trees.c revision 131380
1/* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995-2003 Jean-loup Gailly
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 *  ALGORITHM
8 *
9 *      The "deflation" process uses several Huffman trees. The more
10 *      common source values are represented by shorter bit sequences.
11 *
12 *      Each code tree is stored in a compressed form which is itself
13 * a Huffman encoding of the lengths of all the code strings (in
14 * ascending order by source values).  The actual code strings are
15 * reconstructed from the lengths in the inflate process, as described
16 * in the deflate specification.
17 *
18 *  REFERENCES
19 *
20 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
21 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
22 *
23 *      Storer, James A.
24 *          Data Compression:  Methods and Theory, pp. 49-50.
25 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
26 *
27 *      Sedgewick, R.
28 *          Algorithms, p290.
29 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/lib/libz/trees.c 131380 2004-06-30 23:54:46Z tjr $");
34
35/* #define GEN_TREES_H */
36
37#include "deflate.h"
38
39#ifdef DEBUG
40#  include <ctype.h>
41#endif
42
43/* ===========================================================================
44 * Constants
45 */
46
47#define MAX_BL_BITS 7
48/* Bit length codes must not exceed MAX_BL_BITS bits */
49
50#define END_BLOCK 256
51/* end of block literal code */
52
53#define REP_3_6      16
54/* repeat previous bit length 3-6 times (2 bits of repeat count) */
55
56#define REPZ_3_10    17
57/* repeat a zero length 3-10 times  (3 bits of repeat count) */
58
59#define REPZ_11_138  18
60/* repeat a zero length 11-138 times  (7 bits of repeat count) */
61
62local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64
65local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67
68local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70
71local const uch bl_order[BL_CODES]
72   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73/* The lengths of the bit length codes are sent in order of decreasing
74 * probability, to avoid transmitting the lengths for unused bit length codes.
75 */
76
77#define Buf_size (8 * 2*sizeof(char))
78/* Number of bits used within bi_buf. (bi_buf might be implemented on
79 * more than 16 bits on some systems.)
80 */
81
82/* ===========================================================================
83 * Local data. These are initialized only once.
84 */
85
86#define DIST_CODE_LEN  512 /* see definition of array dist_code below */
87
88#if defined(GEN_TREES_H) || !defined(STDC)
89/* non ANSI compilers may not accept trees.h */
90
91local ct_data static_ltree[L_CODES+2];
92/* The static literal tree. Since the bit lengths are imposed, there is no
93 * need for the L_CODES extra codes used during heap construction. However
94 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
95 * below).
96 */
97
98local ct_data static_dtree[D_CODES];
99/* The static distance tree. (Actually a trivial tree since all codes use
100 * 5 bits.)
101 */
102
103uch _dist_code[DIST_CODE_LEN];
104/* Distance codes. The first 256 values correspond to the distances
105 * 3 .. 258, the last 256 values correspond to the top 8 bits of
106 * the 15 bit distances.
107 */
108
109uch _length_code[MAX_MATCH-MIN_MATCH+1];
110/* length code for each normalized match length (0 == MIN_MATCH) */
111
112local int base_length[LENGTH_CODES];
113/* First normalized length for each code (0 = MIN_MATCH) */
114
115local int base_dist[D_CODES];
116/* First normalized distance for each code (0 = distance of 1) */
117
118#else
119#  include "trees.h"
120#endif /* GEN_TREES_H */
121
122struct static_tree_desc_s {
123    const ct_data *static_tree;  /* static tree or NULL */
124    const intf *extra_bits;      /* extra bits for each code or NULL */
125    int     extra_base;          /* base index for extra_bits */
126    int     elems;               /* max number of elements in the tree */
127    int     max_length;          /* max bit length for the codes */
128};
129
130local static_tree_desc  static_l_desc =
131{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
132
133local static_tree_desc  static_d_desc =
134{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
135
136local static_tree_desc  static_bl_desc =
137{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
138
139/* ===========================================================================
140 * Local (static) routines in this file.
141 */
142
143local void tr_static_init OF((void));
144local void init_block     OF((deflate_state *s));
145local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
146local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
147local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
148local void build_tree     OF((deflate_state *s, tree_desc *desc));
149local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
150local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
151local int  build_bl_tree  OF((deflate_state *s));
152local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
153                              int blcodes));
154local void compress_block OF((deflate_state *s, ct_data *ltree,
155                              ct_data *dtree));
156local void set_data_type  OF((deflate_state *s));
157local unsigned bi_reverse OF((unsigned value, int length));
158local void bi_windup      OF((deflate_state *s));
159local void bi_flush       OF((deflate_state *s));
160local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
161                              int header));
162
163#ifdef GEN_TREES_H
164local void gen_trees_header OF((void));
165#endif
166
167#ifndef DEBUG
168#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
169   /* Send a code of the given tree. c and tree must not have side effects */
170
171#else /* DEBUG */
172#  define send_code(s, c, tree) \
173     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
174       send_bits(s, tree[c].Code, tree[c].Len); }
175#endif
176
177/* ===========================================================================
178 * Output a short LSB first on the stream.
