rtld.c revision 234170
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009, 2010, 2011 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * $FreeBSD: head/libexec/rtld-elf/rtld.c 234170 2012-04-12 10:32:22Z kib $
28 */
29
30/*
31 * Dynamic linker for ELF.
32 *
33 * John Polstra <jdp@polstra.com>.
34 */
35
36#ifndef __GNUC__
37#error "GCC is needed to compile this file"
38#endif
39
40#include <sys/param.h>
41#include <sys/mount.h>
42#include <sys/mman.h>
43#include <sys/stat.h>
44#include <sys/sysctl.h>
45#include <sys/uio.h>
46#include <sys/utsname.h>
47#include <sys/ktrace.h>
48
49#include <dlfcn.h>
50#include <err.h>
51#include <errno.h>
52#include <fcntl.h>
53#include <stdarg.h>
54#include <stdio.h>
55#include <stdlib.h>
56#include <string.h>
57#include <unistd.h>
58
59#include "debug.h"
60#include "rtld.h"
61#include "libmap.h"
62#include "rtld_tls.h"
63#include "rtld_printf.h"
64#include "notes.h"
65
66#ifndef COMPAT_32BIT
67#define PATH_RTLD	"/libexec/ld-elf.so.1"
68#else
69#define PATH_RTLD	"/libexec/ld-elf32.so.1"
70#endif
71
72/* Types. */
73typedef void (*func_ptr_type)();
74typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
75
76/*
77 * Function declarations.
78 */
79static const char *basename(const char *);
80static void die(void) __dead2;
81static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
82    const Elf_Dyn **);
83static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *);
84static void digest_dynamic(Obj_Entry *, int);
85static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
86static Obj_Entry *dlcheck(void *);
87static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
88    int lo_flags, int mode, RtldLockState *lockstate);
89static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
90static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
91static bool donelist_check(DoneList *, const Obj_Entry *);
92static void errmsg_restore(char *);
93static char *errmsg_save(void);
94static void *fill_search_info(const char *, size_t, void *);
95static char *find_library(const char *, const Obj_Entry *);
96static const char *gethints(void);
97static void init_dag(Obj_Entry *);
98static void init_rtld(caddr_t, Elf_Auxinfo **);
99static void initlist_add_neededs(Needed_Entry *, Objlist *);
100static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
101static void linkmap_add(Obj_Entry *);
102static void linkmap_delete(Obj_Entry *);
103static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
104static void unload_filtees(Obj_Entry *);
105static int load_needed_objects(Obj_Entry *, int);
106static int load_preload_objects(void);
107static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
108static void map_stacks_exec(RtldLockState *);
109static Obj_Entry *obj_from_addr(const void *);
110static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
111static void objlist_call_init(Objlist *, RtldLockState *);
112static void objlist_clear(Objlist *);
113static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
114static void objlist_init(Objlist *);
115static void objlist_push_head(Objlist *, Obj_Entry *);
116static void objlist_push_tail(Objlist *, Obj_Entry *);
117static void objlist_remove(Objlist *, Obj_Entry *);
118static void *path_enumerate(const char *, path_enum_proc, void *);
119static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
120    RtldLockState *);
121static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
122    int flags, RtldLockState *lockstate);
123static int rtld_dirname(const char *, char *);
124static int rtld_dirname_abs(const char *, char *);
125static void *rtld_dlopen(const char *name, int fd, int mode);
126static void rtld_exit(void);
127static char *search_library_path(const char *, const char *);
128static const void **get_program_var_addr(const char *, RtldLockState *);
129static void set_program_var(const char *, const void *);
130static int symlook_default(SymLook *, const Obj_Entry *refobj);
131static int symlook_global(SymLook *, DoneList *);
132static void symlook_init_from_req(SymLook *, const SymLook *);
133static int symlook_list(SymLook *, const Objlist *, DoneList *);
134static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
135static int symlook_obj1(SymLook *, const Obj_Entry *);
136static void trace_loaded_objects(Obj_Entry *);
137static void unlink_object(Obj_Entry *);
138static void unload_object(Obj_Entry *);
139static void unref_dag(Obj_Entry *);
140static void ref_dag(Obj_Entry *);
141static int origin_subst_one(char **, const char *, const char *,
142  const char *, char *);
143static char *origin_subst(const char *, const char *);
144static void preinit_main(void);
145static int  rtld_verify_versions(const Objlist *);
146static int  rtld_verify_object_versions(Obj_Entry *);
147static void object_add_name(Obj_Entry *, const char *);
148static int  object_match_name(const Obj_Entry *, const char *);
149static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
150static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
151    struct dl_phdr_info *phdr_info);
152
153void r_debug_state(struct r_debug *, struct link_map *) __noinline;
154
155/*
156 * Data declarations.
157 */
158static char *error_message;	/* Message for dlerror(), or NULL */
159struct r_debug r_debug;		/* for GDB; */
160static bool libmap_disable;	/* Disable libmap */
161static bool ld_loadfltr;	/* Immediate filters processing */
162static char *libmap_override;	/* Maps to use in addition to libmap.conf */
163static bool trust;		/* False for setuid and setgid programs */
164static bool dangerous_ld_env;	/* True if environment variables have been
165				   used to affect the libraries loaded */
166static char *ld_bind_now;	/* Environment variable for immediate binding */
167static char *ld_debug;		/* Environment variable for debugging */
168static char *ld_library_path;	/* Environment variable for search path */
169static char *ld_preload;	/* Environment variable for libraries to
170				   load first */
171static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
172static char *ld_tracing;	/* Called from ldd to print libs */
173static char *ld_utrace;		/* Use utrace() to log events. */
174static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
175static Obj_Entry **obj_tail;	/* Link field of last object in list */
176static Obj_Entry *obj_main;	/* The main program shared object */
177static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
178static unsigned int obj_count;	/* Number of objects in obj_list */
179static unsigned int obj_loads;	/* Number of objects in obj_list */
180
181static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
182  STAILQ_HEAD_INITIALIZER(list_global);
183static Objlist list_main =	/* Objects loaded at program startup */
184  STAILQ_HEAD_INITIALIZER(list_main);
185static Objlist list_fini =	/* Objects needing fini() calls */
186  STAILQ_HEAD_INITIALIZER(list_fini);
187
188Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
189
190#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
191
192extern Elf_Dyn _DYNAMIC;
193#pragma weak _DYNAMIC
194#ifndef RTLD_IS_DYNAMIC
195#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
196#endif
197
198int osreldate, pagesize;
199
200long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
201
202static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
203static int max_stack_flags;
204
205/*
206 * Global declarations normally provided by crt1.  The dynamic linker is
207 * not built with crt1, so we have to provide them ourselves.
208 */
209char *__progname;
210char **environ;
211
212/*
213 * Used to pass argc, argv to init functions.
214 */
215int main_argc;
216char **main_argv;
217
218/*
219 * Globals to control TLS allocation.
220 */
221size_t tls_last_offset;		/* Static TLS offset of last module */
222size_t tls_last_size;		/* Static TLS size of last module */
223size_t tls_static_space;	/* Static TLS space allocated */
224int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
225int tls_max_index = 1;		/* Largest module index allocated */
226
227/*
228 * Fill in a DoneList with an allocation large enough to hold all of
229 * the currently-loaded objects.  Keep this as a macro since it calls
230 * alloca and we want that to occur within the scope of the caller.
231 */
232#define donelist_init(dlp)					\
233    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
234    assert((dlp)->objs != NULL),				\
235    (dlp)->num_alloc = obj_count,				\
236    (dlp)->num_used = 0)
237
238#define	UTRACE_DLOPEN_START		1
239#define	UTRACE_DLOPEN_STOP		2
240#define	UTRACE_DLCLOSE_START		3
241#define	UTRACE_DLCLOSE_STOP		4
242#define	UTRACE_LOAD_OBJECT		5
243#define	UTRACE_UNLOAD_OBJECT		6
244#define	UTRACE_ADD_RUNDEP		7
245#define	UTRACE_PRELOAD_FINISHED		8
246#define	UTRACE_INIT_CALL		9
247#define	UTRACE_FINI_CALL		10
248
249struct utrace_rtld {
250	char sig[4];			/* 'RTLD' */
251	int event;
252	void *handle;
253	void *mapbase;			/* Used for 'parent' and 'init/fini' */
254	size_t mapsize;
255	int refcnt;			/* Used for 'mode' */
256	char name[MAXPATHLEN];
257};
258
259#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
260	if (ld_utrace != NULL)					\
261		ld_utrace_log(e, h, mb, ms, r, n);		\
262} while (0)
263
264static void
265ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
266    int refcnt, const char *name)
267{
268	struct utrace_rtld ut;
269
270	ut.sig[0] = 'R';
271	ut.sig[1] = 'T';
272	ut.sig[2] = 'L';
273	ut.sig[3] = 'D';
274	ut.event = event;
275	ut.handle = handle;
276	ut.mapbase = mapbase;
277	ut.mapsize = mapsize;
278	ut.refcnt = refcnt;
279	bzero(ut.name, sizeof(ut.name));
280	if (name)
281		strlcpy(ut.name, name, sizeof(ut.name));
282	utrace(&ut, sizeof(ut));
283}
284
285/*
286 * Main entry point for dynamic linking.  The first argument is the
287 * stack pointer.  The stack is expected to be laid out as described
288 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
289 * Specifically, the stack pointer points to a word containing
290 * ARGC.  Following that in the stack is a null-terminated sequence
291 * of pointers to argument strings.  Then comes a null-terminated
292 * sequence of pointers to environment strings.  Finally, there is a
293 * sequence of "auxiliary vector" entries.
294 *
295 * The second argument points to a place to store the dynamic linker's
296 * exit procedure pointer and the third to a place to store the main
297 * program's object.
298 *
299 * The return value is the main program's entry point.
300 */
301func_ptr_type
302_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
303{
304    Elf_Auxinfo *aux_info[AT_COUNT];
305    int i;
306    int argc;
307    char **argv;
308    char **env;
309    Elf_Auxinfo *aux;
310    Elf_Auxinfo *auxp;
311    const char *argv0;
312    Objlist_Entry *entry;
313    Obj_Entry *obj;
314    Obj_Entry **preload_tail;
315    Objlist initlist;
316    RtldLockState lockstate;
317    int mib[2];
318    size_t len;
319
320    /*
321     * On entry, the dynamic linker itself has not been relocated yet.
322     * Be very careful not to reference any global data until after
323     * init_rtld has returned.  It is OK to reference file-scope statics
324     * and string constants, and to call static and global functions.
325     */
326
327    /* Find the auxiliary vector on the stack. */
328    argc = *sp++;
329    argv = (char **) sp;
330    sp += argc + 1;	/* Skip over arguments and NULL terminator */
331    env = (char **) sp;
332    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
333	;
334    aux = (Elf_Auxinfo *) sp;
335
336    /* Digest the auxiliary vector. */
337    for (i = 0;  i < AT_COUNT;  i++)
338	aux_info[i] = NULL;
339    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
340	if (auxp->a_type < AT_COUNT)
341	    aux_info[auxp->a_type] = auxp;
342    }
343
344    /* Initialize and relocate ourselves. */
345    assert(aux_info[AT_BASE] != NULL);
346    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
347
348    __progname = obj_rtld.path;
349    argv0 = argv[0] != NULL ? argv[0] : "(null)";
350    environ = env;
351    main_argc = argc;
352    main_argv = argv;
353
354    if (aux_info[AT_CANARY] != NULL &&
355	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
356	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
357	    if (i > sizeof(__stack_chk_guard))
358		    i = sizeof(__stack_chk_guard);
359	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
360    } else {
361	mib[0] = CTL_KERN;
362	mib[1] = KERN_ARND;
363
364	len = sizeof(__stack_chk_guard);
365	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
366	    len != sizeof(__stack_chk_guard)) {
367		/* If sysctl was unsuccessful, use the "terminator canary". */
368		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
369		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
370		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
371		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
372	}
373    }
374
375    trust = !issetugid();
376
377    ld_bind_now = getenv(LD_ "BIND_NOW");
378    /*
379     * If the process is tainted, then we un-set the dangerous environment
380     * variables.  The process will be marked as tainted until setuid(2)
381     * is called.  If any child process calls setuid(2) we do not want any
382     * future processes to honor the potentially un-safe variables.
383     */
384    if (!trust) {
385        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
386	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
387	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
388	    unsetenv(LD_ "LOADFLTR")) {
389		_rtld_error("environment corrupt; aborting");
390		die();
391	}
392    }
393    ld_debug = getenv(LD_ "DEBUG");
394    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
395    libmap_override = getenv(LD_ "LIBMAP");
396    ld_library_path = getenv(LD_ "LIBRARY_PATH");
397    ld_preload = getenv(LD_ "PRELOAD");
398    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
399    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
400    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
401	(ld_library_path != NULL) || (ld_preload != NULL) ||
402	(ld_elf_hints_path != NULL) || ld_loadfltr;
403    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
404    ld_utrace = getenv(LD_ "UTRACE");
405
406    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
407	ld_elf_hints_path = _PATH_ELF_HINTS;
408
409    if (ld_debug != NULL && *ld_debug != '\0')
410	debug = 1;
411    dbg("%s is initialized, base address = %p", __progname,
412	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
413    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
414    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
415
416    dbg("initializing thread locks");
417    lockdflt_init();
418
419    /*
420     * Load the main program, or process its program header if it is
421     * already loaded.
422     */
423    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
424	int fd = aux_info[AT_EXECFD]->a_un.a_val;
425	dbg("loading main program");
426	obj_main = map_object(fd, argv0, NULL);
427	close(fd);
428	if (obj_main == NULL)
429	    die();
430	max_stack_flags = obj->stack_flags;
431    } else {				/* Main program already loaded. */
432	const Elf_Phdr *phdr;
433	int phnum;
434	caddr_t entry;
435
436	dbg("processing main program's program header");
437	assert(aux_info[AT_PHDR] != NULL);
438	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
439	assert(aux_info[AT_PHNUM] != NULL);
440	phnum = aux_info[AT_PHNUM]->a_un.a_val;
441	assert(aux_info[AT_PHENT] != NULL);
442	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
443	assert(aux_info[AT_ENTRY] != NULL);
444	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
445	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
446	    die();
447    }
448
449    if (aux_info[AT_EXECPATH] != 0) {
450	    char *kexecpath;
451	    char buf[MAXPATHLEN];
452
453	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
454	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
455	    if (kexecpath[0] == '/')
456		    obj_main->path = kexecpath;
457	    else if (getcwd(buf, sizeof(buf)) == NULL ||
458		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
459		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
460		    obj_main->path = xstrdup(argv0);
461	    else
462		    obj_main->path = xstrdup(buf);
463    } else {
464	    dbg("No AT_EXECPATH");
465	    obj_main->path = xstrdup(argv0);
466    }
467    dbg("obj_main path %s", obj_main->path);
468    obj_main->mainprog = true;
469
470    if (aux_info[AT_STACKPROT] != NULL &&
471      aux_info[AT_STACKPROT]->a_un.a_val != 0)
472	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
473
474    /*
475     * Get the actual dynamic linker pathname from the executable if
476     * possible.  (It should always be possible.)  That ensures that
477     * gdb will find the right dynamic linker even if a non-standard
478     * one is being used.
