rtld.c revision 95544
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * $FreeBSD: head/libexec/rtld-elf/rtld.c 95544 2002-04-27 05:32:51Z marcel $
26 */
27
28/*
29 * Dynamic linker for ELF.
30 *
31 * John Polstra <jdp@polstra.com>.
32 */
33
34#ifndef __GNUC__
35#error "GCC is needed to compile this file"
36#endif
37
38#include <sys/param.h>
39#include <sys/mman.h>
40#include <sys/stat.h>
41
42#include <dlfcn.h>
43#include <err.h>
44#include <errno.h>
45#include <fcntl.h>
46#include <stdarg.h>
47#include <stdio.h>
48#include <stdlib.h>
49#include <string.h>
50#include <unistd.h>
51
52#include "debug.h"
53#include "rtld.h"
54
55#define END_SYM		"_end"
56#define PATH_RTLD	"/usr/libexec/ld-elf.so.1"
57
58/* Types. */
59typedef void (*func_ptr_type)();
60
61/*
62 * This structure provides a reentrant way to keep a list of objects and
63 * check which ones have already been processed in some way.
64 */
65typedef struct Struct_DoneList {
66    const Obj_Entry **objs;		/* Array of object pointers */
67    unsigned int num_alloc;		/* Allocated size of the array */
68    unsigned int num_used;		/* Number of array slots used */
69} DoneList;
70
71/*
72 * Function declarations.
73 */
74static const char *basename(const char *);
75static void die(void);
76static void digest_dynamic(Obj_Entry *, int);
77static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
78static Obj_Entry *dlcheck(void *);
79static bool donelist_check(DoneList *, const Obj_Entry *);
80static void errmsg_restore(char *);
81static char *errmsg_save(void);
82static char *find_library(const char *, const Obj_Entry *);
83static const char *gethints(void);
84static void init_dag(Obj_Entry *);
85static void init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *);
86static void init_rtld(caddr_t);
87static void initlist_add_neededs(Needed_Entry *needed, Objlist *list);
88static void initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail,
89  Objlist *list);
90static bool is_exported(const Elf_Sym *);
91static void linkmap_add(Obj_Entry *);
92static void linkmap_delete(Obj_Entry *);
93static int load_needed_objects(Obj_Entry *);
94static int load_preload_objects(void);
95static Obj_Entry *load_object(char *);
96static void lock_check(void);
97static Obj_Entry *obj_from_addr(const void *);
98static void objlist_call_fini(Objlist *);
99static void objlist_call_init(Objlist *);
100static void objlist_clear(Objlist *);
101static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
102static void objlist_init(Objlist *);
103static void objlist_push_head(Objlist *, Obj_Entry *);
104static void objlist_push_tail(Objlist *, Obj_Entry *);
105static void objlist_remove(Objlist *, Obj_Entry *);
106static void objlist_remove_unref(Objlist *);
107static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
108static void rtld_exit(void);
109static char *search_library_path(const char *, const char *);
110static const void **get_program_var_addr(const char *name);
111static void set_program_var(const char *, const void *);
112static const Elf_Sym *symlook_default(const char *, unsigned long hash,
113  const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt);
114static const Elf_Sym *symlook_list(const char *, unsigned long,
115  Objlist *, const Obj_Entry **, bool in_plt, DoneList *);
116static void trace_loaded_objects(Obj_Entry *obj);
117static void unload_object(Obj_Entry *);
118static void unref_dag(Obj_Entry *);
119
120void r_debug_state(struct r_debug*, struct link_map*);
121void xprintf(const char *, ...) __printflike(1, 2);
122
123/*
124 * Data declarations.
125 */
126static char *error_message;	/* Message for dlerror(), or NULL */
127struct r_debug r_debug;	/* for GDB; */
128static bool trust;		/* False for setuid and setgid programs */
129static char *ld_bind_now;	/* Environment variable for immediate binding */
130static char *ld_debug;		/* Environment variable for debugging */
131static char *ld_library_path;	/* Environment variable for search path */
132static char *ld_preload;	/* Environment variable for libraries to
133				   load first */
134static char *ld_tracing;	/* Called from ldd to print libs */
135static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
136static Obj_Entry **obj_tail;	/* Link field of last object in list */
137static Obj_Entry *obj_main;	/* The main program shared object */
138static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
139static unsigned int obj_count;	/* Number of objects in obj_list */
140
141static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
142  STAILQ_HEAD_INITIALIZER(list_global);
143static Objlist list_main =	/* Objects loaded at program startup */
144  STAILQ_HEAD_INITIALIZER(list_main);
145static Objlist list_fini =	/* Objects needing fini() calls */
146  STAILQ_HEAD_INITIALIZER(list_fini);
147
148static LockInfo lockinfo;
149
150static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
151
152#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
153
154extern Elf_Dyn _DYNAMIC;
155#pragma weak _DYNAMIC
156
157/*
158 * These are the functions the dynamic linker exports to application
159 * programs.  They are the only symbols the dynamic linker is willing
160 * to export from itself.
161 */
162static func_ptr_type exports[] = {
163    (func_ptr_type) &_rtld_error,
164    (func_ptr_type) &dlclose,
165    (func_ptr_type) &dlerror,
166    (func_ptr_type) &dlopen,
167    (func_ptr_type) &dlsym,
168    (func_ptr_type) &dladdr,
169    (func_ptr_type) &dllockinit,
170    NULL
171};
172
173/*
174 * Global declarations normally provided by crt1.  The dynamic linker is
175 * not built with crt1, so we have to provide them ourselves.
176 */
177char *__progname;
178char **environ;
179
180/*
181 * Fill in a DoneList with an allocation large enough to hold all of
182 * the currently-loaded objects.  Keep this as a macro since it calls
183 * alloca and we want that to occur within the scope of the caller.
184 */
185#define donelist_init(dlp)					\
186    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
187    assert((dlp)->objs != NULL),				\
188    (dlp)->num_alloc = obj_count,				\
189    (dlp)->num_used = 0)
190
191static __inline void
192rlock_acquire(void)
193{
194    lockinfo.rlock_acquire(lockinfo.thelock);
195    atomic_incr_int(&lockinfo.rcount);
196    lock_check();
197}
198
199static __inline void
200wlock_acquire(void)
201{
202    lockinfo.wlock_acquire(lockinfo.thelock);
203    atomic_incr_int(&lockinfo.wcount);
204    lock_check();
205}
206
207static __inline void
208rlock_release(void)
209{
210    atomic_decr_int(&lockinfo.rcount);
211    lockinfo.rlock_release(lockinfo.thelock);
212}
213
214static __inline void
215wlock_release(void)
216{
217    atomic_decr_int(&lockinfo.wcount);
218    lockinfo.wlock_release(lockinfo.thelock);
219}
220
221/*
222 * Main entry point for dynamic linking.  The first argument is the
223 * stack pointer.  The stack is expected to be laid out as described
224 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
225 * Specifically, the stack pointer points to a word containing
226 * ARGC.  Following that in the stack is a null-terminated sequence
227 * of pointers to argument strings.  Then comes a null-terminated
228 * sequence of pointers to environment strings.  Finally, there is a
229 * sequence of "auxiliary vector" entries.
230 *
231 * The second argument points to a place to store the dynamic linker's
232 * exit procedure pointer and the third to a place to store the main
233 * program's object.
234 *
235 * The return value is the main program's entry point.
236 */
237func_ptr_type
238_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
239{
240    Elf_Auxinfo *aux_info[AT_COUNT];
241    int i;
242    int argc;
243    char **argv;
244    char **env;
245    Elf_Auxinfo *aux;
246    Elf_Auxinfo *auxp;
247    const char *argv0;
248    Obj_Entry *obj;
249    Obj_Entry **preload_tail;
250    Objlist initlist;
251
252    /*
253     * On entry, the dynamic linker itself has not been relocated yet.
254     * Be very careful not to reference any global data until after
255     * init_rtld has returned.  It is OK to reference file-scope statics
256     * and string constants, and to call static and global functions.