179 * IN assertion: there is enough room in pendingBuf.
180 */
181#define put_short(s, w) { \
182    put_byte(s, (uch)((w) & 0xff)); \
183    put_byte(s, (uch)((ush)(w) >> 8)); \
184}
185
186/* ===========================================================================
187 * Send a value on a given number of bits.
188 * IN assertion: length <= 16 and value fits in length bits.
189 */
190#ifdef DEBUG
191local void send_bits      OF((deflate_state *s, int value, int length));
192
193local void send_bits(s, value, length)
194    deflate_state *s;
195    int value;  /* value to send */
196    int length; /* number of bits */
197{
198    Tracevv((stderr," l %2d v %4x ", length, value));
199    Assert(length > 0 && length <= 15, "invalid length");
200    s->bits_sent += (ulg)length;
201
202    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
203     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
204     * unused bits in value.
205     */
206    if (s->bi_valid > (int)Buf_size - length) {
207        s->bi_buf |= (value << s->bi_valid);
208        put_short(s, s->bi_buf);
209        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
210        s->bi_valid += length - Buf_size;
211    } else {
212        s->bi_buf |= value << s->bi_valid;
213        s->bi_valid += length;
214    }
215}
216#else /* !DEBUG */
217
218#define send_bits(s, value, length) \
219{ int len = length;\
220  if (s->bi_valid > (int)Buf_size - len) {\
221    int val = value;\
222    s->bi_buf |= (val << s->bi_valid);\
223    put_short(s, s->bi_buf);\
224    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
225    s->bi_valid += len - Buf_size;\
226  } else {\
227    s->bi_buf |= (value) << s->bi_valid;\
228    s->bi_valid += len;\
229  }\
230}
231#endif /* DEBUG */
232
233
234/* the arguments must not have side effects */
235
236/* ===========================================================================
237 * Initialize the various 'constant' tables.
238 */
239local void tr_static_init()
240{
241#if defined(GEN_TREES_H) || !defined(STDC)
242    static int static_init_done = 0;
243    int n;        /* iterates over tree elements */
244    int bits;     /* bit counter */
245    int length;   /* length value */
246    int code;     /* code value */
247    int dist;     /* distance index */
248    ush bl_count[MAX_BITS+1];
249    /* number of codes at each bit length for an optimal tree */
250
251    if (static_init_done) return;
252
253    /* For some embedded targets, global variables are not initialized: */
254    static_l_desc.static_tree = static_ltree;
255    static_l_desc.extra_bits = extra_lbits;
256    static_d_desc.static_tree = static_dtree;
257    static_d_desc.extra_bits = extra_dbits;
258    static_bl_desc.extra_bits = extra_blbits;
259
260    /* Initialize the mapping length (0..255) -> length code (0..28) */
261    length = 0;
262    for (code = 0; code < LENGTH_CODES-1; code++) {
263        base_length[code] = length;
264        for (n = 0; n < (1<<extra_lbits[code]); n++) {
265            _length_code[length++] = (uch)code;
266        }
267    }
268    Assert (length == 256, "tr_static_init: length != 256");
269    /* Note that the length 255 (match length 258) can be represented
270     * in two different ways: code 284 + 5 bits or code 285, so we
271     * overwrite length_code[255] to use the best encoding:
272     */
273    _length_code[length-1] = (uch)code;
274
275    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
276    dist = 0;
277    for (code = 0 ; code < 16; code++) {
278        base_dist[code] = dist;
279        for (n = 0; n < (1<<extra_dbits[code]); n++) {
280            _dist_code[dist++] = (uch)code;
281        }
282    }
283    Assert (dist == 256, "tr_static_init: dist != 256");
284    dist >>= 7; /* from now on, all distances are divided by 128 */
285    for ( ; code < D_CODES; code++) {
286        base_dist[code] = dist << 7;
287        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
288            _dist_code[256 + dist++] = (uch)code;
289        }
290    }
291    Assert (dist == 256, "tr_static_init: 256+dist != 512");
292
293    /* Construct the codes of the static literal tree */
294    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
295    n = 0;
296    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
297    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
298    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
299    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
300    /* Codes 286 and 287 do not exist, but we must include them in the
301     * tree construction to get a canonical Huffman tree (longest code
302     * all ones)
303     */
304    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
305
306    /* The static distance tree is trivial: */
307    for (n = 0; n < D_CODES; n++) {
308        static_dtree[n].Len = 5;
309        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
310    }
311    static_init_done = 1;
312
313#  ifdef GEN_TREES_H
314    gen_trees_header();
315#  endif
316#endif /* defined(GEN_TREES_H) || !defined(STDC) */
317}
318
319/* ===========================================================================
320 * Genererate the file trees.h describing the static trees.
