kvm_proc.c revision 209276
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34#if 0
35#if defined(LIBC_SCCS) && !defined(lint)
36static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
37#endif /* LIBC_SCCS and not lint */
38#endif
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 209276 2010-06-18 01:17:16Z sbruno $");
42
43/*
44 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
45 * users of this code, so we've factored it out into a separate module.
46 * Thus, we keep this grunge out of the other kvm applications (i.e.,
47 * most other applications are interested only in open/close/read/nlist).
48 */
49
50#include <sys/param.h>
51#define	_WANT_UCRED	/* make ucred.h give us 'struct ucred' */
52#include <sys/ucred.h>
53#include <sys/queue.h>
54#include <sys/_lock.h>
55#include <sys/_mutex.h>
56#include <sys/_task.h>
57#include <sys/cpuset.h>
58#include <sys/user.h>
59#include <sys/proc.h>
60#define	_WANT_PRISON	/* make jail.h give us 'struct prison' */
61#include <sys/jail.h>
62#include <sys/exec.h>
63#include <sys/stat.h>
64#include <sys/sysent.h>
65#include <sys/ioctl.h>
66#include <sys/tty.h>
67#include <sys/file.h>
68#include <sys/conf.h>
69#include <stdio.h>
70#include <stdlib.h>
71#include <unistd.h>
72#include <nlist.h>
73#include <kvm.h>
74
75#include <vm/vm.h>
76#include <vm/vm_param.h>
77
78#include <sys/sysctl.h>
79
80#include <limits.h>
81#include <memory.h>
82#include <paths.h>
83
84#include "kvm_private.h"
85
86#define KREAD(kd, addr, obj) \
87	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
88
89static int ticks;
90static int hz;
91
92/*
93 * Read proc's from memory file into buffer bp, which has space to hold
94 * at most maxcnt procs.
95 */
96static int
97kvm_proclist(kd, what, arg, p, bp, maxcnt)
98	kvm_t *kd;
99	int what, arg;
100	struct proc *p;
101	struct kinfo_proc *bp;
102	int maxcnt;
103{
104	int cnt = 0;
105	struct kinfo_proc kinfo_proc, *kp;
106	struct pgrp pgrp;
107	struct session sess;
108	struct cdev t_cdev;
109	struct tty tty;
110	struct vmspace vmspace;
111	struct sigacts sigacts;
112	struct pstats pstats;
113	struct ucred ucred;
114	struct prison pr;
115	struct thread mtd;
116	struct proc proc;
117	struct proc pproc;
118	struct timeval tv;
119	struct sysentvec sysent;
120	char svname[KI_EMULNAMELEN];
121
122	kp = &kinfo_proc;
123	kp->ki_structsize = sizeof(kinfo_proc);
124	/*
125	 * Loop on the processes. this is completely broken because we need to be
126	 * able to loop on the threads and merge the ones that are the same process some how.
