eng_rsax.c revision 296341
1/* crypto/engine/eng_rsax.c */
2/* Copyright (c) 2010-2010 Intel Corp.
3 *   Author: Vinodh.Gopal@intel.com
4 *           Jim Guilford
5 *           Erdinc.Ozturk@intel.com
6 *           Maxim.Perminov@intel.com
7 *           Ying.Huang@intel.com
8 *
9 * More information about algorithm used can be found at:
10 *   http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf
11 */
12/* ====================================================================
13 * Copyright (c) 1999-2001 The OpenSSL Project.  All rights reserved.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 *
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 *
22 * 2. Redistributions in binary form must reproduce the above copyright
23 *    notice, this list of conditions and the following disclaimer in
24 *    the documentation and/or other materials provided with the
25 *    distribution.
26 *
27 * 3. All advertising materials mentioning features or use of this
28 *    software must display the following acknowledgment:
29 *    "This product includes software developed by the OpenSSL Project
30 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
31 *
32 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
33 *    endorse or promote products derived from this software without
34 *    prior written permission. For written permission, please contact
35 *    licensing@OpenSSL.org.
36 *
37 * 5. Products derived from this software may not be called "OpenSSL"
38 *    nor may "OpenSSL" appear in their names without prior written
39 *    permission of the OpenSSL Project.
40 *
41 * 6. Redistributions of any form whatsoever must retain the following
42 *    acknowledgment:
43 *    "This product includes software developed by the OpenSSL Project
44 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
47 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
49 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
50 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
51 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
52 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
53 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
55 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
56 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
57 * OF THE POSSIBILITY OF SUCH DAMAGE.
58 * ====================================================================
59 *
60 * This product includes cryptographic software written by Eric Young
61 * (eay@cryptsoft.com).  This product includes software written by Tim
62 * Hudson (tjh@cryptsoft.com).
63 */
64
65#include <openssl/opensslconf.h>
66
67#include <stdio.h>
68#include <string.h>
69#include <openssl/crypto.h>
70#include <openssl/buffer.h>
71#include <openssl/engine.h>
72#ifndef OPENSSL_NO_RSA
73# include <openssl/rsa.h>
74#endif
75#include <openssl/bn.h>
76#include <openssl/err.h>
77
78/* RSAX is available **ONLY* on x86_64 CPUs */
79#undef COMPILE_RSAX
80
81#if (defined(__x86_64) || defined(__x86_64__) || \
82     defined(_M_AMD64) || defined (_M_X64)) && !defined(OPENSSL_NO_ASM)
83# define COMPILE_RSAX
84static ENGINE *ENGINE_rsax(void);
85#endif
86
87void ENGINE_load_rsax(void)
88{
89/* On non-x86 CPUs it just returns. */
90#ifdef COMPILE_RSAX
91    ENGINE *toadd = ENGINE_rsax();
92    if (!toadd)
93        return;
94    ENGINE_add(toadd);
95    ENGINE_free(toadd);
96    ERR_clear_error();
97#endif
98}
99
100#ifdef COMPILE_RSAX
101# define E_RSAX_LIB_NAME "rsax engine"
102
103static int e_rsax_destroy(ENGINE *e);
104static int e_rsax_init(ENGINE *e);
105static int e_rsax_finish(ENGINE *e);
