rtld.c revision 114625
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * $FreeBSD: head/libexec/rtld-elf/rtld.c 114625 2003-05-04 00:56:00Z obrien $
27 */
28
29/*
30 * Dynamic linker for ELF.
31 *
32 * John Polstra <jdp@polstra.com>.
33 */
34
35#ifndef __GNUC__
36#error "GCC is needed to compile this file"
37#endif
38
39#include <sys/param.h>
40#include <sys/mman.h>
41#include <sys/stat.h>
42
43#include <dlfcn.h>
44#include <err.h>
45#include <errno.h>
46#include <fcntl.h>
47#include <stdarg.h>
48#include <stdio.h>
49#include <stdlib.h>
50#include <string.h>
51#include <unistd.h>
52
53#include "debug.h"
54#include "rtld.h"
55#ifdef WITH_LIBMAP
56#include "libmap.h"
57#endif
58
59#define END_SYM		"_end"
60#define PATH_RTLD	"/usr/libexec/ld-elf.so.1"
61
62/* Types. */
63typedef void (*func_ptr_type)();
64typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
65
66/*
67 * This structure provides a reentrant way to keep a list of objects and
68 * check which ones have already been processed in some way.
69 */
70typedef struct Struct_DoneList {
71    const Obj_Entry **objs;		/* Array of object pointers */
72    unsigned int num_alloc;		/* Allocated size of the array */
73    unsigned int num_used;		/* Number of array slots used */
74} DoneList;
75
76/*
77 * Function declarations.
78 */
79static const char *basename(const char *);
80static void die(void);
81static void digest_dynamic(Obj_Entry *, int);
82static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
83static Obj_Entry *dlcheck(void *);
84static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
85static bool donelist_check(DoneList *, const Obj_Entry *);
86static void errmsg_restore(char *);
87static char *errmsg_save(void);
88static void *fill_search_info(const char *, size_t, void *);
89static char *find_library(const char *, const Obj_Entry *);
90static const char *gethints(void);
91static void init_dag(Obj_Entry *);
92static void init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *);
93static void init_rtld(caddr_t);
94static void initlist_add_neededs(Needed_Entry *needed, Objlist *list);
95static void initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail,
96  Objlist *list);
97static bool is_exported(const Elf_Sym *);
98static void linkmap_add(Obj_Entry *);
99static void linkmap_delete(Obj_Entry *);
100static int load_needed_objects(Obj_Entry *);
101static int load_preload_objects(void);
102static Obj_Entry *load_object(char *);
103static void lock_check(void);
104static Obj_Entry *obj_from_addr(const void *);
105static void objlist_call_fini(Objlist *);
106static void objlist_call_init(Objlist *);
107static void objlist_clear(Objlist *);
108static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
109static void objlist_init(Objlist *);
110static void objlist_push_head(Objlist *, Obj_Entry *);
111static void objlist_push_tail(Objlist *, Obj_Entry *);
112static void objlist_remove(Objlist *, Obj_Entry *);
113static void objlist_remove_unref(Objlist *);
114static void *path_enumerate(const char *, path_enum_proc, void *);
115static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
116static int rtld_dirname(const char *, char *);
117static void rtld_exit(void);
118static char *search_library_path(const char *, const char *);
119static const void **get_program_var_addr(const char *name);
120static void set_program_var(const char *, const void *);
121static const Elf_Sym *symlook_default(const char *, unsigned long hash,
122  const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt);
123static const Elf_Sym *symlook_list(const char *, unsigned long,
124  Objlist *, const Obj_Entry **, bool in_plt, DoneList *);
125static void trace_loaded_objects(Obj_Entry *obj);
126static void unlink_object(Obj_Entry *);
127static void unload_object(Obj_Entry *);
128static void unref_dag(Obj_Entry *);
129
130void r_debug_state(struct r_debug*, struct link_map*);
131
132/*
133 * Data declarations.
134 */
135static char *error_message;	/* Message for dlerror(), or NULL */
136struct r_debug r_debug;		/* for GDB; */
137static bool trust;		/* False for setuid and setgid programs */
138static char *ld_bind_now;	/* Environment variable for immediate binding */
139static char *ld_debug;		/* Environment variable for debugging */
140static char *ld_library_path;	/* Environment variable for search path */
141static char *ld_preload;	/* Environment variable for libraries to
142				   load first */
143static char *ld_tracing;	/* Called from ldd to print libs */
144static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
145static Obj_Entry **obj_tail;	/* Link field of last object in list */
146static Obj_Entry *obj_main;	/* The main program shared object */
147static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
148static unsigned int obj_count;	/* Number of objects in obj_list */
149
150static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
151  STAILQ_HEAD_INITIALIZER(list_global);
152static Objlist list_main =	/* Objects loaded at program startup */
153  STAILQ_HEAD_INITIALIZER(list_main);
154static Objlist list_fini =	/* Objects needing fini() calls */
155  STAILQ_HEAD_INITIALIZER(list_fini);
156
157static LockInfo lockinfo;
158
159static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
160
161#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
162
163extern Elf_Dyn _DYNAMIC;
164#pragma weak _DYNAMIC
165
166/*
167 * These are the functions the dynamic linker exports to application
168 * programs.  They are the only symbols the dynamic linker is willing
169 * to export from itself.
170 */
171static func_ptr_type exports[] = {
172    (func_ptr_type) &_rtld_error,
173    (func_ptr_type) &dlclose,
174    (func_ptr_type) &dlerror,
175    (func_ptr_type) &dlopen,
176    (func_ptr_type) &dlsym,
177    (func_ptr_type) &dladdr,
178    (func_ptr_type) &dllockinit,
179    (func_ptr_type) &dlinfo,
180    NULL
181};
182
183/*
184 * Global declarations normally provided by crt1.  The dynamic linker is
185 * not built with crt1, so we have to provide them ourselves.
186 */
187char *__progname;
188char **environ;
189
190/*
191 * Fill in a DoneList with an allocation large enough to hold all of
192 * the currently-loaded objects.  Keep this as a macro since it calls
193 * alloca and we want that to occur within the scope of the caller.
194 */
195#define donelist_init(dlp)					\
196    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
197    assert((dlp)->objs != NULL),				\
198    (dlp)->num_alloc = obj_count,				\
199    (dlp)->num_used = 0)
200
201static __inline void
202rlock_acquire(void)
203{
204    lockinfo.rlock_acquire(lockinfo.thelock);
205    atomic_incr_int(&lockinfo.rcount);
206    lock_check();
207}
208
209static __inline void
210wlock_acquire(void)
211{
212    lockinfo.wlock_acquire(lockinfo.thelock);
213    atomic_incr_int(&lockinfo.wcount);
214    lock_check();
215}
216
217static __inline void
218rlock_release(void)
219{
220    atomic_decr_int(&lockinfo.rcount);
221    lockinfo.rlock_release(lockinfo.thelock);
222}
223
224static __inline void
225wlock_release(void)
226{
227    atomic_decr_int(&lockinfo.wcount);
228    lockinfo.wlock_release(lockinfo.thelock);
229}
230
231/*
232 * Main entry point for dynamic linking.  The first argument is the
233 * stack pointer.  The stack is expected to be laid out as described
234 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
235 * Specifically, the stack pointer points to a word containing
236 * ARGC.  Following that in the stack is a null-terminated sequence
237 * of pointers to argument strings.  Then comes a null-terminated
238 * sequence of pointers to environment strings.  Finally, there is a
239 * sequence of "auxiliary vector" entries.
240 *
241 * The second argument points to a place to store the dynamic linker's
242 * exit procedure pointer and the third to a place to store the main
243 * program's object.
244 *
245 * The return value is the main program's entry point.
246 */
247func_ptr_type
248_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
249{
250    Elf_Auxinfo *aux_info[AT_COUNT];
251    int i;
252    int argc;
253    char **argv;
254    char **env;
255    Elf_Auxinfo *aux;
256    Elf_Auxinfo *auxp;
257    const char *argv0;
258    Obj_Entry *obj;
259    Obj_Entry **preload_tail;
260    Objlist initlist;
261
262    /*
263     * On entry, the dynamic linker itself has not been relocated yet.
264     * Be very careful not to reference any global data until after
265     * init_rtld has returned.  It is OK to reference file-scope statics
266     * and string constants, and to call static and global functions.
