rtld.c revision 203947
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * $FreeBSD: head/libexec/rtld-elf/rtld.c 203947 2010-02-16 02:48:11Z marcel $
27 */
28
29/*
30 * Dynamic linker for ELF.
31 *
32 * John Polstra <jdp@polstra.com>.
33 */
34
35#ifndef __GNUC__
36#error "GCC is needed to compile this file"
37#endif
38
39#include <sys/param.h>
40#include <sys/mount.h>
41#include <sys/mman.h>
42#include <sys/stat.h>
43#include <sys/uio.h>
44#include <sys/utsname.h>
45#include <sys/ktrace.h>
46
47#include <dlfcn.h>
48#include <err.h>
49#include <errno.h>
50#include <fcntl.h>
51#include <stdarg.h>
52#include <stdio.h>
53#include <stdlib.h>
54#include <string.h>
55#include <unistd.h>
56
57#include "debug.h"
58#include "rtld.h"
59#include "libmap.h"
60#include "rtld_tls.h"
61
62#ifndef COMPAT_32BIT
63#define PATH_RTLD	"/libexec/ld-elf.so.1"
64#else
65#define PATH_RTLD	"/libexec/ld-elf32.so.1"
66#endif
67
68/* Types. */
69typedef void (*func_ptr_type)();
70typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
71
72/*
73 * This structure provides a reentrant way to keep a list of objects and
74 * check which ones have already been processed in some way.
75 */
76typedef struct Struct_DoneList {
77    const Obj_Entry **objs;		/* Array of object pointers */
78    unsigned int num_alloc;		/* Allocated size of the array */
79    unsigned int num_used;		/* Number of array slots used */
80} DoneList;
81
82/*
83 * Function declarations.
84 */
85static const char *basename(const char *);
86static void die(void) __dead2;
87static void digest_dynamic(Obj_Entry *, int);
88static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
89static Obj_Entry *dlcheck(void *);
90static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
91static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
92static bool donelist_check(DoneList *, const Obj_Entry *);
93static void errmsg_restore(char *);
94static char *errmsg_save(void);
95static void *fill_search_info(const char *, size_t, void *);
96static char *find_library(const char *, const Obj_Entry *);
97static const char *gethints(void);
98static void init_dag(Obj_Entry *);
99static void init_dag1(Obj_Entry *, Obj_Entry *, DoneList *);
100static void init_rtld(caddr_t);
101static void initlist_add_neededs(Needed_Entry *, Objlist *);
102static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103static bool is_exported(const Elf_Sym *);
104static void linkmap_add(Obj_Entry *);
105static void linkmap_delete(Obj_Entry *);
106static int load_needed_objects(Obj_Entry *, int);
107static int load_preload_objects(void);
108static Obj_Entry *load_object(const char *, const Obj_Entry *, int);
109static Obj_Entry *obj_from_addr(const void *);
110static void objlist_call_fini(Objlist *, bool, int *);
111static void objlist_call_init(Objlist *, int *);
112static void objlist_clear(Objlist *);
113static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
114static void objlist_init(Objlist *);
115static void objlist_push_head(Objlist *, Obj_Entry *);
116static void objlist_push_tail(Objlist *, Obj_Entry *);
117static void objlist_remove(Objlist *, Obj_Entry *);
118static void *path_enumerate(const char *, path_enum_proc, void *);
119static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
120static int rtld_dirname(const char *, char *);
121static int rtld_dirname_abs(const char *, char *);
122static void rtld_exit(void);
123static char *search_library_path(const char *, const char *);
124static const void **get_program_var_addr(const char *);
125static void set_program_var(const char *, const void *);
126static const Elf_Sym *symlook_default(const char *, unsigned long,
127  const Obj_Entry *, const Obj_Entry **, const Ver_Entry *, int);
128static const Elf_Sym *symlook_list(const char *, unsigned long, const Objlist *,
129  const Obj_Entry **, const Ver_Entry *, int, DoneList *);
130static const Elf_Sym *symlook_needed(const char *, unsigned long,
131  const Needed_Entry *, const Obj_Entry **, const Ver_Entry *,
132  int, DoneList *);
133static void trace_loaded_objects(Obj_Entry *);
134static void unlink_object(Obj_Entry *);
135static void unload_object(Obj_Entry *);
136static void unref_dag(Obj_Entry *);
137static void ref_dag(Obj_Entry *);
138static int origin_subst_one(char **, const char *, const char *,
139  const char *, char *);
140static char *origin_subst(const char *, const char *);
141static int  rtld_verify_versions(const Objlist *);
142static int  rtld_verify_object_versions(Obj_Entry *);
143static void object_add_name(Obj_Entry *, const char *);
144static int  object_match_name(const Obj_Entry *, const char *);
145static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
146
147void r_debug_state(struct r_debug *, struct link_map *);
148
149/*
150 * Data declarations.
151 */
152static char *error_message;	/* Message for dlerror(), or NULL */
153struct r_debug r_debug;		/* for GDB; */
154static bool libmap_disable;	/* Disable libmap */
155static char *libmap_override;	/* Maps to use in addition to libmap.conf */
156static bool trust;		/* False for setuid and setgid programs */
157static bool dangerous_ld_env;	/* True if environment variables have been
158				   used to affect the libraries loaded */
159static char *ld_bind_now;	/* Environment variable for immediate binding */
160static char *ld_debug;		/* Environment variable for debugging */
161static char *ld_library_path;	/* Environment variable for search path */
162static char *ld_preload;	/* Environment variable for libraries to
163				   load first */
164static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
165static char *ld_tracing;	/* Called from ldd to print libs */
166static char *ld_utrace;		/* Use utrace() to log events. */
167static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
168static Obj_Entry **obj_tail;	/* Link field of last object in list */
169static Obj_Entry *obj_main;	/* The main program shared object */
170static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
171static unsigned int obj_count;	/* Number of objects in obj_list */
172static unsigned int obj_loads;	/* Number of objects in obj_list */
173
174static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
175  STAILQ_HEAD_INITIALIZER(list_global);
176static Objlist list_main =	/* Objects loaded at program startup */
177  STAILQ_HEAD_INITIALIZER(list_main);
178static Objlist list_fini =	/* Objects needing fini() calls */
179  STAILQ_HEAD_INITIALIZER(list_fini);
180
181static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
182
183#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
184
185extern Elf_Dyn _DYNAMIC;
186#pragma weak _DYNAMIC
187#ifndef RTLD_IS_DYNAMIC
188#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
189#endif
190
191/*
192 * These are the functions the dynamic linker exports to application
193 * programs.  They are the only symbols the dynamic linker is willing
194 * to export from itself.
195 */
196static func_ptr_type exports[] = {
197    (func_ptr_type) &_rtld_error,
198    (func_ptr_type) &dlclose,
199    (func_ptr_type) &dlerror,
200    (func_ptr_type) &dlopen,
201    (func_ptr_type) &dlsym,
202    (func_ptr_type) &dlfunc,
203    (func_ptr_type) &dlvsym,
204    (func_ptr_type) &dladdr,
205    (func_ptr_type) &dllockinit,
206    (func_ptr_type) &dlinfo,
207    (func_ptr_type) &_rtld_thread_init,
208#ifdef __i386__
209    (func_ptr_type) &___tls_get_addr,
210#endif
211    (func_ptr_type) &__tls_get_addr,
212    (func_ptr_type) &_rtld_allocate_tls,
213    (func_ptr_type) &_rtld_free_tls,
214    (func_ptr_type) &dl_iterate_phdr,
215    (func_ptr_type) &_rtld_atfork_pre,
216    (func_ptr_type) &_rtld_atfork_post,
217    NULL
218};
219
220/*
221 * Global declarations normally provided by crt1.  The dynamic linker is
222 * not built with crt1, so we have to provide them ourselves.
223 */
224char *__progname;
225char **environ;
226
227/*
228 * Globals to control TLS allocation.
229 */
230size_t tls_last_offset;		/* Static TLS offset of last module */
231size_t tls_last_size;		/* Static TLS size of last module */
232size_t tls_static_space;	/* Static TLS space allocated */
233int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
234int tls_max_index = 1;		/* Largest module index allocated */
235
236/*
237 * Fill in a DoneList with an allocation large enough to hold all of
238 * the currently-loaded objects.  Keep this as a macro since it calls
239 * alloca and we want that to occur within the scope of the caller.
240 */
241#define donelist_init(dlp)					\
242    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
243    assert((dlp)->objs != NULL),				\
244    (dlp)->num_alloc = obj_count,				\
245    (dlp)->num_used = 0)
246
247#define	UTRACE_DLOPEN_START		1
248#define	UTRACE_DLOPEN_STOP		2
249#define	UTRACE_DLCLOSE_START		3
250#define	UTRACE_DLCLOSE_STOP		4
251#define	UTRACE_LOAD_OBJECT		5
252#define	UTRACE_UNLOAD_OBJECT		6
253#define	UTRACE_ADD_RUNDEP		7
254#define	UTRACE_PRELOAD_FINISHED		8
255#define	UTRACE_INIT_CALL		9
256#define	UTRACE_FINI_CALL		10
257
258struct utrace_rtld {
259	char sig[4];			/* 'RTLD' */
260	int event;
261	void *handle;
262	void *mapbase;			/* Used for 'parent' and 'init/fini' */
263	size_t mapsize;
264	int refcnt;			/* Used for 'mode' */
265	char name[MAXPATHLEN];
266};
267
268#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
269	if (ld_utrace != NULL)					\
270		ld_utrace_log(e, h, mb, ms, r, n);		\
271} while (0)
272
273static void
274ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
275    int refcnt, const char *name)
276{
277	struct utrace_rtld ut;
278
279	ut.sig[0] = 'R';
280	ut.sig[1] = 'T';
281	ut.sig[2] = 'L';
282	ut.sig[3] = 'D';
283	ut.event = event;
284	ut.handle = handle;
285	ut.mapbase = mapbase;
286	ut.mapsize = mapsize;
287	ut.refcnt = refcnt;
288	bzero(ut.name, sizeof(ut.name));
289	if (name)
290		strlcpy(ut.name, name, sizeof(ut.name));
291	utrace(&ut, sizeof(ut));
292}
293
294/*
295 * Main entry point for dynamic linking.  The first argument is the
296 * stack pointer.  The stack is expected to be laid out as described
297 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
298 * Specifically, the stack pointer points to a word containing
299 * ARGC.  Following that in the stack is a null-terminated sequence
300 * of pointers to argument strings.  Then comes a null-terminated
301 * sequence of pointers to environment strings.  Finally, there is a
302 * sequence of "auxiliary vector" entries.
303 *
304 * The second argument points to a place to store the dynamic linker's
305 * exit procedure pointer and the third to a place to store the main
306 * program's object.
307 *
308 * The return value is the main program's entry point.
309 */
310func_ptr_type
311_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
312{
313    Elf_Auxinfo *aux_info[AT_COUNT];
314    int i;
315    int argc;
316    char **argv;
317    char **env;
318    Elf_Auxinfo *aux;
319    Elf_Auxinfo *auxp;
320    const char *argv0;
321    Objlist_Entry *entry;
322    Obj_Entry *obj;
323    Obj_Entry **preload_tail;
324    Objlist initlist;
325    int lockstate;
326
327    /*
328     * On entry, the dynamic linker itself has not been relocated yet.
329     * Be very careful not to reference any global data until after
330     * init_rtld has returned.  It is OK to reference file-scope statics
331     * and string constants, and to call static and global functions.
332     */
333
334    /* Find the auxiliary vector on the stack. */
335    argc = *sp++;
336    argv = (char **) sp;
337    sp += argc + 1;	/* Skip over arguments and NULL terminator */
338    env = (char **) sp;
339    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
340	;
341    aux = (Elf_Auxinfo *) sp;
342
343    /* Digest the auxiliary vector. */
344    for (i = 0;  i < AT_COUNT;  i++)
345	aux_info[i] = NULL;
346    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
347	if (auxp->a_type < AT_COUNT)
348	    aux_info[auxp->a_type] = auxp;
349    }
350
351    /* Initialize and relocate ourselves. */
352    assert(aux_info[AT_BASE] != NULL);
353    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
354
355    __progname = obj_rtld.path;
356    argv0 = argv[0] != NULL ? argv[0] : "(null)";
357    environ = env;
358
359    trust = !issetugid();
360
361    ld_bind_now = getenv(LD_ "BIND_NOW");
362    /*
363     * If the process is tainted, then we un-set the dangerous environment
364     * variables.  The process will be marked as tainted until setuid(2)
365     * is called.  If any child process calls setuid(2) we do not want any
366     * future processes to honor the potentially un-safe variables.
367     */
368    if (!trust) {
369        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
370	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
371	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH")) {
372		_rtld_error("environment corrupt; aborting");
373		die();
374	}
375    }
376    ld_debug = getenv(LD_ "DEBUG");
377    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
378    libmap_override = getenv(LD_ "LIBMAP");
379    ld_library_path = getenv(LD_ "LIBRARY_PATH");
380    ld_preload = getenv(LD_ "PRELOAD");
381    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
382    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
383	(ld_library_path != NULL) || (ld_preload != NULL) ||
384	(ld_elf_hints_path != NULL);
385    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
386    ld_utrace = getenv(LD_ "UTRACE");
387
388    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
389	ld_elf_hints_path = _PATH_ELF_HINTS;
390
391    if (ld_debug != NULL && *ld_debug != '\0')
392	debug = 1;
393    dbg("%s is initialized, base address = %p", __progname,
394	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
395    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
396    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
397
398    /*
399     * Load the main program, or process its program header if it is
400     * already loaded.
