kvm_proc.c revision 12885
1106184Smarcel/*-
2139601Smarcel * Copyright (c) 1989, 1992, 1993
3106184Smarcel *	The Regents of the University of California.  All rights reserved.
4106184Smarcel *
5106184Smarcel * This code is derived from software developed by the Computer Systems
6106184Smarcel * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7106184Smarcel * BG 91-66 and contributed to Berkeley.
8106184Smarcel *
9106184Smarcel * Redistribution and use in source and binary forms, with or without
10106184Smarcel * modification, are permitted provided that the following conditions
11106184Smarcel * are met:
12106184Smarcel * 1. Redistributions of source code must retain the above copyright
13106184Smarcel *    notice, this list of conditions and the following disclaimer.
14106184Smarcel * 2. Redistributions in binary form must reproduce the above copyright
15106184Smarcel *    notice, this list of conditions and the following disclaimer in the
16106184Smarcel *    documentation and/or other materials provided with the distribution.
17106184Smarcel * 3. All advertising materials mentioning features or use of this software
18106184Smarcel *    must display the following acknowledgement:
19106184Smarcel *	This product includes software developed by the University of
20106184Smarcel *	California, Berkeley and its contributors.
21106184Smarcel * 4. Neither the name of the University nor the names of its contributors
22106184Smarcel *    may be used to endorse or promote products derived from this software
23106184Smarcel *    without specific prior written permission.
24106184Smarcel *
25106184Smarcel * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26106184Smarcel * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27106184Smarcel * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28106184Smarcel * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29106184Smarcel * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30106184Smarcel * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31106184Smarcel * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32106184Smarcel * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33106184Smarcel * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34106184Smarcel * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35106184Smarcel * SUCH DAMAGE.
36106184Smarcel */
37106184Smarcel
38106184Smarcel#if defined(LIBC_SCCS) && !defined(lint)
39139601Smarcelstatic char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
40106184Smarcel#endif /* LIBC_SCCS and not lint */
41106184Smarcel
42106184Smarcel/*
43106184Smarcel * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
44106184Smarcel * users of this code, so we've factored it out into a separate module.
45106184Smarcel * Thus, we keep this grunge out of the other kvm applications (i.e.,
46106184Smarcel * most other applications are interested only in open/close/read/nlist).
47106184Smarcel */
48106184Smarcel
49106184Smarcel#include <sys/param.h>
50106184Smarcel#include <sys/user.h>
51106184Smarcel#include <sys/proc.h>
52106184Smarcel#include <sys/exec.h>
53106184Smarcel#include <sys/stat.h>
54106184Smarcel#include <sys/ioctl.h>
55106184Smarcel#include <sys/tty.h>
56#include <sys/file.h>
57#include <unistd.h>
58#include <nlist.h>
59#include <kvm.h>
60
61#include <vm/vm.h>
62#include <vm/vm_param.h>
63#include <vm/swap_pager.h>
64
65#include <sys/sysctl.h>
66
67#include <limits.h>
68#include <memory.h>
69#include <db.h>
70#include <paths.h>
71
72#include "kvm_private.h"
73
74static char *
75kvm_readswap(kd, p, va, cnt)
76	kvm_t *kd;
77	const struct proc *p;
78	u_long va;
79	u_long *cnt;
80{
81#ifdef __FreeBSD__
82	/* XXX Stubbed out, our vm system is differnet */
83	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
84	return(0);
85#endif	/* __FreeBSD__ */
86}
87
88#define KREAD(kd, addr, obj) \
89	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
90
91/*
92 * Read proc's from memory file into buffer bp, which has space to hold
93 * at most maxcnt procs.