127	 */
128	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
129		memset(kp, 0, sizeof *kp);
130		if (KREAD(kd, (u_long)p, &proc)) {
131			_kvm_err(kd, kd->program, "can't read proc at %x", p);
132			return (-1);
133		}
134		if (proc.p_state != PRS_ZOMBIE) {
135			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
136			    &mtd)) {
137				_kvm_err(kd, kd->program,
138				    "can't read thread at %x",
139				    TAILQ_FIRST(&proc.p_threads));
140				return (-1);
141			}
142		}
143		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
144			kp->ki_ruid = ucred.cr_ruid;
145			kp->ki_svuid = ucred.cr_svuid;
146			kp->ki_rgid = ucred.cr_rgid;
147			kp->ki_svgid = ucred.cr_svgid;
148			kp->ki_cr_flags = ucred.cr_flags;
149			if (ucred.cr_ngroups > KI_NGROUPS) {
150				kp->ki_ngroups = KI_NGROUPS;
151				kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
152			} else
153				kp->ki_ngroups = ucred.cr_ngroups;
154			kvm_read(kd, (u_long)ucred.cr_groups, kp->ki_groups,
155			    kp->ki_ngroups * sizeof(gid_t));
156			kp->ki_uid = ucred.cr_uid;
157			if (ucred.cr_prison != NULL) {
158				if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) {
159					_kvm_err(kd, kd->program,
160					    "can't read prison at %x",
161					    ucred.cr_prison);
162					return (-1);
163				}
164				kp->ki_jid = pr.pr_id;
165			}
166		}
167
168		switch(what & ~KERN_PROC_INC_THREAD) {
169
170		case KERN_PROC_GID:
171			if (kp->ki_groups[0] != (gid_t)arg)
172				continue;
173			break;
174
175		case KERN_PROC_PID:
176			if (proc.p_pid != (pid_t)arg)
177				continue;
178			break;
179
180		case KERN_PROC_RGID:
181			if (kp->ki_rgid != (gid_t)arg)
182				continue;
183			break;
184
185		case KERN_PROC_UID:
186			if (kp->ki_uid != (uid_t)arg)
187				continue;
188			break;
189
190		case KERN_PROC_RUID:
191			if (kp->ki_ruid != (uid_t)arg)
192				continue;
193			break;
194		}
195		/*
196		 * We're going to add another proc to the set.  If this
197		 * will overflow the buffer, assume the reason is because
198		 * nprocs (or the proc list) is corrupt and declare an error.
199		 */
200		if (cnt >= maxcnt) {
201			_kvm_err(kd, kd->program, "nprocs corrupt");
202			return (-1);
203		}
204		/*
205		 * gather kinfo_proc
206		 */
207		kp->ki_paddr = p;
208		kp->ki_addr = 0;	/* XXX uarea */
209		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
210		kp->ki_args = proc.p_args;
211		kp->ki_tracep = proc.p_tracevp;
212		kp->ki_textvp = proc.p_textvp;
213		kp->ki_fd = proc.p_fd;
214		kp->ki_vmspace = proc.p_vmspace;
215		if (proc.p_sigacts != NULL) {
216			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
217				_kvm_err(kd, kd->program,
218				    "can't read sigacts at %x", proc.p_sigacts);
219				return (-1);
220			}
221			kp->ki_sigignore = sigacts.ps_sigignore;
222			kp->ki_sigcatch = sigacts.ps_sigcatch;
223		}
224#if 0
225		if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) {
226			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
227				_kvm_err(kd, kd->program,
228				    "can't read stats at %x", proc.p_stats);
229				return (-1);
230			}
231			kp->ki_start = pstats.p_start;
232
233			/*
234			 * XXX: The times here are probably zero and need
235			 * to be calculated from the raw data in p_rux and
236			 * p_crux.
237			 */
238			kp->ki_rusage = pstats.p_ru;
239			kp->ki_childstime = pstats.p_cru.ru_stime;
240			kp->ki_childutime = pstats.p_cru.ru_utime;
241			/* Some callers want child-times in a single value */
242			timeradd(&kp->ki_childstime, &kp->ki_childutime,
243			    &kp->ki_childtime);
244		}
245#endif
246		if (proc.p_oppid)
247			kp->ki_ppid = proc.p_oppid;
248		else if (proc.p_pptr) {
249			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
250				_kvm_err(kd, kd->program,
251				    "can't read pproc at %x", proc.p_pptr);
252				return (-1);
253			}
254			kp->ki_ppid = pproc.p_pid;
255		} else