401     */
402    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
403	int fd = aux_info[AT_EXECFD]->a_un.a_val;
404	dbg("loading main program");
405	obj_main = map_object(fd, argv0, NULL);
406	close(fd);
407	if (obj_main == NULL)
408	    die();
409    } else {				/* Main program already loaded. */
410	const Elf_Phdr *phdr;
411	int phnum;
412	caddr_t entry;
413
414	dbg("processing main program's program header");
415	assert(aux_info[AT_PHDR] != NULL);
416	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
417	assert(aux_info[AT_PHNUM] != NULL);
418	phnum = aux_info[AT_PHNUM]->a_un.a_val;
419	assert(aux_info[AT_PHENT] != NULL);
420	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
421	assert(aux_info[AT_ENTRY] != NULL);
422	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
423	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
424	    die();
425    }
426
427    if (aux_info[AT_EXECPATH] != 0) {
428	    char *kexecpath;
429	    char buf[MAXPATHLEN];
430
431	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
432	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
433	    if (kexecpath[0] == '/')
434		    obj_main->path = kexecpath;
435	    else if (getcwd(buf, sizeof(buf)) == NULL ||
436		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
437		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
438		    obj_main->path = xstrdup(argv0);
439	    else
440		    obj_main->path = xstrdup(buf);
441    } else {
442	    dbg("No AT_EXECPATH");
443	    obj_main->path = xstrdup(argv0);
444    }
445    dbg("obj_main path %s", obj_main->path);
446    obj_main->mainprog = true;
447
448    /*
449     * Get the actual dynamic linker pathname from the executable if
450     * possible.  (It should always be possible.)  That ensures that
451     * gdb will find the right dynamic linker even if a non-standard
452     * one is being used.
453     */
454    if (obj_main->interp != NULL &&
455      strcmp(obj_main->interp, obj_rtld.path) != 0) {
456	free(obj_rtld.path);
457	obj_rtld.path = xstrdup(obj_main->interp);
458        __progname = obj_rtld.path;
459    }
460
461    digest_dynamic(obj_main, 0);
462
463    linkmap_add(obj_main);
464    linkmap_add(&obj_rtld);
465
466    /* Link the main program into the list of objects. */
467    *obj_tail = obj_main;
468    obj_tail = &obj_main->next;
469    obj_count++;
470    obj_loads++;
471    /* Make sure we don't call the main program's init and fini functions. */
472    obj_main->init = obj_main->fini = (Elf_Addr)NULL;
473
474    /* Initialize a fake symbol for resolving undefined weak references. */
475    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
476    sym_zero.st_shndx = SHN_UNDEF;
477    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
478
479    if (!libmap_disable)
480        libmap_disable = (bool)lm_init(libmap_override);
481
482    dbg("loading LD_PRELOAD libraries");
483    if (load_preload_objects() == -1)
484	die();
485    preload_tail = obj_tail;
486
487    dbg("loading needed objects");
488    if (load_needed_objects(obj_main, 0) == -1)
489	die();
490
491    /* Make a list of all objects loaded at startup. */
492    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
493	objlist_push_tail(&list_main, obj);
494    	obj->refcount++;
495    }
496
497    dbg("checking for required versions");
498    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
499	die();
500
501    if (ld_tracing) {		/* We're done */
502	trace_loaded_objects(obj_main);
503	exit(0);
504    }
505
506    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
507       dump_relocations(obj_main);
508       exit (0);
509    }
510
511    /* setup TLS for main thread */
512    dbg("initializing initial thread local storage");
513    STAILQ_FOREACH(entry, &list_main, link) {
514	/*
515	 * Allocate all the initial objects out of the static TLS
516	 * block even if they didn't ask for it.
517	 */
518	allocate_tls_offset(entry->obj);
519    }
520    allocate_initial_tls(obj_list);
521
522    if (relocate_objects(obj_main,
523	ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
524	die();
525
526    dbg("doing copy relocations");
527    if (do_copy_relocations(obj_main) == -1)
528	die();
529
530    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
531       dump_relocations(obj_main);
532       exit (0);
533    }
534
535    dbg("initializing key program variables");
536    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
537    set_program_var("environ", env);
538
539    dbg("initializing thread locks");
540    lockdflt_init();
541
542    /* Make a list of init functions to call. */
543    objlist_init(&initlist);
544    initlist_add_objects(obj_list, preload_tail, &initlist);
545
546    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
547
548    lockstate = wlock_acquire(rtld_bind_lock);
549    objlist_call_init(&initlist, &lockstate);
550    objlist_clear(&initlist);
551    wlock_release(rtld_bind_lock, lockstate);
552
553    dbg("transferring control to program entry point = %p", obj_main->entry);
554
555    /* Return the exit procedure and the program entry point. */
556    *exit_proc = rtld_exit;
557    *objp = obj_main;
558    return (func_ptr_type) obj_main->entry;
559}
560
561Elf_Addr
562_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
563{
564    const Elf_Rel *rel;
565    const Elf_Sym *def;
566    const Obj_Entry *defobj;
567    Elf_Addr *where;
568    Elf_Addr target;
569    int lockstate;
570
571    lockstate = rlock_acquire(rtld_bind_lock);
572    if (obj->pltrel)
573	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
574    else
575	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
576
577    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
578    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
579    if (def == NULL)
580	die();
581
582    target = (Elf_Addr)(defobj->relocbase + def->st_value);
583
584    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
585      defobj->strtab + def->st_name, basename(obj->path),
586      (void *)target, basename(defobj->path));
587
588    /*
589     * Write the new contents for the jmpslot. Note that depending on
590     * architecture, the value which we need to return back to the
591     * lazy binding trampoline may or may not be the target
592     * address. The value returned from reloc_jmpslot() is the value
593     * that the trampoline needs.
594     */
595    target = reloc_jmpslot(where, target, defobj, obj, rel);
596    rlock_release(rtld_bind_lock, lockstate);
597    return target;
598}
599
600/*
601 * Error reporting function.  Use it like printf.  If formats the message
602 * into a buffer, and sets things up so that the next call to dlerror()
603 * will return the message.
604 */
605void
606_rtld_error(const char *fmt, ...)
607{
608    static char buf[512];
609    va_list ap;
610
611    va_start(ap, fmt);
612    vsnprintf(buf, sizeof buf, fmt, ap);
613    error_message = buf;
614    va_end(ap);
615}
616
617/*
618 * Return a dynamically-allocated copy of the current error message, if any.
619 */
620static char *
621errmsg_save(void)
622{
623    return error_message == NULL ? NULL : xstrdup(error_message);
624}
625
626/*
627 * Restore the current error message from a copy which was previously saved
628 * by errmsg_save().  The copy is freed.
629 */
630static void
631errmsg_restore(char *saved_msg)
632{
633    if (saved_msg == NULL)
634	error_message = NULL;
635    else {
636	_rtld_error("%s", saved_msg);
637	free(saved_msg);
638    }
639}
640
641static const char *
642basename(const char *name)
643{
644    const char *p = strrchr(name, '/');
645    return p != NULL ? p + 1 : name;
646}
647
648static struct utsname uts;
649
650static int
651origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
652    char *may_free)
653{
654    const char *p, *p1;
655    char *res1;
656    int subst_len;
657    int kw_len;
658
659    res1 = *res = NULL;
660    p = real;
661    subst_len = kw_len = 0;
662    for (;;) {
663	 p1 = strstr(p, kw);
664	 if (p1 != NULL) {
665	     if (subst_len == 0) {
666		 subst_len = strlen(subst);
667		 kw_len = strlen(kw);
668	     }
669	     if (*res == NULL) {
670		 *res = xmalloc(PATH_MAX);
671		 res1 = *res;
672	     }
673	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
674		 _rtld_error("Substitution of %s in %s cannot be performed",
675		     kw, real);
676		 if (may_free != NULL)
677		     free(may_free);
678		 free(res);
679		 return (false);
680	     }
681	     memcpy(res1, p, p1 - p);
682	     res1 += p1 - p;
683	     memcpy(res1, subst, subst_len);
684	     res1 += subst_len;
685	     p = p1 + kw_len;
686	 } else {
687	    if (*res == NULL) {
688		if (may_free != NULL)
689		    *res = may_free;
690		else
691		    *res = xstrdup(real);
692		return (true);
693	    }
694	    *res1 = '\0';
695	    if (may_free != NULL)
696		free(may_free);
697	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
698		free(res);
699		return (false);
700	    }
701	    return (true);
702	 }
703    }
704}
705
706static char *
707origin_subst(const char *real, const char *origin_path)
708{
709    char *res1, *res2, *res3, *res4;
710
711    if (uts.sysname[0] == '\0') {
712	if (uname(&uts) != 0) {
713	    _rtld_error("utsname failed: %d", errno);
714	    return (NULL);
715	}
716    }
717    if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
718	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
719	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
720	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
721	    return (NULL);
722    return (res4);
723}
724
725static void
726die(void)
727{
728    const char *msg = dlerror();
729
730    if (msg == NULL)
731	msg = "Fatal error";
732    errx(1, "%s", msg);
733}
734
735/*
736 * Process a shared object's DYNAMIC section, and save the important
737 * information in its Obj_Entry structure.
738 */
739static void
740digest_dynamic(Obj_Entry *obj, int early)
741{
742    const Elf_Dyn *dynp;
743    Needed_Entry **needed_tail = &obj->needed;
744    const Elf_Dyn *dyn_rpath = NULL;
745    const Elf_Dyn *dyn_soname = NULL;
746    int plttype = DT_REL;
747
748    obj->bind_now = false;
749    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
750	switch (dynp->d_tag) {
751
752	case DT_REL:
753	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
754	    break;
755
756	case DT_RELSZ:
757	    obj->relsize = dynp->d_un.d_val;
758	    break;
759
760	case DT_RELENT:
761	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
762	    break;
763
764	case DT_JMPREL:
765	    obj->pltrel = (const Elf_Rel *)
766	      (obj->relocbase + dynp->d_un.d_ptr);
767	    break;
768
769	case DT_PLTRELSZ:
770	    obj->pltrelsize = dynp->d_un.d_val;
771	    break;
772
773	case DT_RELA:
774	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
775	    break;
776
777	case DT_RELASZ:
778	    obj->relasize = dynp->d_un.d_val;
779	    break;
780
781	case DT_RELAENT:
782	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
783	    break;
784
785	case DT_PLTREL:
786	    plttype = dynp->d_un.d_val;
787	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
788	    break;
789
790	case DT_SYMTAB:
791	    obj->symtab = (const Elf_Sym *)
792	      (obj->relocbase + dynp->d_un.d_ptr);
793	    break;
794
795	case DT_SYMENT:
796	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
797	    break;
798
799	case DT_STRTAB:
800	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
801	    break;
802
803	case DT_STRSZ:
804	    obj->strsize = dynp->d_un.d_val;
805	    break;
806
807	case DT_VERNEED:
808	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
809		dynp->d_un.d_val);
810	    break;
811
812	case DT_VERNEEDNUM:
813	    obj->verneednum = dynp->d_un.d_val;
814	    break;
815
816	case DT_VERDEF:
817	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
818		dynp->d_un.d_val);
819	    break;
820
821	case DT_VERDEFNUM:
822	    obj->verdefnum = dynp->d_un.d_val;
823	    break;
824
825	case DT_VERSYM:
826	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
827		dynp->d_un.d_val);
828	    break;
829
830	case DT_HASH:
831	    {
832		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
833		  (obj->relocbase + dynp->d_un.d_ptr);
834		obj->nbuckets = hashtab[0];
835		obj->nchains = hashtab[1];
836		obj->buckets = hashtab + 2;
837		obj->chains = obj->buckets + obj->nbuckets;
838	    }
839	    break;
840
841	case DT_NEEDED:
842	    if (!obj->rtld) {
843		Needed_Entry *nep = NEW(Needed_Entry);
844		nep->name = dynp->d_un.d_val;
845		nep->obj = NULL;
846		nep->next = NULL;
847
848		*needed_tail = nep;
849		needed_tail = &nep->next;
850	    }
851	    break;
852
853	case DT_PLTGOT:
854	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
855	    break;
856
857	case DT_TEXTREL:
858	    obj->textrel = true;
859	    break;
860
861	case DT_SYMBOLIC:
862	    obj->symbolic = true;
863	    break;
864
865	case DT_RPATH:
866	case DT_RUNPATH:	/* XXX: process separately */
867	    /*
868	     * We have to wait until later to process this, because we
869	     * might not have gotten the address of the string table yet.
