rtld.c revision 144062
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * $FreeBSD: head/libexec/rtld-elf/rtld.c 144062 2005-03-24 10:12:29Z cperciva $
27 */
28
29/*
30 * Dynamic linker for ELF.
31 *
32 * John Polstra <jdp@polstra.com>.
33 */
34
35#ifndef __GNUC__
36#error "GCC is needed to compile this file"
37#endif
38
39#include <sys/param.h>
40#include <sys/mount.h>
41#include <sys/mman.h>
42#include <sys/stat.h>
43
44#include <dlfcn.h>
45#include <err.h>
46#include <errno.h>
47#include <fcntl.h>
48#include <stdarg.h>
49#include <stdio.h>
50#include <stdlib.h>
51#include <string.h>
52#include <unistd.h>
53
54#include "debug.h"
55#include "rtld.h"
56#include "libmap.h"
57#include "rtld_tls.h"
58
59#ifndef COMPAT_32BIT
60#define PATH_RTLD	"/libexec/ld-elf.so.1"
61#else
62#define PATH_RTLD	"/libexec/ld-elf32.so.1"
63#endif
64
65/* Types. */
66typedef void (*func_ptr_type)();
67typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
68
69/*
70 * This structure provides a reentrant way to keep a list of objects and
71 * check which ones have already been processed in some way.
72 */
73typedef struct Struct_DoneList {
74    const Obj_Entry **objs;		/* Array of object pointers */
75    unsigned int num_alloc;		/* Allocated size of the array */
76    unsigned int num_used;		/* Number of array slots used */
77} DoneList;
78
79/*
80 * Function declarations.
81 */
82static const char *basename(const char *);
83static void die(void);
84static void digest_dynamic(Obj_Entry *, int);
85static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
86static Obj_Entry *dlcheck(void *);
87static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
88static bool donelist_check(DoneList *, const Obj_Entry *);
89static void errmsg_restore(char *);
90static char *errmsg_save(void);
91static void *fill_search_info(const char *, size_t, void *);
92static char *find_library(const char *, const Obj_Entry *);
93static const char *gethints(void);
94static void init_dag(Obj_Entry *);
95static void init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *);
96static void init_rtld(caddr_t);
97static void initlist_add_neededs(Needed_Entry *needed, Objlist *list);
98static void initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail,
99  Objlist *list);
100static bool is_exported(const Elf_Sym *);
101static void linkmap_add(Obj_Entry *);
102static void linkmap_delete(Obj_Entry *);
103static int load_needed_objects(Obj_Entry *);
104static int load_preload_objects(void);
105static Obj_Entry *load_object(char *);
106static Obj_Entry *obj_from_addr(const void *);
107static void objlist_call_fini(Objlist *);
108static void objlist_call_init(Objlist *);
109static void objlist_clear(Objlist *);
110static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
111static void objlist_init(Objlist *);
112static void objlist_push_head(Objlist *, Obj_Entry *);
113static void objlist_push_tail(Objlist *, Obj_Entry *);
114static void objlist_remove(Objlist *, Obj_Entry *);
115static void objlist_remove_unref(Objlist *);
116static void *path_enumerate(const char *, path_enum_proc, void *);
117static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
118static int rtld_dirname(const char *, char *);
119static void rtld_exit(void);
120static char *search_library_path(const char *, const char *);
121static const void **get_program_var_addr(const char *name);
122static void set_program_var(const char *, const void *);
123static const Elf_Sym *symlook_default(const char *, unsigned long hash,
124  const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt);
125static const Elf_Sym *symlook_list(const char *, unsigned long,
126  Objlist *, const Obj_Entry **, bool in_plt, DoneList *);
127static void trace_loaded_objects(Obj_Entry *obj);
128static void unlink_object(Obj_Entry *);
129static void unload_object(Obj_Entry *);
130static void unref_dag(Obj_Entry *);
131static void ref_dag(Obj_Entry *);
132
133void r_debug_state(struct r_debug*, struct link_map*);
134
135/*
136 * Data declarations.
137 */
138static char *error_message;	/* Message for dlerror(), or NULL */
139struct r_debug r_debug;		/* for GDB; */
140static bool libmap_disable;	/* Disable libmap */
141static char *libmap_override;	/* Maps to use in addition to libmap.conf */
142static bool trust;		/* False for setuid and setgid programs */
143static bool dangerous_ld_env;	/* True if environment variables have been
144				   used to affect the libraries loaded */
145static char *ld_bind_now;	/* Environment variable for immediate binding */
146static char *ld_debug;		/* Environment variable for debugging */
147static char *ld_library_path;	/* Environment variable for search path */
148static char *ld_preload;	/* Environment variable for libraries to
149				   load first */
150static char *ld_tracing;	/* Called from ldd to print libs */
151static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
152static Obj_Entry **obj_tail;	/* Link field of last object in list */
153static Obj_Entry *obj_main;	/* The main program shared object */
154static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
155static unsigned int obj_count;	/* Number of objects in obj_list */
156
157static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
158  STAILQ_HEAD_INITIALIZER(list_global);
159static Objlist list_main =	/* Objects loaded at program startup */
160  STAILQ_HEAD_INITIALIZER(list_main);
161static Objlist list_fini =	/* Objects needing fini() calls */
162  STAILQ_HEAD_INITIALIZER(list_fini);
163
164static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
165
166#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
167
168extern Elf_Dyn _DYNAMIC;
169#pragma weak _DYNAMIC
170#ifndef RTLD_IS_DYNAMIC
171#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
172#endif
173
174/*
175 * These are the functions the dynamic linker exports to application
176 * programs.  They are the only symbols the dynamic linker is willing
177 * to export from itself.
178 */
179static func_ptr_type exports[] = {
180    (func_ptr_type) &_rtld_error,
181    (func_ptr_type) &dlclose,
182    (func_ptr_type) &dlerror,
183    (func_ptr_type) &dlopen,
184    (func_ptr_type) &dlsym,
185    (func_ptr_type) &dladdr,
186    (func_ptr_type) &dllockinit,
187    (func_ptr_type) &dlinfo,
188    (func_ptr_type) &_rtld_thread_init,
189#ifdef __i386__
190    (func_ptr_type) &___tls_get_addr,
191#endif
192    (func_ptr_type) &__tls_get_addr,
193    (func_ptr_type) &_rtld_allocate_tls,
194    (func_ptr_type) &_rtld_free_tls,
195    NULL
196};
197
198/*
199 * Global declarations normally provided by crt1.  The dynamic linker is
200 * not built with crt1, so we have to provide them ourselves.
201 */
202char *__progname;
203char **environ;
204
205/*
206 * Globals to control TLS allocation.
207 */
208size_t tls_last_offset;		/* Static TLS offset of last module */
209size_t tls_last_size;		/* Static TLS size of last module */
210size_t tls_static_space;	/* Static TLS space allocated */
211int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
212int tls_max_index = 1;		/* Largest module index allocated */
213
214/*
215 * Fill in a DoneList with an allocation large enough to hold all of
216 * the currently-loaded objects.  Keep this as a macro since it calls
217 * alloca and we want that to occur within the scope of the caller.
218 */
219#define donelist_init(dlp)					\
220    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
221    assert((dlp)->objs != NULL),				\
222    (dlp)->num_alloc = obj_count,				\
223    (dlp)->num_used = 0)
224
225/*
226 * Main entry point for dynamic linking.  The first argument is the
227 * stack pointer.  The stack is expected to be laid out as described
228 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
229 * Specifically, the stack pointer points to a word containing
230 * ARGC.  Following that in the stack is a null-terminated sequence
231 * of pointers to argument strings.  Then comes a null-terminated
232 * sequence of pointers to environment strings.  Finally, there is a
233 * sequence of "auxiliary vector" entries.
234 *
235 * The second argument points to a place to store the dynamic linker's
236 * exit procedure pointer and the third to a place to store the main
237 * program's object.
238 *
239 * The return value is the main program's entry point.
240 */
241func_ptr_type
242_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
243{
244    Elf_Auxinfo *aux_info[AT_COUNT];
245    int i;
246    int argc;
247    char **argv;
248    char **env;
249    Elf_Auxinfo *aux;
250    Elf_Auxinfo *auxp;
251    const char *argv0;
252    Objlist_Entry *entry;
253    Obj_Entry *obj;
254    Obj_Entry **preload_tail;
255    Objlist initlist;
256    int lockstate;
257
258    /*
259     * On entry, the dynamic linker itself has not been relocated yet.
260     * Be very careful not to reference any global data until after
261     * init_rtld has returned.  It is OK to reference file-scope statics
262     * and string constants, and to call static and global functions.
263     */
264
265    /* Find the auxiliary vector on the stack. */
266    argc = *sp++;
267    argv = (char **) sp;
268    sp += argc + 1;	/* Skip over arguments and NULL terminator */
269    env = (char **) sp;
270    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
271	;
272    aux = (Elf_Auxinfo *) sp;
273
274    /* Digest the auxiliary vector. */
275    for (i = 0;  i < AT_COUNT;  i++)
276	aux_info[i] = NULL;
277    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
278	if (auxp->a_type < AT_COUNT)
279	    aux_info[auxp->a_type] = auxp;
280    }
281
282    /* Initialize and relocate ourselves. */
283    assert(aux_info[AT_BASE] != NULL);
284    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
285
286    __progname = obj_rtld.path;
287    argv0 = argv[0] != NULL ? argv[0] : "(null)";
288    environ = env;
289
290    trust = !issetugid();
291
292    ld_bind_now = getenv(LD_ "BIND_NOW");
293    if (trust) {
294	ld_debug = getenv(LD_ "DEBUG");
295	libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
296	libmap_override = getenv(LD_ "LIBMAP");
297	ld_library_path = getenv(LD_ "LIBRARY_PATH");
298	ld_preload = getenv(LD_ "PRELOAD");
299	dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
300	    (ld_library_path != NULL) || (ld_preload != NULL);
301    } else
302	dangerous_ld_env = 0;
303    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
304
305    if (ld_debug != NULL && *ld_debug != '\0')
306	debug = 1;
307    dbg("%s is initialized, base address = %p", __progname,
308	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
309    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
310    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
311
312    /*
313     * Load the main program, or process its program header if it is
314     * already loaded.