106static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void));
107
108# ifndef OPENSSL_NO_RSA
109/* RSA stuff */
110static int e_rsax_rsa_mod_exp(BIGNUM *r, const BIGNUM *I, RSA *rsa,
111                              BN_CTX *ctx);
112static int e_rsax_rsa_finish(RSA *r);
113# endif
114
115static const ENGINE_CMD_DEFN e_rsax_cmd_defns[] = {
116    {0, NULL, NULL, 0}
117};
118
119# ifndef OPENSSL_NO_RSA
120/* Our internal RSA_METHOD that we provide pointers to */
121static RSA_METHOD e_rsax_rsa = {
122    "Intel RSA-X method",
123    NULL,
124    NULL,
125    NULL,
126    NULL,
127    e_rsax_rsa_mod_exp,
128    NULL,
129    NULL,
130    e_rsax_rsa_finish,
131    RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE,
132    NULL,
133    NULL,
134    NULL
135};
136# endif
137
138/* Constants used when creating the ENGINE */
139static const char *engine_e_rsax_id = "rsax";
140static const char *engine_e_rsax_name = "RSAX engine support";
141
142/* This internal function is used by ENGINE_rsax() */
143static int bind_helper(ENGINE *e)
144{
145# ifndef OPENSSL_NO_RSA
146    const RSA_METHOD *meth1;
147# endif
148    if (!ENGINE_set_id(e, engine_e_rsax_id) ||
149        !ENGINE_set_name(e, engine_e_rsax_name) ||
150# ifndef OPENSSL_NO_RSA
151        !ENGINE_set_RSA(e, &e_rsax_rsa) ||
152# endif
153        !ENGINE_set_destroy_function(e, e_rsax_destroy) ||
154        !ENGINE_set_init_function(e, e_rsax_init) ||
155        !ENGINE_set_finish_function(e, e_rsax_finish) ||
156        !ENGINE_set_ctrl_function(e, e_rsax_ctrl) ||
157        !ENGINE_set_cmd_defns(e, e_rsax_cmd_defns))
158        return 0;
159
160# ifndef OPENSSL_NO_RSA
161    meth1 = RSA_PKCS1_SSLeay();
162    e_rsax_rsa.rsa_pub_enc = meth1->rsa_pub_enc;
163    e_rsax_rsa.rsa_pub_dec = meth1->rsa_pub_dec;
164    e_rsax_rsa.rsa_priv_enc = meth1->rsa_priv_enc;
165    e_rsax_rsa.rsa_priv_dec = meth1->rsa_priv_dec;
166    e_rsax_rsa.bn_mod_exp = meth1->bn_mod_exp;
167# endif
168    return 1;
169}
170
171static ENGINE *ENGINE_rsax(void)
172{
173    ENGINE *ret = ENGINE_new();
174    if (!ret)
175        return NULL;
176    if (!bind_helper(ret)) {
177        ENGINE_free(ret);
178        return NULL;
179    }
180    return ret;
181}
182
183# ifndef OPENSSL_NO_RSA
184/* Used to attach our own key-data to an RSA structure */
185static int rsax_ex_data_idx = -1;
186# endif
187
188static int e_rsax_destroy(ENGINE *e)
189{
190    return 1;
191}
192
193/* (de)initialisation functions. */
194static int e_rsax_init(ENGINE *e)
195{
196# ifndef OPENSSL_NO_RSA
197    if (rsax_ex_data_idx == -1)
198        rsax_ex_data_idx = RSA_get_ex_new_index(0, NULL, NULL, NULL, NULL);
199# endif
200    if (rsax_ex_data_idx == -1)
201        return 0;
202    return 1;
203}
204
205static int e_rsax_finish(ENGINE *e)
206{
207    return 1;
208}
209
210static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void))
211{
212    int to_return = 1;
213
214    switch (cmd) {
215        /* The command isn't understood by this engine */
216    default:
217        to_return = 0;
218        break;
219    }
220
221    return to_return;
222}
223
224# ifndef OPENSSL_NO_RSA
225
226#  ifdef _WIN32
227typedef unsigned __int64 UINT64;
228#  else
229typedef unsigned long long UINT64;
230#  endif
231typedef unsigned short UINT16;
232
233/*
234 * Table t is interleaved in the following manner: The order in memory is
235 * t[0][0], t[0][1], ..., t[0][7], t[1][0], ... A particular 512-bit value is
236 * stored in t[][index] rather than the more normal t[index][]; i.e. the
237 * qwords of a particular entry in t are not adjacent in memory
238 */
239