870	     */
871	    dyn_rpath = dynp;
872	    break;
873
874	case DT_SONAME:
875	    dyn_soname = dynp;
876	    break;
877
878	case DT_INIT:
879	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
880	    break;
881
882	case DT_FINI:
883	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
884	    break;
885
886	/*
887	 * Don't process DT_DEBUG on MIPS as the dynamic section
888	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
889	 */
890
891#ifndef __mips__
892	case DT_DEBUG:
893	    /* XXX - not implemented yet */
894	    if (!early)
895		dbg("Filling in DT_DEBUG entry");
896	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
897	    break;
898#endif
899
900	case DT_FLAGS:
901		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
902		    obj->z_origin = true;
903		if (dynp->d_un.d_val & DF_SYMBOLIC)
904		    obj->symbolic = true;
905		if (dynp->d_un.d_val & DF_TEXTREL)
906		    obj->textrel = true;
907		if (dynp->d_un.d_val & DF_BIND_NOW)
908		    obj->bind_now = true;
909		if (dynp->d_un.d_val & DF_STATIC_TLS)
910		    ;
911	    break;
912#ifdef __mips__
913	case DT_MIPS_LOCAL_GOTNO:
914		obj->local_gotno = dynp->d_un.d_val;
915	    break;
916
917	case DT_MIPS_SYMTABNO:
918		obj->symtabno = dynp->d_un.d_val;
919		break;
920
921	case DT_MIPS_GOTSYM:
922		obj->gotsym = dynp->d_un.d_val;
923		break;
924
925	case DT_MIPS_RLD_MAP:
926#ifdef notyet
927		if (!early)
928			dbg("Filling in DT_DEBUG entry");
929		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
930#endif
931		break;
932#endif
933
934	case DT_FLAGS_1:
935		if (dynp->d_un.d_val & DF_1_NOOPEN)
936		    obj->z_noopen = true;
937		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
938		    obj->z_origin = true;
939		if (dynp->d_un.d_val & DF_1_GLOBAL)
940			/* XXX */;
941		if (dynp->d_un.d_val & DF_1_BIND_NOW)
942		    obj->bind_now = true;
943		if (dynp->d_un.d_val & DF_1_NODELETE)
944		    obj->z_nodelete = true;
945	    break;
946
947	default:
948	    if (!early) {
949		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
950		    (long)dynp->d_tag);
951	    }
952	    break;
953	}
954    }
955
956    obj->traced = false;
957
958    if (plttype == DT_RELA) {
959	obj->pltrela = (const Elf_Rela *) obj->pltrel;
960	obj->pltrel = NULL;
961	obj->pltrelasize = obj->pltrelsize;
962	obj->pltrelsize = 0;
963    }
964
965    if (obj->z_origin && obj->origin_path == NULL) {
966	obj->origin_path = xmalloc(PATH_MAX);
967	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
968	    die();
969    }
970
971    if (dyn_rpath != NULL) {
972	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
973	if (obj->z_origin)
974	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
975    }
976
977    if (dyn_soname != NULL)
978	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
979}
980
981/*
982 * Process a shared object's program header.  This is used only for the
983 * main program, when the kernel has already loaded the main program
984 * into memory before calling the dynamic linker.  It creates and
985 * returns an Obj_Entry structure.
986 */
987static Obj_Entry *
988digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
989{
990    Obj_Entry *obj;
991    const Elf_Phdr *phlimit = phdr + phnum;
992    const Elf_Phdr *ph;
993    int nsegs = 0;
994
995    obj = obj_new();
996    for (ph = phdr;  ph < phlimit;  ph++) {
997	if (ph->p_type != PT_PHDR)
998	    continue;
999
1000	obj->phdr = phdr;
1001	obj->phsize = ph->p_memsz;
1002	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1003	break;
1004    }
1005
1006    for (ph = phdr;  ph < phlimit;  ph++) {
1007	switch (ph->p_type) {
1008
1009	case PT_INTERP:
1010	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1011	    break;
1012
1013	case PT_LOAD:
1014	    if (nsegs == 0) {	/* First load segment */
1015		obj->vaddrbase = trunc_page(ph->p_vaddr);
1016		obj->mapbase = obj->vaddrbase + obj->relocbase;
1017		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1018		  obj->vaddrbase;
1019	    } else {		/* Last load segment */
1020		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1021		  obj->vaddrbase;
1022	    }
1023	    nsegs++;
1024	    break;
1025
1026	case PT_DYNAMIC:
1027	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1028	    break;
1029
1030	case PT_TLS:
1031	    obj->tlsindex = 1;
1032	    obj->tlssize = ph->p_memsz;
1033	    obj->tlsalign = ph->p_align;
1034	    obj->tlsinitsize = ph->p_filesz;
1035	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1036	    break;
1037	}
1038    }
1039    if (nsegs < 1) {
1040	_rtld_error("%s: too few PT_LOAD segments", path);
1041	return NULL;
1042    }
1043
1044    obj->entry = entry;
1045    return obj;
1046}
1047
1048static Obj_Entry *
1049dlcheck(void *handle)
1050{
1051    Obj_Entry *obj;
1052
1053    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1054	if (obj == (Obj_Entry *) handle)
1055	    break;
1056
1057    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1058	_rtld_error("Invalid shared object handle %p", handle);
1059	return NULL;
1060    }
1061    return obj;
1062}
1063
1064/*
1065 * If the given object is already in the donelist, return true.  Otherwise
1066 * add the object to the list and return false.
1067 */
1068static bool
1069donelist_check(DoneList *dlp, const Obj_Entry *obj)
1070{
1071    unsigned int i;
1072
1073    for (i = 0;  i < dlp->num_used;  i++)
1074	if (dlp->objs[i] == obj)
1075	    return true;
1076    /*
1077     * Our donelist allocation should always be sufficient.  But if
1078     * our threads locking isn't working properly, more shared objects
1079     * could have been loaded since we allocated the list.  That should
1080     * never happen, but we'll handle it properly just in case it does.
1081     */
1082    if (dlp->num_used < dlp->num_alloc)
1083	dlp->objs[dlp->num_used++] = obj;
1084    return false;
1085}
1086
1087/*
1088 * Hash function for symbol table lookup.  Don't even think about changing
1089 * this.  It is specified by the System V ABI.
1090 */
1091unsigned long
1092elf_hash(const char *name)
1093{
1094    const unsigned char *p = (const unsigned char *) name;
1095    unsigned long h = 0;
1096    unsigned long g;
1097
1098    while (*p != '\0') {
1099	h = (h << 4) + *p++;
1100	if ((g = h & 0xf0000000) != 0)
1101	    h ^= g >> 24;
1102	h &= ~g;
1103    }
1104    return h;
1105}
1106
1107/*
1108 * Find the library with the given name, and return its full pathname.
1109 * The returned string is dynamically allocated.  Generates an error
1110 * message and returns NULL if the library cannot be found.
1111 *
1112 * If the second argument is non-NULL, then it refers to an already-
1113 * loaded shared object, whose library search path will be searched.
1114 *
1115 * The search order is:
1116 *   LD_LIBRARY_PATH
1117 *   rpath in the referencing file
1118 *   ldconfig hints
1119 *   /lib:/usr/lib
1120 */
1121static char *
1122find_library(const char *xname, const Obj_Entry *refobj)
1123{
1124    char *pathname;
1125    char *name;
1126
1127    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1128	if (xname[0] != '/' && !trust) {
1129	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1130	      xname);
1131	    return NULL;
1132	}
1133	if (refobj != NULL && refobj->z_origin)
1134	    return origin_subst(xname, refobj->origin_path);
1135	else
1136	    return xstrdup(xname);
1137    }
1138
1139    if (libmap_disable || (refobj == NULL) ||
1140	(name = lm_find(refobj->path, xname)) == NULL)
1141	name = (char *)xname;
1142
1143    dbg(" Searching for \"%s\"", name);
1144
1145    if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1146      (refobj != NULL &&
1147      (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1148      (pathname = search_library_path(name, gethints())) != NULL ||
1149      (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1150	return pathname;
1151
1152    if(refobj != NULL && refobj->path != NULL) {
1153	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1154	  name, basename(refobj->path));
1155    } else {
1156	_rtld_error("Shared object \"%s\" not found", name);
1157    }
1158    return NULL;
1159}
1160
1161/*
1162 * Given a symbol number in a referencing object, find the corresponding
1163 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1164 * no definition was found.  Returns a pointer to the Obj_Entry of the
1165 * defining object via the reference parameter DEFOBJ_OUT.
1166 */
1167const Elf_Sym *
1168find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1169    const Obj_Entry **defobj_out, int flags, SymCache *cache)
1170{
1171    const Elf_Sym *ref;
1172    const Elf_Sym *def;
1173    const Obj_Entry *defobj;
1174    const Ver_Entry *ventry;
1175    const char *name;
1176    unsigned long hash;
1177
1178    /*
1179     * If we have already found this symbol, get the information from
1180     * the cache.
1181     */
1182    if (symnum >= refobj->nchains)
1183	return NULL;	/* Bad object */
1184    if (cache != NULL && cache[symnum].sym != NULL) {
1185	*defobj_out = cache[symnum].obj;
1186	return cache[symnum].sym;
1187    }
1188
1189    ref = refobj->symtab + symnum;
1190    name = refobj->strtab + ref->st_name;
1191    defobj = NULL;
1192
1193    /*
1194     * We don't have to do a full scale lookup if the symbol is local.
1195     * We know it will bind to the instance in this load module; to
1196     * which we already have a pointer (ie ref). By not doing a lookup,
1197     * we not only improve performance, but it also avoids unresolvable
1198     * symbols when local symbols are not in the hash table. This has
1199     * been seen with the ia64 toolchain.
1200     */
1201    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1202	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1203	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1204		symnum);
1205	}
1206	ventry = fetch_ventry(refobj, symnum);
1207	hash = elf_hash(name);
1208	def = symlook_default(name, hash, refobj, &defobj, ventry, flags);
1209    } else {
1210	def = ref;
1211	defobj = refobj;
1212    }
1213
1214    /*
1215     * If we found no definition and the reference is weak, treat the
1216     * symbol as having the value zero.
1217     */
1218    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1219	def = &sym_zero;
1220	defobj = obj_main;
1221    }
1222
1223    if (def != NULL) {
1224	*defobj_out = defobj;
1225	/* Record the information in the cache to avoid subsequent lookups. */
1226	if (cache != NULL) {
1227	    cache[symnum].sym = def;
1228	    cache[symnum].obj = defobj;
1229	}
1230    } else {
1231	if (refobj != &obj_rtld)
1232	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1233    }
1234    return def;
1235}
1236
1237/*
1238 * Return the search path from the ldconfig hints file, reading it if
1239 * necessary.  Returns NULL if there are problems with the hints file,
1240 * or if the search path there is empty.
1241 */
1242static const char *
1243gethints(void)
1244{
1245    static char *hints;
1246
1247    if (hints == NULL) {
1248	int fd;
1249	struct elfhints_hdr hdr;
1250	char *p;
1251
1252	/* Keep from trying again in case the hints file is bad. */
1253	hints = "";
1254
1255	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1256	    return NULL;
1257	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1258	  hdr.magic != ELFHINTS_MAGIC ||
1259	  hdr.version != 1) {
1260	    close(fd);
1261	    return NULL;
1262	}
1263	p = xmalloc(hdr.dirlistlen + 1);
1264	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1265	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1266	    free(p);
1267	    close(fd);
1268	    return NULL;
1269	}
1270	hints = p;
1271	close(fd);
1272    }
1273    return hints[0] != '\0' ? hints : NULL;
1274}
1275
1276static void
1277init_dag(Obj_Entry *root)
1278{
1279    DoneList donelist;
1280
1281    donelist_init(&donelist);
1282    init_dag1(root, root, &donelist);
1283}
1284
1285static void
1286init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
1287{
1288    const Needed_Entry *needed;
1289
1290    if (donelist_check(dlp, obj))
1291	return;
1292
1293    obj->refcount++;
1294    objlist_push_tail(&obj->dldags, root);
1295    objlist_push_tail(&root->dagmembers, obj);
1296    for (needed = obj->needed;  needed != NULL;  needed = needed->next)
1297	if (needed->obj != NULL)
1298	    init_dag1(root, needed->obj, dlp);
1299}
1300
1301/*
1302 * Initialize the dynamic linker.  The argument is the address at which
1303 * the dynamic linker has been mapped into memory.  The primary task of
1304 * this function is to relocate the dynamic linker.
1305 */
1306static void
1307init_rtld(caddr_t mapbase)
1308{
1309    Obj_Entry objtmp;	/* Temporary rtld object */
1310
1311    /*
1312     * Conjure up an Obj_Entry structure for the dynamic linker.
1313     *
1314     * The "path" member can't be initialized yet because string constants
1315     * cannot yet be accessed. Below we will set it correctly.
1316     */
1317    memset(&objtmp, 0, sizeof(objtmp));
1318    objtmp.path = NULL;
1319    objtmp.rtld = true;
1320    objtmp.mapbase = mapbase;
1321#ifdef PIC
1322    objtmp.relocbase = mapbase;
1323#endif
1324    if (RTLD_IS_DYNAMIC()) {
1325	objtmp.dynamic = rtld_dynamic(&objtmp);
1326	digest_dynamic(&objtmp, 1);
1327	assert(objtmp.needed == NULL);
1328#if !defined(__mips__)
1329	/* MIPS and SH{3,5} have a bogus DT_TEXTREL. */
1330	assert(!objtmp.textrel);
1331#endif
1332
1333	/*
1334	 * Temporarily put the dynamic linker entry into the object list, so
1335	 * that symbols can be found.
1336	 */
1337
1338	relocate_objects(&objtmp, true, &objtmp);
1339    }
1340
1341    /* Initialize the object list. */
1342    obj_tail = &obj_list;
1343
1344    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1345    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1346
1347    /* Replace the path with a dynamically allocated copy. */
1348    obj_rtld.path = xstrdup(PATH_RTLD);
1349
1350    r_debug.r_brk = r_debug_state;
1351    r_debug.r_state = RT_CONSISTENT;
1352}
1353
1354/*
1355 * Add the init functions from a needed object list (and its recursive
1356 * needed objects) to "list".  This is not used directly; it is a helper
1357 * function for initlist_add_objects().  The write lock must be held
1358 * when this function is called.
1359 */
1360static void
1361initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1362{
1363    /* Recursively process the successor needed objects. */
1364    if (needed->next != NULL)
1365	initlist_add_neededs(needed->next, list);
1366
1367    /* Process the current needed object. */
1368    if (needed->obj != NULL)
1369	initlist_add_objects(needed->obj, &needed->obj->next, list);
1370}
1371
1372/*
1373 * Scan all of the DAGs rooted in the range of objects from "obj" to
1374 * "tail" and add their init functions to "list".  This recurses over
1375 * the DAGs and ensure the proper init ordering such that each object's
1376 * needed libraries are initialized before the object itself.  At the
1377 * same time, this function adds the objects to the global finalization
1378 * list "list_fini" in the opposite order.  The write lock must be
1379 * held when this function is called.