479     */
480    if (obj_main->interp != NULL &&
481      strcmp(obj_main->interp, obj_rtld.path) != 0) {
482	free(obj_rtld.path);
483	obj_rtld.path = xstrdup(obj_main->interp);
484        __progname = obj_rtld.path;
485    }
486
487    digest_dynamic(obj_main, 0);
488
489    linkmap_add(obj_main);
490    linkmap_add(&obj_rtld);
491
492    /* Link the main program into the list of objects. */
493    *obj_tail = obj_main;
494    obj_tail = &obj_main->next;
495    obj_count++;
496    obj_loads++;
497
498    /* Initialize a fake symbol for resolving undefined weak references. */
499    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
500    sym_zero.st_shndx = SHN_UNDEF;
501    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
502
503    if (!libmap_disable)
504        libmap_disable = (bool)lm_init(libmap_override);
505
506    dbg("loading LD_PRELOAD libraries");
507    if (load_preload_objects() == -1)
508	die();
509    preload_tail = obj_tail;
510
511    dbg("loading needed objects");
512    if (load_needed_objects(obj_main, 0) == -1)
513	die();
514
515    /* Make a list of all objects loaded at startup. */
516    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
517	objlist_push_tail(&list_main, obj);
518    	obj->refcount++;
519    }
520
521    dbg("checking for required versions");
522    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
523	die();
524
525    if (ld_tracing) {		/* We're done */
526	trace_loaded_objects(obj_main);
527	exit(0);
528    }
529
530    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
531       dump_relocations(obj_main);
532       exit (0);
533    }
534
535    /*
536     * Processing tls relocations requires having the tls offsets
537     * initialized.  Prepare offsets before starting initial
538     * relocation processing.
539     */
540    dbg("initializing initial thread local storage offsets");
541    STAILQ_FOREACH(entry, &list_main, link) {
542	/*
543	 * Allocate all the initial objects out of the static TLS
544	 * block even if they didn't ask for it.
545	 */
546	allocate_tls_offset(entry->obj);
547    }
548
549    if (relocate_objects(obj_main,
550      ld_bind_now != NULL && *ld_bind_now != '\0',
551      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
552	die();
553
554    dbg("doing copy relocations");
555    if (do_copy_relocations(obj_main) == -1)
556	die();
557
558    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
559       dump_relocations(obj_main);
560       exit (0);
561    }
562
563    /*
564     * Setup TLS for main thread.  This must be done after the
565     * relocations are processed, since tls initialization section
566     * might be the subject for relocations.
567     */
568    dbg("initializing initial thread local storage");
569    allocate_initial_tls(obj_list);
570
571    dbg("initializing key program variables");
572    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
573    set_program_var("environ", env);
574    set_program_var("__elf_aux_vector", aux);
575
576    /* Make a list of init functions to call. */
577    objlist_init(&initlist);
578    initlist_add_objects(obj_list, preload_tail, &initlist);
579
580    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
581
582    map_stacks_exec(NULL);
583
584    dbg("resolving ifuncs");
585    if (resolve_objects_ifunc(obj_main,
586      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
587      NULL) == -1)
588	die();
589
590    if (!obj_main->crt_no_init) {
591	/*
592	 * Make sure we don't call the main program's init and fini
593	 * functions for binaries linked with old crt1 which calls
594	 * _init itself.
595	 */
596	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
597	obj_main->preinit_array = obj_main->init_array =
598	    obj_main->fini_array = (Elf_Addr)NULL;
599    }
600
601    wlock_acquire(rtld_bind_lock, &lockstate);
602    if (obj_main->crt_no_init)
603	preinit_main();
604    objlist_call_init(&initlist, &lockstate);
605    objlist_clear(&initlist);
606    dbg("loading filtees");
607    for (obj = obj_list->next; obj != NULL; obj = obj->next) {
608	if (ld_loadfltr || obj->z_loadfltr)
609	    load_filtees(obj, 0, &lockstate);
610    }
611    lock_release(rtld_bind_lock, &lockstate);
612
613    dbg("transferring control to program entry point = %p", obj_main->entry);
614
615    /* Return the exit procedure and the program entry point. */
616    *exit_proc = rtld_exit;
617    *objp = obj_main;
618    return (func_ptr_type) obj_main->entry;
619}
620
621void *
622rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
623{
624	void *ptr;
625	Elf_Addr target;
626
627	ptr = (void *)make_function_pointer(def, obj);
628	target = ((Elf_Addr (*)(void))ptr)();
629	return ((void *)target);
630}
631
632Elf_Addr
633_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
634{
635    const Elf_Rel *rel;
636    const Elf_Sym *def;
637    const Obj_Entry *defobj;
638    Elf_Addr *where;
639    Elf_Addr target;
640    RtldLockState lockstate;
641
642    rlock_acquire(rtld_bind_lock, &lockstate);
643    if (sigsetjmp(lockstate.env, 0) != 0)
644	    lock_upgrade(rtld_bind_lock, &lockstate);
645    if (obj->pltrel)
646	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
647    else
648	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
649
650    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
651    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
652	&lockstate);
653    if (def == NULL)
654	die();
655    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
656	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
657    else
658	target = (Elf_Addr)(defobj->relocbase + def->st_value);
659
660    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
661      defobj->strtab + def->st_name, basename(obj->path),
662      (void *)target, basename(defobj->path));
663
664    /*
665     * Write the new contents for the jmpslot. Note that depending on
666     * architecture, the value which we need to return back to the
667     * lazy binding trampoline may or may not be the target
668     * address. The value returned from reloc_jmpslot() is the value
669     * that the trampoline needs.
670     */
671    target = reloc_jmpslot(where, target, defobj, obj, rel);
672    lock_release(rtld_bind_lock, &lockstate);
673    return target;
674}
675
676/*
677 * Error reporting function.  Use it like printf.  If formats the message
678 * into a buffer, and sets things up so that the next call to dlerror()
679 * will return the message.
680 */
681void
682_rtld_error(const char *fmt, ...)
683{
684    static char buf[512];
685    va_list ap;
686
687    va_start(ap, fmt);
688    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
689    error_message = buf;
690    va_end(ap);
691}
692
693/*
694 * Return a dynamically-allocated copy of the current error message, if any.
695 */
696static char *
697errmsg_save(void)
698{
699    return error_message == NULL ? NULL : xstrdup(error_message);
700}
701
702/*
703 * Restore the current error message from a copy which was previously saved
704 * by errmsg_save().  The copy is freed.
705 */
706static void
707errmsg_restore(char *saved_msg)
708{
709    if (saved_msg == NULL)
710	error_message = NULL;
711    else {
712	_rtld_error("%s", saved_msg);
713	free(saved_msg);
714    }
715}
716
717static const char *
718basename(const char *name)
719{
720    const char *p = strrchr(name, '/');
721    return p != NULL ? p + 1 : name;
722}
723
724static struct utsname uts;
725
726static int
727origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
728    char *may_free)
729{
730    const char *p, *p1;
731    char *res1;
732    int subst_len;
733    int kw_len;
734
735    res1 = *res = NULL;
736    p = real;
737    subst_len = kw_len = 0;
738    for (;;) {
739	 p1 = strstr(p, kw);
740	 if (p1 != NULL) {
741	     if (subst_len == 0) {
742		 subst_len = strlen(subst);
743		 kw_len = strlen(kw);
744	     }
745	     if (*res == NULL) {
746		 *res = xmalloc(PATH_MAX);
747		 res1 = *res;
748	     }
749	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
750		 _rtld_error("Substitution of %s in %s cannot be performed",
751		     kw, real);
752		 if (may_free != NULL)
753		     free(may_free);
754		 free(res);
755		 return (false);
756	     }
757	     memcpy(res1, p, p1 - p);
758	     res1 += p1 - p;
759	     memcpy(res1, subst, subst_len);
760	     res1 += subst_len;
761	     p = p1 + kw_len;
762	 } else {
763	    if (*res == NULL) {
764		if (may_free != NULL)
765		    *res = may_free;
766		else
767		    *res = xstrdup(real);
768		return (true);
769	    }
770	    *res1 = '\0';
771	    if (may_free != NULL)
772		free(may_free);
773	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
774		free(res);
775		return (false);
776	    }
777	    return (true);
778	 }
779    }
780}
781
782static char *
783origin_subst(const char *real, const char *origin_path)
784{
785    char *res1, *res2, *res3, *res4;
786
787    if (uts.sysname[0] == '\0') {
788	if (uname(&uts) != 0) {
789	    _rtld_error("utsname failed: %d", errno);
790	    return (NULL);
791	}
792    }
793    if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
794	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
795	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
796	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
797	    return (NULL);
798    return (res4);
799}
800
801static void
802die(void)
803{
804    const char *msg = dlerror();
805
806    if (msg == NULL)
807	msg = "Fatal error";
808    rtld_fdputstr(STDERR_FILENO, msg);
809    rtld_fdputchar(STDERR_FILENO, '\n');
810    _exit(1);
811}
812
813/*
814 * Process a shared object's DYNAMIC section, and save the important
815 * information in its Obj_Entry structure.
816 */
817static void
818digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
819    const Elf_Dyn **dyn_soname)
820{
821    const Elf_Dyn *dynp;
822    Needed_Entry **needed_tail = &obj->needed;
823    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
824    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
825    int plttype = DT_REL;
826
827    *dyn_rpath = NULL;
828    *dyn_soname = NULL;
829
830    obj->bind_now = false;
831    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
832	switch (dynp->d_tag) {
833
834	case DT_REL:
835	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
836	    break;
837
838	case DT_RELSZ:
839	    obj->relsize = dynp->d_un.d_val;
840	    break;
841
842	case DT_RELENT:
843	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
844	    break;
845
846	case DT_JMPREL:
847	    obj->pltrel = (const Elf_Rel *)
848	      (obj->relocbase + dynp->d_un.d_ptr);
849	    break;
850
851	case DT_PLTRELSZ:
852	    obj->pltrelsize = dynp->d_un.d_val;
853	    break;
854
855	case DT_RELA:
856	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
857	    break;
858
859	case DT_RELASZ:
860	    obj->relasize = dynp->d_un.d_val;
861	    break;
862
863	case DT_RELAENT:
864	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
865	    break;
866
867	case DT_PLTREL:
868	    plttype = dynp->d_un.d_val;
869	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
870	    break;
871
872	case DT_SYMTAB:
873	    obj->symtab = (const Elf_Sym *)
874	      (obj->relocbase + dynp->d_un.d_ptr);
875	    break;
876
877	case DT_SYMENT:
878	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
879	    break;
880
881	case DT_STRTAB:
882	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
883	    break;
884
885	case DT_STRSZ:
886	    obj->strsize = dynp->d_un.d_val;
887	    break;
888
889	case DT_VERNEED:
890	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
891		dynp->d_un.d_val);
892	    break;
893
894	case DT_VERNEEDNUM:
895	    obj->verneednum = dynp->d_un.d_val;
896	    break;
897
898	case DT_VERDEF:
899	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
900		dynp->d_un.d_val);
901	    break;
902
903	case DT_VERDEFNUM:
904	    obj->verdefnum = dynp->d_un.d_val;
905	    break;
906
907	case DT_VERSYM:
908	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
909		dynp->d_un.d_val);
910	    break;
911
912	case DT_HASH:
913	    {
914		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
915		  (obj->relocbase + dynp->d_un.d_ptr);
916		obj->nbuckets = hashtab[0];
917		obj->nchains = hashtab[1];
918		obj->buckets = hashtab + 2;
919		obj->chains = obj->buckets + obj->nbuckets;
920	    }
921	    break;
922
923	case DT_NEEDED:
924	    if (!obj->rtld) {
925		Needed_Entry *nep = NEW(Needed_Entry);
926		nep->name = dynp->d_un.d_val;
927		nep->obj = NULL;
928		nep->next = NULL;
929
930		*needed_tail = nep;
931		needed_tail = &nep->next;
932	    }
933	    break;
934
935	case DT_FILTER:
936	    if (!obj->rtld) {
937		Needed_Entry *nep = NEW(Needed_Entry);
938		nep->name = dynp->d_un.d_val;
939		nep->obj = NULL;
940		nep->next = NULL;
941
942		*needed_filtees_tail = nep;
943		needed_filtees_tail = &nep->next;
944	    }
945	    break;
946
947	case DT_AUXILIARY:
948	    if (!obj->rtld) {
949		Needed_Entry *nep = NEW(Needed_Entry);
950		nep->name = dynp->d_un.d_val;
951		nep->obj = NULL;
952		nep->next = NULL;
953
954		*needed_aux_filtees_tail = nep;
955		needed_aux_filtees_tail = &nep->next;
956	    }
957	    break;
958
959	case DT_PLTGOT:
960	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
961	    break;
962
963	case DT_TEXTREL:
964	    obj->textrel = true;
965	    break;
966
967	case DT_SYMBOLIC:
968	    obj->symbolic = true;
969	    break;
970
971	case DT_RPATH:
972	case DT_RUNPATH:	/* XXX: process separately */
973	    /*
974	     * We have to wait until later to process this, because we
975	     * might not have gotten the address of the string table yet.
976	     */
977	    *dyn_rpath = dynp;
978	    break;
979
980	case DT_SONAME:
981	    *dyn_soname = dynp;
982	    break;
983
984	case DT_INIT:
985	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
986	    break;
987
988	case DT_PREINIT_ARRAY:
989	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
990	    break;
991
992	case DT_PREINIT_ARRAYSZ:
993	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
994	    break;
995
996	case DT_INIT_ARRAY:
997	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
998	    break;
999
1000	case DT_INIT_ARRAYSZ:
1001	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1002	    break;
1003
1004	case DT_FINI:
1005	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1006	    break;
1007
1008	case DT_FINI_ARRAY:
1009	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1010	    break;
1011
1012	case DT_FINI_ARRAYSZ:
1013	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1014	    break;
1015
1016	/*
1017	 * Don't process DT_DEBUG on MIPS as the dynamic section
1018	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1019	 */
1020
1021#ifndef __mips__
1022	case DT_DEBUG:
1023	    /* XXX - not implemented yet */
1024	    if (!early)
1025		dbg("Filling in DT_DEBUG entry");
1026	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1027	    break;
1028#endif
1029
1030	case DT_FLAGS:
1031		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1032		    obj->z_origin = true;
1033		if (dynp->d_un.d_val & DF_SYMBOLIC)
1034		    obj->symbolic = true;
1035		if (dynp->d_un.d_val & DF_TEXTREL)
1036		    obj->textrel = true;
1037		if (dynp->d_un.d_val & DF_BIND_NOW)
1038		    obj->bind_now = true;
1039		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1040		    ;*/
1041	    break;
1042#ifdef __mips__
1043	case DT_MIPS_LOCAL_GOTNO:
1044		obj->local_gotno = dynp->d_un.d_val;
1045	    break;
1046
1047	case DT_MIPS_SYMTABNO:
1048		obj->symtabno = dynp->d_un.d_val;
1049		break;
1050
1051	case DT_MIPS_GOTSYM:
1052		obj->gotsym = dynp->d_un.d_val;
1053		break;
1054
1055	case DT_MIPS_RLD_MAP:
1056#ifdef notyet
1057		if (!early)
1058			dbg("Filling in DT_DEBUG entry");
1059		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1060#endif
1061		break;
1062#endif
1063
1064	case DT_FLAGS_1:
1065		if (dynp->d_un.d_val & DF_1_NOOPEN)
1066		    obj->z_noopen = true;
1067		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1068		    obj->z_origin = true;
1069		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1070		    XXX ;*/
1071		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1072		    obj->bind_now = true;
1073		if (dynp->d_un.d_val & DF_1_NODELETE)
1074		    obj->z_nodelete = true;
1075		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1076		    obj->z_loadfltr = true;
1077	    break;
1078
1079	default:
1080	    if (!early) {
1081		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1082		    (long)dynp->d_tag);
1083	    }
1084	    break;
1085	}
1086    }
1087
1088    obj->traced = false;
1089
1090    if (plttype == DT_RELA) {
1091	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1092	obj->pltrel = NULL;
1093	obj->pltrelasize = obj->pltrelsize;
1094	obj->pltrelsize = 0;
1095    }
1096}
1097
1098static void
1099digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1100    const Elf_Dyn *dyn_soname)
1101{
1102
1103    if (obj->z_origin && obj->origin_path == NULL) {
1104	obj->origin_path = xmalloc(PATH_MAX);
1105	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1106	    die();
1107    }
1108
1109    if (dyn_rpath != NULL) {
1110	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1111	if (obj->z_origin)
1112	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1113    }
1114
1115    if (dyn_soname != NULL)
1116	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1117}
1118
1119static void
1120digest_dynamic(Obj_Entry *obj, int early)
1121{
1122	const Elf_Dyn *dyn_rpath;
1123	const Elf_Dyn *dyn_soname;
1124
1125	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname);
1126	digest_dynamic2(obj, dyn_rpath, dyn_soname);
1127}
1128
1129/*
1130 * Process a shared object's program header.  This is used only for the
1131 * main program, when the kernel has already loaded the main program
1132 * into memory before calling the dynamic linker.  It creates and
1133 * returns an Obj_Entry structure.