240/* Init BIGNUM b from the interleaved UINT64 array */
241static int interleaved_array_to_bn_512(BIGNUM *b, UINT64 *array);
242
243/*
244 * Extract array elements from BIGNUM b To set the whole array from b, call
245 * with n=8
246 */
247static int bn_extract_to_array_512(const BIGNUM *b, unsigned int n,
248                                   UINT64 *array);
249
250struct mod_ctx_512 {
251    UINT64 t[8][8];
252    UINT64 m[8];
253    UINT64 m1[8];               /* 2^278 % m */
254    UINT64 m2[8];               /* 2^640 % m */
255    UINT64 k1[2];               /* (- 1/m) % 2^128 */
256};
257
258static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data);
259
260void mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */
261                 UINT64 *g,     /* 512 bits, 8 qwords */
262                 UINT64 *exp,   /* 512 bits, 8 qwords */
263                 struct mod_ctx_512 *data);
264
265typedef struct st_e_rsax_mod_ctx {
266    UINT64 type;
267    union {
268        struct mod_ctx_512 b512;
269    } ctx;
270
271} E_RSAX_MOD_CTX;
272
273static E_RSAX_MOD_CTX *e_rsax_get_ctx(RSA *rsa, int idx, BIGNUM *m)
274{
275    E_RSAX_MOD_CTX *hptr;
276
277    if (idx < 0 || idx > 2)
278        return NULL;
279
280    hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);
281    if (!hptr) {
282        hptr = OPENSSL_malloc(3 * sizeof(E_RSAX_MOD_CTX));
283        if (!hptr)
284            return NULL;
285        hptr[2].type = hptr[1].type = hptr[0].type = 0;
286        RSA_set_ex_data(rsa, rsax_ex_data_idx, hptr);
287    }
288
289    if (hptr[idx].type == (UINT64)BN_num_bits(m))
290        return hptr + idx;
291
292    if (BN_num_bits(m) == 512) {
293        UINT64 _m[8];
294        bn_extract_to_array_512(m, 8, _m);
295        memset(&hptr[idx].ctx.b512, 0, sizeof(struct mod_ctx_512));
296        mod_exp_pre_compute_data_512(_m, &hptr[idx].ctx.b512);
297    }
298
299    hptr[idx].type = BN_num_bits(m);
300    return hptr + idx;
301}
302
303static int e_rsax_rsa_finish(RSA *rsa)
304{
305    E_RSAX_MOD_CTX *hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);
306    if (hptr) {
307        OPENSSL_free(hptr);
308        RSA_set_ex_data(rsa, rsax_ex_data_idx, NULL);
309    }
310    if (rsa->_method_mod_n)
311        BN_MONT_CTX_free(rsa->_method_mod_n);
312    if (rsa->_method_mod_p)
313        BN_MONT_CTX_free(rsa->_method_mod_p);
314    if (rsa->_method_mod_q)
315        BN_MONT_CTX_free(rsa->_method_mod_q);
316    return 1;
317}
318
319static int e_rsax_bn_mod_exp(BIGNUM *r, const BIGNUM *g, const BIGNUM *e,
320                             const BIGNUM *m, BN_CTX *ctx,
321                             BN_MONT_CTX *in_mont,
322                             E_RSAX_MOD_CTX *rsax_mod_ctx)
323{
324    if (rsax_mod_ctx && BN_get_flags(e, BN_FLG_CONSTTIME) != 0) {
325        if (BN_num_bits(m) == 512) {
326            UINT64 _r[8];
327            UINT64 _g[8];
328            UINT64 _e[8];
329
330            /* Init the arrays from the BIGNUMs */
331            bn_extract_to_array_512(g, 8, _g);
332            bn_extract_to_array_512(e, 8, _e);
333
334            mod_exp_512(_r, _g, _e, &rsax_mod_ctx->ctx.b512);
335            /* Return the result in the BIGNUM */
336            interleaved_array_to_bn_512(r, _r);
337            return 1;
338        }
339    }
340
341    return BN_mod_exp_mont(r, g, e, m, ctx, in_mont);
342}
343
344/*
345 * Declares for the Intel CIAP 512-bit / CRT / 1024 bit RSA modular
346 * exponentiation routine precalculations and a structure to hold the
347 * necessary values.  These files are meant to live in crypto/rsa/ in the
348 * target openssl.