321 */
322#ifdef GEN_TREES_H
323#  ifndef DEBUG
324#    include <stdio.h>
325#  endif
326
327#  define SEPARATOR(i, last, width) \
328      ((i) == (last)? "\n};\n\n" :    \
329       ((i) % (width) == (width)-1 ? ",\n" : ", "))
330
331void gen_trees_header()
332{
333    FILE *header = fopen("trees.h", "w");
334    int i;
335
336    Assert (header != NULL, "Can't open trees.h");
337    fprintf(header,
338            "/* header created automatically with -DGEN_TREES_H */\n\n");
339
340    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
341    for (i = 0; i < L_CODES+2; i++) {
342        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
343                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
344    }
345
346    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
347    for (i = 0; i < D_CODES; i++) {
348        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
349                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
350    }
351
352    fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
353    for (i = 0; i < DIST_CODE_LEN; i++) {
354        fprintf(header, "%2u%s", _dist_code[i],
355                SEPARATOR(i, DIST_CODE_LEN-1, 20));
356    }
357
358    fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
359    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
360        fprintf(header, "%2u%s", _length_code[i],
361                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
362    }
363
364    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
365    for (i = 0; i < LENGTH_CODES; i++) {
366        fprintf(header, "%1u%s", base_length[i],
367                SEPARATOR(i, LENGTH_CODES-1, 20));
368    }
369
370    fprintf(header, "local const int base_dist[D_CODES] = {\n");
371    for (i = 0; i < D_CODES; i++) {
372        fprintf(header, "%5u%s", base_dist[i],
373                SEPARATOR(i, D_CODES-1, 10));
374    }
375
376    fclose(header);
377}
378#endif /* GEN_TREES_H */
379
380/* ===========================================================================
381 * Initialize the tree data structures for a new zlib stream.
382 */
383void _tr_init(s)
384    deflate_state *s;
385{
386    tr_static_init();
387
388    s->l_desc.dyn_tree = s->dyn_ltree;
389    s->l_desc.stat_desc = &static_l_desc;
390
391    s->d_desc.dyn_tree = s->dyn_dtree;
392    s->d_desc.stat_desc = &static_d_desc;
393
394    s->bl_desc.dyn_tree = s->bl_tree;
395    s->bl_desc.stat_desc = &static_bl_desc;
396
397    s->bi_buf = 0;
398    s->bi_valid = 0;
399    s->last_eob_len = 8; /* enough lookahead for inflate */
400#ifdef DEBUG
401    s->compressed_len = 0L;
402    s->bits_sent = 0L;
403#endif
404
405    /* Initialize the first block of the first file: */
406    init_block(s);
407}
408
409/* ===========================================================================
410 * Initialize a new block.
411 */
412local void init_block(s)
413    deflate_state *s;
414{
415    int n; /* iterates over tree elements */
416
417    /* Initialize the trees. */
418    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
419    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
420    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
421
422    s->dyn_ltree[END_BLOCK].Freq = 1;
423    s->opt_len = s->static_len = 0L;
424    s->last_lit = s->matches = 0;
425}
426
427#define SMALLEST 1
428/* Index within the heap array of least frequent node in the Huffman tree */
429
430
431/* ===========================================================================
432 * Remove the smallest element from the heap and recreate the heap with
433 * one less element. Updates heap and heap_len.
434 */
435#define pqremove(s, tree, top) \
436{\
437    top = s->heap[SMALLEST]; \
438    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
439    pqdownheap(s, tree, SMALLEST); \
440}
441
442/* ===========================================================================
443 * Compares to subtrees, using the tree depth as tie breaker when
444 * the subtrees have equal frequency. This minimizes the worst case length.
445 */
446#define smaller(tree, n, m, depth) \
447   (tree[n].Freq < tree[m].Freq || \
448   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
449
450/* ===========================================================================
451 * Restore the heap property by moving down the tree starting at node k,
452 * exchanging a node with the smallest of its two sons if necessary, stopping
453 * when the heap property is re-established (each father smaller than its
454 * two sons).
455 */
456local void pqdownheap(s, tree, k)
457    deflate_state *s;
458    ct_data *tree;  /* the tree to restore */
459    int k;               /* node to move down */
460{
461    int v = s->heap[k];
462    int j = k << 1;  /* left son of k */
463    while (j <= s->heap_len) {
464        /* Set j to the smallest of the two sons: */
465        if (j < s->heap_len &&
466            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
467            j++;
468        }
469        /* Exit if v is smaller than both sons */
470        if (smaller(tree, v, s->heap[j], s->depth)) break;
471
472        /* Exchange v with the smallest son */
473        s->heap[k] = s->heap[j];  k = j;
474
475        /* And continue down the tree, setting j to the left son of k */
476        j <<= 1;
477    }
478    s->heap[k] = v;
479}
480
481/* ===========================================================================
482 * Compute the optimal bit lengths for a tree and update the total bit length
483 * for the current block.