267     */
268
269    /* Find the auxiliary vector on the stack. */
270    argc = *sp++;
271    argv = (char **) sp;
272    sp += argc + 1;	/* Skip over arguments and NULL terminator */
273    env = (char **) sp;
274    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
275	;
276    aux = (Elf_Auxinfo *) sp;
277
278    /* Digest the auxiliary vector. */
279    for (i = 0;  i < AT_COUNT;  i++)
280	aux_info[i] = NULL;
281    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
282	if (auxp->a_type < AT_COUNT)
283	    aux_info[auxp->a_type] = auxp;
284    }
285
286    /* Initialize and relocate ourselves. */
287    assert(aux_info[AT_BASE] != NULL);
288    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
289
290    __progname = obj_rtld.path;
291    argv0 = argv[0] != NULL ? argv[0] : "(null)";
292    environ = env;
293
294    trust = geteuid() == getuid() && getegid() == getgid();
295
296    ld_bind_now = getenv("LD_BIND_NOW");
297    if (trust) {
298	ld_debug = getenv("LD_DEBUG");
299	ld_library_path = getenv("LD_LIBRARY_PATH");
300	ld_preload = getenv("LD_PRELOAD");
301    }
302    ld_tracing = getenv("LD_TRACE_LOADED_OBJECTS");
303
304    if (ld_debug != NULL && *ld_debug != '\0')
305	debug = 1;
306    dbg("%s is initialized, base address = %p", __progname,
307	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
308    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
309    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
310
311    /*
312     * Load the main program, or process its program header if it is
313     * already loaded.
314     */
315    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
316	int fd = aux_info[AT_EXECFD]->a_un.a_val;
317	dbg("loading main program");
318	obj_main = map_object(fd, argv0, NULL);
319	close(fd);
320	if (obj_main == NULL)
321	    die();
322    } else {				/* Main program already loaded. */
323	const Elf_Phdr *phdr;
324	int phnum;
325	caddr_t entry;
326
327	dbg("processing main program's program header");
328	assert(aux_info[AT_PHDR] != NULL);
329	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
330	assert(aux_info[AT_PHNUM] != NULL);
331	phnum = aux_info[AT_PHNUM]->a_un.a_val;
332	assert(aux_info[AT_PHENT] != NULL);
333	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
334	assert(aux_info[AT_ENTRY] != NULL);
335	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
336	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
337	    die();
338    }
339
340    obj_main->path = xstrdup(argv0);
341    obj_main->mainprog = true;
342
343    /*
344     * Get the actual dynamic linker pathname from the executable if
345     * possible.  (It should always be possible.)  That ensures that
346     * gdb will find the right dynamic linker even if a non-standard
347     * one is being used.
348     */
349    if (obj_main->interp != NULL &&
350      strcmp(obj_main->interp, obj_rtld.path) != 0) {
351	free(obj_rtld.path);
352	obj_rtld.path = xstrdup(obj_main->interp);
353    }
354
355    digest_dynamic(obj_main, 0);
356
357    linkmap_add(obj_main);
358    linkmap_add(&obj_rtld);
359
360    /* Link the main program into the list of objects. */
361    *obj_tail = obj_main;
362    obj_tail = &obj_main->next;
363    obj_count++;
364    obj_main->refcount++;
365    /* Make sure we don't call the main program's init and fini functions. */
366    obj_main->init = obj_main->fini = NULL;
367
368    /* Initialize a fake symbol for resolving undefined weak references. */
369    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
370    sym_zero.st_shndx = SHN_UNDEF;
371
372#ifdef WITH_LIBMAP
373    lm_init();
374#endif
375
376    dbg("loading LD_PRELOAD libraries");
377    if (load_preload_objects() == -1)
378	die();
379    preload_tail = obj_tail;
380
381    dbg("loading needed objects");
382    if (load_needed_objects(obj_main) == -1)
383	die();
384
385    /* Make a list of all objects loaded at startup. */
386    for (obj = obj_list;  obj != NULL;  obj = obj->next)
387	objlist_push_tail(&list_main, obj);
388
389    if (ld_tracing) {		/* We're done */
390	trace_loaded_objects(obj_main);
391	exit(0);
392    }
393
394    if (relocate_objects(obj_main,
395	ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
396	die();
397
398    dbg("doing copy relocations");
399    if (do_copy_relocations(obj_main) == -1)
400	die();
401
402    dbg("initializing key program variables");
403    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
404    set_program_var("environ", env);
405
406    dbg("initializing thread locks");
407    lockdflt_init(&lockinfo);
408    lockinfo.thelock = lockinfo.lock_create(lockinfo.context);
409
410    /* Make a list of init functions to call. */
411    objlist_init(&initlist);
412    initlist_add_objects(obj_list, preload_tail, &initlist);
413
414    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
415
416    objlist_call_init(&initlist);
417    wlock_acquire();
418    objlist_clear(&initlist);
419    wlock_release();
420
421    dbg("transferring control to program entry point = %p", obj_main->entry);
422
423    /* Return the exit procedure and the program entry point. */
424    *exit_proc = rtld_exit;
425    *objp = obj_main;
426    return (func_ptr_type) obj_main->entry;
427}
428
429Elf_Addr
430_rtld_bind(Obj_Entry *obj, Elf_Word reloff)
431{
432    const Elf_Rel *rel;
433    const Elf_Sym *def;
434    const Obj_Entry *defobj;
435    Elf_Addr *where;
436    Elf_Addr target;
437
438    rlock_acquire();
439    if (obj->pltrel)
440	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
441    else
442	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
443
444    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
445    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
446    if (def == NULL)
447	die();
448
449    target = (Elf_Addr)(defobj->relocbase + def->st_value);
450
451    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
452      defobj->strtab + def->st_name, basename(obj->path),
453      (void *)target, basename(defobj->path));
454
455    /*
456     * Write the new contents for the jmpslot. Note that depending on
457     * architecture, the value which we need to return back to the
458     * lazy binding trampoline may or may not be the target
459     * address. The value returned from reloc_jmpslot() is the value
460     * that the trampoline needs.
461     */
462    target = reloc_jmpslot(where, target, defobj, obj, rel);
463    rlock_release();
464    return target;
465}
466
467/*
468 * Error reporting function.  Use it like printf.  If formats the message
469 * into a buffer, and sets things up so that the next call to dlerror()
470 * will return the message.
471 */
472void
473_rtld_error(const char *fmt, ...)
474{
475    static char buf[512];
476    va_list ap;
477
478    va_start(ap, fmt);
479    vsnprintf(buf, sizeof buf, fmt, ap);
480    error_message = buf;
481    va_end(ap);
482}
483
484/*
485 * Return a dynamically-allocated copy of the current error message, if any.
486 */
487static char *
488errmsg_save(void)
489{
490    return error_message == NULL ? NULL : xstrdup(error_message);
491}
492
493/*
494 * Restore the current error message from a copy which was previously saved
495 * by errmsg_save().  The copy is freed.
496 */
497static void
498errmsg_restore(char *saved_msg)
499{
500    if (saved_msg == NULL)
501	error_message = NULL;
502    else {
503	_rtld_error("%s", saved_msg);
504	free(saved_msg);
505    }
506}
507
508static const char *
509basename(const char *name)
510{
511    const char *p = strrchr(name, '/');
512    return p != NULL ? p + 1 : name;
513}
514
515static void
516die(void)
517{
518    const char *msg = dlerror();
519
520    if (msg == NULL)
521	msg = "Fatal error";
522    errx(1, "%s", msg);
523}
524
525/*
526 * Process a shared object's DYNAMIC section, and save the important
527 * information in its Obj_Entry structure.
528 */
529static void
530digest_dynamic(Obj_Entry *obj, int early)
531{
532    const Elf_Dyn *dynp;
533    Needed_Entry **needed_tail = &obj->needed;
534    const Elf_Dyn *dyn_rpath = NULL;
535    int plttype = DT_REL;
536
537    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
538	switch (dynp->d_tag) {
539
540	case DT_REL:
541	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
542	    break;
543
544	case DT_RELSZ:
545	    obj->relsize = dynp->d_un.d_val;
546	    break;
547
548	case DT_RELENT:
549	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
550	    break;
551
552	case DT_JMPREL:
553	    obj->pltrel = (const Elf_Rel *)
554	      (obj->relocbase + dynp->d_un.d_ptr);
555	    break;
556
557	case DT_PLTRELSZ:
558	    obj->pltrelsize = dynp->d_un.d_val;
559	    break;
560
561	case DT_RELA:
562	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
563	    break;
564
565	case DT_RELASZ:
566	    obj->relasize = dynp->d_un.d_val;
567	    break;
568
569	case DT_RELAENT:
570	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
571	    break;
572
573	case DT_PLTREL:
574	    plttype = dynp->d_un.d_val;
575	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
576	    break;
577
578	case DT_SYMTAB:
579	    obj->symtab = (const Elf_Sym *)
580	      (obj->relocbase + dynp->d_un.d_ptr);
581	    break;
582
583	case DT_SYMENT:
584	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
585	    break;
586
587	case DT_STRTAB:
588	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
589	    break;
590
591	case DT_STRSZ:
592	    obj->strsize = dynp->d_un.d_val;
593	    break;
594
595	case DT_HASH:
596	    {
597		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
598		  (obj->relocbase + dynp->d_un.d_ptr);
599		obj->nbuckets = hashtab[0];
600		obj->nchains = hashtab[1];
601		obj->buckets = hashtab + 2;
602		obj->chains = obj->buckets + obj->nbuckets;
603	    }
604	    break;
605
606	case DT_NEEDED:
607	    if (!obj->rtld) {
608		Needed_Entry *nep = NEW(Needed_Entry);
609		nep->name = dynp->d_un.d_val;
610		nep->obj = NULL;
611		nep->next = NULL;
612
613		*needed_tail = nep;
614		needed_tail = &nep->next;
615	    }
616	    break;
617
618	case DT_PLTGOT:
619	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
620	    break;
621
622	case DT_TEXTREL:
623	    obj->textrel = true;
624	    break;
625
626	case DT_SYMBOLIC:
627	    obj->symbolic = true;
628	    break;
629
630	case DT_RPATH:
631	    /*
632	     * We have to wait until later to process this, because we
633	     * might not have gotten the address of the string table yet.