1134 */
1135static Obj_Entry *
1136digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1137{
1138    Obj_Entry *obj;
1139    const Elf_Phdr *phlimit = phdr + phnum;
1140    const Elf_Phdr *ph;
1141    Elf_Addr note_start, note_end;
1142    int nsegs = 0;
1143
1144    obj = obj_new();
1145    for (ph = phdr;  ph < phlimit;  ph++) {
1146	if (ph->p_type != PT_PHDR)
1147	    continue;
1148
1149	obj->phdr = phdr;
1150	obj->phsize = ph->p_memsz;
1151	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1152	break;
1153    }
1154
1155    obj->stack_flags = PF_X | PF_R | PF_W;
1156
1157    for (ph = phdr;  ph < phlimit;  ph++) {
1158	switch (ph->p_type) {
1159
1160	case PT_INTERP:
1161	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1162	    break;
1163
1164	case PT_LOAD:
1165	    if (nsegs == 0) {	/* First load segment */
1166		obj->vaddrbase = trunc_page(ph->p_vaddr);
1167		obj->mapbase = obj->vaddrbase + obj->relocbase;
1168		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1169		  obj->vaddrbase;
1170	    } else {		/* Last load segment */
1171		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1172		  obj->vaddrbase;
1173	    }
1174	    nsegs++;
1175	    break;
1176
1177	case PT_DYNAMIC:
1178	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1179	    break;
1180
1181	case PT_TLS:
1182	    obj->tlsindex = 1;
1183	    obj->tlssize = ph->p_memsz;
1184	    obj->tlsalign = ph->p_align;
1185	    obj->tlsinitsize = ph->p_filesz;
1186	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1187	    break;
1188
1189	case PT_GNU_STACK:
1190	    obj->stack_flags = ph->p_flags;
1191	    break;
1192
1193	case PT_GNU_RELRO:
1194	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1195	    obj->relro_size = round_page(ph->p_memsz);
1196	    break;
1197
1198	case PT_NOTE:
1199	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1200	    note_end = note_start + ph->p_filesz;
1201	    digest_notes(obj, note_start, note_end);
1202	    break;
1203	}
1204    }
1205    if (nsegs < 1) {
1206	_rtld_error("%s: too few PT_LOAD segments", path);
1207	return NULL;
1208    }
1209
1210    obj->entry = entry;
1211    return obj;
1212}
1213
1214void
1215digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1216{
1217	const Elf_Note *note;
1218	const char *note_name;
1219	uintptr_t p;
1220
1221	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1222	    note = (const Elf_Note *)((const char *)(note + 1) +
1223	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1224	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1225		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1226		    note->n_descsz != sizeof(int32_t))
1227			continue;
1228		if (note->n_type != ABI_NOTETYPE &&
1229		    note->n_type != CRT_NOINIT_NOTETYPE)
1230			continue;
1231		note_name = (const char *)(note + 1);
1232		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1233		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1234			continue;
1235		switch (note->n_type) {
1236		case ABI_NOTETYPE:
1237			/* FreeBSD osrel note */
1238			p = (uintptr_t)(note + 1);
1239			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1240			obj->osrel = *(const int32_t *)(p);
1241			dbg("note osrel %d", obj->osrel);
1242			break;
1243		case CRT_NOINIT_NOTETYPE:
1244			/* FreeBSD 'crt does not call init' note */
1245			obj->crt_no_init = true;
1246			dbg("note crt_no_init");
1247			break;
1248		}
1249	}
1250}
1251
1252static Obj_Entry *
1253dlcheck(void *handle)
1254{
1255    Obj_Entry *obj;
1256
1257    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1258	if (obj == (Obj_Entry *) handle)
1259	    break;
1260
1261    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1262	_rtld_error("Invalid shared object handle %p", handle);
1263	return NULL;
1264    }
1265    return obj;
1266}
1267
1268/*
1269 * If the given object is already in the donelist, return true.  Otherwise
1270 * add the object to the list and return false.
1271 */
1272static bool
1273donelist_check(DoneList *dlp, const Obj_Entry *obj)
1274{
1275    unsigned int i;
1276
1277    for (i = 0;  i < dlp->num_used;  i++)
1278	if (dlp->objs[i] == obj)
1279	    return true;
1280    /*
1281     * Our donelist allocation should always be sufficient.  But if
1282     * our threads locking isn't working properly, more shared objects
1283     * could have been loaded since we allocated the list.  That should
1284     * never happen, but we'll handle it properly just in case it does.
1285     */
1286    if (dlp->num_used < dlp->num_alloc)
1287	dlp->objs[dlp->num_used++] = obj;
1288    return false;
1289}
1290
1291/*
1292 * Hash function for symbol table lookup.  Don't even think about changing
1293 * this.  It is specified by the System V ABI.
1294 */
1295unsigned long
1296elf_hash(const char *name)
1297{
1298    const unsigned char *p = (const unsigned char *) name;
1299    unsigned long h = 0;
1300    unsigned long g;
1301
1302    while (*p != '\0') {
1303	h = (h << 4) + *p++;
1304	if ((g = h & 0xf0000000) != 0)
1305	    h ^= g >> 24;
1306	h &= ~g;
1307    }
1308    return h;
1309}
1310
1311/*
1312 * Find the library with the given name, and return its full pathname.
1313 * The returned string is dynamically allocated.  Generates an error
1314 * message and returns NULL if the library cannot be found.
1315 *
1316 * If the second argument is non-NULL, then it refers to an already-
1317 * loaded shared object, whose library search path will be searched.
1318 *
1319 * The search order is:
1320 *   LD_LIBRARY_PATH
1321 *   rpath in the referencing file
1322 *   ldconfig hints
1323 *   /lib:/usr/lib
1324 */
1325static char *
1326find_library(const char *xname, const Obj_Entry *refobj)
1327{
1328    char *pathname;
1329    char *name;
1330
1331    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1332	if (xname[0] != '/' && !trust) {
1333	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1334	      xname);
1335	    return NULL;
1336	}
1337	if (refobj != NULL && refobj->z_origin)
1338	    return origin_subst(xname, refobj->origin_path);
1339	else
1340	    return xstrdup(xname);
1341    }
1342
1343    if (libmap_disable || (refobj == NULL) ||
1344	(name = lm_find(refobj->path, xname)) == NULL)
1345	name = (char *)xname;
1346
1347    dbg(" Searching for \"%s\"", name);
1348
1349    if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1350      (refobj != NULL &&
1351      (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1352      (pathname = search_library_path(name, gethints())) != NULL ||
1353      (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1354	return pathname;
1355
1356    if(refobj != NULL && refobj->path != NULL) {
1357	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1358	  name, basename(refobj->path));
1359    } else {
1360	_rtld_error("Shared object \"%s\" not found", name);
1361    }
1362    return NULL;
1363}
1364
1365/*
1366 * Given a symbol number in a referencing object, find the corresponding
1367 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1368 * no definition was found.  Returns a pointer to the Obj_Entry of the
1369 * defining object via the reference parameter DEFOBJ_OUT.
1370 */
1371const Elf_Sym *
1372find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1373    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1374    RtldLockState *lockstate)
1375{
1376    const Elf_Sym *ref;
1377    const Elf_Sym *def;
1378    const Obj_Entry *defobj;
1379    SymLook req;
1380    const char *name;
1381    int res;
1382
1383    /*
1384     * If we have already found this symbol, get the information from
1385     * the cache.
1386     */
1387    if (symnum >= refobj->nchains)
1388	return NULL;	/* Bad object */
1389    if (cache != NULL && cache[symnum].sym != NULL) {
1390	*defobj_out = cache[symnum].obj;
1391	return cache[symnum].sym;
1392    }
1393
1394    ref = refobj->symtab + symnum;
1395    name = refobj->strtab + ref->st_name;
1396    def = NULL;
1397    defobj = NULL;
1398
1399    /*
1400     * We don't have to do a full scale lookup if the symbol is local.
1401     * We know it will bind to the instance in this load module; to
1402     * which we already have a pointer (ie ref). By not doing a lookup,
1403     * we not only improve performance, but it also avoids unresolvable
1404     * symbols when local symbols are not in the hash table. This has
1405     * been seen with the ia64 toolchain.
1406     */
1407    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1408	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1409	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1410		symnum);
1411	}
1412	symlook_init(&req, name);
1413	req.flags = flags;
1414	req.ventry = fetch_ventry(refobj, symnum);
1415	req.lockstate = lockstate;
1416	res = symlook_default(&req, refobj);
1417	if (res == 0) {
1418	    def = req.sym_out;
1419	    defobj = req.defobj_out;
1420	}
1421    } else {
1422	def = ref;
1423	defobj = refobj;
1424    }
1425
1426    /*
1427     * If we found no definition and the reference is weak, treat the
1428     * symbol as having the value zero.
1429     */
1430    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1431	def = &sym_zero;
1432	defobj = obj_main;
1433    }
1434
1435    if (def != NULL) {
1436	*defobj_out = defobj;
1437	/* Record the information in the cache to avoid subsequent lookups. */
1438	if (cache != NULL) {
1439	    cache[symnum].sym = def;
1440	    cache[symnum].obj = defobj;
1441	}
1442    } else {
1443	if (refobj != &obj_rtld)
1444	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1445    }
1446    return def;
1447}
1448
1449/*
1450 * Return the search path from the ldconfig hints file, reading it if
1451 * necessary.  Returns NULL if there are problems with the hints file,
1452 * or if the search path there is empty.
1453 */
1454static const char *
1455gethints(void)
1456{
1457    static char *hints;
1458
1459    if (hints == NULL) {
1460	int fd;
1461	struct elfhints_hdr hdr;
1462	char *p;
1463
1464	/* Keep from trying again in case the hints file is bad. */
1465	hints = "";
1466
1467	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1468	    return NULL;
1469	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1470	  hdr.magic != ELFHINTS_MAGIC ||
1471	  hdr.version != 1) {
1472	    close(fd);
1473	    return NULL;
1474	}
1475	p = xmalloc(hdr.dirlistlen + 1);
1476	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1477	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1478	    free(p);
1479	    close(fd);
1480	    return NULL;
1481	}
1482	hints = p;
1483	close(fd);
1484    }
1485    return hints[0] != '\0' ? hints : NULL;
1486}
1487
1488static void
1489init_dag(Obj_Entry *root)
1490{
1491    const Needed_Entry *needed;
1492    const Objlist_Entry *elm;
1493    DoneList donelist;
1494
1495    if (root->dag_inited)
1496	return;
1497    donelist_init(&donelist);
1498
1499    /* Root object belongs to own DAG. */
1500    objlist_push_tail(&root->dldags, root);
1501    objlist_push_tail(&root->dagmembers, root);
1502    donelist_check(&donelist, root);
1503
1504    /*
1505     * Add dependencies of root object to DAG in breadth order
1506     * by exploiting the fact that each new object get added
1507     * to the tail of the dagmembers list.
1508     */
1509    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1510	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1511	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1512		continue;
1513	    objlist_push_tail(&needed->obj->dldags, root);
1514	    objlist_push_tail(&root->dagmembers, needed->obj);
1515	}
1516    }
1517    root->dag_inited = true;
1518}
1519
1520/*
1521 * Initialize the dynamic linker.  The argument is the address at which
1522 * the dynamic linker has been mapped into memory.  The primary task of
1523 * this function is to relocate the dynamic linker.
1524 */
1525static void
1526init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1527{
1528    Obj_Entry objtmp;	/* Temporary rtld object */
1529    const Elf_Dyn *dyn_rpath;
1530    const Elf_Dyn *dyn_soname;
1531
1532    /*
1533     * Conjure up an Obj_Entry structure for the dynamic linker.
1534     *
1535     * The "path" member can't be initialized yet because string constants
1536     * cannot yet be accessed. Below we will set it correctly.
1537     */
1538    memset(&objtmp, 0, sizeof(objtmp));
1539    objtmp.path = NULL;
1540    objtmp.rtld = true;
1541    objtmp.mapbase = mapbase;
1542#ifdef PIC
1543    objtmp.relocbase = mapbase;
1544#endif
1545    if (RTLD_IS_DYNAMIC()) {
1546	objtmp.dynamic = rtld_dynamic(&objtmp);
1547	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname);
1548	assert(objtmp.needed == NULL);
1549#if !defined(__mips__)
1550	/* MIPS has a bogus DT_TEXTREL. */
1551	assert(!objtmp.textrel);
1552#endif
1553
1554	/*
1555	 * Temporarily put the dynamic linker entry into the object list, so
1556	 * that symbols can be found.
1557	 */
1558
1559	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1560    }
1561
1562    /* Initialize the object list. */
1563    obj_tail = &obj_list;
1564
1565    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1566    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1567
1568    if (aux_info[AT_PAGESZ] != NULL)
1569	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1570    if (aux_info[AT_OSRELDATE] != NULL)
1571	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1572
1573    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname);
1574
1575    /* Replace the path with a dynamically allocated copy. */
1576    obj_rtld.path = xstrdup(PATH_RTLD);
1577
1578    r_debug.r_brk = r_debug_state;
1579    r_debug.r_state = RT_CONSISTENT;
1580}
1581
1582/*
1583 * Add the init functions from a needed object list (and its recursive
1584 * needed objects) to "list".  This is not used directly; it is a helper
1585 * function for initlist_add_objects().  The write lock must be held
1586 * when this function is called.
1587 */
1588static void
1589initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1590{
1591    /* Recursively process the successor needed objects. */
1592    if (needed->next != NULL)
1593	initlist_add_neededs(needed->next, list);
1594
1595    /* Process the current needed object. */
1596    if (needed->obj != NULL)
1597	initlist_add_objects(needed->obj, &needed->obj->next, list);
1598}
1599
1600/*
1601 * Scan all of the DAGs rooted in the range of objects from "obj" to
1602 * "tail" and add their init functions to "list".  This recurses over
1603 * the DAGs and ensure the proper init ordering such that each object's
1604 * needed libraries are initialized before the object itself.  At the
1605 * same time, this function adds the objects to the global finalization
1606 * list "list_fini" in the opposite order.  The write lock must be
1607 * held when this function is called.
1608 */
1609static void
1610initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1611{
1612
1613    if (obj->init_scanned || obj->init_done)
1614	return;
1615    obj->init_scanned = true;
1616
1617    /* Recursively process the successor objects. */
1618    if (&obj->next != tail)
1619	initlist_add_objects(obj->next, tail, list);
1620
1621    /* Recursively process the needed objects. */
1622    if (obj->needed != NULL)
1623	initlist_add_neededs(obj->needed, list);
1624    if (obj->needed_filtees != NULL)
1625	initlist_add_neededs(obj->needed_filtees, list);
1626    if (obj->needed_aux_filtees != NULL)
1627	initlist_add_neededs(obj->needed_aux_filtees, list);
1628
1629    /* Add the object to the init list. */
1630    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1631      obj->init_array != (Elf_Addr)NULL)
1632	objlist_push_tail(list, obj);
1633
1634    /* Add the object to the global fini list in the reverse order. */
1635    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1636      && !obj->on_fini_list) {
1637	objlist_push_head(&list_fini, obj);
1638	obj->on_fini_list = true;
1639    }
1640}
1641
1642#ifndef FPTR_TARGET
1643#define FPTR_TARGET(f)	((Elf_Addr) (f))
1644#endif
1645
1646static void
1647free_needed_filtees(Needed_Entry *n)
1648{
1649    Needed_Entry *needed, *needed1;
1650
1651    for (needed = n; needed != NULL; needed = needed->next) {
1652	if (needed->obj != NULL) {
1653	    dlclose(needed->obj);
1654	    needed->obj = NULL;
1655	}
1656    }
1657    for (needed = n; needed != NULL; needed = needed1) {
1658	needed1 = needed->next;
1659	free(needed);
1660    }
1661}
1662
1663static void
1664unload_filtees(Obj_Entry *obj)
1665{
1666
1667    free_needed_filtees(obj->needed_filtees);
1668    obj->needed_filtees = NULL;
1669    free_needed_filtees(obj->needed_aux_filtees);
1670    obj->needed_aux_filtees = NULL;
1671    obj->filtees_loaded = false;
1672}
1673
1674static void
1675load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1676    RtldLockState *lockstate)
1677{
1678
1679    for (; needed != NULL; needed = needed->next) {
1680	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1681	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1682	  RTLD_LOCAL, lockstate);
1683    }
1684}
1685
1686static void
1687load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1688{
1689
1690    lock_restart_for_upgrade(lockstate);
1691    if (!obj->filtees_loaded) {
1692	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
1693	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
1694	obj->filtees_loaded = true;
1695    }
1696}
1697
1698static int
1699process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1700{
1701    Obj_Entry *obj1;
1702
1703    for (; needed != NULL; needed = needed->next) {
1704	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1705	  flags & ~RTLD_LO_NOLOAD);
1706	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1707	    return (-1);
1708	if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1709	    dbg("obj %s nodelete", obj1->path);
1710	    init_dag(obj1);
1711	    ref_dag(obj1);
1712	    obj1->ref_nodel = true;
1713	}
1714    }
1715    return (0);
1716}
1717
1718/*
1719 * Given a shared object, traverse its list of needed objects, and load
1720 * each of them.  Returns 0 on success.  Generates an error message and
1721 * returns -1 on failure.