315     */
316    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
317	int fd = aux_info[AT_EXECFD]->a_un.a_val;
318	dbg("loading main program");
319	obj_main = map_object(fd, argv0, NULL);
320	close(fd);
321	if (obj_main == NULL)
322	    die();
323    } else {				/* Main program already loaded. */
324	const Elf_Phdr *phdr;
325	int phnum;
326	caddr_t entry;
327
328	dbg("processing main program's program header");
329	assert(aux_info[AT_PHDR] != NULL);
330	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
331	assert(aux_info[AT_PHNUM] != NULL);
332	phnum = aux_info[AT_PHNUM]->a_un.a_val;
333	assert(aux_info[AT_PHENT] != NULL);
334	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
335	assert(aux_info[AT_ENTRY] != NULL);
336	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
337	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
338	    die();
339    }
340
341    obj_main->path = xstrdup(argv0);
342    obj_main->mainprog = true;
343
344    /*
345     * Get the actual dynamic linker pathname from the executable if
346     * possible.  (It should always be possible.)  That ensures that
347     * gdb will find the right dynamic linker even if a non-standard
348     * one is being used.
349     */
350    if (obj_main->interp != NULL &&
351      strcmp(obj_main->interp, obj_rtld.path) != 0) {
352	free(obj_rtld.path);
353	obj_rtld.path = xstrdup(obj_main->interp);
354        __progname = obj_rtld.path;
355    }
356
357    digest_dynamic(obj_main, 0);
358
359    linkmap_add(obj_main);
360    linkmap_add(&obj_rtld);
361
362    /* Link the main program into the list of objects. */
363    *obj_tail = obj_main;
364    obj_tail = &obj_main->next;
365    obj_count++;
366    /* Make sure we don't call the main program's init and fini functions. */
367    obj_main->init = obj_main->fini = (Elf_Addr)NULL;
368
369    /* Initialize a fake symbol for resolving undefined weak references. */
370    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
371    sym_zero.st_shndx = SHN_UNDEF;
372
373    if (!libmap_disable)
374        libmap_disable = (bool)lm_init(libmap_override);
375
376    dbg("loading LD_PRELOAD libraries");
377    if (load_preload_objects() == -1)
378	die();
379    preload_tail = obj_tail;
380
381    dbg("loading needed objects");
382    if (load_needed_objects(obj_main) == -1)
383	die();
384
385    /* Make a list of all objects loaded at startup. */
386    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
387	objlist_push_tail(&list_main, obj);
388    	obj->refcount++;
389    }
390
391    if (ld_tracing) {		/* We're done */
392	trace_loaded_objects(obj_main);
393	exit(0);
394    }
395
396    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
397       dump_relocations(obj_main);
398       exit (0);
399    }
400
401    /* setup TLS for main thread */
402    dbg("initializing initial thread local storage");
403    STAILQ_FOREACH(entry, &list_main, link) {
404	/*
405	 * Allocate all the initial objects out of the static TLS
406	 * block even if they didn't ask for it.
407	 */
408	allocate_tls_offset(entry->obj);
409    }
410    allocate_initial_tls(obj_list);
411
412    if (relocate_objects(obj_main,
413	ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
414	die();
415
416    dbg("doing copy relocations");
417    if (do_copy_relocations(obj_main) == -1)
418	die();
419
420    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
421       dump_relocations(obj_main);
422       exit (0);
423    }
424
425    dbg("initializing key program variables");
426    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
427    set_program_var("environ", env);
428
429    dbg("initializing thread locks");
430    lockdflt_init();
431
432    /* Make a list of init functions to call. */
433    objlist_init(&initlist);
434    initlist_add_objects(obj_list, preload_tail, &initlist);
435
436    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
437
438    objlist_call_init(&initlist);
439    lockstate = wlock_acquire(rtld_bind_lock);
440    objlist_clear(&initlist);
441    wlock_release(rtld_bind_lock, lockstate);
442
443    dbg("transferring control to program entry point = %p", obj_main->entry);
444
445    /* Return the exit procedure and the program entry point. */
446    *exit_proc = rtld_exit;
447    *objp = obj_main;
448    return (func_ptr_type) obj_main->entry;
449}
450
451Elf_Addr
452_rtld_bind(Obj_Entry *obj, Elf_Word reloff)
453{
454    const Elf_Rel *rel;
455    const Elf_Sym *def;
456    const Obj_Entry *defobj;
457    Elf_Addr *where;
458    Elf_Addr target;
459    int lockstate;
460
461    lockstate = rlock_acquire(rtld_bind_lock);
462    if (obj->pltrel)
463	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
464    else
465	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
466
467    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
468    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
469    if (def == NULL)
470	die();
471
472    target = (Elf_Addr)(defobj->relocbase + def->st_value);
473
474    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
475      defobj->strtab + def->st_name, basename(obj->path),
476      (void *)target, basename(defobj->path));
477
478    /*
479     * Write the new contents for the jmpslot. Note that depending on
480     * architecture, the value which we need to return back to the
481     * lazy binding trampoline may or may not be the target
482     * address. The value returned from reloc_jmpslot() is the value
483     * that the trampoline needs.
484     */
485    target = reloc_jmpslot(where, target, defobj, obj, rel);
486    rlock_release(rtld_bind_lock, lockstate);
487    return target;
488}
489
490/*
491 * Error reporting function.  Use it like printf.  If formats the message
492 * into a buffer, and sets things up so that the next call to dlerror()
493 * will return the message.
494 */
495void
496_rtld_error(const char *fmt, ...)
497{
498    static char buf[512];
499    va_list ap;
500
501    va_start(ap, fmt);
502    vsnprintf(buf, sizeof buf, fmt, ap);
503    error_message = buf;
504    va_end(ap);
505}
506
507/*
508 * Return a dynamically-allocated copy of the current error message, if any.
509 */
510static char *
511errmsg_save(void)
512{
513    return error_message == NULL ? NULL : xstrdup(error_message);
514}
515
516/*
517 * Restore the current error message from a copy which was previously saved
518 * by errmsg_save().  The copy is freed.
519 */
520static void
521errmsg_restore(char *saved_msg)
522{
523    if (saved_msg == NULL)
524	error_message = NULL;
525    else {
526	_rtld_error("%s", saved_msg);
527	free(saved_msg);
528    }
529}
530
531static const char *
532basename(const char *name)
533{
534    const char *p = strrchr(name, '/');
535    return p != NULL ? p + 1 : name;
536}
537
538static void
539die(void)
540{
541    const char *msg = dlerror();
542
543    if (msg == NULL)
544	msg = "Fatal error";
545    errx(1, "%s", msg);
546}
547
548/*
549 * Process a shared object's DYNAMIC section, and save the important
550 * information in its Obj_Entry structure.
551 */
552static void
553digest_dynamic(Obj_Entry *obj, int early)
554{
555    const Elf_Dyn *dynp;
556    Needed_Entry **needed_tail = &obj->needed;
557    const Elf_Dyn *dyn_rpath = NULL;
558    int plttype = DT_REL;
559
560    obj->bind_now = false;
561    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
562	switch (dynp->d_tag) {
563
564	case DT_REL:
565	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
566	    break;
567
568	case DT_RELSZ:
569	    obj->relsize = dynp->d_un.d_val;
570	    break;
571
572	case DT_RELENT:
573	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
574	    break;
575
576	case DT_JMPREL:
577	    obj->pltrel = (const Elf_Rel *)
578	      (obj->relocbase + dynp->d_un.d_ptr);
579	    break;
580
581	case DT_PLTRELSZ:
582	    obj->pltrelsize = dynp->d_un.d_val;
583	    break;
584
585	case DT_RELA:
586	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
587	    break;
588
589	case DT_RELASZ:
590	    obj->relasize = dynp->d_un.d_val;
591	    break;
592
593	case DT_RELAENT:
594	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
595	    break;
596
597	case DT_PLTREL:
598	    plttype = dynp->d_un.d_val;
599	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
600	    break;
601
602	case DT_SYMTAB:
603	    obj->symtab = (const Elf_Sym *)
604	      (obj->relocbase + dynp->d_un.d_ptr);
605	    break;
606
607	case DT_SYMENT:
608	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
609	    break;
610
611	case DT_STRTAB:
612	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
613	    break;
614
615	case DT_STRSZ:
616	    obj->strsize = dynp->d_un.d_val;
617	    break;
618
619	case DT_HASH:
620	    {
621		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
622		  (obj->relocbase + dynp->d_un.d_ptr);
623		obj->nbuckets = hashtab[0];
624		obj->nchains = hashtab[1];
625		obj->buckets = hashtab + 2;
626		obj->chains = obj->buckets + obj->nbuckets;
627	    }
628	    break;
629
630	case DT_NEEDED:
631	    if (!obj->rtld) {
632		Needed_Entry *nep = NEW(Needed_Entry);
633		nep->name = dynp->d_un.d_val;
634		nep->obj = NULL;
635		nep->next = NULL;
636
637		*needed_tail = nep;
638		needed_tail = &nep->next;
639	    }
640	    break;
641
642	case DT_PLTGOT:
643	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
644	    break;
645
646	case DT_TEXTREL:
647	    obj->textrel = true;
648	    break;
649
650	case DT_SYMBOLIC:
651	    obj->symbolic = true;
652	    break;
653
654	case DT_RPATH:
655	case DT_RUNPATH:	/* XXX: process separately */
656	    /*
657	     * We have to wait until later to process this, because we
658	     * might not have gotten the address of the string table yet.
659	     */
660	    dyn_rpath = dynp;
661	    break;
662
663	case DT_SONAME:
664	    /* Not used by the dynamic linker. */
665	    break;
666
667	case DT_INIT:
668	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
669	    break;
670
671	case DT_FINI:
672	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
673	    break;
674
675	case DT_DEBUG:
676	    /* XXX - not implemented yet */
677	    if (!early)
678		dbg("Filling in DT_DEBUG entry");
679	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
680	    break;
681
682	case DT_FLAGS:
683		if (dynp->d_un.d_val & DF_ORIGIN) {
684		    obj->origin_path = xmalloc(PATH_MAX);
685		    if (rtld_dirname(obj->path, obj->origin_path) == -1)
686			die();
687		}
688		if (dynp->d_un.d_val & DF_SYMBOLIC)
689		    obj->symbolic = true;
690		if (dynp->d_un.d_val & DF_TEXTREL)
691		    obj->textrel = true;
692		if (dynp->d_un.d_val & DF_BIND_NOW)
693		    obj->bind_now = true;
694		if (dynp->d_un.d_val & DF_STATIC_TLS)
695		    ;
696	    break;
697
698	default:
699	    if (!early) {
700		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
701		    (long)dynp->d_tag);
702	    }
703	    break;
704	}
705    }
706
707    obj->traced = false;
708
709    if (plttype == DT_RELA) {
710	obj->pltrela = (const Elf_Rela *) obj->pltrel;
711	obj->pltrel = NULL;
712	obj->pltrelasize = obj->pltrelsize;
713	obj->pltrelsize = 0;
714    }
715
716    if (dyn_rpath != NULL)
717	obj->rpath = obj->strtab + dyn_rpath->d_un.d_val;
718}
719
720/*
721 * Process a shared object's program header.  This is used only for the
722 * main program, when the kernel has already loaded the main program
723 * into memory before calling the dynamic linker.  It creates and
724 * returns an Obj_Entry structure.