94 */
95static int
96kvm_proclist(kd, what, arg, p, bp, maxcnt)
97	kvm_t *kd;
98	int what, arg;
99	struct proc *p;
100	struct kinfo_proc *bp;
101	int maxcnt;
102{
103	register int cnt = 0;
104	struct eproc eproc;
105	struct pgrp pgrp;
106	struct session sess;
107	struct tty tty;
108	struct proc proc;
109
110	for (; cnt < maxcnt && p != NULL; p = proc.p_next) {
111		if (KREAD(kd, (u_long)p, &proc)) {
112			_kvm_err(kd, kd->program, "can't read proc at %x", p);
113			return (-1);
114		}
115		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
116			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
117			      &eproc.e_ucred);
118
119		switch(what) {
120
121		case KERN_PROC_PID:
122			if (proc.p_pid != (pid_t)arg)
123				continue;
124			break;
125
126		case KERN_PROC_UID:
127			if (eproc.e_ucred.cr_uid != (uid_t)arg)
128				continue;
129			break;
130
131		case KERN_PROC_RUID:
132			if (eproc.e_pcred.p_ruid != (uid_t)arg)
133				continue;
134			break;
135		}
136		/*
137		 * We're going to add another proc to the set.  If this
138		 * will overflow the buffer, assume the reason is because
139		 * nprocs (or the proc list) is corrupt and declare an error.
140		 */
141		if (cnt >= maxcnt) {
142			_kvm_err(kd, kd->program, "nprocs corrupt");
143			return (-1);
144		}
145		/*
146		 * gather eproc
147		 */
148		eproc.e_paddr = p;
149		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
150			_kvm_err(kd, kd->program, "can't read pgrp at %x",
151				 proc.p_pgrp);
152			return (-1);
153		}
154		eproc.e_sess = pgrp.pg_session;
155		eproc.e_pgid = pgrp.pg_id;
156		eproc.e_jobc = pgrp.pg_jobc;
157		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
158			_kvm_err(kd, kd->program, "can't read session at %x",
159				pgrp.pg_session);
160			return (-1);
161		}
162		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
163			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
164				_kvm_err(kd, kd->program,
165					 "can't read tty at %x", sess.s_ttyp);
166				return (-1);
167			}
168			eproc.e_tdev = tty.t_dev;
169			eproc.e_tsess = tty.t_session;
170			if (tty.t_pgrp != NULL) {
171				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
172					_kvm_err(kd, kd->program,
173						 "can't read tpgrp at &x",
174						tty.t_pgrp);
175					return (-1);
176				}
177				eproc.e_tpgid = pgrp.pg_id;
178			} else
179				eproc.e_tpgid = -1;
180		} else
181			eproc.e_tdev = NODEV;
182		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
183		if (sess.s_leader == p)
184			eproc.e_flag |= EPROC_SLEADER;
185		if (proc.p_wmesg)
186			(void)kvm_read(kd, (u_long)proc.p_wmesg,
187			    eproc.e_wmesg, WMESGLEN);
188
189#ifdef sparc
190		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
191		    (char *)&eproc.e_vm.vm_rssize,
192		    sizeof(eproc.e_vm.vm_rssize));
193		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
194		    (char *)&eproc.e_vm.vm_tsize,
195		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
196#else
197		(void)kvm_read(kd, (u_long)proc.p_vmspace,
198		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
199#endif
200		eproc.e_xsize = eproc.e_xrssize = 0;
201		eproc.e_xccount = eproc.e_xswrss = 0;
202
203		switch (what) {
204
205		case KERN_PROC_PGRP:
206			if (eproc.e_pgid != (pid_t)arg)
207				continue;
208			break;
209
210		case KERN_PROC_TTY:
211			if ((proc.p_flag & P_CONTROLT) == 0 ||
212			     eproc.e_tdev != (dev_t)arg)
213				continue;
214			break;
215		}
216		bcopy(&proc, &bp->kp_proc, sizeof(proc));
217		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
218		++bp;
219		++cnt;
220	}
221	return (cnt);
222}
223
224/*
225 * Build proc info array by reading in proc list from a crash dump.
226 * Return number of procs read.  maxcnt is the max we will read.
227 */
228static int
229kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
230	kvm_t *kd;
231	int what, arg;
232	u_long a_allproc;
233	u_long a_zombproc;
234	int maxcnt;
235{
236	register struct kinfo_proc *bp = kd->procbase;
237	register int acnt, zcnt;
238	struct proc *p;
239
240	if (KREAD(kd, a_allproc, &p)) {
241		_kvm_err(kd, kd->program, "cannot read allproc");
242		return (-1);
243	}
244	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
245	if (acnt < 0)
246		return (acnt);
247
248	if (KREAD(kd, a_zombproc, &p)) {
249		_kvm_err(kd, kd->program, "cannot read zombproc");
250		return (-1);
251	}
252	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
253	if (zcnt < 0)
254		zcnt = 0;
255
256	return (acnt + zcnt);
257}
258
259struct kinfo_proc *
260kvm_getprocs(kd, op, arg, cnt)
261	kvm_t *kd;
262	int op, arg;
263	int *cnt;
264{
265	int mib[4], size, st, nprocs;
266
267	if (kd->procbase != 0) {
268		free((void *)kd->procbase);
269		/*
270		 * Clear this pointer in case this call fails.  Otherwise,
271		 * kvm_close() will free it again.