257     */
258
259    /* Find the auxiliary vector on the stack. */
260    argc = *sp++;
261    argv = (char **) sp;
262    sp += argc + 1;	/* Skip over arguments and NULL terminator */
263    env = (char **) sp;
264    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
265	;
266    aux = (Elf_Auxinfo *) sp;
267
268    /* Digest the auxiliary vector. */
269    for (i = 0;  i < AT_COUNT;  i++)
270	aux_info[i] = NULL;
271    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
272	if (auxp->a_type < AT_COUNT)
273	    aux_info[auxp->a_type] = auxp;
274    }
275
276    /* Initialize and relocate ourselves. */
277    assert(aux_info[AT_BASE] != NULL);
278    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
279
280    __progname = obj_rtld.path;
281    argv0 = argv[0] != NULL ? argv[0] : "(null)";
282    environ = env;
283
284    trust = geteuid() == getuid() && getegid() == getgid();
285
286    ld_bind_now = getenv("LD_BIND_NOW");
287    if (trust) {
288	ld_debug = getenv("LD_DEBUG");
289	ld_library_path = getenv("LD_LIBRARY_PATH");
290	ld_preload = getenv("LD_PRELOAD");
291    }
292    ld_tracing = getenv("LD_TRACE_LOADED_OBJECTS");
293
294    if (ld_debug != NULL && *ld_debug != '\0')
295	debug = 1;
296    dbg("%s is initialized, base address = %p", __progname,
297	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
298    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
299    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
300
301    /*
302     * Load the main program, or process its program header if it is
303     * already loaded.
304     */
305    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
306	int fd = aux_info[AT_EXECFD]->a_un.a_val;
307	dbg("loading main program");
308	obj_main = map_object(fd, argv0, NULL);
309	close(fd);
310	if (obj_main == NULL)
311	    die();
312    } else {				/* Main program already loaded. */
313	const Elf_Phdr *phdr;
314	int phnum;
315	caddr_t entry;
316
317	dbg("processing main program's program header");
318	assert(aux_info[AT_PHDR] != NULL);
319	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
320	assert(aux_info[AT_PHNUM] != NULL);
321	phnum = aux_info[AT_PHNUM]->a_un.a_val;
322	assert(aux_info[AT_PHENT] != NULL);
323	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
324	assert(aux_info[AT_ENTRY] != NULL);
325	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
326	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
327	    die();
328    }
329
330    obj_main->path = xstrdup(argv0);
331    obj_main->mainprog = true;
332
333    /*
334     * Get the actual dynamic linker pathname from the executable if
335     * possible.  (It should always be possible.)  That ensures that
336     * gdb will find the right dynamic linker even if a non-standard
337     * one is being used.
338     */
339    if (obj_main->interp != NULL &&
340      strcmp(obj_main->interp, obj_rtld.path) != 0) {
341	free(obj_rtld.path);
342	obj_rtld.path = xstrdup(obj_main->interp);
343    }
344
345    digest_dynamic(obj_main, 0);
346
347    linkmap_add(obj_main);
348    linkmap_add(&obj_rtld);
349
350    /* Link the main program into the list of objects. */
351    *obj_tail = obj_main;
352    obj_tail = &obj_main->next;
353    obj_count++;
354    obj_main->refcount++;
355    /* Make sure we don't call the main program's init and fini functions. */
356    obj_main->init = obj_main->fini = NULL;
357
358    /* Initialize a fake symbol for resolving undefined weak references. */
359    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
360    sym_zero.st_shndx = SHN_UNDEF;
361
362    dbg("loading LD_PRELOAD libraries");
363    if (load_preload_objects() == -1)
364	die();
365    preload_tail = obj_tail;
366
367    dbg("loading needed objects");
368    if (load_needed_objects(obj_main) == -1)
369	die();
370
371    /* Make a list of all objects loaded at startup. */
372    for (obj = obj_list;  obj != NULL;  obj = obj->next)
373	objlist_push_tail(&list_main, obj);
374
375    if (ld_tracing) {		/* We're done */
376	trace_loaded_objects(obj_main);
377	exit(0);
378    }
379
380    if (relocate_objects(obj_main,
381	ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
382	die();
383
384    dbg("doing copy relocations");
385    if (do_copy_relocations(obj_main) == -1)
386	die();
387
388    dbg("initializing key program variables");
389    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
390    set_program_var("environ", env);
391
392    dbg("initializing thread locks");
393    lockdflt_init(&lockinfo);
394    lockinfo.thelock = lockinfo.lock_create(lockinfo.context);
395
396    /* Make a list of init functions to call. */
397    objlist_init(&initlist);
398    initlist_add_objects(obj_list, preload_tail, &initlist);
399
400    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
401
402    objlist_call_init(&initlist);
403    wlock_acquire();
404    objlist_clear(&initlist);
405    wlock_release();
406
407    dbg("transferring control to program entry point = %p", obj_main->entry);
408
409    /* Return the exit procedure and the program entry point. */
410    *exit_proc = rtld_exit;
411    *objp = obj_main;
412    return (func_ptr_type) obj_main->entry;
413}
414
415Elf_Addr
416_rtld_bind(Obj_Entry *obj, Elf_Word reloff)
417{
418    const Elf_Rel *rel;
419    const Elf_Sym *def;
420    const Obj_Entry *defobj;
421    Elf_Addr *where;
422    Elf_Addr target;
423
424    rlock_acquire();
425    if (obj->pltrel)
426	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
427    else
428	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
429
430    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
431    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
432    if (def == NULL)
433	die();
434
435    target = (Elf_Addr)(defobj->relocbase + def->st_value);
436
437    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
438      defobj->strtab + def->st_name, basename(obj->path),
439      (void *)target, basename(defobj->path));
440
441    /*
442     * Write the new contents for the jmpslot. Note that depending on
443     * architecture, the value which we need to return back to the
444     * lazy binding trampoline may or may not be the target
445     * address. The value returned from reloc_jmpslot() is the value
446     * that the trampoline needs.
447     */
448    target = reloc_jmpslot(where, target, defobj);
449    rlock_release();
450    return target;
451}
452
453/*
454 * Error reporting function.  Use it like printf.  If formats the message
455 * into a buffer, and sets things up so that the next call to dlerror()
456 * will return the message.
457 */
458void
459_rtld_error(const char *fmt, ...)
460{
461    static char buf[512];
462    va_list ap;
463
464    va_start(ap, fmt);
465    vsnprintf(buf, sizeof buf, fmt, ap);
466    error_message = buf;
467    va_end(ap);
468}
469
470/*
471 * Return a dynamically-allocated copy of the current error message, if any.
472 */
473static char *
474errmsg_save(void)
475{
476    return error_message == NULL ? NULL : xstrdup(error_message);
477}
478
479/*
480 * Restore the current error message from a copy which was previously saved
481 * by errmsg_save().  The copy is freed.
482 */
483static void
484errmsg_restore(char *saved_msg)
485{
486    if (saved_msg == NULL)
487	error_message = NULL;
488    else {
489	_rtld_error("%s", saved_msg);
490	free(saved_msg);
491    }
492}
493
494static const char *
495basename(const char *name)
496{
497    const char *p = strrchr(name, '/');
498    return p != NULL ? p + 1 : name;
499}
500
501static void
502die(void)
503{
504    const char *msg = dlerror();
505
506    if (msg == NULL)
507	msg = "Fatal error";
508    errx(1, "%s", msg);
509}
510
511/*
512 * Process a shared object's DYNAMIC section, and save the important
513 * information in its Obj_Entry structure.
