kvm_proc.c revision 143871
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38#if 0
39#if defined(LIBC_SCCS) && !defined(lint)
40static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
41#endif /* LIBC_SCCS and not lint */
42#endif
43
44#include <sys/cdefs.h>
45__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 143871 2005-03-20 10:37:56Z pjd $");
46
47/*
48 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
49 * users of this code, so we've factored it out into a separate module.
50 * Thus, we keep this grunge out of the other kvm applications (i.e.,
51 * most other applications are interested only in open/close/read/nlist).
52 */
53
54#include <sys/param.h>
55#define	_WANT_UCRED	/* make ucred.h give us 'struct ucred' */
56#include <sys/ucred.h>
57#include <sys/queue.h>
58#include <sys/_lock.h>
59#include <sys/_mutex.h>
60#include <sys/_task.h>
61#define	_WANT_PRISON	/* make jail.h give us 'struct prison' */
62#include <sys/jail.h>
63#include <sys/user.h>
64#include <sys/proc.h>
65#include <sys/exec.h>
66#include <sys/stat.h>
67#include <sys/sysent.h>
68#include <sys/ioctl.h>
69#include <sys/tty.h>
70#include <sys/file.h>
71#include <sys/conf.h>
72#include <stdio.h>
73#include <stdlib.h>
74#include <unistd.h>
75#include <nlist.h>
76#include <kvm.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80
81#include <sys/sysctl.h>
82
83#include <limits.h>
84#include <memory.h>
85#include <paths.h>
86
87#include "kvm_private.h"
88
89#define KREAD(kd, addr, obj) \
90	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
91
92/*
93 * Read proc's from memory file into buffer bp, which has space to hold
94 * at most maxcnt procs.
95 */
96static int
97kvm_proclist(kd, what, arg, p, bp, maxcnt)
98	kvm_t *kd;
99	int what, arg;
100	struct proc *p;
101	struct kinfo_proc *bp;
102	int maxcnt;
103{
104	int cnt = 0;
105	struct kinfo_proc kinfo_proc, *kp;
106	struct pgrp pgrp;
107	struct session sess;
108	struct cdev t_cdev;
109	struct tty tty;
110	struct vmspace vmspace;
111	struct sigacts sigacts;
112	struct pstats pstats;
113	struct ucred ucred;
114	struct prison pr;
115	struct thread mtd;
116	/*struct kse mke;*/
117	struct ksegrp mkg;
118	struct proc proc;
119	struct proc pproc;
120	struct timeval tv;
121	struct sysentvec sysent;
122	char svname[KI_EMULNAMELEN];
123
124	kp = &kinfo_proc;
125	kp->ki_structsize = sizeof(kinfo_proc);
126	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
127		memset(kp, 0, sizeof *kp);
128		if (KREAD(kd, (u_long)p, &proc)) {
129			_kvm_err(kd, kd->program, "can't read proc at %x", p);
130			return (-1);
131		}
132		if (proc.p_state != PRS_ZOMBIE) {
133			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
134			    &mtd)) {
135				_kvm_err(kd, kd->program,
136				    "can't read thread at %x",
137				    TAILQ_FIRST(&proc.p_threads));
138				return (-1);
139			}
140			if ((proc.p_flag & P_SA) == 0) {
141				if (KREAD(kd,
142				    (u_long)TAILQ_FIRST(&proc.p_ksegrps),