349 */
350
351/*
352 * Local method: extracts a piece from a BIGNUM, to fit it into
353 * an array. Call with n=8 to extract an entire 512-bit BIGNUM
354 */
355static int bn_extract_to_array_512(const BIGNUM *b, unsigned int n,
356                                   UINT64 *array)
357{
358    int i;
359    UINT64 tmp;
360    unsigned char bn_buff[64];
361    memset(bn_buff, 0, 64);
362    if (BN_num_bytes(b) > 64) {
363        printf("Can't support this byte size\n");
364        return 0;
365    }
366    if (BN_num_bytes(b) != 0) {
367        if (!BN_bn2bin(b, bn_buff + (64 - BN_num_bytes(b)))) {
368            printf("Error's in bn2bin\n");
369            /* We have to error, here */
370            return 0;
371        }
372    }
373    while (n-- > 0) {
374        array[n] = 0;
375        for (i = 7; i >= 0; i--) {
376            tmp = bn_buff[63 - (n * 8 + i)];
377            array[n] |= tmp << (8 * i);
378        }
379    }
380    return 1;
381}
382
383/* Init a 512-bit BIGNUM from the UINT64*_ (8 * 64) interleaved array */
384static int interleaved_array_to_bn_512(BIGNUM *b, UINT64 *array)
385{
386    unsigned char tmp[64];
387    int n = 8;
388    int i;
389    while (n-- > 0) {
390        for (i = 7; i >= 0; i--) {
391            tmp[63 - (n * 8 + i)] = (unsigned char)(array[n] >> (8 * i));
392    }}
393    BN_bin2bn(tmp, 64, b);
394    return 0;
395}
396
397/* The main 512bit precompute call */
398static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data)
399{
400    BIGNUM two_768, two_640, two_128, two_512, tmp, _m, tmp2;
401
402    /* We need a BN_CTX for the modulo functions */
403    BN_CTX *ctx;
404    /* Some tmps */
405    UINT64 _t[8];
406    int i, j, ret = 0;
407
408    /* Init _m with m */
409    BN_init(&_m);
410    interleaved_array_to_bn_512(&_m, m);
411    memset(_t, 0, 64);
412
413    /* Inits */
414    BN_init(&two_768);
415    BN_init(&two_640);
416    BN_init(&two_128);
417    BN_init(&two_512);
418    BN_init(&tmp);
419    BN_init(&tmp2);
420
421    /* Create our context */
422    if ((ctx = BN_CTX_new()) == NULL) {
423        goto err;
424    }
425    BN_CTX_start(ctx);
426
427    /*
428     * For production, if you care, these only need to be set once,
429     * and may be made constants.
430     */
431    BN_lshift(&two_768, BN_value_one(), 768);
432    BN_lshift(&two_640, BN_value_one(), 640);
433    BN_lshift(&two_128, BN_value_one(), 128);
434    BN_lshift(&two_512, BN_value_one(), 512);
435
436    if (0 == (m[7] & 0x8000000000000000)) {
437        goto err;
438    }
439    if (0 == (m[0] & 0x1)) {    /* Odd modulus required for Mont */
440        goto err;
441    }
442
443    /* Precompute m1 */
444    BN_mod(&tmp, &two_768, &_m, ctx);
445    if (!bn_extract_to_array_512(&tmp, 8, &data->m1[0])) {
446        goto err;
447    }
448
449    /* Precompute m2 */
450    BN_mod(&tmp, &two_640, &_m, ctx);
451    if (!bn_extract_to_array_512(&tmp, 8, &data->m2[0])) {
452        goto err;
453    }
454
455    /*
456     * Precompute k1, a 128b number = ((-1)* m-1 ) mod 2128; k1 should
457     * be non-negative.
