NULL)
1826		kmdp = preload_search_by_type("elf64 kernel");
1827	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1828	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1829#ifdef DDB
1830	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1831	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1832#endif
1833
1834	/* Init basic tunables, hz etc */
1835	init_param1();
1836
1837	/*
1838	 * make gdt memory segments
1839	 */
1840	for (x = 0; x < NGDT; x++) {
1841		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1842		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1843			ssdtosd(&gdt_segs[x], &gdt[x]);
1844	}
1845	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1846	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1847	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1848
1849	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1850	r_gdt.rd_base =  (long) gdt;
1851	lgdt(&r_gdt);
1852	pc = &__pcpu[0];
1853
1854	wrmsr(MSR_FSBASE, 0);		/* User value */
1855	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1856	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1857
1858	pcpu_init(pc, 0, sizeof(struct pcpu));
1859	dpcpu_init((void *)(physfree + KERNBASE), 0);
1860	physfree += DPCPU_SIZE;
1861	PCPU_SET(prvspace, pc);
1862	PCPU_SET(curthread, &thread0);
1863	PCPU_SET(tssp, &common_tss[0]);
1864	PCPU_SET(commontssp, &common_tss[0]);
1865	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1866	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1867	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1868	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1869
1870	/*
1871	 * Initialize mutexes.
1872	 *
1873	 * icu_lock: in order to allow an interrupt to occur in a critical
1874	 * 	     section, to set pcpu->ipending (etc...) properly, we
1875	 *	     must be able to get the icu lock, so it can't be
1876	 *	     under witness.
1877	 */
1878	mutex_init();
1879	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1880	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1881
1882	/* exceptions */
1883	for (x = 0; x < NIDT; x++)
1884		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1885	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1886	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1887	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1888 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1889	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1890	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1891	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1892	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1893	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1894	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1895	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1896	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1897	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1898	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1899	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1900	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1901	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1902	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1903	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1904#ifdef KDTRACE_HOOKS
1905	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
1906#endif
1907#ifdef XENHVM
1908	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_UPL, 0);
1909#endif
1910
1911	r_idt.rd_limit = sizeof(idt0) - 1;
1912	r_idt.rd_base = (long) idt;
1913	lidt(&r_idt);
1914
1915	/*
1916	 * Initialize the i8254 before the console so that console
1917	 * initialization can use DELAY().
1918	 */
1919	i8254_init();
1920
1921	/*
1922	 * Use vt(4) by default for UEFI boot (during the sc(4)/vt(4)
1923	 * transition).
1924	 */
1925	if (kmdp != NULL && preload_search_info(kmdp,
1926	    MODINFO_METADATA | MODINFOMD_EFI_MAP) != NULL)
1927		vty_set_preferred(VTY_VT);
1928
1929	/*
1930	 * Initialize the console before we print anything out.
1931	 */
1932	cninit();
1933
1934#ifdef DEV_ISA
1935#ifdef DEV_ATPIC
1936	elcr_probe();
1937	atpic_startup();
1938#else
1939	/* Reset and mask the atpics and leave them shut down. */
1940	atpic_reset();
1941
1942	/*
1943	 * Point the ICU spurious interrupt vectors at the APIC spurious
1944	 * interrupt handler.
1945	 */
1946	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1947	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1948#endif
1949#else
1950#error "have you forgotten the isa device?";
1951#endif
1952
1953	kdb_init();
1954
1955#ifdef KDB
1956	if (boothowto & RB_KDB)
1957		kdb_enter(KDB_WHY_BOOTFLAGS,
1958		    "Boot flags requested debugger");
1959#endif
1960
1961	identify_cpu();		/* Final stage of CPU initialization */
1962	initializecpu();	/* Initialize CPU registers */
1963	initializecpucache();
1964
1965	/* doublefault stack space, runs on ist1 */
1966	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1967
1968	/*
1969	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1970	 * above the start of the ist2 stack.