272		 */
273		kd->procbase = 0;
274	}
275	if (ISALIVE(kd)) {
276		size = 0;
277		mib[0] = CTL_KERN;
278		mib[1] = KERN_PROC;
279		mib[2] = op;
280		mib[3] = arg;
281		st = sysctl(mib, 4, NULL, &size, NULL, 0);
282		if (st == -1) {
283			_kvm_syserr(kd, kd->program, "kvm_getprocs");
284			return (0);
285		}
286		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
287		if (kd->procbase == 0)
288			return (0);
289		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
290		if (st == -1) {
291			_kvm_syserr(kd, kd->program, "kvm_getprocs");
292			return (0);
293		}
294		if (size % sizeof(struct kinfo_proc) != 0) {
295			_kvm_err(kd, kd->program,
296				"proc size mismatch (%d total, %d chunks)",
297				size, sizeof(struct kinfo_proc));
298			return (0);
299		}
300		nprocs = size / sizeof(struct kinfo_proc);
301	} else {
302		struct nlist nl[4], *p;
303
304		nl[0].n_name = "_nprocs";
305		nl[1].n_name = "_allproc";
306		nl[2].n_name = "_zombproc";
307		nl[3].n_name = 0;
308
309		if (kvm_nlist(kd, nl) != 0) {
310			for (p = nl; p->n_type != 0; ++p)
311				;
312			_kvm_err(kd, kd->program,
313				 "%s: no such symbol", p->n_name);
314			return (0);
315		}
316		if (KREAD(kd, nl[0].n_value, &nprocs)) {
317			_kvm_err(kd, kd->program, "can't read nprocs");
318			return (0);
319		}
320		size = nprocs * sizeof(struct kinfo_proc);
321		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
322		if (kd->procbase == 0)
323			return (0);
324
325		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
326				      nl[2].n_value, nprocs);
327#ifdef notdef
328		size = nprocs * sizeof(struct kinfo_proc);
329		(void)realloc(kd->procbase, size);
330#endif
331	}
332	*cnt = nprocs;
333	return (kd->procbase);
334}
335
336void
337_kvm_freeprocs(kd)
338	kvm_t *kd;
339{
340	if (kd->procbase) {
341		free(kd->procbase);
342		kd->procbase = 0;
343	}
344}
345
346void *
347_kvm_realloc(kd, p, n)
348	kvm_t *kd;
349	void *p;
350	size_t n;
351{
352	void *np = (void *)realloc(p, n);
353
354	if (np == 0)
355		_kvm_err(kd, kd->program, "out of memory");
356	return (np);
357}
358
359#ifndef MAX
360#define MAX(a, b) ((a) > (b) ? (a) : (b))
361#endif
362
363/*
364 * Read in an argument vector from the user address space of process p.
365 * addr if the user-space base address of narg null-terminated contiguous
366 * strings.  This is used to read in both the command arguments and
367 * environment strings.  Read at most maxcnt characters of strings.
368 */
369static char **
370kvm_argv(kd, p, addr, narg, maxcnt)
371	kvm_t *kd;
372	const struct proc *p;
373	register u_long addr;
374	register int narg;
375	register int maxcnt;
376{
377	register char *np, *cp, *ep, *ap;
378	register u_long oaddr = -1;
379	register int len, cc;
380	register char **argv;
381
382	/*
383	 * Check that there aren't an unreasonable number of agruments,
384	 * and that the address is in user space.
385	 */
386	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
387		return (0);
388
389	/*
390	 * kd->argv : work space for fetching the strings from the target
391	 *            process's space, and is converted for returning to caller
392	 */
393	if (kd->argv == 0) {
394		/*
395		 * Try to avoid reallocs.