256			kp->ki_ppid = 0;
257		if (proc.p_pgrp == NULL)
258			goto nopgrp;
259		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
260			_kvm_err(kd, kd->program, "can't read pgrp at %x",
261				 proc.p_pgrp);
262			return (-1);
263		}
264		kp->ki_pgid = pgrp.pg_id;
265		kp->ki_jobc = pgrp.pg_jobc;
266		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
267			_kvm_err(kd, kd->program, "can't read session at %x",
268				pgrp.pg_session);
269			return (-1);
270		}
271		kp->ki_sid = sess.s_sid;
272		(void)memcpy(kp->ki_login, sess.s_login,
273						sizeof(kp->ki_login));
274		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
275		if (sess.s_leader == p)
276			kp->ki_kiflag |= KI_SLEADER;
277		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
278			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
279				_kvm_err(kd, kd->program,
280					 "can't read tty at %x", sess.s_ttyp);
281				return (-1);
282			}
283			if (tty.t_dev != NULL) {
284				if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
285					_kvm_err(kd, kd->program,
286						 "can't read cdev at %x",
287						tty.t_dev);
288					return (-1);
289				}
290#if 0
291				kp->ki_tdev = t_cdev.si_udev;
292#else
293				kp->ki_tdev = NODEV;
294#endif
295			}
296			if (tty.t_pgrp != NULL) {
297				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
298					_kvm_err(kd, kd->program,
299						 "can't read tpgrp at %x",
300						tty.t_pgrp);
301					return (-1);
302				}
303				kp->ki_tpgid = pgrp.pg_id;
304			} else
305				kp->ki_tpgid = -1;
306			if (tty.t_session != NULL) {
307				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
308					_kvm_err(kd, kd->program,
309					    "can't read session at %x",
310					    tty.t_session);
311					return (-1);
312				}
313				kp->ki_tsid = sess.s_sid;
314			}
315		} else {
316nopgrp:
317			kp->ki_tdev = NODEV;
318		}
319		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
320			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
321			    kp->ki_wmesg, WMESGLEN);
322
323		(void)kvm_read(kd, (u_long)proc.p_vmspace,
324		    (char *)&vmspace, sizeof(vmspace));
325		kp->ki_size = vmspace.vm_map.size;
326		/*
327		 * Approximate the kernel's method of calculating
328		 * this field.
329		 */
330#define		pmap_resident_count(pm) ((pm)->pm_stats.resident_count)
331		kp->ki_rssize = pmap_resident_count(&vmspace.vm_pmap);
332		kp->ki_swrss = vmspace.vm_swrss;
333		kp->ki_tsize = vmspace.vm_tsize;
334		kp->ki_dsize = vmspace.vm_dsize;
335		kp->ki_ssize = vmspace.vm_ssize;
336
337		switch (what & ~KERN_PROC_INC_THREAD) {
338
339		case KERN_PROC_PGRP:
340			if (kp->ki_pgid != (pid_t)arg)
341				continue;
342			break;
343
344		case KERN_PROC_SESSION:
345			if (kp->ki_sid != (pid_t)arg)
346				continue;
347			break;
348
349		case KERN_PROC_TTY:
350			if ((proc.p_flag & P_CONTROLT) == 0 ||
351			     kp->ki_tdev != (dev_t)arg)
352				continue;
353			break;
354		}
355		if (proc.p_comm[0] != 0)
356			strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
357		(void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
358		    sizeof(sysent));
359		(void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
360		    sizeof(svname));
361		if (svname[0] != 0)
362			strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
363		if ((proc.p_state != PRS_ZOMBIE) &&
364		    (mtd.td_blocked != 0)) {
365			kp->ki_kiflag |= KI_LOCKBLOCK;
366			if (mtd.td_lockname)
367				(void)kvm_read(kd,
368				    (u_long)mtd.td_lockname,
369				    kp->ki_lockname, LOCKNAMELEN);
370			kp->ki_lockname[LOCKNAMELEN] = 0;
371		}
372		/*
373		 * XXX: This is plain wrong, rux_runtime has nothing
374		 * to do with struct bintime, rux_runtime is just a 64-bit
375		 * integer counter of cputicks.  What we need here is a way
376		 * to convert cputicks to usecs.  The kernel does it in
377		 * kern/kern_tc.c, but the function can't be just copied.
