rtld.c revision 233546
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009, 2010, 2011 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * $FreeBSD: head/libexec/rtld-elf/rtld.c 233546 2012-03-27 14:10:15Z kib $
28 */
29
30/*
31 * Dynamic linker for ELF.
32 *
33 * John Polstra <jdp@polstra.com>.
34 */
35
36#ifndef __GNUC__
37#error "GCC is needed to compile this file"
38#endif
39
40#include <sys/param.h>
41#include <sys/mount.h>
42#include <sys/mman.h>
43#include <sys/stat.h>
44#include <sys/sysctl.h>
45#include <sys/uio.h>
46#include <sys/utsname.h>
47#include <sys/ktrace.h>
48
49#include <dlfcn.h>
50#include <err.h>
51#include <errno.h>
52#include <fcntl.h>
53#include <stdarg.h>
54#include <stdio.h>
55#include <stdlib.h>
56#include <string.h>
57#include <unistd.h>
58
59#include "debug.h"
60#include "rtld.h"
61#include "libmap.h"
62#include "rtld_tls.h"
63#include "rtld_printf.h"
64#include "notes.h"
65
66#ifndef COMPAT_32BIT
67#define PATH_RTLD	"/libexec/ld-elf.so.1"
68#else
69#define PATH_RTLD	"/libexec/ld-elf32.so.1"
70#endif
71
72/* Types. */
73typedef void (*func_ptr_type)();
74typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
75
76/*
77 * Function declarations.
78 */
79static const char *basename(const char *);
80static void die(void) __dead2;
81static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
82    const Elf_Dyn **);
83static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *);
84static void digest_dynamic(Obj_Entry *, int);
85static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
86static Obj_Entry *dlcheck(void *);
87static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
88    int lo_flags, int mode);
89static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
90static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
91static bool donelist_check(DoneList *, const Obj_Entry *);
92static void errmsg_restore(char *);
93static char *errmsg_save(void);
94static void *fill_search_info(const char *, size_t, void *);
95static char *find_library(const char *, const Obj_Entry *);
96static const char *gethints(void);
97static void init_dag(Obj_Entry *);
98static void init_rtld(caddr_t, Elf_Auxinfo **);
99static void initlist_add_neededs(Needed_Entry *, Objlist *);
100static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
101static void linkmap_add(Obj_Entry *);
102static void linkmap_delete(Obj_Entry *);
103static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
104static void unload_filtees(Obj_Entry *);
105static int load_needed_objects(Obj_Entry *, int);
106static int load_preload_objects(void);
107static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
108static void map_stacks_exec(RtldLockState *);
109static Obj_Entry *obj_from_addr(const void *);
110static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
111static void objlist_call_init(Objlist *, RtldLockState *);
112static void objlist_clear(Objlist *);
113static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
114static void objlist_init(Objlist *);
115static void objlist_push_head(Objlist *, Obj_Entry *);
116static void objlist_push_tail(Objlist *, Obj_Entry *);
117static void objlist_remove(Objlist *, Obj_Entry *);
118static void *path_enumerate(const char *, path_enum_proc, void *);
119static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
120    RtldLockState *);
121static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
122    int flags, RtldLockState *lockstate);
123static int rtld_dirname(const char *, char *);
124static int rtld_dirname_abs(const char *, char *);
125static void *rtld_dlopen(const char *name, int fd, int mode);
126static void rtld_exit(void);
127static char *search_library_path(const char *, const char *);
128static const void **get_program_var_addr(const char *, RtldLockState *);
129static void set_program_var(const char *, const void *);
130static int symlook_default(SymLook *, const Obj_Entry *refobj);
131static int symlook_global(SymLook *, DoneList *);
132static void symlook_init_from_req(SymLook *, const SymLook *);
133static int symlook_list(SymLook *, const Objlist *, DoneList *);
134static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
135static int symlook_obj1(SymLook *, const Obj_Entry *);
136static void trace_loaded_objects(Obj_Entry *);
137static void unlink_object(Obj_Entry *);
138static void unload_object(Obj_Entry *);
139static void unref_dag(Obj_Entry *);
140static void ref_dag(Obj_Entry *);
141static int origin_subst_one(char **, const char *, const char *,
142  const char *, char *);
143static char *origin_subst(const char *, const char *);
144static void preinit_main(void);
145static int  rtld_verify_versions(const Objlist *);
146static int  rtld_verify_object_versions(Obj_Entry *);
147static void object_add_name(Obj_Entry *, const char *);
148static int  object_match_name(const Obj_Entry *, const char *);
149static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
150static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
151    struct dl_phdr_info *phdr_info);
152
153void r_debug_state(struct r_debug *, struct link_map *) __noinline;
154
155/*
156 * Data declarations.
157 */
158static char *error_message;	/* Message for dlerror(), or NULL */
159struct r_debug r_debug;		/* for GDB; */
160static bool libmap_disable;	/* Disable libmap */
161static bool ld_loadfltr;	/* Immediate filters processing */
162static char *libmap_override;	/* Maps to use in addition to libmap.conf */
163static bool trust;		/* False for setuid and setgid programs */
164static bool dangerous_ld_env;	/* True if environment variables have been
165				   used to affect the libraries loaded */
166static char *ld_bind_now;	/* Environment variable for immediate binding */
167static char *ld_debug;		/* Environment variable for debugging */
168static char *ld_library_path;	/* Environment variable for search path */
169static char *ld_preload;	/* Environment variable for libraries to
170				   load first */
171static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
172static char *ld_tracing;	/* Called from ldd to print libs */
173static char *ld_utrace;		/* Use utrace() to log events. */
174static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
175static Obj_Entry **obj_tail;	/* Link field of last object in list */
176static Obj_Entry *obj_main;	/* The main program shared object */
177static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
178static unsigned int obj_count;	/* Number of objects in obj_list */
179static unsigned int obj_loads;	/* Number of objects in obj_list */
180
181static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
182  STAILQ_HEAD_INITIALIZER(list_global);
183static Objlist list_main =	/* Objects loaded at program startup */
184  STAILQ_HEAD_INITIALIZER(list_main);
185static Objlist list_fini =	/* Objects needing fini() calls */
186  STAILQ_HEAD_INITIALIZER(list_fini);
187
188Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
189
190#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
191
192extern Elf_Dyn _DYNAMIC;
193#pragma weak _DYNAMIC
194#ifndef RTLD_IS_DYNAMIC
195#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
196#endif
197
198int osreldate, pagesize;
199
200long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
201
202static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
203static int max_stack_flags;
204
205/*
206 * Global declarations normally provided by crt1.  The dynamic linker is
207 * not built with crt1, so we have to provide them ourselves.
208 */
209char *__progname;
210char **environ;
211
212/*
213 * Used to pass argc, argv to init functions.
214 */
215int main_argc;
216char **main_argv;
217
218/*
219 * Globals to control TLS allocation.
220 */
221size_t tls_last_offset;		/* Static TLS offset of last module */
222size_t tls_last_size;		/* Static TLS size of last module */
223size_t tls_static_space;	/* Static TLS space allocated */
224int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
225int tls_max_index = 1;		/* Largest module index allocated */
226
227/*
228 * Fill in a DoneList with an allocation large enough to hold all of
229 * the currently-loaded objects.  Keep this as a macro since it calls
230 * alloca and we want that to occur within the scope of the caller.
231 */
232#define donelist_init(dlp)					\
233    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
234    assert((dlp)->objs != NULL),				\
235    (dlp)->num_alloc = obj_count,				\
236    (dlp)->num_used = 0)
237
238#define	UTRACE_DLOPEN_START		1
239#define	UTRACE_DLOPEN_STOP		2
240#define	UTRACE_DLCLOSE_START		3
241#define	UTRACE_DLCLOSE_STOP		4
242#define	UTRACE_LOAD_OBJECT		5
243#define	UTRACE_UNLOAD_OBJECT		6
244#define	UTRACE_ADD_RUNDEP		7
245#define	UTRACE_PRELOAD_FINISHED		8
246#define	UTRACE_INIT_CALL		9
247#define	UTRACE_FINI_CALL		10
248
249struct utrace_rtld {
250	char sig[4];			/* 'RTLD' */
251	int event;
252	void *handle;
253	void *mapbase;			/* Used for 'parent' and 'init/fini' */
254	size_t mapsize;
255	int refcnt;			/* Used for 'mode' */
256	char name[MAXPATHLEN];
257};
258
259#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
260	if (ld_utrace != NULL)					\
261		ld_utrace_log(e, h, mb, ms, r, n);		\
262} while (0)
263
264static void
265ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
266    int refcnt, const char *name)
267{
268	struct utrace_rtld ut;
269
270	ut.sig[0] = 'R';
271	ut.sig[1] = 'T';
272	ut.sig[2] = 'L';
273	ut.sig[3] = 'D';
274	ut.event = event;
275	ut.handle = handle;
276	ut.mapbase = mapbase;
277	ut.mapsize = mapsize;
278	ut.refcnt = refcnt;
279	bzero(ut.name, sizeof(ut.name));
280	if (name)
281		strlcpy(ut.name, name, sizeof(ut.name));
282	utrace(&ut, sizeof(ut));
283}
284
285/*
286 * Main entry point for dynamic linking.  The first argument is the
287 * stack pointer.  The stack is expected to be laid out as described
288 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
289 * Specifically, the stack pointer points to a word containing
290 * ARGC.  Following that in the stack is a null-terminated sequence
291 * of pointers to argument strings.  Then comes a null-terminated
292 * sequence of pointers to environment strings.  Finally, there is a
293 * sequence of "auxiliary vector" entries.
294 *
295 * The second argument points to a place to store the dynamic linker's
296 * exit procedure pointer and the third to a place to store the main
297 * program's object.
298 *
299 * The return value is the main program's entry point.
300 */
301func_ptr_type
302_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
303{
304    Elf_Auxinfo *aux_info[AT_COUNT];
305    int i;
306    int argc;
307    char **argv;
308    char **env;
309    Elf_Auxinfo *aux;
310    Elf_Auxinfo *auxp;
311    const char *argv0;
312    Objlist_Entry *entry;
313    Obj_Entry *obj;
314    Obj_Entry **preload_tail;
315    Objlist initlist;
316    RtldLockState lockstate;
317    int mib[2];
318    size_t len;
319
320    /*
321     * On entry, the dynamic linker itself has not been relocated yet.
322     * Be very careful not to reference any global data until after
323     * init_rtld has returned.  It is OK to reference file-scope statics
324     * and string constants, and to call static and global functions.
325     */
326
327    /* Find the auxiliary vector on the stack. */
328    argc = *sp++;
329    argv = (char **) sp;
330    sp += argc + 1;	/* Skip over arguments and NULL terminator */
331    env = (char **) sp;
332    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
333	;
334    aux = (Elf_Auxinfo *) sp;
335
336    /* Digest the auxiliary vector. */
337    for (i = 0;  i < AT_COUNT;  i++)
338	aux_info[i] = NULL;
339    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
340	if (auxp->a_type < AT_COUNT)
341	    aux_info[auxp->a_type] = auxp;
342    }
343
344    /* Initialize and relocate ourselves. */
345    assert(aux_info[AT_BASE] != NULL);
346    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
347
348    __progname = obj_rtld.path;
349    argv0 = argv[0] != NULL ? argv[0] : "(null)";
350    environ = env;
351    main_argc = argc;
352    main_argv = argv;
353
354    if (aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
355	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
356	    if (i > sizeof(__stack_chk_guard))
357		    i = sizeof(__stack_chk_guard);
358	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
359    } else {
360	mib[0] = CTL_KERN;
361	mib[1] = KERN_ARND;
362
363	len = sizeof(__stack_chk_guard);
364	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
365	    len != sizeof(__stack_chk_guard)) {
366		/* If sysctl was unsuccessful, use the "terminator canary". */
367		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
368		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
369		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
370		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
371	}
372    }
373
374    trust = !issetugid();
375
376    ld_bind_now = getenv(LD_ "BIND_NOW");
377    /*
378     * If the process is tainted, then we un-set the dangerous environment
379     * variables.  The process will be marked as tainted until setuid(2)
380     * is called.  If any child process calls setuid(2) we do not want any
381     * future processes to honor the potentially un-safe variables.
382     */
383    if (!trust) {
384        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
385	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
386	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
387	    unsetenv(LD_ "LOADFLTR")) {
388		_rtld_error("environment corrupt; aborting");
389		die();
390	}
391    }
392    ld_debug = getenv(LD_ "DEBUG");
393    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
394    libmap_override = getenv(LD_ "LIBMAP");
395    ld_library_path = getenv(LD_ "LIBRARY_PATH");
396    ld_preload = getenv(LD_ "PRELOAD");
397    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
398    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
399    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
400	(ld_library_path != NULL) || (ld_preload != NULL) ||
401	(ld_elf_hints_path != NULL) || ld_loadfltr;
402    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
403    ld_utrace = getenv(LD_ "UTRACE");
404
405    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
406	ld_elf_hints_path = _PATH_ELF_HINTS;
407
408    if (ld_debug != NULL && *ld_debug != '\0')
409	debug = 1;
410    dbg("%s is initialized, base address = %p", __progname,
411	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
412    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
413    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
414
415    dbg("initializing thread locks");
416    lockdflt_init();
417
418    /*
419     * Load the main program, or process its program header if it is
420     * already loaded.
421     */
422    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
423	int fd = aux_info[AT_EXECFD]->a_un.a_val;
424	dbg("loading main program");
425	obj_main = map_object(fd, argv0, NULL);
426	close(fd);
427	if (obj_main == NULL)
428	    die();
429	max_stack_flags = obj->stack_flags;
430    } else {				/* Main program already loaded. */
431	const Elf_Phdr *phdr;
432	int phnum;
433	caddr_t entry;
434
435	dbg("processing main program's program header");
436	assert(aux_info[AT_PHDR] != NULL);
437	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
438	assert(aux_info[AT_PHNUM] != NULL);
439	phnum = aux_info[AT_PHNUM]->a_un.a_val;
440	assert(aux_info[AT_PHENT] != NULL);
441	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
442	assert(aux_info[AT_ENTRY] != NULL);
443	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
444	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
445	    die();
446    }
447
448    if (aux_info[AT_EXECPATH] != 0) {
449	    char *kexecpath;
450	    char buf[MAXPATHLEN];
451
452	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
453	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
454	    if (kexecpath[0] == '/')
455		    obj_main->path = kexecpath;
456	    else if (getcwd(buf, sizeof(buf)) == NULL ||
457		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
458		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
459		    obj_main->path = xstrdup(argv0);
460	    else
461		    obj_main->path = xstrdup(buf);
462    } else {
463	    dbg("No AT_EXECPATH");
464	    obj_main->path = xstrdup(argv0);
465    }
466    dbg("obj_main path %s", obj_main->path);
467    obj_main->mainprog = true;
468
469    if (aux_info[AT_STACKPROT] != NULL &&
470      aux_info[AT_STACKPROT]->a_un.a_val != 0)
471	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
472
473    /*
474     * Get the actual dynamic linker pathname from the executable if
475     * possible.  (It should always be possible.)  That ensures that
476     * gdb will find the right dynamic linker even if a non-standard
477     * one is being used.
478     */
479    if (obj_main->interp != NULL &&
480      strcmp(obj_main->interp, obj_rtld.path) != 0) {
481	free(obj_rtld.path);
482	obj_rtld.path = xstrdup(obj_main->interp);
483        __progname = obj_rtld.path;
484    }
485
486    digest_dynamic(obj_main, 0);
487
488    linkmap_add(obj_main);
489    linkmap_add(&obj_rtld);
490
491    /* Link the main program into the list of objects. */
492    *obj_tail = obj_main;
493    obj_tail = &obj_main->next;
494    obj_count++;
495    obj_loads++;
496
497    /* Initialize a fake symbol for resolving undefined weak references. */
498    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
499    sym_zero.st_shndx = SHN_UNDEF;
500    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
501
502    if (!libmap_disable)
503        libmap_disable = (bool)lm_init(libmap_override);
504
505    dbg("loading LD_PRELOAD libraries");
506    if (load_preload_objects() == -1)
507	die();
508    preload_tail = obj_tail;
509
510    dbg("loading needed objects");
511    if (load_needed_objects(obj_main, 0) == -1)
512	die();
513
514    /* Make a list of all objects loaded at startup. */
515    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
516	objlist_push_tail(&list_main, obj);
517    	obj->refcount++;
518    }
519
520    dbg("checking for required versions");
521    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
522	die();
523
524    if (ld_tracing) {		/* We're done */
525	trace_loaded_objects(obj_main);
526	exit(0);
527    }
528
529    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
530       dump_relocations(obj_main);
531       exit (0);
532    }
533
534    /*
535     * Processing tls relocations requires having the tls offsets
536     * initialized.  Prepare offsets before starting initial
537     * relocation processing.