1971	 */
1972	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1973	np->np_pcpu = (register_t) pc;
1974	common_tss[0].tss_ist2 = (long) np;
1975
1976	/* Set the IO permission bitmap (empty due to tss seg limit) */
1977	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1978	    IOPAGES * PAGE_SIZE;
1979
1980	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1981	ltr(gsel_tss);
1982
1983	/* Set up the fast syscall stuff */
1984	msr = rdmsr(MSR_EFER) | EFER_SCE;
1985	wrmsr(MSR_EFER, msr);
1986	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1987	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1988	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1989	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1990	wrmsr(MSR_STAR, msr);
1991	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1992
1993	getmemsize(kmdp, physfree);
1994	init_param2(physmem);
1995
1996	/* now running on new page tables, configured,and u/iom is accessible */
1997
1998	msgbufinit(msgbufp, msgbufsize);
1999	fpuinit();
2000
2001	/*
2002	 * Set up thread0 pcb after fpuinit calculated pcb + fpu save
2003	 * area size.  Zero out the extended state header in fpu save
2004	 * area.
2005	 */
2006	thread0.td_pcb = get_pcb_td(&thread0);
2007	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
2008	if (use_xsave) {
2009		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
2010		    1);
2011		xhdr->xstate_bv = xsave_mask;
2012	}
2013	/* make an initial tss so cpu can get interrupt stack on syscall! */
2014	common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
2015	/* Ensure the stack is aligned to 16 bytes */
2016	common_tss[0].tss_rsp0 &= ~0xFul;
2017	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
2018	PCPU_SET(curpcb, thread0.td_pcb);
2019
2020	/* transfer to user mode */
2021
2022	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2023	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2024	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2025	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
2026	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
2027
2028	load_ds(_udatasel);
2029	load_es(_udatasel);
2030	load_fs(_ufssel);
2031
2032	/* setup proc 0's pcb */
2033	thread0.td_pcb->pcb_flags = 0;
2034	thread0.td_pcb->pcb_cr3 = KPML4phys; /* PCID 0 is reserved for kernel */
2035	thread0.td_frame = &proc0_tf;
2036
2037        env = getenv("kernelname");
2038	if (env != NULL)
2039		strlcpy(kernelname, env, sizeof(kernelname));
2040
2041	cpu_probe_amdc1e();
2042
2043#ifdef FDT
2044	x86_init_fdt();
2045#endif
2046
2047	/* Location of kernel stack for locore */
2048	return ((u_int64_t)thread0.td_pcb);
2049}
2050
2051void
2052cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
2053{
2054
2055	pcpu->pc_acpi_id = 0xffffffff;
2056}
2057
2058void
2059spinlock_enter(void)
2060{
2061	struct thread *td;
2062	register_t flags;
2063
2064	td = curthread;
2065	if (td->td_md.md_spinlock_count == 0) {
2066		flags = intr_disable();
2067		td->td_md.md_spinlock_count = 1;
2068		td->td_md.md_saved_flags = flags;
2069	} else
2070		td->td_md.md_spinlock_count++;
2071	critical_enter();
2072}
2073
2074void
2075spinlock_exit(void)
2076{
2077	struct thread *td;
2078	register_t flags;
2079
2080	td = curthread;
2081	critical_exit();
2082	flags = td->td_md.md_saved_flags;
2083	td->td_md.md_spinlock_count--;
2084	if (td->td_md.md_spinlock_count == 0)
2085		intr_restore(flags);
2086}
2087
2088/*
2089 * Construct a PCB from a trapframe. This is called from kdb_trap() where
2090 * we want to start a backtrace from the function that caused us to enter
2091 * the debugger. We have the context in the trapframe, but base the trace
2092 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
2093 * enough for a backtrace.