143				    &mkg)) {
144					_kvm_err(kd, kd->program,
145					    "can't read ksegrp at %x",
146					    TAILQ_FIRST(&proc.p_ksegrps));
147					return (-1);
148				}
149#if 0
150				if (KREAD(kd,
151				    (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) {
152					_kvm_err(kd, kd->program,
153					    "can't read kse at %x",
154					    TAILQ_FIRST(&mkg.kg_kseq));
155					return (-1);
156				}
157#endif
158			}
159		}
160		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
161			kp->ki_ruid = ucred.cr_ruid;
162			kp->ki_svuid = ucred.cr_svuid;
163			kp->ki_rgid = ucred.cr_rgid;
164			kp->ki_svgid = ucred.cr_svgid;
165			kp->ki_ngroups = ucred.cr_ngroups;
166			bcopy(ucred.cr_groups, kp->ki_groups,
167			    NGROUPS * sizeof(gid_t));
168			kp->ki_uid = ucred.cr_uid;
169			if (ucred.cr_prison != NULL) {
170				if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) {
171					_kvm_err(kd, kd->program,
172					    "can't read prison at %x",
173					    ucred.cr_prison);
174					return (-1);
175				}
176				kp->ki_jid = pr.pr_id;
177			}
178		}
179
180		switch(what & ~KERN_PROC_INC_THREAD) {
181
182		case KERN_PROC_GID:
183			if (kp->ki_groups[0] != (gid_t)arg)
184				continue;
185			break;
186
187		case KERN_PROC_PID:
188			if (proc.p_pid != (pid_t)arg)
189				continue;
190			break;
191
192		case KERN_PROC_RGID:
193			if (kp->ki_rgid != (gid_t)arg)
194				continue;
195			break;
196
197		case KERN_PROC_UID:
198			if (kp->ki_uid != (uid_t)arg)
199				continue;
200			break;
201
202		case KERN_PROC_RUID:
203			if (kp->ki_ruid != (uid_t)arg)
204				continue;
205			break;
206		}
207		/*
208		 * We're going to add another proc to the set.  If this
209		 * will overflow the buffer, assume the reason is because
210		 * nprocs (or the proc list) is corrupt and declare an error.
211		 */
212		if (cnt >= maxcnt) {
213			_kvm_err(kd, kd->program, "nprocs corrupt");
214			return (-1);
215		}
216		/*
217		 * gather kinfo_proc
218		 */
219		kp->ki_paddr = p;
220		kp->ki_addr = 0;	/* XXX uarea */
221		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
222		kp->ki_args = proc.p_args;
223		kp->ki_tracep = proc.p_tracevp;
224		kp->ki_textvp = proc.p_textvp;
225		kp->ki_fd = proc.p_fd;
226		kp->ki_vmspace = proc.p_vmspace;
227		if (proc.p_sigacts != NULL) {
228			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
229				_kvm_err(kd, kd->program,
230				    "can't read sigacts at %x", proc.p_sigacts);
231				return (-1);
232			}
233			kp->ki_sigignore = sigacts.ps_sigignore;
234			kp->ki_sigcatch = sigacts.ps_sigcatch;
235		}
236		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
237			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
238				_kvm_err(kd, kd->program,
239				    "can't read stats at %x", proc.p_stats);
240				return (-1);
241			}
242			kp->ki_start = pstats.p_start;
243
244			/*
245			 * XXX: The times here are probably zero and need
246			 * to be calculated from the raw data in p_rux and
247			 * p_crux.