538     */
539    dbg("initializing initial thread local storage offsets");
540    STAILQ_FOREACH(entry, &list_main, link) {
541	/*
542	 * Allocate all the initial objects out of the static TLS
543	 * block even if they didn't ask for it.
544	 */
545	allocate_tls_offset(entry->obj);
546    }
547
548    if (relocate_objects(obj_main,
549      ld_bind_now != NULL && *ld_bind_now != '\0',
550      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
551	die();
552
553    dbg("doing copy relocations");
554    if (do_copy_relocations(obj_main) == -1)
555	die();
556
557    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
558       dump_relocations(obj_main);
559       exit (0);
560    }
561
562    /*
563     * Setup TLS for main thread.  This must be done after the
564     * relocations are processed, since tls initialization section
565     * might be the subject for relocations.
566     */
567    dbg("initializing initial thread local storage");
568    allocate_initial_tls(obj_list);
569
570    dbg("initializing key program variables");
571    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
572    set_program_var("environ", env);
573    set_program_var("__elf_aux_vector", aux);
574
575    /* Make a list of init functions to call. */
576    objlist_init(&initlist);
577    initlist_add_objects(obj_list, preload_tail, &initlist);
578
579    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
580
581    map_stacks_exec(NULL);
582
583    dbg("resolving ifuncs");
584    if (resolve_objects_ifunc(obj_main,
585      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
586      NULL) == -1)
587	die();
588
589    if (!obj_main->crt_no_init) {
590	/*
591	 * Make sure we don't call the main program's init and fini
592	 * functions for binaries linked with old crt1 which calls
593	 * _init itself.
594	 */
595	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
596	obj_main->preinit_array = obj_main->init_array =
597	    obj_main->fini_array = (Elf_Addr)NULL;
598    }
599
600    wlock_acquire(rtld_bind_lock, &lockstate);
601    if (obj_main->crt_no_init)
602	preinit_main();
603    objlist_call_init(&initlist, &lockstate);
604    objlist_clear(&initlist);
605    dbg("loading filtees");
606    for (obj = obj_list->next; obj != NULL; obj = obj->next) {
607	if (ld_loadfltr || obj->z_loadfltr)
608	    load_filtees(obj, 0, &lockstate);
609    }
610    lock_release(rtld_bind_lock, &lockstate);
611
612    dbg("transferring control to program entry point = %p", obj_main->entry);
613
614    /* Return the exit procedure and the program entry point. */
615    *exit_proc = rtld_exit;
616    *objp = obj_main;
617    return (func_ptr_type) obj_main->entry;
618}
619
620void *
621rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
622{
623	void *ptr;
624	Elf_Addr target;
625
626	ptr = (void *)make_function_pointer(def, obj);
627	target = ((Elf_Addr (*)(void))ptr)();
628	return ((void *)target);
629}
630
631Elf_Addr
632_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
633{
634    const Elf_Rel *rel;
635    const Elf_Sym *def;
636    const Obj_Entry *defobj;
637    Elf_Addr *where;
638    Elf_Addr target;
639    RtldLockState lockstate;
640
641    rlock_acquire(rtld_bind_lock, &lockstate);
642    if (sigsetjmp(lockstate.env, 0) != 0)
643	    lock_upgrade(rtld_bind_lock, &lockstate);
644    if (obj->pltrel)
645	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
646    else
647	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
648
649    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
650    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
651	&lockstate);
652    if (def == NULL)
653	die();
654    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
655	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
656    else
657	target = (Elf_Addr)(defobj->relocbase + def->st_value);
658
659    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
660      defobj->strtab + def->st_name, basename(obj->path),
661      (void *)target, basename(defobj->path));
662
663    /*
664     * Write the new contents for the jmpslot. Note that depending on
665     * architecture, the value which we need to return back to the
666     * lazy binding trampoline may or may not be the target
667     * address. The value returned from reloc_jmpslot() is the value
668     * that the trampoline needs.
669     */
670    target = reloc_jmpslot(where, target, defobj, obj, rel);
671    lock_release(rtld_bind_lock, &lockstate);
672    return target;
673}
674
675/*
676 * Error reporting function.  Use it like printf.  If formats the message
677 * into a buffer, and sets things up so that the next call to dlerror()
678 * will return the message.
679 */
680void
681_rtld_error(const char *fmt, ...)
682{
683    static char buf[512];
684    va_list ap;
685
686    va_start(ap, fmt);
687    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
688    error_message = buf;
689    va_end(ap);
690}
691
692/*
693 * Return a dynamically-allocated copy of the current error message, if any.
694 */
695static char *
696errmsg_save(void)
697{
698    return error_message == NULL ? NULL : xstrdup(error_message);
699}
700
701/*
702 * Restore the current error message from a copy which was previously saved
703 * by errmsg_save().  The copy is freed.
704 */
705static void
706errmsg_restore(char *saved_msg)
707{
708    if (saved_msg == NULL)
709	error_message = NULL;
710    else {
711	_rtld_error("%s", saved_msg);
712	free(saved_msg);
713    }
714}
715
716static const char *
717basename(const char *name)
718{
719    const char *p = strrchr(name, '/');
720    return p != NULL ? p + 1 : name;
721}
722
723static struct utsname uts;
724
725static int
726origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
727    char *may_free)
728{
729    const char *p, *p1;
730    char *res1;
731    int subst_len;
732    int kw_len;
733
734    res1 = *res = NULL;
735    p = real;
736    subst_len = kw_len = 0;
737    for (;;) {
738	 p1 = strstr(p, kw);
739	 if (p1 != NULL) {
740	     if (subst_len == 0) {
741		 subst_len = strlen(subst);
742		 kw_len = strlen(kw);
743	     }
744	     if (*res == NULL) {
745		 *res = xmalloc(PATH_MAX);
746		 res1 = *res;
747	     }
748	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
749		 _rtld_error("Substitution of %s in %s cannot be performed",
750		     kw, real);
751		 if (may_free != NULL)
752		     free(may_free);
753		 free(res);
754		 return (false);
755	     }
756	     memcpy(res1, p, p1 - p);
757	     res1 += p1 - p;
758	     memcpy(res1, subst, subst_len);
759	     res1 += subst_len;
760	     p = p1 + kw_len;
761	 } else {
762	    if (*res == NULL) {
763		if (may_free != NULL)
764		    *res = may_free;
765		else
766		    *res = xstrdup(real);
767		return (true);
768	    }
769	    *res1 = '\0';
770	    if (may_free != NULL)
771		free(may_free);
772	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
773		free(res);
774		return (false);
775	    }
776	    return (true);
777	 }
778    }
779}
780
781static char *
782origin_subst(const char *real, const char *origin_path)
783{
784    char *res1, *res2, *res3, *res4;
785
786    if (uts.sysname[0] == '\0') {
787	if (uname(&uts) != 0) {
788	    _rtld_error("utsname failed: %d", errno);
789	    return (NULL);
790	}
791    }
792    if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
793	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
794	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
795	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
796	    return (NULL);
797    return (res4);
798}
799
800static void
801die(void)
802{
803    const char *msg = dlerror();
804
805    if (msg == NULL)
806	msg = "Fatal error";
807    rtld_fdputstr(STDERR_FILENO, msg);
808    rtld_fdputchar(STDERR_FILENO, '\n');
809    _exit(1);
810}
811
812/*
813 * Process a shared object's DYNAMIC section, and save the important
814 * information in its Obj_Entry structure.
815 */
816static void
817digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
818    const Elf_Dyn **dyn_soname)
819{
820    const Elf_Dyn *dynp;
821    Needed_Entry **needed_tail = &obj->needed;
822    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
823    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
824    int plttype = DT_REL;
825
826    *dyn_rpath = NULL;
827    *dyn_soname = NULL;
828
829    obj->bind_now = false;
830    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
831	switch (dynp->d_tag) {
832
833	case DT_REL:
834	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
835	    break;
836
837	case DT_RELSZ:
838	    obj->relsize = dynp->d_un.d_val;
839	    break;
840
841	case DT_RELENT:
842	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
843	    break;
844
845	case DT_JMPREL:
846	    obj->pltrel = (const Elf_Rel *)
847	      (obj->relocbase + dynp->d_un.d_ptr);
848	    break;
849
850	case DT_PLTRELSZ:
851	    obj->pltrelsize = dynp->d_un.d_val;
852	    break;
853
854	case DT_RELA:
855	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
856	    break;
857
858	case DT_RELASZ:
859	    obj->relasize = dynp->d_un.d_val;
860	    break;
861
862	case DT_RELAENT:
863	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
864	    break;
865
866	case DT_PLTREL:
867	    plttype = dynp->d_un.d_val;
868	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
869	    break;
870
871	case DT_SYMTAB:
872	    obj->symtab = (const Elf_Sym *)
873	      (obj->relocbase + dynp->d_un.d_ptr);
874	    break;
875
876	case DT_SYMENT:
877	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
878	    break;
879
880	case DT_STRTAB:
881	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
882	    break;
883
884	case DT_STRSZ:
885	    obj->strsize = dynp->d_un.d_val;
886	    break;
887
888	case DT_VERNEED:
889	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
890		dynp->d_un.d_val);
891	    break;
892
893	case DT_VERNEEDNUM:
894	    obj->verneednum = dynp->d_un.d_val;
895	    break;
896
897	case DT_VERDEF:
898	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
899		dynp->d_un.d_val);
900	    break;
901
902	case DT_VERDEFNUM:
903	    obj->verdefnum = dynp->d_un.d_val;
904	    break;
905
906	case DT_VERSYM:
907	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
908		dynp->d_un.d_val);
909	    break;
910
911	case DT_HASH:
912	    {
913		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
914		  (obj->relocbase + dynp->d_un.d_ptr);
915		obj->nbuckets = hashtab[0];
916		obj->nchains = hashtab[1];
917		obj->buckets = hashtab + 2;
918		obj->chains = obj->buckets + obj->nbuckets;
919	    }
920	    break;
921
922	case DT_NEEDED:
923	    if (!obj->rtld) {
924		Needed_Entry *nep = NEW(Needed_Entry);
925		nep->name = dynp->d_un.d_val;
926		nep->obj = NULL;
927		nep->next = NULL;
928
929		*needed_tail = nep;
930		needed_tail = &nep->next;
931	    }
932	    break;
933
934	case DT_FILTER:
935	    if (!obj->rtld) {
936		Needed_Entry *nep = NEW(Needed_Entry);
937		nep->name = dynp->d_un.d_val;
938		nep->obj = NULL;
939		nep->next = NULL;
940
941		*needed_filtees_tail = nep;
942		needed_filtees_tail = &nep->next;
943	    }
944	    break;
945
946	case DT_AUXILIARY:
947	    if (!obj->rtld) {
948		Needed_Entry *nep = NEW(Needed_Entry);
949		nep->name = dynp->d_un.d_val;
950		nep->obj = NULL;
951		nep->next = NULL;
952
953		*needed_aux_filtees_tail = nep;
954		needed_aux_filtees_tail = &nep->next;
955	    }
956	    break;
957
958	case DT_PLTGOT:
959	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
960	    break;
961
962	case DT_TEXTREL:
963	    obj->textrel = true;
964	    break;
965
966	case DT_SYMBOLIC:
967	    obj->symbolic = true;
968	    break;
969
970	case DT_RPATH:
971	case DT_RUNPATH:	/* XXX: process separately */
972	    /*
973	     * We have to wait until later to process this, because we
974	     * might not have gotten the address of the string table yet.
975	     */
976	    *dyn_rpath = dynp;
977	    break;
978
979	case DT_SONAME:
980	    *dyn_soname = dynp;
981	    break;
982
983	case DT_INIT:
984	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
985	    break;
986
987	case DT_PREINIT_ARRAY:
988	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
989	    break;
990
991	case DT_PREINIT_ARRAYSZ:
992	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
993	    break;
994
995	case DT_INIT_ARRAY:
996	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
997	    break;
998
999	case DT_INIT_ARRAYSZ:
1000	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1001	    break;
1002
1003	case DT_FINI:
1004	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1005	    break;
1006
1007	case DT_FINI_ARRAY:
1008	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1009	    break;
1010
1011	case DT_FINI_ARRAYSZ:
1012	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1013	    break;
1014
1015	/*
1016	 * Don't process DT_DEBUG on MIPS as the dynamic section
1017	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1018	 */
1019
1020#ifndef __mips__
1021	case DT_DEBUG:
1022	    /* XXX - not implemented yet */
1023	    if (!early)
1024		dbg("Filling in DT_DEBUG entry");
1025	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1026	    break;
1027#endif
1028
1029	case DT_FLAGS:
1030		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1031		    obj->z_origin = true;
1032		if (dynp->d_un.d_val & DF_SYMBOLIC)
1033		    obj->symbolic = true;
1034		if (dynp->d_un.d_val & DF_TEXTREL)
1035		    obj->textrel = true;
1036		if (dynp->d_un.d_val & DF_BIND_NOW)
1037		    obj->bind_now = true;
1038		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1039		    ;*/
1040	    break;
1041#ifdef __mips__
1042	case DT_MIPS_LOCAL_GOTNO:
1043		obj->local_gotno = dynp->d_un.d_val;
1044	    break;
1045
1046	case DT_MIPS_SYMTABNO:
1047		obj->symtabno = dynp->d_un.d_val;
1048		break;
1049
1050	case DT_MIPS_GOTSYM:
1051		obj->gotsym = dynp->d_un.d_val;
1052		break;
1053
1054	case DT_MIPS_RLD_MAP:
1055#ifdef notyet
1056		if (!early)
1057			dbg("Filling in DT_DEBUG entry");
1058		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1059#endif
1060		break;
1061#endif
1062
1063	case DT_FLAGS_1:
1064		if (dynp->d_un.d_val & DF_1_NOOPEN)
1065		    obj->z_noopen = true;
1066		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1067		    obj->z_origin = true;
1068		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1069		    XXX ;*/
1070		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1071		    obj->bind_now = true;
1072		if (dynp->d_un.d_val & DF_1_NODELETE)
1073		    obj->z_nodelete = true;
1074		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1075		    obj->z_loadfltr = true;
1076	    break;
1077
1078	default:
1079	    if (!early) {
1080		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1081		    (long)dynp->d_tag);
1082	    }
1083	    break;
1084	}
1085    }
1086
1087    obj->traced = false;
1088
1089    if (plttype == DT_RELA) {
1090	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1091	obj->pltrel = NULL;
1092	obj->pltrelasize = obj->pltrelsize;
1093	obj->pltrelsize = 0;
1094    }
1095}
1096
1097static void
1098digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1099    const Elf_Dyn *dyn_soname)
1100{
1101
1102    if (obj->z_origin && obj->origin_path == NULL) {
1103	obj->origin_path = xmalloc(PATH_MAX);
1104	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1105	    die();
1106    }
1107
1108    if (dyn_rpath != NULL) {
1109	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1110	if (obj->z_origin)
1111	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1112    }
1113
1114    if (dyn_soname != NULL)
1115	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1116}
1117
1118static void
1119digest_dynamic(Obj_Entry *obj, int early)
1120{
1121	const Elf_Dyn *dyn_rpath;
1122	const Elf_Dyn *dyn_soname;
1123
1124	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname);
1125	digest_dynamic2(obj, dyn_rpath, dyn_soname);
1126}
1127
1128/*
1129 * Process a shared object's program header.  This is used only for the
1130 * main program, when the kernel has already loaded the main program
1131 * into memory before calling the dynamic linker.  It creates and
1132 * returns an Obj_Entry structure.
