kvm_proc.c revision 173004
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34#if 0
35#if defined(LIBC_SCCS) && !defined(lint)
36static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
37#endif /* LIBC_SCCS and not lint */
38#endif
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 173004 2007-10-26 08:00:41Z julian $");
42
43/*
44 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
45 * users of this code, so we've factored it out into a separate module.
46 * Thus, we keep this grunge out of the other kvm applications (i.e.,
47 * most other applications are interested only in open/close/read/nlist).
48 */
49
50#include <sys/param.h>
51#define	_WANT_UCRED	/* make ucred.h give us 'struct ucred' */
52#include <sys/ucred.h>
53#include <sys/queue.h>
54#include <sys/_lock.h>
55#include <sys/_mutex.h>
56#include <sys/_task.h>
57#define	_WANT_PRISON	/* make jail.h give us 'struct prison' */
58#include <sys/jail.h>
59#include <sys/user.h>
60#include <sys/proc.h>
61#include <sys/exec.h>
62#include <sys/stat.h>
63#include <sys/sysent.h>
64#include <sys/ioctl.h>
65#include <sys/tty.h>
66#include <sys/file.h>
67#include <sys/conf.h>
68#include <stdio.h>
69#include <stdlib.h>
70#include <unistd.h>
71#include <nlist.h>
72#include <kvm.h>
73
74#include <vm/vm.h>
75#include <vm/vm_param.h>
76
77#include <sys/sysctl.h>
78
79#include <limits.h>
80#include <memory.h>
81#include <paths.h>
82
83#include "kvm_private.h"
84
85#define KREAD(kd, addr, obj) \
86	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
87
88static int ticks;
89static int hz;
90
91/*
92 * Read proc's from memory file into buffer bp, which has space to hold
93 * at most maxcnt procs.
94 */
95static int
96kvm_proclist(kd, what, arg, p, bp, maxcnt)
97	kvm_t *kd;
98	int what, arg;
99	struct proc *p;
100	struct kinfo_proc *bp;
101	int maxcnt;
102{
103	int cnt = 0;
104	struct kinfo_proc kinfo_proc, *kp;
105	struct pgrp pgrp;
106	struct session sess;
107	struct cdev t_cdev;
108	struct tty tty;
109	struct vmspace vmspace;
110	struct sigacts sigacts;
111	struct pstats pstats;
112	struct ucred ucred;
113	struct prison pr;
114	struct thread mtd;
115	struct proc proc;
116	struct proc pproc;
117	struct timeval tv;
118	struct sysentvec sysent;
119	char svname[KI_EMULNAMELEN];
120
121	kp = &kinfo_proc;
122	kp->ki_structsize = sizeof(kinfo_proc);
123	/*
124	 * Loop on the processes. this is completely broken because we need to be
125	 * able to loop on the threads and merge the ones that are the same process some how.
