kvm_proc.c revision 195843
19823Sprr/*-
29823Sprr * Copyright (c) 1989, 1992, 1993
39823Sprr *	The Regents of the University of California.  All rights reserved.
49823Sprr *
59823Sprr * This code is derived from software developed by the Computer Systems
69823Sprr * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
79823Sprr * BG 91-66 and contributed to Berkeley.
89823Sprr *
99823Sprr * Redistribution and use in source and binary forms, with or without
109823Sprr * modification, are permitted provided that the following conditions
119823Sprr * are met:
129823Sprr * 1. Redistributions of source code must retain the above copyright
139823Sprr *    notice, this list of conditions and the following disclaimer.
149823Sprr * 2. Redistributions in binary form must reproduce the above copyright
159823Sprr *    notice, this list of conditions and the following disclaimer in the
169823Sprr *    documentation and/or other materials provided with the distribution.
179823Sprr * 4. Neither the name of the University nor the names of its contributors
189823Sprr *    may be used to endorse or promote products derived from this software
199823Sprr *    without specific prior written permission.
209823Sprr *
219823Sprr * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
229823Sprr * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
239823Sprr * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
249823Sprr * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
259823Sprr * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
269823Sprr * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
279823Sprr * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
289823Sprr * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
299823Sprr * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
309823Sprr * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
319823Sprr * SUCH DAMAGE.
329823Sprr */
339823Sprr
349823Sprr#if 0
359823Sprr#if defined(LIBC_SCCS) && !defined(lint)
369823Sprrstatic char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
379823Sprr#endif /* LIBC_SCCS and not lint */
389823Sprr#endif
399823Sprr
409823Sprr#include <sys/cdefs.h>
419823Sprr__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 195843 2009-07-24 15:03:10Z brooks $");
429823Sprr
439823Sprr/*
449823Sprr * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
459823Sprr * users of this code, so we've factored it out into a separate module.
469823Sprr * Thus, we keep this grunge out of the other kvm applications (i.e.,
479823Sprr * most other applications are interested only in open/close/read/nlist).
489823Sprr */
499823Sprr
509823Sprr#include <sys/param.h>
519823Sprr#define	_WANT_UCRED	/* make ucred.h give us 'struct ucred' */
529823Sprr#include <sys/ucred.h>
539823Sprr#include <sys/queue.h>
549823Sprr#include <sys/_lock.h>
559823Sprr#include <sys/_mutex.h>
569823Sprr#include <sys/_task.h>
579823Sprr#include <sys/cpuset.h>
589823Sprr#include <sys/user.h>
599823Sprr#include <sys/proc.h>
609823Sprr#define	_WANT_PRISON	/* make jail.h give us 'struct prison' */
619823Sprr#include <sys/jail.h>
629823Sprr#include <sys/exec.h>
639823Sprr#include <sys/stat.h>
649823Sprr#include <sys/sysent.h>
659823Sprr#include <sys/ioctl.h>
669823Sprr#include <sys/tty.h>
679823Sprr#include <sys/file.h>
689823Sprr#include <sys/conf.h>
699823Sprr#include <stdio.h>
709823Sprr#include <stdlib.h>
719823Sprr#include <unistd.h>
729823Sprr#include <nlist.h>
739823Sprr#include <kvm.h>
749823Sprr
759823Sprr#include <vm/vm.h>
769823Sprr#include <vm/vm_param.h>
779823Sprr
789823Sprr#include <sys/sysctl.h>
799823Sprr
809823Sprr#include <limits.h>
819823Sprr#include <memory.h>
829823Sprr#include <paths.h>
839823Sprr
849823Sprr#include "kvm_private.h"
859823Sprr
869823Sprr#define KREAD(kd, addr, obj) \
879823Sprr	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
889823Sprr
899823Sprrstatic int ticks;
909823Sprrstatic int hz;
919823Sprr
929823Sprr/*
939823Sprr * Read proc's from memory file into buffer bp, which has space to hold
949823Sprr * at most maxcnt procs.
959823Sprr */
969823Sprrstatic int
979823Sprrkvm_proclist(kd, what, arg, p, bp, maxcnt)
989823Sprr	kvm_t *kd;
999823Sprr	int what, arg;
1009823Sprr	struct proc *p;
1019823Sprr	struct kinfo_proc *bp;
1029823Sprr	int maxcnt;
1039823Sprr{
1049823Sprr	int cnt = 0;
1059823Sprr	struct kinfo_proc kinfo_proc, *kp;
1069823Sprr	struct pgrp pgrp;
1079823Sprr	struct session sess;
1089823Sprr	struct cdev t_cdev;
1099823Sprr	struct tty tty;
1109823Sprr	struct vmspace vmspace;
1119823Sprr	struct sigacts sigacts;
1129823Sprr	struct pstats pstats;
1139823Sprr	struct ucred ucred;
1149823Sprr	struct prison pr;
1159823Sprr	struct thread mtd;
1169823Sprr	struct proc proc;
1179823Sprr	struct proc pproc;
1189823Sprr	struct timeval tv;
1199823Sprr	struct sysentvec sysent;
1209823Sprr	char svname[KI_EMULNAMELEN];
1219823Sprr
1229823Sprr	kp = &kinfo_proc;
1239823Sprr	kp->ki_structsize = sizeof(kinfo_proc);
1249823Sprr	/*
1259823Sprr	 * Loop on the processes. this is completely broken because we need to be
1269823Sprr	 * able to loop on the threads and merge the ones that are the same process some how.