1133 */
1134static Obj_Entry *
1135digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1136{
1137    Obj_Entry *obj;
1138    const Elf_Phdr *phlimit = phdr + phnum;
1139    const Elf_Phdr *ph;
1140    Elf_Addr note_start, note_end;
1141    int nsegs = 0;
1142
1143    obj = obj_new();
1144    for (ph = phdr;  ph < phlimit;  ph++) {
1145	if (ph->p_type != PT_PHDR)
1146	    continue;
1147
1148	obj->phdr = phdr;
1149	obj->phsize = ph->p_memsz;
1150	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1151	break;
1152    }
1153
1154    obj->stack_flags = PF_X | PF_R | PF_W;
1155
1156    for (ph = phdr;  ph < phlimit;  ph++) {
1157	switch (ph->p_type) {
1158
1159	case PT_INTERP:
1160	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1161	    break;
1162
1163	case PT_LOAD:
1164	    if (nsegs == 0) {	/* First load segment */
1165		obj->vaddrbase = trunc_page(ph->p_vaddr);
1166		obj->mapbase = obj->vaddrbase + obj->relocbase;
1167		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1168		  obj->vaddrbase;
1169	    } else {		/* Last load segment */
1170		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1171		  obj->vaddrbase;
1172	    }
1173	    nsegs++;
1174	    break;
1175
1176	case PT_DYNAMIC:
1177	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1178	    break;
1179
1180	case PT_TLS:
1181	    obj->tlsindex = 1;
1182	    obj->tlssize = ph->p_memsz;
1183	    obj->tlsalign = ph->p_align;
1184	    obj->tlsinitsize = ph->p_filesz;
1185	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1186	    break;
1187
1188	case PT_GNU_STACK:
1189	    obj->stack_flags = ph->p_flags;
1190	    break;
1191
1192	case PT_GNU_RELRO:
1193	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1194	    obj->relro_size = round_page(ph->p_memsz);
1195	    break;
1196
1197	case PT_NOTE:
1198	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1199	    note_end = note_start + ph->p_filesz;
1200	    digest_notes(obj, note_start, note_end);
1201	    break;
1202	}
1203    }
1204    if (nsegs < 1) {
1205	_rtld_error("%s: too few PT_LOAD segments", path);
1206	return NULL;
1207    }
1208
1209    obj->entry = entry;
1210    return obj;
1211}
1212
1213void
1214digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1215{
1216	const Elf_Note *note;
1217	const char *note_name;
1218	uintptr_t p;
1219
1220	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1221	    note = (const Elf_Note *)((const char *)(note + 1) +
1222	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1223	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1224		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1225		    note->n_descsz != sizeof(int32_t))
1226			continue;
1227		if (note->n_type != ABI_NOTETYPE &&
1228		    note->n_type != CRT_NOINIT_NOTETYPE)
1229			continue;
1230		note_name = (const char *)(note + 1);
1231		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1232		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1233			continue;
1234		switch (note->n_type) {
1235		case ABI_NOTETYPE:
1236			/* FreeBSD osrel note */
1237			p = (uintptr_t)(note + 1);
1238			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1239			obj->osrel = *(const int32_t *)(p);
1240			dbg("note osrel %d", obj->osrel);
1241			break;
1242		case CRT_NOINIT_NOTETYPE:
1243			/* FreeBSD 'crt does not call init' note */
1244			obj->crt_no_init = true;
1245			dbg("note crt_no_init");
1246			break;
1247		}
1248	}
1249}
1250
1251static Obj_Entry *
1252dlcheck(void *handle)
1253{
1254    Obj_Entry *obj;
1255
1256    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1257	if (obj == (Obj_Entry *) handle)
1258	    break;
1259
1260    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1261	_rtld_error("Invalid shared object handle %p", handle);
1262	return NULL;
1263    }
1264    return obj;
1265}
1266
1267/*
1268 * If the given object is already in the donelist, return true.  Otherwise
1269 * add the object to the list and return false.
1270 */
1271static bool
1272donelist_check(DoneList *dlp, const Obj_Entry *obj)
1273{
1274    unsigned int i;
1275
1276    for (i = 0;  i < dlp->num_used;  i++)
1277	if (dlp->objs[i] == obj)
1278	    return true;
1279    /*
1280     * Our donelist allocation should always be sufficient.  But if
1281     * our threads locking isn't working properly, more shared objects
1282     * could have been loaded since we allocated the list.  That should
1283     * never happen, but we'll handle it properly just in case it does.
1284     */
1285    if (dlp->num_used < dlp->num_alloc)
1286	dlp->objs[dlp->num_used++] = obj;
1287    return false;
1288}
1289
1290/*
1291 * Hash function for symbol table lookup.  Don't even think about changing
1292 * this.  It is specified by the System V ABI.
1293 */
1294unsigned long
1295elf_hash(const char *name)
1296{
1297    const unsigned char *p = (const unsigned char *) name;
1298    unsigned long h = 0;
1299    unsigned long g;
1300
1301    while (*p != '\0') {
1302	h = (h << 4) + *p++;
1303	if ((g = h & 0xf0000000) != 0)
1304	    h ^= g >> 24;
1305	h &= ~g;
1306    }
1307    return h;
1308}
1309
1310/*
1311 * Find the library with the given name, and return its full pathname.
1312 * The returned string is dynamically allocated.  Generates an error
1313 * message and returns NULL if the library cannot be found.
1314 *
1315 * If the second argument is non-NULL, then it refers to an already-
1316 * loaded shared object, whose library search path will be searched.
1317 *
1318 * The search order is:
1319 *   LD_LIBRARY_PATH
1320 *   rpath in the referencing file
1321 *   ldconfig hints
1322 *   /lib:/usr/lib
1323 */
1324static char *
1325find_library(const char *xname, const Obj_Entry *refobj)
1326{
1327    char *pathname;
1328    char *name;
1329
1330    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1331	if (xname[0] != '/' && !trust) {
1332	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1333	      xname);
1334	    return NULL;
1335	}
1336	if (refobj != NULL && refobj->z_origin)
1337	    return origin_subst(xname, refobj->origin_path);
1338	else
1339	    return xstrdup(xname);
1340    }
1341
1342    if (libmap_disable || (refobj == NULL) ||
1343	(name = lm_find(refobj->path, xname)) == NULL)
1344	name = (char *)xname;
1345
1346    dbg(" Searching for \"%s\"", name);
1347
1348    if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1349      (refobj != NULL &&
1350      (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1351      (pathname = search_library_path(name, gethints())) != NULL ||
1352      (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1353	return pathname;
1354
1355    if(refobj != NULL && refobj->path != NULL) {
1356	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1357	  name, basename(refobj->path));
1358    } else {
1359	_rtld_error("Shared object \"%s\" not found", name);
1360    }
1361    return NULL;
1362}
1363
1364/*
1365 * Given a symbol number in a referencing object, find the corresponding
1366 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1367 * no definition was found.  Returns a pointer to the Obj_Entry of the
1368 * defining object via the reference parameter DEFOBJ_OUT.
1369 */
1370const Elf_Sym *
1371find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1372    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1373    RtldLockState *lockstate)
1374{
1375    const Elf_Sym *ref;
1376    const Elf_Sym *def;
1377    const Obj_Entry *defobj;
1378    SymLook req;
1379    const char *name;
1380    int res;
1381
1382    /*
1383     * If we have already found this symbol, get the information from
1384     * the cache.
1385     */
1386    if (symnum >= refobj->nchains)
1387	return NULL;	/* Bad object */
1388    if (cache != NULL && cache[symnum].sym != NULL) {
1389	*defobj_out = cache[symnum].obj;
1390	return cache[symnum].sym;
1391    }
1392
1393    ref = refobj->symtab + symnum;
1394    name = refobj->strtab + ref->st_name;
1395    def = NULL;
1396    defobj = NULL;
1397
1398    /*
1399     * We don't have to do a full scale lookup if the symbol is local.
1400     * We know it will bind to the instance in this load module; to
1401     * which we already have a pointer (ie ref). By not doing a lookup,
1402     * we not only improve performance, but it also avoids unresolvable
1403     * symbols when local symbols are not in the hash table. This has
1404     * been seen with the ia64 toolchain.
1405     */
1406    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1407	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1408	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1409		symnum);
1410	}
1411	symlook_init(&req, name);
1412	req.flags = flags;
1413	req.ventry = fetch_ventry(refobj, symnum);
1414	req.lockstate = lockstate;
1415	res = symlook_default(&req, refobj);
1416	if (res == 0) {
1417	    def = req.sym_out;
1418	    defobj = req.defobj_out;
1419	}
1420    } else {
1421	def = ref;
1422	defobj = refobj;
1423    }
1424
1425    /*
1426     * If we found no definition and the reference is weak, treat the
1427     * symbol as having the value zero.
1428     */
1429    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1430	def = &sym_zero;
1431	defobj = obj_main;
1432    }
1433
1434    if (def != NULL) {
1435	*defobj_out = defobj;
1436	/* Record the information in the cache to avoid subsequent lookups. */
1437	if (cache != NULL) {
1438	    cache[symnum].sym = def;
1439	    cache[symnum].obj = defobj;
1440	}
1441    } else {
1442	if (refobj != &obj_rtld)
1443	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1444    }
1445    return def;
1446}
1447
1448/*
1449 * Return the search path from the ldconfig hints file, reading it if
1450 * necessary.  Returns NULL if there are problems with the hints file,
1451 * or if the search path there is empty.
1452 */
1453static const char *
1454gethints(void)
1455{
1456    static char *hints;
1457
1458    if (hints == NULL) {
1459	int fd;
1460	struct elfhints_hdr hdr;
1461	char *p;
1462
1463	/* Keep from trying again in case the hints file is bad. */
1464	hints = "";
1465
1466	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1467	    return NULL;
1468	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1469	  hdr.magic != ELFHINTS_MAGIC ||
1470	  hdr.version != 1) {
1471	    close(fd);
1472	    return NULL;
1473	}
1474	p = xmalloc(hdr.dirlistlen + 1);
1475	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1476	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1477	    free(p);
1478	    close(fd);
1479	    return NULL;
1480	}
1481	hints = p;
1482	close(fd);
1483    }
1484    return hints[0] != '\0' ? hints : NULL;
1485}
1486
1487static void
1488init_dag(Obj_Entry *root)
1489{
1490    const Needed_Entry *needed;
1491    const Objlist_Entry *elm;
1492    DoneList donelist;
1493
1494    if (root->dag_inited)
1495	return;
1496    donelist_init(&donelist);
1497
1498    /* Root object belongs to own DAG. */
1499    objlist_push_tail(&root->dldags, root);
1500    objlist_push_tail(&root->dagmembers, root);
1501    donelist_check(&donelist, root);
1502
1503    /*
1504     * Add dependencies of root object to DAG in breadth order
1505     * by exploiting the fact that each new object get added
1506     * to the tail of the dagmembers list.
1507     */
1508    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1509	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1510	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1511		continue;
1512	    objlist_push_tail(&needed->obj->dldags, root);
1513	    objlist_push_tail(&root->dagmembers, needed->obj);
1514	}
1515    }
1516    root->dag_inited = true;
1517}
1518
1519/*
1520 * Initialize the dynamic linker.  The argument is the address at which
1521 * the dynamic linker has been mapped into memory.  The primary task of
1522 * this function is to relocate the dynamic linker.
1523 */
1524static void
1525init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1526{
1527    Obj_Entry objtmp;	/* Temporary rtld object */
1528    const Elf_Dyn *dyn_rpath;
1529    const Elf_Dyn *dyn_soname;
1530
1531    /*
1532     * Conjure up an Obj_Entry structure for the dynamic linker.
1533     *
1534     * The "path" member can't be initialized yet because string constants
1535     * cannot yet be accessed. Below we will set it correctly.
1536     */
1537    memset(&objtmp, 0, sizeof(objtmp));
1538    objtmp.path = NULL;
1539    objtmp.rtld = true;
1540    objtmp.mapbase = mapbase;
1541#ifdef PIC
1542    objtmp.relocbase = mapbase;
1543#endif
1544    if (RTLD_IS_DYNAMIC()) {
1545	objtmp.dynamic = rtld_dynamic(&objtmp);
1546	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname);
1547	assert(objtmp.needed == NULL);
1548#if !defined(__mips__)
1549	/* MIPS has a bogus DT_TEXTREL. */
1550	assert(!objtmp.textrel);
1551#endif
1552
1553	/*
1554	 * Temporarily put the dynamic linker entry into the object list, so
1555	 * that symbols can be found.
1556	 */
1557
1558	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1559    }
1560
1561    /* Initialize the object list. */
1562    obj_tail = &obj_list;
1563
1564    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1565    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1566
1567    if (aux_info[AT_PAGESZ] != NULL)
1568	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1569    if (aux_info[AT_OSRELDATE] != NULL)
1570	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1571
1572    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname);
1573
1574    /* Replace the path with a dynamically allocated copy. */
1575    obj_rtld.path = xstrdup(PATH_RTLD);
1576
1577    r_debug.r_brk = r_debug_state;
1578    r_debug.r_state = RT_CONSISTENT;
1579}
1580
1581/*
1582 * Add the init functions from a needed object list (and its recursive
1583 * needed objects) to "list".  This is not used directly; it is a helper
1584 * function for initlist_add_objects().  The write lock must be held
1585 * when this function is called.
1586 */
1587static void
1588initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1589{
1590    /* Recursively process the successor needed objects. */
1591    if (needed->next != NULL)
1592	initlist_add_neededs(needed->next, list);
1593
1594    /* Process the current needed object. */
1595    if (needed->obj != NULL)
1596	initlist_add_objects(needed->obj, &needed->obj->next, list);
1597}
1598
1599/*
1600 * Scan all of the DAGs rooted in the range of objects from "obj" to
1601 * "tail" and add their init functions to "list".  This recurses over
1602 * the DAGs and ensure the proper init ordering such that each object's
1603 * needed libraries are initialized before the object itself.  At the
1604 * same time, this function adds the objects to the global finalization
1605 * list "list_fini" in the opposite order.  The write lock must be
1606 * held when this function is called.