2094 */
2095void
2096makectx(struct trapframe *tf, struct pcb *pcb)
2097{
2098
2099	pcb->pcb_r12 = tf->tf_r12;
2100	pcb->pcb_r13 = tf->tf_r13;
2101	pcb->pcb_r14 = tf->tf_r14;
2102	pcb->pcb_r15 = tf->tf_r15;
2103	pcb->pcb_rbp = tf->tf_rbp;
2104	pcb->pcb_rbx = tf->tf_rbx;
2105	pcb->pcb_rip = tf->tf_rip;
2106	pcb->pcb_rsp = tf->tf_rsp;
2107}
2108
2109int
2110ptrace_set_pc(struct thread *td, unsigned long addr)
2111{
2112
2113	td->td_frame->tf_rip = addr;
2114	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2115	return (0);
2116}
2117
2118int
2119ptrace_single_step(struct thread *td)
2120{
2121	td->td_frame->tf_rflags |= PSL_T;
2122	return (0);
2123}
2124
2125int
2126ptrace_clear_single_step(struct thread *td)
2127{
2128	td->td_frame->tf_rflags &= ~PSL_T;
2129	return (0);
2130}
2131
2132int
2133fill_regs(struct thread *td, struct reg *regs)
2134{
2135	struct trapframe *tp;
2136
2137	tp = td->td_frame;
2138	return (fill_frame_regs(tp, regs));
2139}
2140
2141int
2142fill_frame_regs(struct trapframe *tp, struct reg *regs)
2143{
2144	regs->r_r15 = tp->tf_r15;
2145	regs->r_r14 = tp->tf_r14;
2146	regs->r_r13 = tp->tf_r13;
2147	regs->r_r12 = tp->tf_r12;
2148	regs->r_r11 = tp->tf_r11;
2149	regs->r_r10 = tp->tf_r10;
2150	regs->r_r9  = tp->tf_r9;
2151	regs->r_r8  = tp->tf_r8;
2152	regs->r_rdi = tp->tf_rdi;
2153	regs->r_rsi = tp->tf_rsi;
2154	regs->r_rbp = tp->tf_rbp;
2155	regs->r_rbx = tp->tf_rbx;
2156	regs->r_rdx = tp->tf_rdx;
2157	regs->r_rcx = tp->tf_rcx;
2158	regs->r_rax = tp->tf_rax;
2159	regs->r_rip = tp->tf_rip;
2160	regs->r_cs = tp->tf_cs;
2161	regs->r_rflags = tp->tf_rflags;
2162	regs->r_rsp = tp->tf_rsp;
2163	regs->r_ss = tp->tf_ss;
2164	if (tp->tf_flags & TF_HASSEGS) {
2165		regs->r_ds = tp->tf_ds;
2166		regs->r_es = tp->tf_es;
2167		regs->r_fs = tp->tf_fs;
2168		regs->r_gs = tp->tf_gs;
2169	} else {
2170		regs->r_ds = 0;
2171		regs->r_es = 0;
2172		regs->r_fs = 0;
2173		regs->r_gs = 0;
2174	}
2175	return (0);
2176}
2177
2178int
2179set_regs(struct thread *td, struct reg *regs)
2180{
2181	struct trapframe *tp;
2182	register_t rflags;
2183
2184	tp = td->td_frame;
2185	rflags = regs->r_rflags & 0xffffffff;
2186	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
2187		return (EINVAL);
2188	tp->tf_r15 = regs->r_r15;
2189	tp->tf_r14 = regs->r_r14;
2190	tp->tf_r13 = regs->r_r13;
2191	tp->tf_r12 = regs->r_r12;
2192	tp->tf_r11 = regs->r_r11;
2193	tp->tf_r10 = regs->r_r10;
2194	tp->tf_r9  = regs->r_r9;
2195	tp->tf_r8  = regs->r_r8;
2196	tp->tf_rdi = regs->r_rdi;
2197	tp->tf_rsi = regs->r_rsi;
2198	tp->tf_rbp = regs->r_rbp;
2199	tp->tf_rbx = regs->r_rbx;
2200	tp->tf_rdx = regs->r_rdx;
2201	tp->tf_rcx = regs->r_rcx;
2202	tp->tf_rax = regs->r_rax;
2203	tp->tf_rip = regs->r_rip;
2204	tp->tf_cs = regs->r_cs;
2205	tp->tf_rflags = rflags;
2206	tp->tf_rsp = regs->r_rsp;
2207	tp->tf_ss = regs->r_ss;
2208	if (0) {	/* XXXKIB */
2209		tp->tf_ds = regs->r_ds;
2210		tp->tf_es = regs->r_es;
2211		tp->tf_fs = regs->r_fs;
2212		tp->tf_gs = regs->r_gs;
2213		tp->tf_flags = TF_HASSEGS;
2214	}
2215	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
2216	return (0);
2217}
2218
2219/* XXX check all this stuff! */
2220/* externalize from sv_xmm */
2221static void
2222fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
2223{
2224	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2225	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2226	int i;
2227
2228	/* pcb -> fpregs */
2229	bzero(fpregs, sizeof(*fpregs));
2230
2231	/* FPU control/status */
2232	penv_fpreg->en_cw = penv_xmm->en_cw;
2233	penv_fpreg->en_sw = penv_xmm->en_sw;
2234	penv_fpreg->en_tw = penv_xmm->en_tw;