725 */
726static Obj_Entry *
727digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
728{
729    Obj_Entry *obj;
730    const Elf_Phdr *phlimit = phdr + phnum;
731    const Elf_Phdr *ph;
732    int nsegs = 0;
733
734    obj = obj_new();
735    for (ph = phdr;  ph < phlimit;  ph++) {
736	switch (ph->p_type) {
737
738	case PT_PHDR:
739	    if ((const Elf_Phdr *)ph->p_vaddr != phdr) {
740		_rtld_error("%s: invalid PT_PHDR", path);
741		return NULL;
742	    }
743	    obj->phdr = (const Elf_Phdr *) ph->p_vaddr;
744	    obj->phsize = ph->p_memsz;
745	    break;
746
747	case PT_INTERP:
748	    obj->interp = (const char *) ph->p_vaddr;
749	    break;
750
751	case PT_LOAD:
752	    if (nsegs == 0) {	/* First load segment */
753		obj->vaddrbase = trunc_page(ph->p_vaddr);
754		obj->mapbase = (caddr_t) obj->vaddrbase;
755		obj->relocbase = obj->mapbase - obj->vaddrbase;
756		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
757		  obj->vaddrbase;
758	    } else {		/* Last load segment */
759		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
760		  obj->vaddrbase;
761	    }
762	    nsegs++;
763	    break;
764
765	case PT_DYNAMIC:
766	    obj->dynamic = (const Elf_Dyn *) ph->p_vaddr;
767	    break;
768
769	case PT_TLS:
770	    obj->tlsindex = 1;
771	    obj->tlssize = ph->p_memsz;
772	    obj->tlsalign = ph->p_align;
773	    obj->tlsinitsize = ph->p_filesz;
774	    obj->tlsinit = (void*) ph->p_vaddr;
775	    break;
776	}
777    }
778    if (nsegs < 1) {
779	_rtld_error("%s: too few PT_LOAD segments", path);
780	return NULL;
781    }
782
783    obj->entry = entry;
784    return obj;
785}
786
787static Obj_Entry *
788dlcheck(void *handle)
789{
790    Obj_Entry *obj;
791
792    for (obj = obj_list;  obj != NULL;  obj = obj->next)
793	if (obj == (Obj_Entry *) handle)
794	    break;
795
796    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
797	_rtld_error("Invalid shared object handle %p", handle);
798	return NULL;
799    }
800    return obj;
801}
802
803/*
804 * If the given object is already in the donelist, return true.  Otherwise
805 * add the object to the list and return false.
806 */
807static bool
808donelist_check(DoneList *dlp, const Obj_Entry *obj)
809{
810    unsigned int i;
811
812    for (i = 0;  i < dlp->num_used;  i++)
813	if (dlp->objs[i] == obj)
814	    return true;
815    /*
816     * Our donelist allocation should always be sufficient.  But if
817     * our threads locking isn't working properly, more shared objects
818     * could have been loaded since we allocated the list.  That should
819     * never happen, but we'll handle it properly just in case it does.
820     */
821    if (dlp->num_used < dlp->num_alloc)
822	dlp->objs[dlp->num_used++] = obj;
823    return false;
824}
825
826/*
827 * Hash function for symbol table lookup.  Don't even think about changing
828 * this.  It is specified by the System V ABI.
829 */
830unsigned long
831elf_hash(const char *name)
832{
833    const unsigned char *p = (const unsigned char *) name;
834    unsigned long h = 0;
835    unsigned long g;
836
837    while (*p != '\0') {
838	h = (h << 4) + *p++;
839	if ((g = h & 0xf0000000) != 0)
840	    h ^= g >> 24;
841	h &= ~g;
842    }
843    return h;
844}
845
846/*
847 * Find the library with the given name, and return its full pathname.
848 * The returned string is dynamically allocated.  Generates an error
849 * message and returns NULL if the library cannot be found.
850 *
851 * If the second argument is non-NULL, then it refers to an already-
852 * loaded shared object, whose library search path will be searched.
853 *
854 * The search order is:
855 *   LD_LIBRARY_PATH
856 *   rpath in the referencing file
857 *   ldconfig hints
858 *   /lib:/usr/lib
859 */
860static char *
861find_library(const char *xname, const Obj_Entry *refobj)
862{
863    char *pathname;
864    char *name;
865
866    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
867	if (xname[0] != '/' && !trust) {
868	    _rtld_error("Absolute pathname required for shared object \"%s\"",
869	      xname);
870	    return NULL;
871	}
872	return xstrdup(xname);
873    }
874
875    if (libmap_disable || (refobj == NULL) ||
876	(name = lm_find(refobj->path, xname)) == NULL)
877	name = (char *)xname;
878
879    dbg(" Searching for \"%s\"", name);
880
881    if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
882      (refobj != NULL &&
883      (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
884      (pathname = search_library_path(name, gethints())) != NULL ||
885      (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
886	return pathname;
887
888    if(refobj != NULL && refobj->path != NULL) {
889	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
890	  name, basename(refobj->path));
891    } else {
892	_rtld_error("Shared object \"%s\" not found", name);
893    }
894    return NULL;
895}
896
897/*
898 * Given a symbol number in a referencing object, find the corresponding
899 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
900 * no definition was found.  Returns a pointer to the Obj_Entry of the
901 * defining object via the reference parameter DEFOBJ_OUT.
902 */
903const Elf_Sym *
904find_symdef(unsigned long symnum, const Obj_Entry *refobj,
905    const Obj_Entry **defobj_out, bool in_plt, SymCache *cache)
906{
907    const Elf_Sym *ref;
908    const Elf_Sym *def;
909    const Obj_Entry *defobj;
910    const char *name;
911    unsigned long hash;
912
913    /*
914     * If we have already found this symbol, get the information from
915     * the cache.
916     */
917    if (symnum >= refobj->nchains)
918	return NULL;	/* Bad object */
919    if (cache != NULL && cache[symnum].sym != NULL) {
920	*defobj_out = cache[symnum].obj;
921	return cache[symnum].sym;
922    }
923
924    ref = refobj->symtab + symnum;
925    name = refobj->strtab + ref->st_name;
926    defobj = NULL;
927
928    /*
929     * We don't have to do a full scale lookup if the symbol is local.
930     * We know it will bind to the instance in this load module; to
931     * which we already have a pointer (ie ref). By not doing a lookup,
932     * we not only improve performance, but it also avoids unresolvable
933     * symbols when local symbols are not in the hash table. This has
934     * been seen with the ia64 toolchain.
935     */
936    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
937	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
938	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
939		symnum);
940	}
941	hash = elf_hash(name);
942	def = symlook_default(name, hash, refobj, &defobj, in_plt);
943    } else {
944	def = ref;
945	defobj = refobj;
946    }
947
948    /*
949     * If we found no definition and the reference is weak, treat the
950     * symbol as having the value zero.
951     */
952    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
953	def = &sym_zero;
954	defobj = obj_main;
955    }
956
957    if (def != NULL) {
958	*defobj_out = defobj;
959	/* Record the information in the cache to avoid subsequent lookups. */
960	if (cache != NULL) {
961	    cache[symnum].sym = def;
962	    cache[symnum].obj = defobj;
963	}
964    } else {
965	if (refobj != &obj_rtld)
966	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
967    }
968    return def;
969}
970
971/*
972 * Return the search path from the ldconfig hints file, reading it if
973 * necessary.  Returns NULL if there are problems with the hints file,
974 * or if the search path there is empty.
975 */
976static const char *
977gethints(void)
978{
979    static char *hints;
980
981    if (hints == NULL) {
982	int fd;
983	struct elfhints_hdr hdr;
984	char *p;
985
986	/* Keep from trying again in case the hints file is bad. */
987	hints = "";
988
989	if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1)
990	    return NULL;
991	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
992	  hdr.magic != ELFHINTS_MAGIC ||
993	  hdr.version != 1) {
994	    close(fd);
995	    return NULL;
996	}
997	p = xmalloc(hdr.dirlistlen + 1);
998	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
999	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1000	    free(p);
1001	    close(fd);
1002	    return NULL;
1003	}
1004	hints = p;
1005	close(fd);
1006    }
1007    return hints[0] != '\0' ? hints : NULL;
1008}
1009
1010static void
1011init_dag(Obj_Entry *root)
1012{
1013    DoneList donelist;
1014
1015    donelist_init(&donelist);
1016    init_dag1(root, root, &donelist);
1017}
1018
1019static void
1020init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
1021{
1022    const Needed_Entry *needed;
1023
1024    if (donelist_check(dlp, obj))
1025	return;
1026
1027    obj->refcount++;
1028    objlist_push_tail(&obj->dldags, root);
1029    objlist_push_tail(&root->dagmembers, obj);
1030    for (needed = obj->needed;  needed != NULL;  needed = needed->next)
1031	if (needed->obj != NULL)
1032	    init_dag1(root, needed->obj, dlp);
1033}
1034
1035/*
1036 * Initialize the dynamic linker.  The argument is the address at which
1037 * the dynamic linker has been mapped into memory.  The primary task of
1038 * this function is to relocate the dynamic linker.
1039 */
1040static void
1041init_rtld(caddr_t mapbase)
1042{
1043    Obj_Entry objtmp;	/* Temporary rtld object */
1044
1045    /*
1046     * Conjure up an Obj_Entry structure for the dynamic linker.
1047     *
1048     * The "path" member can't be initialized yet because string constatns
1049     * cannot yet be acessed. Below we will set it correctly.
1050     */
1051    memset(&objtmp, 0, sizeof(objtmp));
1052    objtmp.path = NULL;
1053    objtmp.rtld = true;
1054    objtmp.mapbase = mapbase;
1055#ifdef PIC
1056    objtmp.relocbase = mapbase;
1057#endif
1058    if (RTLD_IS_DYNAMIC()) {
1059	objtmp.dynamic = rtld_dynamic(&objtmp);
1060	digest_dynamic(&objtmp, 1);
1061	assert(objtmp.needed == NULL);
1062	assert(!objtmp.textrel);
1063
1064	/*
1065	 * Temporarily put the dynamic linker entry into the object list, so
1066	 * that symbols can be found.
1067	 */
1068
1069	relocate_objects(&objtmp, true, &objtmp);
1070    }
1071
1072    /* Initialize the object list. */
1073    obj_tail = &obj_list;
1074
1075    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1076    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1077
1078    /* Replace the path with a dynamically allocated copy. */
1079    obj_rtld.path = xstrdup(PATH_RTLD);
1080
1081    r_debug.r_brk = r_debug_state;
1082    r_debug.r_state = RT_CONSISTENT;
1083}
1084
1085/*
1086 * Add the init functions from a needed object list (and its recursive
1087 * needed objects) to "list".  This is not used directly; it is a helper
1088 * function for initlist_add_objects().  The write lock must be held
1089 * when this function is called.