484 * IN assertion: the fields freq and dad are set, heap[heap_max] and
485 *    above are the tree nodes sorted by increasing frequency.
486 * OUT assertions: the field len is set to the optimal bit length, the
487 *     array bl_count contains the frequencies for each bit length.
488 *     The length opt_len is updated; static_len is also updated if stree is
489 *     not null.
490 */
491local void gen_bitlen(s, desc)
492    deflate_state *s;
493    tree_desc *desc;    /* the tree descriptor */
494{
495    ct_data *tree        = desc->dyn_tree;
496    int max_code         = desc->max_code;
497    const ct_data *stree = desc->stat_desc->static_tree;
498    const intf *extra    = desc->stat_desc->extra_bits;
499    int base             = desc->stat_desc->extra_base;
500    int max_length       = desc->stat_desc->max_length;
501    int h;              /* heap index */
502    int n, m;           /* iterate over the tree elements */
503    int bits;           /* bit length */
504    int xbits;          /* extra bits */
505    ush f;              /* frequency */
506    int overflow = 0;   /* number of elements with bit length too large */
507
508    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
509
510    /* In a first pass, compute the optimal bit lengths (which may
511     * overflow in the case of the bit length tree).
512     */
513    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
514
515    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
516        n = s->heap[h];
517        bits = tree[tree[n].Dad].Len + 1;
518        if (bits > max_length) bits = max_length, overflow++;
519        tree[n].Len = (ush)bits;
520        /* We overwrite tree[n].Dad which is no longer needed */
521
522        if (n > max_code) continue; /* not a leaf node */
523
524        s->bl_count[bits]++;
525        xbits = 0;
526        if (n >= base) xbits = extra[n-base];
527        f = tree[n].Freq;
528        s->opt_len += (ulg)f * (bits + xbits);
529        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
530    }
531    if (overflow == 0) return;
532
533    Trace((stderr,"\nbit length overflow\n"));
534    /* This happens for example on obj2 and pic of the Calgary corpus */
535
536    /* Find the first bit length which could increase: */
537    do {
538        bits = max_length-1;
539        while (s->bl_count[bits] == 0) bits--;
540        s->bl_count[bits]--;      /* move one leaf down the tree */
541        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
542        s->bl_count[max_length]--;
543        /* The brother of the overflow item also moves one step up,
544         * but this does not affect bl_count[max_length]
545         */
546        overflow -= 2;
547    } while (overflow > 0);
548
549    /* Now recompute all bit lengths, scanning in increasing frequency.
550     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
551     * lengths instead of fixing only the wrong ones. This idea is taken
552     * from 'ar' written by Haruhiko Okumura.)
553     */
554    for (bits = max_length; bits != 0; bits--) {
555        n = s->bl_count[bits];
556        while (n != 0) {
557            m = s->heap[--h];
558            if (m > max_code) continue;
559            if (tree[m].Len != (unsigned) bits) {
560                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
561                s->opt_len += ((long)bits - (long)tree[m].Len)
562                              *(long)tree[m].Freq;
563                tree[m].Len = (ush)bits;
564            }
565            n--;
566        }
567    }
568}
569
570/* ===========================================================================
571 * Generate the codes for a given tree and bit counts (which need not be
572 * optimal).
573 * IN assertion: the array bl_count contains the bit length statistics for
574 * the given tree and the field len is set for all tree elements.
575 * OUT assertion: the field code is set for all tree elements of non
576 *     zero code length.
577 */
578local void gen_codes (tree, max_code, bl_count)
579    ct_data *tree;             /* the tree to decorate */
580    int max_code;              /* largest code with non zero frequency */
581    ushf *bl_count;            /* number of codes at each bit length */
582{
583    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
584    ush code = 0;              /* running code value */
585    int bits;                  /* bit index */
586    int n;                     /* code index */
587
588    /* The distribution counts are first used to generate the code values
589     * without bit reversal.
590     */
591    for (bits = 1; bits <= MAX_BITS; bits++) {
592        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
593    }
594    /* Check that the bit counts in bl_count are consistent. The last code
595     * must be all ones.
596     */
597    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
598            "inconsistent bit counts");
599    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
600
601    for (n = 0;  n <= max_code; n++) {
602        int len = tree[n].Len;
603        if (len == 0) continue;
604        /* Now reverse the bits */
605        tree[n].Code = bi_reverse(next_code[len]++, len);
606
607        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
608             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
609    }
610}
611
612/* ===========================================================================
613 * Construct one Huffman tree and assigns the code bit strings and lengths.
614 * Update the total bit length for the current block.
615 * IN assertion: the field freq is set for all tree elements.
616 * OUT assertions: the fields len and code are set to the optimal bit length
617 *     and corresponding code. The length opt_len is updated; static_len is
618 *     also updated if stree is not null. The field max_code is set.