1380 */
1381static void
1382initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1383{
1384    if (obj->init_scanned || obj->init_done)
1385	return;
1386    obj->init_scanned = true;
1387
1388    /* Recursively process the successor objects. */
1389    if (&obj->next != tail)
1390	initlist_add_objects(obj->next, tail, list);
1391
1392    /* Recursively process the needed objects. */
1393    if (obj->needed != NULL)
1394	initlist_add_neededs(obj->needed, list);
1395
1396    /* Add the object to the init list. */
1397    if (obj->init != (Elf_Addr)NULL)
1398	objlist_push_tail(list, obj);
1399
1400    /* Add the object to the global fini list in the reverse order. */
1401    if (obj->fini != (Elf_Addr)NULL && !obj->on_fini_list) {
1402	objlist_push_head(&list_fini, obj);
1403	obj->on_fini_list = true;
1404    }
1405}
1406
1407#ifndef FPTR_TARGET
1408#define FPTR_TARGET(f)	((Elf_Addr) (f))
1409#endif
1410
1411static bool
1412is_exported(const Elf_Sym *def)
1413{
1414    Elf_Addr value;
1415    const func_ptr_type *p;
1416
1417    value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1418    for (p = exports;  *p != NULL;  p++)
1419	if (FPTR_TARGET(*p) == value)
1420	    return true;
1421    return false;
1422}
1423
1424/*
1425 * Given a shared object, traverse its list of needed objects, and load
1426 * each of them.  Returns 0 on success.  Generates an error message and
1427 * returns -1 on failure.
1428 */
1429static int
1430load_needed_objects(Obj_Entry *first, int flags)
1431{
1432    Obj_Entry *obj, *obj1;
1433
1434    for (obj = first;  obj != NULL;  obj = obj->next) {
1435	Needed_Entry *needed;
1436
1437	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1438	    obj1 = needed->obj = load_object(obj->strtab + needed->name, obj,
1439		flags & ~RTLD_LO_NOLOAD);
1440	    if (obj1 == NULL && !ld_tracing)
1441		return -1;
1442	    if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1443		dbg("obj %s nodelete", obj1->path);
1444		init_dag(obj1);
1445		ref_dag(obj1);
1446		obj1->ref_nodel = true;
1447	    }
1448	}
1449    }
1450
1451    return 0;
1452}
1453
1454static int
1455load_preload_objects(void)
1456{
1457    char *p = ld_preload;
1458    static const char delim[] = " \t:;";
1459
1460    if (p == NULL)
1461	return 0;
1462
1463    p += strspn(p, delim);
1464    while (*p != '\0') {
1465	size_t len = strcspn(p, delim);
1466	char savech;
1467
1468	savech = p[len];
1469	p[len] = '\0';
1470	if (load_object(p, NULL, 0) == NULL)
1471	    return -1;	/* XXX - cleanup */
1472	p[len] = savech;
1473	p += len;
1474	p += strspn(p, delim);
1475    }
1476    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1477    return 0;
1478}
1479
1480/*
1481 * Load a shared object into memory, if it is not already loaded.
1482 *
1483 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1484 * on failure.
1485 */
1486static Obj_Entry *
1487load_object(const char *name, const Obj_Entry *refobj, int flags)
1488{
1489    Obj_Entry *obj;
1490    int fd = -1;
1491    struct stat sb;
1492    char *path;
1493
1494    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1495	if (object_match_name(obj, name))
1496	    return obj;
1497
1498    path = find_library(name, refobj);
1499    if (path == NULL)
1500	return NULL;
1501
1502    /*
1503     * If we didn't find a match by pathname, open the file and check
1504     * again by device and inode.  This avoids false mismatches caused
1505     * by multiple links or ".." in pathnames.
1506     *
1507     * To avoid a race, we open the file and use fstat() rather than
1508     * using stat().
1509     */
1510    if ((fd = open(path, O_RDONLY)) == -1) {
1511	_rtld_error("Cannot open \"%s\"", path);
1512	free(path);
1513	return NULL;
1514    }
1515    if (fstat(fd, &sb) == -1) {
1516	_rtld_error("Cannot fstat \"%s\"", path);
1517	close(fd);
1518	free(path);
1519	return NULL;
1520    }
1521    for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1522	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) {
1523	    close(fd);
1524	    break;
1525	}
1526    }
1527    if (obj != NULL) {
1528	object_add_name(obj, name);
1529	free(path);
1530	close(fd);
1531	return obj;
1532    }
1533    if (flags & RTLD_LO_NOLOAD)
1534	return (NULL);
1535
1536    /* First use of this object, so we must map it in */
1537    obj = do_load_object(fd, name, path, &sb, flags);
1538    if (obj == NULL)
1539	free(path);
1540    close(fd);
1541
1542    return obj;
1543}
1544
1545static Obj_Entry *
1546do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1547  int flags)
1548{
1549    Obj_Entry *obj;
1550    struct statfs fs;
1551
1552    /*
1553     * but first, make sure that environment variables haven't been
1554     * used to circumvent the noexec flag on a filesystem.
1555     */
1556    if (dangerous_ld_env) {
1557	if (fstatfs(fd, &fs) != 0) {
1558	    _rtld_error("Cannot fstatfs \"%s\"", path);
1559		return NULL;
1560	}
1561	if (fs.f_flags & MNT_NOEXEC) {
1562	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1563	    return NULL;
1564	}
1565    }
1566    dbg("loading \"%s\"", path);
1567    obj = map_object(fd, path, sbp);
1568    if (obj == NULL)
1569        return NULL;
1570
1571    object_add_name(obj, name);
1572    obj->path = path;
1573    digest_dynamic(obj, 0);
1574    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1575      RTLD_LO_DLOPEN) {
1576	dbg("refusing to load non-loadable \"%s\"", obj->path);
1577	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1578	munmap(obj->mapbase, obj->mapsize);
1579	obj_free(obj);
1580	return (NULL);
1581    }
1582
1583    *obj_tail = obj;
1584    obj_tail = &obj->next;
1585    obj_count++;
1586    obj_loads++;
1587    linkmap_add(obj);	/* for GDB & dlinfo() */
1588
1589    dbg("  %p .. %p: %s", obj->mapbase,
1590         obj->mapbase + obj->mapsize - 1, obj->path);
1591    if (obj->textrel)
1592	dbg("  WARNING: %s has impure text", obj->path);
1593    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1594	obj->path);
1595
1596    return obj;
1597}
1598
1599static Obj_Entry *
1600obj_from_addr(const void *addr)
1601{
1602    Obj_Entry *obj;
1603
1604    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1605	if (addr < (void *) obj->mapbase)
1606	    continue;
1607	if (addr < (void *) (obj->mapbase + obj->mapsize))
1608	    return obj;
1609    }
1610    return NULL;
1611}
1612
1613/*
1614 * Call the finalization functions for each of the objects in "list"
1615 * which are unreferenced.  All of the objects are expected to have
1616 * non-NULL fini functions.
1617 */
1618static void
1619objlist_call_fini(Objlist *list, bool force, int *lockstate)
1620{
1621    Objlist_Entry *elm, *elm_tmp;
1622    char *saved_msg;
1623
1624    /*
1625     * Preserve the current error message since a fini function might
1626     * call into the dynamic linker and overwrite it.
1627     */
1628    saved_msg = errmsg_save();
1629    STAILQ_FOREACH_SAFE(elm, list, link, elm_tmp) {
1630	if (elm->obj->refcount == 0 || force) {
1631	    dbg("calling fini function for %s at %p", elm->obj->path,
1632	        (void *)elm->obj->fini);
1633	    LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1634		elm->obj->path);
1635	    /* Remove object from fini list to prevent recursive invocation. */
1636	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1637	    wlock_release(rtld_bind_lock, *lockstate);
1638	    call_initfini_pointer(elm->obj, elm->obj->fini);
1639	    *lockstate = wlock_acquire(rtld_bind_lock);
1640	    /* No need to free anything if process is going down. */
1641	    if (!force)
1642	    	free(elm);
1643	}
1644    }
1645    errmsg_restore(saved_msg);
1646}
1647
1648/*
1649 * Call the initialization functions for each of the objects in
1650 * "list".  All of the objects are expected to have non-NULL init
1651 * functions.
1652 */
1653static void
1654objlist_call_init(Objlist *list, int *lockstate)
1655{
1656    Objlist_Entry *elm;
1657    Obj_Entry *obj;
1658    char *saved_msg;
1659
1660    /*
1661     * Clean init_scanned flag so that objects can be rechecked and
1662     * possibly initialized earlier if any of vectors called below
1663     * cause the change by using dlopen.
1664     */
1665    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1666	obj->init_scanned = false;
1667
1668    /*
1669     * Preserve the current error message since an init function might
1670     * call into the dynamic linker and overwrite it.
1671     */
1672    saved_msg = errmsg_save();
1673    STAILQ_FOREACH(elm, list, link) {
1674	if (elm->obj->init_done) /* Initialized early. */
1675	    continue;
1676	dbg("calling init function for %s at %p", elm->obj->path,
1677	    (void *)elm->obj->init);
1678	LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
1679	    elm->obj->path);
1680	/*
1681	 * Race: other thread might try to use this object before current
1682	 * one completes the initilization. Not much can be done here
1683	 * without better locking.
1684	 */
1685	elm->obj->init_done = true;
1686    	wlock_release(rtld_bind_lock, *lockstate);
1687	call_initfini_pointer(elm->obj, elm->obj->init);
1688	*lockstate = wlock_acquire(rtld_bind_lock);
1689    }
1690    errmsg_restore(saved_msg);
1691}
1692
1693static void
1694objlist_clear(Objlist *list)
1695{
1696    Objlist_Entry *elm;
1697
1698    while (!STAILQ_EMPTY(list)) {
1699	elm = STAILQ_FIRST(list);
1700	STAILQ_REMOVE_HEAD(list, link);
1701	free(elm);
1702    }
1703}
1704
1705static Objlist_Entry *
1706objlist_find(Objlist *list, const Obj_Entry *obj)
1707{
1708    Objlist_Entry *elm;
1709
1710    STAILQ_FOREACH(elm, list, link)
1711	if (elm->obj == obj)
1712	    return elm;
1713    return NULL;
1714}
1715
1716static void
1717objlist_init(Objlist *list)
1718{
1719    STAILQ_INIT(list);
1720}
1721
1722static void
1723objlist_push_head(Objlist *list, Obj_Entry *obj)
1724{
1725    Objlist_Entry *elm;
1726
1727    elm = NEW(Objlist_Entry);
1728    elm->obj = obj;
1729    STAILQ_INSERT_HEAD(list, elm, link);
1730}
1731
1732static void
1733objlist_push_tail(Objlist *list, Obj_Entry *obj)
1734{
1735    Objlist_Entry *elm;
1736
1737    elm = NEW(Objlist_Entry);
1738    elm->obj = obj;
1739    STAILQ_INSERT_TAIL(list, elm, link);
1740}
1741
1742static void
1743objlist_remove(Objlist *list, Obj_Entry *obj)
1744{
1745    Objlist_Entry *elm;
1746
1747    if ((elm = objlist_find(list, obj)) != NULL) {
1748	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1749	free(elm);
1750    }
1751}
1752
1753/*
1754 * Relocate newly-loaded shared objects.  The argument is a pointer to
1755 * the Obj_Entry for the first such object.  All objects from the first
1756 * to the end of the list of objects are relocated.  Returns 0 on success,
1757 * or -1 on failure.
1758 */
1759static int
1760relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1761{
1762    Obj_Entry *obj;
1763
1764    for (obj = first;  obj != NULL;  obj = obj->next) {
1765	if (obj != rtldobj)
1766	    dbg("relocating \"%s\"", obj->path);
1767	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1768	    obj->symtab == NULL || obj->strtab == NULL) {
1769	    _rtld_error("%s: Shared object has no run-time symbol table",
1770	      obj->path);
1771	    return -1;
1772	}
1773
1774	if (obj->textrel) {
1775	    /* There are relocations to the write-protected text segment. */
1776	    if (mprotect(obj->mapbase, obj->textsize,
1777	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1778		_rtld_error("%s: Cannot write-enable text segment: %s",
1779		  obj->path, strerror(errno));
1780		return -1;
1781	    }
1782	}
1783
1784	/* Process the non-PLT relocations. */
1785	if (reloc_non_plt(obj, rtldobj))
1786		return -1;
1787
1788	if (obj->textrel) {	/* Re-protected the text segment. */
1789	    if (mprotect(obj->mapbase, obj->textsize,
1790	      PROT_READ|PROT_EXEC) == -1) {
1791		_rtld_error("%s: Cannot write-protect text segment: %s",
1792		  obj->path, strerror(errno));
1793		return -1;
1794	    }
1795	}
1796
1797	/* Process the PLT relocations. */
1798	if (reloc_plt(obj) == -1)
1799	    return -1;
1800	/* Relocate the jump slots if we are doing immediate binding. */
1801	if (obj->bind_now || bind_now)
1802	    if (reloc_jmpslots(obj) == -1)
1803		return -1;
1804
1805
1806	/*
1807	 * Set up the magic number and version in the Obj_Entry.  These
1808	 * were checked in the crt1.o from the original ElfKit, so we
1809	 * set them for backward compatibility.