1090 */
1091static void
1092initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1093{
1094    /* Recursively process the successor needed objects. */
1095    if (needed->next != NULL)
1096	initlist_add_neededs(needed->next, list);
1097
1098    /* Process the current needed object. */
1099    if (needed->obj != NULL)
1100	initlist_add_objects(needed->obj, &needed->obj->next, list);
1101}
1102
1103/*
1104 * Scan all of the DAGs rooted in the range of objects from "obj" to
1105 * "tail" and add their init functions to "list".  This recurses over
1106 * the DAGs and ensure the proper init ordering such that each object's
1107 * needed libraries are initialized before the object itself.  At the
1108 * same time, this function adds the objects to the global finalization
1109 * list "list_fini" in the opposite order.  The write lock must be
1110 * held when this function is called.
1111 */
1112static void
1113initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1114{
1115    if (obj->init_done)
1116	return;
1117    obj->init_done = true;
1118
1119    /* Recursively process the successor objects. */
1120    if (&obj->next != tail)
1121	initlist_add_objects(obj->next, tail, list);
1122
1123    /* Recursively process the needed objects. */
1124    if (obj->needed != NULL)
1125	initlist_add_neededs(obj->needed, list);
1126
1127    /* Add the object to the init list. */
1128    if (obj->init != (Elf_Addr)NULL)
1129	objlist_push_tail(list, obj);
1130
1131    /* Add the object to the global fini list in the reverse order. */
1132    if (obj->fini != (Elf_Addr)NULL)
1133	objlist_push_head(&list_fini, obj);
1134}
1135
1136#ifndef FPTR_TARGET
1137#define FPTR_TARGET(f)	((Elf_Addr) (f))
1138#endif
1139
1140static bool
1141is_exported(const Elf_Sym *def)
1142{
1143    Elf_Addr value;
1144    const func_ptr_type *p;
1145
1146    value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1147    for (p = exports;  *p != NULL;  p++)
1148	if (FPTR_TARGET(*p) == value)
1149	    return true;
1150    return false;
1151}
1152
1153/*
1154 * Given a shared object, traverse its list of needed objects, and load
1155 * each of them.  Returns 0 on success.  Generates an error message and
1156 * returns -1 on failure.
1157 */
1158static int
1159load_needed_objects(Obj_Entry *first)
1160{
1161    Obj_Entry *obj;
1162
1163    for (obj = first;  obj != NULL;  obj = obj->next) {
1164	Needed_Entry *needed;
1165
1166	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1167	    const char *name = obj->strtab + needed->name;
1168	    char *path = find_library(name, obj);
1169
1170	    needed->obj = NULL;
1171	    if (path == NULL && !ld_tracing)
1172		return -1;
1173
1174	    if (path) {
1175		needed->obj = load_object(path);
1176		if (needed->obj == NULL && !ld_tracing)
1177		    return -1;		/* XXX - cleanup */
1178	    }
1179	}
1180    }
1181
1182    return 0;
1183}
1184
1185static int
1186load_preload_objects(void)
1187{
1188    char *p = ld_preload;
1189    static const char delim[] = " \t:;";
1190
1191    if (p == NULL)
1192	return 0;
1193
1194    p += strspn(p, delim);
1195    while (*p != '\0') {
1196	size_t len = strcspn(p, delim);
1197	char *path;
1198	char savech;
1199
1200	savech = p[len];
1201	p[len] = '\0';
1202	if ((path = find_library(p, NULL)) == NULL)
1203	    return -1;
1204	if (load_object(path) == NULL)
1205	    return -1;	/* XXX - cleanup */
1206	p[len] = savech;
1207	p += len;
1208	p += strspn(p, delim);
1209    }
1210    return 0;
1211}
1212
1213/*
1214 * Load a shared object into memory, if it is not already loaded.  The
1215 * argument must be a string allocated on the heap.  This function assumes
1216 * responsibility for freeing it when necessary.
1217 *
1218 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1219 * on failure.
1220 */
1221static Obj_Entry *
1222load_object(char *path)
1223{
1224    Obj_Entry *obj;
1225    int fd = -1;
1226    struct stat sb;
1227    struct statfs fs;
1228
1229    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1230	if (strcmp(obj->path, path) == 0)
1231	    break;
1232
1233    /*
1234     * If we didn't find a match by pathname, open the file and check
1235     * again by device and inode.  This avoids false mismatches caused
1236     * by multiple links or ".." in pathnames.
1237     *
1238     * To avoid a race, we open the file and use fstat() rather than
1239     * using stat().
1240     */
1241    if (obj == NULL) {
1242	if ((fd = open(path, O_RDONLY)) == -1) {
1243	    _rtld_error("Cannot open \"%s\"", path);
1244	    return NULL;
1245	}
1246	if (fstat(fd, &sb) == -1) {
1247	    _rtld_error("Cannot fstat \"%s\"", path);
1248	    close(fd);
1249	    return NULL;
1250	}
1251	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1252	    if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) {
1253		close(fd);
1254		break;
1255	    }
1256	}
1257    }
1258
1259    if (obj == NULL) {	/* First use of this object, so we must map it in */
1260	/*
1261	 * but first, make sure that environment variables haven't been
1262	 * used to circumvent the noexec flag on a filesystem.
1263	 */
1264	if (dangerous_ld_env) {
1265	    if (fstatfs(fd, &fs) != 0) {
1266		_rtld_error("Cannot fstatfs \"%s\"", path);
1267		close(fd);
1268		return NULL;
1269	    }
1270	    if (fs.f_flags & MNT_NOEXEC) {
1271		_rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1272		close(fd);
1273		return NULL;
1274	    }
1275	}
1276	dbg("loading \"%s\"", path);
1277	obj = map_object(fd, path, &sb);
1278	close(fd);
1279	if (obj == NULL) {
1280	    free(path);
1281	    return NULL;
1282	}
1283
1284	obj->path = path;
1285	digest_dynamic(obj, 0);
1286
1287	*obj_tail = obj;
1288	obj_tail = &obj->next;
1289	obj_count++;
1290	linkmap_add(obj);	/* for GDB & dlinfo() */
1291
1292	dbg("  %p .. %p: %s", obj->mapbase,
1293	  obj->mapbase + obj->mapsize - 1, obj->path);
1294	if (obj->textrel)
1295	    dbg("  WARNING: %s has impure text", obj->path);
1296    } else
1297	free(path);
1298
1299    return obj;
1300}
1301
1302static Obj_Entry *
1303obj_from_addr(const void *addr)
1304{
1305    Obj_Entry *obj;
1306
1307    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1308	if (addr < (void *) obj->mapbase)
1309	    continue;
1310	if (addr < (void *) (obj->mapbase + obj->mapsize))
1311	    return obj;
1312    }
1313    return NULL;
1314}
1315
1316/*
1317 * Call the finalization functions for each of the objects in "list"
1318 * which are unreferenced.  All of the objects are expected to have
1319 * non-NULL fini functions.
1320 */
1321static void
1322objlist_call_fini(Objlist *list)
1323{
1324    Objlist_Entry *elm;
1325    char *saved_msg;
1326
1327    /*
1328     * Preserve the current error message since a fini function might
1329     * call into the dynamic linker and overwrite it.
1330     */
1331    saved_msg = errmsg_save();
1332    STAILQ_FOREACH(elm, list, link) {
1333	if (elm->obj->refcount == 0) {
1334	    dbg("calling fini function for %s at %p", elm->obj->path,
1335	        (void *)elm->obj->fini);
1336	    call_initfini_pointer(elm->obj, elm->obj->fini);
1337	}
1338    }
1339    errmsg_restore(saved_msg);
1340}
1341
1342/*
1343 * Call the initialization functions for each of the objects in
1344 * "list".  All of the objects are expected to have non-NULL init
1345 * functions.
1346 */
1347static void
1348objlist_call_init(Objlist *list)
1349{
1350    Objlist_Entry *elm;
1351    char *saved_msg;
1352
1353    /*
1354     * Preserve the current error message since an init function might
1355     * call into the dynamic linker and overwrite it.
1356     */
1357    saved_msg = errmsg_save();
1358    STAILQ_FOREACH(elm, list, link) {
1359	dbg("calling init function for %s at %p", elm->obj->path,
1360	    (void *)elm->obj->init);
1361	call_initfini_pointer(elm->obj, elm->obj->init);
1362    }
1363    errmsg_restore(saved_msg);
1364}
1365
1366static void
1367objlist_clear(Objlist *list)
1368{
1369    Objlist_Entry *elm;
1370
1371    while (!STAILQ_EMPTY(list)) {
1372	elm = STAILQ_FIRST(list);
1373	STAILQ_REMOVE_HEAD(list, link);
1374	free(elm);
1375    }
1376}
1377
1378static Objlist_Entry *
1379objlist_find(Objlist *list, const Obj_Entry *obj)
1380{
1381    Objlist_Entry *elm;
1382
1383    STAILQ_FOREACH(elm, list, link)
1384	if (elm->obj == obj)
1385	    return elm;
1386    return NULL;
1387}
1388
1389static void
1390objlist_init(Objlist *list)
1391{
1392    STAILQ_INIT(list);
1393}
1394
1395static void
1396objlist_push_head(Objlist *list, Obj_Entry *obj)
1397{
1398    Objlist_Entry *elm;
1399
1400    elm = NEW(Objlist_Entry);
1401    elm->obj = obj;
1402    STAILQ_INSERT_HEAD(list, elm, link);
1403}
1404
1405static void
1406objlist_push_tail(Objlist *list, Obj_Entry *obj)
1407{
1408    Objlist_Entry *elm;
1409
1410    elm = NEW(Objlist_Entry);
1411    elm->obj = obj;
1412    STAILQ_INSERT_TAIL(list, elm, link);
1413}
1414
1415static void
1416objlist_remove(Objlist *list, Obj_Entry *obj)
1417{
1418    Objlist_Entry *elm;
1419
1420    if ((elm = objlist_find(list, obj)) != NULL) {
1421	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1422	free(elm);
1423    }
1424}
1425
1426/*
1427 * Remove all of the unreferenced objects from "list".
1428 */
1429static void
1430objlist_remove_unref(Objlist *list)
1431{
1432    Objlist newlist;
1433    Objlist_Entry *elm;
1434
1435    STAILQ_INIT(&newlist);
1436    while (!STAILQ_EMPTY(list)) {
1437	elm = STAILQ_FIRST(list);
1438	STAILQ_REMOVE_HEAD(list, link);
1439	if (elm->obj->refcount == 0)
1440	    free(elm);
1441	else
1442	    STAILQ_INSERT_TAIL(&newlist, elm, link);
1443    }
1444    *list = newlist;
1445}
1446
1447/*
1448 * Relocate newly-loaded shared objects.  The argument is a pointer to
1449 * the Obj_Entry for the first such object.  All objects from the first
1450 * to the end of the list of objects are relocated.  Returns 0 on success,
1451 * or -1 on failure.