1722 */
1723static int
1724load_needed_objects(Obj_Entry *first, int flags)
1725{
1726    Obj_Entry *obj;
1727
1728    for (obj = first;  obj != NULL;  obj = obj->next) {
1729	if (process_needed(obj, obj->needed, flags) == -1)
1730	    return (-1);
1731    }
1732    return (0);
1733}
1734
1735static int
1736load_preload_objects(void)
1737{
1738    char *p = ld_preload;
1739    static const char delim[] = " \t:;";
1740
1741    if (p == NULL)
1742	return 0;
1743
1744    p += strspn(p, delim);
1745    while (*p != '\0') {
1746	size_t len = strcspn(p, delim);
1747	char savech;
1748
1749	savech = p[len];
1750	p[len] = '\0';
1751	if (load_object(p, -1, NULL, 0) == NULL)
1752	    return -1;	/* XXX - cleanup */
1753	p[len] = savech;
1754	p += len;
1755	p += strspn(p, delim);
1756    }
1757    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1758    return 0;
1759}
1760
1761static const char *
1762printable_path(const char *path)
1763{
1764
1765	return (path == NULL ? "<unknown>" : path);
1766}
1767
1768/*
1769 * Load a shared object into memory, if it is not already loaded.  The
1770 * object may be specified by name or by user-supplied file descriptor
1771 * fd_u. In the later case, the fd_u descriptor is not closed, but its
1772 * duplicate is.
1773 *
1774 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1775 * on failure.
1776 */
1777static Obj_Entry *
1778load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
1779{
1780    Obj_Entry *obj;
1781    int fd;
1782    struct stat sb;
1783    char *path;
1784
1785    if (name != NULL) {
1786	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1787	    if (object_match_name(obj, name))
1788		return (obj);
1789	}
1790
1791	path = find_library(name, refobj);
1792	if (path == NULL)
1793	    return (NULL);
1794    } else
1795	path = NULL;
1796
1797    /*
1798     * If we didn't find a match by pathname, or the name is not
1799     * supplied, open the file and check again by device and inode.
1800     * This avoids false mismatches caused by multiple links or ".."
1801     * in pathnames.
1802     *
1803     * To avoid a race, we open the file and use fstat() rather than
1804     * using stat().
1805     */
1806    fd = -1;
1807    if (fd_u == -1) {
1808	if ((fd = open(path, O_RDONLY)) == -1) {
1809	    _rtld_error("Cannot open \"%s\"", path);
1810	    free(path);
1811	    return (NULL);
1812	}
1813    } else {
1814	fd = dup(fd_u);
1815	if (fd == -1) {
1816	    _rtld_error("Cannot dup fd");
1817	    free(path);
1818	    return (NULL);
1819	}
1820    }
1821    if (fstat(fd, &sb) == -1) {
1822	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
1823	close(fd);
1824	free(path);
1825	return NULL;
1826    }
1827    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1828	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
1829	    break;
1830    if (obj != NULL && name != NULL) {
1831	object_add_name(obj, name);
1832	free(path);
1833	close(fd);
1834	return obj;
1835    }
1836    if (flags & RTLD_LO_NOLOAD) {
1837	free(path);
1838	close(fd);
1839	return (NULL);
1840    }
1841
1842    /* First use of this object, so we must map it in */
1843    obj = do_load_object(fd, name, path, &sb, flags);
1844    if (obj == NULL)
1845	free(path);
1846    close(fd);
1847
1848    return obj;
1849}
1850
1851static Obj_Entry *
1852do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1853  int flags)
1854{
1855    Obj_Entry *obj;
1856    struct statfs fs;
1857
1858    /*
1859     * but first, make sure that environment variables haven't been
1860     * used to circumvent the noexec flag on a filesystem.
1861     */
1862    if (dangerous_ld_env) {
1863	if (fstatfs(fd, &fs) != 0) {
1864	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
1865	    return NULL;
1866	}
1867	if (fs.f_flags & MNT_NOEXEC) {
1868	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1869	    return NULL;
1870	}
1871    }
1872    dbg("loading \"%s\"", printable_path(path));
1873    obj = map_object(fd, printable_path(path), sbp);
1874    if (obj == NULL)
1875        return NULL;
1876
1877    /*
1878     * If DT_SONAME is present in the object, digest_dynamic2 already
1879     * added it to the object names.
1880     */
1881    if (name != NULL)
1882	object_add_name(obj, name);
1883    obj->path = path;
1884    digest_dynamic(obj, 0);
1885    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1886      RTLD_LO_DLOPEN) {
1887	dbg("refusing to load non-loadable \"%s\"", obj->path);
1888	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1889	munmap(obj->mapbase, obj->mapsize);
1890	obj_free(obj);
1891	return (NULL);
1892    }
1893
1894    *obj_tail = obj;
1895    obj_tail = &obj->next;
1896    obj_count++;
1897    obj_loads++;
1898    linkmap_add(obj);	/* for GDB & dlinfo() */
1899    max_stack_flags |= obj->stack_flags;
1900
1901    dbg("  %p .. %p: %s", obj->mapbase,
1902         obj->mapbase + obj->mapsize - 1, obj->path);
1903    if (obj->textrel)
1904	dbg("  WARNING: %s has impure text", obj->path);
1905    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1906	obj->path);
1907
1908    return obj;
1909}
1910
1911static Obj_Entry *
1912obj_from_addr(const void *addr)
1913{
1914    Obj_Entry *obj;
1915
1916    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1917	if (addr < (void *) obj->mapbase)
1918	    continue;
1919	if (addr < (void *) (obj->mapbase + obj->mapsize))
1920	    return obj;
1921    }
1922    return NULL;
1923}
1924
1925static void
1926preinit_main(void)
1927{
1928    Elf_Addr *preinit_addr;
1929    int index;
1930
1931    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
1932    if (preinit_addr == NULL)
1933	return;
1934
1935    for (index = 0; index < obj_main->preinit_array_num; index++) {
1936	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
1937	    dbg("calling preinit function for %s at %p", obj_main->path,
1938	      (void *)preinit_addr[index]);
1939	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
1940	      0, 0, obj_main->path);
1941	    call_init_pointer(obj_main, preinit_addr[index]);
1942	}
1943    }
1944}
1945
1946/*
1947 * Call the finalization functions for each of the objects in "list"
1948 * belonging to the DAG of "root" and referenced once. If NULL "root"
1949 * is specified, every finalization function will be called regardless
1950 * of the reference count and the list elements won't be freed. All of
1951 * the objects are expected to have non-NULL fini functions.
1952 */
1953static void
1954objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
1955{
1956    Objlist_Entry *elm;
1957    char *saved_msg;
1958    Elf_Addr *fini_addr;
1959    int index;
1960
1961    assert(root == NULL || root->refcount == 1);
1962
1963    /*
1964     * Preserve the current error message since a fini function might
1965     * call into the dynamic linker and overwrite it.
1966     */
1967    saved_msg = errmsg_save();
1968    do {
1969	STAILQ_FOREACH(elm, list, link) {
1970	    if (root != NULL && (elm->obj->refcount != 1 ||
1971	      objlist_find(&root->dagmembers, elm->obj) == NULL))
1972		continue;
1973	    /* Remove object from fini list to prevent recursive invocation. */
1974	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1975	    /*
1976	     * XXX: If a dlopen() call references an object while the
1977	     * fini function is in progress, we might end up trying to
1978	     * unload the referenced object in dlclose() or the object
1979	     * won't be unloaded although its fini function has been
1980	     * called.
1981	     */
1982	    lock_release(rtld_bind_lock, lockstate);
1983
1984	    /*
1985	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
1986	     * When this happens, DT_FINI_ARRAY is processed first.
1987	     */
1988	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
1989	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
1990		for (index = elm->obj->fini_array_num - 1; index >= 0;
1991		  index--) {
1992		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
1993			dbg("calling fini function for %s at %p",
1994			    elm->obj->path, (void *)fini_addr[index]);
1995			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
1996			    (void *)fini_addr[index], 0, 0, elm->obj->path);
1997			call_initfini_pointer(elm->obj, fini_addr[index]);
1998		    }
1999		}
2000	    }
2001	    if (elm->obj->fini != (Elf_Addr)NULL) {
2002		dbg("calling fini function for %s at %p", elm->obj->path,
2003		    (void *)elm->obj->fini);
2004		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2005		    0, 0, elm->obj->path);
2006		call_initfini_pointer(elm->obj, elm->obj->fini);
2007	    }
2008	    wlock_acquire(rtld_bind_lock, lockstate);
2009	    /* No need to free anything if process is going down. */
2010	    if (root != NULL)
2011	    	free(elm);
2012	    /*
2013	     * We must restart the list traversal after every fini call
2014	     * because a dlclose() call from the fini function or from
2015	     * another thread might have modified the reference counts.
2016	     */
2017	    break;
2018	}
2019    } while (elm != NULL);
2020    errmsg_restore(saved_msg);
2021}
2022
2023/*
2024 * Call the initialization functions for each of the objects in
2025 * "list".  All of the objects are expected to have non-NULL init
2026 * functions.
2027 */
2028static void
2029objlist_call_init(Objlist *list, RtldLockState *lockstate)
2030{
2031    Objlist_Entry *elm;
2032    Obj_Entry *obj;
2033    char *saved_msg;
2034    Elf_Addr *init_addr;
2035    int index;
2036
2037    /*
2038     * Clean init_scanned flag so that objects can be rechecked and
2039     * possibly initialized earlier if any of vectors called below
2040     * cause the change by using dlopen.
2041     */
2042    for (obj = obj_list;  obj != NULL;  obj = obj->next)
2043	obj->init_scanned = false;
2044
2045    /*
2046     * Preserve the current error message since an init function might
2047     * call into the dynamic linker and overwrite it.
2048     */
2049    saved_msg = errmsg_save();
2050    STAILQ_FOREACH(elm, list, link) {
2051	if (elm->obj->init_done) /* Initialized early. */
2052	    continue;
2053	/*
2054	 * Race: other thread might try to use this object before current
2055	 * one completes the initilization. Not much can be done here
2056	 * without better locking.
2057	 */
2058	elm->obj->init_done = true;
2059	lock_release(rtld_bind_lock, lockstate);
2060
2061        /*
2062         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2063         * When this happens, DT_INIT is processed first.
2064         */
2065	if (elm->obj->init != (Elf_Addr)NULL) {
2066	    dbg("calling init function for %s at %p", elm->obj->path,
2067	        (void *)elm->obj->init);
2068	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2069	        0, 0, elm->obj->path);
2070	    call_initfini_pointer(elm->obj, elm->obj->init);
2071	}
2072	init_addr = (Elf_Addr *)elm->obj->init_array;
2073	if (init_addr != NULL) {
2074	    for (index = 0; index < elm->obj->init_array_num; index++) {
2075		if (init_addr[index] != 0 && init_addr[index] != 1) {
2076		    dbg("calling init function for %s at %p", elm->obj->path,
2077			(void *)init_addr[index]);
2078		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2079			(void *)init_addr[index], 0, 0, elm->obj->path);
2080		    call_init_pointer(elm->obj, init_addr[index]);
2081		}
2082	    }
2083	}
2084	wlock_acquire(rtld_bind_lock, lockstate);
2085    }
2086    errmsg_restore(saved_msg);
2087}
2088
2089static void
2090objlist_clear(Objlist *list)
2091{
2092    Objlist_Entry *elm;
2093
2094    while (!STAILQ_EMPTY(list)) {
2095	elm = STAILQ_FIRST(list);
2096	STAILQ_REMOVE_HEAD(list, link);
2097	free(elm);
2098    }
2099}
2100
2101static Objlist_Entry *
2102objlist_find(Objlist *list, const Obj_Entry *obj)
2103{
2104    Objlist_Entry *elm;
2105
2106    STAILQ_FOREACH(elm, list, link)
2107	if (elm->obj == obj)
2108	    return elm;
2109    return NULL;
2110}
2111
2112static void
2113objlist_init(Objlist *list)
2114{
2115    STAILQ_INIT(list);
2116}
2117
2118static void
2119objlist_push_head(Objlist *list, Obj_Entry *obj)
2120{
2121    Objlist_Entry *elm;
2122
2123    elm = NEW(Objlist_Entry);
2124    elm->obj = obj;
2125    STAILQ_INSERT_HEAD(list, elm, link);
2126}
2127
2128static void
2129objlist_push_tail(Objlist *list, Obj_Entry *obj)
2130{
2131    Objlist_Entry *elm;
2132
2133    elm = NEW(Objlist_Entry);
2134    elm->obj = obj;
2135    STAILQ_INSERT_TAIL(list, elm, link);
2136}
2137
2138static void
2139objlist_remove(Objlist *list, Obj_Entry *obj)
2140{
2141    Objlist_Entry *elm;
2142
2143    if ((elm = objlist_find(list, obj)) != NULL) {
2144	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2145	free(elm);
2146    }
2147}
2148
2149/*
2150 * Relocate newly-loaded shared objects.  The argument is a pointer to
2151 * the Obj_Entry for the first such object.  All objects from the first
2152 * to the end of the list of objects are relocated.  Returns 0 on success,
2153 * or -1 on failure.
2154 */
2155static int
2156relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2157    int flags, RtldLockState *lockstate)
2158{
2159    Obj_Entry *obj;
2160
2161    for (obj = first;  obj != NULL;  obj = obj->next) {
2162	if (obj->relocated)
2163	    continue;
2164	obj->relocated = true;
2165	if (obj != rtldobj)
2166	    dbg("relocating \"%s\"", obj->path);
2167
2168	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
2169	    obj->symtab == NULL || obj->strtab == NULL) {
2170	    _rtld_error("%s: Shared object has no run-time symbol table",
2171	      obj->path);
2172	    return -1;
2173	}
2174
2175	if (obj->textrel) {
2176	    /* There are relocations to the write-protected text segment. */
2177	    if (mprotect(obj->mapbase, obj->textsize,
2178	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2179		_rtld_error("%s: Cannot write-enable text segment: %s",
2180		  obj->path, rtld_strerror(errno));
2181		return -1;
2182	    }
2183	}
2184
2185	/* Process the non-PLT relocations. */
2186	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2187		return -1;
2188
2189	if (obj->textrel) {	/* Re-protected the text segment. */
2190	    if (mprotect(obj->mapbase, obj->textsize,
2191	      PROT_READ|PROT_EXEC) == -1) {
2192		_rtld_error("%s: Cannot write-protect text segment: %s",
2193		  obj->path, rtld_strerror(errno));
2194		return -1;
2195	    }
2196	}
2197
2198
2199	/* Set the special PLT or GOT entries. */
2200	init_pltgot(obj);
2201
2202	/* Process the PLT relocations. */
2203	if (reloc_plt(obj) == -1)
2204	    return -1;
2205	/* Relocate the jump slots if we are doing immediate binding. */
2206	if (obj->bind_now || bind_now)
2207	    if (reloc_jmpslots(obj, flags, lockstate) == -1)
2208		return -1;
2209
2210	if (obj->relro_size > 0) {
2211	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2212		_rtld_error("%s: Cannot enforce relro protection: %s",
2213		  obj->path, rtld_strerror(errno));
2214		return -1;
2215	    }
2216	}
2217
2218	/*
2219	 * Set up the magic number and version in the Obj_Entry.  These
2220	 * were checked in the crt1.o from the original ElfKit, so we
2221	 * set them for backward compatibility.