1607 */
1608static void
1609initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1610{
1611
1612    if (obj->init_scanned || obj->init_done)
1613	return;
1614    obj->init_scanned = true;
1615
1616    /* Recursively process the successor objects. */
1617    if (&obj->next != tail)
1618	initlist_add_objects(obj->next, tail, list);
1619
1620    /* Recursively process the needed objects. */
1621    if (obj->needed != NULL)
1622	initlist_add_neededs(obj->needed, list);
1623    if (obj->needed_filtees != NULL)
1624	initlist_add_neededs(obj->needed_filtees, list);
1625    if (obj->needed_aux_filtees != NULL)
1626	initlist_add_neededs(obj->needed_aux_filtees, list);
1627
1628    /* Add the object to the init list. */
1629    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1630      obj->init_array != (Elf_Addr)NULL)
1631	objlist_push_tail(list, obj);
1632
1633    /* Add the object to the global fini list in the reverse order. */
1634    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1635      && !obj->on_fini_list) {
1636	objlist_push_head(&list_fini, obj);
1637	obj->on_fini_list = true;
1638    }
1639}
1640
1641#ifndef FPTR_TARGET
1642#define FPTR_TARGET(f)	((Elf_Addr) (f))
1643#endif
1644
1645static void
1646free_needed_filtees(Needed_Entry *n)
1647{
1648    Needed_Entry *needed, *needed1;
1649
1650    for (needed = n; needed != NULL; needed = needed->next) {
1651	if (needed->obj != NULL) {
1652	    dlclose(needed->obj);
1653	    needed->obj = NULL;
1654	}
1655    }
1656    for (needed = n; needed != NULL; needed = needed1) {
1657	needed1 = needed->next;
1658	free(needed);
1659    }
1660}
1661
1662static void
1663unload_filtees(Obj_Entry *obj)
1664{
1665
1666    free_needed_filtees(obj->needed_filtees);
1667    obj->needed_filtees = NULL;
1668    free_needed_filtees(obj->needed_aux_filtees);
1669    obj->needed_aux_filtees = NULL;
1670    obj->filtees_loaded = false;
1671}
1672
1673static void
1674load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags)
1675{
1676
1677    for (; needed != NULL; needed = needed->next) {
1678	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1679	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1680	  RTLD_LOCAL);
1681    }
1682}
1683
1684static void
1685load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1686{
1687
1688    lock_restart_for_upgrade(lockstate);
1689    if (!obj->filtees_loaded) {
1690	load_filtee1(obj, obj->needed_filtees, flags);
1691	load_filtee1(obj, obj->needed_aux_filtees, flags);
1692	obj->filtees_loaded = true;
1693    }
1694}
1695
1696static int
1697process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1698{
1699    Obj_Entry *obj1;
1700
1701    for (; needed != NULL; needed = needed->next) {
1702	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1703	  flags & ~RTLD_LO_NOLOAD);
1704	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1705	    return (-1);
1706	if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1707	    dbg("obj %s nodelete", obj1->path);
1708	    init_dag(obj1);
1709	    ref_dag(obj1);
1710	    obj1->ref_nodel = true;
1711	}
1712    }
1713    return (0);
1714}
1715
1716/*
1717 * Given a shared object, traverse its list of needed objects, and load
1718 * each of them.  Returns 0 on success.  Generates an error message and
1719 * returns -1 on failure.
1720 */
1721static int
1722load_needed_objects(Obj_Entry *first, int flags)
1723{
1724    Obj_Entry *obj;
1725
1726    for (obj = first;  obj != NULL;  obj = obj->next) {
1727	if (process_needed(obj, obj->needed, flags) == -1)
1728	    return (-1);
1729    }
1730    return (0);
1731}
1732
1733static int
1734load_preload_objects(void)
1735{
1736    char *p = ld_preload;
1737    static const char delim[] = " \t:;";
1738
1739    if (p == NULL)
1740	return 0;
1741
1742    p += strspn(p, delim);
1743    while (*p != '\0') {
1744	size_t len = strcspn(p, delim);
1745	char savech;
1746
1747	savech = p[len];
1748	p[len] = '\0';
1749	if (load_object(p, -1, NULL, 0) == NULL)
1750	    return -1;	/* XXX - cleanup */
1751	p[len] = savech;
1752	p += len;
1753	p += strspn(p, delim);
1754    }
1755    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1756    return 0;
1757}
1758
1759static const char *
1760printable_path(const char *path)
1761{
1762
1763	return (path == NULL ? "<unknown>" : path);
1764}
1765
1766/*
1767 * Load a shared object into memory, if it is not already loaded.  The
1768 * object may be specified by name or by user-supplied file descriptor
1769 * fd_u. In the later case, the fd_u descriptor is not closed, but its
1770 * duplicate is.
1771 *
1772 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1773 * on failure.
1774 */
1775static Obj_Entry *
1776load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
1777{
1778    Obj_Entry *obj;
1779    int fd;
1780    struct stat sb;
1781    char *path;
1782
1783    if (name != NULL) {
1784	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1785	    if (object_match_name(obj, name))
1786		return (obj);
1787	}
1788
1789	path = find_library(name, refobj);
1790	if (path == NULL)
1791	    return (NULL);
1792    } else
1793	path = NULL;
1794
1795    /*
1796     * If we didn't find a match by pathname, or the name is not
1797     * supplied, open the file and check again by device and inode.
1798     * This avoids false mismatches caused by multiple links or ".."
1799     * in pathnames.
1800     *
1801     * To avoid a race, we open the file and use fstat() rather than
1802     * using stat().
1803     */
1804    fd = -1;
1805    if (fd_u == -1) {
1806	if ((fd = open(path, O_RDONLY)) == -1) {
1807	    _rtld_error("Cannot open \"%s\"", path);
1808	    free(path);
1809	    return (NULL);
1810	}
1811    } else {
1812	fd = dup(fd_u);
1813	if (fd == -1) {
1814	    _rtld_error("Cannot dup fd");
1815	    free(path);
1816	    return (NULL);
1817	}
1818    }
1819    if (fstat(fd, &sb) == -1) {
1820	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
1821	close(fd);
1822	free(path);
1823	return NULL;
1824    }
1825    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1826	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
1827	    break;
1828    if (obj != NULL && name != NULL) {
1829	object_add_name(obj, name);
1830	free(path);
1831	close(fd);
1832	return obj;
1833    }
1834    if (flags & RTLD_LO_NOLOAD) {
1835	free(path);
1836	close(fd);
1837	return (NULL);
1838    }
1839
1840    /* First use of this object, so we must map it in */
1841    obj = do_load_object(fd, name, path, &sb, flags);
1842    if (obj == NULL)
1843	free(path);
1844    close(fd);
1845
1846    return obj;
1847}
1848
1849static Obj_Entry *
1850do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1851  int flags)
1852{
1853    Obj_Entry *obj;
1854    struct statfs fs;
1855
1856    /*
1857     * but first, make sure that environment variables haven't been
1858     * used to circumvent the noexec flag on a filesystem.
1859     */
1860    if (dangerous_ld_env) {
1861	if (fstatfs(fd, &fs) != 0) {
1862	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
1863	    return NULL;
1864	}
1865	if (fs.f_flags & MNT_NOEXEC) {
1866	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1867	    return NULL;
1868	}
1869    }
1870    dbg("loading \"%s\"", printable_path(path));
1871    obj = map_object(fd, printable_path(path), sbp);
1872    if (obj == NULL)
1873        return NULL;
1874
1875    /*
1876     * If DT_SONAME is present in the object, digest_dynamic2 already
1877     * added it to the object names.
1878     */
1879    if (name != NULL)
1880	object_add_name(obj, name);
1881    obj->path = path;
1882    digest_dynamic(obj, 0);
1883    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1884      RTLD_LO_DLOPEN) {
1885	dbg("refusing to load non-loadable \"%s\"", obj->path);
1886	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1887	munmap(obj->mapbase, obj->mapsize);
1888	obj_free(obj);
1889	return (NULL);
1890    }
1891
1892    *obj_tail = obj;
1893    obj_tail = &obj->next;
1894    obj_count++;
1895    obj_loads++;
1896    linkmap_add(obj);	/* for GDB & dlinfo() */
1897    max_stack_flags |= obj->stack_flags;
1898
1899    dbg("  %p .. %p: %s", obj->mapbase,
1900         obj->mapbase + obj->mapsize - 1, obj->path);
1901    if (obj->textrel)
1902	dbg("  WARNING: %s has impure text", obj->path);
1903    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1904	obj->path);
1905
1906    return obj;
1907}
1908
1909static Obj_Entry *
1910obj_from_addr(const void *addr)
1911{
1912    Obj_Entry *obj;
1913
1914    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1915	if (addr < (void *) obj->mapbase)
1916	    continue;
1917	if (addr < (void *) (obj->mapbase + obj->mapsize))
1918	    return obj;
1919    }
1920    return NULL;
1921}
1922
1923static void
1924preinit_main(void)
1925{
1926    Elf_Addr *preinit_addr;
1927    int index;
1928
1929    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
1930    if (preinit_addr == NULL)
1931	return;
1932
1933    for (index = 0; index < obj_main->preinit_array_num; index++) {
1934	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
1935	    dbg("calling preinit function for %s at %p", obj_main->path,
1936	      (void *)preinit_addr[index]);
1937	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
1938	      0, 0, obj_main->path);
1939	    call_init_pointer(obj_main, preinit_addr[index]);
1940	}
1941    }
1942}
1943
1944/*
1945 * Call the finalization functions for each of the objects in "list"
1946 * belonging to the DAG of "root" and referenced once. If NULL "root"
1947 * is specified, every finalization function will be called regardless
1948 * of the reference count and the list elements won't be freed. All of
1949 * the objects are expected to have non-NULL fini functions.
1950 */
1951static void
1952objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
1953{
1954    Objlist_Entry *elm;
1955    char *saved_msg;
1956    Elf_Addr *fini_addr;
1957    int index;
1958
1959    assert(root == NULL || root->refcount == 1);
1960
1961    /*
1962     * Preserve the current error message since a fini function might
1963     * call into the dynamic linker and overwrite it.
1964     */
1965    saved_msg = errmsg_save();
1966    do {
1967	STAILQ_FOREACH(elm, list, link) {
1968	    if (root != NULL && (elm->obj->refcount != 1 ||
1969	      objlist_find(&root->dagmembers, elm->obj) == NULL))
1970		continue;
1971	    /* Remove object from fini list to prevent recursive invocation. */
1972	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1973	    /*
1974	     * XXX: If a dlopen() call references an object while the
1975	     * fini function is in progress, we might end up trying to
1976	     * unload the referenced object in dlclose() or the object
1977	     * won't be unloaded although its fini function has been
1978	     * called.
1979	     */
1980	    lock_release(rtld_bind_lock, lockstate);
1981
1982	    /*
1983	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
1984	     * When this happens, DT_FINI_ARRAY is processed first.
1985	     */
1986	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
1987	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
1988		for (index = elm->obj->fini_array_num - 1; index >= 0;
1989		  index--) {
1990		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
1991			dbg("calling fini function for %s at %p",
1992			    elm->obj->path, (void *)fini_addr[index]);
1993			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
1994			    (void *)fini_addr[index], 0, 0, elm->obj->path);
1995			call_initfini_pointer(elm->obj, fini_addr[index]);
1996		    }
1997		}
1998	    }
1999	    if (elm->obj->fini != (Elf_Addr)NULL) {
2000		dbg("calling fini function for %s at %p", elm->obj->path,
2001		    (void *)elm->obj->fini);
2002		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2003		    0, 0, elm->obj->path);
2004		call_initfini_pointer(elm->obj, elm->obj->fini);
2005	    }
2006	    wlock_acquire(rtld_bind_lock, lockstate);
2007	    /* No need to free anything if process is going down. */
2008	    if (root != NULL)
2009	    	free(elm);
2010	    /*
2011	     * We must restart the list traversal after every fini call
2012	     * because a dlclose() call from the fini function or from
2013	     * another thread might have modified the reference counts.
2014	     */
2015	    break;
2016	}
2017    } while (elm != NULL);
2018    errmsg_restore(saved_msg);
2019}
2020
2021/*
2022 * Call the initialization functions for each of the objects in
2023 * "list".  All of the objects are expected to have non-NULL init
2024 * functions.
2025 */
2026static void
2027objlist_call_init(Objlist *list, RtldLockState *lockstate)
2028{
2029    Objlist_Entry *elm;
2030    Obj_Entry *obj;
2031    char *saved_msg;
2032    Elf_Addr *init_addr;
2033    int index;
2034
2035    /*
2036     * Clean init_scanned flag so that objects can be rechecked and
2037     * possibly initialized earlier if any of vectors called below
2038     * cause the change by using dlopen.
2039     */
2040    for (obj = obj_list;  obj != NULL;  obj = obj->next)
2041	obj->init_scanned = false;
2042
2043    /*
2044     * Preserve the current error message since an init function might
2045     * call into the dynamic linker and overwrite it.
2046     */
2047    saved_msg = errmsg_save();
2048    STAILQ_FOREACH(elm, list, link) {
2049	if (elm->obj->init_done) /* Initialized early. */
2050	    continue;
2051	/*
2052	 * Race: other thread might try to use this object before current
2053	 * one completes the initilization. Not much can be done here
2054	 * without better locking.
2055	 */
2056	elm->obj->init_done = true;
2057	lock_release(rtld_bind_lock, lockstate);
2058
2059        /*
2060         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2061         * When this happens, DT_INIT is processed first.
2062         */
2063	if (elm->obj->init != (Elf_Addr)NULL) {
2064	    dbg("calling init function for %s at %p", elm->obj->path,
2065	        (void *)elm->obj->init);
2066	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2067	        0, 0, elm->obj->path);
2068	    call_initfini_pointer(elm->obj, elm->obj->init);
2069	}
2070	init_addr = (Elf_Addr *)elm->obj->init_array;
2071	if (init_addr != NULL) {
2072	    for (index = 0; index < elm->obj->init_array_num; index++) {
2073		if (init_addr[index] != 0 && init_addr[index] != 1) {
2074		    dbg("calling init function for %s at %p", elm->obj->path,
2075			(void *)init_addr[index]);
2076		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2077			(void *)init_addr[index], 0, 0, elm->obj->path);
2078		    call_init_pointer(elm->obj, init_addr[index]);
2079		}
2080	    }
2081	}
2082	wlock_acquire(rtld_bind_lock, lockstate);
2083    }
2084    errmsg_restore(saved_msg);
2085}
2086
2087static void
2088objlist_clear(Objlist *list)
2089{
2090    Objlist_Entry *elm;
2091
2092    while (!STAILQ_EMPTY(list)) {
2093	elm = STAILQ_FIRST(list);
2094	STAILQ_REMOVE_HEAD(list, link);
2095	free(elm);
2096    }
2097}
2098
2099static Objlist_Entry *
2100objlist_find(Objlist *list, const Obj_Entry *obj)
2101{
2102    Objlist_Entry *elm;
2103
2104    STAILQ_FOREACH(elm, list, link)
2105	if (elm->obj == obj)
2106	    return elm;
2107    return NULL;
2108}
2109
2110static void
2111objlist_init(Objlist *list)
2112{
2113    STAILQ_INIT(list);
2114}
2115
2116static void
2117objlist_push_head(Objlist *list, Obj_Entry *obj)
2118{
2119    Objlist_Entry *elm;
2120
2121    elm = NEW(Objlist_Entry);
2122    elm->obj = obj;
2123    STAILQ_INSERT_HEAD(list, elm, link);
2124}
2125
2126static void
2127objlist_push_tail(Objlist *list, Obj_Entry *obj)
2128{
2129    Objlist_Entry *elm;
2130
2131    elm = NEW(Objlist_Entry);
2132    elm->obj = obj;
2133    STAILQ_INSERT_TAIL(list, elm, link);
2134}
2135
2136static void
2137objlist_remove(Objlist *list, Obj_Entry *obj)
2138{
2139    Objlist_Entry *elm;
2140
2141    if ((elm = objlist_find(list, obj)) != NULL) {
2142	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2143	free(elm);
2144    }
2145}
2146
2147/*
2148 * Relocate newly-loaded shared objects.  The argument is a pointer to
2149 * the Obj_Entry for the first such object.  All objects from the first
2150 * to the end of the list of objects are relocated.  Returns 0 on success,
2151 * or -1 on failure.
2152 */
2153static int
2154relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2155    int flags, RtldLockState *lockstate)
2156{
2157    Obj_Entry *obj;
2158
2159    for (obj = first;  obj != NULL;  obj = obj->next) {
2160	if (obj->relocated)
2161	    continue;
2162	obj->relocated = true;
2163	if (obj != rtldobj)
2164	    dbg("relocating \"%s\"", obj->path);
2165
2166	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
2167	    obj->symtab == NULL || obj->strtab == NULL) {
2168	    _rtld_error("%s: Shared object has no run-time symbol table",
2169	      obj->path);
2170	    return -1;
2171	}
2172
2173	if (obj->textrel) {
2174	    /* There are relocations to the write-protected text segment. */
2175	    if (mprotect(obj->mapbase, obj->textsize,
2176	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2177		_rtld_error("%s: Cannot write-enable text segment: %s",
2178		  obj->path, rtld_strerror(errno));
2179		return -1;
2180	    }
2181	}
2182
2183	/* Process the non-PLT relocations. */
2184	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2185		return -1;
2186
2187	if (obj->textrel) {	/* Re-protected the text segment. */
2188	    if (mprotect(obj->mapbase, obj->textsize,
2189	      PROT_READ|PROT_EXEC) == -1) {
2190		_rtld_error("%s: Cannot write-protect text segment: %s",
2191		  obj->path, rtld_strerror(errno));
2192		return -1;
2193	    }
2194	}
2195
2196
2197	/* Set the special PLT or GOT entries. */
2198	init_pltgot(obj);
2199
2200	/* Process the PLT relocations. */
2201	if (reloc_plt(obj) == -1)
2202	    return -1;
2203	/* Relocate the jump slots if we are doing immediate binding. */
2204	if (obj->bind_now || bind_now)
2205	    if (reloc_jmpslots(obj, flags, lockstate) == -1)
2206		return -1;
2207
2208	if (obj->relro_size > 0) {
2209	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2210		_rtld_error("%s: Cannot enforce relro protection: %s",
2211		  obj->path, rtld_strerror(errno));
2212		return -1;
2213	    }
2214	}
2215
2216	/*
2217	 * Set up the magic number and version in the Obj_Entry.  These
2218	 * were checked in the crt1.o from the original ElfKit, so we
2219	 * set them for backward compatibility.