1452 */
1453static int
1454relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1455{
1456    Obj_Entry *obj;
1457
1458    for (obj = first;  obj != NULL;  obj = obj->next) {
1459	if (obj != rtldobj)
1460	    dbg("relocating \"%s\"", obj->path);
1461	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1462	    obj->symtab == NULL || obj->strtab == NULL) {
1463	    _rtld_error("%s: Shared object has no run-time symbol table",
1464	      obj->path);
1465	    return -1;
1466	}
1467
1468	if (obj->textrel) {
1469	    /* There are relocations to the write-protected text segment. */
1470	    if (mprotect(obj->mapbase, obj->textsize,
1471	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1472		_rtld_error("%s: Cannot write-enable text segment: %s",
1473		  obj->path, strerror(errno));
1474		return -1;
1475	    }
1476	}
1477
1478	/* Process the non-PLT relocations. */
1479	if (reloc_non_plt(obj, rtldobj))
1480		return -1;
1481
1482	if (obj->textrel) {	/* Re-protected the text segment. */
1483	    if (mprotect(obj->mapbase, obj->textsize,
1484	      PROT_READ|PROT_EXEC) == -1) {
1485		_rtld_error("%s: Cannot write-protect text segment: %s",
1486		  obj->path, strerror(errno));
1487		return -1;
1488	    }
1489	}
1490
1491	/* Process the PLT relocations. */
1492	if (reloc_plt(obj) == -1)
1493	    return -1;
1494	/* Relocate the jump slots if we are doing immediate binding. */
1495	if (obj->bind_now || bind_now)
1496	    if (reloc_jmpslots(obj) == -1)
1497		return -1;
1498
1499
1500	/*
1501	 * Set up the magic number and version in the Obj_Entry.  These
1502	 * were checked in the crt1.o from the original ElfKit, so we
1503	 * set them for backward compatibility.
1504	 */
1505	obj->magic = RTLD_MAGIC;
1506	obj->version = RTLD_VERSION;
1507
1508	/* Set the special PLT or GOT entries. */
1509	init_pltgot(obj);
1510    }
1511
1512    return 0;
1513}
1514
1515/*
1516 * Cleanup procedure.  It will be called (by the atexit mechanism) just
1517 * before the process exits.
1518 */
1519static void
1520rtld_exit(void)
1521{
1522    Obj_Entry *obj;
1523
1524    dbg("rtld_exit()");
1525    /* Clear all the reference counts so the fini functions will be called. */
1526    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1527	obj->refcount = 0;
1528    objlist_call_fini(&list_fini);
1529    /* No need to remove the items from the list, since we are exiting. */
1530    if (!libmap_disable)
1531        lm_fini();
1532}
1533
1534static void *
1535path_enumerate(const char *path, path_enum_proc callback, void *arg)
1536{
1537#ifdef COMPAT_32BIT
1538    const char *trans;
1539#endif
1540    if (path == NULL)
1541	return (NULL);
1542
1543    path += strspn(path, ":;");
1544    while (*path != '\0') {
1545	size_t len;
1546	char  *res;
1547
1548	len = strcspn(path, ":;");
1549#ifdef COMPAT_32BIT
1550	trans = lm_findn(NULL, path, len);
1551	if (trans)
1552	    res = callback(trans, strlen(trans), arg);
1553	else
1554#endif
1555	res = callback(path, len, arg);
1556
1557	if (res != NULL)
1558	    return (res);
1559
1560	path += len;
1561	path += strspn(path, ":;");
1562    }
1563
1564    return (NULL);
1565}
1566
1567struct try_library_args {
1568    const char	*name;
1569    size_t	 namelen;
1570    char	*buffer;
1571    size_t	 buflen;
1572};
1573
1574static void *
1575try_library_path(const char *dir, size_t dirlen, void *param)
1576{
1577    struct try_library_args *arg;
1578
1579    arg = param;
1580    if (*dir == '/' || trust) {
1581	char *pathname;
1582
1583	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
1584		return (NULL);
1585
1586	pathname = arg->buffer;
1587	strncpy(pathname, dir, dirlen);
1588	pathname[dirlen] = '/';
1589	strcpy(pathname + dirlen + 1, arg->name);
1590
1591	dbg("  Trying \"%s\"", pathname);
1592	if (access(pathname, F_OK) == 0) {		/* We found it */
1593	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
1594	    strcpy(pathname, arg->buffer);
1595	    return (pathname);
1596	}
1597    }
1598    return (NULL);
1599}
1600
1601static char *
1602search_library_path(const char *name, const char *path)
1603{
1604    char *p;
1605    struct try_library_args arg;
1606
1607    if (path == NULL)
1608	return NULL;
1609
1610    arg.name = name;
1611    arg.namelen = strlen(name);
1612    arg.buffer = xmalloc(PATH_MAX);
1613    arg.buflen = PATH_MAX;
1614
1615    p = path_enumerate(path, try_library_path, &arg);
1616
1617    free(arg.buffer);
1618
1619    return (p);
1620}
1621
1622int
1623dlclose(void *handle)
1624{
1625    Obj_Entry *root;
1626    int lockstate;
1627
1628    lockstate = wlock_acquire(rtld_bind_lock);
1629    root = dlcheck(handle);
1630    if (root == NULL) {
1631	wlock_release(rtld_bind_lock, lockstate);
1632	return -1;
1633    }
1634
1635    /* Unreference the object and its dependencies. */
1636    root->dl_refcount--;
1637
1638    unref_dag(root);
1639
1640    if (root->refcount == 0) {
1641	/*
1642	 * The object is no longer referenced, so we must unload it.
1643	 * First, call the fini functions with no locks held.
1644	 */
1645	wlock_release(rtld_bind_lock, lockstate);
1646	objlist_call_fini(&list_fini);
1647	lockstate = wlock_acquire(rtld_bind_lock);
1648	objlist_remove_unref(&list_fini);
1649
1650	/* Finish cleaning up the newly-unreferenced objects. */
1651	GDB_STATE(RT_DELETE,&root->linkmap);
1652	unload_object(root);
1653	GDB_STATE(RT_CONSISTENT,NULL);
1654    }
1655    wlock_release(rtld_bind_lock, lockstate);
1656    return 0;
1657}
1658
1659const char *
1660dlerror(void)
1661{
1662    char *msg = error_message;
1663    error_message = NULL;
1664    return msg;
1665}
1666
1667/*
1668 * This function is deprecated and has no effect.
1669 */
1670void
1671dllockinit(void *context,
1672	   void *(*lock_create)(void *context),
1673           void (*rlock_acquire)(void *lock),
1674           void (*wlock_acquire)(void *lock),
1675           void (*lock_release)(void *lock),
1676           void (*lock_destroy)(void *lock),
1677	   void (*context_destroy)(void *context))
1678{
1679    static void *cur_context;
1680    static void (*cur_context_destroy)(void *);
1681
1682    /* Just destroy the context from the previous call, if necessary. */
1683    if (cur_context_destroy != NULL)
1684	cur_context_destroy(cur_context);
1685    cur_context = context;
1686    cur_context_destroy = context_destroy;
1687}
1688
1689void *
1690dlopen(const char *name, int mode)
1691{
1692    Obj_Entry **old_obj_tail;
1693    Obj_Entry *obj;
1694    Objlist initlist;
1695    int result, lockstate;
1696
1697    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
1698    if (ld_tracing != NULL)
1699	environ = (char **)*get_program_var_addr("environ");
1700
1701    objlist_init(&initlist);
1702
1703    lockstate = wlock_acquire(rtld_bind_lock);
1704    GDB_STATE(RT_ADD,NULL);
1705
1706    old_obj_tail = obj_tail;
1707    obj = NULL;
1708    if (name == NULL) {
1709	obj = obj_main;
1710	obj->refcount++;
1711    } else {
1712	char *path = find_library(name, obj_main);
1713	if (path != NULL)
1714	    obj = load_object(path);
1715    }
1716
1717    if (obj) {
1718	obj->dl_refcount++;
1719	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
1720	    objlist_push_tail(&list_global, obj);
1721	mode &= RTLD_MODEMASK;
1722	if (*old_obj_tail != NULL) {		/* We loaded something new. */
1723	    assert(*old_obj_tail == obj);
1724
1725	    result = load_needed_objects(obj);
1726	    if (result != -1 && ld_tracing)
1727		goto trace;
1728
1729	    if (result == -1 ||
1730	      (init_dag(obj), relocate_objects(obj, mode == RTLD_NOW,
1731	       &obj_rtld)) == -1) {
1732		obj->dl_refcount--;
1733		unref_dag(obj);
1734		if (obj->refcount == 0)
1735		    unload_object(obj);
1736		obj = NULL;
1737	    } else {
1738		/* Make list of init functions to call. */
1739		initlist_add_objects(obj, &obj->next, &initlist);
1740	    }
1741	} else {
1742
1743	    /* Bump the reference counts for objects on this DAG. */
1744	    ref_dag(obj);
1745
1746	    if (ld_tracing)
1747		goto trace;
1748	}
1749    }
1750
1751    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
1752
1753    /* Call the init functions with no locks held. */
1754    wlock_release(rtld_bind_lock, lockstate);
1755    objlist_call_init(&initlist);
1756    lockstate = wlock_acquire(rtld_bind_lock);
1757    objlist_clear(&initlist);
1758    wlock_release(rtld_bind_lock, lockstate);
1759    return obj;
1760trace:
1761    trace_loaded_objects(obj);
1762    wlock_release(rtld_bind_lock, lockstate);
1763    exit(0);
1764}
1765
1766void *
1767dlsym(void *handle, const char *name)
1768{
1769    const Obj_Entry *obj;
1770    unsigned long hash;
1771    const Elf_Sym *def;
1772    const Obj_Entry *defobj;
1773    int lockstate;
1774
1775    hash = elf_hash(name);
1776    def = NULL;
1777    defobj = NULL;
1778
1779    lockstate = rlock_acquire(rtld_bind_lock);
1780    if (handle == NULL || handle == RTLD_NEXT ||
1781	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
1782	void *retaddr;
1783
1784	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
1785	if ((obj = obj_from_addr(retaddr)) == NULL) {
1786	    _rtld_error("Cannot determine caller's shared object");
1787	    rlock_release(rtld_bind_lock, lockstate);
1788	    return NULL;
1789	}
1790	if (handle == NULL) {	/* Just the caller's shared object. */
1791	    def = symlook_obj(name, hash, obj, true);
1792	    defobj = obj;
1793	} else if (handle == RTLD_NEXT || /* Objects after caller's */
1794		   handle == RTLD_SELF) { /* ... caller included */
1795	    if (handle == RTLD_NEXT)
1796		obj = obj->next;
1797	    for (; obj != NULL; obj = obj->next) {
1798		if ((def = symlook_obj(name, hash, obj, true)) != NULL) {
1799		    defobj = obj;
1800		    break;
1801		}
1802	    }
1803	} else {
1804	    assert(handle == RTLD_DEFAULT);
1805	    def = symlook_default(name, hash, obj, &defobj, true);
1806	}
1807    } else {
1808	if ((obj = dlcheck(handle)) == NULL) {
1809	    rlock_release(rtld_bind_lock, lockstate);
1810	    return NULL;
1811	}
1812
1813	if (obj->mainprog) {
1814	    DoneList donelist;
1815
1816	    /* Search main program and all libraries loaded by it. */
1817	    donelist_init(&donelist);
1818	    def = symlook_list(name, hash, &list_main, &defobj, true,
1819	      &donelist);
1820	} else {
1821	    /*
1822	     * XXX - This isn't correct.  The search should include the whole
1823	     * DAG rooted at the given object.
