bn_gf2m.c revision 284295
1/* crypto/bn/bn_gf2m.c */
2/* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 *  1) for code that a licensee deletes from the ECC Code;
19 *  2) separates from the ECC Code; or
20 *  3) for infringements caused by:
21 *       i) the modification of the ECC Code or
22 *      ii) the combination of the ECC Code with other software or
23 *          devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30/* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply!  In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */
36
37/* ====================================================================
38 * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 *
47 * 2. Redistributions in binary form must reproduce the above copyright
48 *    notice, this list of conditions and the following disclaimer in
49 *    the documentation and/or other materials provided with the
50 *    distribution.
51 *
52 * 3. All advertising materials mentioning features or use of this
53 *    software must display the following acknowledgment:
54 *    "This product includes software developed by the OpenSSL Project
55 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56 *
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 *    endorse or promote products derived from this software without
59 *    prior written permission. For written permission, please contact
60 *    openssl-core@openssl.org.
61 *
62 * 5. Products derived from this software may not be called "OpenSSL"
63 *    nor may "OpenSSL" appear in their names without prior written
64 *    permission of the OpenSSL Project.
65 *
66 * 6. Redistributions of any form whatsoever must retain the following
67 *    acknowledgment:
68 *    "This product includes software developed by the OpenSSL Project
69 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ====================================================================
84 *
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com).  This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
88 *
89 */
90
91#include <assert.h>
92#include <limits.h>
93#include <stdio.h>
94#include "cryptlib.h"
95#include "bn_lcl.h"
96
97#ifndef OPENSSL_NO_EC2M
98
99/* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
100#define MAX_ITERATIONS 50
101
102static const BN_ULONG SQR_tb[16] =
103  {     0,     1,     4,     5,    16,    17,    20,    21,
104       64,    65,    68,    69,    80,    81,    84,    85 };
105/* Platform-specific macros to accelerate squaring. */
106#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
107#define SQR1(w) \
108    SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
109    SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
110    SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
111    SQR_tb[(w) >> 36 & 0xF] <<  8 | SQR_tb[(w) >> 32 & 0xF]
112#define SQR0(w) \
113    SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
114    SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
115    SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
116    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
117#endif
118#ifdef THIRTY_TWO_BIT
119#define SQR1(w) \
120    SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
121    SQR_tb[(w) >> 20 & 0xF] <<  8 | SQR_tb[(w) >> 16 & 0xF]
122#define SQR0(w) \
123    SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
124    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
125#endif
126
127#if !defined(OPENSSL_BN_ASM_GF2m)
128/* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
129 * result is a polynomial r with degree < 2 * BN_BITS - 1
130 * The caller MUST ensure that the variables have the right amount
131 * of space allocated.
132 */
133#ifdef THIRTY_TWO_BIT
134static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
135	{
136	register BN_ULONG h, l, s;
137	BN_ULONG tab[8], top2b = a >> 30;
138	register BN_ULONG a1, a2, a4;
139
140	a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
141
142	tab[0] =  0; tab[1] = a1;    tab[2] = a2;    tab[3] = a1^a2;
143	tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
144
145	s = tab[b       & 0x7]; l  = s;
146	s = tab[b >>  3 & 0x7]; l ^= s <<  3; h  = s >> 29;
147	s = tab[b >>  6 & 0x7]; l ^= s <<  6; h ^= s >> 26;
148	s = tab[b >>  9 & 0x7]; l ^= s <<  9; h ^= s >> 23;
149	s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
150	s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
151	s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
152	s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
153	s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >>  8;
154	s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >>  5;
155	s = tab[b >> 30      ]; l ^= s << 30; h ^= s >>  2;
156
157	/* compensate for the top two bits of a */
158
159	if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
160	if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
161
162	*r1 = h; *r0 = l;
163	}
164#endif
165#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
166static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
167	{
168	register BN_ULONG h, l, s;
169	BN_ULONG tab[16], top3b = a >> 61;
170	register BN_ULONG a1, a2, a4, a8;
171
172	a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
173
174	tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
175	tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
176	tab[ 8] = a8;    tab[ 9] = a1^a8;    tab[10] = a2^a8;    tab[11] = a1^a2^a8;
177	tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
178
179	s = tab[b       & 0xF]; l  = s;
180	s = tab[b >>  4 & 0xF]; l ^= s <<  4; h  = s >> 60;
181	s = tab[b >>  8 & 0xF]; l ^= s <<  8; h ^= s >> 56;
182	s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
183	s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
184	s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
185	s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
186	s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
187	s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
188	s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
189	s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
190	s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
191	s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
192	s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
193	s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >>  8;
194	s = tab[b >> 60      ]; l ^= s << 60; h ^= s >>  4;
195
196	/* compensate for the top three bits of a */
197
198	if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
199	if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
200	if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
201
202	*r1 = h; *r0 = l;
203	}
204#endif
205
206/* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
207 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
208 * The caller MUST ensure that the variables have the right amount
209 * of space allocated.
