ntp_control.c revision 310419
1/*
2 * ntp_control.c - respond to mode 6 control messages and send async
3 *		   traps.  Provides service to ntpq and others.
4 */
5
6#ifdef HAVE_CONFIG_H
7# include <config.h>
8#endif
9
10#include <stdio.h>
11#include <ctype.h>
12#include <signal.h>
13#include <sys/stat.h>
14#ifdef HAVE_NETINET_IN_H
15# include <netinet/in.h>
16#endif
17#include <arpa/inet.h>
18
19#include "ntpd.h"
20#include "ntp_io.h"
21#include "ntp_refclock.h"
22#include "ntp_control.h"
23#include "ntp_unixtime.h"
24#include "ntp_stdlib.h"
25#include "ntp_config.h"
26#include "ntp_crypto.h"
27#include "ntp_assert.h"
28#include "ntp_leapsec.h"
29#include "ntp_md5.h"	/* provides OpenSSL digest API */
30#include "lib_strbuf.h"
31#include <rc_cmdlength.h>
32#ifdef KERNEL_PLL
33# include "ntp_syscall.h"
34#endif
35
36#include "libssl_compat.h"
37
38/*
39 * Structure to hold request procedure information
40 */
41
42struct ctl_proc {
43	short control_code;		/* defined request code */
44#define NO_REQUEST	(-1)
45	u_short flags;			/* flags word */
46	/* Only one flag.  Authentication required or not. */
47#define NOAUTH	0
48#define AUTH	1
49	void (*handler) (struct recvbuf *, int); /* handle request */
50};
51
52
53/*
54 * Request processing routines
55 */
56static	void	ctl_error	(u_char);
57#ifdef REFCLOCK
58static	u_short ctlclkstatus	(struct refclockstat *);
59#endif
60static	void	ctl_flushpkt	(u_char);
61static	void	ctl_putdata	(const char *, unsigned int, int);
62static	void	ctl_putstr	(const char *, const char *, size_t);
63static	void	ctl_putdblf	(const char *, int, int, double);
64#define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
65#define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
66#define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
67					    FPTOD(sfp))
68static	void	ctl_putuint	(const char *, u_long);
69static	void	ctl_puthex	(const char *, u_long);
70static	void	ctl_putint	(const char *, long);
71static	void	ctl_putts	(const char *, l_fp *);
72static	void	ctl_putadr	(const char *, u_int32,
73				 sockaddr_u *);
74static	void	ctl_putrefid	(const char *, u_int32);
75static	void	ctl_putarray	(const char *, double *, int);
76static	void	ctl_putsys	(int);
77static	void	ctl_putpeer	(int, struct peer *);
78static	void	ctl_putfs	(const char *, tstamp_t);
79static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
80#ifdef REFCLOCK
81static	void	ctl_putclock	(int, struct refclockstat *, int);
82#endif	/* REFCLOCK */
83static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
84					  char **);
85static	u_short	count_var	(const struct ctl_var *);
86static	void	control_unspec	(struct recvbuf *, int);
87static	void	read_status	(struct recvbuf *, int);
88static	void	read_sysvars	(void);
89static	void	read_peervars	(void);
90static	void	read_variables	(struct recvbuf *, int);
91static	void	write_variables (struct recvbuf *, int);
92static	void	read_clockstatus(struct recvbuf *, int);
93static	void	write_clockstatus(struct recvbuf *, int);
94static	void	set_trap	(struct recvbuf *, int);
95static	void	save_config	(struct recvbuf *, int);
96static	void	configure	(struct recvbuf *, int);
97static	void	send_mru_entry	(mon_entry *, int);
98static	void	send_random_tag_value(int);
99static	void	read_mru_list	(struct recvbuf *, int);
100static	void	send_ifstats_entry(endpt *, u_int);
101static	void	read_ifstats	(struct recvbuf *);
102static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
103					  restrict_u *, int);
104static	void	send_restrict_entry(restrict_u *, int, u_int);
105static	void	send_restrict_list(restrict_u *, int, u_int *);
106static	void	read_addr_restrictions(struct recvbuf *);
107static	void	read_ordlist	(struct recvbuf *, int);
108static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
109static	void	generate_nonce	(struct recvbuf *, char *, size_t);
110static	int	validate_nonce	(const char *, struct recvbuf *);
111static	void	req_nonce	(struct recvbuf *, int);
112static	void	unset_trap	(struct recvbuf *, int);
113static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
114				     struct interface *);
115
116int/*BOOL*/ is_safe_filename(const char * name);
117
118static const struct ctl_proc control_codes[] = {
119	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
120	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
121	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
122	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
123	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
124	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
125	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
126	{ CTL_OP_CONFIGURE,		AUTH,	configure },
127	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
128	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
129	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
130	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
131	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
132	{ NO_REQUEST,			0,	NULL }
133};
134
135/*
136 * System variables we understand
137 */
138#define	CS_LEAP			1
139#define	CS_STRATUM		2
140#define	CS_PRECISION		3
141#define	CS_ROOTDELAY		4
142#define	CS_ROOTDISPERSION	5
143#define	CS_REFID		6
144#define	CS_REFTIME		7
145#define	CS_POLL			8
146#define	CS_PEERID		9
147#define	CS_OFFSET		10
148#define	CS_DRIFT		11
149#define	CS_JITTER		12
150#define	CS_ERROR		13
151#define	CS_CLOCK		14
152#define	CS_PROCESSOR		15
153#define	CS_SYSTEM		16
154#define	CS_VERSION		17
155#define	CS_STABIL		18
156#define	CS_VARLIST		19
157#define	CS_TAI			20
158#define	CS_LEAPTAB		21
159#define	CS_LEAPEND		22
160#define	CS_RATE			23
161#define	CS_MRU_ENABLED		24
162#define	CS_MRU_DEPTH		25
163#define	CS_MRU_DEEPEST		26
164#define	CS_MRU_MINDEPTH		27
165#define	CS_MRU_MAXAGE		28
166#define	CS_MRU_MAXDEPTH		29
167#define	CS_MRU_MEM		30
168#define	CS_MRU_MAXMEM		31
169#define	CS_SS_UPTIME		32
170#define	CS_SS_RESET		33
171#define	CS_SS_RECEIVED		34
172#define	CS_SS_THISVER		35
173#define	CS_SS_OLDVER		36
174#define	CS_SS_BADFORMAT		37
175#define	CS_SS_BADAUTH		38
176#define	CS_SS_DECLINED		39
177#define	CS_SS_RESTRICTED	40
178#define	CS_SS_LIMITED		41
179#define	CS_SS_KODSENT		42
180#define	CS_SS_PROCESSED		43
181#define	CS_PEERADR		44
182#define	CS_PEERMODE		45
183#define	CS_BCASTDELAY		46
184#define	CS_AUTHDELAY		47
185#define	CS_AUTHKEYS		48
186#define	CS_AUTHFREEK		49
187#define	CS_AUTHKLOOKUPS		50
188#define	CS_AUTHKNOTFOUND	51
189#define	CS_AUTHKUNCACHED	52
190#define	CS_AUTHKEXPIRED		53
191#define	CS_AUTHENCRYPTS		54
192#define	CS_AUTHDECRYPTS		55
193#define	CS_AUTHRESET		56
194#define	CS_K_OFFSET		57
195#define	CS_K_FREQ		58
196#define	CS_K_MAXERR		59
197#define	CS_K_ESTERR		60
198#define	CS_K_STFLAGS		61
199#define	CS_K_TIMECONST		62
200#define	CS_K_PRECISION		63
201#define	CS_K_FREQTOL		64
202#define	CS_K_PPS_FREQ		65
203#define	CS_K_PPS_STABIL		66
204#define	CS_K_PPS_JITTER		67
205#define	CS_K_PPS_CALIBDUR	68
206#define	CS_K_PPS_CALIBS		69
207#define	CS_K_PPS_CALIBERRS	70
208#define	CS_K_PPS_JITEXC		71
209#define	CS_K_PPS_STBEXC		72
210#define	CS_KERN_FIRST		CS_K_OFFSET
211#define	CS_KERN_LAST		CS_K_PPS_STBEXC
212#define	CS_IOSTATS_RESET	73
213#define	CS_TOTAL_RBUF		74
214#define	CS_FREE_RBUF		75
215#define	CS_USED_RBUF		76
216#define	CS_RBUF_LOWATER		77
217#define	CS_IO_DROPPED		78
218#define	CS_IO_IGNORED		79
219#define	CS_IO_RECEIVED		80
220#define	CS_IO_SENT		81
221#define	CS_IO_SENDFAILED	82
222#define	CS_IO_WAKEUPS		83
223#define	CS_IO_GOODWAKEUPS	84
224#define	CS_TIMERSTATS_RESET	85
225#define	CS_TIMER_OVERRUNS	86
226#define	CS_TIMER_XMTS		87
227#define	CS_FUZZ			88
228#define	CS_WANDER_THRESH	89
229#define	CS_LEAPSMEARINTV	90
230#define	CS_LEAPSMEAROFFS	91
231#define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
232#ifdef AUTOKEY
233#define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
234#define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
235#define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
236#define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
237#define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
238#define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
239#define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
240#define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
241#define	CS_MAXCODE		CS_DIGEST
242#else	/* !AUTOKEY follows */
243#define	CS_MAXCODE		CS_MAX_NOAUTOKEY
244#endif	/* !AUTOKEY */
245
246/*
247 * Peer variables we understand
248 */
249#define	CP_CONFIG		1
250#define	CP_AUTHENABLE		2
251#define	CP_AUTHENTIC		3
252#define	CP_SRCADR		4
253#define	CP_SRCPORT		5
254#define	CP_DSTADR		6
255#define	CP_DSTPORT		7
256#define	CP_LEAP			8
257#define	CP_HMODE		9
258#define	CP_STRATUM		10
259#define	CP_PPOLL		11
260#define	CP_HPOLL		12
261#define	CP_PRECISION		13
262#define	CP_ROOTDELAY		14
263#define	CP_ROOTDISPERSION	15
264#define	CP_REFID		16
265#define	CP_REFTIME		17
266#define	CP_ORG			18
267#define	CP_REC			19
268#define	CP_XMT			20
269#define	CP_REACH		21
270#define	CP_UNREACH		22
271#define	CP_TIMER		23
272#define	CP_DELAY		24
273#define	CP_OFFSET		25
274#define	CP_JITTER		26
275#define	CP_DISPERSION		27
276#define	CP_KEYID		28
277#define	CP_FILTDELAY		29
278#define	CP_FILTOFFSET		30
279#define	CP_PMODE		31
280#define	CP_RECEIVED		32
281#define	CP_SENT			33
282#define	CP_FILTERROR		34
283#define	CP_FLASH		35
284#define	CP_TTL			36
285#define	CP_VARLIST		37
286#define	CP_IN			38
287#define	CP_OUT			39
288#define	CP_RATE			40
289#define	CP_BIAS			41
290#define	CP_SRCHOST		42
291#define	CP_TIMEREC		43
292#define	CP_TIMEREACH		44
293#define	CP_BADAUTH		45
294#define	CP_BOGUSORG		46
295#define	CP_OLDPKT		47
296#define	CP_SELDISP		48
297#define	CP_SELBROKEN		49
298#define	CP_CANDIDATE		50
299#define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
300#ifdef AUTOKEY
301#define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
302#define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
303#define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
304#define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
305#define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
306#define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
307#define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
308#define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
309#define	CP_MAXCODE		CP_IDENT
310#else	/* !AUTOKEY follows */
311#define	CP_MAXCODE		CP_MAX_NOAUTOKEY
312#endif	/* !AUTOKEY */
313
314/*
315 * Clock variables we understand
316 */
317#define	CC_TYPE		1
318#define	CC_TIMECODE	2
319#define	CC_POLL		3
320#define	CC_NOREPLY	4
321#define	CC_BADFORMAT	5
322#define	CC_BADDATA	6
323#define	CC_FUDGETIME1	7
324#define	CC_FUDGETIME2	8
325#define	CC_FUDGEVAL1	9
326#define	CC_FUDGEVAL2	10
327#define	CC_FLAGS	11
328#define	CC_DEVICE	12
329#define	CC_VARLIST	13
330#define	CC_MAXCODE	CC_VARLIST
331
332/*
333 * System variable values. The array can be indexed by the variable
334 * index to find the textual name.
335 */
336static const struct ctl_var sys_var[] = {
337	{ 0,		PADDING, "" },		/* 0 */
338	{ CS_LEAP,	RW, "leap" },		/* 1 */
339	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
340	{ CS_PRECISION, RO, "precision" },	/* 3 */
341	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
342	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
343	{ CS_REFID,	RO, "refid" },		/* 6 */