396		 */
397		kd->argc = MAX(narg + 1, 32);
398		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
399						sizeof(*kd->argv));
400		if (kd->argv == 0)
401			return (0);
402	} else if (narg + 1 > kd->argc) {
403		kd->argc = MAX(2 * kd->argc, narg + 1);
404		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
405						sizeof(*kd->argv));
406		if (kd->argv == 0)
407			return (0);
408	}
409	/*
410	 * kd->argspc : returned to user, this is where the kd->argv
411	 *              arrays are left pointing to the collected strings.
412	 */
413	if (kd->argspc == 0) {
414		kd->argspc = (char *)_kvm_malloc(kd, NBPG);
415		if (kd->argspc == 0)
416			return (0);
417		kd->arglen = NBPG;
418	}
419	/*
420	 * kd->argbuf : used to pull in pages from the target process.
421	 *              the strings are copied out of here.
422	 */
423	if (kd->argbuf == 0) {
424		kd->argbuf = (char *)_kvm_malloc(kd, NBPG);
425		if (kd->argbuf == 0)
426			return (0);
427	}
428
429	/* Pull in the target process'es argv vector */
430	cc = sizeof(char *) * narg;
431	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
432		return (0);
433	/*
434	 * ap : saved start address of string we're working on in kd->argspc
435	 * np : pointer to next place to write in kd->argspc
436	 * len: length of data in kd->argspc
437	 * argv: pointer to the argv vector that we are hunting around the
438	 *       target process space for, and converting to addresses in
439	 *       our address space (kd->argspc).
440	 */
441	ap = np = kd->argspc;
442	argv = kd->argv;
443	len = 0;
444	/*
445	 * Loop over pages, filling in the argument vector.
446	 * Note that the argv strings could be pointing *anywhere* in
447	 * the user address space and are no longer contiguous.
448	 * Note that *argv is modified when we are going to fetch a string
449	 * that crosses a page boundary.  We copy the next part of the string
450	 * into to "np" and eventually convert the pointer.
451	 */
452	while (argv < kd->argv + narg && *argv != 0) {
453
454		/* get the address that the current argv string is on */
455		addr = (u_long)*argv & ~(NBPG - 1);
456
457		/* is it the same page as the last one? */
458		if (addr != oaddr) {
459			if (kvm_uread(kd, p, addr, kd->argbuf, NBPG) !=
460			    NBPG)
461				return (0);
462			oaddr = addr;
463		}
464
465		/* offset within the page... kd->argbuf */
466		addr = (u_long)*argv & (NBPG - 1);
467
468		/* cp = start of string, cc = count of chars in this chunk */
469		cp = kd->argbuf + addr;
470		cc = NBPG - addr;
471
472		/* dont get more than asked for by user process */
473		if (maxcnt > 0 && cc > maxcnt - len)
474			cc = maxcnt - len;
475
476		/* pointer to end of string if we found it in this page */
477		ep = memchr(cp, '\0', cc);
478		if (ep != 0)
479			cc = ep - cp + 1;
480		/*
481		 * at this point, cc is the count of the chars that we are
482		 * going to retrieve this time. we may or may not have found
483		 * the end of it.  (ep points to the null if the end is known)
484		 */
485
486		/* will we exceed the malloc/realloced buffer? */
487		if (len + cc > kd->arglen) {
488			register int off;
489			register char **pp;
490			register char *op = kd->argspc;
491
492			kd->arglen *= 2;
493			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
494							  kd->arglen);
495			if (kd->argspc == 0)
496				return (0);
497			/*
498			 * Adjust argv pointers in case realloc moved
499			 * the string space.
500			 */
501			off = kd->argspc - op;
502			for (pp = kd->argv; pp < argv; pp++)
503				*pp += off;
504			ap += off;
505			np += off;
506		}
507		/* np = where to put the next part of the string in kd->argspc*/
508		/* np is kinda redundant.. could use "kd->argspc + len" */
509		memcpy(np, cp, cc);
510		np += cc;	/* inc counters */
511		len += cc;
512
513		/*
514		 * if end of string found, set the *argv pointer to the
515		 * saved beginning of string, and advance. argv points to
516		 * somewhere in kd->argv..  This is initially relative
517		 * to the target process, but when we close it off, we set
518		 * it to point in our address space.