1279823Sprr	 */
1289823Sprr	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
1299823Sprr		memset(kp, 0, sizeof *kp);
1309823Sprr		if (KREAD(kd, (u_long)p, &proc)) {
1319823Sprr			_kvm_err(kd, kd->program, "can't read proc at %x", p);
1329823Sprr			return (-1);
1339823Sprr		}
1349823Sprr		if (proc.p_state != PRS_ZOMBIE) {
1359823Sprr			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
1369823Sprr			    &mtd)) {
1379823Sprr				_kvm_err(kd, kd->program,
1389823Sprr				    "can't read thread at %x",
1399823Sprr				    TAILQ_FIRST(&proc.p_threads));
1409823Sprr				return (-1);
1419823Sprr			}
1429823Sprr		}
1439823Sprr		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
1449823Sprr			kp->ki_ruid = ucred.cr_ruid;
1459823Sprr			kp->ki_svuid = ucred.cr_svuid;
1469823Sprr			kp->ki_rgid = ucred.cr_rgid;
1479823Sprr			kp->ki_svgid = ucred.cr_svgid;
1489823Sprr			kp->ki_cr_flags = ucred.cr_flags;
1499823Sprr			if (ucred.cr_ngroups > KI_NGROUPS) {
1509823Sprr				kp->ki_ngroups = KI_NGROUPS;
1519823Sprr				kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
1529823Sprr			}
1539823Sprr				kp->ki_ngroups = ucred.cr_ngroups;
1549823Sprr			bcopy(ucred.cr_groups, kp->ki_groups,
1559823Sprr			    kp->ki_ngroups * sizeof(gid_t));
1569823Sprr			kp->ki_uid = ucred.cr_uid;
1579823Sprr			if (ucred.cr_prison != NULL) {
1589823Sprr				if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) {
1599823Sprr					_kvm_err(kd, kd->program,
1609823Sprr					    "can't read prison at %x",
1619823Sprr					    ucred.cr_prison);
1629823Sprr					return (-1);
1639823Sprr				}
1649823Sprr				kp->ki_jid = pr.pr_id;
1659823Sprr			}
1669823Sprr		}
1679823Sprr
1689823Sprr		switch(what & ~KERN_PROC_INC_THREAD) {
1699823Sprr
1709823Sprr		case KERN_PROC_GID:
1719823Sprr			if (kp->ki_groups[0] != (gid_t)arg)
1729823Sprr				continue;
1739823Sprr			break;
1749823Sprr
1759823Sprr		case KERN_PROC_PID:
1769823Sprr			if (proc.p_pid != (pid_t)arg)
1779823Sprr				continue;
1789823Sprr			break;
1799823Sprr
1809823Sprr		case KERN_PROC_RGID:
1819823Sprr			if (kp->ki_rgid != (gid_t)arg)
1829823Sprr				continue;
1839823Sprr			break;
1849823Sprr
1859823Sprr		case KERN_PROC_UID:
1869823Sprr			if (kp->ki_uid != (uid_t)arg)
1879823Sprr				continue;
1889823Sprr			break;
1899823Sprr
1909823Sprr		case KERN_PROC_RUID:
1919823Sprr			if (kp->ki_ruid != (uid_t)arg)
1929823Sprr				continue;
1939823Sprr			break;
1949823Sprr		}
1959823Sprr		/*
1969823Sprr		 * We're going to add another proc to the set.  If this
1979823Sprr		 * will overflow the buffer, assume the reason is because
1989823Sprr		 * nprocs (or the proc list) is corrupt and declare an error.