210 */
211static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
212	{
213	BN_ULONG m1, m0;
214	/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
215	bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
216	bn_GF2m_mul_1x1(r+1, r, a0, b0);
217	bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
218	/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
219	r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */
220	r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */
221	}
222#else
223void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0);
224#endif
225
226/* Add polynomials a and b and store result in r; r could be a or b, a and b
227 * could be equal; r is the bitwise XOR of a and b.
228 */
229int	BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
230	{
231	int i;
232	const BIGNUM *at, *bt;
233
234	bn_check_top(a);
235	bn_check_top(b);
236
237	if (a->top < b->top) { at = b; bt = a; }
238	else { at = a; bt = b; }
239
240	if(bn_wexpand(r, at->top) == NULL)
241		return 0;
242
243	for (i = 0; i < bt->top; i++)
244		{
245		r->d[i] = at->d[i] ^ bt->d[i];
246		}
247	for (; i < at->top; i++)
248		{
249		r->d[i] = at->d[i];
250		}
251
252	r->top = at->top;
253	bn_correct_top(r);
254
255	return 1;
256	}
257
258
259/* Some functions allow for representation of the irreducible polynomials
260 * as an int[], say p.  The irreducible f(t) is then of the form:
261 *     t^p[0] + t^p[1] + ... + t^p[k]
262 * where m = p[0] > p[1] > ... > p[k] = 0.
263 */
264
265
266/* Performs modular reduction of a and store result in r.  r could be a. */
267int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
268	{
269	int j, k;
270	int n, dN, d0, d1;
271	BN_ULONG zz, *z;
272
273	bn_check_top(a);
274
275	if (!p[0])
276		{
277		/* reduction mod 1 => return 0 */
278		BN_zero(r);
279		return 1;
280		}
281
282	/* Since the algorithm does reduction in the r value, if a != r, copy
283	 * the contents of a into r so we can do reduction in r.
284	 */
285	if (a != r)
286		{
287		if (!bn_wexpand(r, a->top)) return 0;
288		for (j = 0; j < a->top; j++)
289			{
290			r->d[j] = a->d[j];
291			}
292		r->top = a->top;
293		}
294	z = r->d;
295
296	/* start reduction */
297	dN = p[0] / BN_BITS2;
298	for (j = r->top - 1; j > dN;)
299		{
300		zz = z[j];
301		if (z[j] == 0) { j--; continue; }
302		z[j] = 0;
303
304		for (k = 1; p[k] != 0; k++)
305			{
306			/* reducing component t^p[k] */
307			n = p[0] - p[k];
308			d0 = n % BN_BITS2;  d1 = BN_BITS2 - d0;
309			n /= BN_BITS2;
310			z[j-n] ^= (zz>>d0);
311			if (d0) z[j-n-1] ^= (zz<<d1);
312			}
313
314		/* reducing component t^0 */
315		n = dN;
316		d0 = p[0] % BN_BITS2;
317		d1 = BN_BITS2 - d0;
318		z[j-n] ^= (zz >> d0);
319		if (d0) z[j-n-1] ^= (zz << d1);
320		}
321
322	/* final round of reduction */
323	while (j == dN)
324		{
325
326		d0 = p[0] % BN_BITS2;
327		zz = z[dN] >> d0;
328		if (zz == 0) break;
329		d1 = BN_BITS2 - d0;
330
331		/* clear up the top d1 bits */
332		if (d0)
333			z[dN] = (z[dN] << d1) >> d1;
334		else
335			z[dN] = 0;
336		z[0] ^= zz; /* reduction t^0 component */
337
338		for (k = 1; p[k] != 0; k++)
339			{
340			BN_ULONG tmp_ulong;
341
342			/* reducing component t^p[k]*/
343			n = p[k] / BN_BITS2;
344			d0 = p[k] % BN_BITS2;
345			d1 = BN_BITS2 - d0;
346			z[n] ^= (zz << d0);
347			tmp_ulong = zz >> d1;
348                        if (d0 && tmp_ulong)
349                                z[n+1] ^= tmp_ulong;
350			}
351
352
353		}
354
355	bn_correct_top(r);
356	return 1;
357	}
358
359/* Performs modular reduction of a by p and store result in r.  r could be a.