344	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
345	{ CS_POLL,	RO, "tc" },		/* 8 */
346	{ CS_PEERID,	RO, "peer" },		/* 9 */
347	{ CS_OFFSET,	RO, "offset" },		/* 10 */
348	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
349	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
350	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
351	{ CS_CLOCK,	RO, "clock" },		/* 14 */
352	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
353	{ CS_SYSTEM,	RO, "system" },		/* 16 */
354	{ CS_VERSION,	RO, "version" },	/* 17 */
355	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
356	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
357	{ CS_TAI,	RO, "tai" },		/* 20 */
358	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
359	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
360	{ CS_RATE,	RO, "mintc" },		/* 23 */
361	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
362	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
363	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
364	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
365	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
366	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
367	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
368	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
369	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
370	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
371	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
372	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
373	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
374	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
375	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
376	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
377	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
378	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
379	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
380	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
381	{ CS_PEERADR,		RO, "peeradr" },	/* 44 */
382	{ CS_PEERMODE,		RO, "peermode" },	/* 45 */
383	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 46 */
384	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 47 */
385	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 48 */
386	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 49 */
387	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 50 */
388	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 51 */
389	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 52 */
390	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 53 */
391	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 54 */
392	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 55 */
393	{ CS_AUTHRESET,		RO, "authreset" },	/* 56 */
394	{ CS_K_OFFSET,		RO, "koffset" },	/* 57 */
395	{ CS_K_FREQ,		RO, "kfreq" },		/* 58 */
396	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 59 */
397	{ CS_K_ESTERR,		RO, "kesterr" },	/* 60 */
398	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 61 */
399	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 62 */
400	{ CS_K_PRECISION,	RO, "kprecis" },	/* 63 */
401	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 64 */
402	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 65 */
403	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 66 */
404	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 67 */
405	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 68 */
406	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 69 */
407	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 70 */
408	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 71 */
409	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 72 */
410	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 73 */
411	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 74 */
412	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 75 */
413	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 76 */
414	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 77 */
415	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 78 */
416	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 79 */
417	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 80 */
418	{ CS_IO_SENT,		RO, "io_sent" },	/* 81 */
419	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 82 */
420	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 83 */
421	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 84 */
422	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 85 */
423	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 86 */
424	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 87 */
425	{ CS_FUZZ,		RO, "fuzz" },		/* 88 */
426	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 89 */
427
428	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 90 */
429	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 91 */
430
431#ifdef AUTOKEY
432	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
433	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
434	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
435	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
436	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
437	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
438	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
439	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
440#endif	/* AUTOKEY */
441	{ 0,		EOV, "" }		/* 87/95 */
442};
443
444static struct ctl_var *ext_sys_var = NULL;
445
446/*
447 * System variables we print by default (in fuzzball order,
448 * more-or-less)
449 */
450static const u_char def_sys_var[] = {
451	CS_VERSION,
452	CS_PROCESSOR,
453	CS_SYSTEM,
454	CS_LEAP,
455	CS_STRATUM,
456	CS_PRECISION,
457	CS_ROOTDELAY,
458	CS_ROOTDISPERSION,
459	CS_REFID,
460	CS_REFTIME,
461	CS_CLOCK,
462	CS_PEERID,
463	CS_POLL,
464	CS_RATE,
465	CS_OFFSET,
466	CS_DRIFT,
467	CS_JITTER,
468	CS_ERROR,
469	CS_STABIL,
470	CS_TAI,
471	CS_LEAPTAB,
472	CS_LEAPEND,
473	CS_LEAPSMEARINTV,
474	CS_LEAPSMEAROFFS,
475#ifdef AUTOKEY
476	CS_HOST,
477	CS_IDENT,
478	CS_FLAGS,
479	CS_DIGEST,
480	CS_SIGNATURE,
481	CS_PUBLIC,
482	CS_CERTIF,
483#endif	/* AUTOKEY */
484	0
485};
486
487
488/*
489 * Peer variable list
490 */
491static const struct ctl_var peer_var[] = {
492	{ 0,		PADDING, "" },		/* 0 */
493	{ CP_CONFIG,	RO, "config" },		/* 1 */
494	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
495	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
496	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
497	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
498	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
499	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
500	{ CP_LEAP,	RO, "leap" },		/* 8 */
501	{ CP_HMODE,	RO, "hmode" },		/* 9 */
502	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
503	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
504	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
505	{ CP_PRECISION,	RO, "precision" },	/* 13 */
506	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
507	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
508	{ CP_REFID,	RO, "refid" },		/* 16 */
509	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
510	{ CP_ORG,	RO, "org" },		/* 18 */
511	{ CP_REC,	RO, "rec" },		/* 19 */
512	{ CP_XMT,	RO, "xleave" },		/* 20 */
513	{ CP_REACH,	RO, "reach" },		/* 21 */
514	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
515	{ CP_TIMER,	RO, "timer" },		/* 23 */
516	{ CP_DELAY,	RO, "delay" },		/* 24 */
517	{ CP_OFFSET,	RO, "offset" },		/* 25 */
518	{ CP_JITTER,	RO, "jitter" },		/* 26 */
519	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
520	{ CP_KEYID,	RO, "keyid" },		/* 28 */
521	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
522	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
523	{ CP_PMODE,	RO, "pmode" },		/* 31 */
524	{ CP_RECEIVED,	RO, "received"},	/* 32 */
525	{ CP_SENT,	RO, "sent" },		/* 33 */
526	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
527	{ CP_FLASH,	RO, "flash" },		/* 35 */
528	{ CP_TTL,	RO, "ttl" },		/* 36 */
529	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
530	{ CP_IN,	RO, "in" },		/* 38 */
531	{ CP_OUT,	RO, "out" },		/* 39 */
532	{ CP_RATE,	RO, "headway" },	/* 40 */
533	{ CP_BIAS,	RO, "bias" },		/* 41 */
534	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
535	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
536	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
537	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
538	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
539	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
540	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
541	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
542	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
543#ifdef AUTOKEY
544	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
545	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
546	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
547	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
548	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
549	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
550	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
551	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
552#endif	/* AUTOKEY */
553	{ 0,		EOV, "" }		/* 50/58 */
554};
555
556
557/*
558 * Peer variables we print by default
559 */
560static const u_char def_peer_var[] = {
561	CP_SRCADR,
562	CP_SRCPORT,
563	CP_SRCHOST,
564	CP_DSTADR,
565	CP_DSTPORT,
566	CP_OUT,
567	CP_IN,
568	CP_LEAP,
569	CP_STRATUM,
570	CP_PRECISION,
571	CP_ROOTDELAY,
572	CP_ROOTDISPERSION,
573	CP_REFID,
574	CP_REFTIME,
575	CP_REC,
576	CP_REACH,
577	CP_UNREACH,
578	CP_HMODE,
579	CP_PMODE,
580	CP_HPOLL,
581	CP_PPOLL,
582	CP_RATE,
583	CP_FLASH,
584	CP_KEYID,
585	CP_TTL,
586	CP_OFFSET,
587	CP_DELAY,
588	CP_DISPERSION,
589	CP_JITTER,
590	CP_XMT,
591	CP_BIAS,
592	CP_FILTDELAY,
593	CP_FILTOFFSET,
594	CP_FILTERROR,
595#ifdef AUTOKEY
596	CP_HOST,
597	CP_FLAGS,
598	CP_SIGNATURE,
599	CP_VALID,
600	CP_INITSEQ,
601	CP_IDENT,
602#endif	/* AUTOKEY */
603	0
604};
605
606
607#ifdef REFCLOCK
608/*
609 * Clock variable list
610 */
611static const struct ctl_var clock_var[] = {
612	{ 0,		PADDING, "" },		/* 0 */
613	{ CC_TYPE,	RO, "type" },		/* 1 */
614	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
615	{ CC_POLL,	RO, "poll" },		/* 3 */
616	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
617	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
618	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
619	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
620	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
621	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
622	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
623	{ CC_FLAGS,	RO, "flags" },		/* 11 */
624	{ CC_DEVICE,	RO, "device" },		/* 12 */
625	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
626	{ 0,		EOV, ""  }		/* 14 */
627};
628
629
630/*
631 * Clock variables printed by default
632 */
633static const u_char def_clock_var[] = {
634	CC_DEVICE,
635	CC_TYPE,	/* won't be output if device = known */
636	CC_TIMECODE,
637	CC_POLL,
638	CC_NOREPLY,
639	CC_BADFORMAT,
640	CC_BADDATA,
641	CC_FUDGETIME1,
642	CC_FUDGETIME2,
643	CC_FUDGEVAL1,
644	CC_FUDGEVAL2,
645	CC_FLAGS,
646	0
647};
648#endif
649
650/*
651 * MRU string constants shared by send_mru_entry() and read_mru_list().