1999823Sprr		 */
2009823Sprr		if (cnt >= maxcnt) {
2019823Sprr			_kvm_err(kd, kd->program, "nprocs corrupt");
2029823Sprr			return (-1);
2039823Sprr		}
2049823Sprr		/*
2059823Sprr		 * gather kinfo_proc
2069823Sprr		 */
2079823Sprr		kp->ki_paddr = p;
2089823Sprr		kp->ki_addr = 0;	/* XXX uarea */
2099823Sprr		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
2109823Sprr		kp->ki_args = proc.p_args;
2119823Sprr		kp->ki_tracep = proc.p_tracevp;
2129823Sprr		kp->ki_textvp = proc.p_textvp;
2139823Sprr		kp->ki_fd = proc.p_fd;
2149823Sprr		kp->ki_vmspace = proc.p_vmspace;
2159823Sprr		if (proc.p_sigacts != NULL) {
2169823Sprr			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
2179823Sprr				_kvm_err(kd, kd->program,
2189823Sprr				    "can't read sigacts at %x", proc.p_sigacts);
2199823Sprr				return (-1);
2209823Sprr			}
2219823Sprr			kp->ki_sigignore = sigacts.ps_sigignore;
2229823Sprr			kp->ki_sigcatch = sigacts.ps_sigcatch;
2239823Sprr		}
2249823Sprr#if 0
2259823Sprr		if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) {
2269823Sprr			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
2279823Sprr				_kvm_err(kd, kd->program,
2289823Sprr				    "can't read stats at %x", proc.p_stats);
2299823Sprr				return (-1);
2309823Sprr			}
2319823Sprr			kp->ki_start = pstats.p_start;
2329823Sprr
2339823Sprr			/*
2349823Sprr			 * XXX: The times here are probably zero and need
2359823Sprr			 * to be calculated from the raw data in p_rux and
2369823Sprr			 * p_crux.
2379823Sprr			 */
2389823Sprr			kp->ki_rusage = pstats.p_ru;
2399823Sprr			kp->ki_childstime = pstats.p_cru.ru_stime;
2409823Sprr			kp->ki_childutime = pstats.p_cru.ru_utime;
2419823Sprr			/* Some callers want child-times in a single value */
2429823Sprr			timeradd(&kp->ki_childstime, &kp->ki_childutime,
2439823Sprr			    &kp->ki_childtime);
2449823Sprr		}
2459823Sprr#endif
2469823Sprr		if (proc.p_oppid)
2479823Sprr			kp->ki_ppid = proc.p_oppid;
2489823Sprr		else if (proc.p_pptr) {
2499823Sprr			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
2509823Sprr				_kvm_err(kd, kd->program,
2519823Sprr				    "can't read pproc at %x", proc.p_pptr);
2529823Sprr				return (-1);
2539823Sprr			}
2549823Sprr			kp->ki_ppid = pproc.p_pid;
2559823Sprr		} else
2569823Sprr			kp->ki_ppid = 0;
2579823Sprr		if (proc.p_pgrp == NULL)
2589823Sprr			goto nopgrp;
2599823Sprr		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
2609823Sprr			_kvm_err(kd, kd->program, "can't read pgrp at %x",
2619823Sprr				 proc.p_pgrp);
2629823Sprr			return (-1);
2639823Sprr		}
2649823Sprr		kp->ki_pgid = pgrp.pg_id;
2659823Sprr		kp->ki_jobc = pgrp.pg_jobc;
2669823Sprr		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
2679823Sprr			_kvm_err(kd, kd->program, "can't read session at %x",
2689823Sprr				pgrp.pg_session);
2699823Sprr			return (-1);
2709823Sprr		}
2719823Sprr		kp->ki_sid = sess.s_sid;
2729823Sprr		(void)memcpy(kp->ki_login, sess.s_login,
2739823Sprr						sizeof(kp->ki_login));
2749823Sprr		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
2759823Sprr		if (sess.s_leader == p)
2769823Sprr			kp->ki_kiflag |= KI_SLEADER;
2779823Sprr		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
2789823Sprr			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
2799823Sprr				_kvm_err(kd, kd->program,
2809823Sprr					 "can't read tty at %x", sess.s_ttyp);
2819823Sprr				return (-1);
2829823Sprr			}
2839823Sprr			if (tty.t_dev != NULL) {
2849823Sprr				if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
2859823Sprr					_kvm_err(kd, kd->program,
2869823Sprr						 "can't read cdev at %x",
2879823Sprr						tty.t_dev);
2889823Sprr					return (-1);
2899823Sprr				}
2909823Sprr#if 0
2919823Sprr				kp->ki_tdev = t_cdev.si_udev;
2929823Sprr#else
2939823Sprr				kp->ki_tdev = NODEV;
2949823Sprr#endif
2959823Sprr			}
2969823Sprr			if (tty.t_pgrp != NULL) {