1810	 */
1811	obj->magic = RTLD_MAGIC;
1812	obj->version = RTLD_VERSION;
1813
1814	/* Set the special PLT or GOT entries. */
1815	init_pltgot(obj);
1816    }
1817
1818    return 0;
1819}
1820
1821/*
1822 * Cleanup procedure.  It will be called (by the atexit mechanism) just
1823 * before the process exits.
1824 */
1825static void
1826rtld_exit(void)
1827{
1828    int	lockstate;
1829
1830    lockstate = wlock_acquire(rtld_bind_lock);
1831    dbg("rtld_exit()");
1832    objlist_call_fini(&list_fini, true, &lockstate);
1833    /* No need to remove the items from the list, since we are exiting. */
1834    if (!libmap_disable)
1835        lm_fini();
1836    wlock_release(rtld_bind_lock, lockstate);
1837}
1838
1839static void *
1840path_enumerate(const char *path, path_enum_proc callback, void *arg)
1841{
1842#ifdef COMPAT_32BIT
1843    const char *trans;
1844#endif
1845    if (path == NULL)
1846	return (NULL);
1847
1848    path += strspn(path, ":;");
1849    while (*path != '\0') {
1850	size_t len;
1851	char  *res;
1852
1853	len = strcspn(path, ":;");
1854#ifdef COMPAT_32BIT
1855	trans = lm_findn(NULL, path, len);
1856	if (trans)
1857	    res = callback(trans, strlen(trans), arg);
1858	else
1859#endif
1860	res = callback(path, len, arg);
1861
1862	if (res != NULL)
1863	    return (res);
1864
1865	path += len;
1866	path += strspn(path, ":;");
1867    }
1868
1869    return (NULL);
1870}
1871
1872struct try_library_args {
1873    const char	*name;
1874    size_t	 namelen;
1875    char	*buffer;
1876    size_t	 buflen;
1877};
1878
1879static void *
1880try_library_path(const char *dir, size_t dirlen, void *param)
1881{
1882    struct try_library_args *arg;
1883
1884    arg = param;
1885    if (*dir == '/' || trust) {
1886	char *pathname;
1887
1888	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
1889		return (NULL);
1890
1891	pathname = arg->buffer;
1892	strncpy(pathname, dir, dirlen);
1893	pathname[dirlen] = '/';
1894	strcpy(pathname + dirlen + 1, arg->name);
1895
1896	dbg("  Trying \"%s\"", pathname);
1897	if (access(pathname, F_OK) == 0) {		/* We found it */
1898	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
1899	    strcpy(pathname, arg->buffer);
1900	    return (pathname);
1901	}
1902    }
1903    return (NULL);
1904}
1905
1906static char *
1907search_library_path(const char *name, const char *path)
1908{
1909    char *p;
1910    struct try_library_args arg;
1911
1912    if (path == NULL)
1913	return NULL;
1914
1915    arg.name = name;
1916    arg.namelen = strlen(name);
1917    arg.buffer = xmalloc(PATH_MAX);
1918    arg.buflen = PATH_MAX;
1919
1920    p = path_enumerate(path, try_library_path, &arg);
1921
1922    free(arg.buffer);
1923
1924    return (p);
1925}
1926
1927int
1928dlclose(void *handle)
1929{
1930    Obj_Entry *root;
1931    int lockstate;
1932
1933    lockstate = wlock_acquire(rtld_bind_lock);
1934    root = dlcheck(handle);
1935    if (root == NULL) {
1936	wlock_release(rtld_bind_lock, lockstate);
1937	return -1;
1938    }
1939    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
1940	root->path);
1941
1942    /* Unreference the object and its dependencies. */
1943    root->dl_refcount--;
1944
1945    unref_dag(root);
1946
1947    if (root->refcount == 0) {
1948	/*
1949	 * The object is no longer referenced, so we must unload it.
1950	 * First, call the fini functions.
1951	 */
1952	objlist_call_fini(&list_fini, false, &lockstate);
1953
1954	/* Finish cleaning up the newly-unreferenced objects. */
1955	GDB_STATE(RT_DELETE,&root->linkmap);
1956	unload_object(root);
1957	GDB_STATE(RT_CONSISTENT,NULL);
1958    }
1959    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
1960    wlock_release(rtld_bind_lock, lockstate);
1961    return 0;
1962}
1963
1964const char *
1965dlerror(void)
1966{
1967    char *msg = error_message;
1968    error_message = NULL;
1969    return msg;
1970}
1971
1972/*
1973 * This function is deprecated and has no effect.
1974 */
1975void
1976dllockinit(void *context,
1977	   void *(*lock_create)(void *context),
1978           void (*rlock_acquire)(void *lock),
1979           void (*wlock_acquire)(void *lock),
1980           void (*lock_release)(void *lock),
1981           void (*lock_destroy)(void *lock),
1982	   void (*context_destroy)(void *context))
1983{
1984    static void *cur_context;
1985    static void (*cur_context_destroy)(void *);
1986
1987    /* Just destroy the context from the previous call, if necessary. */
1988    if (cur_context_destroy != NULL)
1989	cur_context_destroy(cur_context);
1990    cur_context = context;
1991    cur_context_destroy = context_destroy;
1992}
1993
1994void *
1995dlopen(const char *name, int mode)
1996{
1997    Obj_Entry **old_obj_tail;
1998    Obj_Entry *obj;
1999    Objlist initlist;
2000    int result, lockstate, nodelete, lo_flags;
2001
2002    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2003    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2004    if (ld_tracing != NULL)
2005	environ = (char **)*get_program_var_addr("environ");
2006    nodelete = mode & RTLD_NODELETE;
2007    lo_flags = RTLD_LO_DLOPEN;
2008    if (mode & RTLD_NOLOAD)
2009	    lo_flags |= RTLD_LO_NOLOAD;
2010    if (ld_tracing != NULL)
2011	    lo_flags |= RTLD_LO_TRACE;
2012
2013    objlist_init(&initlist);
2014
2015    lockstate = wlock_acquire(rtld_bind_lock);
2016    GDB_STATE(RT_ADD,NULL);
2017
2018    old_obj_tail = obj_tail;
2019    obj = NULL;
2020    if (name == NULL) {
2021	obj = obj_main;
2022	obj->refcount++;
2023    } else {
2024	obj = load_object(name, obj_main, lo_flags);
2025    }
2026
2027    if (obj) {
2028	obj->dl_refcount++;
2029	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2030	    objlist_push_tail(&list_global, obj);
2031	mode &= RTLD_MODEMASK;
2032	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2033	    assert(*old_obj_tail == obj);
2034	    result = load_needed_objects(obj, RTLD_LO_DLOPEN);
2035	    init_dag(obj);
2036	    if (result != -1)
2037		result = rtld_verify_versions(&obj->dagmembers);
2038	    if (result != -1 && ld_tracing)
2039		goto trace;
2040	    if (result == -1 ||
2041	      (relocate_objects(obj, mode == RTLD_NOW, &obj_rtld)) == -1) {
2042		obj->dl_refcount--;
2043		unref_dag(obj);
2044		if (obj->refcount == 0)
2045		    unload_object(obj);
2046		obj = NULL;
2047	    } else {
2048		/* Make list of init functions to call. */
2049		initlist_add_objects(obj, &obj->next, &initlist);
2050	    }
2051	} else {
2052
2053	    /* Bump the reference counts for objects on this DAG. */
2054	    ref_dag(obj);
2055
2056	    if (ld_tracing)
2057		goto trace;
2058	}
2059	if (obj != NULL && (nodelete || obj->z_nodelete) && !obj->ref_nodel) {
2060	    dbg("obj %s nodelete", obj->path);
2061	    ref_dag(obj);
2062	    obj->z_nodelete = obj->ref_nodel = true;
2063	}
2064    }
2065
2066    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2067	name);
2068    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2069
2070    /* Call the init functions. */
2071    objlist_call_init(&initlist, &lockstate);
2072    objlist_clear(&initlist);
2073    wlock_release(rtld_bind_lock, lockstate);
2074    return obj;
2075trace:
2076    trace_loaded_objects(obj);
2077    wlock_release(rtld_bind_lock, lockstate);
2078    exit(0);
2079}
2080
2081static void *
2082do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2083    int flags)
2084{
2085    DoneList donelist;
2086    const Obj_Entry *obj, *defobj;
2087    const Elf_Sym *def, *symp;
2088    unsigned long hash;
2089    int lockstate;
2090
2091    hash = elf_hash(name);
2092    def = NULL;
2093    defobj = NULL;
2094    flags |= SYMLOOK_IN_PLT;
2095
2096    lockstate = rlock_acquire(rtld_bind_lock);
2097    if (handle == NULL || handle == RTLD_NEXT ||
2098	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2099
2100	if ((obj = obj_from_addr(retaddr)) == NULL) {
2101	    _rtld_error("Cannot determine caller's shared object");
2102	    rlock_release(rtld_bind_lock, lockstate);
2103	    return NULL;
2104	}
2105	if (handle == NULL) {	/* Just the caller's shared object. */
2106	    def = symlook_obj(name, hash, obj, ve, flags);
2107	    defobj = obj;
2108	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2109		   handle == RTLD_SELF) { /* ... caller included */
2110	    if (handle == RTLD_NEXT)
2111		obj = obj->next;
2112	    for (; obj != NULL; obj = obj->next) {
2113	    	if ((symp = symlook_obj(name, hash, obj, ve, flags)) != NULL) {
2114		    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2115			def = symp;
2116			defobj = obj;
2117			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2118			    break;
2119		    }
2120		}
2121	    }
2122	    /*
2123	     * Search the dynamic linker itself, and possibly resolve the
2124	     * symbol from there.  This is how the application links to
2125	     * dynamic linker services such as dlopen.  Only the values listed
2126	     * in the "exports" array can be resolved from the dynamic linker.
2127	     */
2128	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2129		symp = symlook_obj(name, hash, &obj_rtld, ve, flags);
2130		if (symp != NULL && is_exported(symp)) {
2131		    def = symp;
2132		    defobj = &obj_rtld;
2133		}
2134	    }
2135	} else {
2136	    assert(handle == RTLD_DEFAULT);
2137	    def = symlook_default(name, hash, obj, &defobj, ve, flags);
2138	}
2139    } else {
2140	if ((obj = dlcheck(handle)) == NULL) {
2141	    rlock_release(rtld_bind_lock, lockstate);
2142	    return NULL;
2143	}
2144
2145	donelist_init(&donelist);
2146	if (obj->mainprog) {
2147	    /* Search main program and all libraries loaded by it. */
2148	    def = symlook_list(name, hash, &list_main, &defobj, ve, flags,
2149			       &donelist);
2150
2151	    /*
2152	     * We do not distinguish between 'main' object and global scope.
2153	     * If symbol is not defined by objects loaded at startup, continue
2154	     * search among dynamically loaded objects with RTLD_GLOBAL
2155	     * scope.
2156	     */
2157	    if (def == NULL)
2158		def = symlook_list(name, hash, &list_global, &defobj, ve,
2159		    		    flags, &donelist);
2160	} else {
2161	    Needed_Entry fake;
2162
2163	    /* Search the whole DAG rooted at the given object. */
2164	    fake.next = NULL;
2165	    fake.obj = (Obj_Entry *)obj;
2166	    fake.name = 0;
2167	    def = symlook_needed(name, hash, &fake, &defobj, ve, flags,
2168				 &donelist);
2169	}
2170    }
2171
2172    if (def != NULL) {
2173	rlock_release(rtld_bind_lock, lockstate);
2174
2175	/*
2176	 * The value required by the caller is derived from the value
2177	 * of the symbol. For the ia64 architecture, we need to
2178	 * construct a function descriptor which the caller can use to
2179	 * call the function with the right 'gp' value. For other
2180	 * architectures and for non-functions, the value is simply
2181	 * the relocated value of the symbol.
2182	 */
2183	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2184	    return make_function_pointer(def, defobj);
2185	else
2186	    return defobj->relocbase + def->st_value;
2187    }
2188
2189    _rtld_error("Undefined symbol \"%s\"", name);
2190    rlock_release(rtld_bind_lock, lockstate);
2191    return NULL;
2192}
2193
2194void *
2195dlsym(void *handle, const char *name)
2196{
2197	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2198	    SYMLOOK_DLSYM);
2199}
2200
2201dlfunc_t
2202dlfunc(void *handle, const char *name)
2203{
2204	union {
2205		void *d;
2206		dlfunc_t f;
2207	} rv;
2208
2209	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2210	    SYMLOOK_DLSYM);
2211	return (rv.f);
2212}
2213
2214void *
2215dlvsym(void *handle, const char *name, const char *version)
2216{
2217	Ver_Entry ventry;
2218
2219	ventry.name = version;
2220	ventry.file = NULL;
2221	ventry.hash = elf_hash(version);
2222	ventry.flags= 0;
2223	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2224	    SYMLOOK_DLSYM);
2225}
2226
2227int
2228dladdr(const void *addr, Dl_info *info)
2229{
2230    const Obj_Entry *obj;
2231    const Elf_Sym *def;
2232    void *symbol_addr;
2233    unsigned long symoffset;
2234    int lockstate;
2235
2236    lockstate = rlock_acquire(rtld_bind_lock);
2237    obj = obj_from_addr(addr);
2238    if (obj == NULL) {
2239        _rtld_error("No shared object contains address");
2240	rlock_release(rtld_bind_lock, lockstate);
2241        return 0;
2242    }
2243    info->dli_fname = obj->path;
2244    info->dli_fbase = obj->mapbase;
2245    info->dli_saddr = (void *)0;
2246    info->dli_sname = NULL;
2247
2248    /*
2249     * Walk the symbol list looking for the symbol whose address is
2250     * closest to the address sent in.