652 */
653static const char addr_fmt[] =		"addr.%d";
654static const char last_fmt[] =		"last.%d";
655
656/*
657 * System and processor definitions.
658 */
659#ifndef HAVE_UNAME
660# ifndef STR_SYSTEM
661#  define		STR_SYSTEM	"UNIX"
662# endif
663# ifndef STR_PROCESSOR
664#  define		STR_PROCESSOR	"unknown"
665# endif
666
667static const char str_system[] = STR_SYSTEM;
668static const char str_processor[] = STR_PROCESSOR;
669#else
670# include <sys/utsname.h>
671static struct utsname utsnamebuf;
672#endif /* HAVE_UNAME */
673
674/*
675 * Trap structures. We only allow a few of these, and send a copy of
676 * each async message to each live one. Traps time out after an hour, it
677 * is up to the trap receipient to keep resetting it to avoid being
678 * timed out.
679 */
680/* ntp_request.c */
681struct ctl_trap ctl_traps[CTL_MAXTRAPS];
682int num_ctl_traps;
683
684/*
685 * Type bits, for ctlsettrap() call.
686 */
687#define TRAP_TYPE_CONFIG	0	/* used by configuration code */
688#define TRAP_TYPE_PRIO		1	/* priority trap */
689#define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
690
691
692/*
693 * List relating reference clock types to control message time sources.
694 * Index by the reference clock type. This list will only be used iff
695 * the reference clock driver doesn't set peer->sstclktype to something
696 * different than CTL_SST_TS_UNSPEC.
697 */
698#ifdef REFCLOCK
699static const u_char clocktypes[] = {
700	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
701	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
702	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
703	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
704	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
705	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
706	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
707	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
708	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
709	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
710	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
711	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
712	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
713	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
714	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
715	CTL_SST_TS_NTP,		/* not used (15) */
716	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
717	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
718	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
719	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
720	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
721	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
722	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
723	CTL_SST_TS_NTP,		/* not used (23) */
724	CTL_SST_TS_NTP,		/* not used (24) */
725	CTL_SST_TS_NTP,		/* not used (25) */
726	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
727	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
728	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
729	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
730	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
731	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
732	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
733	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
734	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
735	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
736	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
737	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
738	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
739	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
740	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
741	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
742	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
743	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
744	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
745	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
746	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
747};
748#endif  /* REFCLOCK */
749
750
751/*
752 * Keyid used for authenticating write requests.
753 */
754keyid_t ctl_auth_keyid;
755
756/*
757 * We keep track of the last error reported by the system internally
758 */
759static	u_char ctl_sys_last_event;
760static	u_char ctl_sys_num_events;
761
762
763/*
764 * Statistic counters to keep track of requests and responses.
765 */
766u_long ctltimereset;		/* time stats reset */
767u_long numctlreq;		/* number of requests we've received */
768u_long numctlbadpkts;		/* number of bad control packets */
769u_long numctlresponses;		/* number of resp packets sent with data */
770u_long numctlfrags;		/* number of fragments sent */
771u_long numctlerrors;		/* number of error responses sent */
772u_long numctltooshort;		/* number of too short input packets */
773u_long numctlinputresp;		/* number of responses on input */
774u_long numctlinputfrag;		/* number of fragments on input */
775u_long numctlinputerr;		/* number of input pkts with err bit set */
776u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
777u_long numctlbadversion;	/* number of input pkts with unknown version */
778u_long numctldatatooshort;	/* data too short for count */
779u_long numctlbadop;		/* bad op code found in packet */
780u_long numasyncmsgs;		/* number of async messages we've sent */
781
782/*
783 * Response packet used by these routines. Also some state information
784 * so that we can handle packet formatting within a common set of
785 * subroutines.  Note we try to enter data in place whenever possible,
786 * but the need to set the more bit correctly means we occasionally
787 * use the extra buffer and copy.
788 */
789static struct ntp_control rpkt;
790static u_char	res_version;
791static u_char	res_opcode;
792static associd_t res_associd;
793static u_short	res_frags;	/* datagrams in this response */
794static int	res_offset;	/* offset of payload in response */
795static u_char * datapt;
796static u_char * dataend;
797static int	datalinelen;
798static int	datasent;	/* flag to avoid initial ", " */
799static int	datanotbinflag;
800static sockaddr_u *rmt_addr;
801static struct interface *lcl_inter;
802
803static u_char	res_authenticate;
804static u_char	res_authokay;
805static keyid_t	res_keyid;
806
807#define MAXDATALINELEN	(72)
808
809static u_char	res_async;	/* sending async trap response? */
810
811/*
812 * Pointers for saving state when decoding request packets
813 */
814static	char *reqpt;
815static	char *reqend;
816
817#ifndef MIN
818#define MIN(a, b) (((a) <= (b)) ? (a) : (b))
819#endif
820
821/*
822 * init_control - initialize request data
823 */
824void
825init_control(void)
826{
827	size_t i;
828
829#ifdef HAVE_UNAME
830	uname(&utsnamebuf);
831#endif /* HAVE_UNAME */
832
833	ctl_clr_stats();
834
835	ctl_auth_keyid = 0;
836	ctl_sys_last_event = EVNT_UNSPEC;
837	ctl_sys_num_events = 0;
838
839	num_ctl_traps = 0;
840	for (i = 0; i < COUNTOF(ctl_traps); i++)
841		ctl_traps[i].tr_flags = 0;
842}
843
844
845/*
846 * ctl_error - send an error response for the current request
847 */
848static void
849ctl_error(
850	u_char errcode
851	)
852{
853	size_t		maclen;
854
855	numctlerrors++;
856	DPRINTF(3, ("sending control error %u\n", errcode));
857
858	/*
859	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
860	 * have already been filled in.
861	 */
862	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
863			(res_opcode & CTL_OP_MASK);
864	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
865	rpkt.count = 0;
866
867	/*
868	 * send packet and bump counters
869	 */
870	if (res_authenticate && sys_authenticate) {
871		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
872				     CTL_HEADER_LEN);
873		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
874			CTL_HEADER_LEN + maclen);
875	} else
876		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
877			CTL_HEADER_LEN);
878}
879
880int/*BOOL*/
881is_safe_filename(const char * name)
882{
883	/* We need a strict validation of filenames we should write: The
884	 * daemon might run with special permissions and is remote
885	 * controllable, so we better take care what we allow as file
886	 * name!
887	 *
888	 * The first character must be digit or a letter from the ASCII
889	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
890	 * must be from [-._+A-Za-z0-9].
891	 *
892	 * We do not trust the character classification much here: Since
893	 * the NTP protocol makes no provisions for UTF-8 or local code
894	 * pages, we strictly require the 7bit ASCII code page.
895	 *
896	 * The following table is a packed bit field of 128 two-bit
897	 * groups. The LSB in each group tells us if a character is
898	 * acceptable at the first position, the MSB if the character is
899	 * accepted at any other position.