634	     */
635	    dyn_rpath = dynp;
636	    break;
637
638	case DT_SONAME:
639	    /* Not used by the dynamic linker. */
640	    break;
641
642	case DT_INIT:
643	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
644	    break;
645
646	case DT_FINI:
647	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
648	    break;
649
650	case DT_DEBUG:
651	    /* XXX - not implemented yet */
652	    if (!early)
653		dbg("Filling in DT_DEBUG entry");
654	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
655	    break;
656
657	default:
658	    if (!early) {
659		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
660		    (long)dynp->d_tag);
661	    }
662	    break;
663	}
664    }
665
666    obj->traced = false;
667
668    if (plttype == DT_RELA) {
669	obj->pltrela = (const Elf_Rela *) obj->pltrel;
670	obj->pltrel = NULL;
671	obj->pltrelasize = obj->pltrelsize;
672	obj->pltrelsize = 0;
673    }
674
675    if (dyn_rpath != NULL)
676	obj->rpath = obj->strtab + dyn_rpath->d_un.d_val;
677}
678
679/*
680 * Process a shared object's program header.  This is used only for the
681 * main program, when the kernel has already loaded the main program
682 * into memory before calling the dynamic linker.  It creates and
683 * returns an Obj_Entry structure.
684 */
685static Obj_Entry *
686digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
687{
688    Obj_Entry *obj;
689    const Elf_Phdr *phlimit = phdr + phnum;
690    const Elf_Phdr *ph;
691    int nsegs = 0;
692
693    obj = obj_new();
694    for (ph = phdr;  ph < phlimit;  ph++) {
695	switch (ph->p_type) {
696
697	case PT_PHDR:
698	    if ((const Elf_Phdr *)ph->p_vaddr != phdr) {
699		_rtld_error("%s: invalid PT_PHDR", path);
700		return NULL;
701	    }
702	    obj->phdr = (const Elf_Phdr *) ph->p_vaddr;
703	    obj->phsize = ph->p_memsz;
704	    break;
705
706	case PT_INTERP:
707	    obj->interp = (const char *) ph->p_vaddr;
708	    break;
709
710	case PT_LOAD:
711	    if (nsegs == 0) {	/* First load segment */
712		obj->vaddrbase = trunc_page(ph->p_vaddr);
713		obj->mapbase = (caddr_t) obj->vaddrbase;
714		obj->relocbase = obj->mapbase - obj->vaddrbase;
715		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
716		  obj->vaddrbase;
717	    } else {		/* Last load segment */
718		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
719		  obj->vaddrbase;
720	    }
721	    nsegs++;
722	    break;
723
724	case PT_DYNAMIC:
725	    obj->dynamic = (const Elf_Dyn *) ph->p_vaddr;
726	    break;
727	}
728    }
729    if (nsegs < 1) {
730	_rtld_error("%s: too few PT_LOAD segments", path);
731	return NULL;
732    }
733
734    obj->entry = entry;
735    return obj;
736}
737
738static Obj_Entry *
739dlcheck(void *handle)
740{
741    Obj_Entry *obj;
742
743    for (obj = obj_list;  obj != NULL;  obj = obj->next)
744	if (obj == (Obj_Entry *) handle)
745	    break;
746
747    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
748	_rtld_error("Invalid shared object handle %p", handle);
749	return NULL;
750    }
751    return obj;
752}
753
754/*
755 * If the given object is already in the donelist, return true.  Otherwise
756 * add the object to the list and return false.
757 */
758static bool
759donelist_check(DoneList *dlp, const Obj_Entry *obj)
760{
761    unsigned int i;
762
763    for (i = 0;  i < dlp->num_used;  i++)
764	if (dlp->objs[i] == obj)
765	    return true;
766    /*
767     * Our donelist allocation should always be sufficient.  But if
768     * our threads locking isn't working properly, more shared objects
769     * could have been loaded since we allocated the list.  That should
770     * never happen, but we'll handle it properly just in case it does.
771     */
772    if (dlp->num_used < dlp->num_alloc)
773	dlp->objs[dlp->num_used++] = obj;
774    return false;
775}
776
777/*
778 * Hash function for symbol table lookup.  Don't even think about changing
779 * this.  It is specified by the System V ABI.
780 */
781unsigned long
782elf_hash(const char *name)
783{
784    const unsigned char *p = (const unsigned char *) name;
785    unsigned long h = 0;
786    unsigned long g;
787
788    while (*p != '\0') {
789	h = (h << 4) + *p++;
790	if ((g = h & 0xf0000000) != 0)
791	    h ^= g >> 24;
792	h &= ~g;
793    }
794    return h;
795}
796
797/*
798 * Find the library with the given name, and return its full pathname.
799 * The returned string is dynamically allocated.  Generates an error
800 * message and returns NULL if the library cannot be found.
801 *
802 * If the second argument is non-NULL, then it refers to an already-
803 * loaded shared object, whose library search path will be searched.
804 *
805 * The search order is:
806 *   rpath in the referencing file
807 *   LD_LIBRARY_PATH
808 *   ldconfig hints
809 *   /usr/lib
810 */
811static char *
812find_library(const char *xname, const Obj_Entry *refobj)
813{
814    char *pathname;
815    char *name;
816
817    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
818	if (xname[0] != '/' && !trust) {
819	    _rtld_error("Absolute pathname required for shared object \"%s\"",
820	      xname);
821	    return NULL;
822	}
823	return xstrdup(xname);
824    }
825
826#ifdef WITH_LIBMAP
827    if ((name = lm_find(refobj->path, xname)) == NULL)
828#endif
829	name = (char *)xname;
830
831    dbg(" Searching for \"%s\"", name);
832
833    if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
834      (refobj != NULL &&
835      (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
836      (pathname = search_library_path(name, gethints())) != NULL ||
837      (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
838	return pathname;
839
840    _rtld_error("Shared object \"%s\" not found", name);
841    return NULL;
842}
843
844/*
845 * Given a symbol number in a referencing object, find the corresponding
846 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
847 * no definition was found.  Returns a pointer to the Obj_Entry of the
848 * defining object via the reference parameter DEFOBJ_OUT.
849 */
850const Elf_Sym *
851find_symdef(unsigned long symnum, const Obj_Entry *refobj,
852    const Obj_Entry **defobj_out, bool in_plt, SymCache *cache)
853{
854    const Elf_Sym *ref;
855    const Elf_Sym *def;
856    const Obj_Entry *defobj;
857    const char *name;
858    unsigned long hash;
859
860    /*
861     * If we have already found this symbol, get the information from
862     * the cache.
863     */
864    if (symnum >= refobj->nchains)
865	return NULL;	/* Bad object */
866    if (cache != NULL && cache[symnum].sym != NULL) {
867	*defobj_out = cache[symnum].obj;
868	return cache[symnum].sym;
869    }
870
871    ref = refobj->symtab + symnum;
872    name = refobj->strtab + ref->st_name;
873    defobj = NULL;
874
875    /*
876     * We don't have to do a full scale lookup if the symbol is local.
877     * We know it will bind to the instance in this load module; to
878     * which we already have a pointer (ie ref). By not doing a lookup,
879     * we not only improve performance, but it also avoids unresolvable
880     * symbols when local symbols are not in the hash table. This has
881     * been seen with the ia64 toolchain.
882     */
883    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
884	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
885	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
886		symnum);
887	}
888	hash = elf_hash(name);
889	def = symlook_default(name, hash, refobj, &defobj, in_plt);
890    } else {
891	def = ref;
892	defobj = refobj;
893    }
894
895    /*
896     * If we found no definition and the reference is weak, treat the
897     * symbol as having the value zero.
898     */
899    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
900	def = &sym_zero;
901	defobj = obj_main;
902    }
903
904    if (def != NULL) {
905	*defobj_out = defobj;
906	/* Record the information in the cache to avoid subsequent lookups. */
907	if (cache != NULL) {
908	    cache[symnum].sym = def;
909	    cache[symnum].obj = defobj;
910	}
911    } else {
912	if (refobj != &obj_rtld)
913	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
914    }
915    return def;
916}
917
918/*
919 * Return the search path from the ldconfig hints file, reading it if
920 * necessary.  Returns NULL if there are problems with the hints file,
921 * or if the search path there is empty.