248			 */
249			kp->ki_rusage = pstats.p_ru;
250			kp->ki_childstime = pstats.p_cru.ru_stime;
251			kp->ki_childutime = pstats.p_cru.ru_utime;
252			/* Some callers want child-times in a single value */
253			timeradd(&kp->ki_childstime, &kp->ki_childutime,
254			    &kp->ki_childtime);
255		}
256		if (proc.p_oppid)
257			kp->ki_ppid = proc.p_oppid;
258		else if (proc.p_pptr) {
259			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
260				_kvm_err(kd, kd->program,
261				    "can't read pproc at %x", proc.p_pptr);
262				return (-1);
263			}
264			kp->ki_ppid = pproc.p_pid;
265		} else
266			kp->ki_ppid = 0;
267		if (proc.p_pgrp == NULL)
268			goto nopgrp;
269		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
270			_kvm_err(kd, kd->program, "can't read pgrp at %x",
271				 proc.p_pgrp);
272			return (-1);
273		}
274		kp->ki_pgid = pgrp.pg_id;
275		kp->ki_jobc = pgrp.pg_jobc;
276		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
277			_kvm_err(kd, kd->program, "can't read session at %x",
278				pgrp.pg_session);
279			return (-1);
280		}
281		kp->ki_sid = sess.s_sid;
282		(void)memcpy(kp->ki_login, sess.s_login,
283						sizeof(kp->ki_login));
284		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
285		if (sess.s_leader == p)
286			kp->ki_kiflag |= KI_SLEADER;
287		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
288			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
289				_kvm_err(kd, kd->program,
290					 "can't read tty at %x", sess.s_ttyp);
291				return (-1);
292			}
293			if (tty.t_dev != NULL) {
294				if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
295					_kvm_err(kd, kd->program,
296						 "can't read cdev at %x",
297						tty.t_dev);
298					return (-1);
299				}
300#if 0
301				kp->ki_tdev = t_cdev.si_udev;
302#else
303				kp->ki_tdev = NULL;
304#endif
305			}
306			if (tty.t_pgrp != NULL) {
307				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
308					_kvm_err(kd, kd->program,
309						 "can't read tpgrp at %x",
310						tty.t_pgrp);
311					return (-1);
312				}
313				kp->ki_tpgid = pgrp.pg_id;
314			} else
315				kp->ki_tpgid = -1;
316			if (tty.t_session != NULL) {
317				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
318					_kvm_err(kd, kd->program,
319					    "can't read session at %x",
320					    tty.t_session);
321					return (-1);
322				}
323				kp->ki_tsid = sess.s_sid;
324			}
325		} else {
326nopgrp:
327			kp->ki_tdev = NODEV;
328		}
329		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
330			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
331			    kp->ki_wmesg, WMESGLEN);
332
333		(void)kvm_read(kd, (u_long)proc.p_vmspace,
334		    (char *)&vmspace, sizeof(vmspace));
335		kp->ki_size = vmspace.vm_map.size;
336		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
337		kp->ki_swrss = vmspace.vm_swrss;
338		kp->ki_tsize = vmspace.vm_tsize;
339		kp->ki_dsize = vmspace.vm_dsize;
340		kp->ki_ssize = vmspace.vm_ssize;
341
342		switch (what & ~KERN_PROC_INC_THREAD) {
343
344		case KERN_PROC_PGRP:
345			if (kp->ki_pgid != (pid_t)arg)
346				continue;
347			break;
348
349		case KERN_PROC_SESSION:
350			if (kp->ki_sid != (pid_t)arg)
351				continue;
352			break;
353
354		case KERN_PROC_TTY:
355			if ((proc.p_flag & P_CONTROLT) == 0 ||
356			     kp->ki_tdev != (dev_t)arg)
357				continue;
358			break;
359		}
360		if (proc.p_comm[0] != 0)
361			strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
362		(void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
363		    sizeof(sysent));
364		(void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
365		    sizeof(svname));
366		if (svname[0] != 0)