360 *
361 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
362 * function is only provided for convenience; for best performance, use the
363 * BN_GF2m_mod_arr function.
364 */
365int	BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
366	{
367	int ret = 0;
368	int arr[6];
369	bn_check_top(a);
370	bn_check_top(p);
371	ret = BN_GF2m_poly2arr(p, arr, sizeof(arr)/sizeof(arr[0]));
372	if (!ret || ret > (int)(sizeof(arr)/sizeof(arr[0])))
373		{
374		BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
375		return 0;
376		}
377	ret = BN_GF2m_mod_arr(r, a, arr);
378	bn_check_top(r);
379	return ret;
380	}
381
382
383/* Compute the product of two polynomials a and b, reduce modulo p, and store
384 * the result in r.  r could be a or b; a could be b.
385 */
386int	BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
387	{
388	int zlen, i, j, k, ret = 0;
389	BIGNUM *s;
390	BN_ULONG x1, x0, y1, y0, zz[4];
391
392	bn_check_top(a);
393	bn_check_top(b);
394
395	if (a == b)
396		{
397		return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
398		}
399
400	BN_CTX_start(ctx);
401	if ((s = BN_CTX_get(ctx)) == NULL) goto err;
402
403	zlen = a->top + b->top + 4;
404	if (!bn_wexpand(s, zlen)) goto err;
405	s->top = zlen;
406
407	for (i = 0; i < zlen; i++) s->d[i] = 0;
408
409	for (j = 0; j < b->top; j += 2)
410		{
411		y0 = b->d[j];
412		y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
413		for (i = 0; i < a->top; i += 2)
414			{
415			x0 = a->d[i];
416			x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
417			bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
418			for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
419			}
420		}
421
422	bn_correct_top(s);
423	if (BN_GF2m_mod_arr(r, s, p))
424		ret = 1;
425	bn_check_top(r);
426
427err:
428	BN_CTX_end(ctx);
429	return ret;
430	}
431
432/* Compute the product of two polynomials a and b, reduce modulo p, and store
433 * the result in r.  r could be a or b; a could equal b.
434 *
435 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
436 * function is only provided for convenience; for best performance, use the
437 * BN_GF2m_mod_mul_arr function.
438 */
439int	BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
440	{
441	int ret = 0;
442	const int max = BN_num_bits(p) + 1;
443	int *arr=NULL;
444	bn_check_top(a);
445	bn_check_top(b);
446	bn_check_top(p);
447	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
448	ret = BN_GF2m_poly2arr(p, arr, max);
449	if (!ret || ret > max)
450		{
451		BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
452		goto err;
453		}
454	ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
455	bn_check_top(r);
456err:
457	if (arr) OPENSSL_free(arr);
458	return ret;
459	}
460
461
462/* Square a, reduce the result mod p, and store it in a.  r could be a. */
463int	BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
464	{
465	int i, ret = 0;
466	BIGNUM *s;
467
468	bn_check_top(a);
469	BN_CTX_start(ctx);
470	if ((s = BN_CTX_get(ctx)) == NULL) return 0;
471	if (!bn_wexpand(s, 2 * a->top)) goto err;
472
473	for (i = a->top - 1; i >= 0; i--)
474		{
475		s->d[2*i+1] = SQR1(a->d[i]);
476		s->d[2*i  ] = SQR0(a->d[i]);
477		}
478
479	s->top = 2 * a->top;
480	bn_correct_top(s);
481	if (!BN_GF2m_mod_arr(r, s, p)) goto err;
482	bn_check_top(r);
483	ret = 1;
484err:
485	BN_CTX_end(ctx);
486	return ret;
487	}
488
489/* Square a, reduce the result mod p, and store it in a.  r could be a.
490 *
491 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
492 * function is only provided for convenience; for best performance, use the
493 * BN_GF2m_mod_sqr_arr function.