2251     */
2252    for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2253        def = obj->symtab + symoffset;
2254
2255        /*
2256         * For skip the symbol if st_shndx is either SHN_UNDEF or
2257         * SHN_COMMON.
2258         */
2259        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2260            continue;
2261
2262        /*
2263         * If the symbol is greater than the specified address, or if it
2264         * is further away from addr than the current nearest symbol,
2265         * then reject it.
2266         */
2267        symbol_addr = obj->relocbase + def->st_value;
2268        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2269            continue;
2270
2271        /* Update our idea of the nearest symbol. */
2272        info->dli_sname = obj->strtab + def->st_name;
2273        info->dli_saddr = symbol_addr;
2274
2275        /* Exact match? */
2276        if (info->dli_saddr == addr)
2277            break;
2278    }
2279    rlock_release(rtld_bind_lock, lockstate);
2280    return 1;
2281}
2282
2283int
2284dlinfo(void *handle, int request, void *p)
2285{
2286    const Obj_Entry *obj;
2287    int error, lockstate;
2288
2289    lockstate = rlock_acquire(rtld_bind_lock);
2290
2291    if (handle == NULL || handle == RTLD_SELF) {
2292	void *retaddr;
2293
2294	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2295	if ((obj = obj_from_addr(retaddr)) == NULL)
2296	    _rtld_error("Cannot determine caller's shared object");
2297    } else
2298	obj = dlcheck(handle);
2299
2300    if (obj == NULL) {
2301	rlock_release(rtld_bind_lock, lockstate);
2302	return (-1);
2303    }
2304
2305    error = 0;
2306    switch (request) {
2307    case RTLD_DI_LINKMAP:
2308	*((struct link_map const **)p) = &obj->linkmap;
2309	break;
2310    case RTLD_DI_ORIGIN:
2311	error = rtld_dirname(obj->path, p);
2312	break;
2313
2314    case RTLD_DI_SERINFOSIZE:
2315    case RTLD_DI_SERINFO:
2316	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2317	break;
2318
2319    default:
2320	_rtld_error("Invalid request %d passed to dlinfo()", request);
2321	error = -1;
2322    }
2323
2324    rlock_release(rtld_bind_lock, lockstate);
2325
2326    return (error);
2327}
2328
2329int
2330dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2331{
2332    struct dl_phdr_info phdr_info;
2333    const Obj_Entry *obj;
2334    int error, bind_lockstate, phdr_lockstate;
2335
2336    phdr_lockstate = wlock_acquire(rtld_phdr_lock);
2337    bind_lockstate = rlock_acquire(rtld_bind_lock);
2338
2339    error = 0;
2340
2341    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2342	phdr_info.dlpi_addr = (Elf_Addr)obj->relocbase;
2343	phdr_info.dlpi_name = STAILQ_FIRST(&obj->names) ?
2344	    STAILQ_FIRST(&obj->names)->name : obj->path;
2345	phdr_info.dlpi_phdr = obj->phdr;
2346	phdr_info.dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2347	phdr_info.dlpi_tls_modid = obj->tlsindex;
2348	phdr_info.dlpi_tls_data = obj->tlsinit;
2349	phdr_info.dlpi_adds = obj_loads;
2350	phdr_info.dlpi_subs = obj_loads - obj_count;
2351
2352	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2353		break;
2354
2355    }
2356    rlock_release(rtld_bind_lock, bind_lockstate);
2357    wlock_release(rtld_phdr_lock, phdr_lockstate);
2358
2359    return (error);
2360}
2361
2362struct fill_search_info_args {
2363    int		 request;
2364    unsigned int flags;
2365    Dl_serinfo  *serinfo;
2366    Dl_serpath  *serpath;
2367    char	*strspace;
2368};
2369
2370static void *
2371fill_search_info(const char *dir, size_t dirlen, void *param)
2372{
2373    struct fill_search_info_args *arg;
2374
2375    arg = param;
2376
2377    if (arg->request == RTLD_DI_SERINFOSIZE) {
2378	arg->serinfo->dls_cnt ++;
2379	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2380    } else {
2381	struct dl_serpath *s_entry;
2382
2383	s_entry = arg->serpath;
2384	s_entry->dls_name  = arg->strspace;
2385	s_entry->dls_flags = arg->flags;
2386
2387	strncpy(arg->strspace, dir, dirlen);
2388	arg->strspace[dirlen] = '\0';
2389
2390	arg->strspace += dirlen + 1;
2391	arg->serpath++;
2392    }
2393
2394    return (NULL);
2395}
2396
2397static int
2398do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2399{
2400    struct dl_serinfo _info;
2401    struct fill_search_info_args args;
2402
2403    args.request = RTLD_DI_SERINFOSIZE;
2404    args.serinfo = &_info;
2405
2406    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2407    _info.dls_cnt  = 0;
2408
2409    path_enumerate(ld_library_path, fill_search_info, &args);
2410    path_enumerate(obj->rpath, fill_search_info, &args);
2411    path_enumerate(gethints(), fill_search_info, &args);
2412    path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2413
2414
2415    if (request == RTLD_DI_SERINFOSIZE) {
2416	info->dls_size = _info.dls_size;
2417	info->dls_cnt = _info.dls_cnt;
2418	return (0);
2419    }
2420
2421    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2422	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2423	return (-1);
2424    }
2425
2426    args.request  = RTLD_DI_SERINFO;
2427    args.serinfo  = info;
2428    args.serpath  = &info->dls_serpath[0];
2429    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2430
2431    args.flags = LA_SER_LIBPATH;
2432    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2433	return (-1);
2434
2435    args.flags = LA_SER_RUNPATH;
2436    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2437	return (-1);
2438
2439    args.flags = LA_SER_CONFIG;
2440    if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2441	return (-1);
2442
2443    args.flags = LA_SER_DEFAULT;
2444    if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2445	return (-1);
2446    return (0);
2447}
2448
2449static int
2450rtld_dirname(const char *path, char *bname)
2451{
2452    const char *endp;
2453
2454    /* Empty or NULL string gets treated as "." */
2455    if (path == NULL || *path == '\0') {
2456	bname[0] = '.';
2457	bname[1] = '\0';
2458	return (0);
2459    }
2460
2461    /* Strip trailing slashes */
2462    endp = path + strlen(path) - 1;
2463    while (endp > path && *endp == '/')
2464	endp--;
2465
2466    /* Find the start of the dir */
2467    while (endp > path && *endp != '/')
2468	endp--;
2469
2470    /* Either the dir is "/" or there are no slashes */
2471    if (endp == path) {
2472	bname[0] = *endp == '/' ? '/' : '.';
2473	bname[1] = '\0';
2474	return (0);
2475    } else {
2476	do {
2477	    endp--;
2478	} while (endp > path && *endp == '/');
2479    }
2480
2481    if (endp - path + 2 > PATH_MAX)
2482    {
2483	_rtld_error("Filename is too long: %s", path);
2484	return(-1);
2485    }
2486
2487    strncpy(bname, path, endp - path + 1);
2488    bname[endp - path + 1] = '\0';
2489    return (0);
2490}
2491
2492static int
2493rtld_dirname_abs(const char *path, char *base)
2494{
2495	char base_rel[PATH_MAX];
2496
2497	if (rtld_dirname(path, base) == -1)
2498		return (-1);
2499	if (base[0] == '/')
2500		return (0);
2501	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
2502	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
2503	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
2504		return (-1);
2505	strcpy(base, base_rel);
2506	return (0);
2507}
2508
2509static void
2510linkmap_add(Obj_Entry *obj)
2511{
2512    struct link_map *l = &obj->linkmap;
2513    struct link_map *prev;
2514
2515    obj->linkmap.l_name = obj->path;
2516    obj->linkmap.l_addr = obj->mapbase;
2517    obj->linkmap.l_ld = obj->dynamic;
2518#ifdef __mips__
2519    /* GDB needs load offset on MIPS to use the symbols */
2520    obj->linkmap.l_offs = obj->relocbase;
2521#endif
2522
2523    if (r_debug.r_map == NULL) {
2524	r_debug.r_map = l;
2525	return;
2526    }
2527
2528    /*
2529     * Scan to the end of the list, but not past the entry for the
2530     * dynamic linker, which we want to keep at the very end.
2531     */
2532    for (prev = r_debug.r_map;
2533      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2534      prev = prev->l_next)
2535	;
2536
2537    /* Link in the new entry. */
2538    l->l_prev = prev;
2539    l->l_next = prev->l_next;
2540    if (l->l_next != NULL)
2541	l->l_next->l_prev = l;
2542    prev->l_next = l;
2543}
2544
2545static void
2546linkmap_delete(Obj_Entry *obj)
2547{
2548    struct link_map *l = &obj->linkmap;
2549
2550    if (l->l_prev == NULL) {
2551	if ((r_debug.r_map = l->l_next) != NULL)
2552	    l->l_next->l_prev = NULL;
2553	return;
2554    }
2555
2556    if ((l->l_prev->l_next = l->l_next) != NULL)
2557	l->l_next->l_prev = l->l_prev;
2558}
2559
2560/*
2561 * Function for the debugger to set a breakpoint on to gain control.
2562 *
2563 * The two parameters allow the debugger to easily find and determine
2564 * what the runtime loader is doing and to whom it is doing it.
2565 *
2566 * When the loadhook trap is hit (r_debug_state, set at program
2567 * initialization), the arguments can be found on the stack:
2568 *
2569 *  +8   struct link_map *m
2570 *  +4   struct r_debug  *rd
2571 *  +0   RetAddr
2572 */
2573void
2574r_debug_state(struct r_debug* rd, struct link_map *m)
2575{
2576}
2577
2578/*
2579 * Get address of the pointer variable in the main program.
2580 */
2581static const void **
2582get_program_var_addr(const char *name)
2583{
2584    const Obj_Entry *obj;
2585    unsigned long hash;
2586
2587    hash = elf_hash(name);
2588    for (obj = obj_main;  obj != NULL;  obj = obj->next) {
2589	const Elf_Sym *def;
2590
2591	if ((def = symlook_obj(name, hash, obj, NULL, 0)) != NULL) {
2592	    const void **addr;
2593
2594	    addr = (const void **)(obj->relocbase + def->st_value);
2595	    return addr;
2596	}
2597    }
2598    return NULL;
2599}
2600
2601/*
2602 * Set a pointer variable in the main program to the given value.  This
2603 * is used to set key variables such as "environ" before any of the
2604 * init functions are called.
2605 */
2606static void
2607set_program_var(const char *name, const void *value)
2608{
2609    const void **addr;
2610
2611    if ((addr = get_program_var_addr(name)) != NULL) {
2612	dbg("\"%s\": *%p <-- %p", name, addr, value);
2613	*addr = value;
2614    }
2615}
2616
2617/*
2618 * Given a symbol name in a referencing object, find the corresponding
2619 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2620 * no definition was found.  Returns a pointer to the Obj_Entry of the
2621 * defining object via the reference parameter DEFOBJ_OUT.
2622 */
2623static const Elf_Sym *
2624symlook_default(const char *name, unsigned long hash, const Obj_Entry *refobj,
2625    const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags)
2626{
2627    DoneList donelist;
2628    const Elf_Sym *def;
2629    const Elf_Sym *symp;
2630    const Obj_Entry *obj;
2631    const Obj_Entry *defobj;
2632    const Objlist_Entry *elm;
2633    def = NULL;
2634    defobj = NULL;
2635    donelist_init(&donelist);
2636
2637    /* Look first in the referencing object if linked symbolically. */
2638    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2639	symp = symlook_obj(name, hash, refobj, ventry, flags);
2640	if (symp != NULL) {
2641	    def = symp;
2642	    defobj = refobj;
2643	}
2644    }
2645
2646    /* Search all objects loaded at program start up. */
2647    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2648	symp = symlook_list(name, hash, &list_main, &obj, ventry, flags,
2649	    &donelist);
2650	if (symp != NULL &&
2651	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2652	    def = symp;
2653	    defobj = obj;
2654	}
2655    }
2656
2657    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2658    STAILQ_FOREACH(elm, &list_global, link) {
2659       if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2660           break;
2661       symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2662	   flags, &donelist);
2663	if (symp != NULL &&
2664	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2665	    def = symp;
2666	    defobj = obj;
2667	}
2668    }
2669
2670    /* Search all dlopened DAGs containing the referencing object. */
2671    STAILQ_FOREACH(elm, &refobj->dldags, link) {
2672	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2673	    break;
2674	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2675	    flags, &donelist);
2676	if (symp != NULL &&
2677	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2678	    def = symp;
2679	    defobj = obj;
2680	}
2681    }
2682
2683    /*
2684     * Search the dynamic linker itself, and possibly resolve the
2685     * symbol from there.  This is how the application links to
2686     * dynamic linker services such as dlopen.  Only the values listed
2687     * in the "exports" array can be resolved from the dynamic linker.
2688     */
2689    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2690	symp = symlook_obj(name, hash, &obj_rtld, ventry, flags);
2691	if (symp != NULL && is_exported(symp)) {
2692	    def = symp;
2693	    defobj = &obj_rtld;
2694	}
2695    }
2696
2697    if (def != NULL)
2698	*defobj_out = defobj;
2699    return def;
2700}
2701
2702static const Elf_Sym *
2703symlook_list(const char *name, unsigned long hash, const Objlist *objlist,
2704  const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2705  DoneList *dlp)
2706{
2707    const Elf_Sym *symp;
2708    const Elf_Sym *def;
2709    const Obj_Entry *defobj;
2710    const Objlist_Entry *elm;
2711
2712    def = NULL;
2713    defobj = NULL;
2714    STAILQ_FOREACH(elm, objlist, link) {
2715	if (donelist_check(dlp, elm->obj))
2716	    continue;
2717	if ((symp = symlook_obj(name, hash, elm->obj, ventry, flags)) != NULL) {
2718	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2719		def = symp;
2720		defobj = elm->obj;
2721		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2722		    break;
2723	    }
2724	}
2725    }
2726    if (def != NULL)
2727	*defobj_out = defobj;
2728    return def;
2729}
2730
2731/*
2732 * Search the symbol table of a shared object and all objects needed
2733 * by it for a symbol of the given name.  Search order is
2734 * breadth-first.  Returns a pointer to the symbol, or NULL if no
2735 * definition was found.