367			strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
368		if ((proc.p_state != PRS_ZOMBIE) &&
369		    (mtd.td_blocked != 0)) {
370			kp->ki_kiflag |= KI_LOCKBLOCK;
371			if (mtd.td_lockname)
372				(void)kvm_read(kd,
373				    (u_long)mtd.td_lockname,
374				    kp->ki_lockname, LOCKNAMELEN);
375			kp->ki_lockname[LOCKNAMELEN] = 0;
376		}
377		bintime2timeval(&proc.p_rux.rux_runtime, &tv);
378		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
379		kp->ki_pid = proc.p_pid;
380		kp->ki_siglist = proc.p_siglist;
381		SIGSETOR(kp->ki_siglist, mtd.td_siglist);
382		kp->ki_sigmask = mtd.td_sigmask;
383		kp->ki_xstat = proc.p_xstat;
384		kp->ki_acflag = proc.p_acflag;
385		kp->ki_lock = proc.p_lock;
386		if (proc.p_state != PRS_ZOMBIE) {
387			kp->ki_swtime = proc.p_swtime;
388			kp->ki_flag = proc.p_flag;
389			kp->ki_sflag = proc.p_sflag;
390			kp->ki_nice = proc.p_nice;
391			kp->ki_traceflag = proc.p_traceflag;
392			if (proc.p_state == PRS_NORMAL) {
393				if (TD_ON_RUNQ(&mtd) ||
394				    TD_CAN_RUN(&mtd) ||
395				    TD_IS_RUNNING(&mtd)) {
396					kp->ki_stat = SRUN;
397				} else if (mtd.td_state ==
398				    TDS_INHIBITED) {
399					if (P_SHOULDSTOP(&proc)) {
400						kp->ki_stat = SSTOP;
401					} else if (
402					    TD_IS_SLEEPING(&mtd)) {
403						kp->ki_stat = SSLEEP;
404					} else if (TD_ON_LOCK(&mtd)) {
405						kp->ki_stat = SLOCK;
406					} else {
407						kp->ki_stat = SWAIT;
408					}
409				}
410			} else {
411				kp->ki_stat = SIDL;
412			}
413			/* Stuff from the thread */
414			kp->ki_pri.pri_level = mtd.td_priority;
415			kp->ki_pri.pri_native = mtd.td_base_pri;
416			kp->ki_lastcpu = mtd.td_lastcpu;
417			kp->ki_wchan = mtd.td_wchan;
418			kp->ki_oncpu = mtd.td_oncpu;
419
420			if (!(proc.p_flag & P_SA)) {
421				/* stuff from the ksegrp */
422				kp->ki_slptime = mkg.kg_slptime;
423				kp->ki_pri.pri_class = mkg.kg_pri_class;
424				kp->ki_pri.pri_user = mkg.kg_user_pri;
425				kp->ki_estcpu = mkg.kg_estcpu;
426
427#if 0
428				/* Stuff from the kse */
429				kp->ki_pctcpu = mke.ke_pctcpu;
430				kp->ki_rqindex = mke.ke_rqindex;
431#else
432				kp->ki_pctcpu = 0;
433				kp->ki_rqindex = 0;
434#endif
435			} else {
436				kp->ki_tdflags = -1;
437				/* All the rest are 0 for now */
438			}
439		} else {
440			kp->ki_stat = SZOMB;
441		}
442		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
443		++bp;
444		++cnt;
445	}
446	return (cnt);
447}
448
449/*
450 * Build proc info array by reading in proc list from a crash dump.
451 * Return number of procs read.  maxcnt is the max we will read.
452 */
453static int
454kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
455	kvm_t *kd;
456	int what, arg;
457	u_long a_allproc;
458	u_long a_zombproc;
459	int maxcnt;
460{
461	struct kinfo_proc *bp = kd->procbase;
462	int acnt, zcnt;
463	struct proc *p;
464
465	if (KREAD(kd, a_allproc, &p)) {
466		_kvm_err(kd, kd->program, "cannot read allproc");
467		return (-1);
468	}
469	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
470	if (acnt < 0)
471		return (acnt);
472
473	if (KREAD(kd, a_zombproc, &p)) {
474		_kvm_err(kd, kd->program, "cannot read zombproc");
475		return (-1);
476	}
477	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
478	if (zcnt < 0)
479		zcnt = 0;
480
481	return (acnt + zcnt);
482}
483
484struct kinfo_proc *
485kvm_getprocs(kd, op, arg, cnt)
486	kvm_t *kd;
487	int op, arg;
488	int *cnt;
489{
490	int mib[4], st, nprocs;
491	size_t size;
492	int temp_op;
493
494	if (kd->procbase != 0) {
495		free((void *)kd->procbase);
496		/*
497		 * Clear this pointer in case this call fails.  Otherwise,
498		 * kvm_close() will free it again.