619 */
620local void build_tree(s, desc)
621    deflate_state *s;
622    tree_desc *desc; /* the tree descriptor */
623{
624    ct_data *tree         = desc->dyn_tree;
625    const ct_data *stree  = desc->stat_desc->static_tree;
626    int elems             = desc->stat_desc->elems;
627    int n, m;          /* iterate over heap elements */
628    int max_code = -1; /* largest code with non zero frequency */
629    int node;          /* new node being created */
630
631    /* Construct the initial heap, with least frequent element in
632     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
633     * heap[0] is not used.
634     */
635    s->heap_len = 0, s->heap_max = HEAP_SIZE;
636
637    for (n = 0; n < elems; n++) {
638        if (tree[n].Freq != 0) {
639            s->heap[++(s->heap_len)] = max_code = n;
640            s->depth[n] = 0;
641        } else {
642            tree[n].Len = 0;
643        }
644    }
645
646    /* The pkzip format requires that at least one distance code exists,
647     * and that at least one bit should be sent even if there is only one
648     * possible code. So to avoid special checks later on we force at least
649     * two codes of non zero frequency.
650     */
651    while (s->heap_len < 2) {
652        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
653        tree[node].Freq = 1;
654        s->depth[node] = 0;
655        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
656        /* node is 0 or 1 so it does not have extra bits */
657    }
658    desc->max_code = max_code;
659
660    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
661     * establish sub-heaps of increasing lengths:
662     */
663    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
664
665    /* Construct the Huffman tree by repeatedly combining the least two
666     * frequent nodes.
667     */
668    node = elems;              /* next internal node of the tree */
669    do {
670        pqremove(s, tree, n);  /* n = node of least frequency */
671        m = s->heap[SMALLEST]; /* m = node of next least frequency */
672
673        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
674        s->heap[--(s->heap_max)] = m;
675
676        /* Create a new node father of n and m */
677        tree[node].Freq = tree[n].Freq + tree[m].Freq;
678        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
679                                s->depth[n] : s->depth[m]) + 1);
680        tree[n].Dad = tree[m].Dad = (ush)node;
681#ifdef DUMP_BL_TREE
682        if (tree == s->bl_tree) {
683            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
684                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
685        }
686#endif
687        /* and insert the new node in the heap */
688        s->heap[SMALLEST] = node++;
689        pqdownheap(s, tree, SMALLEST);
690
691    } while (s->heap_len >= 2);
692
693    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
694
695    /* At this point, the fields freq and dad are set. We can now
696     * generate the bit lengths.
697     */
698    gen_bitlen(s, (tree_desc *)desc);
699
700    /* The field len is now set, we can generate the bit codes */
701    gen_codes ((ct_data *)tree, max_code, s->bl_count);
702}
703
704/* ===========================================================================
705 * Scan a literal or distance tree to determine the frequencies of the codes
706 * in the bit length tree.
707 */
708local void scan_tree (s, tree, max_code)
709    deflate_state *s;
710    ct_data *tree;   /* the tree to be scanned */
711    int max_code;    /* and its largest code of non zero frequency */
712{
713    int n;                     /* iterates over all tree elements */
714    int prevlen = -1;          /* last emitted length */
715    int curlen;                /* length of current code */
716    int nextlen = tree[0].Len; /* length of next code */
717    int count = 0;             /* repeat count of the current code */
718    int max_count = 7;         /* max repeat count */
719    int min_count = 4;         /* min repeat count */
720
721    if (nextlen == 0) max_count = 138, min_count = 3;
722    tree[max_code+1].Len = (ush)0xffff; /* guard */
723
724    for (n = 0; n <= max_code; n++) {
725        curlen = nextlen; nextlen = tree[n+1].Len;
726        if (++count < max_count && curlen == nextlen) {
727            continue;
728        } else if (count < min_count) {
729            s->bl_tree[curlen].Freq += count;
730        } else if (curlen != 0) {
731            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
732            s->bl_tree[REP_3_6].Freq++;
733        } else if (count <= 10) {
734            s->bl_tree[REPZ_3_10].Freq++;
735        } else {
736            s->bl_tree[REPZ_11_138].Freq++;
737        }
738        count = 0; prevlen = curlen;
739        if (nextlen == 0) {
740            max_count = 138, min_count = 3;
741        } else if (curlen == nextlen) {
742            max_count = 6, min_count = 3;
743        } else {
744            max_count = 7, min_count = 4;
745        }
746    }
747}
748
749/* ===========================================================================
750 * Send a literal or distance tree in compressed form, using the codes in
751 * bl_tree.