900	 *
901	 * This does not ensure that the file name is syntactically
902	 * correct (multiple dots will not work with VMS...) but it will
903	 * exclude potential globbing bombs and directory traversal. It
904	 * also rules out drive selection. (For systems that have this
905	 * notion, like Windows or VMS.)
906	 */
907	static const uint32_t chclass[8] = {
908		0x00000000, 0x00000000,
909		0x28800000, 0x000FFFFF,
910		0xFFFFFFFC, 0xC03FFFFF,
911		0xFFFFFFFC, 0x003FFFFF
912	};
913
914	u_int widx, bidx, mask;
915	if ( ! (name && *name))
916		return FALSE;
917
918	mask = 1u;
919	while (0 != (widx = (u_char)*name++)) {
920		bidx = (widx & 15) << 1;
921		widx = widx >> 4;
922		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
923			return FALSE;
924		if (0 == ((chclass[widx] >> bidx) & mask))
925			return FALSE;
926		mask = 2u;
927	}
928	return TRUE;
929}
930
931
932/*
933 * save_config - Implements ntpq -c "saveconfig <filename>"
934 *		 Writes current configuration including any runtime
935 *		 changes by ntpq's :config or config-from-file
936 *
937 * Note: There should be no buffer overflow or truncation in the
938 * processing of file names -- both cause security problems. This is bit
939 * painful to code but essential here.
940 */
941void
942save_config(
943	struct recvbuf *rbufp,
944	int restrict_mask
945	)
946{
947	/* block directory traversal by searching for characters that
948	 * indicate directory components in a file path.
949	 *
950	 * Conceptually we should be searching for DIRSEP in filename,
951	 * however Windows actually recognizes both forward and
952	 * backslashes as equivalent directory separators at the API
953	 * level.  On POSIX systems we could allow '\\' but such
954	 * filenames are tricky to manipulate from a shell, so just
955	 * reject both types of slashes on all platforms.
956	 */
957	/* TALOS-CAN-0062: block directory traversal for VMS, too */
958	static const char * illegal_in_filename =
959#if defined(VMS)
960	    ":[]"	/* do not allow drive and path components here */
961#elif defined(SYS_WINNT)
962	    ":\\/"	/* path and drive separators */
963#else
964	    "\\/"	/* separator and critical char for POSIX */
965#endif
966	    ;
967	char reply[128];
968#ifdef SAVECONFIG
969	static const char savedconfig_eq[] = "savedconfig=";
970
971	/* Build a safe open mode from the available mode flags. We want
972	 * to create a new file and write it in text mode (when
973	 * applicable -- only Windows does this...)
974	 */
975	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
976#  if defined(O_EXCL)		/* posix, vms */
977	    | O_EXCL
978#  elif defined(_O_EXCL)	/* windows is alway very special... */
979	    | _O_EXCL
980#  endif
981#  if defined(_O_TEXT)		/* windows, again */
982	    | _O_TEXT
983#endif
984	    ;
985
986	char filespec[128];
987	char filename[128];
988	char fullpath[512];
989	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
990	time_t now;
991	int fd;
992	FILE *fptr;
993	int prc;
994	size_t reqlen;
995#endif
996
997	if (RES_NOMODIFY & restrict_mask) {
998		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
999		ctl_flushpkt(0);
1000		NLOG(NLOG_SYSINFO)
1001			msyslog(LOG_NOTICE,
1002				"saveconfig from %s rejected due to nomodify restriction",
1003				stoa(&rbufp->recv_srcadr));
1004		sys_restricted++;
1005		return;
1006	}
1007
1008#ifdef SAVECONFIG
1009	if (NULL == saveconfigdir) {
1010		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1011		ctl_flushpkt(0);
1012		NLOG(NLOG_SYSINFO)
1013			msyslog(LOG_NOTICE,
1014				"saveconfig from %s rejected, no saveconfigdir",
1015				stoa(&rbufp->recv_srcadr));
1016		return;
1017	}
1018
1019	/* The length checking stuff gets serious. Do not assume a NUL
1020	 * byte can be found, but if so, use it to calculate the needed
1021	 * buffer size. If the available buffer is too short, bail out;
1022	 * likewise if there is no file spec. (The latter will not
1023	 * happen when using NTPQ, but there are other ways to craft a
1024	 * network packet!)
1025	 */
1026	reqlen = (size_t)(reqend - reqpt);
1027	if (0 != reqlen) {
1028		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1029		if (NULL != nulpos)
1030			reqlen = (size_t)(nulpos - reqpt);
1031	}
1032	if (0 == reqlen)
1033		return;
1034	if (reqlen >= sizeof(filespec)) {
1035		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1036			   (u_int)sizeof(filespec));
1037		ctl_flushpkt(0);
1038		msyslog(LOG_NOTICE,
1039			"saveconfig exceeded maximum raw name length from %s",
1040			stoa(&rbufp->recv_srcadr));
1041		return;
1042	}
1043
1044	/* copy data directly as we exactly know the size */
1045	memcpy(filespec, reqpt, reqlen);
1046	filespec[reqlen] = '\0';
1047
1048	/*
1049	 * allow timestamping of the saved config filename with
1050	 * strftime() format such as:
1051	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1052	 * XXX: Nice feature, but not too safe.
1053	 * YYY: The check for permitted characters in file names should
1054	 *      weed out the worst. Let's hope 'strftime()' does not
1055	 *      develop pathological problems.
1056	 */
1057	time(&now);
1058	if (0 == strftime(filename, sizeof(filename), filespec,
1059			  localtime(&now)))
1060	{
1061		/*
1062		 * If we arrive here, 'strftime()' balked; most likely
1063		 * the buffer was too short. (Or it encounterd an empty
1064		 * format, or just a format that expands to an empty
1065		 * string.) We try to use the original name, though this
1066		 * is very likely to fail later if there are format
1067		 * specs in the string. Note that truncation cannot
1068		 * happen here as long as both buffers have the same
1069		 * size!
1070		 */
1071		strlcpy(filename, filespec, sizeof(filename));
1072	}
1073
1074	/*
1075	 * Check the file name for sanity. This might/will rule out file
1076	 * names that would be legal but problematic, and it blocks
1077	 * directory traversal.
1078	 */
1079	if (!is_safe_filename(filename)) {
1080		ctl_printf("saveconfig rejects unsafe file name '%s'",
1081			   filename);
1082		ctl_flushpkt(0);
1083		msyslog(LOG_NOTICE,
1084			"saveconfig rejects unsafe file name from %s",
1085			stoa(&rbufp->recv_srcadr));
1086		return;
1087	}
1088
1089	/*
1090	 * XXX: This next test may not be needed with is_safe_filename()
1091	 */
1092
1093	/* block directory/drive traversal */
1094	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1095	if (NULL != strpbrk(filename, illegal_in_filename)) {
1096		snprintf(reply, sizeof(reply),
1097			 "saveconfig does not allow directory in filename");
1098		ctl_putdata(reply, strlen(reply), 0);
1099		ctl_flushpkt(0);
1100		msyslog(LOG_NOTICE,
1101			"saveconfig rejects unsafe file name from %s",
1102			stoa(&rbufp->recv_srcadr));
1103		return;
1104	}
1105
1106	/* concatenation of directory and path can cause another
1107	 * truncation...
1108	 */
1109	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1110		       saveconfigdir, filename);
1111	if (prc < 0 || prc >= sizeof(fullpath)) {
1112		ctl_printf("saveconfig exceeded maximum path length (%u)",
1113			   (u_int)sizeof(fullpath));
1114		ctl_flushpkt(0);
1115		msyslog(LOG_NOTICE,
1116			"saveconfig exceeded maximum path length from %s",
1117			stoa(&rbufp->recv_srcadr));
1118		return;
1119	}
1120
1121	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1122	if (-1 == fd)
1123		fptr = NULL;
1124	else
1125		fptr = fdopen(fd, "w");
1126
1127	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1128		ctl_printf("Unable to save configuration to file '%s': %m",
1129			   filename);
1130		msyslog(LOG_ERR,
1131			"saveconfig %s from %s failed", filename,
1132			stoa(&rbufp->recv_srcadr));
1133	} else {
1134		ctl_printf("Configuration saved to '%s'", filename);
1135		msyslog(LOG_NOTICE,
1136			"Configuration saved to '%s' (requested by %s)",
1137			fullpath, stoa(&rbufp->recv_srcadr));
1138		/*
1139		 * save the output filename in system variable
1140		 * savedconfig, retrieved with:
1141		 *   ntpq -c "rv 0 savedconfig"
1142		 * Note: the way 'savedconfig' is defined makes overflow
1143		 * checks unnecessary here.
1144		 */
1145		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1146			 savedconfig_eq, filename);
1147		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1148	}
1149
1150	if (NULL != fptr)
1151		fclose(fptr);
1152#else	/* !SAVECONFIG follows */
1153	ctl_printf("%s",
1154		   "saveconfig unavailable, configured with --disable-saveconfig");
1155#endif
1156	ctl_flushpkt(0);
1157}
1158
1159
1160/*
1161 * process_control - process an incoming control message
1162 */
1163void
1164process_control(
1165	struct recvbuf *rbufp,
1166	int restrict_mask
1167	)
1168{
1169	struct ntp_control *pkt;
1170	int req_count;
1171	int req_data;
1172	const struct ctl_proc *cc;
1173	keyid_t *pkid;
1174	int properlen;
1175	size_t maclen;
1176
1177	DPRINTF(3, ("in process_control()\n"));
1178
1179	/*
1180	 * Save the addresses for error responses
1181	 */
1182	numctlreq++;
1183	rmt_addr = &rbufp->recv_srcadr;
1184	lcl_inter = rbufp->dstadr;
1185	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1186
1187	/*
1188	 * If the length is less than required for the header, or
1189	 * it is a response or a fragment, ignore this.