1824	     */
1825	    def = symlook_obj(name, hash, obj, true);
1826	    defobj = obj;
1827	}
1828    }
1829
1830    if (def != NULL) {
1831	rlock_release(rtld_bind_lock, lockstate);
1832
1833	/*
1834	 * The value required by the caller is derived from the value
1835	 * of the symbol. For the ia64 architecture, we need to
1836	 * construct a function descriptor which the caller can use to
1837	 * call the function with the right 'gp' value. For other
1838	 * architectures and for non-functions, the value is simply
1839	 * the relocated value of the symbol.
1840	 */
1841	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
1842	    return make_function_pointer(def, defobj);
1843	else
1844	    return defobj->relocbase + def->st_value;
1845    }
1846
1847    _rtld_error("Undefined symbol \"%s\"", name);
1848    rlock_release(rtld_bind_lock, lockstate);
1849    return NULL;
1850}
1851
1852int
1853dladdr(const void *addr, Dl_info *info)
1854{
1855    const Obj_Entry *obj;
1856    const Elf_Sym *def;
1857    void *symbol_addr;
1858    unsigned long symoffset;
1859    int lockstate;
1860
1861    lockstate = rlock_acquire(rtld_bind_lock);
1862    obj = obj_from_addr(addr);
1863    if (obj == NULL) {
1864        _rtld_error("No shared object contains address");
1865	rlock_release(rtld_bind_lock, lockstate);
1866        return 0;
1867    }
1868    info->dli_fname = obj->path;
1869    info->dli_fbase = obj->mapbase;
1870    info->dli_saddr = (void *)0;
1871    info->dli_sname = NULL;
1872
1873    /*
1874     * Walk the symbol list looking for the symbol whose address is
1875     * closest to the address sent in.
1876     */
1877    for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
1878        def = obj->symtab + symoffset;
1879
1880        /*
1881         * For skip the symbol if st_shndx is either SHN_UNDEF or
1882         * SHN_COMMON.
1883         */
1884        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
1885            continue;
1886
1887        /*
1888         * If the symbol is greater than the specified address, or if it
1889         * is further away from addr than the current nearest symbol,
1890         * then reject it.
1891         */
1892        symbol_addr = obj->relocbase + def->st_value;
1893        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
1894            continue;
1895
1896        /* Update our idea of the nearest symbol. */
1897        info->dli_sname = obj->strtab + def->st_name;
1898        info->dli_saddr = symbol_addr;
1899
1900        /* Exact match? */
1901        if (info->dli_saddr == addr)
1902            break;
1903    }
1904    rlock_release(rtld_bind_lock, lockstate);
1905    return 1;
1906}
1907
1908int
1909dlinfo(void *handle, int request, void *p)
1910{
1911    const Obj_Entry *obj;
1912    int error, lockstate;
1913
1914    lockstate = rlock_acquire(rtld_bind_lock);
1915
1916    if (handle == NULL || handle == RTLD_SELF) {
1917	void *retaddr;
1918
1919	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
1920	if ((obj = obj_from_addr(retaddr)) == NULL)
1921	    _rtld_error("Cannot determine caller's shared object");
1922    } else
1923	obj = dlcheck(handle);
1924
1925    if (obj == NULL) {
1926	rlock_release(rtld_bind_lock, lockstate);
1927	return (-1);
1928    }
1929
1930    error = 0;
1931    switch (request) {
1932    case RTLD_DI_LINKMAP:
1933	*((struct link_map const **)p) = &obj->linkmap;
1934	break;
1935    case RTLD_DI_ORIGIN:
1936	error = rtld_dirname(obj->path, p);
1937	break;
1938
1939    case RTLD_DI_SERINFOSIZE:
1940    case RTLD_DI_SERINFO:
1941	error = do_search_info(obj, request, (struct dl_serinfo *)p);
1942	break;
1943
1944    default:
1945	_rtld_error("Invalid request %d passed to dlinfo()", request);
1946	error = -1;
1947    }
1948
1949    rlock_release(rtld_bind_lock, lockstate);
1950
1951    return (error);
1952}
1953
1954struct fill_search_info_args {
1955    int		 request;
1956    unsigned int flags;
1957    Dl_serinfo  *serinfo;
1958    Dl_serpath  *serpath;
1959    char	*strspace;
1960};
1961
1962static void *
1963fill_search_info(const char *dir, size_t dirlen, void *param)
1964{
1965    struct fill_search_info_args *arg;
1966
1967    arg = param;
1968
1969    if (arg->request == RTLD_DI_SERINFOSIZE) {
1970	arg->serinfo->dls_cnt ++;
1971	arg->serinfo->dls_size += dirlen + 1;
1972    } else {
1973	struct dl_serpath *s_entry;
1974
1975	s_entry = arg->serpath;
1976	s_entry->dls_name  = arg->strspace;
1977	s_entry->dls_flags = arg->flags;
1978
1979	strncpy(arg->strspace, dir, dirlen);
1980	arg->strspace[dirlen] = '\0';
1981
1982	arg->strspace += dirlen + 1;
1983	arg->serpath++;
1984    }
1985
1986    return (NULL);
1987}
1988
1989static int
1990do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
1991{
1992    struct dl_serinfo _info;
1993    struct fill_search_info_args args;
1994
1995    args.request = RTLD_DI_SERINFOSIZE;
1996    args.serinfo = &_info;
1997
1998    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1999    _info.dls_cnt  = 0;
2000
2001    path_enumerate(ld_library_path, fill_search_info, &args);
2002    path_enumerate(obj->rpath, fill_search_info, &args);
2003    path_enumerate(gethints(), fill_search_info, &args);
2004    path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2005
2006
2007    if (request == RTLD_DI_SERINFOSIZE) {
2008	info->dls_size = _info.dls_size;
2009	info->dls_cnt = _info.dls_cnt;
2010	return (0);
2011    }
2012
2013    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2014	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2015	return (-1);
2016    }
2017
2018    args.request  = RTLD_DI_SERINFO;
2019    args.serinfo  = info;
2020    args.serpath  = &info->dls_serpath[0];
2021    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2022
2023    args.flags = LA_SER_LIBPATH;
2024    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2025	return (-1);
2026
2027    args.flags = LA_SER_RUNPATH;
2028    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2029	return (-1);
2030
2031    args.flags = LA_SER_CONFIG;
2032    if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2033	return (-1);
2034
2035    args.flags = LA_SER_DEFAULT;
2036    if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2037	return (-1);
2038    return (0);
2039}
2040
2041static int
2042rtld_dirname(const char *path, char *bname)
2043{
2044    const char *endp;
2045
2046    /* Empty or NULL string gets treated as "." */
2047    if (path == NULL || *path == '\0') {
2048	bname[0] = '.';
2049	bname[1] = '\0';
2050	return (0);
2051    }
2052
2053    /* Strip trailing slashes */
2054    endp = path + strlen(path) - 1;
2055    while (endp > path && *endp == '/')
2056	endp--;
2057
2058    /* Find the start of the dir */
2059    while (endp > path && *endp != '/')
2060	endp--;
2061
2062    /* Either the dir is "/" or there are no slashes */
2063    if (endp == path) {
2064	bname[0] = *endp == '/' ? '/' : '.';
2065	bname[1] = '\0';
2066	return (0);
2067    } else {
2068	do {
2069	    endp--;
2070	} while (endp > path && *endp == '/');
2071    }
2072
2073    if (endp - path + 2 > PATH_MAX)
2074    {
2075	_rtld_error("Filename is too long: %s", path);
2076	return(-1);
2077    }
2078
2079    strncpy(bname, path, endp - path + 1);
2080    bname[endp - path + 1] = '\0';
2081    return (0);
2082}
2083
2084static void
2085linkmap_add(Obj_Entry *obj)
2086{
2087    struct link_map *l = &obj->linkmap;
2088    struct link_map *prev;
2089
2090    obj->linkmap.l_name = obj->path;
2091    obj->linkmap.l_addr = obj->mapbase;
2092    obj->linkmap.l_ld = obj->dynamic;
2093#ifdef __mips__
2094    /* GDB needs load offset on MIPS to use the symbols */
2095    obj->linkmap.l_offs = obj->relocbase;
2096#endif
2097
2098    if (r_debug.r_map == NULL) {
2099	r_debug.r_map = l;
2100	return;
2101    }
2102
2103    /*
2104     * Scan to the end of the list, but not past the entry for the
2105     * dynamic linker, which we want to keep at the very end.
2106     */
2107    for (prev = r_debug.r_map;
2108      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2109      prev = prev->l_next)
2110	;
2111
2112    /* Link in the new entry. */
2113    l->l_prev = prev;
2114    l->l_next = prev->l_next;
2115    if (l->l_next != NULL)
2116	l->l_next->l_prev = l;
2117    prev->l_next = l;
2118}
2119
2120static void
2121linkmap_delete(Obj_Entry *obj)
2122{
2123    struct link_map *l = &obj->linkmap;
2124
2125    if (l->l_prev == NULL) {
2126	if ((r_debug.r_map = l->l_next) != NULL)
2127	    l->l_next->l_prev = NULL;
2128	return;
2129    }
2130
2131    if ((l->l_prev->l_next = l->l_next) != NULL)
2132	l->l_next->l_prev = l->l_prev;
2133}
2134
2135/*
2136 * Function for the debugger to set a breakpoint on to gain control.
2137 *
2138 * The two parameters allow the debugger to easily find and determine
2139 * what the runtime loader is doing and to whom it is doing it.