514 */
515static void
516digest_dynamic(Obj_Entry *obj, int early)
517{
518    const Elf_Dyn *dynp;
519    Needed_Entry **needed_tail = &obj->needed;
520    const Elf_Dyn *dyn_rpath = NULL;
521    int plttype = DT_REL;
522
523    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
524	switch (dynp->d_tag) {
525
526	case DT_REL:
527	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
528	    break;
529
530	case DT_RELSZ:
531	    obj->relsize = dynp->d_un.d_val;
532	    break;
533
534	case DT_RELENT:
535	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
536	    break;
537
538	case DT_JMPREL:
539	    obj->pltrel = (const Elf_Rel *)
540	      (obj->relocbase + dynp->d_un.d_ptr);
541	    break;
542
543	case DT_PLTRELSZ:
544	    obj->pltrelsize = dynp->d_un.d_val;
545	    break;
546
547	case DT_RELA:
548	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
549	    break;
550
551	case DT_RELASZ:
552	    obj->relasize = dynp->d_un.d_val;
553	    break;
554
555	case DT_RELAENT:
556	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
557	    break;
558
559	case DT_PLTREL:
560	    plttype = dynp->d_un.d_val;
561	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
562	    break;
563
564	case DT_SYMTAB:
565	    obj->symtab = (const Elf_Sym *)
566	      (obj->relocbase + dynp->d_un.d_ptr);
567	    break;
568
569	case DT_SYMENT:
570	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
571	    break;
572
573	case DT_STRTAB:
574	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
575	    break;
576
577	case DT_STRSZ:
578	    obj->strsize = dynp->d_un.d_val;
579	    break;
580
581	case DT_HASH:
582	    {
583		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
584		  (obj->relocbase + dynp->d_un.d_ptr);
585		obj->nbuckets = hashtab[0];
586		obj->nchains = hashtab[1];
587		obj->buckets = hashtab + 2;
588		obj->chains = obj->buckets + obj->nbuckets;
589	    }
590	    break;
591
592	case DT_NEEDED:
593	    if (!obj->rtld) {
594		Needed_Entry *nep = NEW(Needed_Entry);
595		nep->name = dynp->d_un.d_val;
596		nep->obj = NULL;
597		nep->next = NULL;
598
599		*needed_tail = nep;
600		needed_tail = &nep->next;
601	    }
602	    break;
603
604	case DT_PLTGOT:
605	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
606	    break;
607
608	case DT_TEXTREL:
609	    obj->textrel = true;
610	    break;
611
612	case DT_SYMBOLIC:
613	    obj->symbolic = true;
614	    break;
615
616	case DT_RPATH:
617	    /*
618	     * We have to wait until later to process this, because we
619	     * might not have gotten the address of the string table yet.
620	     */
621	    dyn_rpath = dynp;
622	    break;
623
624	case DT_SONAME:
625	    /* Not used by the dynamic linker. */
626	    break;
627
628	case DT_INIT:
629	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
630	    break;
631
632	case DT_FINI:
633	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
634	    break;
635
636	case DT_DEBUG:
637	    /* XXX - not implemented yet */
638	    if (!early)
639		dbg("Filling in DT_DEBUG entry");
640	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
641	    break;
642
643	default:
644	    if (!early) {
645		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
646		    (long)dynp->d_tag);
647	    }
648	    break;
649	}
650    }
651
652    obj->traced = false;
653
654    if (plttype == DT_RELA) {
655	obj->pltrela = (const Elf_Rela *) obj->pltrel;
656	obj->pltrel = NULL;
657	obj->pltrelasize = obj->pltrelsize;
658	obj->pltrelsize = 0;
659    }
660
661    if (dyn_rpath != NULL)
662	obj->rpath = obj->strtab + dyn_rpath->d_un.d_val;
663}
664
665/*
666 * Process a shared object's program header.  This is used only for the
667 * main program, when the kernel has already loaded the main program
668 * into memory before calling the dynamic linker.  It creates and
669 * returns an Obj_Entry structure.
670 */
671static Obj_Entry *
672digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
673{
674    Obj_Entry *obj;
675    const Elf_Phdr *phlimit = phdr + phnum;
676    const Elf_Phdr *ph;
677    int nsegs = 0;
678
679    obj = obj_new();
680    for (ph = phdr;  ph < phlimit;  ph++) {
681	switch (ph->p_type) {
682
683	case PT_PHDR:
684	    if ((const Elf_Phdr *)ph->p_vaddr != phdr) {
685		_rtld_error("%s: invalid PT_PHDR", path);
686		return NULL;
687	    }
688	    obj->phdr = (const Elf_Phdr *) ph->p_vaddr;
689	    obj->phsize = ph->p_memsz;
690	    break;
691
692	case PT_INTERP:
693	    obj->interp = (const char *) ph->p_vaddr;
694	    break;
695
696	case PT_LOAD:
697	    if (nsegs >= 2) {
698		_rtld_error("%s: too many PT_LOAD segments", path);
699		return NULL;
700	    }
701	    if (nsegs == 0) {	/* First load segment */
702		obj->vaddrbase = trunc_page(ph->p_vaddr);
703		obj->mapbase = (caddr_t) obj->vaddrbase;
704		obj->relocbase = obj->mapbase - obj->vaddrbase;
705		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
706		  obj->vaddrbase;
707	    } else {		/* Last load segment */
708		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
709		  obj->vaddrbase;
710	    }
711	    nsegs++;
712	    break;
713
714	case PT_DYNAMIC:
715	    obj->dynamic = (const Elf_Dyn *) ph->p_vaddr;
716	    break;
717	}
718    }
719    if (nsegs < 2) {
720	_rtld_error("%s: too few PT_LOAD segments", path);
721	return NULL;
722    }
723
724    obj->entry = entry;
725    return obj;
726}
727
728static Obj_Entry *
729dlcheck(void *handle)
730{
731    Obj_Entry *obj;
732
733    for (obj = obj_list;  obj != NULL;  obj = obj->next)
734	if (obj == (Obj_Entry *) handle)
735	    break;
736
737    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
738	_rtld_error("Invalid shared object handle %p", handle);
739	return NULL;
740    }
741    return obj;
742}
743
744/*
745 * If the given object is already in the donelist, return true.  Otherwise
746 * add the object to the list and return false.
747 */
748static bool
749donelist_check(DoneList *dlp, const Obj_Entry *obj)
750{
751    unsigned int i;
752
753    for (i = 0;  i < dlp->num_used;  i++)
754	if (dlp->objs[i] == obj)
755	    return true;
756    /*
757     * Our donelist allocation should always be sufficient.  But if
758     * our threads locking isn't working properly, more shared objects
759     * could have been loaded since we allocated the list.  That should
760     * never happen, but we'll handle it properly just in case it does.
761     */
762    if (dlp->num_used < dlp->num_alloc)
763	dlp->objs[dlp->num_used++] = obj;
764    return false;
765}
766
767/*
768 * Hash function for symbol table lookup.  Don't even think about changing
769 * this.  It is specified by the System V ABI.
770 */
771unsigned long
772elf_hash(const char *name)
773{
774    const unsigned char *p = (const unsigned char *) name;
775    unsigned long h = 0;
776    unsigned long g;
777
778    while (*p != '\0') {
779	h = (h << 4) + *p++;
780	if ((g = h & 0xf0000000) != 0)
781	    h ^= g >> 24;
782	h &= ~g;
783    }
784    return h;
785}
786
787/*
788 * Find the library with the given name, and return its full pathname.
789 * The returned string is dynamically allocated.  Generates an error
790 * message and returns NULL if the library cannot be found.
791 *
792 * If the second argument is non-NULL, then it refers to an already-
793 * loaded shared object, whose library search path will be searched.
794 *
795 * The search order is:
796 *   rpath in the referencing file
797 *   LD_LIBRARY_PATH
798 *   ldconfig hints
799 *   /usr/lib
800 */
801static char *
802find_library(const char *name, const Obj_Entry *refobj)
803{
804    char *pathname;
805
806    if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
807	if (name[0] != '/' && !trust) {
808	    _rtld_error("Absolute pathname required for shared object \"%s\"",
809	      name);
810	    return NULL;
811	}
812	return xstrdup(name);
813    }
814
815    dbg(" Searching for \"%s\"", name);
816
817    if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
818      (refobj != NULL &&
819      (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
820      (pathname = search_library_path(name, gethints())) != NULL ||
821      (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
822	return pathname;
823
824    _rtld_error("Shared object \"%s\" not found", name);
825    return NULL;
826}
827
828/*
829 * Given a symbol number in a referencing object, find the corresponding
830 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
831 * no definition was found.  Returns a pointer to the Obj_Entry of the
832 * defining object via the reference parameter DEFOBJ_OUT.
833 */
834const Elf_Sym *
835find_symdef(unsigned long symnum, const Obj_Entry *refobj,
836    const Obj_Entry **defobj_out, bool in_plt, SymCache *cache)
837{
838    const Elf_Sym *ref;
839    const Elf_Sym *def;
840    const Obj_Entry *defobj;
841    const char *name;
842    unsigned long hash;
843
844    /*
845     * If we have already found this symbol, get the information from
846     * the cache.