2235	penv_fpreg->en_opcode = penv_xmm->en_opcode;
2236	penv_fpreg->en_rip = penv_xmm->en_rip;
2237	penv_fpreg->en_rdp = penv_xmm->en_rdp;
2238	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
2239	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
2240
2241	/* FPU registers */
2242	for (i = 0; i < 8; ++i)
2243		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
2244
2245	/* SSE registers */
2246	for (i = 0; i < 16; ++i)
2247		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
2248}
2249
2250/* internalize from fpregs into sv_xmm */
2251static void
2252set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
2253{
2254	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2255	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
2256	int i;
2257
2258	/* fpregs -> pcb */
2259	/* FPU control/status */
2260	penv_xmm->en_cw = penv_fpreg->en_cw;
2261	penv_xmm->en_sw = penv_fpreg->en_sw;
2262	penv_xmm->en_tw = penv_fpreg->en_tw;
2263	penv_xmm->en_opcode = penv_fpreg->en_opcode;
2264	penv_xmm->en_rip = penv_fpreg->en_rip;
2265	penv_xmm->en_rdp = penv_fpreg->en_rdp;
2266	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
2267	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
2268
2269	/* FPU registers */
2270	for (i = 0; i < 8; ++i)
2271		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
2272
2273	/* SSE registers */
2274	for (i = 0; i < 16; ++i)
2275		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
2276}
2277
2278/* externalize from td->pcb */
2279int
2280fill_fpregs(struct thread *td, struct fpreg *fpregs)
2281{
2282
2283	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2284	    P_SHOULDSTOP(td->td_proc),
2285	    ("not suspended thread %p", td));
2286	fpugetregs(td);
2287	fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
2288	return (0);
2289}
2290
2291/* internalize to td->pcb */
2292int
2293set_fpregs(struct thread *td, struct fpreg *fpregs)
2294{
2295
2296	set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
2297	fpuuserinited(td);
2298	return (0);
2299}
2300
2301/*
2302 * Get machine context.
2303 */
2304int
2305get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
2306{
2307	struct pcb *pcb;
2308	struct trapframe *tp;
2309
2310	pcb = td->td_pcb;
2311	tp = td->td_frame;
2312	PROC_LOCK(curthread->td_proc);
2313	mcp->mc_onstack = sigonstack(tp->tf_rsp);
2314	PROC_UNLOCK(curthread->td_proc);
2315	mcp->mc_r15 = tp->tf_r15;
2316	mcp->mc_r14 = tp->tf_r14;
2317	mcp->mc_r13 = tp->tf_r13;
2318	mcp->mc_r12 = tp->tf_r12;
2319	mcp->mc_r11 = tp->tf_r11;
2320	mcp->mc_r10 = tp->tf_r10;
2321	mcp->mc_r9  = tp->tf_r9;
2322	mcp->mc_r8  = tp->tf_r8;
2323	mcp->mc_rdi = tp->tf_rdi;
2324	mcp->mc_rsi = tp->tf_rsi;
2325	mcp->mc_rbp = tp->tf_rbp;
2326	mcp->mc_rbx = tp->tf_rbx;
2327	mcp->mc_rcx = tp->tf_rcx;
2328	mcp->mc_rflags = tp->tf_rflags;
2329	if (flags & GET_MC_CLEAR_RET) {
2330		mcp->mc_rax = 0;
2331		mcp->mc_rdx = 0;
2332		mcp->mc_rflags &= ~PSL_C;
2333	} else {
2334		mcp->mc_rax = tp->tf_rax;
2335		mcp->mc_rdx = tp->tf_rdx;
2336	}
2337	mcp->mc_rip = tp->tf_rip;
2338	mcp->mc_cs = tp->tf_cs;
2339	mcp->mc_rsp = tp->tf_rsp;
2340	mcp->mc_ss = tp->tf_ss;
2341	mcp->mc_ds = tp->tf_ds;
2342	mcp->mc_es = tp->tf_es;
2343	mcp->mc_fs = tp->tf_fs;
2344	mcp->mc_gs = tp->tf_gs;
2345	mcp->mc_flags = tp->tf_flags;
2346	mcp->mc_len = sizeof(*mcp);
2347	get_fpcontext(td, mcp, NULL, 0);
2348	mcp->mc_fsbase = pcb->pcb_fsbase;
2349	mcp->mc_gsbase = pcb->pcb_gsbase;
2350	mcp->mc_xfpustate = 0;
2351	mcp->mc_xfpustate_len = 0;
2352	bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
2353	return (0);
2354}
2355
2356/*
2357 * Set machine context.