752 */
753local void send_tree (s, tree, max_code)
754    deflate_state *s;
755    ct_data *tree; /* the tree to be scanned */
756    int max_code;       /* and its largest code of non zero frequency */
757{
758    int n;                     /* iterates over all tree elements */
759    int prevlen = -1;          /* last emitted length */
760    int curlen;                /* length of current code */
761    int nextlen = tree[0].Len; /* length of next code */
762    int count = 0;             /* repeat count of the current code */
763    int max_count = 7;         /* max repeat count */
764    int min_count = 4;         /* min repeat count */
765
766    /* tree[max_code+1].Len = -1; */  /* guard already set */
767    if (nextlen == 0) max_count = 138, min_count = 3;
768
769    for (n = 0; n <= max_code; n++) {
770        curlen = nextlen; nextlen = tree[n+1].Len;
771        if (++count < max_count && curlen == nextlen) {
772            continue;
773        } else if (count < min_count) {
774            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
775
776        } else if (curlen != 0) {
777            if (curlen != prevlen) {
778                send_code(s, curlen, s->bl_tree); count--;
779            }
780            Assert(count >= 3 && count <= 6, " 3_6?");
781            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
782
783        } else if (count <= 10) {
784            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
785
786        } else {
787            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
788        }
789        count = 0; prevlen = curlen;
790        if (nextlen == 0) {
791            max_count = 138, min_count = 3;
792        } else if (curlen == nextlen) {
793            max_count = 6, min_count = 3;
794        } else {
795            max_count = 7, min_count = 4;
796        }
797    }
798}
799
800/* ===========================================================================
801 * Construct the Huffman tree for the bit lengths and return the index in
802 * bl_order of the last bit length code to send.
803 */
804local int build_bl_tree(s)
805    deflate_state *s;
806{
807    int max_blindex;  /* index of last bit length code of non zero freq */
808
809    /* Determine the bit length frequencies for literal and distance trees */
810    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
811    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
812
813    /* Build the bit length tree: */
814    build_tree(s, (tree_desc *)(&(s->bl_desc)));
815    /* opt_len now includes the length of the tree representations, except
816     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
817     */
818
819    /* Determine the number of bit length codes to send. The pkzip format
820     * requires that at least 4 bit length codes be sent. (appnote.txt says
821     * 3 but the actual value used is 4.)
822     */
823    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
824        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
825    }
826    /* Update opt_len to include the bit length tree and counts */
827    s->opt_len += 3*(max_blindex+1) + 5+5+4;
828    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
829            s->opt_len, s->static_len));
830
831    return max_blindex;
832}
833
834/* ===========================================================================
835 * Send the header for a block using dynamic Huffman trees: the counts, the
836 * lengths of the bit length codes, the literal tree and the distance tree.
837 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
838 */
839local void send_all_trees(s, lcodes, dcodes, blcodes)
840    deflate_state *s;
841    int lcodes, dcodes, blcodes; /* number of codes for each tree */
842{
843    int rank;                    /* index in bl_order */
844
845    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
846    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
847            "too many codes");
848    Tracev((stderr, "\nbl counts: "));
849    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
850    send_bits(s, dcodes-1,   5);
851    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
852    for (rank = 0; rank < blcodes; rank++) {
853        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
854        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
855    }
856    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
857
858    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
859    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
860
861    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
862    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
863}
864
865/* ===========================================================================
866 * Send a stored block
867 */
868void _tr_stored_block(s, buf, stored_len, eof)
869    deflate_state *s;
870    charf *buf;       /* input block */
871    ulg stored_len;   /* length of input block */
872    int eof;          /* true if this is the last block for a file */
873{
874    send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
875#ifdef DEBUG
876    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
877    s->compressed_len += (stored_len + 4) << 3;
878#endif
879    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
880}
881
882/* ===========================================================================
883 * Send one empty static block to give enough lookahead for inflate.
884 * This takes 10 bits, of which 7 may remain in the bit buffer.
885 * The current inflate code requires 9 bits of lookahead. If the
886 * last two codes for the previous block (real code plus EOB) were coded
887 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
888 * the last real code. In this case we send two empty static blocks instead
889 * of one. (There are no problems if the previous block is stored or fixed.)
890 * To simplify the code, we assume the worst case of last real code encoded
891 * on one bit only.
892 */
893void _tr_align(s)
894    deflate_state *s;
895{
896    send_bits(s, STATIC_TREES<<1, 3);
897    send_code(s, END_BLOCK, static_ltree);
898#ifdef DEBUG
899    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
900#endif
901    bi_flush(s);
902    /* Of the 10 bits for the empty block, we have already sent
903     * (10 - bi_valid) bits. The lookahead for the last real code (before
904     * the EOB of the previous block) was thus at least one plus the length
905     * of the EOB plus what we have just sent of the empty static block.
906     */
907    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
908        send_bits(s, STATIC_TREES<<1, 3);
909        send_code(s, END_BLOCK, static_ltree);
910#ifdef DEBUG
911        s->compressed_len += 10L;
912#endif
913        bi_flush(s);
914    }
915    s->last_eob_len = 7;
916}
917
918/* ===========================================================================
919 * Determine the best encoding for the current block: dynamic trees, static
920 * trees or store, and output the encoded block to the zip file.