847     */
848    if (symnum >= refobj->nchains)
849	return NULL;	/* Bad object */
850    if (cache != NULL && cache[symnum].sym != NULL) {
851	*defobj_out = cache[symnum].obj;
852	return cache[symnum].sym;
853    }
854
855    ref = refobj->symtab + symnum;
856    name = refobj->strtab + ref->st_name;
857    defobj = NULL;
858
859    /*
860     * We don't have to do a full scale lookup if the symbol is local.
861     * We know it will bind to the instance in this load module; to
862     * which we already have a pointer (ie ref). By not doing a lookup,
863     * we not only improve performance, but it also avoids unresolvable
864     * symbols when local symbols are not in the hash table. This has
865     * been seen with the ia64 toolchain.
866     */
867    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
868	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
869	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
870		symnum);
871	}
872	hash = elf_hash(name);
873	def = symlook_default(name, hash, refobj, &defobj, in_plt);
874    } else {
875	def = ref;
876	defobj = refobj;
877    }
878
879    /*
880     * If we found no definition and the reference is weak, treat the
881     * symbol as having the value zero.
882     */
883    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
884	def = &sym_zero;
885	defobj = obj_main;
886    }
887
888    if (def != NULL) {
889	*defobj_out = defobj;
890	/* Record the information in the cache to avoid subsequent lookups. */
891	if (cache != NULL) {
892	    cache[symnum].sym = def;
893	    cache[symnum].obj = defobj;
894	}
895    } else {
896	if (refobj != &obj_rtld)
897	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
898    }
899    return def;
900}
901
902/*
903 * Return the search path from the ldconfig hints file, reading it if
904 * necessary.  Returns NULL if there are problems with the hints file,
905 * or if the search path there is empty.
906 */
907static const char *
908gethints(void)
909{
910    static char *hints;
911
912    if (hints == NULL) {
913	int fd;
914	struct elfhints_hdr hdr;
915	char *p;
916
917	/* Keep from trying again in case the hints file is bad. */
918	hints = "";
919
920	if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1)
921	    return NULL;
922	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
923	  hdr.magic != ELFHINTS_MAGIC ||
924	  hdr.version != 1) {
925	    close(fd);
926	    return NULL;
927	}
928	p = xmalloc(hdr.dirlistlen + 1);
929	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
930	  read(fd, p, hdr.dirlistlen + 1) != hdr.dirlistlen + 1) {
931	    free(p);
932	    close(fd);
933	    return NULL;
934	}
935	hints = p;
936	close(fd);
937    }
938    return hints[0] != '\0' ? hints : NULL;
939}
940
941static void
942init_dag(Obj_Entry *root)
943{
944    DoneList donelist;
945
946    donelist_init(&donelist);
947    init_dag1(root, root, &donelist);
948}
949
950static void
951init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
952{
953    const Needed_Entry *needed;
954
955    if (donelist_check(dlp, obj))
956	return;
957    objlist_push_tail(&obj->dldags, root);
958    objlist_push_tail(&root->dagmembers, obj);
959    for (needed = obj->needed;  needed != NULL;  needed = needed->next)
960	if (needed->obj != NULL)
961	    init_dag1(root, needed->obj, dlp);
962}
963
964/*
965 * Initialize the dynamic linker.  The argument is the address at which
966 * the dynamic linker has been mapped into memory.  The primary task of
967 * this function is to relocate the dynamic linker.
968 */
969static void
970init_rtld(caddr_t mapbase)
971{
972    Obj_Entry objtmp;	/* Temporary rtld object */
973
974    /*
975     * Conjure up an Obj_Entry structure for the dynamic linker.
976     *
977     * The "path" member can't be initialized yet because string constatns
978     * cannot yet be acessed. Below we will set it correctly.
979     */
980    objtmp.path = NULL;
981    objtmp.rtld = true;
982    objtmp.mapbase = mapbase;
983#ifdef PIC
984    objtmp.relocbase = mapbase;
985#endif
986    if (&_DYNAMIC != 0) {
987	objtmp.dynamic = rtld_dynamic(&objtmp);
988	digest_dynamic(&objtmp, 1);
989	assert(objtmp.needed == NULL);
990	assert(!objtmp.textrel);
991
992	/*
993	 * Temporarily put the dynamic linker entry into the object list, so
994	 * that symbols can be found.
995	 */
996
997	relocate_objects(&objtmp, true, &objtmp);
998    }
999
1000    /* Initialize the object list. */
1001    obj_tail = &obj_list;
1002
1003    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1004    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1005
1006    /* Replace the path with a dynamically allocated copy. */
1007    obj_rtld.path = xstrdup(PATH_RTLD);
1008
1009    r_debug.r_brk = r_debug_state;
1010    r_debug.r_state = RT_CONSISTENT;
1011}
1012
1013/*
1014 * Add the init functions from a needed object list (and its recursive
1015 * needed objects) to "list".  This is not used directly; it is a helper
1016 * function for initlist_add_objects().  The write lock must be held
1017 * when this function is called.
1018 */
1019static void
1020initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1021{
1022    /* Recursively process the successor needed objects. */
1023    if (needed->next != NULL)
1024	initlist_add_neededs(needed->next, list);
1025
1026    /* Process the current needed object. */
1027    if (needed->obj != NULL)
1028	initlist_add_objects(needed->obj, &needed->obj->next, list);
1029}
1030
1031/*
1032 * Scan all of the DAGs rooted in the range of objects from "obj" to
1033 * "tail" and add their init functions to "list".  This recurses over
1034 * the DAGs and ensure the proper init ordering such that each object's
1035 * needed libraries are initialized before the object itself.  At the
1036 * same time, this function adds the objects to the global finalization
1037 * list "list_fini" in the opposite order.  The write lock must be
1038 * held when this function is called.
1039 */
1040static void
1041initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1042{
1043    if (obj->init_done)
1044	return;
1045    obj->init_done = true;
1046
1047    /* Recursively process the successor objects. */
1048    if (&obj->next != tail)
1049	initlist_add_objects(obj->next, tail, list);
1050
1051    /* Recursively process the needed objects. */
1052    if (obj->needed != NULL)
1053	initlist_add_neededs(obj->needed, list);
1054
1055    /* Add the object to the init list. */
1056    if (obj->init != NULL)
1057	objlist_push_tail(list, obj);
1058
1059    /* Add the object to the global fini list in the reverse order. */
1060    if (obj->fini != NULL)
1061	objlist_push_head(&list_fini, obj);
1062}
1063
1064#ifndef FPTR_TARGET
1065#define FPTR_TARGET(f)	((Elf_Addr) (f))
1066#endif
1067
1068static bool
1069is_exported(const Elf_Sym *def)
1070{
1071    Elf_Addr value;
1072    const func_ptr_type *p;
1073
1074    value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1075    for (p = exports;  *p != NULL;  p++)
1076	if (FPTR_TARGET(*p) == value)
1077	    return true;
1078    return false;
1079}
1080
1081/*
1082 * Given a shared object, traverse its list of needed objects, and load
1083 * each of them.  Returns 0 on success.  Generates an error message and
1084 * returns -1 on failure.
1085 */
1086static int
1087load_needed_objects(Obj_Entry *first)
1088{
1089    Obj_Entry *obj;
1090
1091    for (obj = first;  obj != NULL;  obj = obj->next) {
1092	Needed_Entry *needed;
1093
1094	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1095	    const char *name = obj->strtab + needed->name;
1096	    char *path = find_library(name, obj);
1097
1098	    needed->obj = NULL;
1099	    if (path == NULL && !ld_tracing)
1100		return -1;
1101
1102	    if (path) {
1103		needed->obj = load_object(path);
1104		if (needed->obj == NULL && !ld_tracing)
1105		    return -1;		/* XXX - cleanup */
1106	    }
1107	}
1108    }
1109
1110    return 0;
1111}
1112
1113static int
1114load_preload_objects(void)
1115{
1116    char *p = ld_preload;
1117    static const char delim[] = " \t:;";
1118
1119    if (p == NULL)
1120	return NULL;
1121
1122    p += strspn(p, delim);
1123    while (*p != '\0') {
1124	size_t len = strcspn(p, delim);
1125	char *path;
1126	char savech;
1127
1128	savech = p[len];
1129	p[len] = '\0';
1130	if ((path = find_library(p, NULL)) == NULL)
1131	    return -1;
1132	if (load_object(path) == NULL)
1133	    return -1;	/* XXX - cleanup */
1134	p[len] = savech;
1135	p += len;
1136	p += strspn(p, delim);
1137    }
1138    return 0;
1139}
1140
1141/*
1142 * Load a shared object into memory, if it is not already loaded.  The
1143 * argument must be a string allocated on the heap.  This function assumes
1144 * responsibility for freeing it when necessary.