922 */
923static const char *
924gethints(void)
925{
926    static char *hints;
927
928    if (hints == NULL) {
929	int fd;
930	struct elfhints_hdr hdr;
931	char *p;
932
933	/* Keep from trying again in case the hints file is bad. */
934	hints = "";
935
936	if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1)
937	    return NULL;
938	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
939	  hdr.magic != ELFHINTS_MAGIC ||
940	  hdr.version != 1) {
941	    close(fd);
942	    return NULL;
943	}
944	p = xmalloc(hdr.dirlistlen + 1);
945	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
946	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
947	    free(p);
948	    close(fd);
949	    return NULL;
950	}
951	hints = p;
952	close(fd);
953    }
954    return hints[0] != '\0' ? hints : NULL;
955}
956
957static void
958init_dag(Obj_Entry *root)
959{
960    DoneList donelist;
961
962    donelist_init(&donelist);
963    init_dag1(root, root, &donelist);
964}
965
966static void
967init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
968{
969    const Needed_Entry *needed;
970
971    if (donelist_check(dlp, obj))
972	return;
973    objlist_push_tail(&obj->dldags, root);
974    objlist_push_tail(&root->dagmembers, obj);
975    for (needed = obj->needed;  needed != NULL;  needed = needed->next)
976	if (needed->obj != NULL)
977	    init_dag1(root, needed->obj, dlp);
978}
979
980/*
981 * Initialize the dynamic linker.  The argument is the address at which
982 * the dynamic linker has been mapped into memory.  The primary task of
983 * this function is to relocate the dynamic linker.
984 */
985static void
986init_rtld(caddr_t mapbase)
987{
988    Obj_Entry objtmp;	/* Temporary rtld object */
989
990    /*
991     * Conjure up an Obj_Entry structure for the dynamic linker.
992     *
993     * The "path" member can't be initialized yet because string constatns
994     * cannot yet be acessed. Below we will set it correctly.
995     */
996    objtmp.path = NULL;
997    objtmp.rtld = true;
998    objtmp.mapbase = mapbase;
999#ifdef PIC
1000    objtmp.relocbase = mapbase;
1001#endif
1002    if (&_DYNAMIC != 0) {
1003	objtmp.dynamic = rtld_dynamic(&objtmp);
1004	digest_dynamic(&objtmp, 1);
1005	assert(objtmp.needed == NULL);
1006	assert(!objtmp.textrel);
1007
1008	/*
1009	 * Temporarily put the dynamic linker entry into the object list, so
1010	 * that symbols can be found.
1011	 */
1012
1013	relocate_objects(&objtmp, true, &objtmp);
1014    }
1015
1016    /* Initialize the object list. */
1017    obj_tail = &obj_list;
1018
1019    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1020    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1021
1022    /* Replace the path with a dynamically allocated copy. */
1023    obj_rtld.path = xstrdup(PATH_RTLD);
1024
1025    r_debug.r_brk = r_debug_state;
1026    r_debug.r_state = RT_CONSISTENT;
1027}
1028
1029/*
1030 * Add the init functions from a needed object list (and its recursive
1031 * needed objects) to "list".  This is not used directly; it is a helper
1032 * function for initlist_add_objects().  The write lock must be held
1033 * when this function is called.
1034 */
1035static void
1036initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1037{
1038    /* Recursively process the successor needed objects. */
1039    if (needed->next != NULL)
1040	initlist_add_neededs(needed->next, list);
1041
1042    /* Process the current needed object. */
1043    if (needed->obj != NULL)
1044	initlist_add_objects(needed->obj, &needed->obj->next, list);
1045}
1046
1047/*
1048 * Scan all of the DAGs rooted in the range of objects from "obj" to
1049 * "tail" and add their init functions to "list".  This recurses over
1050 * the DAGs and ensure the proper init ordering such that each object's
1051 * needed libraries are initialized before the object itself.  At the
1052 * same time, this function adds the objects to the global finalization
1053 * list "list_fini" in the opposite order.  The write lock must be
1054 * held when this function is called.
1055 */
1056static void
1057initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1058{
1059    if (obj->init_done)
1060	return;
1061    obj->init_done = true;
1062
1063    /* Recursively process the successor objects. */
1064    if (&obj->next != tail)
1065	initlist_add_objects(obj->next, tail, list);
1066
1067    /* Recursively process the needed objects. */
1068    if (obj->needed != NULL)
1069	initlist_add_neededs(obj->needed, list);
1070
1071    /* Add the object to the init list. */
1072    if (obj->init != NULL)
1073	objlist_push_tail(list, obj);
1074
1075    /* Add the object to the global fini list in the reverse order. */
1076    if (obj->fini != NULL)
1077	objlist_push_head(&list_fini, obj);
1078}
1079
1080#ifndef FPTR_TARGET
1081#define FPTR_TARGET(f)	((Elf_Addr) (f))
1082#endif
1083
1084static bool
1085is_exported(const Elf_Sym *def)
1086{
1087    Elf_Addr value;
1088    const func_ptr_type *p;
1089
1090    value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1091    for (p = exports;  *p != NULL;  p++)
1092	if (FPTR_TARGET(*p) == value)
1093	    return true;
1094    return false;
1095}
1096
1097/*
1098 * Given a shared object, traverse its list of needed objects, and load
1099 * each of them.  Returns 0 on success.  Generates an error message and
1100 * returns -1 on failure.
1101 */
1102static int
1103load_needed_objects(Obj_Entry *first)
1104{
1105    Obj_Entry *obj;
1106
1107    for (obj = first;  obj != NULL;  obj = obj->next) {
1108	Needed_Entry *needed;
1109
1110	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1111	    const char *name = obj->strtab + needed->name;
1112	    char *path = find_library(name, obj);
1113
1114	    needed->obj = NULL;
1115	    if (path == NULL && !ld_tracing)
1116		return -1;
1117
1118	    if (path) {
1119		needed->obj = load_object(path);
1120		if (needed->obj == NULL && !ld_tracing)
1121		    return -1;		/* XXX - cleanup */
1122	    }
1123	}
1124    }
1125
1126    return 0;
1127}
1128
1129static int
1130load_preload_objects(void)
1131{
1132    char *p = ld_preload;
1133    static const char delim[] = " \t:;";
1134
1135    if (p == NULL)
1136	return NULL;
1137
1138    p += strspn(p, delim);
1139    while (*p != '\0') {
1140	size_t len = strcspn(p, delim);
1141	char *path;
1142	char savech;
1143
1144	savech = p[len];
1145	p[len] = '\0';
1146	if ((path = find_library(p, NULL)) == NULL)
1147	    return -1;
1148	if (load_object(path) == NULL)
1149	    return -1;	/* XXX - cleanup */
1150	p[len] = savech;
1151	p += len;
1152	p += strspn(p, delim);
1153    }
1154    return 0;
1155}
1156
1157/*
1158 * Load a shared object into memory, if it is not already loaded.  The
1159 * argument must be a string allocated on the heap.  This function assumes
1160 * responsibility for freeing it when necessary.
1161 *
1162 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1163 * on failure.
1164 */
1165static Obj_Entry *
1166load_object(char *path)
1167{
1168    Obj_Entry *obj;
1169    int fd = -1;
1170    struct stat sb;
1171
1172    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1173	if (strcmp(obj->path, path) == 0)
1174	    break;
1175
1176    /*
1177     * If we didn't find a match by pathname, open the file and check
1178     * again by device and inode.  This avoids false mismatches caused
1179     * by multiple links or ".." in pathnames.
1180     *
1181     * To avoid a race, we open the file and use fstat() rather than
1182     * using stat().
1183     */
1184    if (obj == NULL) {
1185	if ((fd = open(path, O_RDONLY)) == -1) {
1186	    _rtld_error("Cannot open \"%s\"", path);
1187	    return NULL;
1188	}
1189	if (fstat(fd, &sb) == -1) {
1190	    _rtld_error("Cannot fstat \"%s\"", path);
1191	    close(fd);
1192	    return NULL;
1193	}
1194	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1195	    if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) {
1196		close(fd);
1197		break;
1198	    }
1199	}
1200    }
1201
1202    if (obj == NULL) {	/* First use of this object, so we must map it in */
1203	dbg("loading \"%s\"", path);
1204	obj = map_object(fd, path, &sb);
1205	close(fd);
1206	if (obj == NULL) {
1207	    free(path);
1208	    return NULL;
1209	}
1210
1211	obj->path = path;
1212	digest_dynamic(obj, 0);
1213
1214	*obj_tail = obj;
1215	obj_tail = &obj->next;
1216	obj_count++;
1217	linkmap_add(obj);	/* for GDB & dlinfo() */
1218
1219	dbg("  %p .. %p: %s", obj->mapbase,
1220	  obj->mapbase + obj->mapsize - 1, obj->path);
1221	if (obj->textrel)
1222	    dbg("  WARNING: %s has impure text", obj->path);
1223    } else
1224	free(path);
1225
1226    obj->refcount++;
1227    return obj;
1228}
1229
1230/*
1231 * Check for locking violations and die if one is found.