378		 */
379		bintime2timeval(&proc.p_rux.rux_runtime, &tv);
380		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
381		kp->ki_pid = proc.p_pid;
382		kp->ki_siglist = proc.p_siglist;
383		SIGSETOR(kp->ki_siglist, mtd.td_siglist);
384		kp->ki_sigmask = mtd.td_sigmask;
385		kp->ki_xstat = proc.p_xstat;
386		kp->ki_acflag = proc.p_acflag;
387		kp->ki_lock = proc.p_lock;
388		if (proc.p_state != PRS_ZOMBIE) {
389			kp->ki_swtime = (ticks - proc.p_swtick) / hz;
390			kp->ki_flag = proc.p_flag;
391			kp->ki_sflag = 0;
392			kp->ki_nice = proc.p_nice;
393			kp->ki_traceflag = proc.p_traceflag;
394			if (proc.p_state == PRS_NORMAL) {
395				if (TD_ON_RUNQ(&mtd) ||
396				    TD_CAN_RUN(&mtd) ||
397				    TD_IS_RUNNING(&mtd)) {
398					kp->ki_stat = SRUN;
399				} else if (mtd.td_state ==
400				    TDS_INHIBITED) {
401					if (P_SHOULDSTOP(&proc)) {
402						kp->ki_stat = SSTOP;
403					} else if (
404					    TD_IS_SLEEPING(&mtd)) {
405						kp->ki_stat = SSLEEP;
406					} else if (TD_ON_LOCK(&mtd)) {
407						kp->ki_stat = SLOCK;
408					} else {
409						kp->ki_stat = SWAIT;
410					}
411				}
412			} else {
413				kp->ki_stat = SIDL;
414			}
415			/* Stuff from the thread */
416			kp->ki_pri.pri_level = mtd.td_priority;
417			kp->ki_pri.pri_native = mtd.td_base_pri;
418			kp->ki_lastcpu = mtd.td_lastcpu;
419			kp->ki_wchan = mtd.td_wchan;
420			if (mtd.td_name[0] != 0)
421				strlcpy(kp->ki_ocomm, mtd.td_name, MAXCOMLEN);
422			kp->ki_oncpu = mtd.td_oncpu;
423			if (mtd.td_name[0] != '\0')
424				strlcpy(kp->ki_ocomm, mtd.td_name, sizeof(kp->ki_ocomm));
425			kp->ki_pctcpu = 0;
426			kp->ki_rqindex = 0;
427		} else {
428			kp->ki_stat = SZOMB;
429		}
430		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
431		++bp;
432		++cnt;
433	}
434	return (cnt);
435}
436
437/*
438 * Build proc info array by reading in proc list from a crash dump.
439 * Return number of procs read.  maxcnt is the max we will read.
440 */
441static int
442kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
443	kvm_t *kd;
444	int what, arg;
445	u_long a_allproc;
446	u_long a_zombproc;
447	int maxcnt;
448{
449	struct kinfo_proc *bp = kd->procbase;
450	int acnt, zcnt;
451	struct proc *p;
452
453	if (KREAD(kd, a_allproc, &p)) {
454		_kvm_err(kd, kd->program, "cannot read allproc");
455		return (-1);
456	}
457	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
458	if (acnt < 0)
459		return (acnt);
460
461	if (KREAD(kd, a_zombproc, &p)) {
462		_kvm_err(kd, kd->program, "cannot read zombproc");
463		return (-1);
464	}
465	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
466	if (zcnt < 0)
467		zcnt = 0;
468
469	return (acnt + zcnt);
470}
471
472struct kinfo_proc *
473kvm_getprocs(kd, op, arg, cnt)
474	kvm_t *kd;
475	int op, arg;
476	int *cnt;
477{
478	int mib[4], st, nprocs;
479	size_t size;
480	int temp_op;
481
482	if (kd->procbase != 0) {
483		free((void *)kd->procbase);
484		/*
485		 * Clear this pointer in case this call fails.  Otherwise,
486		 * kvm_close() will free it again.