1145 *
1146 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1147 * on failure.
1148 */
1149static Obj_Entry *
1150load_object(char *path)
1151{
1152    Obj_Entry *obj;
1153    int fd = -1;
1154    struct stat sb;
1155
1156    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1157	if (strcmp(obj->path, path) == 0)
1158	    break;
1159
1160    /*
1161     * If we didn't find a match by pathname, open the file and check
1162     * again by device and inode.  This avoids false mismatches caused
1163     * by multiple links or ".." in pathnames.
1164     *
1165     * To avoid a race, we open the file and use fstat() rather than
1166     * using stat().
1167     */
1168    if (obj == NULL) {
1169	if ((fd = open(path, O_RDONLY)) == -1) {
1170	    _rtld_error("Cannot open \"%s\"", path);
1171	    return NULL;
1172	}
1173	if (fstat(fd, &sb) == -1) {
1174	    _rtld_error("Cannot fstat \"%s\"", path);
1175	    close(fd);
1176	    return NULL;
1177	}
1178	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1179	    if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) {
1180		close(fd);
1181		break;
1182	    }
1183	}
1184    }
1185
1186    if (obj == NULL) {	/* First use of this object, so we must map it in */
1187	dbg("loading \"%s\"", path);
1188	obj = map_object(fd, path, &sb);
1189	close(fd);
1190	if (obj == NULL) {
1191	    free(path);
1192	    return NULL;
1193	}
1194
1195	obj->path = path;
1196	digest_dynamic(obj, 0);
1197
1198	*obj_tail = obj;
1199	obj_tail = &obj->next;
1200	obj_count++;
1201	linkmap_add(obj);	/* for GDB */
1202
1203	dbg("  %p .. %p: %s", obj->mapbase,
1204	  obj->mapbase + obj->mapsize - 1, obj->path);
1205	if (obj->textrel)
1206	    dbg("  WARNING: %s has impure text", obj->path);
1207    } else
1208	free(path);
1209
1210    obj->refcount++;
1211    return obj;
1212}
1213
1214/*
1215 * Check for locking violations and die if one is found.
1216 */
1217static void
1218lock_check(void)
1219{
1220    int rcount, wcount;
1221
1222    rcount = lockinfo.rcount;
1223    wcount = lockinfo.wcount;
1224    assert(rcount >= 0);
1225    assert(wcount >= 0);
1226    if (wcount > 1 || (wcount != 0 && rcount != 0)) {
1227	_rtld_error("Application locking error: %d readers and %d writers"
1228	  " in dynamic linker.  See DLLOCKINIT(3) in manual pages.",
1229	  rcount, wcount);
1230	die();
1231    }
1232}
1233
1234static Obj_Entry *
1235obj_from_addr(const void *addr)
1236{
1237    unsigned long endhash;
1238    Obj_Entry *obj;
1239
1240    endhash = elf_hash(END_SYM);
1241    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1242	const Elf_Sym *endsym;
1243
1244	if (addr < (void *) obj->mapbase)
1245	    continue;
1246	if ((endsym = symlook_obj(END_SYM, endhash, obj, true)) == NULL)
1247	    continue;	/* No "end" symbol?! */
1248	if (addr < (void *) (obj->relocbase + endsym->st_value))
1249	    return obj;
1250    }
1251    return NULL;
1252}
1253
1254/*
1255 * Call the finalization functions for each of the objects in "list"
1256 * which are unreferenced.  All of the objects are expected to have
1257 * non-NULL fini functions.
1258 */
1259static void
1260objlist_call_fini(Objlist *list)
1261{
1262    Objlist_Entry *elm;
1263    char *saved_msg;
1264
1265    /*
1266     * Preserve the current error message since a fini function might
1267     * call into the dynamic linker and overwrite it.
1268     */
1269    saved_msg = errmsg_save();
1270    STAILQ_FOREACH(elm, list, link) {
1271	if (elm->obj->refcount == 0) {
1272	    dbg("calling fini function for %s at %p", elm->obj->path,
1273	        (void *)elm->obj->fini);
1274	    call_initfini_pointer(elm->obj, elm->obj->fini);
1275	}
1276    }
1277    errmsg_restore(saved_msg);
1278}
1279
1280/*
1281 * Call the initialization functions for each of the objects in
1282 * "list".  All of the objects are expected to have non-NULL init
1283 * functions.
1284 */
1285static void
1286objlist_call_init(Objlist *list)
1287{
1288    Objlist_Entry *elm;
1289    char *saved_msg;
1290
1291    /*
1292     * Preserve the current error message since an init function might
1293     * call into the dynamic linker and overwrite it.
1294     */
1295    saved_msg = errmsg_save();
1296    STAILQ_FOREACH(elm, list, link) {
1297	dbg("calling init function for %s at %p", elm->obj->path,
1298	    (void *)elm->obj->init);
1299	call_initfini_pointer(elm->obj, elm->obj->init);
1300    }
1301    errmsg_restore(saved_msg);
1302}
1303
1304static void
1305objlist_clear(Objlist *list)
1306{
1307    Objlist_Entry *elm;
1308
1309    while (!STAILQ_EMPTY(list)) {
1310	elm = STAILQ_FIRST(list);
1311	STAILQ_REMOVE_HEAD(list, link);
1312	free(elm);
1313    }
1314}
1315
1316static Objlist_Entry *
1317objlist_find(Objlist *list, const Obj_Entry *obj)
1318{
1319    Objlist_Entry *elm;
1320
1321    STAILQ_FOREACH(elm, list, link)
1322	if (elm->obj == obj)
1323	    return elm;
1324    return NULL;
1325}
1326
1327static void
1328objlist_init(Objlist *list)
1329{
1330    STAILQ_INIT(list);
1331}
1332
1333static void
1334objlist_push_head(Objlist *list, Obj_Entry *obj)
1335{
1336    Objlist_Entry *elm;
1337
1338    elm = NEW(Objlist_Entry);
1339    elm->obj = obj;
1340    STAILQ_INSERT_HEAD(list, elm, link);
1341}
1342
1343static void
1344objlist_push_tail(Objlist *list, Obj_Entry *obj)
1345{
1346    Objlist_Entry *elm;
1347
1348    elm = NEW(Objlist_Entry);
1349    elm->obj = obj;
1350    STAILQ_INSERT_TAIL(list, elm, link);
1351}
1352
1353static void
1354objlist_remove(Objlist *list, Obj_Entry *obj)
1355{
1356    Objlist_Entry *elm;
1357
1358    if ((elm = objlist_find(list, obj)) != NULL) {
1359	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1360	free(elm);
1361    }
1362}
1363
1364/*
1365 * Remove all of the unreferenced objects from "list".
1366 */
1367static void
1368objlist_remove_unref(Objlist *list)
1369{
1370    Objlist newlist;
1371    Objlist_Entry *elm;
1372
1373    STAILQ_INIT(&newlist);
1374    while (!STAILQ_EMPTY(list)) {
1375	elm = STAILQ_FIRST(list);
1376	STAILQ_REMOVE_HEAD(list, link);
1377	if (elm->obj->refcount == 0)
1378	    free(elm);
1379	else
1380	    STAILQ_INSERT_TAIL(&newlist, elm, link);
1381    }
1382    *list = newlist;
1383}
1384
1385/*
1386 * Relocate newly-loaded shared objects.  The argument is a pointer to
1387 * the Obj_Entry for the first such object.  All objects from the first
1388 * to the end of the list of objects are relocated.  Returns 0 on success,
1389 * or -1 on failure.