1232 */
1233static void
1234lock_check(void)
1235{
1236    int rcount, wcount;
1237
1238    rcount = lockinfo.rcount;
1239    wcount = lockinfo.wcount;
1240    assert(rcount >= 0);
1241    assert(wcount >= 0);
1242    if (wcount > 1 || (wcount != 0 && rcount != 0)) {
1243	_rtld_error("Application locking error: %d readers and %d writers"
1244	  " in dynamic linker.  See DLLOCKINIT(3) in manual pages.",
1245	  rcount, wcount);
1246	die();
1247    }
1248}
1249
1250static Obj_Entry *
1251obj_from_addr(const void *addr)
1252{
1253    unsigned long endhash;
1254    Obj_Entry *obj;
1255
1256    endhash = elf_hash(END_SYM);
1257    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1258	const Elf_Sym *endsym;
1259
1260	if (addr < (void *) obj->mapbase)
1261	    continue;
1262	if ((endsym = symlook_obj(END_SYM, endhash, obj, true)) == NULL)
1263	    continue;	/* No "end" symbol?! */
1264	if (addr < (void *) (obj->relocbase + endsym->st_value))
1265	    return obj;
1266    }
1267    return NULL;
1268}
1269
1270/*
1271 * Call the finalization functions for each of the objects in "list"
1272 * which are unreferenced.  All of the objects are expected to have
1273 * non-NULL fini functions.
1274 */
1275static void
1276objlist_call_fini(Objlist *list)
1277{
1278    Objlist_Entry *elm;
1279    char *saved_msg;
1280
1281    /*
1282     * Preserve the current error message since a fini function might
1283     * call into the dynamic linker and overwrite it.
1284     */
1285    saved_msg = errmsg_save();
1286    STAILQ_FOREACH(elm, list, link) {
1287	if (elm->obj->refcount == 0) {
1288	    dbg("calling fini function for %s at %p", elm->obj->path,
1289	        (void *)elm->obj->fini);
1290	    call_initfini_pointer(elm->obj, elm->obj->fini);
1291	}
1292    }
1293    errmsg_restore(saved_msg);
1294}
1295
1296/*
1297 * Call the initialization functions for each of the objects in
1298 * "list".  All of the objects are expected to have non-NULL init
1299 * functions.
1300 */
1301static void
1302objlist_call_init(Objlist *list)
1303{
1304    Objlist_Entry *elm;
1305    char *saved_msg;
1306
1307    /*
1308     * Preserve the current error message since an init function might
1309     * call into the dynamic linker and overwrite it.
1310     */
1311    saved_msg = errmsg_save();
1312    STAILQ_FOREACH(elm, list, link) {
1313	dbg("calling init function for %s at %p", elm->obj->path,
1314	    (void *)elm->obj->init);
1315	call_initfini_pointer(elm->obj, elm->obj->init);
1316    }
1317    errmsg_restore(saved_msg);
1318}
1319
1320static void
1321objlist_clear(Objlist *list)
1322{
1323    Objlist_Entry *elm;
1324
1325    while (!STAILQ_EMPTY(list)) {
1326	elm = STAILQ_FIRST(list);
1327	STAILQ_REMOVE_HEAD(list, link);
1328	free(elm);
1329    }
1330}
1331
1332static Objlist_Entry *
1333objlist_find(Objlist *list, const Obj_Entry *obj)
1334{
1335    Objlist_Entry *elm;
1336
1337    STAILQ_FOREACH(elm, list, link)
1338	if (elm->obj == obj)
1339	    return elm;
1340    return NULL;
1341}
1342
1343static void
1344objlist_init(Objlist *list)
1345{
1346    STAILQ_INIT(list);
1347}
1348
1349static void
1350objlist_push_head(Objlist *list, Obj_Entry *obj)
1351{
1352    Objlist_Entry *elm;
1353
1354    elm = NEW(Objlist_Entry);
1355    elm->obj = obj;
1356    STAILQ_INSERT_HEAD(list, elm, link);
1357}
1358
1359static void
1360objlist_push_tail(Objlist *list, Obj_Entry *obj)
1361{
1362    Objlist_Entry *elm;
1363
1364    elm = NEW(Objlist_Entry);
1365    elm->obj = obj;
1366    STAILQ_INSERT_TAIL(list, elm, link);
1367}
1368
1369static void
1370objlist_remove(Objlist *list, Obj_Entry *obj)
1371{
1372    Objlist_Entry *elm;
1373
1374    if ((elm = objlist_find(list, obj)) != NULL) {
1375	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1376	free(elm);
1377    }
1378}
1379
1380/*
1381 * Remove all of the unreferenced objects from "list".
1382 */
1383static void
1384objlist_remove_unref(Objlist *list)
1385{
1386    Objlist newlist;
1387    Objlist_Entry *elm;
1388
1389    STAILQ_INIT(&newlist);
1390    while (!STAILQ_EMPTY(list)) {
1391	elm = STAILQ_FIRST(list);
1392	STAILQ_REMOVE_HEAD(list, link);
1393	if (elm->obj->refcount == 0)
1394	    free(elm);
1395	else
1396	    STAILQ_INSERT_TAIL(&newlist, elm, link);
1397    }
1398    *list = newlist;
1399}
1400
1401/*
1402 * Relocate newly-loaded shared objects.  The argument is a pointer to
1403 * the Obj_Entry for the first such object.  All objects from the first
1404 * to the end of the list of objects are relocated.  Returns 0 on success,
1405 * or -1 on failure.
1406 */
1407static int
1408relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1409{
1410    Obj_Entry *obj;
1411
1412    for (obj = first;  obj != NULL;  obj = obj->next) {
1413	if (obj != rtldobj)
1414	    dbg("relocating \"%s\"", obj->path);
1415	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1416	    obj->symtab == NULL || obj->strtab == NULL) {
1417	    _rtld_error("%s: Shared object has no run-time symbol table",
1418	      obj->path);
1419	    return -1;
1420	}
1421
1422	if (obj->textrel) {
1423	    /* There are relocations to the write-protected text segment. */
1424	    if (mprotect(obj->mapbase, obj->textsize,
1425	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1426		_rtld_error("%s: Cannot write-enable text segment: %s",
1427		  obj->path, strerror(errno));
1428		return -1;
1429	    }
1430	}
1431
1432	/* Process the non-PLT relocations. */
1433	if (reloc_non_plt(obj, rtldobj))
1434		return -1;
1435
1436	if (obj->textrel) {	/* Re-protected the text segment. */
1437	    if (mprotect(obj->mapbase, obj->textsize,
1438	      PROT_READ|PROT_EXEC) == -1) {
1439		_rtld_error("%s: Cannot write-protect text segment: %s",
1440		  obj->path, strerror(errno));
1441		return -1;
1442	    }
1443	}
1444
1445	/* Process the PLT relocations. */
1446	if (reloc_plt(obj) == -1)
1447	    return -1;
1448	/* Relocate the jump slots if we are doing immediate binding. */
1449	if (bind_now)
1450	    if (reloc_jmpslots(obj) == -1)
1451		return -1;
1452
1453
1454	/*
1455	 * Set up the magic number and version in the Obj_Entry.  These
1456	 * were checked in the crt1.o from the original ElfKit, so we
1457	 * set them for backward compatibility.
1458	 */
1459	obj->magic = RTLD_MAGIC;
1460	obj->version = RTLD_VERSION;
1461
1462	/* Set the special PLT or GOT entries. */
1463	init_pltgot(obj);
1464    }
1465
1466    return 0;
1467}
1468
1469/*
1470 * Cleanup procedure.  It will be called (by the atexit mechanism) just
1471 * before the process exits.
1472 */
1473static void
1474rtld_exit(void)
1475{
1476    Obj_Entry *obj;
1477
1478    dbg("rtld_exit()");
1479    /* Clear all the reference counts so the fini functions will be called. */
1480    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1481	obj->refcount = 0;
1482    objlist_call_fini(&list_fini);
1483    /* No need to remove the items from the list, since we are exiting. */
1484#ifdef WITH_LIBMAP
1485    lm_fini();
1486#endif
1487}
1488
1489static void *
1490path_enumerate(const char *path, path_enum_proc callback, void *arg)
1491{
1492    if (path == NULL)
1493	return (NULL);
1494
1495    path += strspn(path, ":;");
1496    while (*path != '\0') {
1497	size_t len;
1498	char  *res;
1499
1500	len = strcspn(path, ":;");
1501	res = callback(path, len, arg);
1502
1503	if (res != NULL)
1504	    return (res);
1505
1506	path += len;
1507	path += strspn(path, ":;");
1508    }
1509
1510    return (NULL);
1511}
1512
1513struct try_library_args {
1514    const char	*name;
1515    size_t	 namelen;
1516    char	*buffer;
1517    size_t	 buflen;
1518};
1519
1520static void *
1521try_library_path(const char *dir, size_t dirlen, void *param)
1522{
1523    struct try_library_args *arg;
1524
1525    arg = param;
1526    if (*dir == '/' || trust) {
1527	char *pathname;
1528
1529	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
1530		return (NULL);
1531
1532	pathname = arg->buffer;
1533	strncpy(pathname, dir, dirlen);
1534	pathname[dirlen] = '/';
1535	strcpy(pathname + dirlen + 1, arg->name);
1536
1537	dbg("  Trying \"%s\"", pathname);
1538	if (access(pathname, F_OK) == 0) {		/* We found it */
1539	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
1540	    strcpy(pathname, arg->buffer);
1541	    return (pathname);
1542	}
1543    }
1544    return (NULL);
1545}
1546
1547static char *
1548search_library_path(const char *name, const char *path)
1549{
1550    char *p;
1551    struct try_library_args arg;
1552
1553    if (path == NULL)
1554	return NULL;
1555
1556    arg.name = name;
1557    arg.namelen = strlen(name);
1558    arg.buffer = xmalloc(PATH_MAX);
1559    arg.buflen = PATH_MAX;
1560
1561    p = path_enumerate(path, try_library_path, &arg);
1562
1563    free(arg.buffer);
1564
1565    return (p);
1566}
1567
1568int
1569dlclose(void *handle)
1570{
1571    Obj_Entry *root;
1572
1573    wlock_acquire();
1574    root = dlcheck(handle);
1575    if (root == NULL) {
1576	wlock_release();
1577	return -1;
1578    }
1579
1580    /* Unreference the object and its dependencies. */
1581    root->dl_refcount--;
1582    unref_dag(root);
1583
1584    if (root->refcount == 0) {
1585	/*
1586	 * The object is no longer referenced, so we must unload it.