487		 */
488		kd->procbase = 0;
489	}
490	if (ISALIVE(kd)) {
491		size = 0;
492		mib[0] = CTL_KERN;
493		mib[1] = KERN_PROC;
494		mib[2] = op;
495		mib[3] = arg;
496		temp_op = op & ~KERN_PROC_INC_THREAD;
497		st = sysctl(mib,
498		    temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
499		    3 : 4, NULL, &size, NULL, 0);
500		if (st == -1) {
501			_kvm_syserr(kd, kd->program, "kvm_getprocs");
502			return (0);
503		}
504		/*
505		 * We can't continue with a size of 0 because we pass
506		 * it to realloc() (via _kvm_realloc()), and passing 0
507		 * to realloc() results in undefined behavior.
508		 */
509		if (size == 0) {
510			/*
511			 * XXX: We should probably return an invalid,
512			 * but non-NULL, pointer here so any client
513			 * program trying to dereference it will
514			 * crash.  However, _kvm_freeprocs() calls
515			 * free() on kd->procbase if it isn't NULL,
516			 * and free()'ing a junk pointer isn't good.
517			 * Then again, _kvm_freeprocs() isn't used
518			 * anywhere . . .
519			 */
520			kd->procbase = _kvm_malloc(kd, 1);
521			goto liveout;
522		}
523		do {
524			size += size / 10;
525			kd->procbase = (struct kinfo_proc *)
526			    _kvm_realloc(kd, kd->procbase, size);
527			if (kd->procbase == 0)
528				return (0);
529			st = sysctl(mib, temp_op == KERN_PROC_ALL ||
530			    temp_op == KERN_PROC_PROC ? 3 : 4,
531			    kd->procbase, &size, NULL, 0);
532		} while (st == -1 && errno == ENOMEM);
533		if (st == -1) {
534			_kvm_syserr(kd, kd->program, "kvm_getprocs");
535			return (0);
536		}
537		/*
538		 * We have to check the size again because sysctl()
539		 * may "round up" oldlenp if oldp is NULL; hence it
540		 * might've told us that there was data to get when
541		 * there really isn't any.
542		 */
543		if (size > 0 &&
544		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
545			_kvm_err(kd, kd->program,
546			    "kinfo_proc size mismatch (expected %d, got %d)",
547			    sizeof(struct kinfo_proc),
548			    kd->procbase->ki_structsize);
549			return (0);
550		}
551liveout:
552		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
553	} else {
554		struct nlist nl[6], *p;
555
556		nl[0].n_name = "_nprocs";
557		nl[1].n_name = "_allproc";
558		nl[2].n_name = "_zombproc";
559		nl[3].n_name = "_ticks";
560		nl[4].n_name = "_hz";
561		nl[5].n_name = 0;
562
563		if (kvm_nlist(kd, nl) != 0) {
564			for (p = nl; p->n_type != 0; ++p)
565				;
566			_kvm_err(kd, kd->program,
567				 "%s: no such symbol", p->n_name);
568			return (0);
569		}
570		if (KREAD(kd, nl[0].n_value, &nprocs)) {
571			_kvm_err(kd, kd->program, "can't read nprocs");
572			return (0);
573		}
574		if (KREAD(kd, nl[3].n_value, &ticks)) {
575			_kvm_err(kd, kd->program, "can't read ticks");
576			return (0);
577		}
578		if (KREAD(kd, nl[4].n_value, &hz)) {
579			_kvm_err(kd, kd->program, "can't read hz");
580			return (0);
581		}
582		size = nprocs * sizeof(struct kinfo_proc);
583		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
584		if (kd->procbase == 0)
585			return (0);
586
587		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
588				      nl[2].n_value, nprocs);
589#ifdef notdef
590		size = nprocs * sizeof(struct kinfo_proc);
591		(void)realloc(kd->procbase, size);
592#endif
593	}
594	*cnt = nprocs;
595	return (kd->procbase);
596}
597
598void
599_kvm_freeprocs(kd)
600	kvm_t *kd;
601{
602	if (kd->procbase) {
603		free(kd->procbase);
604		kd->procbase = 0;
605	}
606}
607
608void *
609_kvm_realloc(kd, p, n)
610	kvm_t *kd;
611	void *p;
612	size_t n;
613{
614	void *np = (void *)realloc(p, n);
615
616	if (np == 0) {
617		free(p);
618		_kvm_err(kd, kd->program, "out of memory");
619	}
620	return (np);
621}
622
623#ifndef MAX
624#define MAX(a, b) ((a) > (b) ? (a) : (b))
625#endif
626
627/*
628 * Read in an argument vector from the user address space of process kp.