1390 */
1391static int
1392relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1393{
1394    Obj_Entry *obj;
1395
1396    for (obj = first;  obj != NULL;  obj = obj->next) {
1397	if (obj != rtldobj)
1398	    dbg("relocating \"%s\"", obj->path);
1399	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1400	    obj->symtab == NULL || obj->strtab == NULL) {
1401	    _rtld_error("%s: Shared object has no run-time symbol table",
1402	      obj->path);
1403	    return -1;
1404	}
1405
1406	if (obj->textrel) {
1407	    /* There are relocations to the write-protected text segment. */
1408	    if (mprotect(obj->mapbase, obj->textsize,
1409	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1410		_rtld_error("%s: Cannot write-enable text segment: %s",
1411		  obj->path, strerror(errno));
1412		return -1;
1413	    }
1414	}
1415
1416	/* Process the non-PLT relocations. */
1417	if (reloc_non_plt(obj, rtldobj))
1418		return -1;
1419
1420	if (obj->textrel) {	/* Re-protected the text segment. */
1421	    if (mprotect(obj->mapbase, obj->textsize,
1422	      PROT_READ|PROT_EXEC) == -1) {
1423		_rtld_error("%s: Cannot write-protect text segment: %s",
1424		  obj->path, strerror(errno));
1425		return -1;
1426	    }
1427	}
1428
1429	/* Process the PLT relocations. */
1430	if (reloc_plt(obj) == -1)
1431	    return -1;
1432	/* Relocate the jump slots if we are doing immediate binding. */
1433	if (bind_now)
1434	    if (reloc_jmpslots(obj) == -1)
1435		return -1;
1436
1437
1438	/*
1439	 * Set up the magic number and version in the Obj_Entry.  These
1440	 * were checked in the crt1.o from the original ElfKit, so we
1441	 * set them for backward compatibility.
1442	 */
1443	obj->magic = RTLD_MAGIC;
1444	obj->version = RTLD_VERSION;
1445
1446	/* Set the special PLT or GOT entries. */
1447	init_pltgot(obj);
1448    }
1449
1450    return 0;
1451}
1452
1453/*
1454 * Cleanup procedure.  It will be called (by the atexit mechanism) just
1455 * before the process exits.
1456 */
1457static void
1458rtld_exit(void)
1459{
1460    Obj_Entry *obj;
1461
1462    dbg("rtld_exit()");
1463    wlock_acquire();
1464    /* Clear all the reference counts so the fini functions will be called. */
1465    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1466	obj->refcount = 0;
1467    wlock_release();
1468    objlist_call_fini(&list_fini);
1469    /* No need to remove the items from the list, since we are exiting. */
1470}
1471
1472static char *
1473search_library_path(const char *name, const char *path)
1474{
1475    size_t namelen = strlen(name);
1476    const char *p = path;
1477
1478    if (p == NULL)
1479	return NULL;
1480
1481    p += strspn(p, ":;");
1482    while (*p != '\0') {
1483	size_t len = strcspn(p, ":;");
1484
1485	if (*p == '/' || trust) {
1486	    char *pathname;
1487	    const char *dir = p;
1488	    size_t dirlen = len;
1489
1490	    pathname = xmalloc(dirlen + 1 + namelen + 1);
1491	    strncpy(pathname, dir, dirlen);
1492	    pathname[dirlen] = '/';
1493	    strcpy(pathname + dirlen + 1, name);
1494
1495	    dbg("  Trying \"%s\"", pathname);
1496	    if (access(pathname, F_OK) == 0)		/* We found it */
1497		return pathname;
1498
1499	    free(pathname);
1500	}
1501	p += len;
1502	p += strspn(p, ":;");
1503    }
1504
1505    return NULL;
1506}
1507
1508int
1509dlclose(void *handle)
1510{
1511    Obj_Entry *root;
1512
1513    wlock_acquire();
1514    root = dlcheck(handle);
1515    if (root == NULL) {
1516	wlock_release();
1517	return -1;
1518    }
1519
1520    /* Unreference the object and its dependencies. */
1521    root->dl_refcount--;
1522    unref_dag(root);
1523
1524    if (root->refcount == 0) {
1525	/*
1526	 * The object is no longer referenced, so we must unload it.
1527	 * First, call the fini functions with no locks held.
1528	 */
1529	wlock_release();
1530	objlist_call_fini(&list_fini);
1531	wlock_acquire();
1532	objlist_remove_unref(&list_fini);
1533
1534	/* Finish cleaning up the newly-unreferenced objects. */
1535	GDB_STATE(RT_DELETE,&root->linkmap);
1536	unload_object(root);
1537	GDB_STATE(RT_CONSISTENT,NULL);
1538    }
1539    wlock_release();
1540    return 0;
1541}
1542
1543const char *
1544dlerror(void)
1545{
1546    char *msg = error_message;
1547    error_message = NULL;
1548    return msg;
1549}
1550
1551/*
1552 * This function is deprecated and has no effect.
1553 */
1554void
1555dllockinit(void *context,
1556	   void *(*lock_create)(void *context),
1557           void (*rlock_acquire)(void *lock),
1558           void (*wlock_acquire)(void *lock),
1559           void (*lock_release)(void *lock),
1560           void (*lock_destroy)(void *lock),
1561	   void (*context_destroy)(void *context))
1562{
1563    static void *cur_context;
1564    static void (*cur_context_destroy)(void *);
1565
1566    /* Just destroy the context from the previous call, if necessary. */
1567    if (cur_context_destroy != NULL)
1568	cur_context_destroy(cur_context);
1569    cur_context = context;
1570    cur_context_destroy = context_destroy;
1571}
1572
1573void *
1574dlopen(const char *name, int mode)
1575{
1576    Obj_Entry **old_obj_tail;
1577    Obj_Entry *obj;
1578    Objlist initlist;
1579    int result;
1580
1581    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
1582    if (ld_tracing != NULL)
1583	environ = (char **)*get_program_var_addr("environ");
1584
1585    objlist_init(&initlist);
1586
1587    wlock_acquire();
1588    GDB_STATE(RT_ADD,NULL);
1589
1590    old_obj_tail = obj_tail;
1591    obj = NULL;
1592    if (name == NULL) {
1593	obj = obj_main;
1594	obj->refcount++;
1595    } else {
1596	char *path = find_library(name, obj_main);
1597	if (path != NULL)
1598	    obj = load_object(path);
1599    }
1600
1601    if (obj) {
1602	obj->dl_refcount++;
1603	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
1604	    objlist_push_tail(&list_global, obj);
1605	mode &= RTLD_MODEMASK;
1606	if (*old_obj_tail != NULL) {		/* We loaded something new. */
1607	    assert(*old_obj_tail == obj);
1608
1609	    result = load_needed_objects(obj);
1610	    if (result != -1 && ld_tracing) {
1611		trace_loaded_objects(obj);
1612		wlock_release();
1613		exit(0);
1614	    }
1615
1616	    if (result == -1 ||
1617	      (init_dag(obj), relocate_objects(obj, mode == RTLD_NOW,
1618	       &obj_rtld)) == -1) {
1619		obj->dl_refcount--;
1620		unref_dag(obj);
1621		if (obj->refcount == 0)
1622		    unload_object(obj);
1623		obj = NULL;
1624	    } else {
1625		/* Make list of init functions to call. */
1626		initlist_add_objects(obj, &obj->next, &initlist);
1627	    }
1628	}
1629    }
1630
1631    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
1632
1633    /* Call the init functions with no locks held. */
1634    wlock_release();
1635    objlist_call_init(&initlist);
1636    wlock_acquire();
1637    objlist_clear(&initlist);
1638    wlock_release();
1639    return obj;
1640}
1641
1642void *
1643dlsym(void *handle, const char *name)
1644{
1645    const Obj_Entry *obj;
1646    unsigned long hash;
1647    const Elf_Sym *def;
1648    const Obj_Entry *defobj;
1649
1650    hash = elf_hash(name);
1651    def = NULL;
1652    defobj = NULL;
1653
1654    rlock_acquire();
1655    if (handle == NULL || handle == RTLD_NEXT || handle == RTLD_DEFAULT) {
1656	void *retaddr;
1657
1658	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
1659	if ((obj = obj_from_addr(retaddr)) == NULL) {
1660	    _rtld_error("Cannot determine caller's shared object");
1661	    rlock_release();
1662	    return NULL;
1663	}
1664	if (handle == NULL) {	/* Just the caller's shared object. */
1665	    def = symlook_obj(name, hash, obj, true);
1666	    defobj = obj;
1667	} else if (handle == RTLD_NEXT) {	/* Objects after caller's */
1668	    while ((obj = obj->next) != NULL) {
1669		if ((def = symlook_obj(name, hash, obj, true)) != NULL) {
1670		    defobj = obj;
1671		    break;
1672		}
1673	    }
1674	} else {
1675	    assert(handle == RTLD_DEFAULT);
1676	    def = symlook_default(name, hash, obj, &defobj, true);
1677	}
1678    } else {
1679	if ((obj = dlcheck(handle)) == NULL) {
1680	    rlock_release();
1681	    return NULL;
1682	}
1683
1684	if (obj->mainprog) {
1685	    DoneList donelist;
1686
1687	    /* Search main program and all libraries loaded by it. */
1688	    donelist_init(&donelist);
1689	    def = symlook_list(name, hash, &list_main, &defobj, true,
1690	      &donelist);
1691	} else {
1692	    /*
1693	     * XXX - This isn't correct.  The search should include the whole
1694	     * DAG rooted at the given object.