126	 */
127	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
128		memset(kp, 0, sizeof *kp);
129		if (KREAD(kd, (u_long)p, &proc)) {
130			_kvm_err(kd, kd->program, "can't read proc at %x", p);
131			return (-1);
132		}
133		if (proc.p_state != PRS_ZOMBIE) {
134			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
135			    &mtd)) {
136				_kvm_err(kd, kd->program,
137				    "can't read thread at %x",
138				    TAILQ_FIRST(&proc.p_threads));
139				return (-1);
140			}
141		}
142		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
143			kp->ki_ruid = ucred.cr_ruid;
144			kp->ki_svuid = ucred.cr_svuid;
145			kp->ki_rgid = ucred.cr_rgid;
146			kp->ki_svgid = ucred.cr_svgid;
147			kp->ki_ngroups = ucred.cr_ngroups;
148			bcopy(ucred.cr_groups, kp->ki_groups,
149			    NGROUPS * sizeof(gid_t));
150			kp->ki_uid = ucred.cr_uid;
151			if (ucred.cr_prison != NULL) {
152				if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) {
153					_kvm_err(kd, kd->program,
154					    "can't read prison at %x",
155					    ucred.cr_prison);
156					return (-1);
157				}
158				kp->ki_jid = pr.pr_id;
159			}
160		}
161
162		switch(what & ~KERN_PROC_INC_THREAD) {
163
164		case KERN_PROC_GID:
165			if (kp->ki_groups[0] != (gid_t)arg)
166				continue;
167			break;
168
169		case KERN_PROC_PID:
170			if (proc.p_pid != (pid_t)arg)
171				continue;
172			break;
173
174		case KERN_PROC_RGID:
175			if (kp->ki_rgid != (gid_t)arg)
176				continue;
177			break;
178
179		case KERN_PROC_UID:
180			if (kp->ki_uid != (uid_t)arg)
181				continue;
182			break;
183
184		case KERN_PROC_RUID:
185			if (kp->ki_ruid != (uid_t)arg)
186				continue;
187			break;
188		}
189		/*
190		 * We're going to add another proc to the set.  If this
191		 * will overflow the buffer, assume the reason is because
192		 * nprocs (or the proc list) is corrupt and declare an error.
193		 */
194		if (cnt >= maxcnt) {
195			_kvm_err(kd, kd->program, "nprocs corrupt");
196			return (-1);
197		}
198		/*
199		 * gather kinfo_proc
200		 */
201		kp->ki_paddr = p;
202		kp->ki_addr = 0;	/* XXX uarea */
203		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
204		kp->ki_args = proc.p_args;
205		kp->ki_tracep = proc.p_tracevp;
206		kp->ki_textvp = proc.p_textvp;
207		kp->ki_fd = proc.p_fd;
208		kp->ki_vmspace = proc.p_vmspace;
209		if (proc.p_sigacts != NULL) {
210			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
211				_kvm_err(kd, kd->program,
212				    "can't read sigacts at %x", proc.p_sigacts);
213				return (-1);
214			}
215			kp->ki_sigignore = sigacts.ps_sigignore;
216			kp->ki_sigcatch = sigacts.ps_sigcatch;
217		}
218#if 0
219		if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) {
220			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
221				_kvm_err(kd, kd->program,
222				    "can't read stats at %x", proc.p_stats);
223				return (-1);
224			}
225			kp->ki_start = pstats.p_start;
226
227			/*
228			 * XXX: The times here are probably zero and need
229			 * to be calculated from the raw data in p_rux and
230			 * p_crux.
231			 */
232			kp->ki_rusage = pstats.p_ru;
233			kp->ki_childstime = pstats.p_cru.ru_stime;
234			kp->ki_childutime = pstats.p_cru.ru_utime;
235			/* Some callers want child-times in a single value */
236			timeradd(&kp->ki_childstime, &kp->ki_childutime,
237			    &kp->ki_childtime);
238		}
239#endif
240		if (proc.p_oppid)
241			kp->ki_ppid = proc.p_oppid;
242		else if (proc.p_pptr) {
243			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
244				_kvm_err(kd, kd->program,
245				    "can't read pproc at %x", proc.p_pptr);
246				return (-1);
247			}
248			kp->ki_ppid = pproc.p_pid;
249		} else
250			kp->ki_ppid = 0;