458     */
459    BN_mod_inverse(&tmp, &_m, &two_128, ctx);
460    if (!BN_is_zero(&tmp)) {
461        BN_sub(&tmp, &two_128, &tmp);
462    }
463    if (!bn_extract_to_array_512(&tmp, 2, &data->k1[0])) {
464        goto err;
465    }
466
467    /* Precompute t */
468    for (i = 0; i < 8; i++) {
469        BN_zero(&tmp);
470        if (i & 1) {
471            BN_add(&tmp, &two_512, &tmp);
472        }
473        if (i & 2) {
474            BN_add(&tmp, &two_512, &tmp);
475        }
476        if (i & 4) {
477            BN_add(&tmp, &two_640, &tmp);
478        }
479
480        BN_nnmod(&tmp2, &tmp, &_m, ctx);
481        if (!bn_extract_to_array_512(&tmp2, 8, _t)) {
482            goto err;
483        }
484        for (j = 0; j < 8; j++)
485            data->t[j][i] = _t[j];
486    }
487
488    /* Precompute m */
489    for (i = 0; i < 8; i++) {
490        data->m[i] = m[i];
491    }
492
493    ret = 1;
494
495 err:
496    /* Cleanup */
497    if (ctx != NULL) {
498        BN_CTX_end(ctx);
499        BN_CTX_free(ctx);
500    }
501    BN_free(&two_768);
502    BN_free(&two_640);
503    BN_free(&two_128);
504    BN_free(&two_512);
505    BN_free(&tmp);
506    BN_free(&tmp2);
507    BN_free(&_m);
508
509    return ret;
510}
511
512static int e_rsax_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa,
513                              BN_CTX *ctx)
514{
515    BIGNUM *r1, *m1, *vrfy;
516    BIGNUM local_dmp1, local_dmq1, local_c, local_r1;
517    BIGNUM *dmp1, *dmq1, *c, *pr1;
518    int ret = 0;
519
520    BN_CTX_start(ctx);
521    r1 = BN_CTX_get(ctx);
522    m1 = BN_CTX_get(ctx);
523    vrfy = BN_CTX_get(ctx);
524
525    {
526        BIGNUM local_p, local_q;
527        BIGNUM *p = NULL, *q = NULL;
528        int error = 0;
529
530        /*
531         * Make sure BN_mod_inverse in Montgomery intialization uses the
532         * BN_FLG_CONSTTIME flag (unless RSA_FLAG_NO_CONSTTIME is set)
533         */
534        if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
535            BN_init(&local_p);
536            p = &local_p;
537            BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
538
539            BN_init(&local_q);
540            q = &local_q;
541            BN_with_flags(q, rsa->q, BN_FLG_CONSTTIME);
542        } else {
543            p = rsa->p;
544            q = rsa->q;
545        }
546
547        if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) {
548            if (!BN_MONT_CTX_set_locked
549                (&rsa->_method_mod_p, CRYPTO_LOCK_RSA, p, ctx))
550                error = 1;
551            if (!BN_MONT_CTX_set_locked
552                (&rsa->_method_mod_q, CRYPTO_LOCK_RSA, q, ctx))
553                error = 1;
554        }
555
556        /* clean up */
557        if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
558            BN_free(&local_p);
559            BN_free(&local_q);
560        }
561        if (error)
562            goto err;
563    }
564
565    if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
566        if (!BN_MONT_CTX_set_locked
567            (&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx))
568            goto err;
569
570    /* compute I mod q */
571    if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
572        c = &local_c;
573        BN_with_flags(c, I, BN_FLG_CONSTTIME);
574        if (!BN_mod(r1, c, rsa->q, ctx))
575            goto err;
576    } else {
577        if (!BN_mod(r1, I, rsa->q, ctx))
578            goto err;
579    }
580
581    /* compute r1^dmq1 mod q */
582    if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
583        dmq1 = &local_dmq1;
584        BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME);
585    } else
586        dmq1 = rsa->dmq1;
587
588    if (!e_rsax_bn_mod_exp(m1, r1, dmq1, rsa->q, ctx,
589                           rsa->_method_mod_q, e_rsax_get_ctx(rsa, 0,
590                                                              rsa->q)))
591        goto err;