1695	     */
1696	    def = symlook_obj(name, hash, obj, true);
1697	    defobj = obj;
1698	}
1699    }
1700
1701    if (def != NULL) {
1702	rlock_release();
1703
1704	/*
1705	 * The value required by the caller is derived from the value
1706	 * of the symbol. For the ia64 architecture, we need to
1707	 * construct a function descriptor which the caller can use to
1708	 * call the function with the right 'gp' value. For other
1709	 * architectures and for non-functions, the value is simply
1710	 * the relocated value of the symbol.
1711	 */
1712	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
1713	    return make_function_pointer(def, defobj);
1714	else
1715	    return defobj->relocbase + def->st_value;
1716    }
1717
1718    _rtld_error("Undefined symbol \"%s\"", name);
1719    rlock_release();
1720    return NULL;
1721}
1722
1723int
1724dladdr(const void *addr, Dl_info *info)
1725{
1726    const Obj_Entry *obj;
1727    const Elf_Sym *def;
1728    void *symbol_addr;
1729    unsigned long symoffset;
1730
1731    rlock_acquire();
1732    obj = obj_from_addr(addr);
1733    if (obj == NULL) {
1734        _rtld_error("No shared object contains address");
1735	rlock_release();
1736        return 0;
1737    }
1738    info->dli_fname = obj->path;
1739    info->dli_fbase = obj->mapbase;
1740    info->dli_saddr = (void *)0;
1741    info->dli_sname = NULL;
1742
1743    /*
1744     * Walk the symbol list looking for the symbol whose address is
1745     * closest to the address sent in.
1746     */
1747    for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
1748        def = obj->symtab + symoffset;
1749
1750        /*
1751         * For skip the symbol if st_shndx is either SHN_UNDEF or
1752         * SHN_COMMON.
1753         */
1754        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
1755            continue;
1756
1757        /*
1758         * If the symbol is greater than the specified address, or if it
1759         * is further away from addr than the current nearest symbol,
1760         * then reject it.
1761         */
1762        symbol_addr = obj->relocbase + def->st_value;
1763        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
1764            continue;
1765
1766        /* Update our idea of the nearest symbol. */
1767        info->dli_sname = obj->strtab + def->st_name;
1768        info->dli_saddr = symbol_addr;
1769
1770        /* Exact match? */
1771        if (info->dli_saddr == addr)
1772            break;
1773    }
1774    rlock_release();
1775    return 1;
1776}
1777
1778static void
1779linkmap_add(Obj_Entry *obj)
1780{
1781    struct link_map *l = &obj->linkmap;
1782    struct link_map *prev;
1783
1784    obj->linkmap.l_name = obj->path;
1785    obj->linkmap.l_addr = obj->mapbase;
1786    obj->linkmap.l_ld = obj->dynamic;
1787#ifdef __mips__
1788    /* GDB needs load offset on MIPS to use the symbols */
1789    obj->linkmap.l_offs = obj->relocbase;
1790#endif
1791
1792    if (r_debug.r_map == NULL) {
1793	r_debug.r_map = l;
1794	return;
1795    }
1796
1797    /*
1798     * Scan to the end of the list, but not past the entry for the
1799     * dynamic linker, which we want to keep at the very end.
1800     */
1801    for (prev = r_debug.r_map;
1802      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
1803      prev = prev->l_next)
1804	;
1805
1806    /* Link in the new entry. */
1807    l->l_prev = prev;
1808    l->l_next = prev->l_next;
1809    if (l->l_next != NULL)
1810	l->l_next->l_prev = l;
1811    prev->l_next = l;
1812}
1813
1814static void
1815linkmap_delete(Obj_Entry *obj)
1816{
1817    struct link_map *l = &obj->linkmap;
1818
1819    if (l->l_prev == NULL) {
1820	if ((r_debug.r_map = l->l_next) != NULL)
1821	    l->l_next->l_prev = NULL;
1822	return;
1823    }
1824
1825    if ((l->l_prev->l_next = l->l_next) != NULL)
1826	l->l_next->l_prev = l->l_prev;
1827}
1828
1829/*
1830 * Function for the debugger to set a breakpoint on to gain control.
1831 *
1832 * The two parameters allow the debugger to easily find and determine
1833 * what the runtime loader is doing and to whom it is doing it.
1834 *
1835 * When the loadhook trap is hit (r_debug_state, set at program
1836 * initialization), the arguments can be found on the stack:
1837 *
1838 *  +8   struct link_map *m
1839 *  +4   struct r_debug  *rd
1840 *  +0   RetAddr
1841 */
1842void
1843r_debug_state(struct r_debug* rd, struct link_map *m)
1844{
1845}
1846
1847/*
1848 * Get address of the pointer variable in the main program.
1849 */
1850static const void **
1851get_program_var_addr(const char *name)
1852{
1853    const Obj_Entry *obj;
1854    unsigned long hash;
1855
1856    hash = elf_hash(name);
1857    for (obj = obj_main;  obj != NULL;  obj = obj->next) {
1858	const Elf_Sym *def;
1859
1860	if ((def = symlook_obj(name, hash, obj, false)) != NULL) {
1861	    const void **addr;
1862
1863	    addr = (const void **)(obj->relocbase + def->st_value);
1864	    return addr;
1865	}
1866    }
1867    return NULL;
1868}
1869
1870/*
1871 * Set a pointer variable in the main program to the given value.  This
1872 * is used to set key variables such as "environ" before any of the
1873 * init functions are called.
1874 */
1875static void
1876set_program_var(const char *name, const void *value)
1877{
1878    const void **addr;
1879
1880    if ((addr = get_program_var_addr(name)) != NULL) {
1881	dbg("\"%s\": *%p <-- %p", name, addr, value);
1882	*addr = value;
1883    }
1884}
1885
1886/*
1887 * Given a symbol name in a referencing object, find the corresponding
1888 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1889 * no definition was found.  Returns a pointer to the Obj_Entry of the
1890 * defining object via the reference parameter DEFOBJ_OUT.
1891 */
1892static const Elf_Sym *
1893symlook_default(const char *name, unsigned long hash,
1894    const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt)
1895{
1896    DoneList donelist;
1897    const Elf_Sym *def;
1898    const Elf_Sym *symp;
1899    const Obj_Entry *obj;
1900    const Obj_Entry *defobj;
1901    const Objlist_Entry *elm;
1902    def = NULL;
1903    defobj = NULL;
1904    donelist_init(&donelist);
1905
1906    /* Look first in the referencing object if linked symbolically. */
1907    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
1908	symp = symlook_obj(name, hash, refobj, in_plt);
1909	if (symp != NULL) {
1910	    def = symp;
1911	    defobj = refobj;
1912	}
1913    }
1914
1915    /* Search all objects loaded at program start up. */
1916    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
1917	symp = symlook_list(name, hash, &list_main, &obj, in_plt, &donelist);
1918	if (symp != NULL &&
1919	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
1920	    def = symp;
1921	    defobj = obj;
1922	}
1923    }
1924
1925    /* Search all dlopened DAGs containing the referencing object. */
1926    STAILQ_FOREACH(elm, &refobj->dldags, link) {
1927	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
1928	    break;
1929	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
1930	  &donelist);
1931	if (symp != NULL &&
1932	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
1933	    def = symp;
1934	    defobj = obj;
1935	}
1936    }
1937
1938    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
1939    STAILQ_FOREACH(elm, &list_global, link) {
1940       if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
1941           break;
1942       symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
1943         &donelist);
1944	if (symp != NULL &&
1945	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
1946	    def = symp;
1947	    defobj = obj;
1948	}
1949    }
1950
1951    /*
1952     * Search the dynamic linker itself, and possibly resolve the
1953     * symbol from there.  This is how the application links to
1954     * dynamic linker services such as dlopen.  Only the values listed
1955     * in the "exports" array can be resolved from the dynamic linker.