2979823Sprr				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
2989823Sprr					_kvm_err(kd, kd->program,
2999823Sprr						 "can't read tpgrp at %x",
3009823Sprr						tty.t_pgrp);
3019823Sprr					return (-1);
3029823Sprr				}
3039823Sprr				kp->ki_tpgid = pgrp.pg_id;
3049823Sprr			} else
3059823Sprr				kp->ki_tpgid = -1;
3069823Sprr			if (tty.t_session != NULL) {
3079823Sprr				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
3089823Sprr					_kvm_err(kd, kd->program,
3099823Sprr					    "can't read session at %x",
3109823Sprr					    tty.t_session);
3119823Sprr					return (-1);
3129823Sprr				}
3139823Sprr				kp->ki_tsid = sess.s_sid;
3149823Sprr			}
3159823Sprr		} else {
3169823Sprrnopgrp:
3179823Sprr			kp->ki_tdev = NODEV;
3189823Sprr		}
3199823Sprr		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
3209823Sprr			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
3219823Sprr			    kp->ki_wmesg, WMESGLEN);
3229823Sprr
3239823Sprr		(void)kvm_read(kd, (u_long)proc.p_vmspace,
3249823Sprr		    (char *)&vmspace, sizeof(vmspace));
3259823Sprr		kp->ki_size = vmspace.vm_map.size;
3269823Sprr		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
3279823Sprr		kp->ki_swrss = vmspace.vm_swrss;
3289823Sprr		kp->ki_tsize = vmspace.vm_tsize;
3299823Sprr		kp->ki_dsize = vmspace.vm_dsize;
3309823Sprr		kp->ki_ssize = vmspace.vm_ssize;
3319823Sprr
3329823Sprr		switch (what & ~KERN_PROC_INC_THREAD) {
3339823Sprr
3349823Sprr		case KERN_PROC_PGRP:
3359823Sprr			if (kp->ki_pgid != (pid_t)arg)
3369823Sprr				continue;
3379823Sprr			break;
3389823Sprr
3399823Sprr		case KERN_PROC_SESSION:
3409823Sprr			if (kp->ki_sid != (pid_t)arg)
3419823Sprr				continue;
3429823Sprr			break;
3439823Sprr
3449823Sprr		case KERN_PROC_TTY:
3459823Sprr			if ((proc.p_flag & P_CONTROLT) == 0 ||
3469823Sprr			     kp->ki_tdev != (dev_t)arg)
3479823Sprr				continue;
3489823Sprr			break;
3499823Sprr		}
3509823Sprr		if (proc.p_comm[0] != 0)
3519823Sprr			strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
3529823Sprr		(void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
3539823Sprr		    sizeof(sysent));
3549823Sprr		(void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
3559823Sprr		    sizeof(svname));
3569823Sprr		if (svname[0] != 0)
3579823Sprr			strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
3589823Sprr		if ((proc.p_state != PRS_ZOMBIE) &&
3599823Sprr		    (mtd.td_blocked != 0)) {
3609823Sprr			kp->ki_kiflag |= KI_LOCKBLOCK;
3619823Sprr			if (mtd.td_lockname)
3629823Sprr				(void)kvm_read(kd,
3639823Sprr				    (u_long)mtd.td_lockname,
3649823Sprr				    kp->ki_lockname, LOCKNAMELEN);
3659823Sprr			kp->ki_lockname[LOCKNAMELEN] = 0;
3669823Sprr		}
3679823Sprr		/*
3689823Sprr		 * XXX: This is plain wrong, rux_runtime has nothing
3699823Sprr		 * to do with struct bintime, rux_runtime is just a 64-bit
3709823Sprr		 * integer counter of cputicks.  What we need here is a way
3719823Sprr		 * to convert cputicks to usecs.  The kernel does it in
3729823Sprr		 * kern/kern_tc.c, but the function can't be just copied.
3739823Sprr		 */
3749823Sprr		bintime2timeval(&proc.p_rux.rux_runtime, &tv);
3759823Sprr		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
3769823Sprr		kp->ki_pid = proc.p_pid;
3779823Sprr		kp->ki_siglist = proc.p_siglist;
3789823Sprr		SIGSETOR(kp->ki_siglist, mtd.td_siglist);
3799823Sprr		kp->ki_sigmask = mtd.td_sigmask;
3809823Sprr		kp->ki_xstat = proc.p_xstat;
3819823Sprr		kp->ki_acflag = proc.p_acflag;
3829823Sprr		kp->ki_lock = proc.p_lock;
3839823Sprr		if (proc.p_state != PRS_ZOMBIE) {
3849823Sprr			kp->ki_swtime = (ticks - proc.p_swtick) / hz;
3859823Sprr			kp->ki_flag = proc.p_flag;
3869823Sprr			kp->ki_sflag = 0;
3879823Sprr			kp->ki_nice = proc.p_nice;
3889823Sprr			kp->ki_traceflag = proc.p_traceflag;
3899823Sprr			if (proc.p_state == PRS_NORMAL) {
3909823Sprr				if (TD_ON_RUNQ(&mtd) ||
3919823Sprr				    TD_CAN_RUN(&mtd) ||