2222	 */
2223	obj->magic = RTLD_MAGIC;
2224	obj->version = RTLD_VERSION;
2225    }
2226
2227    return (0);
2228}
2229
2230/*
2231 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2232 * referencing STT_GNU_IFUNC symbols is postponed till the other
2233 * relocations are done.  The indirect functions specified as
2234 * ifunc are allowed to call other symbols, so we need to have
2235 * objects relocated before asking for resolution from indirects.
2236 *
2237 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2238 * instead of the usual lazy handling of PLT slots.  It is
2239 * consistent with how GNU does it.
2240 */
2241static int
2242resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2243    RtldLockState *lockstate)
2244{
2245	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2246		return (-1);
2247	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2248	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2249		return (-1);
2250	return (0);
2251}
2252
2253static int
2254resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2255    RtldLockState *lockstate)
2256{
2257	Obj_Entry *obj;
2258
2259	for (obj = first;  obj != NULL;  obj = obj->next) {
2260		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2261			return (-1);
2262	}
2263	return (0);
2264}
2265
2266static int
2267initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2268    RtldLockState *lockstate)
2269{
2270	Objlist_Entry *elm;
2271
2272	STAILQ_FOREACH(elm, list, link) {
2273		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2274		    lockstate) == -1)
2275			return (-1);
2276	}
2277	return (0);
2278}
2279
2280/*
2281 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2282 * before the process exits.
2283 */
2284static void
2285rtld_exit(void)
2286{
2287    RtldLockState lockstate;
2288
2289    wlock_acquire(rtld_bind_lock, &lockstate);
2290    dbg("rtld_exit()");
2291    objlist_call_fini(&list_fini, NULL, &lockstate);
2292    /* No need to remove the items from the list, since we are exiting. */
2293    if (!libmap_disable)
2294        lm_fini();
2295    lock_release(rtld_bind_lock, &lockstate);
2296}
2297
2298static void *
2299path_enumerate(const char *path, path_enum_proc callback, void *arg)
2300{
2301#ifdef COMPAT_32BIT
2302    const char *trans;
2303#endif
2304    if (path == NULL)
2305	return (NULL);
2306
2307    path += strspn(path, ":;");
2308    while (*path != '\0') {
2309	size_t len;
2310	char  *res;
2311
2312	len = strcspn(path, ":;");
2313#ifdef COMPAT_32BIT
2314	trans = lm_findn(NULL, path, len);
2315	if (trans)
2316	    res = callback(trans, strlen(trans), arg);
2317	else
2318#endif
2319	res = callback(path, len, arg);
2320
2321	if (res != NULL)
2322	    return (res);
2323
2324	path += len;
2325	path += strspn(path, ":;");
2326    }
2327
2328    return (NULL);
2329}
2330
2331struct try_library_args {
2332    const char	*name;
2333    size_t	 namelen;
2334    char	*buffer;
2335    size_t	 buflen;
2336};
2337
2338static void *
2339try_library_path(const char *dir, size_t dirlen, void *param)
2340{
2341    struct try_library_args *arg;
2342
2343    arg = param;
2344    if (*dir == '/' || trust) {
2345	char *pathname;
2346
2347	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2348		return (NULL);
2349
2350	pathname = arg->buffer;
2351	strncpy(pathname, dir, dirlen);
2352	pathname[dirlen] = '/';
2353	strcpy(pathname + dirlen + 1, arg->name);
2354
2355	dbg("  Trying \"%s\"", pathname);
2356	if (access(pathname, F_OK) == 0) {		/* We found it */
2357	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2358	    strcpy(pathname, arg->buffer);
2359	    return (pathname);
2360	}
2361    }
2362    return (NULL);
2363}
2364
2365static char *
2366search_library_path(const char *name, const char *path)
2367{
2368    char *p;
2369    struct try_library_args arg;
2370
2371    if (path == NULL)
2372	return NULL;
2373
2374    arg.name = name;
2375    arg.namelen = strlen(name);
2376    arg.buffer = xmalloc(PATH_MAX);
2377    arg.buflen = PATH_MAX;
2378
2379    p = path_enumerate(path, try_library_path, &arg);
2380
2381    free(arg.buffer);
2382
2383    return (p);
2384}
2385
2386int
2387dlclose(void *handle)
2388{
2389    Obj_Entry *root;
2390    RtldLockState lockstate;
2391
2392    wlock_acquire(rtld_bind_lock, &lockstate);
2393    root = dlcheck(handle);
2394    if (root == NULL) {
2395	lock_release(rtld_bind_lock, &lockstate);
2396	return -1;
2397    }
2398    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2399	root->path);
2400
2401    /* Unreference the object and its dependencies. */
2402    root->dl_refcount--;
2403
2404    if (root->refcount == 1) {
2405	/*
2406	 * The object will be no longer referenced, so we must unload it.
2407	 * First, call the fini functions.
2408	 */
2409	objlist_call_fini(&list_fini, root, &lockstate);
2410
2411	unref_dag(root);
2412
2413	/* Finish cleaning up the newly-unreferenced objects. */
2414	GDB_STATE(RT_DELETE,&root->linkmap);
2415	unload_object(root);
2416	GDB_STATE(RT_CONSISTENT,NULL);
2417    } else
2418	unref_dag(root);
2419
2420    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2421    lock_release(rtld_bind_lock, &lockstate);
2422    return 0;
2423}
2424
2425char *
2426dlerror(void)
2427{
2428    char *msg = error_message;
2429    error_message = NULL;
2430    return msg;
2431}
2432
2433/*
2434 * This function is deprecated and has no effect.
2435 */
2436void
2437dllockinit(void *context,
2438	   void *(*lock_create)(void *context),
2439           void (*rlock_acquire)(void *lock),
2440           void (*wlock_acquire)(void *lock),
2441           void (*lock_release)(void *lock),
2442           void (*lock_destroy)(void *lock),
2443	   void (*context_destroy)(void *context))
2444{
2445    static void *cur_context;
2446    static void (*cur_context_destroy)(void *);
2447
2448    /* Just destroy the context from the previous call, if necessary. */
2449    if (cur_context_destroy != NULL)
2450	cur_context_destroy(cur_context);
2451    cur_context = context;
2452    cur_context_destroy = context_destroy;
2453}
2454
2455void *
2456dlopen(const char *name, int mode)
2457{
2458
2459	return (rtld_dlopen(name, -1, mode));
2460}
2461
2462void *
2463fdlopen(int fd, int mode)
2464{
2465
2466	return (rtld_dlopen(NULL, fd, mode));
2467}
2468
2469static void *
2470rtld_dlopen(const char *name, int fd, int mode)
2471{
2472    RtldLockState lockstate;
2473    int lo_flags;
2474
2475    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2476    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2477    if (ld_tracing != NULL) {
2478	rlock_acquire(rtld_bind_lock, &lockstate);
2479	if (sigsetjmp(lockstate.env, 0) != 0)
2480	    lock_upgrade(rtld_bind_lock, &lockstate);
2481	environ = (char **)*get_program_var_addr("environ", &lockstate);
2482	lock_release(rtld_bind_lock, &lockstate);
2483    }
2484    lo_flags = RTLD_LO_DLOPEN;
2485    if (mode & RTLD_NODELETE)
2486	    lo_flags |= RTLD_LO_NODELETE;
2487    if (mode & RTLD_NOLOAD)
2488	    lo_flags |= RTLD_LO_NOLOAD;
2489    if (ld_tracing != NULL)
2490	    lo_flags |= RTLD_LO_TRACE;
2491
2492    return (dlopen_object(name, fd, obj_main, lo_flags,
2493      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2494}
2495
2496static void
2497dlopen_cleanup(Obj_Entry *obj)
2498{
2499
2500	obj->dl_refcount--;
2501	unref_dag(obj);
2502	if (obj->refcount == 0)
2503		unload_object(obj);
2504}
2505
2506static Obj_Entry *
2507dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2508    int mode, RtldLockState *lockstate)
2509{
2510    Obj_Entry **old_obj_tail;
2511    Obj_Entry *obj;
2512    Objlist initlist;
2513    RtldLockState mlockstate;
2514    int result;
2515
2516    objlist_init(&initlist);
2517
2518    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2519	wlock_acquire(rtld_bind_lock, &mlockstate);
2520	lockstate = &mlockstate;
2521    }
2522    GDB_STATE(RT_ADD,NULL);
2523
2524    old_obj_tail = obj_tail;
2525    obj = NULL;
2526    if (name == NULL && fd == -1) {
2527	obj = obj_main;
2528	obj->refcount++;
2529    } else {
2530	obj = load_object(name, fd, refobj, lo_flags);
2531    }
2532
2533    if (obj) {
2534	obj->dl_refcount++;
2535	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2536	    objlist_push_tail(&list_global, obj);
2537	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2538	    assert(*old_obj_tail == obj);
2539	    result = load_needed_objects(obj,
2540		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2541	    init_dag(obj);
2542	    ref_dag(obj);
2543	    if (result != -1)
2544		result = rtld_verify_versions(&obj->dagmembers);
2545	    if (result != -1 && ld_tracing)
2546		goto trace;
2547	    if (result == -1 || (relocate_objects(obj,
2548	     (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2549	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2550	      lockstate)) == -1) {
2551		dlopen_cleanup(obj);
2552		obj = NULL;
2553	    } else if (lo_flags & RTLD_LO_EARLY) {
2554		/*
2555		 * Do not call the init functions for early loaded
2556		 * filtees.  The image is still not initialized enough
2557		 * for them to work.
2558		 *
2559		 * Our object is found by the global object list and
2560		 * will be ordered among all init calls done right
2561		 * before transferring control to main.
2562		 */
2563	    } else {
2564		/* Make list of init functions to call. */
2565		initlist_add_objects(obj, &obj->next, &initlist);
2566	    }
2567	} else {
2568
2569	    /*
2570	     * Bump the reference counts for objects on this DAG.  If
2571	     * this is the first dlopen() call for the object that was
2572	     * already loaded as a dependency, initialize the dag
2573	     * starting at it.
2574	     */
2575	    init_dag(obj);
2576	    ref_dag(obj);
2577
2578	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2579		goto trace;
2580	}
2581	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2582	  obj->z_nodelete) && !obj->ref_nodel) {
2583	    dbg("obj %s nodelete", obj->path);
2584	    ref_dag(obj);
2585	    obj->z_nodelete = obj->ref_nodel = true;
2586	}
2587    }
2588
2589    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2590	name);
2591    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2592
2593    if (!(lo_flags & RTLD_LO_EARLY)) {
2594	map_stacks_exec(lockstate);
2595    }
2596
2597    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2598      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2599      lockstate) == -1) {
2600	objlist_clear(&initlist);
2601	dlopen_cleanup(obj);
2602	if (lockstate == &mlockstate)
2603	    lock_release(rtld_bind_lock, lockstate);
2604	return (NULL);
2605    }
2606
2607    if (!(lo_flags & RTLD_LO_EARLY)) {
2608	/* Call the init functions. */
2609	objlist_call_init(&initlist, lockstate);
2610    }
2611    objlist_clear(&initlist);
2612    if (lockstate == &mlockstate)
2613	lock_release(rtld_bind_lock, lockstate);
2614    return obj;
2615trace:
2616    trace_loaded_objects(obj);
2617    if (lockstate == &mlockstate)
2618	lock_release(rtld_bind_lock, lockstate);
2619    exit(0);
2620}
2621
2622static void *
2623do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2624    int flags)
2625{
2626    DoneList donelist;
2627    const Obj_Entry *obj, *defobj;
2628    const Elf_Sym *def;
2629    SymLook req;
2630    RtldLockState lockstate;
2631#ifndef __ia64__
2632    tls_index ti;
2633#endif
2634    int res;
2635
2636    def = NULL;
2637    defobj = NULL;
2638    symlook_init(&req, name);
2639    req.ventry = ve;
2640    req.flags = flags | SYMLOOK_IN_PLT;
2641    req.lockstate = &lockstate;
2642
2643    rlock_acquire(rtld_bind_lock, &lockstate);
2644    if (sigsetjmp(lockstate.env, 0) != 0)
2645	    lock_upgrade(rtld_bind_lock, &lockstate);
2646    if (handle == NULL || handle == RTLD_NEXT ||
2647	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2648
2649	if ((obj = obj_from_addr(retaddr)) == NULL) {
2650	    _rtld_error("Cannot determine caller's shared object");
2651	    lock_release(rtld_bind_lock, &lockstate);
2652	    return NULL;
2653	}
2654	if (handle == NULL) {	/* Just the caller's shared object. */
2655	    res = symlook_obj(&req, obj);
2656	    if (res == 0) {
2657		def = req.sym_out;
2658		defobj = req.defobj_out;
2659	    }
2660	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2661		   handle == RTLD_SELF) { /* ... caller included */
2662	    if (handle == RTLD_NEXT)
2663		obj = obj->next;
2664	    for (; obj != NULL; obj = obj->next) {
2665		res = symlook_obj(&req, obj);
2666		if (res == 0) {
2667		    if (def == NULL ||
2668		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2669			def = req.sym_out;
2670			defobj = req.defobj_out;
2671			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2672			    break;
2673		    }
2674		}
2675	    }
2676	    /*
2677	     * Search the dynamic linker itself, and possibly resolve the
2678	     * symbol from there.  This is how the application links to
2679	     * dynamic linker services such as dlopen.
2680	     */
2681	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2682		res = symlook_obj(&req, &obj_rtld);
2683		if (res == 0) {
2684		    def = req.sym_out;
2685		    defobj = req.defobj_out;
2686		}
2687	    }
2688	} else {
2689	    assert(handle == RTLD_DEFAULT);
2690	    res = symlook_default(&req, obj);
2691	    if (res == 0) {
2692		defobj = req.defobj_out;
2693		def = req.sym_out;
2694	    }
2695	}
2696    } else {
2697	if ((obj = dlcheck(handle)) == NULL) {
2698	    lock_release(rtld_bind_lock, &lockstate);
2699	    return NULL;
2700	}
2701
2702	donelist_init(&donelist);
2703	if (obj->mainprog) {
2704            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
2705	    res = symlook_global(&req, &donelist);
2706	    if (res == 0) {
2707		def = req.sym_out;
2708		defobj = req.defobj_out;
2709	    }
2710	    /*
2711	     * Search the dynamic linker itself, and possibly resolve the
2712	     * symbol from there.  This is how the application links to
2713	     * dynamic linker services such as dlopen.
2714	     */
2715	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2716		res = symlook_obj(&req, &obj_rtld);
2717		if (res == 0) {
2718		    def = req.sym_out;
2719		    defobj = req.defobj_out;
2720		}
2721	    }
2722	}
2723	else {
2724	    /* Search the whole DAG rooted at the given object. */
2725	    res = symlook_list(&req, &obj->dagmembers, &donelist);
2726	    if (res == 0) {
2727		def = req.sym_out;
2728		defobj = req.defobj_out;
2729	    }
2730	}
2731    }
2732
2733    if (def != NULL) {
2734	lock_release(rtld_bind_lock, &lockstate);
2735
2736	/*
2737	 * The value required by the caller is derived from the value
2738	 * of the symbol. For the ia64 architecture, we need to
2739	 * construct a function descriptor which the caller can use to
2740	 * call the function with the right 'gp' value. For other
2741	 * architectures and for non-functions, the value is simply
2742	 * the relocated value of the symbol.