2140 *
2141 * When the loadhook trap is hit (r_debug_state, set at program
2142 * initialization), the arguments can be found on the stack:
2143 *
2144 *  +8   struct link_map *m
2145 *  +4   struct r_debug  *rd
2146 *  +0   RetAddr
2147 */
2148void
2149r_debug_state(struct r_debug* rd, struct link_map *m)
2150{
2151}
2152
2153/*
2154 * Get address of the pointer variable in the main program.
2155 */
2156static const void **
2157get_program_var_addr(const char *name)
2158{
2159    const Obj_Entry *obj;
2160    unsigned long hash;
2161
2162    hash = elf_hash(name);
2163    for (obj = obj_main;  obj != NULL;  obj = obj->next) {
2164	const Elf_Sym *def;
2165
2166	if ((def = symlook_obj(name, hash, obj, false)) != NULL) {
2167	    const void **addr;
2168
2169	    addr = (const void **)(obj->relocbase + def->st_value);
2170	    return addr;
2171	}
2172    }
2173    return NULL;
2174}
2175
2176/*
2177 * Set a pointer variable in the main program to the given value.  This
2178 * is used to set key variables such as "environ" before any of the
2179 * init functions are called.
2180 */
2181static void
2182set_program_var(const char *name, const void *value)
2183{
2184    const void **addr;
2185
2186    if ((addr = get_program_var_addr(name)) != NULL) {
2187	dbg("\"%s\": *%p <-- %p", name, addr, value);
2188	*addr = value;
2189    }
2190}
2191
2192/*
2193 * Given a symbol name in a referencing object, find the corresponding
2194 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2195 * no definition was found.  Returns a pointer to the Obj_Entry of the
2196 * defining object via the reference parameter DEFOBJ_OUT.
2197 */
2198static const Elf_Sym *
2199symlook_default(const char *name, unsigned long hash,
2200    const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt)
2201{
2202    DoneList donelist;
2203    const Elf_Sym *def;
2204    const Elf_Sym *symp;
2205    const Obj_Entry *obj;
2206    const Obj_Entry *defobj;
2207    const Objlist_Entry *elm;
2208    def = NULL;
2209    defobj = NULL;
2210    donelist_init(&donelist);
2211
2212    /* Look first in the referencing object if linked symbolically. */
2213    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2214	symp = symlook_obj(name, hash, refobj, in_plt);
2215	if (symp != NULL) {
2216	    def = symp;
2217	    defobj = refobj;
2218	}
2219    }
2220
2221    /* Search all objects loaded at program start up. */
2222    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2223	symp = symlook_list(name, hash, &list_main, &obj, in_plt, &donelist);
2224	if (symp != NULL &&
2225	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2226	    def = symp;
2227	    defobj = obj;
2228	}
2229    }
2230
2231    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2232    STAILQ_FOREACH(elm, &list_global, link) {
2233       if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2234           break;
2235       symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
2236         &donelist);
2237	if (symp != NULL &&
2238	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2239	    def = symp;
2240	    defobj = obj;
2241	}
2242    }
2243
2244    /* Search all dlopened DAGs containing the referencing object. */
2245    STAILQ_FOREACH(elm, &refobj->dldags, link) {
2246	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2247	    break;
2248	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
2249	  &donelist);
2250	if (symp != NULL &&
2251	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2252	    def = symp;
2253	    defobj = obj;
2254	}
2255    }
2256
2257    /*
2258     * Search the dynamic linker itself, and possibly resolve the
2259     * symbol from there.  This is how the application links to
2260     * dynamic linker services such as dlopen.  Only the values listed
2261     * in the "exports" array can be resolved from the dynamic linker.
2262     */
2263    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2264	symp = symlook_obj(name, hash, &obj_rtld, in_plt);
2265	if (symp != NULL && is_exported(symp)) {
2266	    def = symp;
2267	    defobj = &obj_rtld;
2268	}
2269    }
2270
2271    if (def != NULL)
2272	*defobj_out = defobj;
2273    return def;
2274}
2275
2276static const Elf_Sym *
2277symlook_list(const char *name, unsigned long hash, Objlist *objlist,
2278  const Obj_Entry **defobj_out, bool in_plt, DoneList *dlp)
2279{
2280    const Elf_Sym *symp;
2281    const Elf_Sym *def;
2282    const Obj_Entry *defobj;
2283    const Objlist_Entry *elm;
2284
2285    def = NULL;
2286    defobj = NULL;
2287    STAILQ_FOREACH(elm, objlist, link) {
2288	if (donelist_check(dlp, elm->obj))
2289	    continue;
2290	if ((symp = symlook_obj(name, hash, elm->obj, in_plt)) != NULL) {
2291	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2292		def = symp;
2293		defobj = elm->obj;
2294		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2295		    break;
2296	    }
2297	}
2298    }
2299    if (def != NULL)
2300	*defobj_out = defobj;
2301    return def;
2302}
2303
2304/*
2305 * Search the symbol table of a single shared object for a symbol of
2306 * the given name.  Returns a pointer to the symbol, or NULL if no
2307 * definition was found.
2308 *
2309 * The symbol's hash value is passed in for efficiency reasons; that
2310 * eliminates many recomputations of the hash value.
2311 */
2312const Elf_Sym *
2313symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2314  bool in_plt)
2315{
2316    if (obj->buckets != NULL) {
2317	unsigned long symnum = obj->buckets[hash % obj->nbuckets];
2318
2319	while (symnum != STN_UNDEF) {
2320	    const Elf_Sym *symp;
2321	    const char *strp;
2322
2323	    if (symnum >= obj->nchains)
2324		return NULL;	/* Bad object */
2325	    symp = obj->symtab + symnum;
2326	    strp = obj->strtab + symp->st_name;
2327
2328	    if (name[0] == strp[0] && strcmp(name, strp) == 0)
2329		return symp->st_shndx != SHN_UNDEF ||
2330		  (!in_plt && symp->st_value != 0 &&
2331		  ELF_ST_TYPE(symp->st_info) == STT_FUNC) ? symp : NULL;
2332
2333	    symnum = obj->chains[symnum];
2334	}
2335    }
2336    return NULL;
2337}
2338
2339static void
2340trace_loaded_objects(Obj_Entry *obj)
2341{
2342    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
2343    int		c;
2344
2345    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
2346	main_local = "";
2347
2348    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
2349	fmt1 = "\t%o => %p (%x)\n";
2350
2351    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
2352	fmt2 = "\t%o (%x)\n";
2353
2354    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
2355
2356    for (; obj; obj = obj->next) {
2357	Needed_Entry		*needed;
2358	char			*name, *path;
2359	bool			is_lib;
2360
2361	if (list_containers && obj->needed != NULL)
2362	    printf("%s:\n", obj->path);
2363	for (needed = obj->needed; needed; needed = needed->next) {
2364	    if (needed->obj != NULL) {
2365		if (needed->obj->traced && !list_containers)
2366		    continue;
2367		needed->obj->traced = true;
2368		path = needed->obj->path;
2369	    } else
2370		path = "not found";
2371
2372	    name = (char *)obj->strtab + needed->name;
2373	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
2374
2375	    fmt = is_lib ? fmt1 : fmt2;
2376	    while ((c = *fmt++) != '\0') {
2377		switch (c) {
2378		default:
2379		    putchar(c);
2380		    continue;
2381		case '\\':
2382		    switch (c = *fmt) {
2383		    case '\0':
2384			continue;
2385		    case 'n':
2386			putchar('\n');
2387			break;
2388		    case 't':
2389			putchar('\t');
2390			break;
2391		    }
2392		    break;
2393		case '%':
2394		    switch (c = *fmt) {
2395		    case '\0':
2396			continue;
2397		    case '%':
2398		    default:
2399			putchar(c);
2400			break;
2401		    case 'A':
2402			printf("%s", main_local);
2403			break;
2404		    case 'a':
2405			printf("%s", obj_main->path);
2406			break;
2407		    case 'o':
2408			printf("%s", name);
2409			break;
2410#if 0
2411		    case 'm':
2412			printf("%d", sodp->sod_major);
2413			break;
2414		    case 'n':
2415			printf("%d", sodp->sod_minor);
2416			break;
2417#endif
2418		    case 'p':
2419			printf("%s", path);
2420			break;
2421		    case 'x':
2422			printf("%p", needed->obj ? needed->obj->mapbase : 0);
2423			break;
2424		    }
2425		    break;
2426		}
2427		++fmt;
2428	    }
2429	}
2430    }
2431}
2432
2433/*
2434 * Unload a dlopened object and its dependencies from memory and from
2435 * our data structures.  It is assumed that the DAG rooted in the
2436 * object has already been unreferenced, and that the object has a
2437 * reference count of 0.
2438 */
2439static void
2440unload_object(Obj_Entry *root)
2441{
2442    Obj_Entry *obj;
2443    Obj_Entry **linkp;
2444
2445    assert(root->refcount == 0);
2446
2447    /*
2448     * Pass over the DAG removing unreferenced objects from
2449     * appropriate lists.
2450     */
2451    unlink_object(root);
2452
2453    /* Unmap all objects that are no longer referenced. */
2454    linkp = &obj_list->next;
2455    while ((obj = *linkp) != NULL) {
2456	if (obj->refcount == 0) {
2457	    dbg("unloading \"%s\"", obj->path);
2458	    munmap(obj->mapbase, obj->mapsize);
2459	    linkmap_delete(obj);
2460	    *linkp = obj->next;
2461	    obj_count--;
2462	    obj_free(obj);
2463	} else
2464	    linkp = &obj->next;
2465    }
2466    obj_tail = linkp;
2467}
2468
2469static void
2470unlink_object(Obj_Entry *root)
2471{
2472    Objlist_Entry *elm;
2473
2474    if (root->refcount == 0) {
2475	/* Remove the object from the RTLD_GLOBAL list. */
2476	objlist_remove(&list_global, root);
2477
2478    	/* Remove the object from all objects' DAG lists. */
2479    	STAILQ_FOREACH(elm, &root->dagmembers , link) {
2480	    objlist_remove(&elm->obj->dldags, root);
2481	    if (elm->obj != root)
2482		unlink_object(elm->obj);
2483	}
2484    }
2485}
2486
2487static void
2488ref_dag(Obj_Entry *root)
2489{
2490    Objlist_Entry *elm;
2491
2492    STAILQ_FOREACH(elm, &root->dagmembers , link)
2493	elm->obj->refcount++;
2494}
2495
2496static void
2497unref_dag(Obj_Entry *root)
2498{
2499    Objlist_Entry *elm;
2500
2501    STAILQ_FOREACH(elm, &root->dagmembers , link)
2502	elm->obj->refcount--;
2503}
2504
2505/*
2506 * Common code for MD __tls_get_addr().