1190	 */
1191	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1192	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1193	    || pkt->offset != 0) {
1194		DPRINTF(1, ("invalid format in control packet\n"));
1195		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1196			numctltooshort++;
1197		if (CTL_RESPONSE & pkt->r_m_e_op)
1198			numctlinputresp++;
1199		if (CTL_MORE & pkt->r_m_e_op)
1200			numctlinputfrag++;
1201		if (CTL_ERROR & pkt->r_m_e_op)
1202			numctlinputerr++;
1203		if (pkt->offset != 0)
1204			numctlbadoffset++;
1205		return;
1206	}
1207	res_version = PKT_VERSION(pkt->li_vn_mode);
1208	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1209		DPRINTF(1, ("unknown version %d in control packet\n",
1210			    res_version));
1211		numctlbadversion++;
1212		return;
1213	}
1214
1215	/*
1216	 * Pull enough data from the packet to make intelligent
1217	 * responses
1218	 */
1219	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1220					 MODE_CONTROL);
1221	res_opcode = pkt->r_m_e_op;
1222	rpkt.sequence = pkt->sequence;
1223	rpkt.associd = pkt->associd;
1224	rpkt.status = 0;
1225	res_frags = 1;
1226	res_offset = 0;
1227	res_associd = htons(pkt->associd);
1228	res_async = FALSE;
1229	res_authenticate = FALSE;
1230	res_keyid = 0;
1231	res_authokay = FALSE;
1232	req_count = (int)ntohs(pkt->count);
1233	datanotbinflag = FALSE;
1234	datalinelen = 0;
1235	datasent = 0;
1236	datapt = rpkt.u.data;
1237	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1238
1239	if ((rbufp->recv_length & 0x3) != 0)
1240		DPRINTF(3, ("Control packet length %d unrounded\n",
1241			    rbufp->recv_length));
1242
1243	/*
1244	 * We're set up now. Make sure we've got at least enough
1245	 * incoming data space to match the count.
1246	 */
1247	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1248	if (req_data < req_count || rbufp->recv_length & 0x3) {
1249		ctl_error(CERR_BADFMT);
1250		numctldatatooshort++;
1251		return;
1252	}
1253
1254	properlen = req_count + CTL_HEADER_LEN;
1255	/* round up proper len to a 8 octet boundary */
1256
1257	properlen = (properlen + 7) & ~7;
1258	maclen = rbufp->recv_length - properlen;
1259	if ((rbufp->recv_length & 3) == 0 &&
1260	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1261	    sys_authenticate) {
1262		res_authenticate = TRUE;
1263		pkid = (void *)((char *)pkt + properlen);
1264		res_keyid = ntohl(*pkid);
1265		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1266			    rbufp->recv_length, properlen, res_keyid,
1267			    maclen));
1268
1269		if (!authistrusted(res_keyid))
1270			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1271		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1272				     rbufp->recv_length - maclen,
1273				     maclen)) {
1274			res_authokay = TRUE;
1275			DPRINTF(3, ("authenticated okay\n"));
1276		} else {
1277			res_keyid = 0;
1278			DPRINTF(3, ("authentication failed\n"));
1279		}
1280	}
1281
1282	/*
1283	 * Set up translate pointers
1284	 */
1285	reqpt = (char *)pkt->u.data;
1286	reqend = reqpt + req_count;
1287
1288	/*
1289	 * Look for the opcode processor
1290	 */
1291	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1292		if (cc->control_code == res_opcode) {
1293			DPRINTF(3, ("opcode %d, found command handler\n",
1294				    res_opcode));
1295			if (cc->flags == AUTH
1296			    && (!res_authokay
1297				|| res_keyid != ctl_auth_keyid)) {
1298				ctl_error(CERR_PERMISSION);
1299				return;
1300			}
1301			(cc->handler)(rbufp, restrict_mask);
1302			return;
1303		}
1304	}
1305
1306	/*
1307	 * Can't find this one, return an error.
1308	 */
1309	numctlbadop++;
1310	ctl_error(CERR_BADOP);
1311	return;
1312}
1313
1314
1315/*
1316 * ctlpeerstatus - return a status word for this peer
1317 */
1318u_short
1319ctlpeerstatus(
1320	register struct peer *p
1321	)
1322{
1323	u_short status;
1324
1325	status = p->status;
1326	if (FLAG_CONFIG & p->flags)
1327		status |= CTL_PST_CONFIG;
1328	if (p->keyid)
1329		status |= CTL_PST_AUTHENABLE;
1330	if (FLAG_AUTHENTIC & p->flags)
1331		status |= CTL_PST_AUTHENTIC;
1332	if (p->reach)
1333		status |= CTL_PST_REACH;
1334	if (MDF_TXONLY_MASK & p->cast_flags)
1335		status |= CTL_PST_BCAST;
1336
1337	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1338}
1339
1340
1341/*
1342 * ctlclkstatus - return a status word for this clock
1343 */
1344#ifdef REFCLOCK
1345static u_short
1346ctlclkstatus(
1347	struct refclockstat *pcs
1348	)
1349{
1350	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1351}
1352#endif
1353
1354
1355/*
1356 * ctlsysstatus - return the system status word
1357 */
1358u_short
1359ctlsysstatus(void)
1360{
1361	register u_char this_clock;
1362
1363	this_clock = CTL_SST_TS_UNSPEC;
1364#ifdef REFCLOCK
1365	if (sys_peer != NULL) {
1366		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1367			this_clock = sys_peer->sstclktype;
1368		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1369			this_clock = clocktypes[sys_peer->refclktype];
1370	}
1371#else /* REFCLOCK */
1372	if (sys_peer != 0)
1373		this_clock = CTL_SST_TS_NTP;
1374#endif /* REFCLOCK */
1375	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1376			      ctl_sys_last_event);
1377}
1378
1379
1380/*
1381 * ctl_flushpkt - write out the current packet and prepare
1382 *		  another if necessary.
1383 */
1384static void
1385ctl_flushpkt(
1386	u_char more
1387	)
1388{
1389	size_t i;
1390	size_t dlen;
1391	size_t sendlen;
1392	size_t maclen;
1393	size_t totlen;
1394	keyid_t keyid;
1395
1396	dlen = datapt - rpkt.u.data;
1397	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1398		/*
1399		 * Big hack, output a trailing \r\n
1400		 */
1401		*datapt++ = '\r';
1402		*datapt++ = '\n';
1403		dlen += 2;
1404	}
1405	sendlen = dlen + CTL_HEADER_LEN;
1406
1407	/*
1408	 * Pad to a multiple of 32 bits
1409	 */
1410	while (sendlen & 0x3) {
1411		*datapt++ = '\0';
1412		sendlen++;
1413	}
1414
1415	/*
1416	 * Fill in the packet with the current info
1417	 */
1418	rpkt.r_m_e_op = CTL_RESPONSE | more |
1419			(res_opcode & CTL_OP_MASK);
1420	rpkt.count = htons((u_short)dlen);
1421	rpkt.offset = htons((u_short)res_offset);
1422	if (res_async) {
1423		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1424			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1425				rpkt.li_vn_mode =
1426				    PKT_LI_VN_MODE(
1427					sys_leap,
1428					ctl_traps[i].tr_version,
1429					MODE_CONTROL);
1430				rpkt.sequence =
1431				    htons(ctl_traps[i].tr_sequence);
1432				sendpkt(&ctl_traps[i].tr_addr,
1433					ctl_traps[i].tr_localaddr, -4,
1434					(struct pkt *)&rpkt, sendlen);
1435				if (!more)
1436					ctl_traps[i].tr_sequence++;
1437				numasyncmsgs++;
1438			}
1439		}
1440	} else {
1441		if (res_authenticate && sys_authenticate) {
1442			totlen = sendlen;
1443			/*
1444			 * If we are going to authenticate, then there
1445			 * is an additional requirement that the MAC
1446			 * begin on a 64 bit boundary.
1447			 */
1448			while (totlen & 7) {
1449				*datapt++ = '\0';
1450				totlen++;
1451			}
1452			keyid = htonl(res_keyid);
1453			memcpy(datapt, &keyid, sizeof(keyid));
1454			maclen = authencrypt(res_keyid,
1455					     (u_int32 *)&rpkt, totlen);
1456			sendpkt(rmt_addr, lcl_inter, -5,
1457				(struct pkt *)&rpkt, totlen + maclen);
1458		} else {
1459			sendpkt(rmt_addr, lcl_inter, -6,
1460				(struct pkt *)&rpkt, sendlen);
1461		}
1462		if (more)
1463			numctlfrags++;
1464		else
1465			numctlresponses++;
1466	}
1467
1468	/*
1469	 * Set us up for another go around.
1470	 */
1471	res_frags++;
1472	res_offset += dlen;
1473	datapt = rpkt.u.data;
1474}
1475
1476
1477/*
1478 * ctl_putdata - write data into the packet, fragmenting and starting
1479 * another if this one is full.