251		if (proc.p_pgrp == NULL)
252			goto nopgrp;
253		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
254			_kvm_err(kd, kd->program, "can't read pgrp at %x",
255				 proc.p_pgrp);
256			return (-1);
257		}
258		kp->ki_pgid = pgrp.pg_id;
259		kp->ki_jobc = pgrp.pg_jobc;
260		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
261			_kvm_err(kd, kd->program, "can't read session at %x",
262				pgrp.pg_session);
263			return (-1);
264		}
265		kp->ki_sid = sess.s_sid;
266		(void)memcpy(kp->ki_login, sess.s_login,
267						sizeof(kp->ki_login));
268		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
269		if (sess.s_leader == p)
270			kp->ki_kiflag |= KI_SLEADER;
271		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
272			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
273				_kvm_err(kd, kd->program,
274					 "can't read tty at %x", sess.s_ttyp);
275				return (-1);
276			}
277			if (tty.t_dev != NULL) {
278				if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
279					_kvm_err(kd, kd->program,
280						 "can't read cdev at %x",
281						tty.t_dev);
282					return (-1);
283				}
284#if 0
285				kp->ki_tdev = t_cdev.si_udev;
286#else
287				kp->ki_tdev = NODEV;
288#endif
289			}
290			if (tty.t_pgrp != NULL) {
291				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
292					_kvm_err(kd, kd->program,
293						 "can't read tpgrp at %x",
294						tty.t_pgrp);
295					return (-1);
296				}
297				kp->ki_tpgid = pgrp.pg_id;
298			} else
299				kp->ki_tpgid = -1;
300			if (tty.t_session != NULL) {
301				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
302					_kvm_err(kd, kd->program,
303					    "can't read session at %x",
304					    tty.t_session);
305					return (-1);
306				}
307				kp->ki_tsid = sess.s_sid;
308			}
309		} else {
310nopgrp:
311			kp->ki_tdev = NODEV;
312		}
313		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
314			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
315			    kp->ki_wmesg, WMESGLEN);
316
317		(void)kvm_read(kd, (u_long)proc.p_vmspace,
318		    (char *)&vmspace, sizeof(vmspace));
319		kp->ki_size = vmspace.vm_map.size;
320		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
321		kp->ki_swrss = vmspace.vm_swrss;
322		kp->ki_tsize = vmspace.vm_tsize;
323		kp->ki_dsize = vmspace.vm_dsize;
324		kp->ki_ssize = vmspace.vm_ssize;
325
326		switch (what & ~KERN_PROC_INC_THREAD) {
327
328		case KERN_PROC_PGRP:
329			if (kp->ki_pgid != (pid_t)arg)
330				continue;
331			break;
332
333		case KERN_PROC_SESSION:
334			if (kp->ki_sid != (pid_t)arg)
335				continue;
336			break;
337
338		case KERN_PROC_TTY:
339			if ((proc.p_flag & P_CONTROLT) == 0 ||
340			     kp->ki_tdev != (dev_t)arg)
341				continue;
342			break;
343		}
344		if (proc.p_comm[0] != 0)
345			strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
346		(void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
347		    sizeof(sysent));
348		(void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
349		    sizeof(svname));
350		if (svname[0] != 0)
351			strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
352		if ((proc.p_state != PRS_ZOMBIE) &&
353		    (mtd.td_blocked != 0)) {
354			kp->ki_kiflag |= KI_LOCKBLOCK;
355			if (mtd.td_lockname)
356				(void)kvm_read(kd,
357				    (u_long)mtd.td_lockname,
358				    kp->ki_lockname, LOCKNAMELEN);
359			kp->ki_lockname[LOCKNAMELEN] = 0;
360		}
361		/*
362		 * XXX: This is plain wrong, rux_runtime has nothing
363		 * to do with struct bintime, rux_runtime is just a 64-bit
364		 * integer counter of cputicks.  What we need here is a way
365		 * to convert cputicks to usecs.  The kernel does it in
366		 * kern/kern_tc.c, but the function can't be just copied.