2507 */
2508void *
2509tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
2510{
2511    Elf_Addr* dtv = *dtvp;
2512    int lockstate;
2513
2514    /* Check dtv generation in case new modules have arrived */
2515    if (dtv[0] != tls_dtv_generation) {
2516	Elf_Addr* newdtv;
2517	int to_copy;
2518
2519	lockstate = wlock_acquire(rtld_bind_lock);
2520	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
2521	to_copy = dtv[1];
2522	if (to_copy > tls_max_index)
2523	    to_copy = tls_max_index;
2524	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
2525	newdtv[0] = tls_dtv_generation;
2526	newdtv[1] = tls_max_index;
2527	free(dtv);
2528	wlock_release(rtld_bind_lock, lockstate);
2529	*dtvp = newdtv;
2530    }
2531
2532    /* Dynamically allocate module TLS if necessary */
2533    if (!dtv[index + 1]) {
2534	/* Signal safe, wlock will block out signals. */
2535	lockstate = wlock_acquire(rtld_bind_lock);
2536	if (!dtv[index + 1])
2537	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
2538	wlock_release(rtld_bind_lock, lockstate);
2539    }
2540    return (void*) (dtv[index + 1] + offset);
2541}
2542
2543/* XXX not sure what variants to use for arm. */
2544
2545#if defined(__ia64__) || defined(__alpha__) || defined(__powerpc__)
2546
2547/*
2548 * Allocate Static TLS using the Variant I method.
2549 */
2550void *
2551allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
2552{
2553    Obj_Entry *obj;
2554    size_t size;
2555    char *tls;
2556    Elf_Addr *dtv, *olddtv;
2557    Elf_Addr addr;
2558    int i;
2559
2560    size = tls_static_space;
2561
2562    tls = malloc(size);
2563    dtv = malloc((tls_max_index + 2) * sizeof(Elf_Addr));
2564
2565    *(Elf_Addr**) tls = dtv;
2566
2567    dtv[0] = tls_dtv_generation;
2568    dtv[1] = tls_max_index;
2569
2570    if (oldtls) {
2571	/*
2572	 * Copy the static TLS block over whole.
2573	 */
2574	memcpy(tls + tcbsize, oldtls + tcbsize, tls_static_space - tcbsize);
2575
2576	/*
2577	 * If any dynamic TLS blocks have been created tls_get_addr(),
2578	 * move them over.
2579	 */
2580	olddtv = *(Elf_Addr**) oldtls;
2581	for (i = 0; i < olddtv[1]; i++) {
2582	    if (olddtv[i+2] < (Elf_Addr)oldtls ||
2583		olddtv[i+2] > (Elf_Addr)oldtls + tls_static_space) {
2584		dtv[i+2] = olddtv[i+2];
2585		olddtv[i+2] = 0;
2586	    }
2587	}
2588
2589	/*
2590	 * We assume that all tls blocks are allocated with the same
2591	 * size and alignment.
2592	 */
2593	free_tls(oldtls, tcbsize, tcbalign);
2594    } else {
2595	for (obj = objs; obj; obj = obj->next) {
2596	    if (obj->tlsoffset) {
2597		addr = (Elf_Addr)tls + obj->tlsoffset;
2598		memset((void*) (addr + obj->tlsinitsize),
2599		       0, obj->tlssize - obj->tlsinitsize);
2600		if (obj->tlsinit)
2601		    memcpy((void*) addr, obj->tlsinit,
2602			   obj->tlsinitsize);
2603		dtv[obj->tlsindex + 1] = addr;
2604	    } else if (obj->tlsindex) {
2605		dtv[obj->tlsindex + 1] = 0;
2606	    }
2607	}
2608    }
2609
2610    return tls;
2611}
2612
2613void
2614free_tls(void *tls, size_t tcbsize, size_t tcbalign)
2615{
2616    size_t size;
2617    Elf_Addr* dtv;
2618    int dtvsize, i;
2619    Elf_Addr tlsstart, tlsend;
2620
2621    /*
2622     * Figure out the size of the initial TLS block so that we can
2623     * find stuff which __tls_get_addr() allocated dynamically.
2624     */
2625    size = tls_static_space;
2626
2627    dtv = ((Elf_Addr**)tls)[0];
2628    dtvsize = dtv[1];
2629    tlsstart = (Elf_Addr) tls;
2630    tlsend = tlsstart + size;
2631    for (i = 0; i < dtvsize; i++) {
2632	if (dtv[i+2] < tlsstart || dtv[i+2] > tlsend) {
2633	    free((void*) dtv[i+2]);
2634	}
2635    }
2636
2637    free((void*) tlsstart);
2638}
2639
2640#endif
2641
2642#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
2643    defined(__arm__)
2644
2645/*
2646 * Allocate Static TLS using the Variant II method.
2647 */
2648void *
2649allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
2650{
2651    Obj_Entry *obj;
2652    size_t size;
2653    char *tls;
2654    Elf_Addr *dtv, *olddtv;
2655    Elf_Addr segbase, oldsegbase, addr;
2656    int i;
2657
2658    size = round(tls_static_space, tcbalign);
2659
2660    assert(tcbsize >= 2*sizeof(Elf_Addr));
2661    tls = malloc(size + tcbsize);
2662    dtv = malloc((tls_max_index + 2) * sizeof(Elf_Addr));
2663
2664    segbase = (Elf_Addr)(tls + size);
2665    ((Elf_Addr*)segbase)[0] = segbase;
2666    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
2667
2668    dtv[0] = tls_dtv_generation;
2669    dtv[1] = tls_max_index;
2670
2671    if (oldtls) {
2672	/*
2673	 * Copy the static TLS block over whole.
2674	 */
2675	oldsegbase = (Elf_Addr) oldtls;
2676	memcpy((void *)(segbase - tls_static_space),
2677	       (const void *)(oldsegbase - tls_static_space),
2678	       tls_static_space);
2679
2680	/*
2681	 * If any dynamic TLS blocks have been created tls_get_addr(),
2682	 * move them over.
2683	 */
2684	olddtv = ((Elf_Addr**)oldsegbase)[1];
2685	for (i = 0; i < olddtv[1]; i++) {
2686	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
2687		dtv[i+2] = olddtv[i+2];
2688		olddtv[i+2] = 0;
2689	    }
2690	}
2691
2692	/*
2693	 * We assume that this block was the one we created with
2694	 * allocate_initial_tls().
2695	 */
2696	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
2697    } else {
2698	for (obj = objs; obj; obj = obj->next) {
2699	    if (obj->tlsoffset) {
2700		addr = segbase - obj->tlsoffset;
2701		memset((void*) (addr + obj->tlsinitsize),
2702		       0, obj->tlssize - obj->tlsinitsize);
2703		if (obj->tlsinit)
2704		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
2705		dtv[obj->tlsindex + 1] = addr;
2706	    } else if (obj->tlsindex) {
2707		dtv[obj->tlsindex + 1] = 0;
2708	    }
2709	}
2710    }
2711
2712    return (void*) segbase;
2713}
2714
2715void
2716free_tls(void *tls, size_t tcbsize, size_t tcbalign)
2717{
2718    size_t size;
2719    Elf_Addr* dtv;
2720    int dtvsize, i;
2721    Elf_Addr tlsstart, tlsend;
2722
2723    /*
2724     * Figure out the size of the initial TLS block so that we can
2725     * find stuff which ___tls_get_addr() allocated dynamically.
2726     */
2727    size = round(tls_static_space, tcbalign);
2728
2729    dtv = ((Elf_Addr**)tls)[1];
2730    dtvsize = dtv[1];
2731    tlsend = (Elf_Addr) tls;
2732    tlsstart = tlsend - size;
2733    for (i = 0; i < dtvsize; i++) {
2734	if (dtv[i+2] < tlsstart || dtv[i+2] > tlsend) {
2735	    free((void*) dtv[i+2]);
2736	}
2737    }
2738
2739    free((void*) tlsstart);
2740}
2741
2742#endif
2743
2744/*
2745 * Allocate TLS block for module with given index.
2746 */
2747void *
2748allocate_module_tls(int index)
2749{
2750    Obj_Entry* obj;
2751    char* p;
2752
2753    for (obj = obj_list; obj; obj = obj->next) {
2754	if (obj->tlsindex == index)
2755	    break;
2756    }
2757    if (!obj) {
2758	_rtld_error("Can't find module with TLS index %d", index);
2759	die();
2760    }
2761
2762    p = malloc(obj->tlssize);
2763    memcpy(p, obj->tlsinit, obj->tlsinitsize);
2764    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
2765
2766    return p;
2767}
2768
2769bool
2770allocate_tls_offset(Obj_Entry *obj)
2771{
2772    size_t off;
2773
2774    if (obj->tls_done)
2775	return true;
2776
2777    if (obj->tlssize == 0) {
2778	obj->tls_done = true;
2779	return true;
2780    }
2781
2782    if (obj->tlsindex == 1)
2783	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
2784    else
2785	off = calculate_tls_offset(tls_last_offset, tls_last_size,
2786				   obj->tlssize, obj->tlsalign);
2787
2788    /*
2789     * If we have already fixed the size of the static TLS block, we
2790     * must stay within that size. When allocating the static TLS, we
2791     * leave a small amount of space spare to be used for dynamically
2792     * loading modules which use static TLS.
2793     */
2794    if (tls_static_space) {
2795	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
2796	    return false;
2797    }
2798
2799    tls_last_offset = obj->tlsoffset = off;
2800    tls_last_size = obj->tlssize;
2801    obj->tls_done = true;
2802
2803    return true;
2804}
2805
2806void
2807free_tls_offset(Obj_Entry *obj)
2808{
2809#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
2810    defined(__arm__)
2811    /*
2812     * If we were the last thing to allocate out of the static TLS
2813     * block, we give our space back to the 'allocator'. This is a
2814     * simplistic workaround to allow libGL.so.1 to be loaded and
2815     * unloaded multiple times. We only handle the Variant II
2816     * mechanism for now - this really needs a proper allocator.
2817     */
2818    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
2819	== calculate_tls_end(tls_last_offset, tls_last_size)) {
2820	tls_last_offset -= obj->tlssize;
2821	tls_last_size = 0;
2822    }
2823#endif
2824}
2825
2826void *
2827_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
2828{
2829    void *ret;
2830    int lockstate;
2831
2832    lockstate = wlock_acquire(rtld_bind_lock);
2833    ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
2834    wlock_release(rtld_bind_lock, lockstate);
2835    return (ret);
2836}
2837
2838void
2839_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
2840{
2841    int lockstate;
2842
2843    lockstate = wlock_acquire(rtld_bind_lock);
2844    free_tls(tcb, tcbsize, tcbalign);
2845    wlock_release(rtld_bind_lock, lockstate);
2846}
2847