1480 */
1481static void
1482ctl_putdata(
1483	const char *dp,
1484	unsigned int dlen,
1485	int bin			/* set to 1 when data is binary */
1486	)
1487{
1488	int overhead;
1489	unsigned int currentlen;
1490
1491	overhead = 0;
1492	if (!bin) {
1493		datanotbinflag = TRUE;
1494		overhead = 3;
1495		if (datasent) {
1496			*datapt++ = ',';
1497			datalinelen++;
1498			if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1499				*datapt++ = '\r';
1500				*datapt++ = '\n';
1501				datalinelen = 0;
1502			} else {
1503				*datapt++ = ' ';
1504				datalinelen++;
1505			}
1506		}
1507	}
1508
1509	/*
1510	 * Save room for trailing junk
1511	 */
1512	while (dlen + overhead + datapt > dataend) {
1513		/*
1514		 * Not enough room in this one, flush it out.
1515		 */
1516		currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
1517
1518		memcpy(datapt, dp, currentlen);
1519
1520		datapt += currentlen;
1521		dp += currentlen;
1522		dlen -= currentlen;
1523		datalinelen += currentlen;
1524
1525		ctl_flushpkt(CTL_MORE);
1526	}
1527
1528	memcpy(datapt, dp, dlen);
1529	datapt += dlen;
1530	datalinelen += dlen;
1531	datasent = TRUE;
1532}
1533
1534
1535/*
1536 * ctl_putstr - write a tagged string into the response packet
1537 *		in the form:
1538 *
1539 *		tag="data"
1540 *
1541 *		len is the data length excluding the NUL terminator,
1542 *		as in ctl_putstr("var", "value", strlen("value"));
1543 */
1544static void
1545ctl_putstr(
1546	const char *	tag,
1547	const char *	data,
1548	size_t		len
1549	)
1550{
1551	char buffer[512];
1552	char *cp;
1553	size_t tl;
1554
1555	tl = strlen(tag);
1556	memcpy(buffer, tag, tl);
1557	cp = buffer + tl;
1558	if (len > 0) {
1559		INSIST(tl + 3 + len <= sizeof(buffer));
1560		*cp++ = '=';
1561		*cp++ = '"';
1562		memcpy(cp, data, len);
1563		cp += len;
1564		*cp++ = '"';
1565	}
1566	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1567}
1568
1569
1570/*
1571 * ctl_putunqstr - write a tagged string into the response packet
1572 *		   in the form:
1573 *
1574 *		   tag=data
1575 *
1576 *	len is the data length excluding the NUL terminator.
1577 *	data must not contain a comma or whitespace.
1578 */
1579static void
1580ctl_putunqstr(
1581	const char *	tag,
1582	const char *	data,
1583	size_t		len
1584	)
1585{
1586	char buffer[512];
1587	char *cp;
1588	size_t tl;
1589
1590	tl = strlen(tag);
1591	memcpy(buffer, tag, tl);
1592	cp = buffer + tl;
1593	if (len > 0) {
1594		INSIST(tl + 1 + len <= sizeof(buffer));
1595		*cp++ = '=';
1596		memcpy(cp, data, len);
1597		cp += len;
1598	}
1599	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1600}
1601
1602
1603/*
1604 * ctl_putdblf - write a tagged, signed double into the response packet
1605 */
1606static void
1607ctl_putdblf(
1608	const char *	tag,
1609	int		use_f,
1610	int		precision,
1611	double		d
1612	)
1613{
1614	char *cp;
1615	const char *cq;
1616	char buffer[200];
1617
1618	cp = buffer;
1619	cq = tag;
1620	while (*cq != '\0')
1621		*cp++ = *cq++;
1622	*cp++ = '=';
1623	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1624	snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g",
1625	    precision, d);
1626	cp += strlen(cp);
1627	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1628}
1629
1630/*
1631 * ctl_putuint - write a tagged unsigned integer into the response
1632 */
1633static void
1634ctl_putuint(
1635	const char *tag,
1636	u_long uval
1637	)
1638{
1639	register char *cp;
1640	register const char *cq;
1641	char buffer[200];
1642
1643	cp = buffer;
1644	cq = tag;
1645	while (*cq != '\0')
1646		*cp++ = *cq++;
1647
1648	*cp++ = '=';
1649	INSIST((cp - buffer) < (int)sizeof(buffer));
1650	snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval);
1651	cp += strlen(cp);
1652	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1653}
1654
1655/*
1656 * ctl_putcal - write a decoded calendar data into the response
1657 */
1658static void
1659ctl_putcal(
1660	const char *tag,
1661	const struct calendar *pcal
1662	)
1663{
1664	char buffer[100];
1665	unsigned numch;
1666
1667	numch = snprintf(buffer, sizeof(buffer),
1668			"%s=%04d%02d%02d%02d%02d",
1669			tag,
1670			pcal->year,
1671			pcal->month,
1672			pcal->monthday,
1673			pcal->hour,
1674			pcal->minute
1675			);
1676	INSIST(numch < sizeof(buffer));
1677	ctl_putdata(buffer, numch, 0);
1678
1679	return;
1680}
1681
1682/*
1683 * ctl_putfs - write a decoded filestamp into the response
1684 */
1685static void
1686ctl_putfs(
1687	const char *tag,
1688	tstamp_t uval
1689	)
1690{
1691	register char *cp;
1692	register const char *cq;
1693	char buffer[200];
1694	struct tm *tm = NULL;
1695	time_t fstamp;
1696
1697	cp = buffer;
1698	cq = tag;
1699	while (*cq != '\0')
1700		*cp++ = *cq++;
1701
1702	*cp++ = '=';
1703	fstamp = uval - JAN_1970;
1704	tm = gmtime(&fstamp);
1705	if (NULL ==  tm)
1706		return;
1707	INSIST((cp - buffer) < (int)sizeof(buffer));
1708	snprintf(cp, sizeof(buffer) - (cp - buffer),
1709		 "%04d%02d%02d%02d%02d", tm->tm_year + 1900,
1710		 tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min);
1711	cp += strlen(cp);
1712	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1713}
1714
1715
1716/*
1717 * ctl_puthex - write a tagged unsigned integer, in hex, into the
1718 * response
1719 */
1720static void
1721ctl_puthex(
1722	const char *tag,
1723	u_long uval
1724	)
1725{
1726	register char *cp;
1727	register const char *cq;
1728	char buffer[200];
1729
1730	cp = buffer;
1731	cq = tag;
1732	while (*cq != '\0')
1733		*cp++ = *cq++;
1734
1735	*cp++ = '=';
1736	INSIST((cp - buffer) < (int)sizeof(buffer));
1737	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval);
1738	cp += strlen(cp);
1739	ctl_putdata(buffer,(unsigned)( cp - buffer ), 0);
1740}
1741
1742
1743/*
1744 * ctl_putint - write a tagged signed integer into the response
1745 */
1746static void
1747ctl_putint(
1748	const char *tag,
1749	long ival
1750	)
1751{
1752	register char *cp;
1753	register const char *cq;
1754	char buffer[200];
1755
1756	cp = buffer;
1757	cq = tag;
1758	while (*cq != '\0')
1759		*cp++ = *cq++;
1760
1761	*cp++ = '=';
1762	INSIST((cp - buffer) < (int)sizeof(buffer));
1763	snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival);
1764	cp += strlen(cp);
1765	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1766}
1767
1768
1769/*
1770 * ctl_putts - write a tagged timestamp, in hex, into the response
1771 */
1772static void
1773ctl_putts(
1774	const char *tag,
1775	l_fp *ts
1776	)
1777{
1778	register char *cp;
1779	register const char *cq;
1780	char buffer[200];
1781
1782	cp = buffer;
1783	cq = tag;
1784	while (*cq != '\0')
1785		*cp++ = *cq++;
1786
1787	*cp++ = '=';
1788	INSIST((size_t)(cp - buffer) < sizeof(buffer));
1789	snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x",
1790		 (u_int)ts->l_ui, (u_int)ts->l_uf);
1791	cp += strlen(cp);
1792	ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1793}
1794
1795
1796/*
1797 * ctl_putadr - write an IP address into the response
1798 */
1799static void
1800ctl_putadr(
1801	const char *tag,
1802	u_int32 addr32,
1803	sockaddr_u *addr
1804	)
1805{
1806	register char *cp;
1807	register const char *cq;
1808	char buffer[200];
1809
1810	cp = buffer;
1811	cq = tag;
1812	while (*cq != '\0')
1813		*cp++ = *cq++;
1814
1815	*cp++ = '=';
1816	if (NULL == addr)
1817		cq = numtoa(addr32);
1818	else
1819		cq = stoa(addr);
1820	INSIST((cp - buffer) < (int)sizeof(buffer));
1821	snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq);
1822	cp += strlen(cp);
1823	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1824}
1825
1826
1827/*
1828 * ctl_putrefid - send a u_int32 refid as printable text
1829 */
1830static void
1831ctl_putrefid(
1832	const char *	tag,
1833	u_int32		refid
1834	)
1835{
1836	char	output[16];
1837	char *	optr;
1838	char *	oplim;
1839	char *	iptr;
1840	char *	iplim;
1841	char *	past_eq;
1842
1843	optr = output;
1844	oplim = output + sizeof(output);
1845	while (optr < oplim && '\0' != *tag)
1846		*optr++ = *tag++;
1847	if (optr < oplim) {
1848		*optr++ = '=';
1849		past_eq = optr;
1850	}
1851	if (!(optr < oplim))
1852		return;
1853	iptr = (char *)&refid;
1854	iplim = iptr + sizeof(refid);
1855	for ( ; optr < oplim && iptr < iplim && '\0' != *iptr;
1856	     iptr++, optr++)
1857		if (isprint((int)*iptr))
1858			*optr = *iptr;
1859		else
1860			*optr = '.';
1861	if (!(optr <= oplim))
1862		optr = past_eq;
1863	ctl_putdata(output, (u_int)(optr - output), FALSE);
1864}
1865
1866
1867/*
1868 * ctl_putarray - write a tagged eight element double array into the response
1869 */
1870static void
1871ctl_putarray(
1872	const char *tag,
1873	double *arr,
1874	int start
1875	)
1876{
1877	register char *cp;
1878	register const char *cq;
1879	char buffer[200];
1880	int i;
1881	cp = buffer;
1882	cq = tag;
1883	while (*cq != '\0')
1884		*cp++ = *cq++;
1885	*cp++ = '=';
1886	i = start;
1887	do {
1888		if (i == 0)
1889			i = NTP_SHIFT;
1890		i--;
1891		INSIST((cp - buffer) < (int)sizeof(buffer));
1892		snprintf(cp, sizeof(buffer) - (cp - buffer),
1893			 " %.2f", arr[i] * 1e3);
1894		cp += strlen(cp);
1895	} while (i != start);
1896	ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1897}
1898
1899/*
1900 * ctl_printf - put a formatted string into the data buffer
1901 */
1902static void
1903ctl_printf(
1904	const char * fmt,
1905	...