629 * addr if the user-space base address of narg null-terminated contiguous
630 * strings.  This is used to read in both the command arguments and
631 * environment strings.  Read at most maxcnt characters of strings.
632 */
633static char **
634kvm_argv(kd, kp, addr, narg, maxcnt)
635	kvm_t *kd;
636	struct kinfo_proc *kp;
637	u_long addr;
638	int narg;
639	int maxcnt;
640{
641	char *np, *cp, *ep, *ap;
642	u_long oaddr = -1;
643	int len, cc;
644	char **argv;
645
646	/*
647	 * Check that there aren't an unreasonable number of agruments,
648	 * and that the address is in user space.
649	 */
650	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
651		return (0);
652
653	/*
654	 * kd->argv : work space for fetching the strings from the target
655	 *            process's space, and is converted for returning to caller
656	 */
657	if (kd->argv == 0) {
658		/*
659		 * Try to avoid reallocs.
660		 */
661		kd->argc = MAX(narg + 1, 32);
662		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
663						sizeof(*kd->argv));
664		if (kd->argv == 0)
665			return (0);
666	} else if (narg + 1 > kd->argc) {
667		kd->argc = MAX(2 * kd->argc, narg + 1);
668		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
669						sizeof(*kd->argv));
670		if (kd->argv == 0)
671			return (0);
672	}
673	/*
674	 * kd->argspc : returned to user, this is where the kd->argv
675	 *              arrays are left pointing to the collected strings.
676	 */
677	if (kd->argspc == 0) {
678		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
679		if (kd->argspc == 0)
680			return (0);
681		kd->arglen = PAGE_SIZE;
682	}
683	/*
684	 * kd->argbuf : used to pull in pages from the target process.
685	 *              the strings are copied out of here.
686	 */
687	if (kd->argbuf == 0) {
688		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
689		if (kd->argbuf == 0)
690			return (0);
691	}
692
693	/* Pull in the target process'es argv vector */
694	cc = sizeof(char *) * narg;
695	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
696		return (0);
697	/*
698	 * ap : saved start address of string we're working on in kd->argspc
699	 * np : pointer to next place to write in kd->argspc
700	 * len: length of data in kd->argspc
701	 * argv: pointer to the argv vector that we are hunting around the
702	 *       target process space for, and converting to addresses in
703	 *       our address space (kd->argspc).
704	 */
705	ap = np = kd->argspc;
706	argv = kd->argv;
707	len = 0;
708	/*
709	 * Loop over pages, filling in the argument vector.
710	 * Note that the argv strings could be pointing *anywhere* in
711	 * the user address space and are no longer contiguous.
712	 * Note that *argv is modified when we are going to fetch a string
713	 * that crosses a page boundary.  We copy the next part of the string
714	 * into to "np" and eventually convert the pointer.