2743	 */
2744	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2745	    return (make_function_pointer(def, defobj));
2746	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
2747	    return (rtld_resolve_ifunc(defobj, def));
2748	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
2749#ifdef __ia64__
2750	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
2751#else
2752	    ti.ti_module = defobj->tlsindex;
2753	    ti.ti_offset = def->st_value;
2754	    return (__tls_get_addr(&ti));
2755#endif
2756	} else
2757	    return (defobj->relocbase + def->st_value);
2758    }
2759
2760    _rtld_error("Undefined symbol \"%s\"", name);
2761    lock_release(rtld_bind_lock, &lockstate);
2762    return NULL;
2763}
2764
2765void *
2766dlsym(void *handle, const char *name)
2767{
2768	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2769	    SYMLOOK_DLSYM);
2770}
2771
2772dlfunc_t
2773dlfunc(void *handle, const char *name)
2774{
2775	union {
2776		void *d;
2777		dlfunc_t f;
2778	} rv;
2779
2780	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2781	    SYMLOOK_DLSYM);
2782	return (rv.f);
2783}
2784
2785void *
2786dlvsym(void *handle, const char *name, const char *version)
2787{
2788	Ver_Entry ventry;
2789
2790	ventry.name = version;
2791	ventry.file = NULL;
2792	ventry.hash = elf_hash(version);
2793	ventry.flags= 0;
2794	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2795	    SYMLOOK_DLSYM);
2796}
2797
2798int
2799_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2800{
2801    const Obj_Entry *obj;
2802    RtldLockState lockstate;
2803
2804    rlock_acquire(rtld_bind_lock, &lockstate);
2805    obj = obj_from_addr(addr);
2806    if (obj == NULL) {
2807        _rtld_error("No shared object contains address");
2808	lock_release(rtld_bind_lock, &lockstate);
2809        return (0);
2810    }
2811    rtld_fill_dl_phdr_info(obj, phdr_info);
2812    lock_release(rtld_bind_lock, &lockstate);
2813    return (1);
2814}
2815
2816int
2817dladdr(const void *addr, Dl_info *info)
2818{
2819    const Obj_Entry *obj;
2820    const Elf_Sym *def;
2821    void *symbol_addr;
2822    unsigned long symoffset;
2823    RtldLockState lockstate;
2824
2825    rlock_acquire(rtld_bind_lock, &lockstate);
2826    obj = obj_from_addr(addr);
2827    if (obj == NULL) {
2828        _rtld_error("No shared object contains address");
2829	lock_release(rtld_bind_lock, &lockstate);
2830        return 0;
2831    }
2832    info->dli_fname = obj->path;
2833    info->dli_fbase = obj->mapbase;
2834    info->dli_saddr = (void *)0;
2835    info->dli_sname = NULL;
2836
2837    /*
2838     * Walk the symbol list looking for the symbol whose address is
2839     * closest to the address sent in.
2840     */
2841    for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2842        def = obj->symtab + symoffset;
2843
2844        /*
2845         * For skip the symbol if st_shndx is either SHN_UNDEF or
2846         * SHN_COMMON.
2847         */
2848        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2849            continue;
2850
2851        /*
2852         * If the symbol is greater than the specified address, or if it
2853         * is further away from addr than the current nearest symbol,
2854         * then reject it.
2855         */
2856        symbol_addr = obj->relocbase + def->st_value;
2857        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2858            continue;
2859
2860        /* Update our idea of the nearest symbol. */
2861        info->dli_sname = obj->strtab + def->st_name;
2862        info->dli_saddr = symbol_addr;
2863
2864        /* Exact match? */
2865        if (info->dli_saddr == addr)
2866            break;
2867    }
2868    lock_release(rtld_bind_lock, &lockstate);
2869    return 1;
2870}
2871
2872int
2873dlinfo(void *handle, int request, void *p)
2874{
2875    const Obj_Entry *obj;
2876    RtldLockState lockstate;
2877    int error;
2878
2879    rlock_acquire(rtld_bind_lock, &lockstate);
2880
2881    if (handle == NULL || handle == RTLD_SELF) {
2882	void *retaddr;
2883
2884	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2885	if ((obj = obj_from_addr(retaddr)) == NULL)
2886	    _rtld_error("Cannot determine caller's shared object");
2887    } else
2888	obj = dlcheck(handle);
2889
2890    if (obj == NULL) {
2891	lock_release(rtld_bind_lock, &lockstate);
2892	return (-1);
2893    }
2894
2895    error = 0;
2896    switch (request) {
2897    case RTLD_DI_LINKMAP:
2898	*((struct link_map const **)p) = &obj->linkmap;
2899	break;
2900    case RTLD_DI_ORIGIN:
2901	error = rtld_dirname(obj->path, p);
2902	break;
2903
2904    case RTLD_DI_SERINFOSIZE:
2905    case RTLD_DI_SERINFO:
2906	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2907	break;
2908
2909    default:
2910	_rtld_error("Invalid request %d passed to dlinfo()", request);
2911	error = -1;
2912    }
2913
2914    lock_release(rtld_bind_lock, &lockstate);
2915
2916    return (error);
2917}
2918
2919static void
2920rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
2921{
2922
2923	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
2924	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
2925	    STAILQ_FIRST(&obj->names)->name : obj->path;
2926	phdr_info->dlpi_phdr = obj->phdr;
2927	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2928	phdr_info->dlpi_tls_modid = obj->tlsindex;
2929	phdr_info->dlpi_tls_data = obj->tlsinit;
2930	phdr_info->dlpi_adds = obj_loads;
2931	phdr_info->dlpi_subs = obj_loads - obj_count;
2932}
2933
2934int
2935dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2936{
2937    struct dl_phdr_info phdr_info;
2938    const Obj_Entry *obj;
2939    RtldLockState bind_lockstate, phdr_lockstate;
2940    int error;
2941
2942    wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
2943    rlock_acquire(rtld_bind_lock, &bind_lockstate);
2944
2945    error = 0;
2946
2947    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2948	rtld_fill_dl_phdr_info(obj, &phdr_info);
2949	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2950		break;
2951
2952    }
2953    lock_release(rtld_bind_lock, &bind_lockstate);
2954    lock_release(rtld_phdr_lock, &phdr_lockstate);
2955
2956    return (error);
2957}
2958
2959struct fill_search_info_args {
2960    int		 request;
2961    unsigned int flags;
2962    Dl_serinfo  *serinfo;
2963    Dl_serpath  *serpath;
2964    char	*strspace;
2965};
2966
2967static void *
2968fill_search_info(const char *dir, size_t dirlen, void *param)
2969{
2970    struct fill_search_info_args *arg;
2971
2972    arg = param;
2973
2974    if (arg->request == RTLD_DI_SERINFOSIZE) {
2975	arg->serinfo->dls_cnt ++;
2976	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2977    } else {
2978	struct dl_serpath *s_entry;
2979
2980	s_entry = arg->serpath;
2981	s_entry->dls_name  = arg->strspace;
2982	s_entry->dls_flags = arg->flags;
2983
2984	strncpy(arg->strspace, dir, dirlen);
2985	arg->strspace[dirlen] = '\0';
2986
2987	arg->strspace += dirlen + 1;
2988	arg->serpath++;
2989    }
2990
2991    return (NULL);
2992}
2993
2994static int
2995do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2996{
2997    struct dl_serinfo _info;
2998    struct fill_search_info_args args;
2999
3000    args.request = RTLD_DI_SERINFOSIZE;
3001    args.serinfo = &_info;
3002
3003    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3004    _info.dls_cnt  = 0;
3005
3006    path_enumerate(ld_library_path, fill_search_info, &args);
3007    path_enumerate(obj->rpath, fill_search_info, &args);
3008    path_enumerate(gethints(), fill_search_info, &args);
3009    path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3010
3011
3012    if (request == RTLD_DI_SERINFOSIZE) {
3013	info->dls_size = _info.dls_size;
3014	info->dls_cnt = _info.dls_cnt;
3015	return (0);
3016    }
3017
3018    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3019	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3020	return (-1);
3021    }
3022
3023    args.request  = RTLD_DI_SERINFO;
3024    args.serinfo  = info;
3025    args.serpath  = &info->dls_serpath[0];
3026    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3027
3028    args.flags = LA_SER_LIBPATH;
3029    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3030	return (-1);
3031
3032    args.flags = LA_SER_RUNPATH;
3033    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3034	return (-1);
3035
3036    args.flags = LA_SER_CONFIG;
3037    if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
3038	return (-1);
3039
3040    args.flags = LA_SER_DEFAULT;
3041    if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3042	return (-1);
3043    return (0);
3044}
3045
3046static int
3047rtld_dirname(const char *path, char *bname)
3048{
3049    const char *endp;
3050
3051    /* Empty or NULL string gets treated as "." */
3052    if (path == NULL || *path == '\0') {
3053	bname[0] = '.';
3054	bname[1] = '\0';
3055	return (0);
3056    }
3057
3058    /* Strip trailing slashes */
3059    endp = path + strlen(path) - 1;
3060    while (endp > path && *endp == '/')
3061	endp--;
3062
3063    /* Find the start of the dir */
3064    while (endp > path && *endp != '/')
3065	endp--;
3066
3067    /* Either the dir is "/" or there are no slashes */
3068    if (endp == path) {
3069	bname[0] = *endp == '/' ? '/' : '.';
3070	bname[1] = '\0';
3071	return (0);
3072    } else {
3073	do {
3074	    endp--;
3075	} while (endp > path && *endp == '/');
3076    }
3077
3078    if (endp - path + 2 > PATH_MAX)
3079    {
3080	_rtld_error("Filename is too long: %s", path);
3081	return(-1);
3082    }
3083
3084    strncpy(bname, path, endp - path + 1);
3085    bname[endp - path + 1] = '\0';
3086    return (0);
3087}
3088
3089static int
3090rtld_dirname_abs(const char *path, char *base)
3091{
3092	char base_rel[PATH_MAX];
3093
3094	if (rtld_dirname(path, base) == -1)
3095		return (-1);
3096	if (base[0] == '/')
3097		return (0);
3098	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3099	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3100	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3101		return (-1);
3102	strcpy(base, base_rel);
3103	return (0);
3104}
3105
3106static void
3107linkmap_add(Obj_Entry *obj)
3108{
3109    struct link_map *l = &obj->linkmap;
3110    struct link_map *prev;
3111
3112    obj->linkmap.l_name = obj->path;
3113    obj->linkmap.l_addr = obj->mapbase;
3114    obj->linkmap.l_ld = obj->dynamic;
3115#ifdef __mips__
3116    /* GDB needs load offset on MIPS to use the symbols */
3117    obj->linkmap.l_offs = obj->relocbase;
3118#endif
3119
3120    if (r_debug.r_map == NULL) {
3121	r_debug.r_map = l;
3122	return;
3123    }
3124
3125    /*
3126     * Scan to the end of the list, but not past the entry for the
3127     * dynamic linker, which we want to keep at the very end.
3128     */
3129    for (prev = r_debug.r_map;
3130      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3131      prev = prev->l_next)
3132	;
3133
3134    /* Link in the new entry. */
3135    l->l_prev = prev;
3136    l->l_next = prev->l_next;
3137    if (l->l_next != NULL)
3138	l->l_next->l_prev = l;
3139    prev->l_next = l;
3140}
3141
3142static void
3143linkmap_delete(Obj_Entry *obj)
3144{
3145    struct link_map *l = &obj->linkmap;
3146
3147    if (l->l_prev == NULL) {
3148	if ((r_debug.r_map = l->l_next) != NULL)
3149	    l->l_next->l_prev = NULL;
3150	return;
3151    }
3152
3153    if ((l->l_prev->l_next = l->l_next) != NULL)
3154	l->l_next->l_prev = l->l_prev;
3155}
3156
3157/*
3158 * Function for the debugger to set a breakpoint on to gain control.
3159 *
3160 * The two parameters allow the debugger to easily find and determine
3161 * what the runtime loader is doing and to whom it is doing it.
3162 *
3163 * When the loadhook trap is hit (r_debug_state, set at program
3164 * initialization), the arguments can be found on the stack:
3165 *
3166 *  +8   struct link_map *m
3167 *  +4   struct r_debug  *rd
3168 *  +0   RetAddr
3169 */
3170void
3171r_debug_state(struct r_debug* rd, struct link_map *m)
3172{
3173    /*
3174     * The following is a hack to force the compiler to emit calls to
3175     * this function, even when optimizing.  If the function is empty,
3176     * the compiler is not obliged to emit any code for calls to it,
3177     * even when marked __noinline.  However, gdb depends on those
3178     * calls being made.
3179     */
3180    __asm __volatile("" : : : "memory");
3181}
3182
3183/*
3184 * Get address of the pointer variable in the main program.
3185 * Prefer non-weak symbol over the weak one.
3186 */
3187static const void **
3188get_program_var_addr(const char *name, RtldLockState *lockstate)
3189{
3190    SymLook req;
3191    DoneList donelist;
3192
3193    symlook_init(&req, name);
3194    req.lockstate = lockstate;
3195    donelist_init(&donelist);
3196    if (symlook_global(&req, &donelist) != 0)
3197	return (NULL);
3198    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3199	return ((const void **)make_function_pointer(req.sym_out,
3200	  req.defobj_out));
3201    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3202	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3203    else
3204	return ((const void **)(req.defobj_out->relocbase +
3205	  req.sym_out->st_value));
3206}
3207
3208/*
3209 * Set a pointer variable in the main program to the given value.  This
3210 * is used to set key variables such as "environ" before any of the
3211 * init functions are called.
3212 */
3213static void
3214set_program_var(const char *name, const void *value)
3215{
3216    const void **addr;
3217
3218    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3219	dbg("\"%s\": *%p <-- %p", name, addr, value);
3220	*addr = value;
3221    }
3222}
3223
3224/*
3225 * Search the global objects, including dependencies and main object,
3226 * for the given symbol.
3227 */
3228static int
3229symlook_global(SymLook *req, DoneList *donelist)
3230{
3231    SymLook req1;
3232    const Objlist_Entry *elm;
3233    int res;
3234
3235    symlook_init_from_req(&req1, req);
3236
3237    /* Search all objects loaded at program start up. */
3238    if (req->defobj_out == NULL ||
3239      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3240	res = symlook_list(&req1, &list_main, donelist);
3241	if (res == 0 && (req->defobj_out == NULL ||
3242	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3243	    req->sym_out = req1.sym_out;
3244	    req->defobj_out = req1.defobj_out;
3245	    assert(req->defobj_out != NULL);
3246	}
3247    }
3248
3249    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3250    STAILQ_FOREACH(elm, &list_global, link) {
3251	if (req->defobj_out != NULL &&
3252	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3253	    break;
3254	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3255	if (res == 0 && (req->defobj_out == NULL ||
3256	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3257	    req->sym_out = req1.sym_out;
3258	    req->defobj_out = req1.defobj_out;
3259	    assert(req->defobj_out != NULL);
3260	}
3261    }
3262
3263    return (req->sym_out != NULL ? 0 : ESRCH);
3264}
3265
3266/*
3267 * Given a symbol name in a referencing object, find the corresponding
3268 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3269 * no definition was found.  Returns a pointer to the Obj_Entry of the
3270 * defining object via the reference parameter DEFOBJ_OUT.
3271 */
3272static int
3273symlook_default(SymLook *req, const Obj_Entry *refobj)
3274{
3275    DoneList donelist;
3276    const Objlist_Entry *elm;
3277    SymLook req1;
3278    int res;
3279
3280    donelist_init(&donelist);
3281    symlook_init_from_req(&req1, req);
3282
3283    /* Look first in the referencing object if linked symbolically. */
3284    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3285	res = symlook_obj(&req1, refobj);
3286	if (res == 0) {
3287	    req->sym_out = req1.sym_out;
3288	    req->defobj_out = req1.defobj_out;
3289	    assert(req->defobj_out != NULL);
3290	}
3291    }
3292
3293    symlook_global(req, &donelist);
3294
3295    /* Search all dlopened DAGs containing the referencing object. */
3296    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3297	if (req->sym_out != NULL &&
3298	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3299	    break;
3300	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3301	if (res == 0 && (req->sym_out == NULL ||
3302	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3303	    req->sym_out = req1.sym_out;
3304	    req->defobj_out = req1.defobj_out;
3305	    assert(req->defobj_out != NULL);
3306	}
3307    }
3308
3309    /*
3310     * Search the dynamic linker itself, and possibly resolve the
3311     * symbol from there.  This is how the application links to
3312     * dynamic linker services such as dlopen.