2358 *
2359 * However, we don't set any but the user modifiable flags, and we won't
2360 * touch the cs selector.
2361 */
2362int
2363set_mcontext(struct thread *td, const mcontext_t *mcp)
2364{
2365	struct pcb *pcb;
2366	struct trapframe *tp;
2367	char *xfpustate;
2368	long rflags;
2369	int ret;
2370
2371	pcb = td->td_pcb;
2372	tp = td->td_frame;
2373	if (mcp->mc_len != sizeof(*mcp) ||
2374	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2375		return (EINVAL);
2376	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2377	    (tp->tf_rflags & ~PSL_USERCHANGE);
2378	if (mcp->mc_flags & _MC_HASFPXSTATE) {
2379		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
2380		    sizeof(struct savefpu))
2381			return (EINVAL);
2382		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
2383		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
2384		    mcp->mc_xfpustate_len);
2385		if (ret != 0)
2386			return (ret);
2387	} else
2388		xfpustate = NULL;
2389	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
2390	if (ret != 0)
2391		return (ret);
2392	tp->tf_r15 = mcp->mc_r15;
2393	tp->tf_r14 = mcp->mc_r14;
2394	tp->tf_r13 = mcp->mc_r13;
2395	tp->tf_r12 = mcp->mc_r12;
2396	tp->tf_r11 = mcp->mc_r11;
2397	tp->tf_r10 = mcp->mc_r10;
2398	tp->tf_r9  = mcp->mc_r9;
2399	tp->tf_r8  = mcp->mc_r8;
2400	tp->tf_rdi = mcp->mc_rdi;
2401	tp->tf_rsi = mcp->mc_rsi;
2402	tp->tf_rbp = mcp->mc_rbp;
2403	tp->tf_rbx = mcp->mc_rbx;
2404	tp->tf_rdx = mcp->mc_rdx;
2405	tp->tf_rcx = mcp->mc_rcx;
2406	tp->tf_rax = mcp->mc_rax;
2407	tp->tf_rip = mcp->mc_rip;
2408	tp->tf_rflags = rflags;
2409	tp->tf_rsp = mcp->mc_rsp;
2410	tp->tf_ss = mcp->mc_ss;
2411	tp->tf_flags = mcp->mc_flags;
2412	if (tp->tf_flags & TF_HASSEGS) {
2413		tp->tf_ds = mcp->mc_ds;
2414		tp->tf_es = mcp->mc_es;
2415		tp->tf_fs = mcp->mc_fs;
2416		tp->tf_gs = mcp->mc_gs;
2417	}
2418	if (mcp->mc_flags & _MC_HASBASES) {
2419		pcb->pcb_fsbase = mcp->mc_fsbase;
2420		pcb->pcb_gsbase = mcp->mc_gsbase;
2421	}
2422	set_pcb_flags(pcb, PCB_FULL_IRET);
2423	return (0);
2424}
2425
2426static void
2427get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
2428    size_t xfpusave_len)
2429{
2430	size_t max_len, len;
2431
2432	mcp->mc_ownedfp = fpugetregs(td);
2433	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
2434	    sizeof(mcp->mc_fpstate));
2435	mcp->mc_fpformat = fpuformat();
2436	if (!use_xsave || xfpusave_len == 0)
2437		return;
2438	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
2439	len = xfpusave_len;
2440	if (len > max_len) {
2441		len = max_len;
2442		bzero(xfpusave + max_len, len - max_len);
2443	}
2444	mcp->mc_flags |= _MC_HASFPXSTATE;
2445	mcp->mc_xfpustate_len = len;
2446	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
2447}
2448
2449static int
2450set_fpcontext(struct thread *td, const mcontext_t *mcp, char *xfpustate,
2451    size_t xfpustate_len)
2452{
2453	struct savefpu *fpstate;
2454	int error;
2455
2456	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2457		return (0);
2458	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2459		return (EINVAL);
2460	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
2461		/* We don't care what state is left in the FPU or PCB. */
2462		fpstate_drop(td);
2463		error = 0;
2464	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2465	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2466		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2467		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2468		error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
2469	} else
2470		return (EINVAL);
2471	return (error);
2472}
2473
2474void
2475fpstate_drop(struct thread *td)
2476{
2477
2478	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
2479	critical_enter();
2480	if (PCPU_GET(fpcurthread) == td)
2481		fpudrop();
2482	/*
2483	 * XXX force a full drop of the fpu.  The above only drops it if we
2484	 * owned it.