715	 */
716	while (argv < kd->argv + narg && *argv != 0) {
717
718		/* get the address that the current argv string is on */
719		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
720
721		/* is it the same page as the last one? */
722		if (addr != oaddr) {
723			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
724			    PAGE_SIZE)
725				return (0);
726			oaddr = addr;
727		}
728
729		/* offset within the page... kd->argbuf */
730		addr = (u_long)*argv & (PAGE_SIZE - 1);
731
732		/* cp = start of string, cc = count of chars in this chunk */
733		cp = kd->argbuf + addr;
734		cc = PAGE_SIZE - addr;
735
736		/* dont get more than asked for by user process */
737		if (maxcnt > 0 && cc > maxcnt - len)
738			cc = maxcnt - len;
739
740		/* pointer to end of string if we found it in this page */
741		ep = memchr(cp, '\0', cc);
742		if (ep != 0)
743			cc = ep - cp + 1;
744		/*
745		 * at this point, cc is the count of the chars that we are
746		 * going to retrieve this time. we may or may not have found
747		 * the end of it.  (ep points to the null if the end is known)
748		 */
749
750		/* will we exceed the malloc/realloced buffer? */
751		if (len + cc > kd->arglen) {
752			int off;
753			char **pp;
754			char *op = kd->argspc;
755
756			kd->arglen *= 2;
757			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
758							  kd->arglen);
759			if (kd->argspc == 0)
760				return (0);
761			/*
762			 * Adjust argv pointers in case realloc moved
763			 * the string space.
764			 */
765			off = kd->argspc - op;
766			for (pp = kd->argv; pp < argv; pp++)
767				*pp += off;
768			ap += off;
769			np += off;
770		}
771		/* np = where to put the next part of the string in kd->argspc*/
772		/* np is kinda redundant.. could use "kd->argspc + len" */
773		memcpy(np, cp, cc);
774		np += cc;	/* inc counters */
775		len += cc;
776
777		/*
778		 * if end of string found, set the *argv pointer to the
779		 * saved beginning of string, and advance. argv points to
780		 * somewhere in kd->argv..  This is initially relative
781		 * to the target process, but when we close it off, we set
782		 * it to point in our address space.
783		 */
784		if (ep != 0) {
785			*argv++ = ap;
786			ap = np;
787		} else {
788			/* update the address relative to the target process */
789			*argv += cc;
790		}
791
792		if (maxcnt > 0 && len >= maxcnt) {
793			/*
794			 * We're stopping prematurely.  Terminate the
795			 * current string.
796			 */
797			if (ep == 0) {
798				*np = '\0';
799				*argv++ = ap;
800			}
801			break;
802		}
803	}
804	/* Make sure argv is terminated. */
805	*argv = 0;
806	return (kd->argv);
807}
808
809static void
810ps_str_a(p, addr, n)
811	struct ps_strings *p;
812	u_long *addr;
813	int *n;
814{
815	*addr = (u_long)p->ps_argvstr;
816	*n = p->ps_nargvstr;
817}
818
819static void
820ps_str_e(p, addr, n)
821	struct ps_strings *p;
822	u_long *addr;
823	int *n;
824{
825	*addr = (u_long)p->ps_envstr;
826	*n = p->ps_nenvstr;
827}
828
829/*
830 * Determine if the proc indicated by p is still active.
831 * This test is not 100% foolproof in theory, but chances of
832 * being wrong are very low.
833 */
834static int
835proc_verify(curkp)
836	struct kinfo_proc *curkp;
837{
838	struct kinfo_proc newkp;
839	int mib[4];
840	size_t len;
841
842	mib[0] = CTL_KERN;
843	mib[1] = KERN_PROC;
844	mib[2] = KERN_PROC_PID;
845	mib[3] = curkp->ki_pid;
846	len = sizeof(newkp);
847	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
848		return (0);
849	return (curkp->ki_pid == newkp.ki_pid &&
850	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
851}
852
853static char **
854kvm_doargv(kd, kp, nchr, info)
855	kvm_t *kd;
856	struct kinfo_proc *kp;
857	int nchr;
858	void (*info)(struct ps_strings *, u_long *, int *);
859{
860	char **ap;
861	u_long addr;
862	int cnt;
863	static struct ps_strings arginfo;
864	static u_long ps_strings;
865	size_t len;
866
867	if (ps_strings == 0) {
868		len = sizeof(ps_strings);
869		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
870		    0) == -1)
871			ps_strings = PS_STRINGS;
872	}
873
874	/*
875	 * Pointers are stored at the top of the user stack.