3313     */
3314    if (req->sym_out == NULL ||
3315      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3316	res = symlook_obj(&req1, &obj_rtld);
3317	if (res == 0) {
3318	    req->sym_out = req1.sym_out;
3319	    req->defobj_out = req1.defobj_out;
3320	    assert(req->defobj_out != NULL);
3321	}
3322    }
3323
3324    return (req->sym_out != NULL ? 0 : ESRCH);
3325}
3326
3327static int
3328symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3329{
3330    const Elf_Sym *def;
3331    const Obj_Entry *defobj;
3332    const Objlist_Entry *elm;
3333    SymLook req1;
3334    int res;
3335
3336    def = NULL;
3337    defobj = NULL;
3338    STAILQ_FOREACH(elm, objlist, link) {
3339	if (donelist_check(dlp, elm->obj))
3340	    continue;
3341	symlook_init_from_req(&req1, req);
3342	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3343	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3344		def = req1.sym_out;
3345		defobj = req1.defobj_out;
3346		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3347		    break;
3348	    }
3349	}
3350    }
3351    if (def != NULL) {
3352	req->sym_out = def;
3353	req->defobj_out = defobj;
3354	return (0);
3355    }
3356    return (ESRCH);
3357}
3358
3359/*
3360 * Search the chain of DAGS cointed to by the given Needed_Entry
3361 * for a symbol of the given name.  Each DAG is scanned completely
3362 * before advancing to the next one.  Returns a pointer to the symbol,
3363 * or NULL if no definition was found.
3364 */
3365static int
3366symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3367{
3368    const Elf_Sym *def;
3369    const Needed_Entry *n;
3370    const Obj_Entry *defobj;
3371    SymLook req1;
3372    int res;
3373
3374    def = NULL;
3375    defobj = NULL;
3376    symlook_init_from_req(&req1, req);
3377    for (n = needed; n != NULL; n = n->next) {
3378	if (n->obj == NULL ||
3379	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3380	    continue;
3381	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3382	    def = req1.sym_out;
3383	    defobj = req1.defobj_out;
3384	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3385		break;
3386	}
3387    }
3388    if (def != NULL) {
3389	req->sym_out = def;
3390	req->defobj_out = defobj;
3391	return (0);
3392    }
3393    return (ESRCH);
3394}
3395
3396/*
3397 * Search the symbol table of a single shared object for a symbol of
3398 * the given name and version, if requested.  Returns a pointer to the
3399 * symbol, or NULL if no definition was found.  If the object is
3400 * filter, return filtered symbol from filtee.
3401 *
3402 * The symbol's hash value is passed in for efficiency reasons; that
3403 * eliminates many recomputations of the hash value.
3404 */
3405int
3406symlook_obj(SymLook *req, const Obj_Entry *obj)
3407{
3408    DoneList donelist;
3409    SymLook req1;
3410    int flags, res, mres;
3411
3412    mres = symlook_obj1(req, obj);
3413    if (mres == 0) {
3414	if (obj->needed_filtees != NULL) {
3415	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3416	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3417	    donelist_init(&donelist);
3418	    symlook_init_from_req(&req1, req);
3419	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3420	    if (res == 0) {
3421		req->sym_out = req1.sym_out;
3422		req->defobj_out = req1.defobj_out;
3423	    }
3424	    return (res);
3425	}
3426	if (obj->needed_aux_filtees != NULL) {
3427	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3428	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3429	    donelist_init(&donelist);
3430	    symlook_init_from_req(&req1, req);
3431	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3432	    if (res == 0) {
3433		req->sym_out = req1.sym_out;
3434		req->defobj_out = req1.defobj_out;
3435		return (res);
3436	    }
3437	}
3438    }
3439    return (mres);
3440}
3441
3442static int
3443symlook_obj1(SymLook *req, const Obj_Entry *obj)
3444{
3445    unsigned long symnum;
3446    const Elf_Sym *vsymp;
3447    Elf_Versym verndx;
3448    int vcount;
3449
3450    if (obj->buckets == NULL)
3451	return (ESRCH);
3452
3453    vsymp = NULL;
3454    vcount = 0;
3455    symnum = obj->buckets[req->hash % obj->nbuckets];
3456
3457    for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3458	const Elf_Sym *symp;
3459	const char *strp;
3460
3461	if (symnum >= obj->nchains)
3462	    return (ESRCH);	/* Bad object */
3463
3464	symp = obj->symtab + symnum;
3465	strp = obj->strtab + symp->st_name;
3466
3467	switch (ELF_ST_TYPE(symp->st_info)) {
3468	case STT_FUNC:
3469	case STT_NOTYPE:
3470	case STT_OBJECT:
3471	case STT_GNU_IFUNC:
3472	    if (symp->st_value == 0)
3473		continue;
3474		/* fallthrough */
3475	case STT_TLS:
3476	    if (symp->st_shndx != SHN_UNDEF)
3477		break;
3478#ifndef __mips__
3479	    else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3480		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3481		break;
3482		/* fallthrough */
3483#endif
3484	default:
3485	    continue;
3486	}
3487	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3488	    continue;
3489
3490	if (req->ventry == NULL) {
3491	    if (obj->versyms != NULL) {
3492		verndx = VER_NDX(obj->versyms[symnum]);
3493		if (verndx > obj->vernum) {
3494		    _rtld_error("%s: symbol %s references wrong version %d",
3495			obj->path, obj->strtab + symnum, verndx);
3496		    continue;
3497		}
3498		/*
3499		 * If we are not called from dlsym (i.e. this is a normal
3500		 * relocation from unversioned binary), accept the symbol
3501		 * immediately if it happens to have first version after
3502		 * this shared object became versioned. Otherwise, if
3503		 * symbol is versioned and not hidden, remember it. If it
3504		 * is the only symbol with this name exported by the
3505		 * shared object, it will be returned as a match at the
3506		 * end of the function. If symbol is global (verndx < 2)
3507		 * accept it unconditionally.
3508		 */
3509		if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3510		  verndx == VER_NDX_GIVEN) {
3511		    req->sym_out = symp;
3512		    req->defobj_out = obj;
3513		    return (0);
3514		}
3515		else if (verndx >= VER_NDX_GIVEN) {
3516		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
3517			if (vsymp == NULL)
3518			    vsymp = symp;
3519			vcount ++;
3520		    }
3521		    continue;
3522		}
3523	    }
3524	    req->sym_out = symp;
3525	    req->defobj_out = obj;
3526	    return (0);
3527	} else {
3528	    if (obj->versyms == NULL) {
3529		if (object_match_name(obj, req->ventry->name)) {
3530		    _rtld_error("%s: object %s should provide version %s for "
3531			"symbol %s", obj_rtld.path, obj->path,
3532			req->ventry->name, obj->strtab + symnum);
3533		    continue;
3534		}
3535	    } else {
3536		verndx = VER_NDX(obj->versyms[symnum]);
3537		if (verndx > obj->vernum) {
3538		    _rtld_error("%s: symbol %s references wrong version %d",
3539			obj->path, obj->strtab + symnum, verndx);
3540		    continue;
3541		}
3542		if (obj->vertab[verndx].hash != req->ventry->hash ||
3543		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3544		    /*
3545		     * Version does not match. Look if this is a global symbol
3546		     * and if it is not hidden. If global symbol (verndx < 2)
3547		     * is available, use it. Do not return symbol if we are
3548		     * called by dlvsym, because dlvsym looks for a specific
3549		     * version and default one is not what dlvsym wants.
3550		     */
3551		    if ((req->flags & SYMLOOK_DLSYM) ||
3552			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
3553			(verndx >= VER_NDX_GIVEN))
3554			continue;
3555		}
3556	    }
3557	    req->sym_out = symp;
3558	    req->defobj_out = obj;
3559	    return (0);
3560	}
3561    }
3562    if (vcount == 1) {
3563	req->sym_out = vsymp;
3564	req->defobj_out = obj;
3565	return (0);
3566    }
3567    return (ESRCH);
3568}
3569
3570static void
3571trace_loaded_objects(Obj_Entry *obj)
3572{
3573    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3574    int		c;
3575
3576    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3577	main_local = "";
3578
3579    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3580	fmt1 = "\t%o => %p (%x)\n";
3581
3582    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3583	fmt2 = "\t%o (%x)\n";
3584
3585    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3586
3587    for (; obj; obj = obj->next) {
3588	Needed_Entry		*needed;
3589	char			*name, *path;
3590	bool			is_lib;
3591
3592	if (list_containers && obj->needed != NULL)
3593	    rtld_printf("%s:\n", obj->path);
3594	for (needed = obj->needed; needed; needed = needed->next) {
3595	    if (needed->obj != NULL) {
3596		if (needed->obj->traced && !list_containers)
3597		    continue;
3598		needed->obj->traced = true;
3599		path = needed->obj->path;
3600	    } else
3601		path = "not found";
3602
3603	    name = (char *)obj->strtab + needed->name;
3604	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3605
3606	    fmt = is_lib ? fmt1 : fmt2;
3607	    while ((c = *fmt++) != '\0') {
3608		switch (c) {
3609		default:
3610		    rtld_putchar(c);
3611		    continue;
3612		case '\\':
3613		    switch (c = *fmt) {
3614		    case '\0':
3615			continue;
3616		    case 'n':
3617			rtld_putchar('\n');
3618			break;
3619		    case 't':
3620			rtld_putchar('\t');
3621			break;
3622		    }
3623		    break;
3624		case '%':
3625		    switch (c = *fmt) {
3626		    case '\0':
3627			continue;
3628		    case '%':
3629		    default:
3630			rtld_putchar(c);
3631			break;
3632		    case 'A':
3633			rtld_putstr(main_local);
3634			break;
3635		    case 'a':
3636			rtld_putstr(obj_main->path);
3637			break;
3638		    case 'o':
3639			rtld_putstr(name);
3640			break;
3641#if 0
3642		    case 'm':
3643			rtld_printf("%d", sodp->sod_major);
3644			break;
3645		    case 'n':
3646			rtld_printf("%d", sodp->sod_minor);
3647			break;
3648#endif
3649		    case 'p':
3650			rtld_putstr(path);
3651			break;
3652		    case 'x':
3653			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
3654			  0);
3655			break;
3656		    }
3657		    break;
3658		}
3659		++fmt;
3660	    }
3661	}
3662    }
3663}
3664
3665/*
3666 * Unload a dlopened object and its dependencies from memory and from
3667 * our data structures.  It is assumed that the DAG rooted in the
3668 * object has already been unreferenced, and that the object has a
3669 * reference count of 0.
3670 */
3671static void
3672unload_object(Obj_Entry *root)
3673{
3674    Obj_Entry *obj;
3675    Obj_Entry **linkp;
3676
3677    assert(root->refcount == 0);
3678
3679    /*
3680     * Pass over the DAG removing unreferenced objects from
3681     * appropriate lists.
3682     */
3683    unlink_object(root);
3684
3685    /* Unmap all objects that are no longer referenced. */
3686    linkp = &obj_list->next;
3687    while ((obj = *linkp) != NULL) {
3688	if (obj->refcount == 0) {
3689	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3690		obj->path);
3691	    dbg("unloading \"%s\"", obj->path);
3692	    unload_filtees(root);
3693	    munmap(obj->mapbase, obj->mapsize);
3694	    linkmap_delete(obj);
3695	    *linkp = obj->next;
3696	    obj_count--;
3697	    obj_free(obj);
3698	} else
3699	    linkp = &obj->next;
3700    }
3701    obj_tail = linkp;
3702}
3703
3704static void
3705unlink_object(Obj_Entry *root)
3706{
3707    Objlist_Entry *elm;
3708
3709    if (root->refcount == 0) {
3710	/* Remove the object from the RTLD_GLOBAL list. */
3711	objlist_remove(&list_global, root);
3712
3713    	/* Remove the object from all objects' DAG lists. */
3714    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3715	    objlist_remove(&elm->obj->dldags, root);
3716	    if (elm->obj != root)
3717		unlink_object(elm->obj);
3718	}
3719    }
3720}
3721
3722static void
3723ref_dag(Obj_Entry *root)
3724{
3725    Objlist_Entry *elm;
3726
3727    assert(root->dag_inited);
3728    STAILQ_FOREACH(elm, &root->dagmembers, link)
3729	elm->obj->refcount++;
3730}
3731
3732static void
3733unref_dag(Obj_Entry *root)
3734{
3735    Objlist_Entry *elm;
3736
3737    assert(root->dag_inited);
3738    STAILQ_FOREACH(elm, &root->dagmembers, link)
3739	elm->obj->refcount--;
3740}
3741
3742/*
3743 * Common code for MD __tls_get_addr().
3744 */
3745static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
3746static void *
3747tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
3748{
3749    Elf_Addr *newdtv, *dtv;
3750    RtldLockState lockstate;
3751    int to_copy;
3752
3753    dtv = *dtvp;
3754    /* Check dtv generation in case new modules have arrived */
3755    if (dtv[0] != tls_dtv_generation) {
3756	wlock_acquire(rtld_bind_lock, &lockstate);
3757	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
3758	to_copy = dtv[1];
3759	if (to_copy > tls_max_index)
3760	    to_copy = tls_max_index;
3761	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3762	newdtv[0] = tls_dtv_generation;
3763	newdtv[1] = tls_max_index;
3764	free(dtv);
3765	lock_release(rtld_bind_lock, &lockstate);
3766	dtv = *dtvp = newdtv;
3767    }
3768
3769    /* Dynamically allocate module TLS if necessary */
3770    if (dtv[index + 1] == 0) {
3771	/* Signal safe, wlock will block out signals. */
3772	wlock_acquire(rtld_bind_lock, &lockstate);
3773	if (!dtv[index + 1])
3774	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3775	lock_release(rtld_bind_lock, &lockstate);
3776    }
3777    return ((void *)(dtv[index + 1] + offset));
3778}
3779
3780void *
3781tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
3782{
3783	Elf_Addr *dtv;
3784
3785	dtv = *dtvp;
3786	/* Check dtv generation in case new modules have arrived */
3787	if (__predict_true(dtv[0] == tls_dtv_generation &&
3788	    dtv[index + 1] != 0))
3789		return ((void *)(dtv[index + 1] + offset));
3790	return (tls_get_addr_slow(dtvp, index, offset));
3791}
3792
3793#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
3794
3795/*
3796 * Allocate Static TLS using the Variant I method.
3797 */
3798void *
3799allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3800{
3801    Obj_Entry *obj;
3802    char *tcb;
3803    Elf_Addr **tls;
3804    Elf_Addr *dtv;
3805    Elf_Addr addr;
3806    int i;
3807
3808    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
3809	return (oldtcb);
3810
3811    assert(tcbsize >= TLS_TCB_SIZE);
3812    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
3813    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
3814
3815    if (oldtcb != NULL) {
3816	memcpy(tls, oldtcb, tls_static_space);
3817	free(oldtcb);
3818
3819	/* Adjust the DTV. */
3820	dtv = tls[0];
3821	for (i = 0; i < dtv[1]; i++) {
3822	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
3823		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
3824		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
3825	    }
3826	}
3827    } else {
3828	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
3829	tls[0] = dtv;
3830	dtv[0] = tls_dtv_generation;
3831	dtv[1] = tls_max_index;
3832
3833	for (obj = objs; obj; obj = obj->next) {
3834	    if (obj->tlsoffset > 0) {
3835		addr = (Elf_Addr)tls + obj->tlsoffset;
3836		if (obj->tlsinitsize > 0)
3837		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3838		if (obj->tlssize > obj->tlsinitsize)
3839		    memset((void*) (addr + obj->tlsinitsize), 0,
3840			   obj->tlssize - obj->tlsinitsize);
3841		dtv[obj->tlsindex + 1] = addr;
3842	    }
3843	}
3844    }
3845
3846    return (tcb);
3847}
3848
3849void
3850free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3851{
3852    Elf_Addr *dtv;
3853    Elf_Addr tlsstart, tlsend;
3854    int dtvsize, i;
3855
3856    assert(tcbsize >= TLS_TCB_SIZE);
3857
3858    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
3859    tlsend = tlsstart + tls_static_space;
3860
3861    dtv = *(Elf_Addr **)tlsstart;
3862    dtvsize = dtv[1];
3863    for (i = 0; i < dtvsize; i++) {
3864	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
3865	    free((void*)dtv[i+2]);
3866	}
3867    }
3868    free(dtv);
3869    free(tcb);
3870}
3871
3872#endif
3873
3874#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
3875
3876/*
3877 * Allocate Static TLS using the Variant II method.