1587	 * First, call the fini functions with no locks held.
1588	 */
1589	wlock_release();
1590	objlist_call_fini(&list_fini);
1591	wlock_acquire();
1592	objlist_remove_unref(&list_fini);
1593
1594	/* Finish cleaning up the newly-unreferenced objects. */
1595	GDB_STATE(RT_DELETE,&root->linkmap);
1596	unload_object(root);
1597	GDB_STATE(RT_CONSISTENT,NULL);
1598    }
1599    wlock_release();
1600    return 0;
1601}
1602
1603const char *
1604dlerror(void)
1605{
1606    char *msg = error_message;
1607    error_message = NULL;
1608    return msg;
1609}
1610
1611/*
1612 * This function is deprecated and has no effect.
1613 */
1614void
1615dllockinit(void *context,
1616	   void *(*lock_create)(void *context),
1617           void (*rlock_acquire)(void *lock),
1618           void (*wlock_acquire)(void *lock),
1619           void (*lock_release)(void *lock),
1620           void (*lock_destroy)(void *lock),
1621	   void (*context_destroy)(void *context))
1622{
1623    static void *cur_context;
1624    static void (*cur_context_destroy)(void *);
1625
1626    /* Just destroy the context from the previous call, if necessary. */
1627    if (cur_context_destroy != NULL)
1628	cur_context_destroy(cur_context);
1629    cur_context = context;
1630    cur_context_destroy = context_destroy;
1631}
1632
1633void *
1634dlopen(const char *name, int mode)
1635{
1636    Obj_Entry **old_obj_tail;
1637    Obj_Entry *obj;
1638    Objlist initlist;
1639    int result;
1640
1641    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
1642    if (ld_tracing != NULL)
1643	environ = (char **)*get_program_var_addr("environ");
1644
1645    objlist_init(&initlist);
1646
1647    wlock_acquire();
1648    GDB_STATE(RT_ADD,NULL);
1649
1650    old_obj_tail = obj_tail;
1651    obj = NULL;
1652    if (name == NULL) {
1653	obj = obj_main;
1654	obj->refcount++;
1655    } else {
1656	char *path = find_library(name, obj_main);
1657	if (path != NULL)
1658	    obj = load_object(path);
1659    }
1660
1661    if (obj) {
1662	obj->dl_refcount++;
1663	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
1664	    objlist_push_tail(&list_global, obj);
1665	mode &= RTLD_MODEMASK;
1666	if (*old_obj_tail != NULL) {		/* We loaded something new. */
1667	    assert(*old_obj_tail == obj);
1668
1669	    result = load_needed_objects(obj);
1670	    if (result != -1 && ld_tracing)
1671		goto trace;
1672
1673	    if (result == -1 ||
1674	      (init_dag(obj), relocate_objects(obj, mode == RTLD_NOW,
1675	       &obj_rtld)) == -1) {
1676		obj->dl_refcount--;
1677		unref_dag(obj);
1678		if (obj->refcount == 0)
1679		    unload_object(obj);
1680		obj = NULL;
1681	    } else {
1682		/* Make list of init functions to call. */
1683		initlist_add_objects(obj, &obj->next, &initlist);
1684	    }
1685	} else if (ld_tracing)
1686	    goto trace;
1687    }
1688
1689    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
1690
1691    /* Call the init functions with no locks held. */
1692    wlock_release();
1693    objlist_call_init(&initlist);
1694    wlock_acquire();
1695    objlist_clear(&initlist);
1696    wlock_release();
1697    return obj;
1698trace:
1699    trace_loaded_objects(obj);
1700    wlock_release();
1701    exit(0);
1702}
1703
1704void *
1705dlsym(void *handle, const char *name)
1706{
1707    const Obj_Entry *obj;
1708    unsigned long hash;
1709    const Elf_Sym *def;
1710    const Obj_Entry *defobj;
1711
1712    hash = elf_hash(name);
1713    def = NULL;
1714    defobj = NULL;
1715
1716    rlock_acquire();
1717    if (handle == NULL || handle == RTLD_NEXT ||
1718	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
1719	void *retaddr;
1720
1721	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
1722	if ((obj = obj_from_addr(retaddr)) == NULL) {
1723	    _rtld_error("Cannot determine caller's shared object");
1724	    rlock_release();
1725	    return NULL;
1726	}
1727	if (handle == NULL) {	/* Just the caller's shared object. */
1728	    def = symlook_obj(name, hash, obj, true);
1729	    defobj = obj;
1730	} else if (handle == RTLD_NEXT || /* Objects after caller's */
1731		   handle == RTLD_SELF) { /* ... caller included */
1732	    if (handle == RTLD_NEXT)
1733		obj = obj->next;
1734	    for (; obj != NULL; obj = obj->next) {
1735		if ((def = symlook_obj(name, hash, obj, true)) != NULL) {
1736		    defobj = obj;
1737		    break;
1738		}
1739	    }
1740	} else {
1741	    assert(handle == RTLD_DEFAULT);
1742	    def = symlook_default(name, hash, obj, &defobj, true);
1743	}
1744    } else {
1745	if ((obj = dlcheck(handle)) == NULL) {
1746	    rlock_release();
1747	    return NULL;
1748	}
1749
1750	if (obj->mainprog) {
1751	    DoneList donelist;
1752
1753	    /* Search main program and all libraries loaded by it. */
1754	    donelist_init(&donelist);
1755	    def = symlook_list(name, hash, &list_main, &defobj, true,
1756	      &donelist);
1757	} else {
1758	    /*
1759	     * XXX - This isn't correct.  The search should include the whole
1760	     * DAG rooted at the given object.
1761	     */
1762	    def = symlook_obj(name, hash, obj, true);
1763	    defobj = obj;
1764	}
1765    }
1766
1767    if (def != NULL) {
1768	rlock_release();
1769
1770	/*
1771	 * The value required by the caller is derived from the value
1772	 * of the symbol. For the ia64 architecture, we need to
1773	 * construct a function descriptor which the caller can use to
1774	 * call the function with the right 'gp' value. For other
1775	 * architectures and for non-functions, the value is simply
1776	 * the relocated value of the symbol.
1777	 */
1778	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
1779	    return make_function_pointer(def, defobj);
1780	else
1781	    return defobj->relocbase + def->st_value;
1782    }
1783
1784    _rtld_error("Undefined symbol \"%s\"", name);
1785    rlock_release();
1786    return NULL;
1787}
1788
1789int
1790dladdr(const void *addr, Dl_info *info)
1791{
1792    const Obj_Entry *obj;
1793    const Elf_Sym *def;
1794    void *symbol_addr;
1795    unsigned long symoffset;
1796
1797    rlock_acquire();
1798    obj = obj_from_addr(addr);
1799    if (obj == NULL) {
1800        _rtld_error("No shared object contains address");
1801	rlock_release();
1802        return 0;
1803    }
1804    info->dli_fname = obj->path;
1805    info->dli_fbase = obj->mapbase;
1806    info->dli_saddr = (void *)0;
1807    info->dli_sname = NULL;
1808
1809    /*
1810     * Walk the symbol list looking for the symbol whose address is
1811     * closest to the address sent in.
1812     */
1813    for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
1814        def = obj->symtab + symoffset;
1815
1816        /*
1817         * For skip the symbol if st_shndx is either SHN_UNDEF or
1818         * SHN_COMMON.
1819         */
1820        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
1821            continue;
1822
1823        /*
1824         * If the symbol is greater than the specified address, or if it
1825         * is further away from addr than the current nearest symbol,
1826         * then reject it.