2736 */
2737static const Elf_Sym *
2738symlook_needed(const char *name, unsigned long hash, const Needed_Entry *needed,
2739  const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2740  DoneList *dlp)
2741{
2742    const Elf_Sym *def, *def_w;
2743    const Needed_Entry *n;
2744    const Obj_Entry *obj, *defobj, *defobj1;
2745
2746    def = def_w = NULL;
2747    defobj = NULL;
2748    for (n = needed; n != NULL; n = n->next) {
2749	if ((obj = n->obj) == NULL ||
2750	    donelist_check(dlp, obj) ||
2751	    (def = symlook_obj(name, hash, obj, ventry, flags)) == NULL)
2752	    continue;
2753	defobj = obj;
2754	if (ELF_ST_BIND(def->st_info) != STB_WEAK) {
2755	    *defobj_out = defobj;
2756	    return (def);
2757	}
2758    }
2759    /*
2760     * There we come when either symbol definition is not found in
2761     * directly needed objects, or found symbol is weak.
2762     */
2763    for (n = needed; n != NULL; n = n->next) {
2764	if ((obj = n->obj) == NULL)
2765	    continue;
2766	def_w = symlook_needed(name, hash, obj->needed, &defobj1,
2767			       ventry, flags, dlp);
2768	if (def_w == NULL)
2769	    continue;
2770	if (def == NULL || ELF_ST_BIND(def_w->st_info) != STB_WEAK) {
2771	    def = def_w;
2772	    defobj = defobj1;
2773	}
2774	if (ELF_ST_BIND(def_w->st_info) != STB_WEAK)
2775	    break;
2776    }
2777    if (def != NULL)
2778	*defobj_out = defobj;
2779    return (def);
2780}
2781
2782/*
2783 * Search the symbol table of a single shared object for a symbol of
2784 * the given name and version, if requested.  Returns a pointer to the
2785 * symbol, or NULL if no definition was found.
2786 *
2787 * The symbol's hash value is passed in for efficiency reasons; that
2788 * eliminates many recomputations of the hash value.
2789 */
2790const Elf_Sym *
2791symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2792    const Ver_Entry *ventry, int flags)
2793{
2794    unsigned long symnum;
2795    const Elf_Sym *vsymp;
2796    Elf_Versym verndx;
2797    int vcount;
2798
2799    if (obj->buckets == NULL)
2800	return NULL;
2801
2802    vsymp = NULL;
2803    vcount = 0;
2804    symnum = obj->buckets[hash % obj->nbuckets];
2805
2806    for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
2807	const Elf_Sym *symp;
2808	const char *strp;
2809
2810	if (symnum >= obj->nchains)
2811		return NULL;	/* Bad object */
2812
2813	symp = obj->symtab + symnum;
2814	strp = obj->strtab + symp->st_name;
2815
2816	switch (ELF_ST_TYPE(symp->st_info)) {
2817	case STT_FUNC:
2818	case STT_NOTYPE:
2819	case STT_OBJECT:
2820	    if (symp->st_value == 0)
2821		continue;
2822		/* fallthrough */
2823	case STT_TLS:
2824	    if (symp->st_shndx != SHN_UNDEF)
2825		break;
2826#ifndef __mips__
2827	    else if (((flags & SYMLOOK_IN_PLT) == 0) &&
2828		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
2829		break;
2830		/* fallthrough */
2831#endif
2832	default:
2833	    continue;
2834	}
2835	if (name[0] != strp[0] || strcmp(name, strp) != 0)
2836	    continue;
2837
2838	if (ventry == NULL) {
2839	    if (obj->versyms != NULL) {
2840		verndx = VER_NDX(obj->versyms[symnum]);
2841		if (verndx > obj->vernum) {
2842		    _rtld_error("%s: symbol %s references wrong version %d",
2843			obj->path, obj->strtab + symnum, verndx);
2844		    continue;
2845		}
2846		/*
2847		 * If we are not called from dlsym (i.e. this is a normal
2848		 * relocation from unversioned binary, accept the symbol
2849		 * immediately if it happens to have first version after
2850		 * this shared object became versioned. Otherwise, if
2851		 * symbol is versioned and not hidden, remember it. If it
2852		 * is the only symbol with this name exported by the
2853		 * shared object, it will be returned as a match at the
2854		 * end of the function. If symbol is global (verndx < 2)
2855		 * accept it unconditionally.
2856		 */
2857		if ((flags & SYMLOOK_DLSYM) == 0 && verndx == VER_NDX_GIVEN)
2858		    return symp;
2859	        else if (verndx >= VER_NDX_GIVEN) {
2860		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
2861			if (vsymp == NULL)
2862			    vsymp = symp;
2863			vcount ++;
2864		    }
2865		    continue;
2866		}
2867	    }
2868	    return symp;
2869	} else {
2870	    if (obj->versyms == NULL) {
2871		if (object_match_name(obj, ventry->name)) {
2872		    _rtld_error("%s: object %s should provide version %s for "
2873			"symbol %s", obj_rtld.path, obj->path, ventry->name,
2874			obj->strtab + symnum);
2875		    continue;
2876		}
2877	    } else {
2878		verndx = VER_NDX(obj->versyms[symnum]);
2879		if (verndx > obj->vernum) {
2880		    _rtld_error("%s: symbol %s references wrong version %d",
2881			obj->path, obj->strtab + symnum, verndx);
2882		    continue;
2883		}
2884		if (obj->vertab[verndx].hash != ventry->hash ||
2885		    strcmp(obj->vertab[verndx].name, ventry->name)) {
2886		    /*
2887		     * Version does not match. Look if this is a global symbol
2888		     * and if it is not hidden. If global symbol (verndx < 2)
2889		     * is available, use it. Do not return symbol if we are
2890		     * called by dlvsym, because dlvsym looks for a specific
2891		     * version and default one is not what dlvsym wants.
2892		     */
2893		    if ((flags & SYMLOOK_DLSYM) ||
2894			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
2895			(verndx >= VER_NDX_GIVEN))
2896			continue;
2897		}
2898	    }
2899	    return symp;
2900	}
2901    }
2902    return (vcount == 1) ? vsymp : NULL;
2903}
2904
2905static void
2906trace_loaded_objects(Obj_Entry *obj)
2907{
2908    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
2909    int		c;
2910
2911    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
2912	main_local = "";
2913
2914    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
2915	fmt1 = "\t%o => %p (%x)\n";
2916
2917    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
2918	fmt2 = "\t%o (%x)\n";
2919
2920    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
2921
2922    for (; obj; obj = obj->next) {
2923	Needed_Entry		*needed;
2924	char			*name, *path;
2925	bool			is_lib;
2926
2927	if (list_containers && obj->needed != NULL)
2928	    printf("%s:\n", obj->path);
2929	for (needed = obj->needed; needed; needed = needed->next) {
2930	    if (needed->obj != NULL) {
2931		if (needed->obj->traced && !list_containers)
2932		    continue;
2933		needed->obj->traced = true;
2934		path = needed->obj->path;
2935	    } else
2936		path = "not found";
2937
2938	    name = (char *)obj->strtab + needed->name;
2939	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
2940
2941	    fmt = is_lib ? fmt1 : fmt2;
2942	    while ((c = *fmt++) != '\0') {
2943		switch (c) {
2944		default:
2945		    putchar(c);
2946		    continue;
2947		case '\\':
2948		    switch (c = *fmt) {
2949		    case '\0':
2950			continue;
2951		    case 'n':
2952			putchar('\n');
2953			break;
2954		    case 't':
2955			putchar('\t');
2956			break;
2957		    }
2958		    break;
2959		case '%':
2960		    switch (c = *fmt) {
2961		    case '\0':
2962			continue;
2963		    case '%':
2964		    default:
2965			putchar(c);
2966			break;
2967		    case 'A':
2968			printf("%s", main_local);
2969			break;
2970		    case 'a':
2971			printf("%s", obj_main->path);
2972			break;
2973		    case 'o':
2974			printf("%s", name);
2975			break;
2976#if 0
2977		    case 'm':
2978			printf("%d", sodp->sod_major);
2979			break;
2980		    case 'n':
2981			printf("%d", sodp->sod_minor);
2982			break;
2983#endif
2984		    case 'p':
2985			printf("%s", path);
2986			break;
2987		    case 'x':
2988			printf("%p", needed->obj ? needed->obj->mapbase : 0);
2989			break;
2990		    }
2991		    break;
2992		}
2993		++fmt;
2994	    }
2995	}
2996    }
2997}
2998
2999/*
3000 * Unload a dlopened object and its dependencies from memory and from
3001 * our data structures.  It is assumed that the DAG rooted in the
3002 * object has already been unreferenced, and that the object has a
3003 * reference count of 0.
3004 */
3005static void
3006unload_object(Obj_Entry *root)
3007{
3008    Obj_Entry *obj;
3009    Obj_Entry **linkp;
3010
3011    assert(root->refcount == 0);
3012
3013    /*
3014     * Pass over the DAG removing unreferenced objects from
3015     * appropriate lists.
3016     */
3017    unlink_object(root);
3018
3019    /* Unmap all objects that are no longer referenced. */
3020    linkp = &obj_list->next;
3021    while ((obj = *linkp) != NULL) {
3022	if (obj->refcount == 0) {
3023	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3024		obj->path);
3025	    dbg("unloading \"%s\"", obj->path);
3026	    munmap(obj->mapbase, obj->mapsize);
3027	    linkmap_delete(obj);
3028	    *linkp = obj->next;
3029	    obj_count--;
3030	    obj_free(obj);
3031	} else
3032	    linkp = &obj->next;
3033    }
3034    obj_tail = linkp;
3035}
3036
3037static void
3038unlink_object(Obj_Entry *root)
3039{
3040    Objlist_Entry *elm;
3041
3042    if (root->refcount == 0) {
3043	/* Remove the object from the RTLD_GLOBAL list. */
3044	objlist_remove(&list_global, root);
3045
3046    	/* Remove the object from all objects' DAG lists. */
3047    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3048	    objlist_remove(&elm->obj->dldags, root);
3049	    if (elm->obj != root)
3050		unlink_object(elm->obj);
3051	}
3052    }
3053}
3054
3055static void
3056ref_dag(Obj_Entry *root)
3057{
3058    Objlist_Entry *elm;
3059
3060    STAILQ_FOREACH(elm, &root->dagmembers, link)
3061	elm->obj->refcount++;
3062}
3063
3064static void
3065unref_dag(Obj_Entry *root)
3066{
3067    Objlist_Entry *elm;
3068
3069    STAILQ_FOREACH(elm, &root->dagmembers, link)
3070	elm->obj->refcount--;
3071}
3072
3073/*
3074 * Common code for MD __tls_get_addr().
3075 */
3076void *
3077tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
3078{
3079    Elf_Addr* dtv = *dtvp;
3080    int lockstate;
3081
3082    /* Check dtv generation in case new modules have arrived */
3083    if (dtv[0] != tls_dtv_generation) {
3084	Elf_Addr* newdtv;
3085	int to_copy;
3086
3087	lockstate = wlock_acquire(rtld_bind_lock);
3088	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3089	to_copy = dtv[1];
3090	if (to_copy > tls_max_index)
3091	    to_copy = tls_max_index;
3092	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3093	newdtv[0] = tls_dtv_generation;
3094	newdtv[1] = tls_max_index;
3095	free(dtv);
3096	wlock_release(rtld_bind_lock, lockstate);
3097	*dtvp = newdtv;
3098    }
3099
3100    /* Dynamically allocate module TLS if necessary */
3101    if (!dtv[index + 1]) {
3102	/* Signal safe, wlock will block out signals. */
3103	lockstate = wlock_acquire(rtld_bind_lock);
3104	if (!dtv[index + 1])
3105	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3106	wlock_release(rtld_bind_lock, lockstate);
3107    }
3108    return (void*) (dtv[index + 1] + offset);
3109}
3110
3111/* XXX not sure what variants to use for arm. */
3112
3113#if defined(__ia64__) || defined(__powerpc__)
3114
3115/*
3116 * Allocate Static TLS using the Variant I method.