3878 */
3879void *
3880allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
3881{
3882    Obj_Entry *obj;
3883    size_t size;
3884    char *tls;
3885    Elf_Addr *dtv, *olddtv;
3886    Elf_Addr segbase, oldsegbase, addr;
3887    int i;
3888
3889    size = round(tls_static_space, tcbalign);
3890
3891    assert(tcbsize >= 2*sizeof(Elf_Addr));
3892    tls = xcalloc(1, size + tcbsize);
3893    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
3894
3895    segbase = (Elf_Addr)(tls + size);
3896    ((Elf_Addr*)segbase)[0] = segbase;
3897    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
3898
3899    dtv[0] = tls_dtv_generation;
3900    dtv[1] = tls_max_index;
3901
3902    if (oldtls) {
3903	/*
3904	 * Copy the static TLS block over whole.
3905	 */
3906	oldsegbase = (Elf_Addr) oldtls;
3907	memcpy((void *)(segbase - tls_static_space),
3908	       (const void *)(oldsegbase - tls_static_space),
3909	       tls_static_space);
3910
3911	/*
3912	 * If any dynamic TLS blocks have been created tls_get_addr(),
3913	 * move them over.
3914	 */
3915	olddtv = ((Elf_Addr**)oldsegbase)[1];
3916	for (i = 0; i < olddtv[1]; i++) {
3917	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3918		dtv[i+2] = olddtv[i+2];
3919		olddtv[i+2] = 0;
3920	    }
3921	}
3922
3923	/*
3924	 * We assume that this block was the one we created with
3925	 * allocate_initial_tls().
3926	 */
3927	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3928    } else {
3929	for (obj = objs; obj; obj = obj->next) {
3930	    if (obj->tlsoffset) {
3931		addr = segbase - obj->tlsoffset;
3932		memset((void*) (addr + obj->tlsinitsize),
3933		       0, obj->tlssize - obj->tlsinitsize);
3934		if (obj->tlsinit)
3935		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3936		dtv[obj->tlsindex + 1] = addr;
3937	    }
3938	}
3939    }
3940
3941    return (void*) segbase;
3942}
3943
3944void
3945free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3946{
3947    size_t size;
3948    Elf_Addr* dtv;
3949    int dtvsize, i;
3950    Elf_Addr tlsstart, tlsend;
3951
3952    /*
3953     * Figure out the size of the initial TLS block so that we can
3954     * find stuff which ___tls_get_addr() allocated dynamically.
3955     */
3956    size = round(tls_static_space, tcbalign);
3957
3958    dtv = ((Elf_Addr**)tls)[1];
3959    dtvsize = dtv[1];
3960    tlsend = (Elf_Addr) tls;
3961    tlsstart = tlsend - size;
3962    for (i = 0; i < dtvsize; i++) {
3963	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3964	    free((void*) dtv[i+2]);
3965	}
3966    }
3967
3968    free((void*) tlsstart);
3969    free((void*) dtv);
3970}
3971
3972#endif
3973
3974/*
3975 * Allocate TLS block for module with given index.
3976 */
3977void *
3978allocate_module_tls(int index)
3979{
3980    Obj_Entry* obj;
3981    char* p;
3982
3983    for (obj = obj_list; obj; obj = obj->next) {
3984	if (obj->tlsindex == index)
3985	    break;
3986    }
3987    if (!obj) {
3988	_rtld_error("Can't find module with TLS index %d", index);
3989	die();
3990    }
3991
3992    p = malloc(obj->tlssize);
3993    if (p == NULL) {
3994	_rtld_error("Cannot allocate TLS block for index %d", index);
3995	die();
3996    }
3997    memcpy(p, obj->tlsinit, obj->tlsinitsize);
3998    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3999
4000    return p;
4001}
4002
4003bool
4004allocate_tls_offset(Obj_Entry *obj)
4005{
4006    size_t off;
4007
4008    if (obj->tls_done)
4009	return true;
4010
4011    if (obj->tlssize == 0) {
4012	obj->tls_done = true;
4013	return true;
4014    }
4015
4016    if (obj->tlsindex == 1)
4017	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4018    else
4019	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4020				   obj->tlssize, obj->tlsalign);
4021
4022    /*
4023     * If we have already fixed the size of the static TLS block, we
4024     * must stay within that size. When allocating the static TLS, we
4025     * leave a small amount of space spare to be used for dynamically
4026     * loading modules which use static TLS.
4027     */
4028    if (tls_static_space) {
4029	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4030	    return false;
4031    }
4032
4033    tls_last_offset = obj->tlsoffset = off;
4034    tls_last_size = obj->tlssize;
4035    obj->tls_done = true;
4036
4037    return true;
4038}
4039
4040void
4041free_tls_offset(Obj_Entry *obj)
4042{
4043
4044    /*
4045     * If we were the last thing to allocate out of the static TLS
4046     * block, we give our space back to the 'allocator'. This is a
4047     * simplistic workaround to allow libGL.so.1 to be loaded and
4048     * unloaded multiple times.
4049     */
4050    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4051	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4052	tls_last_offset -= obj->tlssize;
4053	tls_last_size = 0;
4054    }
4055}
4056
4057void *
4058_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4059{
4060    void *ret;
4061    RtldLockState lockstate;
4062
4063    wlock_acquire(rtld_bind_lock, &lockstate);
4064    ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4065    lock_release(rtld_bind_lock, &lockstate);
4066    return (ret);
4067}
4068
4069void
4070_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4071{
4072    RtldLockState lockstate;
4073
4074    wlock_acquire(rtld_bind_lock, &lockstate);
4075    free_tls(tcb, tcbsize, tcbalign);
4076    lock_release(rtld_bind_lock, &lockstate);
4077}
4078
4079static void
4080object_add_name(Obj_Entry *obj, const char *name)
4081{
4082    Name_Entry *entry;
4083    size_t len;
4084
4085    len = strlen(name);
4086    entry = malloc(sizeof(Name_Entry) + len);
4087
4088    if (entry != NULL) {
4089	strcpy(entry->name, name);
4090	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4091    }
4092}
4093
4094static int
4095object_match_name(const Obj_Entry *obj, const char *name)
4096{
4097    Name_Entry *entry;
4098
4099    STAILQ_FOREACH(entry, &obj->names, link) {
4100	if (strcmp(name, entry->name) == 0)
4101	    return (1);
4102    }
4103    return (0);
4104}
4105
4106static Obj_Entry *
4107locate_dependency(const Obj_Entry *obj, const char *name)
4108{
4109    const Objlist_Entry *entry;
4110    const Needed_Entry *needed;
4111
4112    STAILQ_FOREACH(entry, &list_main, link) {
4113	if (object_match_name(entry->obj, name))
4114	    return entry->obj;
4115    }
4116
4117    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4118	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4119	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4120	    /*
4121	     * If there is DT_NEEDED for the name we are looking for,
4122	     * we are all set.  Note that object might not be found if
4123	     * dependency was not loaded yet, so the function can
4124	     * return NULL here.  This is expected and handled
4125	     * properly by the caller.
4126	     */
4127	    return (needed->obj);
4128	}
4129    }
4130    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4131	obj->path, name);
4132    die();
4133}
4134
4135static int
4136check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4137    const Elf_Vernaux *vna)
4138{
4139    const Elf_Verdef *vd;
4140    const char *vername;
4141
4142    vername = refobj->strtab + vna->vna_name;
4143    vd = depobj->verdef;
4144    if (vd == NULL) {
4145	_rtld_error("%s: version %s required by %s not defined",
4146	    depobj->path, vername, refobj->path);
4147	return (-1);
4148    }
4149    for (;;) {
4150	if (vd->vd_version != VER_DEF_CURRENT) {
4151	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4152		depobj->path, vd->vd_version);
4153	    return (-1);
4154	}
4155	if (vna->vna_hash == vd->vd_hash) {
4156	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4157		((char *)vd + vd->vd_aux);
4158	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4159		return (0);
4160	}
4161	if (vd->vd_next == 0)
4162	    break;
4163	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4164    }
4165    if (vna->vna_flags & VER_FLG_WEAK)
4166	return (0);
4167    _rtld_error("%s: version %s required by %s not found",
4168	depobj->path, vername, refobj->path);
4169    return (-1);
4170}
4171
4172static int
4173rtld_verify_object_versions(Obj_Entry *obj)
4174{
4175    const Elf_Verneed *vn;
4176    const Elf_Verdef  *vd;
4177    const Elf_Verdaux *vda;
4178    const Elf_Vernaux *vna;
4179    const Obj_Entry *depobj;
4180    int maxvernum, vernum;
4181
4182    if (obj->ver_checked)
4183	return (0);
4184    obj->ver_checked = true;
4185
4186    maxvernum = 0;
4187    /*
4188     * Walk over defined and required version records and figure out
4189     * max index used by any of them. Do very basic sanity checking
4190     * while there.
4191     */
4192    vn = obj->verneed;
4193    while (vn != NULL) {
4194	if (vn->vn_version != VER_NEED_CURRENT) {
4195	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4196		obj->path, vn->vn_version);
4197	    return (-1);
4198	}
4199	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4200	for (;;) {
4201	    vernum = VER_NEED_IDX(vna->vna_other);
4202	    if (vernum > maxvernum)
4203		maxvernum = vernum;
4204	    if (vna->vna_next == 0)
4205		 break;
4206	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4207	}
4208	if (vn->vn_next == 0)
4209	    break;
4210	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4211    }
4212
4213    vd = obj->verdef;
4214    while (vd != NULL) {
4215	if (vd->vd_version != VER_DEF_CURRENT) {
4216	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4217		obj->path, vd->vd_version);
4218	    return (-1);
4219	}
4220	vernum = VER_DEF_IDX(vd->vd_ndx);
4221	if (vernum > maxvernum)
4222		maxvernum = vernum;
4223	if (vd->vd_next == 0)
4224	    break;
4225	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4226    }
4227
4228    if (maxvernum == 0)
4229	return (0);
4230
4231    /*
4232     * Store version information in array indexable by version index.
4233     * Verify that object version requirements are satisfied along the
4234     * way.
4235     */
4236    obj->vernum = maxvernum + 1;
4237    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4238
4239    vd = obj->verdef;
4240    while (vd != NULL) {
4241	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4242	    vernum = VER_DEF_IDX(vd->vd_ndx);
4243	    assert(vernum <= maxvernum);
4244	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4245	    obj->vertab[vernum].hash = vd->vd_hash;
4246	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4247	    obj->vertab[vernum].file = NULL;
4248	    obj->vertab[vernum].flags = 0;
4249	}
4250	if (vd->vd_next == 0)
4251	    break;
4252	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4253    }
4254
4255    vn = obj->verneed;
4256    while (vn != NULL) {
4257	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4258	if (depobj == NULL)
4259	    return (-1);
4260	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4261	for (;;) {
4262	    if (check_object_provided_version(obj, depobj, vna))
4263		return (-1);
4264	    vernum = VER_NEED_IDX(vna->vna_other);
4265	    assert(vernum <= maxvernum);
4266	    obj->vertab[vernum].hash = vna->vna_hash;
4267	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4268	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4269	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4270		VER_INFO_HIDDEN : 0;
4271	    if (vna->vna_next == 0)
4272		 break;
4273	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4274	}
4275	if (vn->vn_next == 0)
4276	    break;
4277	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4278    }
4279    return 0;
4280}
4281
4282static int
4283rtld_verify_versions(const Objlist *objlist)
4284{
4285    Objlist_Entry *entry;
4286    int rc;
4287
4288    rc = 0;
4289    STAILQ_FOREACH(entry, objlist, link) {
4290	/*
4291	 * Skip dummy objects or objects that have their version requirements
4292	 * already checked.
4293	 */
4294	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4295	    continue;
4296	if (rtld_verify_object_versions(entry->obj) == -1) {
4297	    rc = -1;
4298	    if (ld_tracing == NULL)
4299		break;
4300	}
4301    }
4302    if (rc == 0 || ld_tracing != NULL)
4303    	rc = rtld_verify_object_versions(&obj_rtld);
4304    return rc;
4305}
4306
4307const Ver_Entry *
4308fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4309{
4310    Elf_Versym vernum;
4311
4312    if (obj->vertab) {
4313	vernum = VER_NDX(obj->versyms[symnum]);
4314	if (vernum >= obj->vernum) {
4315	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4316		obj->path, obj->strtab + symnum, vernum);
4317	} else if (obj->vertab[vernum].hash != 0) {
4318	    return &obj->vertab[vernum];
4319	}
4320    }
4321    return NULL;
4322}
4323
4324int
4325_rtld_get_stack_prot(void)
4326{
4327
4328	return (stack_prot);
4329}
4330
4331static void
4332map_stacks_exec(RtldLockState *lockstate)
4333{
4334	void (*thr_map_stacks_exec)(void);
4335
4336	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4337		return;
4338	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4339	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4340	if (thr_map_stacks_exec != NULL) {
4341		stack_prot |= PROT_EXEC;
4342		thr_map_stacks_exec();
4343	}
4344}
4345
4346void
4347symlook_init(SymLook *dst, const char *name)
4348{
4349
4350	bzero(dst, sizeof(*dst));
4351	dst->name = name;
4352	dst->hash = elf_hash(name);
4353}
4354
4355static void
4356symlook_init_from_req(SymLook *dst, const SymLook *src)
4357{
4358
4359	dst->name = src->name;
4360	dst->hash = src->hash;
4361	dst->ventry = src->ventry;
4362	dst->flags = src->flags;
4363	dst->defobj_out = NULL;
4364	dst->sym_out = NULL;
4365	dst->lockstate = src->lockstate;
4366}
4367
4368/*
4369 * Overrides for libc_pic-provided functions.
4370 */
4371
4372int
4373__getosreldate(void)
4374{
4375	size_t len;
4376	int oid[2];
4377	int error, osrel;
4378
4379	if (osreldate != 0)
4380		return (osreldate);
4381
4382	oid[0] = CTL_KERN;
4383	oid[1] = KERN_OSRELDATE;
4384	osrel = 0;
4385	len = sizeof(osrel);
4386	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4387	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4388		osreldate = osrel;
4389	return (osreldate);
4390}
4391
4392void
4393exit(int status)
4394{
4395
4396	_exit(status);
4397}
4398
4399void (*__cleanup)(void);
4400int __isthreaded = 0;
4401int _thread_autoinit_dummy_decl = 1;
4402
4403/*
4404 * No unresolved symbols for rtld.
4405 */
4406void
4407__pthread_cxa_finalize(struct dl_phdr_info *a)
4408{
4409}
4410
4411void
4412__stack_chk_fail(void)
4413{
4414
4415	_rtld_error("stack overflow detected; terminated");
4416	die();
4417}
4418__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4419
4420void
4421__chk_fail(void)
4422{
4423
4424	_rtld_error("buffer overflow detected; terminated");
4425	die();
4426}
4427
4428const char *
4429rtld_strerror(int errnum)
4430{
4431
4432	if (errnum < 0 || errnum >= sys_nerr)
4433		return ("Unknown error");
4434	return (sys_errlist[errnum]);
4435}
4436