494 */
495int	BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
496	{
497	int ret = 0;
498	const int max = BN_num_bits(p) + 1;
499	int *arr=NULL;
500
501	bn_check_top(a);
502	bn_check_top(p);
503	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
504	ret = BN_GF2m_poly2arr(p, arr, max);
505	if (!ret || ret > max)
506		{
507		BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
508		goto err;
509		}
510	ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
511	bn_check_top(r);
512err:
513	if (arr) OPENSSL_free(arr);
514	return ret;
515	}
516
517
518/* Invert a, reduce modulo p, and store the result in r. r could be a.
519 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
520 *     Hankerson, D., Hernandez, J.L., and Menezes, A.  "Software Implementation
521 *     of Elliptic Curve Cryptography Over Binary Fields".
522 */
523int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
524	{
525	BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
526	int ret = 0;
527
528	bn_check_top(a);
529	bn_check_top(p);
530
531	BN_CTX_start(ctx);
532
533	if ((b = BN_CTX_get(ctx))==NULL) goto err;
534	if ((c = BN_CTX_get(ctx))==NULL) goto err;
535	if ((u = BN_CTX_get(ctx))==NULL) goto err;
536	if ((v = BN_CTX_get(ctx))==NULL) goto err;
537
538	if (!BN_GF2m_mod(u, a, p)) goto err;
539	if (BN_is_zero(u)) goto err;
540
541	if (!BN_copy(v, p)) goto err;
542#if 0
543	if (!BN_one(b)) goto err;
544
545	while (1)
546		{
547		while (!BN_is_odd(u))
548			{
549			if (BN_is_zero(u)) goto err;
550			if (!BN_rshift1(u, u)) goto err;
551			if (BN_is_odd(b))
552				{
553				if (!BN_GF2m_add(b, b, p)) goto err;
554				}
555			if (!BN_rshift1(b, b)) goto err;
556			}
557
558		if (BN_abs_is_word(u, 1)) break;
559
560		if (BN_num_bits(u) < BN_num_bits(v))
561			{
562			tmp = u; u = v; v = tmp;
563			tmp = b; b = c; c = tmp;
564			}
565
566		if (!BN_GF2m_add(u, u, v)) goto err;
567		if (!BN_GF2m_add(b, b, c)) goto err;
568		}
569#else
570	{
571        int i;
572        int ubits = BN_num_bits(u);
573        int vbits = BN_num_bits(v); /* v is copy of p */
574        int top = p->top;
575        BN_ULONG *udp, *bdp, *vdp, *cdp;
576
577	bn_wexpand(u,top);	udp = u->d;
578				for (i=u->top;i<top;i++) udp[i] = 0;
579				u->top = top;
580	bn_wexpand(b,top);	bdp = b->d;
581				bdp[0] = 1;
582				for (i=1;i<top;i++) bdp[i] = 0;
583				b->top = top;
584	bn_wexpand(c,top);	cdp = c->d;
585				for (i=0;i<top;i++) cdp[i] = 0;
586				c->top = top;
587	vdp = v->d;	/* It pays off to "cache" *->d pointers, because
588			 * it allows optimizer to be more aggressive.
589			 * But we don't have to "cache" p->d, because *p
590			 * is declared 'const'... */
591	while (1)
592		{
593		while (ubits && !(udp[0]&1))
594			{
595			BN_ULONG u0,u1,b0,b1,mask;
596
597			u0   = udp[0];
598			b0   = bdp[0];
599			mask = (BN_ULONG)0-(b0&1);
600			b0  ^= p->d[0]&mask;
601			for (i=0;i<top-1;i++)
602				{
603				u1 = udp[i+1];
604				udp[i] = ((u0>>1)|(u1<<(BN_BITS2-1)))&BN_MASK2;
605				u0 = u1;
606				b1 = bdp[i+1]^(p->d[i+1]&mask);
607				bdp[i] = ((b0>>1)|(b1<<(BN_BITS2-1)))&BN_MASK2;
608				b0 = b1;
609				}
610			udp[i] = u0>>1;
611			bdp[i] = b0>>1;
612			ubits--;
613			}
614
615            if (ubits <= BN_BITS2) {
616                if (udp[0] == 0) /* poly was reducible */
617                    goto err;
618                if (udp[0] == 1)
619                    break;
620            }
621
622		if (ubits<vbits)
623			{
624			i = ubits; ubits = vbits; vbits = i;
625			tmp = u; u = v; v = tmp;
626			tmp = b; b = c; c = tmp;
627			udp = vdp; vdp = v->d;
628			bdp = cdp; cdp = c->d;
629			}
630		for(i=0;i<top;i++)
631			{
632			udp[i] ^= vdp[i];
633			bdp[i] ^= cdp[i];
634			}
635		if (ubits==vbits)
636			{
637			BN_ULONG ul;
638			int utop = (ubits-1)/BN_BITS2;
639
640			while ((ul=udp[utop])==0 && utop) utop--;
641			ubits = utop*BN_BITS2 + BN_num_bits_word(ul);
642			}
643		}
644	bn_correct_top(b);
645	}
646#endif
647
648	if (!BN_copy(r, b)) goto err;
649	bn_check_top(r);
650	ret = 1;
651
652err:
653#ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */
654        bn_correct_top(c);
655        bn_correct_top(u);
656        bn_correct_top(v);
657#endif
658  	BN_CTX_end(ctx);
659	return ret;
660	}
661
662/* Invert xx, reduce modulo p, and store the result in r. r could be xx.