2485	 *
2486	 * XXX I don't much like fpugetuserregs()'s semantics of doing a full
2487	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2488	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2489	 * sendsig() is the only caller of fpugetuserregs()... perhaps we just
2490	 * have too many layers.
2491	 */
2492	clear_pcb_flags(curthread->td_pcb,
2493	    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
2494	critical_exit();
2495}
2496
2497int
2498fill_dbregs(struct thread *td, struct dbreg *dbregs)
2499{
2500	struct pcb *pcb;
2501
2502	if (td == NULL) {
2503		dbregs->dr[0] = rdr0();
2504		dbregs->dr[1] = rdr1();
2505		dbregs->dr[2] = rdr2();
2506		dbregs->dr[3] = rdr3();
2507		dbregs->dr[6] = rdr6();
2508		dbregs->dr[7] = rdr7();
2509	} else {
2510		pcb = td->td_pcb;
2511		dbregs->dr[0] = pcb->pcb_dr0;
2512		dbregs->dr[1] = pcb->pcb_dr1;
2513		dbregs->dr[2] = pcb->pcb_dr2;
2514		dbregs->dr[3] = pcb->pcb_dr3;
2515		dbregs->dr[6] = pcb->pcb_dr6;
2516		dbregs->dr[7] = pcb->pcb_dr7;
2517	}
2518	dbregs->dr[4] = 0;
2519	dbregs->dr[5] = 0;
2520	dbregs->dr[8] = 0;
2521	dbregs->dr[9] = 0;
2522	dbregs->dr[10] = 0;
2523	dbregs->dr[11] = 0;
2524	dbregs->dr[12] = 0;
2525	dbregs->dr[13] = 0;
2526	dbregs->dr[14] = 0;
2527	dbregs->dr[15] = 0;
2528	return (0);
2529}
2530
2531int
2532set_dbregs(struct thread *td, struct dbreg *dbregs)
2533{
2534	struct pcb *pcb;
2535	int i;
2536
2537	if (td == NULL) {
2538		load_dr0(dbregs->dr[0]);
2539		load_dr1(dbregs->dr[1]);
2540		load_dr2(dbregs->dr[2]);
2541		load_dr3(dbregs->dr[3]);
2542		load_dr6(dbregs->dr[6]);
2543		load_dr7(dbregs->dr[7]);
2544	} else {
2545		/*
2546		 * Don't let an illegal value for dr7 get set.  Specifically,
2547		 * check for undefined settings.  Setting these bit patterns
2548		 * result in undefined behaviour and can lead to an unexpected
2549		 * TRCTRAP or a general protection fault right here.
2550		 * Upper bits of dr6 and dr7 must not be set
2551		 */
2552		for (i = 0; i < 4; i++) {
2553			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2554				return (EINVAL);
2555			if (td->td_frame->tf_cs == _ucode32sel &&
2556			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2557				return (EINVAL);
2558		}
2559		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2560		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2561			return (EINVAL);
2562
2563		pcb = td->td_pcb;
2564
2565		/*
2566		 * Don't let a process set a breakpoint that is not within the
2567		 * process's address space.  If a process could do this, it
2568		 * could halt the system by setting a breakpoint in the kernel
2569		 * (if ddb was enabled).  Thus, we need to check to make sure
2570		 * that no breakpoints are being enabled for addresses outside
2571		 * process's address space.