499		 */
500		kd->procbase = 0;
501	}
502	if (ISALIVE(kd)) {
503		size = 0;
504		mib[0] = CTL_KERN;
505		mib[1] = KERN_PROC;
506		mib[2] = op;
507		mib[3] = arg;
508		temp_op = op & ~KERN_PROC_INC_THREAD;
509		st = sysctl(mib,
510		    temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
511		    3 : 4, NULL, &size, NULL, 0);
512		if (st == -1) {
513			_kvm_syserr(kd, kd->program, "kvm_getprocs");
514			return (0);
515		}
516		/*
517		 * We can't continue with a size of 0 because we pass
518		 * it to realloc() (via _kvm_realloc()), and passing 0
519		 * to realloc() results in undefined behavior.
520		 */
521		if (size == 0) {
522			/*
523			 * XXX: We should probably return an invalid,
524			 * but non-NULL, pointer here so any client
525			 * program trying to dereference it will
526			 * crash.  However, _kvm_freeprocs() calls
527			 * free() on kd->procbase if it isn't NULL,
528			 * and free()'ing a junk pointer isn't good.
529			 * Then again, _kvm_freeprocs() isn't used
530			 * anywhere . . .
531			 */
532			kd->procbase = _kvm_malloc(kd, 1);
533			goto liveout;
534		}
535		do {
536			size += size / 10;
537			kd->procbase = (struct kinfo_proc *)
538			    _kvm_realloc(kd, kd->procbase, size);
539			if (kd->procbase == 0)
540				return (0);
541			st = sysctl(mib, temp_op == KERN_PROC_ALL ||
542			    temp_op == KERN_PROC_PROC ? 3 : 4,
543			    kd->procbase, &size, NULL, 0);
544		} while (st == -1 && errno == ENOMEM);
545		if (st == -1) {
546			_kvm_syserr(kd, kd->program, "kvm_getprocs");
547			return (0);
548		}
549		/*
550		 * We have to check the size again because sysctl()
551		 * may "round up" oldlenp if oldp is NULL; hence it
552		 * might've told us that there was data to get when
553		 * there really isn't any.
554		 */
555		if (size > 0 &&
556		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
557			_kvm_err(kd, kd->program,
558			    "kinfo_proc size mismatch (expected %d, got %d)",
559			    sizeof(struct kinfo_proc),
560			    kd->procbase->ki_structsize);
561			return (0);
562		}
563liveout:
564		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
565	} else {
566		struct nlist nl[4], *p;
567
568		nl[0].n_name = "_nprocs";
569		nl[1].n_name = "_allproc";
570		nl[2].n_name = "_zombproc";
571		nl[3].n_name = 0;
572
573		if (kvm_nlist(kd, nl) != 0) {
574			for (p = nl; p->n_type != 0; ++p)
575				;
576			_kvm_err(kd, kd->program,
577				 "%s: no such symbol", p->n_name);
578			return (0);
579		}
580		if (KREAD(kd, nl[0].n_value, &nprocs)) {
581			_kvm_err(kd, kd->program, "can't read nprocs");
582			return (0);
583		}
584		size = nprocs * sizeof(struct kinfo_proc);
585		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
586		if (kd->procbase == 0)
587			return (0);
588
589		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
590				      nl[2].n_value, nprocs);
591#ifdef notdef
592		size = nprocs * sizeof(struct kinfo_proc);
593		(void)realloc(kd->procbase, size);
594#endif
595	}
596	*cnt = nprocs;
597	return (kd->procbase);
598}
599
600void
601_kvm_freeprocs(kd)
602	kvm_t *kd;
603{
604	if (kd->procbase) {
605		free(kd->procbase);
606		kd->procbase = 0;
607	}
608}
609
610void *
611_kvm_realloc(kd, p, n)
612	kvm_t *kd;
613	void *p;
614	size_t n;
615{
616	void *np = (void *)realloc(p, n);
617
618	if (np == 0) {
619		free(p);
620		_kvm_err(kd, kd->program, "out of memory");
621	}
622	return (np);
623}
624
625#ifndef MAX
626#define MAX(a, b) ((a) > (b) ? (a) : (b))
627#endif
628
629/*
630 * Read in an argument vector from the user address space of process kp.