3117 */
3118void *
3119allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3120{
3121    Obj_Entry *obj;
3122    char *tcb;
3123    Elf_Addr **tls;
3124    Elf_Addr *dtv;
3125    Elf_Addr addr;
3126    int i;
3127
3128    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
3129	return (oldtcb);
3130
3131    assert(tcbsize >= TLS_TCB_SIZE);
3132    tcb = calloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
3133    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
3134
3135    if (oldtcb != NULL) {
3136	memcpy(tls, oldtcb, tls_static_space);
3137	free(oldtcb);
3138
3139	/* Adjust the DTV. */
3140	dtv = tls[0];
3141	for (i = 0; i < dtv[1]; i++) {
3142	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
3143		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
3144		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
3145	    }
3146	}
3147    } else {
3148	dtv = calloc(tls_max_index + 2, sizeof(Elf_Addr));
3149	tls[0] = dtv;
3150	dtv[0] = tls_dtv_generation;
3151	dtv[1] = tls_max_index;
3152
3153	for (obj = objs; obj; obj = obj->next) {
3154	    if (obj->tlsoffset > 0) {
3155		addr = (Elf_Addr)tls + obj->tlsoffset;
3156		if (obj->tlsinitsize > 0)
3157		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3158		if (obj->tlssize > obj->tlsinitsize)
3159		    memset((void*) (addr + obj->tlsinitsize), 0,
3160			   obj->tlssize - obj->tlsinitsize);
3161		dtv[obj->tlsindex + 1] = addr;
3162	    }
3163	}
3164    }
3165
3166    return (tcb);
3167}
3168
3169void
3170free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3171{
3172    Elf_Addr *dtv;
3173    Elf_Addr tlsstart, tlsend;
3174    int dtvsize, i;
3175
3176    assert(tcbsize >= TLS_TCB_SIZE);
3177
3178    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
3179    tlsend = tlsstart + tls_static_space;
3180
3181    dtv = *(Elf_Addr **)tlsstart;
3182    dtvsize = dtv[1];
3183    for (i = 0; i < dtvsize; i++) {
3184	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
3185	    free((void*)dtv[i+2]);
3186	}
3187    }
3188    free(dtv);
3189    free(tcb);
3190}
3191
3192#endif
3193
3194#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
3195    defined(__arm__) || defined(__mips__)
3196
3197/*
3198 * Allocate Static TLS using the Variant II method.
3199 */
3200void *
3201allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
3202{
3203    Obj_Entry *obj;
3204    size_t size;
3205    char *tls;
3206    Elf_Addr *dtv, *olddtv;
3207    Elf_Addr segbase, oldsegbase, addr;
3208    int i;
3209
3210    size = round(tls_static_space, tcbalign);
3211
3212    assert(tcbsize >= 2*sizeof(Elf_Addr));
3213    tls = calloc(1, size + tcbsize);
3214    dtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3215
3216    segbase = (Elf_Addr)(tls + size);
3217    ((Elf_Addr*)segbase)[0] = segbase;
3218    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
3219
3220    dtv[0] = tls_dtv_generation;
3221    dtv[1] = tls_max_index;
3222
3223    if (oldtls) {
3224	/*
3225	 * Copy the static TLS block over whole.
3226	 */
3227	oldsegbase = (Elf_Addr) oldtls;
3228	memcpy((void *)(segbase - tls_static_space),
3229	       (const void *)(oldsegbase - tls_static_space),
3230	       tls_static_space);
3231
3232	/*
3233	 * If any dynamic TLS blocks have been created tls_get_addr(),
3234	 * move them over.
3235	 */
3236	olddtv = ((Elf_Addr**)oldsegbase)[1];
3237	for (i = 0; i < olddtv[1]; i++) {
3238	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3239		dtv[i+2] = olddtv[i+2];
3240		olddtv[i+2] = 0;
3241	    }
3242	}
3243
3244	/*
3245	 * We assume that this block was the one we created with
3246	 * allocate_initial_tls().
3247	 */
3248	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3249    } else {
3250	for (obj = objs; obj; obj = obj->next) {
3251	    if (obj->tlsoffset) {
3252		addr = segbase - obj->tlsoffset;
3253		memset((void*) (addr + obj->tlsinitsize),
3254		       0, obj->tlssize - obj->tlsinitsize);
3255		if (obj->tlsinit)
3256		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3257		dtv[obj->tlsindex + 1] = addr;
3258	    }
3259	}
3260    }
3261
3262    return (void*) segbase;
3263}
3264
3265void
3266free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3267{
3268    size_t size;
3269    Elf_Addr* dtv;
3270    int dtvsize, i;
3271    Elf_Addr tlsstart, tlsend;
3272
3273    /*
3274     * Figure out the size of the initial TLS block so that we can
3275     * find stuff which ___tls_get_addr() allocated dynamically.
3276     */
3277    size = round(tls_static_space, tcbalign);
3278
3279    dtv = ((Elf_Addr**)tls)[1];
3280    dtvsize = dtv[1];
3281    tlsend = (Elf_Addr) tls;
3282    tlsstart = tlsend - size;
3283    for (i = 0; i < dtvsize; i++) {
3284	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3285	    free((void*) dtv[i+2]);
3286	}
3287    }
3288
3289    free((void*) tlsstart);
3290    free((void*) dtv);
3291}
3292
3293#endif
3294
3295/*
3296 * Allocate TLS block for module with given index.
3297 */
3298void *
3299allocate_module_tls(int index)
3300{
3301    Obj_Entry* obj;
3302    char* p;
3303
3304    for (obj = obj_list; obj; obj = obj->next) {
3305	if (obj->tlsindex == index)
3306	    break;
3307    }
3308    if (!obj) {
3309	_rtld_error("Can't find module with TLS index %d", index);
3310	die();
3311    }
3312
3313    p = malloc(obj->tlssize);
3314    memcpy(p, obj->tlsinit, obj->tlsinitsize);
3315    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3316
3317    return p;
3318}
3319
3320bool
3321allocate_tls_offset(Obj_Entry *obj)
3322{
3323    size_t off;
3324
3325    if (obj->tls_done)
3326	return true;
3327
3328    if (obj->tlssize == 0) {
3329	obj->tls_done = true;
3330	return true;
3331    }
3332
3333    if (obj->tlsindex == 1)
3334	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3335    else
3336	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3337				   obj->tlssize, obj->tlsalign);
3338
3339    /*
3340     * If we have already fixed the size of the static TLS block, we
3341     * must stay within that size. When allocating the static TLS, we
3342     * leave a small amount of space spare to be used for dynamically
3343     * loading modules which use static TLS.
3344     */
3345    if (tls_static_space) {
3346	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3347	    return false;
3348    }
3349
3350    tls_last_offset = obj->tlsoffset = off;
3351    tls_last_size = obj->tlssize;
3352    obj->tls_done = true;
3353
3354    return true;
3355}
3356
3357void
3358free_tls_offset(Obj_Entry *obj)
3359{
3360
3361    /*
3362     * If we were the last thing to allocate out of the static TLS
3363     * block, we give our space back to the 'allocator'. This is a
3364     * simplistic workaround to allow libGL.so.1 to be loaded and
3365     * unloaded multiple times.
3366     */
3367    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3368	== calculate_tls_end(tls_last_offset, tls_last_size)) {
3369	tls_last_offset -= obj->tlssize;
3370	tls_last_size = 0;
3371    }
3372}
3373
3374void *
3375_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
3376{
3377    void *ret;
3378    int lockstate;
3379
3380    lockstate = wlock_acquire(rtld_bind_lock);
3381    ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
3382    wlock_release(rtld_bind_lock, lockstate);
3383    return (ret);
3384}
3385
3386void
3387_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3388{
3389    int lockstate;
3390
3391    lockstate = wlock_acquire(rtld_bind_lock);
3392    free_tls(tcb, tcbsize, tcbalign);
3393    wlock_release(rtld_bind_lock, lockstate);
3394}
3395
3396static void
3397object_add_name(Obj_Entry *obj, const char *name)
3398{
3399    Name_Entry *entry;
3400    size_t len;
3401
3402    len = strlen(name);
3403    entry = malloc(sizeof(Name_Entry) + len);
3404
3405    if (entry != NULL) {
3406	strcpy(entry->name, name);
3407	STAILQ_INSERT_TAIL(&obj->names, entry, link);
3408    }
3409}
3410
3411static int
3412object_match_name(const Obj_Entry *obj, const char *name)
3413{
3414    Name_Entry *entry;
3415
3416    STAILQ_FOREACH(entry, &obj->names, link) {
3417	if (strcmp(name, entry->name) == 0)
3418	    return (1);
3419    }
3420    return (0);
3421}
3422
3423static Obj_Entry *
3424locate_dependency(const Obj_Entry *obj, const char *name)
3425{
3426    const Objlist_Entry *entry;
3427    const Needed_Entry *needed;
3428
3429    STAILQ_FOREACH(entry, &list_main, link) {
3430	if (object_match_name(entry->obj, name))
3431	    return entry->obj;
3432    }
3433
3434    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
3435	if (needed->obj == NULL)
3436	    continue;
3437	if (object_match_name(needed->obj, name))
3438	    return needed->obj;
3439    }
3440    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
3441	obj->path, name);
3442    die();
3443}
3444
3445static int
3446check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3447    const Elf_Vernaux *vna)
3448{
3449    const Elf_Verdef *vd;
3450    const char *vername;
3451
3452    vername = refobj->strtab + vna->vna_name;
3453    vd = depobj->verdef;
3454    if (vd == NULL) {
3455	_rtld_error("%s: version %s required by %s not defined",
3456	    depobj->path, vername, refobj->path);
3457	return (-1);
3458    }
3459    for (;;) {
3460	if (vd->vd_version != VER_DEF_CURRENT) {
3461	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3462		depobj->path, vd->vd_version);
3463	    return (-1);
3464	}
3465	if (vna->vna_hash == vd->vd_hash) {
3466	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
3467		((char *)vd + vd->vd_aux);
3468	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3469		return (0);
3470	}
3471	if (vd->vd_next == 0)
3472	    break;
3473	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3474    }
3475    if (vna->vna_flags & VER_FLG_WEAK)
3476	return (0);
3477    _rtld_error("%s: version %s required by %s not found",
3478	depobj->path, vername, refobj->path);
3479    return (-1);
3480}
3481
3482static int
3483rtld_verify_object_versions(Obj_Entry *obj)
3484{
3485    const Elf_Verneed *vn;
3486    const Elf_Verdef  *vd;
3487    const Elf_Verdaux *vda;
3488    const Elf_Vernaux *vna;
3489    const Obj_Entry *depobj;
3490    int maxvernum, vernum;
3491
3492    maxvernum = 0;
3493    /*
3494     * Walk over defined and required version records and figure out
3495     * max index used by any of them. Do very basic sanity checking
3496     * while there.
3497     */
3498    vn = obj->verneed;
3499    while (vn != NULL) {
3500	if (vn->vn_version != VER_NEED_CURRENT) {
3501	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3502		obj->path, vn->vn_version);
3503	    return (-1);
3504	}
3505	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3506	for (;;) {
3507	    vernum = VER_NEED_IDX(vna->vna_other);
3508	    if (vernum > maxvernum)
3509		maxvernum = vernum;
3510	    if (vna->vna_next == 0)
3511		 break;
3512	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3513	}
3514	if (vn->vn_next == 0)
3515	    break;
3516	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3517    }
3518
3519    vd = obj->verdef;
3520    while (vd != NULL) {
3521	if (vd->vd_version != VER_DEF_CURRENT) {
3522	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3523		obj->path, vd->vd_version);
3524	    return (-1);
3525	}
3526	vernum = VER_DEF_IDX(vd->vd_ndx);
3527	if (vernum > maxvernum)
3528		maxvernum = vernum;
3529	if (vd->vd_next == 0)
3530	    break;
3531	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3532    }
3533
3534    if (maxvernum == 0)
3535	return (0);
3536
3537    /*
3538     * Store version information in array indexable by version index.
3539     * Verify that object version requirements are satisfied along the
3540     * way.
3541     */
3542    obj->vernum = maxvernum + 1;
3543    obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
3544
3545    vd = obj->verdef;
3546    while (vd != NULL) {
3547	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
3548	    vernum = VER_DEF_IDX(vd->vd_ndx);
3549	    assert(vernum <= maxvernum);
3550	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
3551	    obj->vertab[vernum].hash = vd->vd_hash;
3552	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
3553	    obj->vertab[vernum].file = NULL;
3554	    obj->vertab[vernum].flags = 0;
3555	}
3556	if (vd->vd_next == 0)
3557	    break;
3558	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3559    }
3560
3561    vn = obj->verneed;
3562    while (vn != NULL) {
3563	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
3564	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3565	for (;;) {
3566	    if (check_object_provided_version(obj, depobj, vna))
3567		return (-1);
3568	    vernum = VER_NEED_IDX(vna->vna_other);
3569	    assert(vernum <= maxvernum);
3570	    obj->vertab[vernum].hash = vna->vna_hash;
3571	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
3572	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
3573	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
3574		VER_INFO_HIDDEN : 0;
3575	    if (vna->vna_next == 0)
3576		 break;
3577	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3578	}
3579	if (vn->vn_next == 0)
3580	    break;
3581	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3582    }
3583    return 0;
3584}
3585
3586static int
3587rtld_verify_versions(const Objlist *objlist)
3588{
3589    Objlist_Entry *entry;
3590    int rc;
3591
3592    rc = 0;
3593    STAILQ_FOREACH(entry, objlist, link) {
3594	/*
3595	 * Skip dummy objects or objects that have their version requirements
3596	 * already checked.
3597	 */
3598	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
3599	    continue;
3600	if (rtld_verify_object_versions(entry->obj) == -1) {
3601	    rc = -1;
3602	    if (ld_tracing == NULL)
3603		break;
3604	}
3605    }
3606    if (rc == 0 || ld_tracing != NULL)
3607    	rc = rtld_verify_object_versions(&obj_rtld);
3608    return rc;
3609}
3610
3611const Ver_Entry *
3612fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
3613{
3614    Elf_Versym vernum;
3615
3616    if (obj->vertab) {
3617	vernum = VER_NDX(obj->versyms[symnum]);
3618	if (vernum >= obj->vernum) {
3619	    _rtld_error("%s: symbol %s has wrong verneed value %d",
3620		obj->path, obj->strtab + symnum, vernum);
3621	} else if (obj->vertab[vernum].hash != 0) {
3622	    return &obj->vertab[vernum];
3623	}
3624    }
3625    return NULL;
3626}
3627