3929823Sprr				    TD_IS_RUNNING(&mtd)) {
3939823Sprr					kp->ki_stat = SRUN;
3949823Sprr				} else if (mtd.td_state ==
3959823Sprr				    TDS_INHIBITED) {
3969823Sprr					if (P_SHOULDSTOP(&proc)) {
3979823Sprr						kp->ki_stat = SSTOP;
3989823Sprr					} else if (
3999823Sprr					    TD_IS_SLEEPING(&mtd)) {
4009823Sprr						kp->ki_stat = SSLEEP;
4019823Sprr					} else if (TD_ON_LOCK(&mtd)) {
4029823Sprr						kp->ki_stat = SLOCK;
4039823Sprr					} else {
4049823Sprr						kp->ki_stat = SWAIT;
4059823Sprr					}
4069823Sprr				}
4079823Sprr			} else {
4089823Sprr				kp->ki_stat = SIDL;
4099823Sprr			}
4109823Sprr			/* Stuff from the thread */
4119823Sprr			kp->ki_pri.pri_level = mtd.td_priority;
4129823Sprr			kp->ki_pri.pri_native = mtd.td_base_pri;
4139823Sprr			kp->ki_lastcpu = mtd.td_lastcpu;
4149823Sprr			kp->ki_wchan = mtd.td_wchan;
4159823Sprr			if (mtd.td_name[0] != 0)
4169823Sprr				strlcpy(kp->ki_ocomm, mtd.td_name, MAXCOMLEN);
4179823Sprr			kp->ki_oncpu = mtd.td_oncpu;
4189823Sprr			if (mtd.td_name[0] != '\0')
4199823Sprr				strlcpy(kp->ki_ocomm, mtd.td_name, sizeof(kp->ki_ocomm));
4209823Sprr			kp->ki_pctcpu = 0;
4219823Sprr			kp->ki_rqindex = 0;
4229823Sprr		} else {
4239823Sprr			kp->ki_stat = SZOMB;
4249823Sprr		}
4259823Sprr		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
4269823Sprr		++bp;
4279823Sprr		++cnt;
4289823Sprr	}
4299823Sprr	return (cnt);
4309823Sprr}
4319823Sprr
4329823Sprr/*
4339823Sprr * Build proc info array by reading in proc list from a crash dump.
4349823Sprr * Return number of procs read.  maxcnt is the max we will read.
4359823Sprr */
4369823Sprrstatic int
4379823Sprrkvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
4389823Sprr	kvm_t *kd;
4399823Sprr	int what, arg;
4409823Sprr	u_long a_allproc;
4419823Sprr	u_long a_zombproc;
4429823Sprr	int maxcnt;
4439823Sprr{
4449823Sprr	struct kinfo_proc *bp = kd->procbase;
4459823Sprr	int acnt, zcnt;
4469823Sprr	struct proc *p;
4479823Sprr
4489823Sprr	if (KREAD(kd, a_allproc, &p)) {
4499823Sprr		_kvm_err(kd, kd->program, "cannot read allproc");
4509823Sprr		return (-1);
4519823Sprr	}
4529823Sprr	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
4539823Sprr	if (acnt < 0)
4549823Sprr		return (acnt);
4559823Sprr
4569823Sprr	if (KREAD(kd, a_zombproc, &p)) {
4579823Sprr		_kvm_err(kd, kd->program, "cannot read zombproc");
4589823Sprr		return (-1);
4599823Sprr	}
4609823Sprr	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
461	if (zcnt < 0)
462		zcnt = 0;
463
464	return (acnt + zcnt);
465}
466
467struct kinfo_proc *
468kvm_getprocs(kd, op, arg, cnt)
469	kvm_t *kd;
470	int op, arg;
471	int *cnt;
472{
473	int mib[4], st, nprocs;
474	size_t size;
475	int temp_op;
476
477	if (kd->procbase != 0) {
478		free((void *)kd->procbase);
479		/*
480		 * Clear this pointer in case this call fails.  Otherwise,
481		 * kvm_close() will free it again.
482		 */
483		kd->procbase = 0;
484	}
485	if (ISALIVE(kd)) {
486		size = 0;
487		mib[0] = CTL_KERN;
488		mib[1] = KERN_PROC;
489		mib[2] = op;
490		mib[3] = arg;
491		temp_op = op & ~KERN_PROC_INC_THREAD;
492		st = sysctl(mib,
493		    temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
494		    3 : 4, NULL, &size, NULL, 0);
495		if (st == -1) {
496			_kvm_syserr(kd, kd->program, "kvm_getprocs");
497			return (0);
498		}
499		/*
500		 * We can't continue with a size of 0 because we pass
501		 * it to realloc() (via _kvm_realloc()), and passing 0
502		 * to realloc() results in undefined behavior.
503		 */
504		if (size == 0) {
505			/*
506			 * XXX: We should probably return an invalid,
507			 * but non-NULL, pointer here so any client
508			 * program trying to dereference it will
509			 * crash.  However, _kvm_freeprocs() calls
510			 * free() on kd->procbase if it isn't NULL,
511			 * and free()'ing a junk pointer isn't good.
512			 * Then again, _kvm_freeprocs() isn't used
513			 * anywhere . . .