367		 */
368		bintime2timeval(&proc.p_rux.rux_runtime, &tv);
369		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
370		kp->ki_pid = proc.p_pid;
371		kp->ki_siglist = proc.p_siglist;
372		SIGSETOR(kp->ki_siglist, mtd.td_siglist);
373		kp->ki_sigmask = mtd.td_sigmask;
374		kp->ki_xstat = proc.p_xstat;
375		kp->ki_acflag = proc.p_acflag;
376		kp->ki_lock = proc.p_lock;
377		if (proc.p_state != PRS_ZOMBIE) {
378			kp->ki_swtime = (ticks - proc.p_swtick) / hz;
379			kp->ki_flag = proc.p_flag;
380			kp->ki_sflag = 0;
381			kp->ki_nice = proc.p_nice;
382			kp->ki_traceflag = proc.p_traceflag;
383			if (proc.p_state == PRS_NORMAL) {
384				if (TD_ON_RUNQ(&mtd) ||
385				    TD_CAN_RUN(&mtd) ||
386				    TD_IS_RUNNING(&mtd)) {
387					kp->ki_stat = SRUN;
388				} else if (mtd.td_state ==
389				    TDS_INHIBITED) {
390					if (P_SHOULDSTOP(&proc)) {
391						kp->ki_stat = SSTOP;
392					} else if (
393					    TD_IS_SLEEPING(&mtd)) {
394						kp->ki_stat = SSLEEP;
395					} else if (TD_ON_LOCK(&mtd)) {
396						kp->ki_stat = SLOCK;
397					} else {
398						kp->ki_stat = SWAIT;
399					}
400				}
401			} else {
402				kp->ki_stat = SIDL;
403			}
404			/* Stuff from the thread */
405			kp->ki_pri.pri_level = mtd.td_priority;
406			kp->ki_pri.pri_native = mtd.td_base_pri;
407			kp->ki_lastcpu = mtd.td_lastcpu;
408			kp->ki_wchan = mtd.td_wchan;
409			if (mtd.td_name[0] != 0)
410				strlcpy(kp->ki_ocomm, mtd.td_name, MAXOCOMLEN);
411			kp->ki_oncpu = mtd.td_oncpu;
412			if (mtd.td_name[0] != '\0')
413				strlcpy(kp->ki_ocomm, mtd.td_name, sizeof(kp->ki_ocomm));
414			if (!(proc.p_flag & P_SA)) {
415				kp->ki_pctcpu = 0;
416				kp->ki_rqindex = 0;
417			} else {
418				kp->ki_tdflags = -1;
419				/* All the rest are 0 for now */
420			}
421		} else {
422			kp->ki_stat = SZOMB;
423		}
424		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
425		++bp;
426		++cnt;
427	}
428	return (cnt);
429}
430
431/*
432 * Build proc info array by reading in proc list from a crash dump.
433 * Return number of procs read.  maxcnt is the max we will read.
434 */
435static int
436kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
437	kvm_t *kd;
438	int what, arg;
439	u_long a_allproc;
440	u_long a_zombproc;
441	int maxcnt;
442{
443	struct kinfo_proc *bp = kd->procbase;
444	int acnt, zcnt;
445	struct proc *p;
446
447	if (KREAD(kd, a_allproc, &p)) {
448		_kvm_err(kd, kd->program, "cannot read allproc");
449		return (-1);
450	}
451	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
452	if (acnt < 0)
453		return (acnt);
454
455	if (KREAD(kd, a_zombproc, &p)) {
456		_kvm_err(kd, kd->program, "cannot read zombproc");
457		return (-1);
458	}
459	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
460	if (zcnt < 0)
461		zcnt = 0;
462
463	return (acnt + zcnt);
464}
465
466struct kinfo_proc *
467kvm_getprocs(kd, op, arg, cnt)
468	kvm_t *kd;
469	int op, arg;
470	int *cnt;
471{
472	int mib[4], st, nprocs;
473	size_t size;
474	int temp_op;
475
476	if (kd->procbase != 0) {
477		free((void *)kd->procbase);
478		/*
479		 * Clear this pointer in case this call fails.  Otherwise,
480		 * kvm_close() will free it again.