1827         */
1828        symbol_addr = obj->relocbase + def->st_value;
1829        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
1830            continue;
1831
1832        /* Update our idea of the nearest symbol. */
1833        info->dli_sname = obj->strtab + def->st_name;
1834        info->dli_saddr = symbol_addr;
1835
1836        /* Exact match? */
1837        if (info->dli_saddr == addr)
1838            break;
1839    }
1840    rlock_release();
1841    return 1;
1842}
1843
1844int
1845dlinfo(void *handle, int request, void *p)
1846{
1847    const Obj_Entry *obj;
1848    int error;
1849
1850    rlock_acquire();
1851
1852    if (handle == NULL || handle == RTLD_SELF) {
1853	void *retaddr;
1854
1855	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
1856	if ((obj = obj_from_addr(retaddr)) == NULL)
1857	    _rtld_error("Cannot determine caller's shared object");
1858    } else
1859	obj = dlcheck(handle);
1860
1861    if (obj == NULL) {
1862	rlock_release();
1863	return (-1);
1864    }
1865
1866    error = 0;
1867    switch (request) {
1868    case RTLD_DI_LINKMAP:
1869	*((struct link_map const **)p) = &obj->linkmap;
1870	break;
1871    case RTLD_DI_ORIGIN:
1872	error = rtld_dirname(obj->path, p);
1873	break;
1874
1875    case RTLD_DI_SERINFOSIZE:
1876    case RTLD_DI_SERINFO:
1877	error = do_search_info(obj, request, (struct dl_serinfo *)p);
1878	break;
1879
1880    default:
1881	_rtld_error("Invalid request %d passed to dlinfo()", request);
1882	error = -1;
1883    }
1884
1885    rlock_release();
1886
1887    return (error);
1888}
1889
1890struct fill_search_info_args {
1891    int		 request;
1892    unsigned int flags;
1893    Dl_serinfo  *serinfo;
1894    Dl_serpath  *serpath;
1895    char	*strspace;
1896};
1897
1898static void *
1899fill_search_info(const char *dir, size_t dirlen, void *param)
1900{
1901    struct fill_search_info_args *arg;
1902
1903    arg = param;
1904
1905    if (arg->request == RTLD_DI_SERINFOSIZE) {
1906	arg->serinfo->dls_cnt ++;
1907	arg->serinfo->dls_size += dirlen + 1;
1908    } else {
1909	struct dl_serpath *s_entry;
1910
1911	s_entry = arg->serpath;
1912	s_entry->dls_name  = arg->strspace;
1913	s_entry->dls_flags = arg->flags;
1914
1915	strncpy(arg->strspace, dir, dirlen);
1916	arg->strspace[dirlen] = '\0';
1917
1918	arg->strspace += dirlen + 1;
1919	arg->serpath++;
1920    }
1921
1922    return (NULL);
1923}
1924
1925static int
1926do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
1927{
1928    struct dl_serinfo _info;
1929    struct fill_search_info_args args;
1930
1931    args.request = RTLD_DI_SERINFOSIZE;
1932    args.serinfo = &_info;
1933
1934    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1935    _info.dls_cnt  = 0;
1936
1937    path_enumerate(ld_library_path, fill_search_info, &args);
1938    path_enumerate(obj->rpath, fill_search_info, &args);
1939    path_enumerate(gethints(), fill_search_info, &args);
1940    path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
1941
1942
1943    if (request == RTLD_DI_SERINFOSIZE) {
1944	info->dls_size = _info.dls_size;
1945	info->dls_cnt = _info.dls_cnt;
1946	return (0);
1947    }
1948
1949    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
1950	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
1951	return (-1);
1952    }
1953
1954    args.request  = RTLD_DI_SERINFO;
1955    args.serinfo  = info;
1956    args.serpath  = &info->dls_serpath[0];
1957    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
1958
1959    args.flags = LA_SER_LIBPATH;
1960    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
1961	return (-1);
1962
1963    args.flags = LA_SER_RUNPATH;
1964    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
1965	return (-1);
1966
1967    args.flags = LA_SER_CONFIG;
1968    if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
1969	return (-1);
1970
1971    args.flags = LA_SER_DEFAULT;
1972    if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
1973	return (-1);
1974    return (0);
1975}
1976
1977static int
1978rtld_dirname(const char *path, char *bname)
1979{
1980    const char *endp;
1981
1982    /* Empty or NULL string gets treated as "." */
1983    if (path == NULL || *path == '\0') {
1984	bname[0] = '.';
1985	bname[1] = '\0';
1986	return (0);
1987    }
1988
1989    /* Strip trailing slashes */
1990    endp = path + strlen(path) - 1;
1991    while (endp > path && *endp == '/')
1992	endp--;
1993
1994    /* Find the start of the dir */
1995    while (endp > path && *endp != '/')
1996	endp--;
1997
1998    /* Either the dir is "/" or there are no slashes */
1999    if (endp == path) {
2000	bname[0] = *endp == '/' ? '/' : '.';
2001	bname[1] = '\0';
2002	return (0);
2003    } else {
2004	do {
2005	    endp--;
2006	} while (endp > path && *endp == '/');
2007    }
2008
2009    if (endp - path + 2 > PATH_MAX)
2010    {
2011	_rtld_error("Filename is too long: %s", path);
2012	return(-1);
2013    }
2014
2015    strncpy(bname, path, endp - path + 1);
2016    bname[endp - path + 1] = '\0';
2017    return (0);
2018}
2019
2020static void
2021linkmap_add(Obj_Entry *obj)
2022{
2023    struct link_map *l = &obj->linkmap;
2024    struct link_map *prev;
2025
2026    obj->linkmap.l_name = obj->path;
2027    obj->linkmap.l_addr = obj->mapbase;
2028    obj->linkmap.l_ld = obj->dynamic;
2029#ifdef __mips__
2030    /* GDB needs load offset on MIPS to use the symbols */
2031    obj->linkmap.l_offs = obj->relocbase;
2032#endif
2033
2034    if (r_debug.r_map == NULL) {
2035	r_debug.r_map = l;
2036	return;
2037    }
2038
2039    /*
2040     * Scan to the end of the list, but not past the entry for the
2041     * dynamic linker, which we want to keep at the very end.
2042     */
2043    for (prev = r_debug.r_map;
2044      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2045      prev = prev->l_next)
2046	;
2047
2048    /* Link in the new entry. */
2049    l->l_prev = prev;
2050    l->l_next = prev->l_next;
2051    if (l->l_next != NULL)
2052	l->l_next->l_prev = l;
2053    prev->l_next = l;
2054}
2055
2056static void
2057linkmap_delete(Obj_Entry *obj)
2058{
2059    struct link_map *l = &obj->linkmap;
2060
2061    if (l->l_prev == NULL) {
2062	if ((r_debug.r_map = l->l_next) != NULL)
2063	    l->l_next->l_prev = NULL;
2064	return;
2065    }
2066
2067    if ((l->l_prev->l_next = l->l_next) != NULL)
2068	l->l_next->l_prev = l->l_prev;
2069}
2070
2071/*
2072 * Function for the debugger to set a breakpoint on to gain control.
2073 *
2074 * The two parameters allow the debugger to easily find and determine
2075 * what the runtime loader is doing and to whom it is doing it.
2076 *
2077 * When the loadhook trap is hit (r_debug_state, set at program
2078 * initialization), the arguments can be found on the stack:
2079 *
2080 *  +8   struct link_map *m
2081 *  +4   struct r_debug  *rd
2082 *  +0   RetAddr
2083 */
2084void
2085r_debug_state(struct r_debug* rd, struct link_map *m)
2086{
2087}
2088
2089/*
2090 * Get address of the pointer variable in the main program.
2091 */
2092static const void **
2093get_program_var_addr(const char *name)
2094{
2095    const Obj_Entry *obj;
2096    unsigned long hash;
2097
2098    hash = elf_hash(name);
2099    for (obj = obj_main;  obj != NULL;  obj = obj->next) {
2100	const Elf_Sym *def;
2101
2102	if ((def = symlook_obj(name, hash, obj, false)) != NULL) {
2103	    const void **addr;
2104
2105	    addr = (const void **)(obj->relocbase + def->st_value);
2106	    return addr;
2107	}
2108    }
2109    return NULL;
2110}
2111
2112/*
2113 * Set a pointer variable in the main program to the given value.  This
2114 * is used to set key variables such as "environ" before any of the
2115 * init functions are called.
2116 */
2117static void
2118set_program_var(const char *name, const void *value)
2119{
2120    const void **addr;
2121
2122    if ((addr = get_program_var_addr(name)) != NULL) {
2123	dbg("\"%s\": *%p <-- %p", name, addr, value);
2124	*addr = value;
2125    }
2126}
2127
2128/*
2129 * Given a symbol name in a referencing object, find the corresponding
2130 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2131 * no definition was found.  Returns a pointer to the Obj_Entry of the
2132 * defining object via the reference parameter DEFOBJ_OUT.