1906	)
1907{
1908	static const char * ellipsis = "[...]";
1909	va_list va;
1910	char    fmtbuf[128];
1911	int     rc;
1912
1913	va_start(va, fmt);
1914	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1915	va_end(va);
1916	if (rc < 0 || rc >= sizeof(fmtbuf))
1917		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1918		       ellipsis);
1919	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1920}
1921
1922
1923/*
1924 * ctl_putsys - output a system variable
1925 */
1926static void
1927ctl_putsys(
1928	int varid
1929	)
1930{
1931	l_fp tmp;
1932	char str[256];
1933	u_int u;
1934	double kb;
1935	double dtemp;
1936	const char *ss;
1937#ifdef AUTOKEY
1938	struct cert_info *cp;
1939#endif	/* AUTOKEY */
1940#ifdef KERNEL_PLL
1941	static struct timex ntx;
1942	static u_long ntp_adjtime_time;
1943
1944	static const double to_ms =
1945# ifdef STA_NANO
1946		1.0e-6; /* nsec to msec */
1947# else
1948		1.0e-3; /* usec to msec */
1949# endif
1950
1951	/*
1952	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1953	 */
1954	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1955	    current_time != ntp_adjtime_time) {
1956		ZERO(ntx);
1957		if (ntp_adjtime(&ntx) < 0)
1958			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1959		else
1960			ntp_adjtime_time = current_time;
1961	}
1962#endif	/* KERNEL_PLL */
1963
1964	switch (varid) {
1965
1966	case CS_LEAP:
1967		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1968		break;
1969
1970	case CS_STRATUM:
1971		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1972		break;
1973
1974	case CS_PRECISION:
1975		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1976		break;
1977
1978	case CS_ROOTDELAY:
1979		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1980			   1e3);
1981		break;
1982
1983	case CS_ROOTDISPERSION:
1984		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1985			   sys_rootdisp * 1e3);
1986		break;
1987
1988	case CS_REFID:
1989		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1990			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1991		else
1992			ctl_putrefid(sys_var[varid].text, sys_refid);
1993		break;
1994
1995	case CS_REFTIME:
1996		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1997		break;
1998
1999	case CS_POLL:
2000		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
2001		break;
2002
2003	case CS_PEERID:
2004		if (sys_peer == NULL)
2005			ctl_putuint(sys_var[CS_PEERID].text, 0);
2006		else
2007			ctl_putuint(sys_var[CS_PEERID].text,
2008				    sys_peer->associd);
2009		break;
2010
2011	case CS_PEERADR:
2012		if (sys_peer != NULL && sys_peer->dstadr != NULL)
2013			ss = sptoa(&sys_peer->srcadr);
2014		else
2015			ss = "0.0.0.0:0";
2016		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
2017		break;
2018
2019	case CS_PEERMODE:
2020		u = (sys_peer != NULL)
2021			? sys_peer->hmode
2022			: MODE_UNSPEC;
2023		ctl_putuint(sys_var[CS_PEERMODE].text, u);
2024		break;
2025
2026	case CS_OFFSET:
2027		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
2028		break;
2029
2030	case CS_DRIFT:
2031		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
2032		break;
2033
2034	case CS_JITTER:
2035		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2036		break;
2037
2038	case CS_ERROR:
2039		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2040		break;
2041
2042	case CS_CLOCK:
2043		get_systime(&tmp);
2044		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2045		break;
2046
2047	case CS_PROCESSOR:
2048#ifndef HAVE_UNAME
2049		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2050			   sizeof(str_processor) - 1);
2051#else
2052		ctl_putstr(sys_var[CS_PROCESSOR].text,
2053			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2054#endif /* HAVE_UNAME */
2055		break;
2056
2057	case CS_SYSTEM:
2058#ifndef HAVE_UNAME
2059		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2060			   sizeof(str_system) - 1);
2061#else
2062		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2063			 utsnamebuf.release);
2064		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2065#endif /* HAVE_UNAME */
2066		break;
2067
2068	case CS_VERSION:
2069		ctl_putstr(sys_var[CS_VERSION].text, Version,
2070			   strlen(Version));
2071		break;
2072
2073	case CS_STABIL:
2074		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2075			   1e6);
2076		break;
2077
2078	case CS_VARLIST:
2079	{
2080		char buf[CTL_MAX_DATA_LEN];
2081		//buffPointer, firstElementPointer, buffEndPointer
2082		char *buffp, *buffend;
2083		int firstVarName;
2084		const char *ss1;
2085		int len;
2086		const struct ctl_var *k;
2087
2088		buffp = buf;
2089		buffend = buf + sizeof(buf);
2090		if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend)
2091			break;	/* really long var name */
2092
2093		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2094		buffp += strlen(buffp);
2095		firstVarName = TRUE;
2096		for (k = sys_var; !(k->flags & EOV); k++) {
2097			if (k->flags & PADDING)
2098				continue;
2099			len = strlen(k->text);
2100			if (buffp + len + 1 >= buffend)
2101				break;
2102			if (!firstVarName)
2103				*buffp++ = ',';
2104			else
2105				firstVarName = FALSE;
2106			memcpy(buffp, k->text, len);
2107			buffp += len;
2108		}
2109
2110		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2111			if (k->flags & PADDING)
2112				continue;
2113			if (NULL == k->text)
2114				continue;
2115			ss1 = strchr(k->text, '=');
2116			if (NULL == ss1)
2117				len = strlen(k->text);
2118			else
2119				len = ss1 - k->text;
2120			if (buffp + len + 1 >= buffend)
2121				break;
2122			if (firstVarName) {
2123				*buffp++ = ',';
2124				firstVarName = FALSE;
2125			}
2126			memcpy(buffp, k->text,(unsigned)len);
2127			buffp += len;
2128		}
2129		if (buffp + 2 >= buffend)
2130			break;
2131
2132		*buffp++ = '"';
2133		*buffp = '\0';
2134
2135		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2136		break;
2137	}
2138
2139	case CS_TAI:
2140		if (sys_tai > 0)
2141			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2142		break;
2143
2144	case CS_LEAPTAB:
2145	{
2146		leap_signature_t lsig;
2147		leapsec_getsig(&lsig);
2148		if (lsig.ttime > 0)
2149			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2150		break;
2151	}
2152
2153	case CS_LEAPEND:
2154	{
2155		leap_signature_t lsig;
2156		leapsec_getsig(&lsig);
2157		if (lsig.etime > 0)
2158			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2159		break;
2160	}
2161
2162#ifdef LEAP_SMEAR
2163	case CS_LEAPSMEARINTV:
2164		if (leap_smear_intv > 0)
2165			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2166		break;
2167
2168	case CS_LEAPSMEAROFFS:
2169		if (leap_smear_intv > 0)
2170			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2171				   leap_smear.doffset * 1e3);
2172		break;
2173#endif	/* LEAP_SMEAR */
2174
2175	case CS_RATE:
2176		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2177		break;
2178
2179	case CS_MRU_ENABLED:
2180		ctl_puthex(sys_var[varid].text, mon_enabled);
2181		break;
2182
2183	case CS_MRU_DEPTH:
2184		ctl_putuint(sys_var[varid].text, mru_entries);
2185		break;
2186
2187	case CS_MRU_MEM:
2188		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2189		u = (u_int)kb;
2190		if (kb - u >= 0.5)
2191			u++;
2192		ctl_putuint(sys_var[varid].text, u);
2193		break;
2194
2195	case CS_MRU_DEEPEST:
2196		ctl_putuint(sys_var[varid].text, mru_peakentries);
2197		break;
2198
2199	case CS_MRU_MINDEPTH:
2200		ctl_putuint(sys_var[varid].text, mru_mindepth);
2201		break;
2202
2203	case CS_MRU_MAXAGE:
2204		ctl_putint(sys_var[varid].text, mru_maxage);
2205		break;