631 * addr if the user-space base address of narg null-terminated contiguous
632 * strings.  This is used to read in both the command arguments and
633 * environment strings.  Read at most maxcnt characters of strings.
634 */
635static char **
636kvm_argv(kd, kp, addr, narg, maxcnt)
637	kvm_t *kd;
638	struct kinfo_proc *kp;
639	u_long addr;
640	int narg;
641	int maxcnt;
642{
643	char *np, *cp, *ep, *ap;
644	u_long oaddr = -1;
645	int len, cc;
646	char **argv;
647
648	/*
649	 * Check that there aren't an unreasonable number of agruments,
650	 * and that the address is in user space.
651	 */
652	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
653		return (0);
654
655	/*
656	 * kd->argv : work space for fetching the strings from the target
657	 *            process's space, and is converted for returning to caller
658	 */
659	if (kd->argv == 0) {
660		/*
661		 * Try to avoid reallocs.
662		 */
663		kd->argc = MAX(narg + 1, 32);
664		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
665						sizeof(*kd->argv));
666		if (kd->argv == 0)
667			return (0);
668	} else if (narg + 1 > kd->argc) {
669		kd->argc = MAX(2 * kd->argc, narg + 1);
670		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
671						sizeof(*kd->argv));
672		if (kd->argv == 0)
673			return (0);
674	}
675	/*
676	 * kd->argspc : returned to user, this is where the kd->argv
677	 *              arrays are left pointing to the collected strings.
678	 */
679	if (kd->argspc == 0) {
680		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
681		if (kd->argspc == 0)
682			return (0);
683		kd->arglen = PAGE_SIZE;
684	}
685	/*
686	 * kd->argbuf : used to pull in pages from the target process.
687	 *              the strings are copied out of here.
688	 */
689	if (kd->argbuf == 0) {
690		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
691		if (kd->argbuf == 0)
692			return (0);
693	}
694
695	/* Pull in the target process'es argv vector */
696	cc = sizeof(char *) * narg;
697	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
698		return (0);
699	/*
700	 * ap : saved start address of string we're working on in kd->argspc
701	 * np : pointer to next place to write in kd->argspc
702	 * len: length of data in kd->argspc
703	 * argv: pointer to the argv vector that we are hunting around the
704	 *       target process space for, and converting to addresses in
705	 *       our address space (kd->argspc).
706	 */
707	ap = np = kd->argspc;
708	argv = kd->argv;
709	len = 0;
710	/*
711	 * Loop over pages, filling in the argument vector.
712	 * Note that the argv strings could be pointing *anywhere* in
713	 * the user address space and are no longer contiguous.
714	 * Note that *argv is modified when we are going to fetch a string
715	 * that crosses a page boundary.  We copy the next part of the string
716	 * into to "np" and eventually convert the pointer.
717	 */
718	while (argv < kd->argv + narg && *argv != 0) {
719
720		/* get the address that the current argv string is on */
721		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
722
723		/* is it the same page as the last one? */
724		if (addr != oaddr) {
725			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
726			    PAGE_SIZE)
727				return (0);
728			oaddr = addr;
729		}
730
731		/* offset within the page... kd->argbuf */
732		addr = (u_long)*argv & (PAGE_SIZE - 1);
733
734		/* cp = start of string, cc = count of chars in this chunk */
735		cp = kd->argbuf + addr;
736		cc = PAGE_SIZE - addr;
737
738		/* dont get more than asked for by user process */
739		if (maxcnt > 0 && cc > maxcnt - len)
740			cc = maxcnt - len;
741
742		/* pointer to end of string if we found it in this page */
743		ep = memchr(cp, '\0', cc);
744		if (ep != 0)
745			cc = ep - cp + 1;
746		/*
747		 * at this point, cc is the count of the chars that we are
748		 * going to retrieve this time. we may or may not have found
749		 * the end of it.  (ep points to the null if the end is known)
750		 */
751
752		/* will we exceed the malloc/realloced buffer? */
753		if (len + cc > kd->arglen) {
754			int off;
755			char **pp;
756			char *op = kd->argspc;
757
758			kd->arglen *= 2;
759			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
760							  kd->arglen);
761			if (kd->argspc == 0)
762				return (0);
763			/*
764			 * Adjust argv pointers in case realloc moved
765			 * the string space.