519		 */
520		if (ep != 0) {
521			*argv++ = ap;
522			ap = np;
523		} else {
524			/* update the address relative to the target process */
525			*argv += cc;
526		}
527
528		if (maxcnt > 0 && len >= maxcnt) {
529			/*
530			 * We're stopping prematurely.  Terminate the
531			 * current string.
532			 */
533			if (ep == 0) {
534				*np = '\0';
535				*argv++ = ap;
536			}
537			break;
538		}
539	}
540	/* Make sure argv is terminated. */
541	*argv = 0;
542	return (kd->argv);
543}
544
545static void
546ps_str_a(p, addr, n)
547	struct ps_strings *p;
548	u_long *addr;
549	int *n;
550{
551	*addr = (u_long)p->ps_argvstr;
552	*n = p->ps_nargvstr;
553}
554
555static void
556ps_str_e(p, addr, n)
557	struct ps_strings *p;
558	u_long *addr;
559	int *n;
560{
561	*addr = (u_long)p->ps_envstr;
562	*n = p->ps_nenvstr;
563}
564
565/*
566 * Determine if the proc indicated by p is still active.
567 * This test is not 100% foolproof in theory, but chances of
568 * being wrong are very low.
569 */
570static int
571proc_verify(kd, kernp, p)
572	kvm_t *kd;
573	u_long kernp;
574	const struct proc *p;
575{
576	struct proc kernproc;
577
578	/*
579	 * Just read in the whole proc.  It's not that big relative
580	 * to the cost of the read system call.
581	 */
582	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
583	    sizeof(kernproc))
584		return (0);
585	return (p->p_pid == kernproc.p_pid &&
586		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
587}
588
589static char **
590kvm_doargv(kd, kp, nchr, info)
591	kvm_t *kd;
592	const struct kinfo_proc *kp;
593	int nchr;
594	void (*info)(struct ps_strings *, u_long *, int *);
595{
596	register const struct proc *p = &kp->kp_proc;
597	register char **ap;
598	u_long addr;
599	int cnt;
600	struct ps_strings arginfo;
601
602	/*
603	 * Pointers are stored at the top of the user stack.
604	 */
605	if (p->p_stat == SZOMB ||
606	    kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
607		      sizeof(arginfo)) != sizeof(arginfo))
608		return (0);
609
610	(*info)(&arginfo, &addr, &cnt);
611	if (cnt == 0)
612		return (0);
613	ap = kvm_argv(kd, p, addr, cnt, nchr);
614	/*
615	 * For live kernels, make sure this process didn't go away.
616	 */
617	if (ap != 0 && ISALIVE(kd) &&
618	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
619		ap = 0;
620	return (ap);
621}
622
623/*
624 * Get the command args.  This code is now machine independent.
625 */
626char **
627kvm_getargv(kd, kp, nchr)
628	kvm_t *kd;
629	const struct kinfo_proc *kp;
630	int nchr;
631{
632	return (kvm_doargv(kd, kp, nchr, ps_str_a));
633}
634
635char **
636kvm_getenvv(kd, kp, nchr)
637	kvm_t *kd;
638	const struct kinfo_proc *kp;
639	int nchr;
640{
641	return (kvm_doargv(kd, kp, nchr, ps_str_e));
642}
643
644/*
645 * Read from user space.  The user context is given by p.
646 */
647ssize_t
648kvm_uread(kd, p, uva, buf, len)
649	kvm_t *kd;
650	register struct proc *p;
651	register u_long uva;
652	register char *buf;
653	register size_t len;
654{
655	register char *cp;
656	char procfile[MAXPATHLEN];
657	ssize_t amount;
658	int fd;
659
660	cp = buf;
661
662	sprintf(procfile, "/proc/%d/mem", p->p_pid);
663	fd = open(procfile, O_RDONLY, 0);
664
665	if (fd < 0) {
666		_kvm_err(kd, kd->program, "cannot open %s", procfile);
667		close(fd);
668		return (0);
669	}
670
671
672	while (len > 0) {
673		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
674			_kvm_err(kd, kd->program, "invalid address (%x) in %s", uva, procfile);
675			break;
676		}
677		amount = read(fd, cp, len);
678		if (amount < 0) {
679			_kvm_err(kd, kd->program, "error reading %s", procfile);
680			break;
681		}
682		cp += amount;
683		uva += amount;
684		len -= amount;
685	}
686
687	close(fd);
688	return (ssize_t)(cp - buf);
689}
690