481		 */
482		kd->procbase = 0;
483	}
484	if (ISALIVE(kd)) {
485		size = 0;
486		mib[0] = CTL_KERN;
487		mib[1] = KERN_PROC;
488		mib[2] = op;
489		mib[3] = arg;
490		temp_op = op & ~KERN_PROC_INC_THREAD;
491		st = sysctl(mib,
492		    temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
493		    3 : 4, NULL, &size, NULL, 0);
494		if (st == -1) {
495			_kvm_syserr(kd, kd->program, "kvm_getprocs");
496			return (0);
497		}
498		/*
499		 * We can't continue with a size of 0 because we pass
500		 * it to realloc() (via _kvm_realloc()), and passing 0
501		 * to realloc() results in undefined behavior.
502		 */
503		if (size == 0) {
504			/*
505			 * XXX: We should probably return an invalid,
506			 * but non-NULL, pointer here so any client
507			 * program trying to dereference it will
508			 * crash.  However, _kvm_freeprocs() calls
509			 * free() on kd->procbase if it isn't NULL,
510			 * and free()'ing a junk pointer isn't good.
511			 * Then again, _kvm_freeprocs() isn't used
512			 * anywhere . . .
513			 */
514			kd->procbase = _kvm_malloc(kd, 1);
515			goto liveout;
516		}
517		do {
518			size += size / 10;
519			kd->procbase = (struct kinfo_proc *)
520			    _kvm_realloc(kd, kd->procbase, size);
521			if (kd->procbase == 0)
522				return (0);
523			st = sysctl(mib, temp_op == KERN_PROC_ALL ||
524			    temp_op == KERN_PROC_PROC ? 3 : 4,
525			    kd->procbase, &size, NULL, 0);
526		} while (st == -1 && errno == ENOMEM);
527		if (st == -1) {
528			_kvm_syserr(kd, kd->program, "kvm_getprocs");
529			return (0);
530		}
531		/*
532		 * We have to check the size again because sysctl()
533		 * may "round up" oldlenp if oldp is NULL; hence it
534		 * might've told us that there was data to get when
535		 * there really isn't any.
536		 */
537		if (size > 0 &&
538		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
539			_kvm_err(kd, kd->program,
540			    "kinfo_proc size mismatch (expected %d, got %d)",
541			    sizeof(struct kinfo_proc),
542			    kd->procbase->ki_structsize);
543			return (0);
544		}
545liveout:
546		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
547	} else {
548		struct nlist nl[6], *p;
549
550		nl[0].n_name = "_nprocs";
551		nl[1].n_name = "_allproc";
552		nl[2].n_name = "_zombproc";
553		nl[3].n_name = "_ticks";
554		nl[4].n_name = "_hz";
555		nl[5].n_name = 0;
556
557		if (kvm_nlist(kd, nl) != 0) {
558			for (p = nl; p->n_type != 0; ++p)
559				;
560			_kvm_err(kd, kd->program,
561				 "%s: no such symbol", p->n_name);
562			return (0);
563		}
564		if (KREAD(kd, nl[0].n_value, &nprocs)) {
565			_kvm_err(kd, kd->program, "can't read nprocs");
566			return (0);
567		}
568		if (KREAD(kd, nl[3].n_value, &ticks)) {
569			_kvm_err(kd, kd->program, "can't read ticks");
570			return (0);
571		}
572		if (KREAD(kd, nl[4].n_value, &hz)) {
573			_kvm_err(kd, kd->program, "can't read hz");
574			return (0);
575		}
576		size = nprocs * sizeof(struct kinfo_proc);
577		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
578		if (kd->procbase == 0)
579			return (0);
580
581		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
582				      nl[2].n_value, nprocs);
583#ifdef notdef
584		size = nprocs * sizeof(struct kinfo_proc);
585		(void)realloc(kd->procbase, size);
586#endif
587	}
588	*cnt = nprocs;
589	return (kd->procbase);
590}
591
592void
593_kvm_freeprocs(kd)
594	kvm_t *kd;
595{
596	if (kd->procbase) {
597		free(kd->procbase);
598		kd->procbase = 0;
599	}
600}
601
602void *
603_kvm_realloc(kd, p, n)
604	kvm_t *kd;
605	void *p;
606	size_t n;
607{
608	void *np = (void *)realloc(p, n);
609
610	if (np == 0) {
611		free(p);
612		_kvm_err(kd, kd->program, "out of memory");
613	}
614	return (np);
615}
616
617#ifndef MAX
618#define MAX(a, b) ((a) > (b) ? (a) : (b))
619#endif
620
621/*
622 * Read in an argument vector from the user address space of process kp.