663 *
664 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
665 * function is only provided for convenience; for best performance, use the
666 * BN_GF2m_mod_inv function.
667 */
668int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
669	{
670	BIGNUM *field;
671	int ret = 0;
672
673	bn_check_top(xx);
674	BN_CTX_start(ctx);
675	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
676	if (!BN_GF2m_arr2poly(p, field)) goto err;
677
678	ret = BN_GF2m_mod_inv(r, xx, field, ctx);
679	bn_check_top(r);
680
681err:
682	BN_CTX_end(ctx);
683	return ret;
684	}
685
686
687#ifndef OPENSSL_SUN_GF2M_DIV
688/* Divide y by x, reduce modulo p, and store the result in r. r could be x
689 * or y, x could equal y.
690 */
691int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
692	{
693	BIGNUM *xinv = NULL;
694	int ret = 0;
695
696	bn_check_top(y);
697	bn_check_top(x);
698	bn_check_top(p);
699
700	BN_CTX_start(ctx);
701	xinv = BN_CTX_get(ctx);
702	if (xinv == NULL) goto err;
703
704	if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
705	if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
706	bn_check_top(r);
707	ret = 1;
708
709err:
710	BN_CTX_end(ctx);
711	return ret;
712	}
713#else
714/* Divide y by x, reduce modulo p, and store the result in r. r could be x
715 * or y, x could equal y.
716 * Uses algorithm Modular_Division_GF(2^m) from
717 *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to
718 *     the Great Divide".
719 */
720int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
721	{
722	BIGNUM *a, *b, *u, *v;
723	int ret = 0;
724
725	bn_check_top(y);
726	bn_check_top(x);
727	bn_check_top(p);
728
729	BN_CTX_start(ctx);
730
731	a = BN_CTX_get(ctx);
732	b = BN_CTX_get(ctx);
733	u = BN_CTX_get(ctx);
734	v = BN_CTX_get(ctx);
735	if (v == NULL) goto err;
736
737	/* reduce x and y mod p */
738	if (!BN_GF2m_mod(u, y, p)) goto err;
739	if (!BN_GF2m_mod(a, x, p)) goto err;
740	if (!BN_copy(b, p)) goto err;
741
742	while (!BN_is_odd(a))
743		{
744		if (!BN_rshift1(a, a)) goto err;
745		if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
746		if (!BN_rshift1(u, u)) goto err;
747		}
748
749	do
750		{
751		if (BN_GF2m_cmp(b, a) > 0)
752			{
753			if (!BN_GF2m_add(b, b, a)) goto err;
754			if (!BN_GF2m_add(v, v, u)) goto err;
755			do
756				{
757				if (!BN_rshift1(b, b)) goto err;
758				if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
759				if (!BN_rshift1(v, v)) goto err;
760				} while (!BN_is_odd(b));
761			}
762		else if (BN_abs_is_word(a, 1))
763			break;
764		else
765			{
766			if (!BN_GF2m_add(a, a, b)) goto err;
767			if (!BN_GF2m_add(u, u, v)) goto err;
768			do
769				{
770				if (!BN_rshift1(a, a)) goto err;
771				if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
772				if (!BN_rshift1(u, u)) goto err;
773				} while (!BN_is_odd(a));
774			}
775		} while (1);
776
777	if (!BN_copy(r, u)) goto err;
778	bn_check_top(r);
779	ret = 1;
780
781err:
782  	BN_CTX_end(ctx);
783	return ret;
784	}
785#endif
786
787/* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
788 * or yy, xx could equal yy.