514			 */
515			kd->procbase = _kvm_malloc(kd, 1);
516			goto liveout;
517		}
518		do {
519			size += size / 10;
520			kd->procbase = (struct kinfo_proc *)
521			    _kvm_realloc(kd, kd->procbase, size);
522			if (kd->procbase == 0)
523				return (0);
524			st = sysctl(mib, temp_op == KERN_PROC_ALL ||
525			    temp_op == KERN_PROC_PROC ? 3 : 4,
526			    kd->procbase, &size, NULL, 0);
527		} while (st == -1 && errno == ENOMEM);
528		if (st == -1) {
529			_kvm_syserr(kd, kd->program, "kvm_getprocs");
530			return (0);
531		}
532		/*
533		 * We have to check the size again because sysctl()
534		 * may "round up" oldlenp if oldp is NULL; hence it
535		 * might've told us that there was data to get when
536		 * there really isn't any.
537		 */
538		if (size > 0 &&
539		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
540			_kvm_err(kd, kd->program,
541			    "kinfo_proc size mismatch (expected %d, got %d)",
542			    sizeof(struct kinfo_proc),
543			    kd->procbase->ki_structsize);
544			return (0);
545		}
546liveout:
547		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
548	} else {
549		struct nlist nl[6], *p;
550
551		nl[0].n_name = "_nprocs";
552		nl[1].n_name = "_allproc";
553		nl[2].n_name = "_zombproc";
554		nl[3].n_name = "_ticks";
555		nl[4].n_name = "_hz";
556		nl[5].n_name = 0;
557
558		if (kvm_nlist(kd, nl) != 0) {
559			for (p = nl; p->n_type != 0; ++p)
560				;
561			_kvm_err(kd, kd->program,
562				 "%s: no such symbol", p->n_name);
563			return (0);
564		}
565		if (KREAD(kd, nl[0].n_value, &nprocs)) {
566			_kvm_err(kd, kd->program, "can't read nprocs");
567			return (0);
568		}
569		if (KREAD(kd, nl[3].n_value, &ticks)) {
570			_kvm_err(kd, kd->program, "can't read ticks");
571			return (0);
572		}
573		if (KREAD(kd, nl[4].n_value, &hz)) {
574			_kvm_err(kd, kd->program, "can't read hz");
575			return (0);
576		}
577		size = nprocs * sizeof(struct kinfo_proc);
578		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
579		if (kd->procbase == 0)
580			return (0);
581
582		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
583				      nl[2].n_value, nprocs);
584#ifdef notdef
585		size = nprocs * sizeof(struct kinfo_proc);
586		(void)realloc(kd->procbase, size);
587#endif
588	}
589	*cnt = nprocs;
590	return (kd->procbase);
591}
592
593void
594_kvm_freeprocs(kd)
595	kvm_t *kd;
596{
597	if (kd->procbase) {
598		free(kd->procbase);
599		kd->procbase = 0;
600	}
601}
602
603void *
604_kvm_realloc(kd, p, n)
605	kvm_t *kd;
606	void *p;
607	size_t n;
608{
609	void *np = (void *)realloc(p, n);
610
611	if (np == 0) {
612		free(p);
613		_kvm_err(kd, kd->program, "out of memory");
614	}
615	return (np);
616}
617
618#ifndef MAX
619#define MAX(a, b) ((a) > (b) ? (a) : (b))
620#endif
621
622/*
623 * Read in an argument vector from the user address space of process kp.
624 * addr if the user-space base address of narg null-terminated contiguous
625 * strings.  This is used to read in both the command arguments and
626 * environment strings.  Read at most maxcnt characters of strings.
627 */
628static char **
629kvm_argv(kd, kp, addr, narg, maxcnt)
630	kvm_t *kd;
631	struct kinfo_proc *kp;
632	u_long addr;
633	int narg;
634	int maxcnt;
635{
636	char *np, *cp, *ep, *ap;
637	u_long oaddr = -1;
638	int len, cc;
639	char **argv;
640
641	/*
642	 * Check that there aren't an unreasonable number of agruments,
643	 * and that the address is in user space.
644	 */
645	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
646		return (0);
647
648	/*
649	 * kd->argv : work space for fetching the strings from the target
650	 *            process's space, and is converted for returning to caller
651	 */
652	if (kd->argv == 0) {
653		/*
654		 * Try to avoid reallocs.
655		 */
656		kd->argc = MAX(narg + 1, 32);
657		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
658						sizeof(*kd->argv));
659		if (kd->argv == 0)
660			return (0);
661	} else if (narg + 1 > kd->argc) {
662		kd->argc = MAX(2 * kd->argc, narg + 1);
663		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
664						sizeof(*kd->argv));
665		if (kd->argv == 0)
666			return (0);
667	}
668	/*
669	 * kd->argspc : returned to user, this is where the kd->argv
670	 *              arrays are left pointing to the collected strings.