623 * addr if the user-space base address of narg null-terminated contiguous
624 * strings.  This is used to read in both the command arguments and
625 * environment strings.  Read at most maxcnt characters of strings.
626 */
627static char **
628kvm_argv(kd, kp, addr, narg, maxcnt)
629	kvm_t *kd;
630	struct kinfo_proc *kp;
631	u_long addr;
632	int narg;
633	int maxcnt;
634{
635	char *np, *cp, *ep, *ap;
636	u_long oaddr = -1;
637	int len, cc;
638	char **argv;
639
640	/*
641	 * Check that there aren't an unreasonable number of agruments,
642	 * and that the address is in user space.
643	 */
644	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
645		return (0);
646
647	/*
648	 * kd->argv : work space for fetching the strings from the target
649	 *            process's space, and is converted for returning to caller
650	 */
651	if (kd->argv == 0) {
652		/*
653		 * Try to avoid reallocs.
654		 */
655		kd->argc = MAX(narg + 1, 32);
656		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
657						sizeof(*kd->argv));
658		if (kd->argv == 0)
659			return (0);
660	} else if (narg + 1 > kd->argc) {
661		kd->argc = MAX(2 * kd->argc, narg + 1);
662		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
663						sizeof(*kd->argv));
664		if (kd->argv == 0)
665			return (0);
666	}
667	/*
668	 * kd->argspc : returned to user, this is where the kd->argv
669	 *              arrays are left pointing to the collected strings.
670	 */
671	if (kd->argspc == 0) {
672		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
673		if (kd->argspc == 0)
674			return (0);
675		kd->arglen = PAGE_SIZE;
676	}
677	/*
678	 * kd->argbuf : used to pull in pages from the target process.
679	 *              the strings are copied out of here.
680	 */
681	if (kd->argbuf == 0) {
682		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
683		if (kd->argbuf == 0)
684			return (0);
685	}
686
687	/* Pull in the target process'es argv vector */
688	cc = sizeof(char *) * narg;
689	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
690		return (0);
691	/*
692	 * ap : saved start address of string we're working on in kd->argspc
693	 * np : pointer to next place to write in kd->argspc
694	 * len: length of data in kd->argspc
695	 * argv: pointer to the argv vector that we are hunting around the
696	 *       target process space for, and converting to addresses in
697	 *       our address space (kd->argspc).
698	 */
699	ap = np = kd->argspc;
700	argv = kd->argv;
701	len = 0;
702	/*
703	 * Loop over pages, filling in the argument vector.
704	 * Note that the argv strings could be pointing *anywhere* in
705	 * the user address space and are no longer contiguous.
706	 * Note that *argv is modified when we are going to fetch a string
707	 * that crosses a page boundary.  We copy the next part of the string
708	 * into to "np" and eventually convert the pointer.