2220	 */
2221	obj->magic = RTLD_MAGIC;
2222	obj->version = RTLD_VERSION;
2223    }
2224
2225    return (0);
2226}
2227
2228/*
2229 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2230 * referencing STT_GNU_IFUNC symbols is postponed till the other
2231 * relocations are done.  The indirect functions specified as
2232 * ifunc are allowed to call other symbols, so we need to have
2233 * objects relocated before asking for resolution from indirects.
2234 *
2235 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2236 * instead of the usual lazy handling of PLT slots.  It is
2237 * consistent with how GNU does it.
2238 */
2239static int
2240resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2241    RtldLockState *lockstate)
2242{
2243	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2244		return (-1);
2245	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2246	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2247		return (-1);
2248	return (0);
2249}
2250
2251static int
2252resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2253    RtldLockState *lockstate)
2254{
2255	Obj_Entry *obj;
2256
2257	for (obj = first;  obj != NULL;  obj = obj->next) {
2258		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2259			return (-1);
2260	}
2261	return (0);
2262}
2263
2264static int
2265initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2266    RtldLockState *lockstate)
2267{
2268	Objlist_Entry *elm;
2269
2270	STAILQ_FOREACH(elm, list, link) {
2271		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2272		    lockstate) == -1)
2273			return (-1);
2274	}
2275	return (0);
2276}
2277
2278/*
2279 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2280 * before the process exits.
2281 */
2282static void
2283rtld_exit(void)
2284{
2285    RtldLockState lockstate;
2286
2287    wlock_acquire(rtld_bind_lock, &lockstate);
2288    dbg("rtld_exit()");
2289    objlist_call_fini(&list_fini, NULL, &lockstate);
2290    /* No need to remove the items from the list, since we are exiting. */
2291    if (!libmap_disable)
2292        lm_fini();
2293    lock_release(rtld_bind_lock, &lockstate);
2294}
2295
2296static void *
2297path_enumerate(const char *path, path_enum_proc callback, void *arg)
2298{
2299#ifdef COMPAT_32BIT
2300    const char *trans;
2301#endif
2302    if (path == NULL)
2303	return (NULL);
2304
2305    path += strspn(path, ":;");
2306    while (*path != '\0') {
2307	size_t len;
2308	char  *res;
2309
2310	len = strcspn(path, ":;");
2311#ifdef COMPAT_32BIT
2312	trans = lm_findn(NULL, path, len);
2313	if (trans)
2314	    res = callback(trans, strlen(trans), arg);
2315	else
2316#endif
2317	res = callback(path, len, arg);
2318
2319	if (res != NULL)
2320	    return (res);
2321
2322	path += len;
2323	path += strspn(path, ":;");
2324    }
2325
2326    return (NULL);
2327}
2328
2329struct try_library_args {
2330    const char	*name;
2331    size_t	 namelen;
2332    char	*buffer;
2333    size_t	 buflen;
2334};
2335
2336static void *
2337try_library_path(const char *dir, size_t dirlen, void *param)
2338{
2339    struct try_library_args *arg;
2340
2341    arg = param;
2342    if (*dir == '/' || trust) {
2343	char *pathname;
2344
2345	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2346		return (NULL);
2347
2348	pathname = arg->buffer;
2349	strncpy(pathname, dir, dirlen);
2350	pathname[dirlen] = '/';
2351	strcpy(pathname + dirlen + 1, arg->name);
2352
2353	dbg("  Trying \"%s\"", pathname);
2354	if (access(pathname, F_OK) == 0) {		/* We found it */
2355	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2356	    strcpy(pathname, arg->buffer);
2357	    return (pathname);
2358	}
2359    }
2360    return (NULL);
2361}
2362
2363static char *
2364search_library_path(const char *name, const char *path)
2365{
2366    char *p;
2367    struct try_library_args arg;
2368
2369    if (path == NULL)
2370	return NULL;
2371
2372    arg.name = name;
2373    arg.namelen = strlen(name);
2374    arg.buffer = xmalloc(PATH_MAX);
2375    arg.buflen = PATH_MAX;
2376
2377    p = path_enumerate(path, try_library_path, &arg);
2378
2379    free(arg.buffer);
2380
2381    return (p);
2382}
2383
2384int
2385dlclose(void *handle)
2386{
2387    Obj_Entry *root;
2388    RtldLockState lockstate;
2389
2390    wlock_acquire(rtld_bind_lock, &lockstate);
2391    root = dlcheck(handle);
2392    if (root == NULL) {
2393	lock_release(rtld_bind_lock, &lockstate);
2394	return -1;
2395    }
2396    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2397	root->path);
2398
2399    /* Unreference the object and its dependencies. */
2400    root->dl_refcount--;
2401
2402    if (root->refcount == 1) {
2403	/*
2404	 * The object will be no longer referenced, so we must unload it.
2405	 * First, call the fini functions.
2406	 */
2407	objlist_call_fini(&list_fini, root, &lockstate);
2408
2409	unref_dag(root);
2410
2411	/* Finish cleaning up the newly-unreferenced objects. */
2412	GDB_STATE(RT_DELETE,&root->linkmap);
2413	unload_object(root);
2414	GDB_STATE(RT_CONSISTENT,NULL);
2415    } else
2416	unref_dag(root);
2417
2418    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2419    lock_release(rtld_bind_lock, &lockstate);
2420    return 0;
2421}
2422
2423char *
2424dlerror(void)
2425{
2426    char *msg = error_message;
2427    error_message = NULL;
2428    return msg;
2429}
2430
2431/*
2432 * This function is deprecated and has no effect.
2433 */
2434void
2435dllockinit(void *context,
2436	   void *(*lock_create)(void *context),
2437           void (*rlock_acquire)(void *lock),
2438           void (*wlock_acquire)(void *lock),
2439           void (*lock_release)(void *lock),
2440           void (*lock_destroy)(void *lock),
2441	   void (*context_destroy)(void *context))
2442{
2443    static void *cur_context;
2444    static void (*cur_context_destroy)(void *);
2445
2446    /* Just destroy the context from the previous call, if necessary. */
2447    if (cur_context_destroy != NULL)
2448	cur_context_destroy(cur_context);
2449    cur_context = context;
2450    cur_context_destroy = context_destroy;
2451}
2452
2453void *
2454dlopen(const char *name, int mode)
2455{
2456
2457	return (rtld_dlopen(name, -1, mode));
2458}
2459
2460void *
2461fdlopen(int fd, int mode)
2462{
2463
2464	return (rtld_dlopen(NULL, fd, mode));
2465}
2466
2467static void *
2468rtld_dlopen(const char *name, int fd, int mode)
2469{
2470    RtldLockState lockstate;
2471    int lo_flags;
2472
2473    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2474    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2475    if (ld_tracing != NULL) {
2476	rlock_acquire(rtld_bind_lock, &lockstate);
2477	if (sigsetjmp(lockstate.env, 0) != 0)
2478	    lock_upgrade(rtld_bind_lock, &lockstate);
2479	environ = (char **)*get_program_var_addr("environ", &lockstate);
2480	lock_release(rtld_bind_lock, &lockstate);
2481    }
2482    lo_flags = RTLD_LO_DLOPEN;
2483    if (mode & RTLD_NODELETE)
2484	    lo_flags |= RTLD_LO_NODELETE;
2485    if (mode & RTLD_NOLOAD)
2486	    lo_flags |= RTLD_LO_NOLOAD;
2487    if (ld_tracing != NULL)
2488	    lo_flags |= RTLD_LO_TRACE;
2489
2490    return (dlopen_object(name, fd, obj_main, lo_flags,
2491      mode & (RTLD_MODEMASK | RTLD_GLOBAL)));
2492}
2493
2494static void
2495dlopen_cleanup(Obj_Entry *obj)
2496{
2497
2498	obj->dl_refcount--;
2499	unref_dag(obj);
2500	if (obj->refcount == 0)
2501		unload_object(obj);
2502}
2503
2504static Obj_Entry *
2505dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2506    int mode)
2507{
2508    Obj_Entry **old_obj_tail;
2509    Obj_Entry *obj;
2510    Objlist initlist;
2511    RtldLockState lockstate;
2512    int result;
2513
2514    objlist_init(&initlist);
2515
2516    wlock_acquire(rtld_bind_lock, &lockstate);
2517    GDB_STATE(RT_ADD,NULL);
2518
2519    old_obj_tail = obj_tail;
2520    obj = NULL;
2521    if (name == NULL && fd == -1) {
2522	obj = obj_main;
2523	obj->refcount++;
2524    } else {
2525	obj = load_object(name, fd, refobj, lo_flags);
2526    }
2527
2528    if (obj) {
2529	obj->dl_refcount++;
2530	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2531	    objlist_push_tail(&list_global, obj);
2532	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2533	    assert(*old_obj_tail == obj);
2534	    result = load_needed_objects(obj,
2535		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2536	    init_dag(obj);
2537	    ref_dag(obj);
2538	    if (result != -1)
2539		result = rtld_verify_versions(&obj->dagmembers);
2540	    if (result != -1 && ld_tracing)
2541		goto trace;
2542	    if (result == -1 || (relocate_objects(obj,
2543	     (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2544	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2545	      &lockstate)) == -1) {
2546		dlopen_cleanup(obj);
2547		obj = NULL;
2548	    } else if (lo_flags & RTLD_LO_EARLY) {
2549		/*
2550		 * Do not call the init functions for early loaded
2551		 * filtees.  The image is still not initialized enough
2552		 * for them to work.
2553		 *
2554		 * Our object is found by the global object list and
2555		 * will be ordered among all init calls done right
2556		 * before transferring control to main.
2557		 */
2558	    } else {
2559		/* Make list of init functions to call. */
2560		initlist_add_objects(obj, &obj->next, &initlist);
2561	    }
2562	} else {
2563
2564	    /*
2565	     * Bump the reference counts for objects on this DAG.  If
2566	     * this is the first dlopen() call for the object that was
2567	     * already loaded as a dependency, initialize the dag
2568	     * starting at it.
2569	     */
2570	    init_dag(obj);
2571	    ref_dag(obj);
2572
2573	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2574		goto trace;
2575	}
2576	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2577	  obj->z_nodelete) && !obj->ref_nodel) {
2578	    dbg("obj %s nodelete", obj->path);
2579	    ref_dag(obj);
2580	    obj->z_nodelete = obj->ref_nodel = true;
2581	}
2582    }
2583
2584    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2585	name);
2586    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2587
2588    map_stacks_exec(&lockstate);
2589
2590    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2591      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2592      &lockstate) == -1) {
2593	objlist_clear(&initlist);
2594	dlopen_cleanup(obj);
2595	lock_release(rtld_bind_lock, &lockstate);
2596	return (NULL);
2597    }
2598
2599    if (!(lo_flags & RTLD_LO_EARLY)) {
2600	/* Call the init functions. */
2601	objlist_call_init(&initlist, &lockstate);
2602    }
2603    objlist_clear(&initlist);
2604    lock_release(rtld_bind_lock, &lockstate);
2605    return obj;
2606trace:
2607    trace_loaded_objects(obj);
2608    lock_release(rtld_bind_lock, &lockstate);
2609    exit(0);
2610}
2611
2612static void *
2613do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2614    int flags)
2615{
2616    DoneList donelist;
2617    const Obj_Entry *obj, *defobj;
2618    const Elf_Sym *def;
2619    SymLook req;
2620    RtldLockState lockstate;
2621    int res;
2622
2623    def = NULL;
2624    defobj = NULL;
2625    symlook_init(&req, name);
2626    req.ventry = ve;
2627    req.flags = flags | SYMLOOK_IN_PLT;
2628    req.lockstate = &lockstate;
2629
2630    rlock_acquire(rtld_bind_lock, &lockstate);
2631    if (sigsetjmp(lockstate.env, 0) != 0)
2632	    lock_upgrade(rtld_bind_lock, &lockstate);
2633    if (handle == NULL || handle == RTLD_NEXT ||
2634	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2635
2636	if ((obj = obj_from_addr(retaddr)) == NULL) {
2637	    _rtld_error("Cannot determine caller's shared object");
2638	    lock_release(rtld_bind_lock, &lockstate);
2639	    return NULL;
2640	}
2641	if (handle == NULL) {	/* Just the caller's shared object. */
2642	    res = symlook_obj(&req, obj);
2643	    if (res == 0) {
2644		def = req.sym_out;
2645		defobj = req.defobj_out;
2646	    }
2647	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2648		   handle == RTLD_SELF) { /* ... caller included */
2649	    if (handle == RTLD_NEXT)
2650		obj = obj->next;
2651	    for (; obj != NULL; obj = obj->next) {
2652		res = symlook_obj(&req, obj);
2653		if (res == 0) {
2654		    if (def == NULL ||
2655		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2656			def = req.sym_out;
2657			defobj = req.defobj_out;
2658			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2659			    break;
2660		    }
2661		}
2662	    }
2663	    /*
2664	     * Search the dynamic linker itself, and possibly resolve the
2665	     * symbol from there.  This is how the application links to
2666	     * dynamic linker services such as dlopen.
2667	     */
2668	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2669		res = symlook_obj(&req, &obj_rtld);
2670		if (res == 0) {
2671		    def = req.sym_out;
2672		    defobj = req.defobj_out;
2673		}
2674	    }
2675	} else {
2676	    assert(handle == RTLD_DEFAULT);
2677	    res = symlook_default(&req, obj);
2678	    if (res == 0) {
2679		defobj = req.defobj_out;
2680		def = req.sym_out;
2681	    }
2682	}
2683    } else {
2684	if ((obj = dlcheck(handle)) == NULL) {
2685	    lock_release(rtld_bind_lock, &lockstate);
2686	    return NULL;
2687	}
2688
2689	donelist_init(&donelist);
2690	if (obj->mainprog) {
2691            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
2692	    res = symlook_global(&req, &donelist);
2693	    if (res == 0) {
2694		def = req.sym_out;
2695		defobj = req.defobj_out;
2696	    }
2697	    /*
2698	     * Search the dynamic linker itself, and possibly resolve the
2699	     * symbol from there.  This is how the application links to
2700	     * dynamic linker services such as dlopen.
2701	     */
2702	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2703		res = symlook_obj(&req, &obj_rtld);
2704		if (res == 0) {
2705		    def = req.sym_out;
2706		    defobj = req.defobj_out;
2707		}
2708	    }
2709	}
2710	else {
2711	    /* Search the whole DAG rooted at the given object. */
2712	    res = symlook_list(&req, &obj->dagmembers, &donelist);
2713	    if (res == 0) {
2714		def = req.sym_out;
2715		defobj = req.defobj_out;
2716	    }
2717	}
2718    }
2719
2720    if (def != NULL) {
2721	lock_release(rtld_bind_lock, &lockstate);
2722
2723	/*
2724	 * The value required by the caller is derived from the value
2725	 * of the symbol. For the ia64 architecture, we need to
2726	 * construct a function descriptor which the caller can use to
2727	 * call the function with the right 'gp' value. For other
2728	 * architectures and for non-functions, the value is simply
2729	 * the relocated value of the symbol.