921 */
922void _tr_flush_block(s, buf, stored_len, eof)
923    deflate_state *s;
924    charf *buf;       /* input block, or NULL if too old */
925    ulg stored_len;   /* length of input block */
926    int eof;          /* true if this is the last block for a file */
927{
928    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
929    int max_blindex = 0;  /* index of last bit length code of non zero freq */
930
931    /* Build the Huffman trees unless a stored block is forced */
932    if (s->level > 0) {
933
934         /* Check if the file is ascii or binary */
935        if (s->data_type == Z_UNKNOWN) set_data_type(s);
936
937        /* Construct the literal and distance trees */
938        build_tree(s, (tree_desc *)(&(s->l_desc)));
939        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
940                s->static_len));
941
942        build_tree(s, (tree_desc *)(&(s->d_desc)));
943        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
944                s->static_len));
945        /* At this point, opt_len and static_len are the total bit lengths of
946         * the compressed block data, excluding the tree representations.
947         */
948
949        /* Build the bit length tree for the above two trees, and get the index
950         * in bl_order of the last bit length code to send.
951         */
952        max_blindex = build_bl_tree(s);
953
954        /* Determine the best encoding. Compute the block lengths in bytes. */
955        opt_lenb = (s->opt_len+3+7)>>3;
956        static_lenb = (s->static_len+3+7)>>3;
957
958        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
959                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
960                s->last_lit));
961
962        if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
963
964    } else {
965        Assert(buf != (char*)0, "lost buf");
966        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
967    }
968
969#ifdef FORCE_STORED
970    if (buf != (char*)0) { /* force stored block */
971#else
972    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
973                       /* 4: two words for the lengths */
974#endif
975        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
976         * Otherwise we can't have processed more than WSIZE input bytes since
977         * the last block flush, because compression would have been
978         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
979         * transform a block into a stored block.
980         */
981        _tr_stored_block(s, buf, stored_len, eof);
982
983#ifdef FORCE_STATIC
984    } else if (static_lenb >= 0) { /* force static trees */
985#else
986    } else if (static_lenb == opt_lenb) {
987#endif
988        send_bits(s, (STATIC_TREES<<1)+eof, 3);
989        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
990#ifdef DEBUG
991        s->compressed_len += 3 + s->static_len;
992#endif
993    } else {
994        send_bits(s, (DYN_TREES<<1)+eof, 3);
995        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
996                       max_blindex+1);
997        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
998#ifdef DEBUG
999        s->compressed_len += 3 + s->opt_len;
1000#endif
1001    }
1002    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1003    /* The above check is made mod 2^32, for files larger than 512 MB
1004     * and uLong implemented on 32 bits.
1005     */
1006    init_block(s);
1007
1008    if (eof) {
1009        bi_windup(s);
1010#ifdef DEBUG
1011        s->compressed_len += 7;  /* align on byte boundary */
1012#endif
1013    }
1014    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1015           s->compressed_len-7*eof));
1016}
1017
1018/* ===========================================================================
1019 * Save the match info and tally the frequency counts. Return true if
1020 * the current block must be flushed.
1021 */
1022int _tr_tally (s, dist, lc)
1023    deflate_state *s;
1024    unsigned dist;  /* distance of matched string */
1025    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
1026{
1027    s->d_buf[s->last_lit] = (ush)dist;
1028    s->l_buf[s->last_lit++] = (uch)lc;
1029    if (dist == 0) {
1030        /* lc is the unmatched char */
1031        s->dyn_ltree[lc].Freq++;
1032    } else {
1033        s->matches++;
1034        /* Here, lc is the match length - MIN_MATCH */
1035        dist--;             /* dist = match distance - 1 */
1036        Assert((ush)dist < (ush)MAX_DIST(s) &&
1037               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1038               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1039
1040        s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1041        s->dyn_dtree[d_code(dist)].Freq++;
1042    }
1043
1044#ifdef TRUNCATE_BLOCK
1045    /* Try to guess if it is profitable to stop the current block here */
1046    if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1047        /* Compute an upper bound for the compressed length */
1048        ulg out_length = (ulg)s->last_lit*8L;
1049        ulg in_length = (ulg)((long)s->strstart - s->block_start);
1050        int dcode;
1051        for (dcode = 0; dcode < D_CODES; dcode++) {
1052            out_length += (ulg)s->dyn_dtree[dcode].Freq *
1053                (5L+extra_dbits[dcode]);
1054        }
1055        out_length >>= 3;
1056        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1057               s->last_lit, in_length, out_length,
1058               100L - out_length*100L/in_length));
1059        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1060    }
1061#endif
1062    return (s->last_lit == s->lit_bufsize-1);
1063    /* We avoid equality with lit_bufsize because of wraparound at 64K
1064     * on 16 bit machines and because stored blocks are restricted to
1065     * 64K-1 bytes.