592
593    /* compute I mod p */
594    if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
595        c = &local_c;
596        BN_with_flags(c, I, BN_FLG_CONSTTIME);
597        if (!BN_mod(r1, c, rsa->p, ctx))
598            goto err;
599    } else {
600        if (!BN_mod(r1, I, rsa->p, ctx))
601            goto err;
602    }
603
604    /* compute r1^dmp1 mod p */
605    if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
606        dmp1 = &local_dmp1;
607        BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME);
608    } else
609        dmp1 = rsa->dmp1;
610
611    if (!e_rsax_bn_mod_exp(r0, r1, dmp1, rsa->p, ctx,
612                           rsa->_method_mod_p, e_rsax_get_ctx(rsa, 1,
613                                                              rsa->p)))
614        goto err;
615
616    if (!BN_sub(r0, r0, m1))
617        goto err;
618    /*
619     * This will help stop the size of r0 increasing, which does affect the
620     * multiply if it optimised for a power of 2 size
621     */
622    if (BN_is_negative(r0))
623        if (!BN_add(r0, r0, rsa->p))
624            goto err;
625
626    if (!BN_mul(r1, r0, rsa->iqmp, ctx))
627        goto err;
628
629    /* Turn BN_FLG_CONSTTIME flag on before division operation */
630    if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
631        pr1 = &local_r1;
632        BN_with_flags(pr1, r1, BN_FLG_CONSTTIME);
633    } else
634        pr1 = r1;
635    if (!BN_mod(r0, pr1, rsa->p, ctx))
636        goto err;
637
638    /*
639     * If p < q it is occasionally possible for the correction of adding 'p'
640     * if r0 is negative above to leave the result still negative. This can
641     * break the private key operations: the following second correction
642     * should *always* correct this rare occurrence. This will *never* happen
643     * with OpenSSL generated keys because they ensure p > q [steve]
644     */
645    if (BN_is_negative(r0))
646        if (!BN_add(r0, r0, rsa->p))
647            goto err;
648    if (!BN_mul(r1, r0, rsa->q, ctx))
649        goto err;
650    if (!BN_add(r0, r1, m1))
651        goto err;
652
653    if (rsa->e && rsa->n) {
654        if (!e_rsax_bn_mod_exp
655            (vrfy, r0, rsa->e, rsa->n, ctx, rsa->_method_mod_n,
656             e_rsax_get_ctx(rsa, 2, rsa->n)))
657            goto err;
658
659        /*
660         * If 'I' was greater than (or equal to) rsa->n, the operation will
661         * be equivalent to using 'I mod n'. However, the result of the
662         * verify will *always* be less than 'n' so we don't check for
663         * absolute equality, just congruency.
664         */
665        if (!BN_sub(vrfy, vrfy, I))
666            goto err;
667        if (!BN_mod(vrfy, vrfy, rsa->n, ctx))
668            goto err;
669        if (BN_is_negative(vrfy))
670            if (!BN_add(vrfy, vrfy, rsa->n))
671                goto err;
672        if (!BN_is_zero(vrfy)) {
673            /*
674             * 'I' and 'vrfy' aren't congruent mod n. Don't leak
675             * miscalculated CRT output, just do a raw (slower) mod_exp and
676             * return that instead.
677             */
678
679            BIGNUM local_d;
680            BIGNUM *d = NULL;
681
682            if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
683                d = &local_d;
684                BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
685            } else
686                d = rsa->d;
687            if (!e_rsax_bn_mod_exp(r0, I, d, rsa->n, ctx,
688                                   rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2,
689                                                                      rsa->n)))
690                goto err;
691        }
692    }
693    ret = 1;
694
695 err:
696    BN_CTX_end(ctx);
697
698    return ret;
699}
700# endif                         /* !OPENSSL_NO_RSA */
701#endif                          /* !COMPILE_RSAX */
702