2730	 */
2731	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2732	    return (make_function_pointer(def, defobj));
2733	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
2734	    return (rtld_resolve_ifunc(defobj, def));
2735	else
2736	    return (defobj->relocbase + def->st_value);
2737    }
2738
2739    _rtld_error("Undefined symbol \"%s\"", name);
2740    lock_release(rtld_bind_lock, &lockstate);
2741    return NULL;
2742}
2743
2744void *
2745dlsym(void *handle, const char *name)
2746{
2747	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2748	    SYMLOOK_DLSYM);
2749}
2750
2751dlfunc_t
2752dlfunc(void *handle, const char *name)
2753{
2754	union {
2755		void *d;
2756		dlfunc_t f;
2757	} rv;
2758
2759	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2760	    SYMLOOK_DLSYM);
2761	return (rv.f);
2762}
2763
2764void *
2765dlvsym(void *handle, const char *name, const char *version)
2766{
2767	Ver_Entry ventry;
2768
2769	ventry.name = version;
2770	ventry.file = NULL;
2771	ventry.hash = elf_hash(version);
2772	ventry.flags= 0;
2773	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2774	    SYMLOOK_DLSYM);
2775}
2776
2777int
2778_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2779{
2780    const Obj_Entry *obj;
2781    RtldLockState lockstate;
2782
2783    rlock_acquire(rtld_bind_lock, &lockstate);
2784    obj = obj_from_addr(addr);
2785    if (obj == NULL) {
2786        _rtld_error("No shared object contains address");
2787	lock_release(rtld_bind_lock, &lockstate);
2788        return (0);
2789    }
2790    rtld_fill_dl_phdr_info(obj, phdr_info);
2791    lock_release(rtld_bind_lock, &lockstate);
2792    return (1);
2793}
2794
2795int
2796dladdr(const void *addr, Dl_info *info)
2797{
2798    const Obj_Entry *obj;
2799    const Elf_Sym *def;
2800    void *symbol_addr;
2801    unsigned long symoffset;
2802    RtldLockState lockstate;
2803
2804    rlock_acquire(rtld_bind_lock, &lockstate);
2805    obj = obj_from_addr(addr);
2806    if (obj == NULL) {
2807        _rtld_error("No shared object contains address");
2808	lock_release(rtld_bind_lock, &lockstate);
2809        return 0;
2810    }
2811    info->dli_fname = obj->path;
2812    info->dli_fbase = obj->mapbase;
2813    info->dli_saddr = (void *)0;
2814    info->dli_sname = NULL;
2815
2816    /*
2817     * Walk the symbol list looking for the symbol whose address is
2818     * closest to the address sent in.
2819     */
2820    for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2821        def = obj->symtab + symoffset;
2822
2823        /*
2824         * For skip the symbol if st_shndx is either SHN_UNDEF or
2825         * SHN_COMMON.
2826         */
2827        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2828            continue;
2829
2830        /*
2831         * If the symbol is greater than the specified address, or if it
2832         * is further away from addr than the current nearest symbol,
2833         * then reject it.
2834         */
2835        symbol_addr = obj->relocbase + def->st_value;
2836        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2837            continue;
2838
2839        /* Update our idea of the nearest symbol. */
2840        info->dli_sname = obj->strtab + def->st_name;
2841        info->dli_saddr = symbol_addr;
2842
2843        /* Exact match? */
2844        if (info->dli_saddr == addr)
2845            break;
2846    }
2847    lock_release(rtld_bind_lock, &lockstate);
2848    return 1;
2849}
2850
2851int
2852dlinfo(void *handle, int request, void *p)
2853{
2854    const Obj_Entry *obj;
2855    RtldLockState lockstate;
2856    int error;
2857
2858    rlock_acquire(rtld_bind_lock, &lockstate);
2859
2860    if (handle == NULL || handle == RTLD_SELF) {
2861	void *retaddr;
2862
2863	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2864	if ((obj = obj_from_addr(retaddr)) == NULL)
2865	    _rtld_error("Cannot determine caller's shared object");
2866    } else
2867	obj = dlcheck(handle);
2868
2869    if (obj == NULL) {
2870	lock_release(rtld_bind_lock, &lockstate);
2871	return (-1);
2872    }
2873
2874    error = 0;
2875    switch (request) {
2876    case RTLD_DI_LINKMAP:
2877	*((struct link_map const **)p) = &obj->linkmap;
2878	break;
2879    case RTLD_DI_ORIGIN:
2880	error = rtld_dirname(obj->path, p);
2881	break;
2882
2883    case RTLD_DI_SERINFOSIZE:
2884    case RTLD_DI_SERINFO:
2885	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2886	break;
2887
2888    default:
2889	_rtld_error("Invalid request %d passed to dlinfo()", request);
2890	error = -1;
2891    }
2892
2893    lock_release(rtld_bind_lock, &lockstate);
2894
2895    return (error);
2896}
2897
2898static void
2899rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
2900{
2901
2902	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
2903	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
2904	    STAILQ_FIRST(&obj->names)->name : obj->path;
2905	phdr_info->dlpi_phdr = obj->phdr;
2906	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2907	phdr_info->dlpi_tls_modid = obj->tlsindex;
2908	phdr_info->dlpi_tls_data = obj->tlsinit;
2909	phdr_info->dlpi_adds = obj_loads;
2910	phdr_info->dlpi_subs = obj_loads - obj_count;
2911}
2912
2913int
2914dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2915{
2916    struct dl_phdr_info phdr_info;
2917    const Obj_Entry *obj;
2918    RtldLockState bind_lockstate, phdr_lockstate;
2919    int error;
2920
2921    wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
2922    rlock_acquire(rtld_bind_lock, &bind_lockstate);
2923
2924    error = 0;
2925
2926    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2927	rtld_fill_dl_phdr_info(obj, &phdr_info);
2928	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2929		break;
2930
2931    }
2932    lock_release(rtld_bind_lock, &bind_lockstate);
2933    lock_release(rtld_phdr_lock, &phdr_lockstate);
2934
2935    return (error);
2936}
2937
2938struct fill_search_info_args {
2939    int		 request;
2940    unsigned int flags;
2941    Dl_serinfo  *serinfo;
2942    Dl_serpath  *serpath;
2943    char	*strspace;
2944};
2945
2946static void *
2947fill_search_info(const char *dir, size_t dirlen, void *param)
2948{
2949    struct fill_search_info_args *arg;
2950
2951    arg = param;
2952
2953    if (arg->request == RTLD_DI_SERINFOSIZE) {
2954	arg->serinfo->dls_cnt ++;
2955	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2956    } else {
2957	struct dl_serpath *s_entry;
2958
2959	s_entry = arg->serpath;
2960	s_entry->dls_name  = arg->strspace;
2961	s_entry->dls_flags = arg->flags;
2962
2963	strncpy(arg->strspace, dir, dirlen);
2964	arg->strspace[dirlen] = '\0';
2965
2966	arg->strspace += dirlen + 1;
2967	arg->serpath++;
2968    }
2969
2970    return (NULL);
2971}
2972
2973static int
2974do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2975{
2976    struct dl_serinfo _info;
2977    struct fill_search_info_args args;
2978
2979    args.request = RTLD_DI_SERINFOSIZE;
2980    args.serinfo = &_info;
2981
2982    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2983    _info.dls_cnt  = 0;
2984
2985    path_enumerate(ld_library_path, fill_search_info, &args);
2986    path_enumerate(obj->rpath, fill_search_info, &args);
2987    path_enumerate(gethints(), fill_search_info, &args);
2988    path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2989
2990
2991    if (request == RTLD_DI_SERINFOSIZE) {
2992	info->dls_size = _info.dls_size;
2993	info->dls_cnt = _info.dls_cnt;
2994	return (0);
2995    }
2996
2997    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2998	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2999	return (-1);
3000    }
3001
3002    args.request  = RTLD_DI_SERINFO;
3003    args.serinfo  = info;
3004    args.serpath  = &info->dls_serpath[0];
3005    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3006
3007    args.flags = LA_SER_LIBPATH;
3008    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3009	return (-1);
3010
3011    args.flags = LA_SER_RUNPATH;
3012    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3013	return (-1);
3014
3015    args.flags = LA_SER_CONFIG;
3016    if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
3017	return (-1);
3018
3019    args.flags = LA_SER_DEFAULT;
3020    if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3021	return (-1);
3022    return (0);
3023}
3024
3025static int
3026rtld_dirname(const char *path, char *bname)
3027{
3028    const char *endp;
3029
3030    /* Empty or NULL string gets treated as "." */
3031    if (path == NULL || *path == '\0') {
3032	bname[0] = '.';
3033	bname[1] = '\0';
3034	return (0);
3035    }
3036
3037    /* Strip trailing slashes */
3038    endp = path + strlen(path) - 1;
3039    while (endp > path && *endp == '/')
3040	endp--;
3041
3042    /* Find the start of the dir */
3043    while (endp > path && *endp != '/')
3044	endp--;
3045
3046    /* Either the dir is "/" or there are no slashes */
3047    if (endp == path) {
3048	bname[0] = *endp == '/' ? '/' : '.';
3049	bname[1] = '\0';
3050	return (0);
3051    } else {
3052	do {
3053	    endp--;
3054	} while (endp > path && *endp == '/');
3055    }
3056
3057    if (endp - path + 2 > PATH_MAX)
3058    {
3059	_rtld_error("Filename is too long: %s", path);
3060	return(-1);
3061    }
3062
3063    strncpy(bname, path, endp - path + 1);
3064    bname[endp - path + 1] = '\0';
3065    return (0);
3066}
3067
3068static int
3069rtld_dirname_abs(const char *path, char *base)
3070{
3071	char base_rel[PATH_MAX];
3072
3073	if (rtld_dirname(path, base) == -1)
3074		return (-1);
3075	if (base[0] == '/')
3076		return (0);
3077	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3078	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3079	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3080		return (-1);
3081	strcpy(base, base_rel);
3082	return (0);
3083}
3084
3085static void
3086linkmap_add(Obj_Entry *obj)
3087{
3088    struct link_map *l = &obj->linkmap;
3089    struct link_map *prev;
3090
3091    obj->linkmap.l_name = obj->path;
3092    obj->linkmap.l_addr = obj->mapbase;
3093    obj->linkmap.l_ld = obj->dynamic;
3094#ifdef __mips__
3095    /* GDB needs load offset on MIPS to use the symbols */
3096    obj->linkmap.l_offs = obj->relocbase;
3097#endif
3098
3099    if (r_debug.r_map == NULL) {
3100	r_debug.r_map = l;
3101	return;
3102    }
3103
3104    /*
3105     * Scan to the end of the list, but not past the entry for the
3106     * dynamic linker, which we want to keep at the very end.
3107     */
3108    for (prev = r_debug.r_map;
3109      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3110      prev = prev->l_next)
3111	;
3112
3113    /* Link in the new entry. */
3114    l->l_prev = prev;
3115    l->l_next = prev->l_next;
3116    if (l->l_next != NULL)
3117	l->l_next->l_prev = l;
3118    prev->l_next = l;
3119}
3120
3121static void
3122linkmap_delete(Obj_Entry *obj)
3123{
3124    struct link_map *l = &obj->linkmap;
3125
3126    if (l->l_prev == NULL) {
3127	if ((r_debug.r_map = l->l_next) != NULL)
3128	    l->l_next->l_prev = NULL;
3129	return;
3130    }
3131
3132    if ((l->l_prev->l_next = l->l_next) != NULL)
3133	l->l_next->l_prev = l->l_prev;
3134}
3135
3136/*
3137 * Function for the debugger to set a breakpoint on to gain control.
3138 *
3139 * The two parameters allow the debugger to easily find and determine
3140 * what the runtime loader is doing and to whom it is doing it.
3141 *
3142 * When the loadhook trap is hit (r_debug_state, set at program
3143 * initialization), the arguments can be found on the stack:
3144 *
3145 *  +8   struct link_map *m
3146 *  +4   struct r_debug  *rd
3147 *  +0   RetAddr
3148 */
3149void
3150r_debug_state(struct r_debug* rd, struct link_map *m)
3151{
3152    /*
3153     * The following is a hack to force the compiler to emit calls to
3154     * this function, even when optimizing.  If the function is empty,
3155     * the compiler is not obliged to emit any code for calls to it,
3156     * even when marked __noinline.  However, gdb depends on those
3157     * calls being made.
3158     */
3159    __asm __volatile("" : : : "memory");
3160}
3161
3162/*
3163 * Get address of the pointer variable in the main program.
3164 * Prefer non-weak symbol over the weak one.
3165 */
3166static const void **
3167get_program_var_addr(const char *name, RtldLockState *lockstate)
3168{
3169    SymLook req;
3170    DoneList donelist;
3171
3172    symlook_init(&req, name);
3173    req.lockstate = lockstate;
3174    donelist_init(&donelist);
3175    if (symlook_global(&req, &donelist) != 0)
3176	return (NULL);
3177    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3178	return ((const void **)make_function_pointer(req.sym_out,
3179	  req.defobj_out));
3180    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3181	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3182    else
3183	return ((const void **)(req.defobj_out->relocbase +
3184	  req.sym_out->st_value));
3185}
3186
3187/*
3188 * Set a pointer variable in the main program to the given value.  This
3189 * is used to set key variables such as "environ" before any of the
3190 * init functions are called.
3191 */
3192static void
3193set_program_var(const char *name, const void *value)
3194{
3195    const void **addr;
3196
3197    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3198	dbg("\"%s\": *%p <-- %p", name, addr, value);
3199	*addr = value;
3200    }
3201}
3202
3203/*
3204 * Search the global objects, including dependencies and main object,
3205 * for the given symbol.
3206 */
3207static int
3208symlook_global(SymLook *req, DoneList *donelist)
3209{
3210    SymLook req1;
3211    const Objlist_Entry *elm;
3212    int res;
3213
3214    symlook_init_from_req(&req1, req);
3215
3216    /* Search all objects loaded at program start up. */
3217    if (req->defobj_out == NULL ||
3218      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3219	res = symlook_list(&req1, &list_main, donelist);
3220	if (res == 0 && (req->defobj_out == NULL ||
3221	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3222	    req->sym_out = req1.sym_out;
3223	    req->defobj_out = req1.defobj_out;
3224	    assert(req->defobj_out != NULL);
3225	}
3226    }
3227
3228    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3229    STAILQ_FOREACH(elm, &list_global, link) {
3230	if (req->defobj_out != NULL &&
3231	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3232	    break;
3233	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3234	if (res == 0 && (req->defobj_out == NULL ||
3235	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3236	    req->sym_out = req1.sym_out;
3237	    req->defobj_out = req1.defobj_out;
3238	    assert(req->defobj_out != NULL);
3239	}
3240    }
3241
3242    return (req->sym_out != NULL ? 0 : ESRCH);
3243}
3244
3245/*
3246 * Given a symbol name in a referencing object, find the corresponding
3247 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3248 * no definition was found.  Returns a pointer to the Obj_Entry of the
3249 * defining object via the reference parameter DEFOBJ_OUT.
3250 */
3251static int
3252symlook_default(SymLook *req, const Obj_Entry *refobj)
3253{
3254    DoneList donelist;
3255    const Objlist_Entry *elm;
3256    SymLook req1;
3257    int res;
3258
3259    donelist_init(&donelist);
3260    symlook_init_from_req(&req1, req);
3261
3262    /* Look first in the referencing object if linked symbolically. */
3263    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3264	res = symlook_obj(&req1, refobj);
3265	if (res == 0) {
3266	    req->sym_out = req1.sym_out;
3267	    req->defobj_out = req1.defobj_out;
3268	    assert(req->defobj_out != NULL);
3269	}
3270    }
3271
3272    symlook_global(req, &donelist);
3273
3274    /* Search all dlopened DAGs containing the referencing object. */
3275    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3276	if (req->sym_out != NULL &&
3277	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3278	    break;
3279	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3280	if (res == 0 && (req->sym_out == NULL ||
3281	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3282	    req->sym_out = req1.sym_out;
3283	    req->defobj_out = req1.defobj_out;
3284	    assert(req->defobj_out != NULL);
3285	}
3286    }
3287
3288    /*
3289     * Search the dynamic linker itself, and possibly resolve the
3290     * symbol from there.  This is how the application links to
3291     * dynamic linker services such as dlopen.