671	 */
672	if (kd->argspc == 0) {
673		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
674		if (kd->argspc == 0)
675			return (0);
676		kd->arglen = PAGE_SIZE;
677	}
678	/*
679	 * kd->argbuf : used to pull in pages from the target process.
680	 *              the strings are copied out of here.
681	 */
682	if (kd->argbuf == 0) {
683		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
684		if (kd->argbuf == 0)
685			return (0);
686	}
687
688	/* Pull in the target process'es argv vector */
689	cc = sizeof(char *) * narg;
690	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
691		return (0);
692	/*
693	 * ap : saved start address of string we're working on in kd->argspc
694	 * np : pointer to next place to write in kd->argspc
695	 * len: length of data in kd->argspc
696	 * argv: pointer to the argv vector that we are hunting around the
697	 *       target process space for, and converting to addresses in
698	 *       our address space (kd->argspc).
699	 */
700	ap = np = kd->argspc;
701	argv = kd->argv;
702	len = 0;
703	/*
704	 * Loop over pages, filling in the argument vector.
705	 * Note that the argv strings could be pointing *anywhere* in
706	 * the user address space and are no longer contiguous.
707	 * Note that *argv is modified when we are going to fetch a string
708	 * that crosses a page boundary.  We copy the next part of the string
709	 * into to "np" and eventually convert the pointer.
710	 */
711	while (argv < kd->argv + narg && *argv != 0) {
712
713		/* get the address that the current argv string is on */
714		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
715
716		/* is it the same page as the last one? */
717		if (addr != oaddr) {
718			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
719			    PAGE_SIZE)
720				return (0);
721			oaddr = addr;
722		}
723
724		/* offset within the page... kd->argbuf */
725		addr = (u_long)*argv & (PAGE_SIZE - 1);
726
727		/* cp = start of string, cc = count of chars in this chunk */
728		cp = kd->argbuf + addr;
729		cc = PAGE_SIZE - addr;
730
731		/* dont get more than asked for by user process */
732		if (maxcnt > 0 && cc > maxcnt - len)
733			cc = maxcnt - len;
734
735		/* pointer to end of string if we found it in this page */
736		ep = memchr(cp, '\0', cc);
737		if (ep != 0)
738			cc = ep - cp + 1;
739		/*
740		 * at this point, cc is the count of the chars that we are
741		 * going to retrieve this time. we may or may not have found
742		 * the end of it.  (ep points to the null if the end is known)
743		 */
744
745		/* will we exceed the malloc/realloced buffer? */
746		if (len + cc > kd->arglen) {
747			int off;
748			char **pp;
749			char *op = kd->argspc;
750
751			kd->arglen *= 2;
752			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
753							  kd->arglen);
754			if (kd->argspc == 0)
755				return (0);
756			/*
757			 * Adjust argv pointers in case realloc moved
758			 * the string space.
759			 */
760			off = kd->argspc - op;
761			for (pp = kd->argv; pp < argv; pp++)
762				*pp += off;
763			ap += off;
764			np += off;
765		}
766		/* np = where to put the next part of the string in kd->argspc*/
767		/* np is kinda redundant.. could use "kd->argspc + len" */
768		memcpy(np, cp, cc);
769		np += cc;	/* inc counters */
770		len += cc;
771
772		/*
773		 * if end of string found, set the *argv pointer to the
774		 * saved beginning of string, and advance. argv points to
775		 * somewhere in kd->argv..  This is initially relative
776		 * to the target process, but when we close it off, we set
777		 * it to point in our address space.
778		 */
779		if (ep != 0) {
780			*argv++ = ap;
781			ap = np;
782		} else {
783			/* update the address relative to the target process */
784			*argv += cc;
785		}
786
787		if (maxcnt > 0 && len >= maxcnt) {
788			/*
789			 * We're stopping prematurely.  Terminate the
790			 * current string.
791			 */
792			if (ep == 0) {
793				*np = '\0';
794				*argv++ = ap;
795			}
796			break;
797		}
798	}
799	/* Make sure argv is terminated. */
800	*argv = 0;
801	return (kd->argv);
802}
803
804static void
805ps_str_a(p, addr, n)
806	struct ps_strings *p;
807	u_long *addr;
808	int *n;
809{
810	*addr = (u_long)p->ps_argvstr;
811	*n = p->ps_nargvstr;
812}
813
814static void
815ps_str_e(p, addr, n)
816	struct ps_strings *p;
817	u_long *addr;
818	int *n;
819{
820	*addr = (u_long)p->ps_envstr;
821	*n = p->ps_nenvstr;
822}
823
824/*
825 * Determine if the proc indicated by p is still active.
826 * This test is not 100% foolproof in theory, but chances of
827 * being wrong are very low.