766			 */
767			off = kd->argspc - op;
768			for (pp = kd->argv; pp < argv; pp++)
769				*pp += off;
770			ap += off;
771			np += off;
772		}
773		/* np = where to put the next part of the string in kd->argspc*/
774		/* np is kinda redundant.. could use "kd->argspc + len" */
775		memcpy(np, cp, cc);
776		np += cc;	/* inc counters */
777		len += cc;
778
779		/*
780		 * if end of string found, set the *argv pointer to the
781		 * saved beginning of string, and advance. argv points to
782		 * somewhere in kd->argv..  This is initially relative
783		 * to the target process, but when we close it off, we set
784		 * it to point in our address space.
785		 */
786		if (ep != 0) {
787			*argv++ = ap;
788			ap = np;
789		} else {
790			/* update the address relative to the target process */
791			*argv += cc;
792		}
793
794		if (maxcnt > 0 && len >= maxcnt) {
795			/*
796			 * We're stopping prematurely.  Terminate the
797			 * current string.
798			 */
799			if (ep == 0) {
800				*np = '\0';
801				*argv++ = ap;
802			}
803			break;
804		}
805	}
806	/* Make sure argv is terminated. */
807	*argv = 0;
808	return (kd->argv);
809}
810
811static void
812ps_str_a(p, addr, n)
813	struct ps_strings *p;
814	u_long *addr;
815	int *n;
816{
817	*addr = (u_long)p->ps_argvstr;
818	*n = p->ps_nargvstr;
819}
820
821static void
822ps_str_e(p, addr, n)
823	struct ps_strings *p;
824	u_long *addr;
825	int *n;
826{
827	*addr = (u_long)p->ps_envstr;
828	*n = p->ps_nenvstr;
829}
830
831/*
832 * Determine if the proc indicated by p is still active.
833 * This test is not 100% foolproof in theory, but chances of
834 * being wrong are very low.
835 */
836static int
837proc_verify(curkp)
838	struct kinfo_proc *curkp;
839{
840	struct kinfo_proc newkp;
841	int mib[4];
842	size_t len;
843
844	mib[0] = CTL_KERN;
845	mib[1] = KERN_PROC;
846	mib[2] = KERN_PROC_PID;
847	mib[3] = curkp->ki_pid;
848	len = sizeof(newkp);
849	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
850		return (0);
851	return (curkp->ki_pid == newkp.ki_pid &&
852	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
853}
854
855static char **
856kvm_doargv(kd, kp, nchr, info)
857	kvm_t *kd;
858	struct kinfo_proc *kp;
859	int nchr;
860	void (*info)(struct ps_strings *, u_long *, int *);
861{
862	char **ap;
863	u_long addr;
864	int cnt;
865	static struct ps_strings arginfo;
866	static u_long ps_strings;
867	size_t len;
868
869	if (ps_strings == 0) {
870		len = sizeof(ps_strings);
871		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
872		    0) == -1)
873			ps_strings = PS_STRINGS;
874	}
875
876	/*
877	 * Pointers are stored at the top of the user stack.