3292     */
3293    if (req->sym_out == NULL ||
3294      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3295	res = symlook_obj(&req1, &obj_rtld);
3296	if (res == 0) {
3297	    req->sym_out = req1.sym_out;
3298	    req->defobj_out = req1.defobj_out;
3299	    assert(req->defobj_out != NULL);
3300	}
3301    }
3302
3303    return (req->sym_out != NULL ? 0 : ESRCH);
3304}
3305
3306static int
3307symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3308{
3309    const Elf_Sym *def;
3310    const Obj_Entry *defobj;
3311    const Objlist_Entry *elm;
3312    SymLook req1;
3313    int res;
3314
3315    def = NULL;
3316    defobj = NULL;
3317    STAILQ_FOREACH(elm, objlist, link) {
3318	if (donelist_check(dlp, elm->obj))
3319	    continue;
3320	symlook_init_from_req(&req1, req);
3321	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3322	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3323		def = req1.sym_out;
3324		defobj = req1.defobj_out;
3325		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3326		    break;
3327	    }
3328	}
3329    }
3330    if (def != NULL) {
3331	req->sym_out = def;
3332	req->defobj_out = defobj;
3333	return (0);
3334    }
3335    return (ESRCH);
3336}
3337
3338/*
3339 * Search the chain of DAGS cointed to by the given Needed_Entry
3340 * for a symbol of the given name.  Each DAG is scanned completely
3341 * before advancing to the next one.  Returns a pointer to the symbol,
3342 * or NULL if no definition was found.
3343 */
3344static int
3345symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3346{
3347    const Elf_Sym *def;
3348    const Needed_Entry *n;
3349    const Obj_Entry *defobj;
3350    SymLook req1;
3351    int res;
3352
3353    def = NULL;
3354    defobj = NULL;
3355    symlook_init_from_req(&req1, req);
3356    for (n = needed; n != NULL; n = n->next) {
3357	if (n->obj == NULL ||
3358	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3359	    continue;
3360	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3361	    def = req1.sym_out;
3362	    defobj = req1.defobj_out;
3363	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3364		break;
3365	}
3366    }
3367    if (def != NULL) {
3368	req->sym_out = def;
3369	req->defobj_out = defobj;
3370	return (0);
3371    }
3372    return (ESRCH);
3373}
3374
3375/*
3376 * Search the symbol table of a single shared object for a symbol of
3377 * the given name and version, if requested.  Returns a pointer to the
3378 * symbol, or NULL if no definition was found.  If the object is
3379 * filter, return filtered symbol from filtee.
3380 *
3381 * The symbol's hash value is passed in for efficiency reasons; that
3382 * eliminates many recomputations of the hash value.
3383 */
3384int
3385symlook_obj(SymLook *req, const Obj_Entry *obj)
3386{
3387    DoneList donelist;
3388    SymLook req1;
3389    int flags, res, mres;
3390
3391    mres = symlook_obj1(req, obj);
3392    if (mres == 0) {
3393	if (obj->needed_filtees != NULL) {
3394	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3395	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3396	    donelist_init(&donelist);
3397	    symlook_init_from_req(&req1, req);
3398	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3399	    if (res == 0) {
3400		req->sym_out = req1.sym_out;
3401		req->defobj_out = req1.defobj_out;
3402	    }
3403	    return (res);
3404	}
3405	if (obj->needed_aux_filtees != NULL) {
3406	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3407	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3408	    donelist_init(&donelist);
3409	    symlook_init_from_req(&req1, req);
3410	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3411	    if (res == 0) {
3412		req->sym_out = req1.sym_out;
3413		req->defobj_out = req1.defobj_out;
3414		return (res);
3415	    }
3416	}
3417    }
3418    return (mres);
3419}
3420
3421static int
3422symlook_obj1(SymLook *req, const Obj_Entry *obj)
3423{
3424    unsigned long symnum;
3425    const Elf_Sym *vsymp;
3426    Elf_Versym verndx;
3427    int vcount;
3428
3429    if (obj->buckets == NULL)
3430	return (ESRCH);
3431
3432    vsymp = NULL;
3433    vcount = 0;
3434    symnum = obj->buckets[req->hash % obj->nbuckets];
3435
3436    for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3437	const Elf_Sym *symp;
3438	const char *strp;
3439
3440	if (symnum >= obj->nchains)
3441	    return (ESRCH);	/* Bad object */
3442
3443	symp = obj->symtab + symnum;
3444	strp = obj->strtab + symp->st_name;
3445
3446	switch (ELF_ST_TYPE(symp->st_info)) {
3447	case STT_FUNC:
3448	case STT_NOTYPE:
3449	case STT_OBJECT:
3450	case STT_GNU_IFUNC:
3451	    if (symp->st_value == 0)
3452		continue;
3453		/* fallthrough */
3454	case STT_TLS:
3455	    if (symp->st_shndx != SHN_UNDEF)
3456		break;
3457#ifndef __mips__
3458	    else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3459		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3460		break;
3461		/* fallthrough */
3462#endif
3463	default:
3464	    continue;
3465	}
3466	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3467	    continue;
3468
3469	if (req->ventry == NULL) {
3470	    if (obj->versyms != NULL) {
3471		verndx = VER_NDX(obj->versyms[symnum]);
3472		if (verndx > obj->vernum) {
3473		    _rtld_error("%s: symbol %s references wrong version %d",
3474			obj->path, obj->strtab + symnum, verndx);
3475		    continue;
3476		}
3477		/*
3478		 * If we are not called from dlsym (i.e. this is a normal
3479		 * relocation from unversioned binary), accept the symbol
3480		 * immediately if it happens to have first version after
3481		 * this shared object became versioned. Otherwise, if
3482		 * symbol is versioned and not hidden, remember it. If it
3483		 * is the only symbol with this name exported by the
3484		 * shared object, it will be returned as a match at the
3485		 * end of the function. If symbol is global (verndx < 2)
3486		 * accept it unconditionally.
3487		 */
3488		if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3489		  verndx == VER_NDX_GIVEN) {
3490		    req->sym_out = symp;
3491		    req->defobj_out = obj;
3492		    return (0);
3493		}
3494		else if (verndx >= VER_NDX_GIVEN) {
3495		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
3496			if (vsymp == NULL)
3497			    vsymp = symp;
3498			vcount ++;
3499		    }
3500		    continue;
3501		}
3502	    }
3503	    req->sym_out = symp;
3504	    req->defobj_out = obj;
3505	    return (0);
3506	} else {
3507	    if (obj->versyms == NULL) {
3508		if (object_match_name(obj, req->ventry->name)) {
3509		    _rtld_error("%s: object %s should provide version %s for "
3510			"symbol %s", obj_rtld.path, obj->path,
3511			req->ventry->name, obj->strtab + symnum);
3512		    continue;
3513		}
3514	    } else {
3515		verndx = VER_NDX(obj->versyms[symnum]);
3516		if (verndx > obj->vernum) {
3517		    _rtld_error("%s: symbol %s references wrong version %d",
3518			obj->path, obj->strtab + symnum, verndx);
3519		    continue;
3520		}
3521		if (obj->vertab[verndx].hash != req->ventry->hash ||
3522		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3523		    /*
3524		     * Version does not match. Look if this is a global symbol
3525		     * and if it is not hidden. If global symbol (verndx < 2)
3526		     * is available, use it. Do not return symbol if we are
3527		     * called by dlvsym, because dlvsym looks for a specific
3528		     * version and default one is not what dlvsym wants.
3529		     */
3530		    if ((req->flags & SYMLOOK_DLSYM) ||
3531			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
3532			(verndx >= VER_NDX_GIVEN))
3533			continue;
3534		}
3535	    }
3536	    req->sym_out = symp;
3537	    req->defobj_out = obj;
3538	    return (0);
3539	}
3540    }
3541    if (vcount == 1) {
3542	req->sym_out = vsymp;
3543	req->defobj_out = obj;
3544	return (0);
3545    }
3546    return (ESRCH);
3547}
3548
3549static void
3550trace_loaded_objects(Obj_Entry *obj)
3551{
3552    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3553    int		c;
3554
3555    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3556	main_local = "";
3557
3558    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3559	fmt1 = "\t%o => %p (%x)\n";
3560
3561    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3562	fmt2 = "\t%o (%x)\n";
3563
3564    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3565
3566    for (; obj; obj = obj->next) {
3567	Needed_Entry		*needed;
3568	char			*name, *path;
3569	bool			is_lib;
3570
3571	if (list_containers && obj->needed != NULL)
3572	    rtld_printf("%s:\n", obj->path);
3573	for (needed = obj->needed; needed; needed = needed->next) {
3574	    if (needed->obj != NULL) {
3575		if (needed->obj->traced && !list_containers)
3576		    continue;
3577		needed->obj->traced = true;
3578		path = needed->obj->path;
3579	    } else
3580		path = "not found";
3581
3582	    name = (char *)obj->strtab + needed->name;
3583	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3584
3585	    fmt = is_lib ? fmt1 : fmt2;
3586	    while ((c = *fmt++) != '\0') {
3587		switch (c) {
3588		default:
3589		    rtld_putchar(c);
3590		    continue;
3591		case '\\':
3592		    switch (c = *fmt) {
3593		    case '\0':
3594			continue;
3595		    case 'n':
3596			rtld_putchar('\n');
3597			break;
3598		    case 't':
3599			rtld_putchar('\t');
3600			break;
3601		    }
3602		    break;
3603		case '%':
3604		    switch (c = *fmt) {
3605		    case '\0':
3606			continue;
3607		    case '%':
3608		    default:
3609			rtld_putchar(c);
3610			break;
3611		    case 'A':
3612			rtld_putstr(main_local);
3613			break;
3614		    case 'a':
3615			rtld_putstr(obj_main->path);
3616			break;
3617		    case 'o':
3618			rtld_putstr(name);
3619			break;
3620#if 0
3621		    case 'm':
3622			rtld_printf("%d", sodp->sod_major);
3623			break;
3624		    case 'n':
3625			rtld_printf("%d", sodp->sod_minor);
3626			break;
3627#endif
3628		    case 'p':
3629			rtld_putstr(path);
3630			break;
3631		    case 'x':
3632			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
3633			  0);
3634			break;
3635		    }
3636		    break;
3637		}
3638		++fmt;
3639	    }
3640	}
3641    }
3642}
3643
3644/*
3645 * Unload a dlopened object and its dependencies from memory and from
3646 * our data structures.  It is assumed that the DAG rooted in the
3647 * object has already been unreferenced, and that the object has a
3648 * reference count of 0.
3649 */
3650static void
3651unload_object(Obj_Entry *root)
3652{
3653    Obj_Entry *obj;
3654    Obj_Entry **linkp;
3655
3656    assert(root->refcount == 0);
3657
3658    /*
3659     * Pass over the DAG removing unreferenced objects from
3660     * appropriate lists.
3661     */
3662    unlink_object(root);
3663
3664    /* Unmap all objects that are no longer referenced. */
3665    linkp = &obj_list->next;
3666    while ((obj = *linkp) != NULL) {
3667	if (obj->refcount == 0) {
3668	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3669		obj->path);
3670	    dbg("unloading \"%s\"", obj->path);
3671	    unload_filtees(root);
3672	    munmap(obj->mapbase, obj->mapsize);
3673	    linkmap_delete(obj);
3674	    *linkp = obj->next;
3675	    obj_count--;
3676	    obj_free(obj);
3677	} else
3678	    linkp = &obj->next;
3679    }
3680    obj_tail = linkp;
3681}
3682
3683static void
3684unlink_object(Obj_Entry *root)
3685{
3686    Objlist_Entry *elm;
3687
3688    if (root->refcount == 0) {
3689	/* Remove the object from the RTLD_GLOBAL list. */
3690	objlist_remove(&list_global, root);
3691
3692    	/* Remove the object from all objects' DAG lists. */
3693    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3694	    objlist_remove(&elm->obj->dldags, root);
3695	    if (elm->obj != root)
3696		unlink_object(elm->obj);
3697	}
3698    }
3699}
3700
3701static void
3702ref_dag(Obj_Entry *root)
3703{
3704    Objlist_Entry *elm;
3705
3706    assert(root->dag_inited);
3707    STAILQ_FOREACH(elm, &root->dagmembers, link)
3708	elm->obj->refcount++;
3709}
3710
3711static void
3712unref_dag(Obj_Entry *root)
3713{
3714    Objlist_Entry *elm;
3715
3716    assert(root->dag_inited);
3717    STAILQ_FOREACH(elm, &root->dagmembers, link)
3718	elm->obj->refcount--;
3719}
3720
3721/*
3722 * Common code for MD __tls_get_addr().
3723 */
3724static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
3725static void *
3726tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
3727{
3728    Elf_Addr *newdtv, *dtv;
3729    RtldLockState lockstate;
3730    int to_copy;
3731
3732    dtv = *dtvp;
3733    /* Check dtv generation in case new modules have arrived */
3734    if (dtv[0] != tls_dtv_generation) {
3735	wlock_acquire(rtld_bind_lock, &lockstate);
3736	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
3737	to_copy = dtv[1];
3738	if (to_copy > tls_max_index)
3739	    to_copy = tls_max_index;
3740	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3741	newdtv[0] = tls_dtv_generation;
3742	newdtv[1] = tls_max_index;
3743	free(dtv);
3744	lock_release(rtld_bind_lock, &lockstate);
3745	dtv = *dtvp = newdtv;
3746    }
3747
3748    /* Dynamically allocate module TLS if necessary */
3749    if (dtv[index + 1] == 0) {
3750	/* Signal safe, wlock will block out signals. */
3751	wlock_acquire(rtld_bind_lock, &lockstate);
3752	if (!dtv[index + 1])
3753	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3754	lock_release(rtld_bind_lock, &lockstate);
3755    }
3756    return ((void *)(dtv[index + 1] + offset));
3757}
3758
3759void *
3760tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
3761{
3762	Elf_Addr *dtv;
3763
3764	dtv = *dtvp;
3765	/* Check dtv generation in case new modules have arrived */
3766	if (__predict_true(dtv[0] == tls_dtv_generation &&
3767	    dtv[index + 1] != 0))
3768		return ((void *)(dtv[index + 1] + offset));
3769	return (tls_get_addr_slow(dtvp, index, offset));
3770}
3771
3772#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
3773
3774/*
3775 * Allocate Static TLS using the Variant I method.
3776 */
3777void *
3778allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3779{
3780    Obj_Entry *obj;
3781    char *tcb;
3782    Elf_Addr **tls;
3783    Elf_Addr *dtv;
3784    Elf_Addr addr;
3785    int i;
3786
3787    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
3788	return (oldtcb);
3789
3790    assert(tcbsize >= TLS_TCB_SIZE);
3791    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
3792    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
3793
3794    if (oldtcb != NULL) {
3795	memcpy(tls, oldtcb, tls_static_space);
3796	free(oldtcb);
3797
3798	/* Adjust the DTV. */
3799	dtv = tls[0];
3800	for (i = 0; i < dtv[1]; i++) {
3801	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
3802		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
3803		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
3804	    }
3805	}
3806    } else {
3807	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
3808	tls[0] = dtv;
3809	dtv[0] = tls_dtv_generation;
3810	dtv[1] = tls_max_index;
3811
3812	for (obj = objs; obj; obj = obj->next) {
3813	    if (obj->tlsoffset > 0) {
3814		addr = (Elf_Addr)tls + obj->tlsoffset;
3815		if (obj->tlsinitsize > 0)
3816		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3817		if (obj->tlssize > obj->tlsinitsize)
3818		    memset((void*) (addr + obj->tlsinitsize), 0,
3819			   obj->tlssize - obj->tlsinitsize);
3820		dtv[obj->tlsindex + 1] = addr;
3821	    }
3822	}
3823    }
3824
3825    return (tcb);
3826}
3827
3828void
3829free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3830{
3831    Elf_Addr *dtv;
3832    Elf_Addr tlsstart, tlsend;
3833    int dtvsize, i;
3834
3835    assert(tcbsize >= TLS_TCB_SIZE);
3836
3837    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
3838    tlsend = tlsstart + tls_static_space;
3839
3840    dtv = *(Elf_Addr **)tlsstart;
3841    dtvsize = dtv[1];
3842    for (i = 0; i < dtvsize; i++) {
3843	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
3844	    free((void*)dtv[i+2]);
3845	}
3846    }
3847    free(dtv);
3848    free(tcb);
3849}
3850
3851#endif
3852
3853#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
3854
3855/*
3856 * Allocate Static TLS using the Variant II method.