2133 */
2134static const Elf_Sym *
2135symlook_default(const char *name, unsigned long hash,
2136    const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt)
2137{
2138    DoneList donelist;
2139    const Elf_Sym *def;
2140    const Elf_Sym *symp;
2141    const Obj_Entry *obj;
2142    const Obj_Entry *defobj;
2143    const Objlist_Entry *elm;
2144    def = NULL;
2145    defobj = NULL;
2146    donelist_init(&donelist);
2147
2148    /* Look first in the referencing object if linked symbolically. */
2149    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2150	symp = symlook_obj(name, hash, refobj, in_plt);
2151	if (symp != NULL) {
2152	    def = symp;
2153	    defobj = refobj;
2154	}
2155    }
2156
2157    /* Search all objects loaded at program start up. */
2158    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2159	symp = symlook_list(name, hash, &list_main, &obj, in_plt, &donelist);
2160	if (symp != NULL &&
2161	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2162	    def = symp;
2163	    defobj = obj;
2164	}
2165    }
2166
2167    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2168    STAILQ_FOREACH(elm, &list_global, link) {
2169       if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2170           break;
2171       symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
2172         &donelist);
2173	if (symp != NULL &&
2174	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2175	    def = symp;
2176	    defobj = obj;
2177	}
2178    }
2179
2180    /* Search all dlopened DAGs containing the referencing object. */
2181    STAILQ_FOREACH(elm, &refobj->dldags, link) {
2182	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2183	    break;
2184	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
2185	  &donelist);
2186	if (symp != NULL &&
2187	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2188	    def = symp;
2189	    defobj = obj;
2190	}
2191    }
2192
2193    /*
2194     * Search the dynamic linker itself, and possibly resolve the
2195     * symbol from there.  This is how the application links to
2196     * dynamic linker services such as dlopen.  Only the values listed
2197     * in the "exports" array can be resolved from the dynamic linker.
2198     */
2199    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2200	symp = symlook_obj(name, hash, &obj_rtld, in_plt);
2201	if (symp != NULL && is_exported(symp)) {
2202	    def = symp;
2203	    defobj = &obj_rtld;
2204	}
2205    }
2206
2207    if (def != NULL)
2208	*defobj_out = defobj;
2209    return def;
2210}
2211
2212static const Elf_Sym *
2213symlook_list(const char *name, unsigned long hash, Objlist *objlist,
2214  const Obj_Entry **defobj_out, bool in_plt, DoneList *dlp)
2215{
2216    const Elf_Sym *symp;
2217    const Elf_Sym *def;
2218    const Obj_Entry *defobj;
2219    const Objlist_Entry *elm;
2220
2221    def = NULL;
2222    defobj = NULL;
2223    STAILQ_FOREACH(elm, objlist, link) {
2224	if (donelist_check(dlp, elm->obj))
2225	    continue;
2226	if ((symp = symlook_obj(name, hash, elm->obj, in_plt)) != NULL) {
2227	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2228		def = symp;
2229		defobj = elm->obj;
2230		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2231		    break;
2232	    }
2233	}
2234    }
2235    if (def != NULL)
2236	*defobj_out = defobj;
2237    return def;
2238}
2239
2240/*
2241 * Search the symbol table of a single shared object for a symbol of
2242 * the given name.  Returns a pointer to the symbol, or NULL if no
2243 * definition was found.
2244 *
2245 * The symbol's hash value is passed in for efficiency reasons; that
2246 * eliminates many recomputations of the hash value.
2247 */
2248const Elf_Sym *
2249symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2250  bool in_plt)
2251{
2252    if (obj->buckets != NULL) {
2253	unsigned long symnum = obj->buckets[hash % obj->nbuckets];
2254
2255	while (symnum != STN_UNDEF) {
2256	    const Elf_Sym *symp;
2257	    const char *strp;
2258
2259	    if (symnum >= obj->nchains)
2260		return NULL;	/* Bad object */
2261	    symp = obj->symtab + symnum;
2262	    strp = obj->strtab + symp->st_name;
2263
2264	    if (name[0] == strp[0] && strcmp(name, strp) == 0)
2265		return symp->st_shndx != SHN_UNDEF ||
2266		  (!in_plt && symp->st_value != 0 &&
2267		  ELF_ST_TYPE(symp->st_info) == STT_FUNC) ? symp : NULL;
2268
2269	    symnum = obj->chains[symnum];
2270	}
2271    }
2272    return NULL;
2273}
2274
2275static void
2276trace_loaded_objects(Obj_Entry *obj)
2277{
2278    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
2279    int		c;
2280
2281    if ((main_local = getenv("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
2282	main_local = "";
2283
2284    if ((fmt1 = getenv("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
2285	fmt1 = "\t%o => %p (%x)\n";
2286
2287    if ((fmt2 = getenv("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
2288	fmt2 = "\t%o (%x)\n";
2289
2290    list_containers = getenv("LD_TRACE_LOADED_OBJECTS_ALL");
2291
2292    for (; obj; obj = obj->next) {
2293	Needed_Entry		*needed;
2294	char			*name, *path;
2295	bool			is_lib;
2296
2297	if (list_containers && obj->needed != NULL)
2298	    printf("%s:\n", obj->path);
2299	for (needed = obj->needed; needed; needed = needed->next) {
2300	    if (needed->obj != NULL) {
2301		if (needed->obj->traced && !list_containers)
2302		    continue;
2303		needed->obj->traced = true;
2304		path = needed->obj->path;
2305	    } else
2306		path = "not found";
2307
2308	    name = (char *)obj->strtab + needed->name;
2309	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
2310
2311	    fmt = is_lib ? fmt1 : fmt2;
2312	    while ((c = *fmt++) != '\0') {
2313		switch (c) {
2314		default:
2315		    putchar(c);
2316		    continue;
2317		case '\\':
2318		    switch (c = *fmt) {
2319		    case '\0':
2320			continue;
2321		    case 'n':
2322			putchar('\n');
2323			break;
2324		    case 't':
2325			putchar('\t');
2326			break;
2327		    }
2328		    break;
2329		case '%':
2330		    switch (c = *fmt) {
2331		    case '\0':
2332			continue;
2333		    case '%':
2334		    default:
2335			putchar(c);
2336			break;
2337		    case 'A':
2338			printf("%s", main_local);
2339			break;
2340		    case 'a':
2341			printf("%s", obj_main->path);
2342			break;
2343		    case 'o':
2344			printf("%s", name);
2345			break;
2346#if 0
2347		    case 'm':
2348			printf("%d", sodp->sod_major);
2349			break;
2350		    case 'n':
2351			printf("%d", sodp->sod_minor);
2352			break;
2353#endif
2354		    case 'p':
2355			printf("%s", path);
2356			break;
2357		    case 'x':
2358			printf("%p", needed->obj ? needed->obj->mapbase : 0);
2359			break;
2360		    }
2361		    break;
2362		}
2363		++fmt;
2364	    }
2365	}
2366    }
2367}
2368
2369/*
2370 * Unload a dlopened object and its dependencies from memory and from
2371 * our data structures.  It is assumed that the DAG rooted in the
2372 * object has already been unreferenced, and that the object has a
2373 * reference count of 0.
2374 */
2375static void
2376unload_object(Obj_Entry *root)
2377{
2378    Obj_Entry *obj;
2379    Obj_Entry **linkp;
2380
2381    assert(root->refcount == 0);
2382
2383    /*
2384     * Pass over the DAG removing unreferenced objects from
2385     * appropriate lists.
2386     */
2387    unlink_object(root);
2388
2389    /* Unmap all objects that are no longer referenced. */
2390    linkp = &obj_list->next;
2391    while ((obj = *linkp) != NULL) {
2392	if (obj->refcount == 0) {
2393	    dbg("unloading \"%s\"", obj->path);
2394	    munmap(obj->mapbase, obj->mapsize);
2395	    linkmap_delete(obj);
2396	    *linkp = obj->next;
2397	    obj_count--;
2398	    obj_free(obj);
2399	} else
2400	    linkp = &obj->next;
2401    }
2402    obj_tail = linkp;
2403}
2404
2405static void
2406unlink_object(Obj_Entry *root)
2407{
2408    const Needed_Entry *needed;
2409    Objlist_Entry *elm;
2410
2411    if (root->refcount == 0) {
2412	/* Remove the object from the RTLD_GLOBAL list. */
2413	objlist_remove(&list_global, root);
2414
2415    	/* Remove the object from all objects' DAG lists. */
2416    	STAILQ_FOREACH(elm, &root->dagmembers , link)
2417	    objlist_remove(&elm->obj->dldags, root);
2418    }
2419
2420    for (needed = root->needed;  needed != NULL;  needed = needed->next)
2421	if (needed->obj != NULL)
2422	    unlink_object(needed->obj);
2423}
2424
2425static void
2426unref_dag(Obj_Entry *root)
2427{
2428    const Needed_Entry *needed;
2429
2430    if (root->refcount == 0)
2431	return;
2432    root->refcount--;
2433    if (root->refcount == 0)
2434	for (needed = root->needed;  needed != NULL;  needed = needed->next)
2435	    if (needed->obj != NULL)
2436		unref_dag(needed->obj);
2437}
2438