1066     */
1067}
1068
1069/* ===========================================================================
1070 * Send the block data compressed using the given Huffman trees
1071 */
1072local void compress_block(s, ltree, dtree)
1073    deflate_state *s;
1074    ct_data *ltree; /* literal tree */
1075    ct_data *dtree; /* distance tree */
1076{
1077    unsigned dist;      /* distance of matched string */
1078    int lc;             /* match length or unmatched char (if dist == 0) */
1079    unsigned lx = 0;    /* running index in l_buf */
1080    unsigned code;      /* the code to send */
1081    int extra;          /* number of extra bits to send */
1082
1083    if (s->last_lit != 0) do {
1084        dist = s->d_buf[lx];
1085        lc = s->l_buf[lx++];
1086        if (dist == 0) {
1087            send_code(s, lc, ltree); /* send a literal byte */
1088            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1089        } else {
1090            /* Here, lc is the match length - MIN_MATCH */
1091            code = _length_code[lc];
1092            send_code(s, code+LITERALS+1, ltree); /* send the length code */
1093            extra = extra_lbits[code];
1094            if (extra != 0) {
1095                lc -= base_length[code];
1096                send_bits(s, lc, extra);       /* send the extra length bits */
1097            }
1098            dist--; /* dist is now the match distance - 1 */
1099            code = d_code(dist);
1100            Assert (code < D_CODES, "bad d_code");
1101
1102            send_code(s, code, dtree);       /* send the distance code */
1103            extra = extra_dbits[code];
1104            if (extra != 0) {
1105                dist -= base_dist[code];
1106                send_bits(s, dist, extra);   /* send the extra distance bits */
1107            }
1108        } /* literal or match pair ? */
1109
1110        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1111        Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1112               "pendingBuf overflow");
1113
1114    } while (lx < s->last_lit);
1115
1116    send_code(s, END_BLOCK, ltree);
1117    s->last_eob_len = ltree[END_BLOCK].Len;
1118}
1119
1120/* ===========================================================================
1121 * Set the data type to ASCII or BINARY, using a crude approximation:
1122 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1123 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1124 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1125 */
1126local void set_data_type(s)
1127    deflate_state *s;
1128{
1129    int n = 0;
1130    unsigned ascii_freq = 0;
1131    unsigned bin_freq = 0;
1132    while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
1133    while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
1134    while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
1135    s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
1136}
1137
1138/* ===========================================================================
1139 * Reverse the first len bits of a code, using straightforward code (a faster
1140 * method would use a table)
1141 * IN assertion: 1 <= len <= 15
1142 */
1143local unsigned bi_reverse(code, len)
1144    unsigned code; /* the value to invert */
1145    int len;       /* its bit length */
1146{
1147    register unsigned res = 0;
1148    do {
1149        res |= code & 1;
1150        code >>= 1, res <<= 1;
1151    } while (--len > 0);
1152    return res >> 1;
1153}
1154
1155/* ===========================================================================
1156 * Flush the bit buffer, keeping at most 7 bits in it.
1157 */
1158local void bi_flush(s)
1159    deflate_state *s;
1160{
1161    if (s->bi_valid == 16) {
1162        put_short(s, s->bi_buf);
1163        s->bi_buf = 0;
1164        s->bi_valid = 0;
1165    } else if (s->bi_valid >= 8) {
1166        put_byte(s, (Byte)s->bi_buf);
1167        s->bi_buf >>= 8;
1168        s->bi_valid -= 8;
1169    }
1170}
1171
1172/* ===========================================================================
1173 * Flush the bit buffer and align the output on a byte boundary
1174 */
1175local void bi_windup(s)
1176    deflate_state *s;
1177{
1178    if (s->bi_valid > 8) {
1179        put_short(s, s->bi_buf);
1180    } else if (s->bi_valid > 0) {
1181        put_byte(s, (Byte)s->bi_buf);
1182    }
1183    s->bi_buf = 0;
1184    s->bi_valid = 0;
1185#ifdef DEBUG
1186    s->bits_sent = (s->bits_sent+7) & ~7;
1187#endif
1188}
1189
1190/* ===========================================================================
1191 * Copy a stored block, storing first the length and its
1192 * one's complement if requested.
1193 */
1194local void copy_block(s, buf, len, header)
1195    deflate_state *s;
1196    charf    *buf;    /* the input data */
1197    unsigned len;     /* its length */
1198    int      header;  /* true if block header must be written */
1199{
1200    bi_windup(s);        /* align on byte boundary */
1201    s->last_eob_len = 8; /* enough lookahead for inflate */
1202
1203    if (header) {
1204        put_short(s, (ush)len);
1205        put_short(s, (ush)~len);
1206#ifdef DEBUG
1207        s->bits_sent += 2*16;
1208#endif
1209    }
1210#ifdef DEBUG
1211    s->bits_sent += (ulg)len<<3;
1212#endif
1213    while (len--) {
1214        put_byte(s, *buf++);
1215    }
1216}
1217