709	 */
710	while (argv < kd->argv + narg && *argv != 0) {
711
712		/* get the address that the current argv string is on */
713		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
714
715		/* is it the same page as the last one? */
716		if (addr != oaddr) {
717			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
718			    PAGE_SIZE)
719				return (0);
720			oaddr = addr;
721		}
722
723		/* offset within the page... kd->argbuf */
724		addr = (u_long)*argv & (PAGE_SIZE - 1);
725
726		/* cp = start of string, cc = count of chars in this chunk */
727		cp = kd->argbuf + addr;
728		cc = PAGE_SIZE - addr;
729
730		/* dont get more than asked for by user process */
731		if (maxcnt > 0 && cc > maxcnt - len)
732			cc = maxcnt - len;
733
734		/* pointer to end of string if we found it in this page */
735		ep = memchr(cp, '\0', cc);
736		if (ep != 0)
737			cc = ep - cp + 1;
738		/*
739		 * at this point, cc is the count of the chars that we are
740		 * going to retrieve this time. we may or may not have found
741		 * the end of it.  (ep points to the null if the end is known)
742		 */
743
744		/* will we exceed the malloc/realloced buffer? */
745		if (len + cc > kd->arglen) {
746			int off;
747			char **pp;
748			char *op = kd->argspc;
749
750			kd->arglen *= 2;
751			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
752							  kd->arglen);
753			if (kd->argspc == 0)
754				return (0);
755			/*
756			 * Adjust argv pointers in case realloc moved
757			 * the string space.
758			 */
759			off = kd->argspc - op;
760			for (pp = kd->argv; pp < argv; pp++)
761				*pp += off;
762			ap += off;
763			np += off;
764		}
765		/* np = where to put the next part of the string in kd->argspc*/
766		/* np is kinda redundant.. could use "kd->argspc + len" */
767		memcpy(np, cp, cc);
768		np += cc;	/* inc counters */
769		len += cc;
770
771		/*
772		 * if end of string found, set the *argv pointer to the
773		 * saved beginning of string, and advance. argv points to
774		 * somewhere in kd->argv..  This is initially relative
775		 * to the target process, but when we close it off, we set
776		 * it to point in our address space.
777		 */
778		if (ep != 0) {
779			*argv++ = ap;
780			ap = np;
781		} else {
782			/* update the address relative to the target process */
783			*argv += cc;
784		}
785
786		if (maxcnt > 0 && len >= maxcnt) {
787			/*
788			 * We're stopping prematurely.  Terminate the
789			 * current string.
790			 */
791			if (ep == 0) {
792				*np = '\0';
793				*argv++ = ap;
794			}
795			break;
796		}
797	}
798	/* Make sure argv is terminated. */
799	*argv = 0;
800	return (kd->argv);
801}
802
803static void
804ps_str_a(p, addr, n)
805	struct ps_strings *p;
806	u_long *addr;
807	int *n;
808{
809	*addr = (u_long)p->ps_argvstr;
810	*n = p->ps_nargvstr;
811}
812
813static void
814ps_str_e(p, addr, n)
815	struct ps_strings *p;
816	u_long *addr;
817	int *n;
818{
819	*addr = (u_long)p->ps_envstr;
820	*n = p->ps_nenvstr;
821}
822
823/*
824 * Determine if the proc indicated by p is still active.
825 * This test is not 100% foolproof in theory, but chances of
826 * being wrong are very low.
827 */
828static int
829proc_verify(curkp)
830	struct kinfo_proc *curkp;
831{
832	struct kinfo_proc newkp;
833	int mib[4];
834	size_t len;
835
836	mib[0] = CTL_KERN;
837	mib[1] = KERN_PROC;
838	mib[2] = KERN_PROC_PID;
839	mib[3] = curkp->ki_pid;
840	len = sizeof(newkp);
841	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
842		return (0);
843	return (curkp->ki_pid == newkp.ki_pid &&
844	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
845}
846
847static char **
848kvm_doargv(kd, kp, nchr, info)
849	kvm_t *kd;
850	struct kinfo_proc *kp;
851	int nchr;
852	void (*info)(struct ps_strings *, u_long *, int *);
853{
854	char **ap;
855	u_long addr;
856	int cnt;
857	static struct ps_strings arginfo;
858	static u_long ps_strings;
859	size_t len;
860
861	if (ps_strings == 0) {
862		len = sizeof(ps_strings);
863		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
864		    0) == -1)
865			ps_strings = PS_STRINGS;
866	}
867
868	/*
869	 * Pointers are stored at the top of the user stack.