3857 */
3858void *
3859allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
3860{
3861    Obj_Entry *obj;
3862    size_t size;
3863    char *tls;
3864    Elf_Addr *dtv, *olddtv;
3865    Elf_Addr segbase, oldsegbase, addr;
3866    int i;
3867
3868    size = round(tls_static_space, tcbalign);
3869
3870    assert(tcbsize >= 2*sizeof(Elf_Addr));
3871    tls = xcalloc(1, size + tcbsize);
3872    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
3873
3874    segbase = (Elf_Addr)(tls + size);
3875    ((Elf_Addr*)segbase)[0] = segbase;
3876    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
3877
3878    dtv[0] = tls_dtv_generation;
3879    dtv[1] = tls_max_index;
3880
3881    if (oldtls) {
3882	/*
3883	 * Copy the static TLS block over whole.
3884	 */
3885	oldsegbase = (Elf_Addr) oldtls;
3886	memcpy((void *)(segbase - tls_static_space),
3887	       (const void *)(oldsegbase - tls_static_space),
3888	       tls_static_space);
3889
3890	/*
3891	 * If any dynamic TLS blocks have been created tls_get_addr(),
3892	 * move them over.
3893	 */
3894	olddtv = ((Elf_Addr**)oldsegbase)[1];
3895	for (i = 0; i < olddtv[1]; i++) {
3896	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3897		dtv[i+2] = olddtv[i+2];
3898		olddtv[i+2] = 0;
3899	    }
3900	}
3901
3902	/*
3903	 * We assume that this block was the one we created with
3904	 * allocate_initial_tls().
3905	 */
3906	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3907    } else {
3908	for (obj = objs; obj; obj = obj->next) {
3909	    if (obj->tlsoffset) {
3910		addr = segbase - obj->tlsoffset;
3911		memset((void*) (addr + obj->tlsinitsize),
3912		       0, obj->tlssize - obj->tlsinitsize);
3913		if (obj->tlsinit)
3914		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3915		dtv[obj->tlsindex + 1] = addr;
3916	    }
3917	}
3918    }
3919
3920    return (void*) segbase;
3921}
3922
3923void
3924free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3925{
3926    size_t size;
3927    Elf_Addr* dtv;
3928    int dtvsize, i;
3929    Elf_Addr tlsstart, tlsend;
3930
3931    /*
3932     * Figure out the size of the initial TLS block so that we can
3933     * find stuff which ___tls_get_addr() allocated dynamically.
3934     */
3935    size = round(tls_static_space, tcbalign);
3936
3937    dtv = ((Elf_Addr**)tls)[1];
3938    dtvsize = dtv[1];
3939    tlsend = (Elf_Addr) tls;
3940    tlsstart = tlsend - size;
3941    for (i = 0; i < dtvsize; i++) {
3942	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3943	    free((void*) dtv[i+2]);
3944	}
3945    }
3946
3947    free((void*) tlsstart);
3948    free((void*) dtv);
3949}
3950
3951#endif
3952
3953/*
3954 * Allocate TLS block for module with given index.
3955 */
3956void *
3957allocate_module_tls(int index)
3958{
3959    Obj_Entry* obj;
3960    char* p;
3961
3962    for (obj = obj_list; obj; obj = obj->next) {
3963	if (obj->tlsindex == index)
3964	    break;
3965    }
3966    if (!obj) {
3967	_rtld_error("Can't find module with TLS index %d", index);
3968	die();
3969    }
3970
3971    p = malloc(obj->tlssize);
3972    if (p == NULL) {
3973	_rtld_error("Cannot allocate TLS block for index %d", index);
3974	die();
3975    }
3976    memcpy(p, obj->tlsinit, obj->tlsinitsize);
3977    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3978
3979    return p;
3980}
3981
3982bool
3983allocate_tls_offset(Obj_Entry *obj)
3984{
3985    size_t off;
3986
3987    if (obj->tls_done)
3988	return true;
3989
3990    if (obj->tlssize == 0) {
3991	obj->tls_done = true;
3992	return true;
3993    }
3994
3995    if (obj->tlsindex == 1)
3996	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3997    else
3998	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3999				   obj->tlssize, obj->tlsalign);
4000
4001    /*
4002     * If we have already fixed the size of the static TLS block, we
4003     * must stay within that size. When allocating the static TLS, we
4004     * leave a small amount of space spare to be used for dynamically
4005     * loading modules which use static TLS.
4006     */
4007    if (tls_static_space) {
4008	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4009	    return false;
4010    }
4011
4012    tls_last_offset = obj->tlsoffset = off;
4013    tls_last_size = obj->tlssize;
4014    obj->tls_done = true;
4015
4016    return true;
4017}
4018
4019void
4020free_tls_offset(Obj_Entry *obj)
4021{
4022
4023    /*
4024     * If we were the last thing to allocate out of the static TLS
4025     * block, we give our space back to the 'allocator'. This is a
4026     * simplistic workaround to allow libGL.so.1 to be loaded and
4027     * unloaded multiple times.
4028     */
4029    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4030	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4031	tls_last_offset -= obj->tlssize;
4032	tls_last_size = 0;
4033    }
4034}
4035
4036void *
4037_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4038{
4039    void *ret;
4040    RtldLockState lockstate;
4041
4042    wlock_acquire(rtld_bind_lock, &lockstate);
4043    ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4044    lock_release(rtld_bind_lock, &lockstate);
4045    return (ret);
4046}
4047
4048void
4049_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4050{
4051    RtldLockState lockstate;
4052
4053    wlock_acquire(rtld_bind_lock, &lockstate);
4054    free_tls(tcb, tcbsize, tcbalign);
4055    lock_release(rtld_bind_lock, &lockstate);
4056}
4057
4058static void
4059object_add_name(Obj_Entry *obj, const char *name)
4060{
4061    Name_Entry *entry;
4062    size_t len;
4063
4064    len = strlen(name);
4065    entry = malloc(sizeof(Name_Entry) + len);
4066
4067    if (entry != NULL) {
4068	strcpy(entry->name, name);
4069	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4070    }
4071}
4072
4073static int
4074object_match_name(const Obj_Entry *obj, const char *name)
4075{
4076    Name_Entry *entry;
4077
4078    STAILQ_FOREACH(entry, &obj->names, link) {
4079	if (strcmp(name, entry->name) == 0)
4080	    return (1);
4081    }
4082    return (0);
4083}
4084
4085static Obj_Entry *
4086locate_dependency(const Obj_Entry *obj, const char *name)
4087{
4088    const Objlist_Entry *entry;
4089    const Needed_Entry *needed;
4090
4091    STAILQ_FOREACH(entry, &list_main, link) {
4092	if (object_match_name(entry->obj, name))
4093	    return entry->obj;
4094    }
4095
4096    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4097	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4098	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4099	    /*
4100	     * If there is DT_NEEDED for the name we are looking for,
4101	     * we are all set.  Note that object might not be found if
4102	     * dependency was not loaded yet, so the function can
4103	     * return NULL here.  This is expected and handled
4104	     * properly by the caller.
4105	     */
4106	    return (needed->obj);
4107	}
4108    }
4109    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4110	obj->path, name);
4111    die();
4112}
4113
4114static int
4115check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4116    const Elf_Vernaux *vna)
4117{
4118    const Elf_Verdef *vd;
4119    const char *vername;
4120
4121    vername = refobj->strtab + vna->vna_name;
4122    vd = depobj->verdef;
4123    if (vd == NULL) {
4124	_rtld_error("%s: version %s required by %s not defined",
4125	    depobj->path, vername, refobj->path);
4126	return (-1);
4127    }
4128    for (;;) {
4129	if (vd->vd_version != VER_DEF_CURRENT) {
4130	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4131		depobj->path, vd->vd_version);
4132	    return (-1);
4133	}
4134	if (vna->vna_hash == vd->vd_hash) {
4135	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4136		((char *)vd + vd->vd_aux);
4137	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4138		return (0);
4139	}
4140	if (vd->vd_next == 0)
4141	    break;
4142	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4143    }
4144    if (vna->vna_flags & VER_FLG_WEAK)
4145	return (0);
4146    _rtld_error("%s: version %s required by %s not found",
4147	depobj->path, vername, refobj->path);
4148    return (-1);
4149}
4150
4151static int
4152rtld_verify_object_versions(Obj_Entry *obj)
4153{
4154    const Elf_Verneed *vn;
4155    const Elf_Verdef  *vd;
4156    const Elf_Verdaux *vda;
4157    const Elf_Vernaux *vna;
4158    const Obj_Entry *depobj;
4159    int maxvernum, vernum;
4160
4161    if (obj->ver_checked)
4162	return (0);
4163    obj->ver_checked = true;
4164
4165    maxvernum = 0;
4166    /*
4167     * Walk over defined and required version records and figure out
4168     * max index used by any of them. Do very basic sanity checking
4169     * while there.
4170     */
4171    vn = obj->verneed;
4172    while (vn != NULL) {
4173	if (vn->vn_version != VER_NEED_CURRENT) {
4174	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4175		obj->path, vn->vn_version);
4176	    return (-1);
4177	}
4178	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4179	for (;;) {
4180	    vernum = VER_NEED_IDX(vna->vna_other);
4181	    if (vernum > maxvernum)
4182		maxvernum = vernum;
4183	    if (vna->vna_next == 0)
4184		 break;
4185	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4186	}
4187	if (vn->vn_next == 0)
4188	    break;
4189	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4190    }
4191
4192    vd = obj->verdef;
4193    while (vd != NULL) {
4194	if (vd->vd_version != VER_DEF_CURRENT) {
4195	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4196		obj->path, vd->vd_version);
4197	    return (-1);
4198	}
4199	vernum = VER_DEF_IDX(vd->vd_ndx);
4200	if (vernum > maxvernum)
4201		maxvernum = vernum;
4202	if (vd->vd_next == 0)
4203	    break;
4204	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4205    }
4206
4207    if (maxvernum == 0)
4208	return (0);
4209
4210    /*
4211     * Store version information in array indexable by version index.
4212     * Verify that object version requirements are satisfied along the
4213     * way.
4214     */
4215    obj->vernum = maxvernum + 1;
4216    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4217
4218    vd = obj->verdef;
4219    while (vd != NULL) {
4220	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4221	    vernum = VER_DEF_IDX(vd->vd_ndx);
4222	    assert(vernum <= maxvernum);
4223	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4224	    obj->vertab[vernum].hash = vd->vd_hash;
4225	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4226	    obj->vertab[vernum].file = NULL;
4227	    obj->vertab[vernum].flags = 0;
4228	}
4229	if (vd->vd_next == 0)
4230	    break;
4231	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4232    }
4233
4234    vn = obj->verneed;
4235    while (vn != NULL) {
4236	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4237	if (depobj == NULL)
4238	    return (-1);
4239	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4240	for (;;) {
4241	    if (check_object_provided_version(obj, depobj, vna))
4242		return (-1);
4243	    vernum = VER_NEED_IDX(vna->vna_other);
4244	    assert(vernum <= maxvernum);
4245	    obj->vertab[vernum].hash = vna->vna_hash;
4246	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4247	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4248	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4249		VER_INFO_HIDDEN : 0;
4250	    if (vna->vna_next == 0)
4251		 break;
4252	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4253	}
4254	if (vn->vn_next == 0)
4255	    break;
4256	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4257    }
4258    return 0;
4259}
4260
4261static int
4262rtld_verify_versions(const Objlist *objlist)
4263{
4264    Objlist_Entry *entry;
4265    int rc;
4266
4267    rc = 0;
4268    STAILQ_FOREACH(entry, objlist, link) {
4269	/*
4270	 * Skip dummy objects or objects that have their version requirements
4271	 * already checked.
4272	 */
4273	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4274	    continue;
4275	if (rtld_verify_object_versions(entry->obj) == -1) {
4276	    rc = -1;
4277	    if (ld_tracing == NULL)
4278		break;
4279	}
4280    }
4281    if (rc == 0 || ld_tracing != NULL)
4282    	rc = rtld_verify_object_versions(&obj_rtld);
4283    return rc;
4284}
4285
4286const Ver_Entry *
4287fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4288{
4289    Elf_Versym vernum;
4290
4291    if (obj->vertab) {
4292	vernum = VER_NDX(obj->versyms[symnum]);
4293	if (vernum >= obj->vernum) {
4294	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4295		obj->path, obj->strtab + symnum, vernum);
4296	} else if (obj->vertab[vernum].hash != 0) {
4297	    return &obj->vertab[vernum];
4298	}
4299    }
4300    return NULL;
4301}
4302
4303int
4304_rtld_get_stack_prot(void)
4305{
4306
4307	return (stack_prot);
4308}
4309
4310static void
4311map_stacks_exec(RtldLockState *lockstate)
4312{
4313	void (*thr_map_stacks_exec)(void);
4314
4315	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4316		return;
4317	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4318	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4319	if (thr_map_stacks_exec != NULL) {
4320		stack_prot |= PROT_EXEC;
4321		thr_map_stacks_exec();
4322	}
4323}
4324
4325void
4326symlook_init(SymLook *dst, const char *name)
4327{
4328
4329	bzero(dst, sizeof(*dst));
4330	dst->name = name;
4331	dst->hash = elf_hash(name);
4332}
4333
4334static void
4335symlook_init_from_req(SymLook *dst, const SymLook *src)
4336{
4337
4338	dst->name = src->name;
4339	dst->hash = src->hash;
4340	dst->ventry = src->ventry;
4341	dst->flags = src->flags;
4342	dst->defobj_out = NULL;
4343	dst->sym_out = NULL;
4344	dst->lockstate = src->lockstate;
4345}
4346
4347/*
4348 * Overrides for libc_pic-provided functions.
4349 */
4350
4351int
4352__getosreldate(void)
4353{
4354	size_t len;
4355	int oid[2];
4356	int error, osrel;
4357
4358	if (osreldate != 0)
4359		return (osreldate);
4360
4361	oid[0] = CTL_KERN;
4362	oid[1] = KERN_OSRELDATE;
4363	osrel = 0;
4364	len = sizeof(osrel);
4365	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4366	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4367		osreldate = osrel;
4368	return (osreldate);
4369}
4370
4371void
4372exit(int status)
4373{
4374
4375	_exit(status);
4376}
4377
4378void (*__cleanup)(void);
4379int __isthreaded = 0;
4380int _thread_autoinit_dummy_decl = 1;
4381
4382/*
4383 * No unresolved symbols for rtld.
4384 */
4385void
4386__pthread_cxa_finalize(struct dl_phdr_info *a)
4387{
4388}
4389
4390void
4391__stack_chk_fail(void)
4392{
4393
4394	_rtld_error("stack overflow detected; terminated");
4395	die();
4396}
4397__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4398
4399void
4400__chk_fail(void)
4401{
4402
4403	_rtld_error("buffer overflow detected; terminated");
4404	die();
4405}
4406
4407const char *
4408rtld_strerror(int errnum)
4409{
4410
4411	if (errnum < 0 || errnum >= sys_nerr)
4412		return ("Unknown error");
4413	return (sys_errlist[errnum]);
4414}
4415