789 *
790 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
791 * function is only provided for convenience; for best performance, use the
792 * BN_GF2m_mod_div function.
793 */
794int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx)
795	{
796	BIGNUM *field;
797	int ret = 0;
798
799	bn_check_top(yy);
800	bn_check_top(xx);
801
802	BN_CTX_start(ctx);
803	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
804	if (!BN_GF2m_arr2poly(p, field)) goto err;
805
806	ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
807	bn_check_top(r);
808
809err:
810	BN_CTX_end(ctx);
811	return ret;
812	}
813
814
815/* Compute the bth power of a, reduce modulo p, and store
816 * the result in r.  r could be a.
817 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
818 */
819int	BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
820	{
821	int ret = 0, i, n;
822	BIGNUM *u;
823
824	bn_check_top(a);
825	bn_check_top(b);
826
827	if (BN_is_zero(b))
828		return(BN_one(r));
829
830	if (BN_abs_is_word(b, 1))
831		return (BN_copy(r, a) != NULL);
832
833	BN_CTX_start(ctx);
834	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
835
836	if (!BN_GF2m_mod_arr(u, a, p)) goto err;
837
838	n = BN_num_bits(b) - 1;
839	for (i = n - 1; i >= 0; i--)
840		{
841		if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
842		if (BN_is_bit_set(b, i))
843			{
844			if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
845			}
846		}
847	if (!BN_copy(r, u)) goto err;
848	bn_check_top(r);
849	ret = 1;
850err:
851	BN_CTX_end(ctx);
852	return ret;
853	}
854
855/* Compute the bth power of a, reduce modulo p, and store
856 * the result in r.  r could be a.
857 *
858 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
859 * function is only provided for convenience; for best performance, use the
860 * BN_GF2m_mod_exp_arr function.
861 */
862int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
863	{
864	int ret = 0;
865	const int max = BN_num_bits(p) + 1;
866	int *arr=NULL;
867	bn_check_top(a);
868	bn_check_top(b);
869	bn_check_top(p);
870	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
871	ret = BN_GF2m_poly2arr(p, arr, max);
872	if (!ret || ret > max)
873		{
874		BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
875		goto err;
876		}
877	ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
878	bn_check_top(r);
879err:
880	if (arr) OPENSSL_free(arr);
881	return ret;
882	}
883
884/* Compute the square root of a, reduce modulo p, and store
885 * the result in r.  r could be a.
886 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
887 */
888int	BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
889	{
890	int ret = 0;
891	BIGNUM *u;
892
893	bn_check_top(a);
894
895	if (!p[0])
896		{
897		/* reduction mod 1 => return 0 */
898		BN_zero(r);
899		return 1;
900		}
901
902	BN_CTX_start(ctx);
903	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
904
905	if (!BN_set_bit(u, p[0] - 1)) goto err;
906	ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
907	bn_check_top(r);
908
909err:
910	BN_CTX_end(ctx);
911	return ret;
912	}
913
914/* Compute the square root of a, reduce modulo p, and store
915 * the result in r.  r could be a.
916 *
917 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
918 * function is only provided for convenience; for best performance, use the
919 * BN_GF2m_mod_sqrt_arr function.