870	 */
871	if (kp->ki_stat == SZOMB ||
872	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
873		      sizeof(arginfo)) != sizeof(arginfo))
874		return (0);
875
876	(*info)(&arginfo, &addr, &cnt);
877	if (cnt == 0)
878		return (0);
879	ap = kvm_argv(kd, kp, addr, cnt, nchr);
880	/*
881	 * For live kernels, make sure this process didn't go away.
882	 */
883	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
884		ap = 0;
885	return (ap);
886}
887
888/*
889 * Get the command args.  This code is now machine independent.
890 */
891char **
892kvm_getargv(kd, kp, nchr)
893	kvm_t *kd;
894	const struct kinfo_proc *kp;
895	int nchr;
896{
897	int oid[4];
898	int i;
899	size_t bufsz;
900	static unsigned long buflen;
901	static char *buf, *p;
902	static char **bufp;
903	static int argc;
904
905	if (!ISALIVE(kd)) {
906		_kvm_err(kd, kd->program,
907		    "cannot read user space from dead kernel");
908		return (0);
909	}
910
911	if (!buflen) {
912		bufsz = sizeof(buflen);
913		i = sysctlbyname("kern.ps_arg_cache_limit",
914		    &buflen, &bufsz, NULL, 0);
915		if (i == -1) {
916			buflen = 0;
917		} else {
918			buf = malloc(buflen);
919			if (buf == NULL)
920				buflen = 0;
921			argc = 32;
922			bufp = malloc(sizeof(char *) * argc);
923		}
924	}
925	if (buf != NULL) {
926		oid[0] = CTL_KERN;
927		oid[1] = KERN_PROC;
928		oid[2] = KERN_PROC_ARGS;
929		oid[3] = kp->ki_pid;
930		bufsz = buflen;
931		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
932		if (i == 0 && bufsz > 0) {
933			i = 0;
934			p = buf;
935			do {
936				bufp[i++] = p;
937				p += strlen(p) + 1;
938				if (i >= argc) {
939					argc += argc;
940					bufp = realloc(bufp,
941					    sizeof(char *) * argc);
942				}
943			} while (p < buf + bufsz);
944			bufp[i++] = 0;
945			return (bufp);
946		}
947	}
948	if (kp->ki_flag & P_SYSTEM)
949		return (NULL);
950	return (kvm_doargv(kd, kp, nchr, ps_str_a));
951}
952
953char **
954kvm_getenvv(kd, kp, nchr)
955	kvm_t *kd;
956	const struct kinfo_proc *kp;
957	int nchr;
958{
959	return (kvm_doargv(kd, kp, nchr, ps_str_e));
960}
961
962/*
963 * Read from user space.  The user context is given by p.
964 */
965ssize_t
966kvm_uread(kd, kp, uva, buf, len)
967	kvm_t *kd;
968	struct kinfo_proc *kp;
969	u_long uva;
970	char *buf;
971	size_t len;
972{
973	char *cp;
974	char procfile[MAXPATHLEN];
975	ssize_t amount;
976	int fd;
977
978	if (!ISALIVE(kd)) {
979		_kvm_err(kd, kd->program,
980		    "cannot read user space from dead kernel");
981		return (0);
982	}
983
984	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
985	fd = open(procfile, O_RDONLY, 0);
986	if (fd < 0) {
987		_kvm_err(kd, kd->program, "cannot open %s", procfile);
988		return (0);
989	}
990
991	cp = buf;
992	while (len > 0) {
993		errno = 0;
994		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
995			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
996			    uva, procfile);
997			break;
998		}
999		amount = read(fd, cp, len);
1000		if (amount < 0) {
1001			_kvm_syserr(kd, kd->program, "error reading %s",
1002			    procfile);
1003			break;
1004		}
1005		if (amount == 0) {
1006			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
1007			break;
1008		}
1009		cp += amount;
1010		uva += amount;
1011		len -= amount;
1012	}
1013
1014	close(fd);
1015	return ((ssize_t)(cp - buf));
1016}
1017