876	 */
877	if (kp->ki_stat == SZOMB ||
878	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
879		      sizeof(arginfo)) != sizeof(arginfo))
880		return (0);
881
882	(*info)(&arginfo, &addr, &cnt);
883	if (cnt == 0)
884		return (0);
885	ap = kvm_argv(kd, kp, addr, cnt, nchr);
886	/*
887	 * For live kernels, make sure this process didn't go away.
888	 */
889	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
890		ap = 0;
891	return (ap);
892}
893
894/*
895 * Get the command args.  This code is now machine independent.
896 */
897char **
898kvm_getargv(kd, kp, nchr)
899	kvm_t *kd;
900	const struct kinfo_proc *kp;
901	int nchr;
902{
903	int oid[4];
904	int i;
905	size_t bufsz;
906	static unsigned long buflen;
907	static char *buf, *p;
908	static char **bufp;
909	static int argc;
910
911	if (!ISALIVE(kd)) {
912		_kvm_err(kd, kd->program,
913		    "cannot read user space from dead kernel");
914		return (0);
915	}
916
917	if (!buflen) {
918		bufsz = sizeof(buflen);
919		i = sysctlbyname("kern.ps_arg_cache_limit",
920		    &buflen, &bufsz, NULL, 0);
921		if (i == -1) {
922			buflen = 0;
923		} else {
924			buf = malloc(buflen);
925			if (buf == NULL)
926				buflen = 0;
927			argc = 32;
928			bufp = malloc(sizeof(char *) * argc);
929		}
930	}
931	if (buf != NULL) {
932		oid[0] = CTL_KERN;
933		oid[1] = KERN_PROC;
934		oid[2] = KERN_PROC_ARGS;
935		oid[3] = kp->ki_pid;
936		bufsz = buflen;
937		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
938		if (i == 0 && bufsz > 0) {
939			i = 0;
940			p = buf;
941			do {
942				bufp[i++] = p;
943				p += strlen(p) + 1;
944				if (i >= argc) {
945					argc += argc;
946					bufp = realloc(bufp,
947					    sizeof(char *) * argc);
948				}
949			} while (p < buf + bufsz);
950			bufp[i++] = 0;
951			return (bufp);
952		}
953	}
954	if (kp->ki_flag & P_SYSTEM)
955		return (NULL);
956	return (kvm_doargv(kd, kp, nchr, ps_str_a));
957}
958
959char **
960kvm_getenvv(kd, kp, nchr)
961	kvm_t *kd;
962	const struct kinfo_proc *kp;
963	int nchr;
964{
965	return (kvm_doargv(kd, kp, nchr, ps_str_e));
966}
967
968/*
969 * Read from user space.  The user context is given by p.
970 */
971ssize_t
972kvm_uread(kd, kp, uva, buf, len)
973	kvm_t *kd;
974	struct kinfo_proc *kp;
975	u_long uva;
976	char *buf;
977	size_t len;
978{
979	char *cp;
980	char procfile[MAXPATHLEN];
981	ssize_t amount;
982	int fd;
983
984	if (!ISALIVE(kd)) {
985		_kvm_err(kd, kd->program,
986		    "cannot read user space from dead kernel");
987		return (0);
988	}
989
990	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
991	fd = open(procfile, O_RDONLY, 0);
992	if (fd < 0) {
993		_kvm_err(kd, kd->program, "cannot open %s", procfile);
994		return (0);
995	}
996
997	cp = buf;
998	while (len > 0) {
999		errno = 0;
1000		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
1001			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
1002			    uva, procfile);
1003			break;
1004		}
1005		amount = read(fd, cp, len);
1006		if (amount < 0) {
1007			_kvm_syserr(kd, kd->program, "error reading %s",
1008			    procfile);
1009			break;
1010		}
1011		if (amount == 0) {
1012			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
1013			break;
1014		}
1015		cp += amount;
1016		uva += amount;
1017		len -= amount;
1018	}
1019
1020	close(fd);
1021	return ((ssize_t)(cp - buf));
1022}
1023