828 */
829static int
830proc_verify(curkp)
831	struct kinfo_proc *curkp;
832{
833	struct kinfo_proc newkp;
834	int mib[4];
835	size_t len;
836
837	mib[0] = CTL_KERN;
838	mib[1] = KERN_PROC;
839	mib[2] = KERN_PROC_PID;
840	mib[3] = curkp->ki_pid;
841	len = sizeof(newkp);
842	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
843		return (0);
844	return (curkp->ki_pid == newkp.ki_pid &&
845	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
846}
847
848static char **
849kvm_doargv(kd, kp, nchr, info)
850	kvm_t *kd;
851	struct kinfo_proc *kp;
852	int nchr;
853	void (*info)(struct ps_strings *, u_long *, int *);
854{
855	char **ap;
856	u_long addr;
857	int cnt;
858	static struct ps_strings arginfo;
859	static u_long ps_strings;
860	size_t len;
861
862	if (ps_strings == 0) {
863		len = sizeof(ps_strings);
864		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
865		    0) == -1)
866			ps_strings = PS_STRINGS;
867	}
868
869	/*
870	 * Pointers are stored at the top of the user stack.
871	 */
872	if (kp->ki_stat == SZOMB ||
873	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
874		      sizeof(arginfo)) != sizeof(arginfo))
875		return (0);
876
877	(*info)(&arginfo, &addr, &cnt);
878	if (cnt == 0)
879		return (0);
880	ap = kvm_argv(kd, kp, addr, cnt, nchr);
881	/*
882	 * For live kernels, make sure this process didn't go away.
883	 */
884	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
885		ap = 0;
886	return (ap);
887}
888
889/*
890 * Get the command args.  This code is now machine independent.
891 */
892char **
893kvm_getargv(kd, kp, nchr)
894	kvm_t *kd;
895	const struct kinfo_proc *kp;
896	int nchr;
897{
898	int oid[4];
899	int i;
900	size_t bufsz;
901	static unsigned long buflen;
902	static char *buf, *p;
903	static char **bufp;
904	static int argc;
905
906	if (!ISALIVE(kd)) {
907		_kvm_err(kd, kd->program,
908		    "cannot read user space from dead kernel");
909		return (0);
910	}
911
912	if (!buflen) {
913		bufsz = sizeof(buflen);
914		i = sysctlbyname("kern.ps_arg_cache_limit",
915		    &buflen, &bufsz, NULL, 0);
916		if (i == -1) {
917			buflen = 0;
918		} else {
919			buf = malloc(buflen);
920			if (buf == NULL)
921				buflen = 0;
922			argc = 32;
923			bufp = malloc(sizeof(char *) * argc);
924		}
925	}
926	if (buf != NULL) {
927		oid[0] = CTL_KERN;
928		oid[1] = KERN_PROC;
929		oid[2] = KERN_PROC_ARGS;
930		oid[3] = kp->ki_pid;
931		bufsz = buflen;
932		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
933		if (i == 0 && bufsz > 0) {
934			i = 0;
935			p = buf;
936			do {
937				bufp[i++] = p;
938				p += strlen(p) + 1;
939				if (i >= argc) {
940					argc += argc;
941					bufp = realloc(bufp,
942					    sizeof(char *) * argc);
943				}
944			} while (p < buf + bufsz);
945			bufp[i++] = 0;
946			return (bufp);
947		}
948	}
949	if (kp->ki_flag & P_SYSTEM)
950		return (NULL);
951	return (kvm_doargv(kd, kp, nchr, ps_str_a));
952}
953
954char **
955kvm_getenvv(kd, kp, nchr)
956	kvm_t *kd;
957	const struct kinfo_proc *kp;
958	int nchr;
959{
960	return (kvm_doargv(kd, kp, nchr, ps_str_e));
961}
962
963/*
964 * Read from user space.  The user context is given by p.
965 */
966ssize_t
967kvm_uread(kd, kp, uva, buf, len)
968	kvm_t *kd;
969	struct kinfo_proc *kp;
970	u_long uva;
971	char *buf;
972	size_t len;
973{
974	char *cp;
975	char procfile[MAXPATHLEN];
976	ssize_t amount;
977	int fd;
978
979	if (!ISALIVE(kd)) {
980		_kvm_err(kd, kd->program,
981		    "cannot read user space from dead kernel");
982		return (0);
983	}
984
985	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
986	fd = open(procfile, O_RDONLY, 0);
987	if (fd < 0) {
988		_kvm_err(kd, kd->program, "cannot open %s", procfile);
989		return (0);
990	}
991
992	cp = buf;
993	while (len > 0) {
994		errno = 0;
995		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
996			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
997			    uva, procfile);
998			break;
999		}
1000		amount = read(fd, cp, len);
1001		if (amount < 0) {
1002			_kvm_syserr(kd, kd->program, "error reading %s",
1003			    procfile);
1004			break;
1005		}
1006		if (amount == 0) {
1007			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
1008			break;
1009		}
1010		cp += amount;
1011		uva += amount;
1012		len -= amount;
1013	}
1014
1015	close(fd);
1016	return ((ssize_t)(cp - buf));
1017}
1018