1956     */
1957    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
1958	symp = symlook_obj(name, hash, &obj_rtld, in_plt);
1959	if (symp != NULL && is_exported(symp)) {
1960	    def = symp;
1961	    defobj = &obj_rtld;
1962	}
1963    }
1964
1965    if (def != NULL)
1966	*defobj_out = defobj;
1967    return def;
1968}
1969
1970static const Elf_Sym *
1971symlook_list(const char *name, unsigned long hash, Objlist *objlist,
1972  const Obj_Entry **defobj_out, bool in_plt, DoneList *dlp)
1973{
1974    const Elf_Sym *symp;
1975    const Elf_Sym *def;
1976    const Obj_Entry *defobj;
1977    const Objlist_Entry *elm;
1978
1979    def = NULL;
1980    defobj = NULL;
1981    STAILQ_FOREACH(elm, objlist, link) {
1982	if (donelist_check(dlp, elm->obj))
1983	    continue;
1984	if ((symp = symlook_obj(name, hash, elm->obj, in_plt)) != NULL) {
1985	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
1986		def = symp;
1987		defobj = elm->obj;
1988		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
1989		    break;
1990	    }
1991	}
1992    }
1993    if (def != NULL)
1994	*defobj_out = defobj;
1995    return def;
1996}
1997
1998/*
1999 * Search the symbol table of a single shared object for a symbol of
2000 * the given name.  Returns a pointer to the symbol, or NULL if no
2001 * definition was found.
2002 *
2003 * The symbol's hash value is passed in for efficiency reasons; that
2004 * eliminates many recomputations of the hash value.
2005 */
2006const Elf_Sym *
2007symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2008  bool in_plt)
2009{
2010    if (obj->buckets != NULL) {
2011	unsigned long symnum = obj->buckets[hash % obj->nbuckets];
2012
2013	while (symnum != STN_UNDEF) {
2014	    const Elf_Sym *symp;
2015	    const char *strp;
2016
2017	    if (symnum >= obj->nchains)
2018		return NULL;	/* Bad object */
2019	    symp = obj->symtab + symnum;
2020	    strp = obj->strtab + symp->st_name;
2021
2022	    if (name[0] == strp[0] && strcmp(name, strp) == 0)
2023		return symp->st_shndx != SHN_UNDEF ||
2024		  (!in_plt && symp->st_value != 0 &&
2025		  ELF_ST_TYPE(symp->st_info) == STT_FUNC) ? symp : NULL;
2026
2027	    symnum = obj->chains[symnum];
2028	}
2029    }
2030    return NULL;
2031}
2032
2033static void
2034trace_loaded_objects(Obj_Entry *obj)
2035{
2036    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
2037    int		c;
2038
2039    if ((main_local = getenv("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
2040	main_local = "";
2041
2042    if ((fmt1 = getenv("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
2043	fmt1 = "\t%o => %p (%x)\n";
2044
2045    if ((fmt2 = getenv("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
2046	fmt2 = "\t%o (%x)\n";
2047
2048    list_containers = getenv("LD_TRACE_LOADED_OBJECTS_ALL");
2049
2050    for (; obj; obj = obj->next) {
2051	Needed_Entry		*needed;
2052	char			*name, *path;
2053	bool			is_lib;
2054
2055	if (list_containers && obj->needed != NULL)
2056	    printf("%s:\n", obj->path);
2057	for (needed = obj->needed; needed; needed = needed->next) {
2058	    if (needed->obj != NULL) {
2059		if (needed->obj->traced && !list_containers)
2060		    continue;
2061		needed->obj->traced = true;
2062		path = needed->obj->path;
2063	    } else
2064		path = "not found";
2065
2066	    name = (char *)obj->strtab + needed->name;
2067	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
2068
2069	    fmt = is_lib ? fmt1 : fmt2;
2070	    while ((c = *fmt++) != '\0') {
2071		switch (c) {
2072		default:
2073		    putchar(c);
2074		    continue;
2075		case '\\':
2076		    switch (c = *fmt) {
2077		    case '\0':
2078			continue;
2079		    case 'n':
2080			putchar('\n');
2081			break;
2082		    case 't':
2083			putchar('\t');
2084			break;
2085		    }
2086		    break;
2087		case '%':
2088		    switch (c = *fmt) {
2089		    case '\0':
2090			continue;
2091		    case '%':
2092		    default:
2093			putchar(c);
2094			break;
2095		    case 'A':
2096			printf("%s", main_local);
2097			break;
2098		    case 'a':
2099			printf("%s", obj_main->path);
2100			break;
2101		    case 'o':
2102			printf("%s", name);
2103			break;
2104#if 0
2105		    case 'm':
2106			printf("%d", sodp->sod_major);
2107			break;
2108		    case 'n':
2109			printf("%d", sodp->sod_minor);
2110			break;
2111#endif
2112		    case 'p':
2113			printf("%s", path);
2114			break;
2115		    case 'x':
2116			printf("%p", needed->obj ? needed->obj->mapbase : 0);
2117			break;
2118		    }
2119		    break;
2120		}
2121		++fmt;
2122	    }
2123	}
2124    }
2125}
2126
2127/*
2128 * Unload a dlopened object and its dependencies from memory and from
2129 * our data structures.  It is assumed that the DAG rooted in the
2130 * object has already been unreferenced, and that the object has a
2131 * reference count of 0.
2132 */
2133static void
2134unload_object(Obj_Entry *root)
2135{
2136    Obj_Entry *obj;
2137    Obj_Entry **linkp;
2138    Objlist_Entry *elm;
2139
2140    assert(root->refcount == 0);
2141
2142    /* Remove the DAG from all objects' DAG lists. */
2143    STAILQ_FOREACH(elm, &root->dagmembers , link)
2144	objlist_remove(&elm->obj->dldags, root);
2145
2146    /* Remove the DAG from the RTLD_GLOBAL list. */
2147    objlist_remove(&list_global, root);
2148
2149    /* Unmap all objects that are no longer referenced. */
2150    linkp = &obj_list->next;
2151    while ((obj = *linkp) != NULL) {
2152	if (obj->refcount == 0) {
2153	    dbg("unloading \"%s\"", obj->path);
2154	    munmap(obj->mapbase, obj->mapsize);
2155	    linkmap_delete(obj);
2156	    *linkp = obj->next;
2157	    obj_count--;
2158	    obj_free(obj);
2159	} else
2160	    linkp = &obj->next;
2161    }
2162    obj_tail = linkp;
2163}
2164
2165static void
2166unref_dag(Obj_Entry *root)
2167{
2168    const Needed_Entry *needed;
2169
2170    if (root->refcount == 0)
2171	return;
2172    root->refcount--;
2173    if (root->refcount == 0)
2174	for (needed = root->needed;  needed != NULL;  needed = needed->next)
2175	    if (needed->obj != NULL)
2176		unref_dag(needed->obj);
2177}
2178
2179/*
2180 * Non-mallocing printf, for use by malloc itself.
2181 * XXX - This doesn't belong in this module.
2182 */
2183void
2184xprintf(const char *fmt, ...)
2185{
2186    char buf[256];
2187    va_list ap;
2188
2189    va_start(ap, fmt);
2190    vsprintf(buf, fmt, ap);
2191    (void)write(STDOUT_FILENO, buf, strlen(buf));
2192    va_end(ap);
2193}
2194