e_exp.c revision 97407
1169691Skan/* @(#)e_exp.c 5.1 93/09/24 */
2169691Skan/*
3169691Skan * ====================================================
4169691Skan * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5169691Skan *
6169691Skan * Developed at SunPro, a Sun Microsystems, Inc. business.
7169691Skan * Permission to use, copy, modify, and distribute this
8169691Skan * software is freely granted, provided that this notice
9169691Skan * is preserved.
10169691Skan * ====================================================
11169691Skan */
12169691Skan
13169691Skan#ifndef lint
14169691Skanstatic char rcsid[] = "$FreeBSD: head/lib/msun/src/e_exp.c 97407 2002-05-28 17:03:12Z alfred $";
15169691Skan#endif
16169691Skan
17169691Skan/* __ieee754_exp(x)
18169691Skan * Returns the exponential of x.
19169691Skan *
20169691Skan * Method
21169691Skan *   1. Argument reduction:
22169691Skan *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
23169691Skan *	Given x, find r and integer k such that
24169691Skan *
25169691Skan *               x = k*ln2 + r,  |r| <= 0.5*ln2.
26169691Skan *
27169691Skan *      Here r will be represented as r = hi-lo for better
28169691Skan *	accuracy.
29169691Skan *
30169691Skan *   2. Approximation of exp(r) by a special rational function on
31169691Skan *	the interval [0,0.34658]:
32169691Skan *	Write
33169691Skan *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
34169691Skan *      We use a special Reme algorithm on [0,0.34658] to generate
35169691Skan * 	a polynomial of degree 5 to approximate R. The maximum error
36169691Skan *	of this polynomial approximation is bounded by 2**-59. In
37169691Skan *	other words,
38169691Skan *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
39169691Skan *  	(where z=r*r, and the values of P1 to P5 are listed below)
40169691Skan *	and
41169691Skan *	    |                  5          |     -59
42169691Skan *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
43169691Skan *	    |                             |
44169691Skan *	The computation of exp(r) thus becomes
45169691Skan *                             2*r
46169691Skan *		exp(r) = 1 + -------
47169691Skan *		              R - r
48169691Skan *                                 r*R1(r)
49169691Skan *		       = 1 + r + ----------- (for better accuracy)
50169691Skan *		                  2 - R1(r)
51169691Skan *	where
52169691Skan *			         2       4             10
53169691Skan *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
54169691Skan *
55169691Skan *   3. Scale back to obtain exp(x):
56169691Skan *	From step 1, we have
57169691Skan *	   exp(x) = 2^k * exp(r)
58169691Skan *
59169691Skan * Special cases:
60169691Skan *	exp(INF) is INF, exp(NaN) is NaN;
61169691Skan *	exp(-INF) is 0, and
62169691Skan *	for finite argument, only exp(0)=1 is exact.
63169691Skan *
64169691Skan * Accuracy:
65169691Skan *	according to an error analysis, the error is always less than
66169691Skan *	1 ulp (unit in the last place).
67169691Skan *
68169691Skan * Misc. info.
69169691Skan *	For IEEE double
70169691Skan *	    if x >  7.09782712893383973096e+02 then exp(x) overflow
71169691Skan *	    if x < -7.45133219101941108420e+02 then exp(x) underflow
72169691Skan *
73169691Skan * Constants:
74169691Skan * The hexadecimal values are the intended ones for the following
75169691Skan * constants. The decimal values may be used, provided that the
76169691Skan * compiler will convert from decimal to binary accurately enough
77169691Skan * to produce the hexadecimal values shown.
78169691Skan */
79169691Skan
80169691Skan#include "math.h"
81169691Skan#include "math_private.h"
82169691Skan
83169691Skanstatic const double
84169691Skanone	= 1.0,
85169691SkanhalF[2]	= {0.5,-0.5,},
86169691Skanhuge	= 1.0e+300,
87169691Skantwom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
88169691Skano_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
89169691Skanu_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
90169691Skanln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
91169691Skan	     -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
92169691Skanln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
93169691Skan	     -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
94169691Skaninvln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
95169691SkanP1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
96169691SkanP2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
97169691SkanP3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
98169691SkanP4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
99169691SkanP5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
100169691Skan
101169691Skan
102169691Skandouble
103169691Skan__generic___ieee754_exp(double x)	/* default IEEE double exp */
104169691Skan{
105169691Skan	double y,hi=0.0,lo=0.0,c,t;
106169691Skan	int32_t k=0,xsb;
107169691Skan	u_int32_t hx;
108169691Skan
109169691Skan	GET_HIGH_WORD(hx,x);
110169691Skan	xsb = (hx>>31)&1;		/* sign bit of x */
111169691Skan	hx &= 0x7fffffff;		/* high word of |x| */
112169691Skan
113169691Skan    /* filter out non-finite argument */
114169691Skan	if(hx >= 0x40862E42) {			/* if |x|>=709.78... */
115169691Skan            if(hx>=0x7ff00000) {
116169691Skan	        u_int32_t lx;
117169691Skan		GET_LOW_WORD(lx,x);
118169691Skan		if(((hx&0xfffff)|lx)!=0)
119169691Skan		     return x+x; 		/* NaN */
120169691Skan		else return (xsb==0)? x:0.0;	/* exp(+-inf)={inf,0} */
121169691Skan	    }
122169691Skan	    if(x > o_threshold) return huge*huge; /* overflow */
123169691Skan	    if(x < u_threshold) return twom1000*twom1000; /* underflow */
124169691Skan	}
125169691Skan
126169691Skan    /* argument reduction */
127169691Skan	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
128169691Skan	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
129169691Skan		hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
130169691Skan	    } else {
131169691Skan		k  = invln2*x+halF[xsb];
132169691Skan		t  = k;
133169691Skan		hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */
134169691Skan		lo = t*ln2LO[0];
135169691Skan	    }
136169691Skan	    x  = hi - lo;
137169691Skan	}
138169691Skan	else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */
139169691Skan	    if(huge+x>one) return one+x;/* trigger inexact */
140169691Skan	}
141169691Skan	else k = 0;
142169691Skan
143169691Skan    /* x is now in primary range */
144169691Skan	t  = x*x;
145169691Skan	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
146169691Skan	if(k==0) 	return one-((x*c)/(c-2.0)-x);
147169691Skan	else 		y = one-((lo-(x*c)/(2.0-c))-hi);
148169691Skan	if(k >= -1021) {
149169691Skan	    u_int32_t hy;
150169691Skan	    GET_HIGH_WORD(hy,y);
151169691Skan	    SET_HIGH_WORD(y,hy+(k<<20));	/* add k to y's exponent */
152169691Skan	    return y;
153169691Skan	} else {
154169691Skan	    u_int32_t hy;
155169691Skan	    GET_HIGH_WORD(hy,y);
156169691Skan	    SET_HIGH_WORD(y,hy+((k+1000)<<20));	/* add k to y's exponent */
157169691Skan	    return y*twom1000;
158169691Skan	}
159169691Skan}
160169691Skan