2572		 *
2573		 * XXX - what about when the watched area of the user's
2574		 * address space is written into from within the kernel
2575		 * ... wouldn't that still cause a breakpoint to be generated
2576		 * from within kernel mode?
2577		 */
2578
2579		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2580			/* dr0 is enabled */
2581			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2582				return (EINVAL);
2583		}
2584		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2585			/* dr1 is enabled */
2586			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2587				return (EINVAL);
2588		}
2589		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2590			/* dr2 is enabled */
2591			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2592				return (EINVAL);
2593		}
2594		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2595			/* dr3 is enabled */
2596			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2597				return (EINVAL);
2598		}
2599
2600		pcb->pcb_dr0 = dbregs->dr[0];
2601		pcb->pcb_dr1 = dbregs->dr[1];
2602		pcb->pcb_dr2 = dbregs->dr[2];
2603		pcb->pcb_dr3 = dbregs->dr[3];
2604		pcb->pcb_dr6 = dbregs->dr[6];
2605		pcb->pcb_dr7 = dbregs->dr[7];
2606
2607		set_pcb_flags(pcb, PCB_DBREGS);
2608	}
2609
2610	return (0);
2611}
2612
2613void
2614reset_dbregs(void)
2615{
2616
2617	load_dr7(0);	/* Turn off the control bits first */
2618	load_dr0(0);
2619	load_dr1(0);
2620	load_dr2(0);
2621	load_dr3(0);
2622	load_dr6(0);
2623}
2624
2625/*
2626 * Return > 0 if a hardware breakpoint has been hit, and the
2627 * breakpoint was in user space.  Return 0, otherwise.
2628 */
2629int
2630user_dbreg_trap(void)
2631{
2632        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2633        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2634        int nbp;            /* number of breakpoints that triggered */
2635        caddr_t addr[4];    /* breakpoint addresses */
2636        int i;
2637
2638        dr7 = rdr7();
2639        if ((dr7 & 0x000000ff) == 0) {
2640                /*
2641                 * all GE and LE bits in the dr7 register are zero,
2642                 * thus the trap couldn't have been caused by the
2643                 * hardware debug registers
2644                 */
2645                return 0;
2646        }
2647
2648        nbp = 0;
2649        dr6 = rdr6();
2650        bp = dr6 & 0x0000000f;
2651
2652        if (!bp) {
2653                /*
2654                 * None of the breakpoint bits are set meaning this
2655                 * trap was not caused by any of the debug registers
2656                 */
2657                return 0;
2658        }
2659
2660        /*
2661         * at least one of the breakpoints were hit, check to see
2662         * which ones and if any of them are user space addresses
2663         */
2664
2665        if (bp & 0x01) {
2666                addr[nbp++] = (caddr_t)rdr0();
2667        }
2668        if (bp & 0x02) {
2669                addr[nbp++] = (caddr_t)rdr1();
2670        }
2671        if (bp & 0x04) {
2672                addr[nbp++] = (caddr_t)rdr2();
2673        }
2674        if (bp & 0x08) {
2675                addr[nbp++] = (caddr_t)rdr3();
2676        }
2677
2678        for (i = 0; i < nbp; i++) {
2679                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2680                        /*
2681                         * addr[i] is in user space
2682                         */
2683                        return nbp;
2684                }
2685        }
2686
2687        /*
2688         * None of the breakpoints are in user space.
2689         */
2690        return 0;
2691}
2692
2693#ifdef KDB
2694
2695/*
2696 * Provide inb() and outb() as functions.  They are normally only available as
2697 * inline functions, thus cannot be called from the debugger.
2698 */
2699
2700/* silence compiler warnings */
2701u_char inb_(u_short);
2702void outb_(u_short, u_char);
2703
2704u_char
2705inb_(u_short port)
2706{
2707	return inb(port);
2708}
2709
2710void
2711outb_(u_short port, u_char data)
2712{
2713	outb(port, data);
2714}
2715
2716#endif /* KDB */
2717