920 */
921int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
922	{
923	int ret = 0;
924	const int max = BN_num_bits(p) + 1;
925	int *arr=NULL;
926	bn_check_top(a);
927	bn_check_top(p);
928	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
929	ret = BN_GF2m_poly2arr(p, arr, max);
930	if (!ret || ret > max)
931		{
932		BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
933		goto err;
934		}
935	ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
936	bn_check_top(r);
937err:
938	if (arr) OPENSSL_free(arr);
939	return ret;
940	}
941
942/* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
943 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
944 */
945int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx)
946	{
947	int ret = 0, count = 0, j;
948	BIGNUM *a, *z, *rho, *w, *w2, *tmp;
949
950	bn_check_top(a_);
951
952	if (!p[0])
953		{
954		/* reduction mod 1 => return 0 */
955		BN_zero(r);
956		return 1;
957		}
958
959	BN_CTX_start(ctx);
960	a = BN_CTX_get(ctx);
961	z = BN_CTX_get(ctx);
962	w = BN_CTX_get(ctx);
963	if (w == NULL) goto err;
964
965	if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
966
967	if (BN_is_zero(a))
968		{
969		BN_zero(r);
970		ret = 1;
971		goto err;
972		}
973
974	if (p[0] & 0x1) /* m is odd */
975		{
976		/* compute half-trace of a */
977		if (!BN_copy(z, a)) goto err;
978		for (j = 1; j <= (p[0] - 1) / 2; j++)
979			{
980			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
981			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
982			if (!BN_GF2m_add(z, z, a)) goto err;
983			}
984
985		}
986	else /* m is even */
987		{
988		rho = BN_CTX_get(ctx);
989		w2 = BN_CTX_get(ctx);
990		tmp = BN_CTX_get(ctx);
991		if (tmp == NULL) goto err;
992		do
993			{
994			if (!BN_rand(rho, p[0], 0, 0)) goto err;
995			if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
996			BN_zero(z);
997			if (!BN_copy(w, rho)) goto err;
998			for (j = 1; j <= p[0] - 1; j++)
999				{
1000				if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
1001				if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
1002				if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
1003				if (!BN_GF2m_add(z, z, tmp)) goto err;
1004				if (!BN_GF2m_add(w, w2, rho)) goto err;
1005				}
1006			count++;
1007			} while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1008		if (BN_is_zero(w))
1009			{
1010			BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
1011			goto err;
1012			}
1013		}
1014
1015	if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
1016	if (!BN_GF2m_add(w, z, w)) goto err;
1017	if (BN_GF2m_cmp(w, a))
1018		{
1019		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1020		goto err;
1021		}
1022
1023	if (!BN_copy(r, z)) goto err;
1024	bn_check_top(r);
1025
1026	ret = 1;
1027
1028err:
1029	BN_CTX_end(ctx);
1030	return ret;
1031	}
1032
1033/* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
1034 *
1035 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
1036 * function is only provided for convenience; for best performance, use the
1037 * BN_GF2m_mod_solve_quad_arr function.
1038 */
1039int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1040	{
1041	int ret = 0;
1042	const int max = BN_num_bits(p) + 1;
1043	int *arr=NULL;
1044	bn_check_top(a);
1045	bn_check_top(p);
1046	if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
1047						max)) == NULL) goto err;
1048	ret = BN_GF2m_poly2arr(p, arr, max);
1049	if (!ret || ret > max)
1050		{
1051		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
1052		goto err;
1053		}
1054	ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1055	bn_check_top(r);
1056err:
1057	if (arr) OPENSSL_free(arr);
1058	return ret;
1059	}
1060
1061/* Convert the bit-string representation of a polynomial
1062 * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
1063 * to the bits with non-zero coefficient.  Array is terminated with -1.
1064 * Up to max elements of the array will be filled.  Return value is total
1065 * number of array elements that would be filled if array was large enough.
1066 */
1067int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1068	{
1069	int i, j, k = 0;
1070	BN_ULONG mask;
1071
1072	if (BN_is_zero(a))
1073		return 0;
1074
1075	for (i = a->top - 1; i >= 0; i--)
1076		{
1077		if (!a->d[i])
1078			/* skip word if a->d[i] == 0 */
1079			continue;
1080		mask = BN_TBIT;
1081		for (j = BN_BITS2 - 1; j >= 0; j--)
1082			{
1083			if (a->d[i] & mask)
1084				{
1085				if (k < max) p[k] = BN_BITS2 * i + j;
1086				k++;
1087				}
1088			mask >>= 1;
1089			}
1090		}
1091
1092	if (k < max) {
1093		p[k] = -1;
1094		k++;
1095	}
1096
1097	return k;
1098	}
1099
1100/* Convert the coefficient array representation of a polynomial to a
1101 * bit-string.  The array must be terminated by -1.
1102 */
1103int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1104	{
1105	int i;
1106
1107	bn_check_top(a);
1108	BN_zero(a);
1109	for (i = 0; p[i] != -1; i++)
1110		{
1111		if (BN_set_bit(a, p[i]) == 0)
1112			return 0;
1113		}
1114	bn_check_top(a);
1115
1116	return 1;
1117	}
1118
1119#endif
1120