878	 */
879	if (kp->ki_stat == SZOMB ||
880	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
881		      sizeof(arginfo)) != sizeof(arginfo))
882		return (0);
883
884	(*info)(&arginfo, &addr, &cnt);
885	if (cnt == 0)
886		return (0);
887	ap = kvm_argv(kd, kp, addr, cnt, nchr);
888	/*
889	 * For live kernels, make sure this process didn't go away.
890	 */
891	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
892		ap = 0;
893	return (ap);
894}
895
896/*
897 * Get the command args.  This code is now machine independent.
898 */
899char **
900kvm_getargv(kd, kp, nchr)
901	kvm_t *kd;
902	const struct kinfo_proc *kp;
903	int nchr;
904{
905	int oid[4];
906	int i;
907	size_t bufsz;
908	static unsigned long buflen;
909	static char *buf, *p;
910	static char **bufp;
911	static int argc;
912
913	if (!ISALIVE(kd)) {
914		_kvm_err(kd, kd->program,
915		    "cannot read user space from dead kernel");
916		return (0);
917	}
918
919	if (!buflen) {
920		bufsz = sizeof(buflen);
921		i = sysctlbyname("kern.ps_arg_cache_limit",
922		    &buflen, &bufsz, NULL, 0);
923		if (i == -1) {
924			buflen = 0;
925		} else {
926			buf = malloc(buflen);
927			if (buf == NULL)
928				buflen = 0;
929			argc = 32;
930			bufp = malloc(sizeof(char *) * argc);
931		}
932	}
933	if (buf != NULL) {
934		oid[0] = CTL_KERN;
935		oid[1] = KERN_PROC;
936		oid[2] = KERN_PROC_ARGS;
937		oid[3] = kp->ki_pid;
938		bufsz = buflen;
939		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
940		if (i == 0 && bufsz > 0) {
941			i = 0;
942			p = buf;
943			do {
944				bufp[i++] = p;
945				p += strlen(p) + 1;
946				if (i >= argc) {
947					argc += argc;
948					bufp = realloc(bufp,
949					    sizeof(char *) * argc);
950				}
951			} while (p < buf + bufsz);
952			bufp[i++] = 0;
953			return (bufp);
954		}
955	}
956	if (kp->ki_flag & P_SYSTEM)
957		return (NULL);
958	return (kvm_doargv(kd, kp, nchr, ps_str_a));
959}
960
961char **
962kvm_getenvv(kd, kp, nchr)
963	kvm_t *kd;
964	const struct kinfo_proc *kp;
965	int nchr;
966{
967	return (kvm_doargv(kd, kp, nchr, ps_str_e));
968}
969
970/*
971 * Read from user space.  The user context is given by p.
972 */
973ssize_t
974kvm_uread(kd, kp, uva, buf, len)
975	kvm_t *kd;
976	struct kinfo_proc *kp;
977	u_long uva;
978	char *buf;
979	size_t len;
980{
981	char *cp;
982	char procfile[MAXPATHLEN];
983	ssize_t amount;
984	int fd;
985
986	if (!ISALIVE(kd)) {
987		_kvm_err(kd, kd->program,
988		    "cannot read user space from dead kernel");
989		return (0);
990	}
991
992	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
993	fd = open(procfile, O_RDONLY, 0);
994	if (fd < 0) {
995		_kvm_err(kd, kd->program, "cannot open %s", procfile);
996		return (0);
997	}
998
999	cp = buf;
1000	while (len > 0) {
1001		errno = 0;
1002		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
1003			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
1004			    uva, procfile);
1005			break;
1006		}
1007		amount = read(fd, cp, len);
1008		if (amount < 0) {
1009			_kvm_syserr(kd, kd->program, "error reading %s",
1010			    procfile);
1011			break;
1012		}
1013		if (amount == 0) {
1014			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
1015			break;
1016		}
1017		cp += amount;
1018		uva += amount;
1019		len -= amount;
1020	}
1021
1022	close(fd);
1023	return ((ssize_t)(cp - buf));
1024}
1025