2206
2207	case CS_MRU_MAXDEPTH:
2208		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2209		break;
2210
2211	case CS_MRU_MAXMEM:
2212		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2213		u = (u_int)kb;
2214		if (kb - u >= 0.5)
2215			u++;
2216		ctl_putuint(sys_var[varid].text, u);
2217		break;
2218
2219	case CS_SS_UPTIME:
2220		ctl_putuint(sys_var[varid].text, current_time);
2221		break;
2222
2223	case CS_SS_RESET:
2224		ctl_putuint(sys_var[varid].text,
2225			    current_time - sys_stattime);
2226		break;
2227
2228	case CS_SS_RECEIVED:
2229		ctl_putuint(sys_var[varid].text, sys_received);
2230		break;
2231
2232	case CS_SS_THISVER:
2233		ctl_putuint(sys_var[varid].text, sys_newversion);
2234		break;
2235
2236	case CS_SS_OLDVER:
2237		ctl_putuint(sys_var[varid].text, sys_oldversion);
2238		break;
2239
2240	case CS_SS_BADFORMAT:
2241		ctl_putuint(sys_var[varid].text, sys_badlength);
2242		break;
2243
2244	case CS_SS_BADAUTH:
2245		ctl_putuint(sys_var[varid].text, sys_badauth);
2246		break;
2247
2248	case CS_SS_DECLINED:
2249		ctl_putuint(sys_var[varid].text, sys_declined);
2250		break;
2251
2252	case CS_SS_RESTRICTED:
2253		ctl_putuint(sys_var[varid].text, sys_restricted);
2254		break;
2255
2256	case CS_SS_LIMITED:
2257		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2258		break;
2259
2260	case CS_SS_KODSENT:
2261		ctl_putuint(sys_var[varid].text, sys_kodsent);
2262		break;
2263
2264	case CS_SS_PROCESSED:
2265		ctl_putuint(sys_var[varid].text, sys_processed);
2266		break;
2267
2268	case CS_BCASTDELAY:
2269		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2270		break;
2271
2272	case CS_AUTHDELAY:
2273		LFPTOD(&sys_authdelay, dtemp);
2274		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2275		break;
2276
2277	case CS_AUTHKEYS:
2278		ctl_putuint(sys_var[varid].text, authnumkeys);
2279		break;
2280
2281	case CS_AUTHFREEK:
2282		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2283		break;
2284
2285	case CS_AUTHKLOOKUPS:
2286		ctl_putuint(sys_var[varid].text, authkeylookups);
2287		break;
2288
2289	case CS_AUTHKNOTFOUND:
2290		ctl_putuint(sys_var[varid].text, authkeynotfound);
2291		break;
2292
2293	case CS_AUTHKUNCACHED:
2294		ctl_putuint(sys_var[varid].text, authkeyuncached);
2295		break;
2296
2297	case CS_AUTHKEXPIRED:
2298		ctl_putuint(sys_var[varid].text, authkeyexpired);
2299		break;
2300
2301	case CS_AUTHENCRYPTS:
2302		ctl_putuint(sys_var[varid].text, authencryptions);
2303		break;
2304
2305	case CS_AUTHDECRYPTS:
2306		ctl_putuint(sys_var[varid].text, authdecryptions);
2307		break;
2308
2309	case CS_AUTHRESET:
2310		ctl_putuint(sys_var[varid].text,
2311			    current_time - auth_timereset);
2312		break;
2313
2314		/*
2315		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2316		 * unavailable, otherwise calls putfunc with args.
2317		 */
2318#ifndef KERNEL_PLL
2319# define	CTL_IF_KERNLOOP(putfunc, args)	\
2320		ctl_putint(sys_var[varid].text, 0)
2321#else
2322# define	CTL_IF_KERNLOOP(putfunc, args)	\
2323		putfunc args
2324#endif
2325
2326		/*
2327		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2328		 * loop is unavailable, or kernel hard PPS is not
2329		 * active, otherwise calls putfunc with args.
2330		 */
2331#ifndef KERNEL_PLL
2332# define	CTL_IF_KERNPPS(putfunc, args)	\
2333		ctl_putint(sys_var[varid].text, 0)
2334#else
2335# define	CTL_IF_KERNPPS(putfunc, args)			\
2336		if (0 == ntx.shift)				\
2337			ctl_putint(sys_var[varid].text, 0);	\
2338		else						\
2339			putfunc args	/* no trailing ; */
2340#endif
2341
2342	case CS_K_OFFSET:
2343		CTL_IF_KERNLOOP(
2344			ctl_putdblf,
2345			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2346		);
2347		break;
2348
2349	case CS_K_FREQ:
2350		CTL_IF_KERNLOOP(
2351			ctl_putsfp,
2352			(sys_var[varid].text, ntx.freq)
2353		);
2354		break;
2355
2356	case CS_K_MAXERR:
2357		CTL_IF_KERNLOOP(
2358			ctl_putdblf,
2359			(sys_var[varid].text, 0, 6,
2360			 to_ms * ntx.maxerror)
2361		);
2362		break;
2363
2364	case CS_K_ESTERR:
2365		CTL_IF_KERNLOOP(
2366			ctl_putdblf,
2367			(sys_var[varid].text, 0, 6,
2368			 to_ms * ntx.esterror)
2369		);
2370		break;
2371
2372	case CS_K_STFLAGS:
2373#ifndef KERNEL_PLL
2374		ss = "";
2375#else
2376		ss = k_st_flags(ntx.status);
2377#endif
2378		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2379		break;
2380
2381	case CS_K_TIMECONST:
2382		CTL_IF_KERNLOOP(
2383			ctl_putint,
2384			(sys_var[varid].text, ntx.constant)
2385		);
2386		break;
2387
2388	case CS_K_PRECISION:
2389		CTL_IF_KERNLOOP(
2390			ctl_putdblf,
2391			(sys_var[varid].text, 0, 6,
2392			    to_ms * ntx.precision)
2393		);
2394		break;
2395
2396	case CS_K_FREQTOL:
2397		CTL_IF_KERNLOOP(
2398			ctl_putsfp,
2399			(sys_var[varid].text, ntx.tolerance)
2400		);
2401		break;
2402
2403	case CS_K_PPS_FREQ:
2404		CTL_IF_KERNPPS(
2405			ctl_putsfp,
2406			(sys_var[varid].text, ntx.ppsfreq)
2407		);
2408		break;
2409
2410	case CS_K_PPS_STABIL:
2411		CTL_IF_KERNPPS(
2412			ctl_putsfp,
2413			(sys_var[varid].text, ntx.stabil)
2414		);
2415		break;
2416
2417	case CS_K_PPS_JITTER:
2418		CTL_IF_KERNPPS(
2419			ctl_putdbl,
2420			(sys_var[varid].text, to_ms * ntx.jitter)
2421		);
2422		break;
2423
2424	case CS_K_PPS_CALIBDUR:
2425		CTL_IF_KERNPPS(
2426			ctl_putint,
2427			(sys_var[varid].text, 1 << ntx.shift)
2428		);
2429		break;
2430
2431	case CS_K_PPS_CALIBS:
2432		CTL_IF_KERNPPS(
2433			ctl_putint,
2434			(sys_var[varid].text, ntx.calcnt)
2435		);
2436		break;
2437
2438	case CS_K_PPS_CALIBERRS:
2439		CTL_IF_KERNPPS(
2440			ctl_putint,
2441			(sys_var[varid].text, ntx.errcnt)
2442		);
2443		break;
2444
2445	case CS_K_PPS_JITEXC:
2446		CTL_IF_KERNPPS(
2447			ctl_putint,
2448			(sys_var[varid].text, ntx.jitcnt)
2449		);
2450		break;
2451
2452	case CS_K_PPS_STBEXC:
2453		CTL_IF_KERNPPS(
2454			ctl_putint,
2455			(sys_var[varid].text, ntx.stbcnt)
2456		);
2457		break;
2458
2459	case CS_IOSTATS_RESET:
2460		ctl_putuint(sys_var[varid].text,
2461			    current_time - io_timereset);
2462		break;
2463
2464	case CS_TOTAL_RBUF:
2465		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2466		break;
2467
2468	case CS_FREE_RBUF:
2469		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2470		break;
2471
2472	case CS_USED_RBUF:
2473		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2474		break;
2475
2476	case CS_RBUF_LOWATER:
2477		ctl_putuint(sys_var[varid].text, lowater_additions());
2478		break;
2479
2480	case CS_IO_DROPPED:
2481		ctl_putuint(sys_var[varid].text, packets_dropped);
2482		break;
2483
2484	case CS_IO_IGNORED:
2485		ctl_putuint(sys_var[varid].text, packets_ignored);
2486		break;
2487
2488	case CS_IO_RECEIVED:
2489		ctl_putuint(sys_var[varid].text, packets_received);
2490		break;
2491
2492	case CS_IO_SENT:
2493		ctl_putuint(sys_var[varid].text, packets_sent);
2494		break;
2495
2496	case CS_IO_SENDFAILED:
2497		ctl_putuint(sys_var[varid].text, packets_notsent);
2498		break;
2499
2500	case CS_IO_WAKEUPS:
2501		ctl_putuint(sys_var[varid].text, handler_calls);
2502		break;
2503
2504	case CS_IO_GOODWAKEUPS:
2505		ctl_putuint(sys_var[varid].text, handler_pkts);
2506		break;
2507
2508	case CS_TIMERSTATS_RESET:
2509		ctl_putuint(sys_var[varid].text,
2510			    current_time - timer_timereset);
2511		break;
2512
2513	case CS_TIMER_OVERRUNS:
2514		ctl_putuint(sys_var[varid].text, alarm_overflow);
2515		break;
2516
2517	case CS_TIMER_XMTS:
2518		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2519		break;
2520
2521	case CS_FUZZ:
2522		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2523		break;
2524	case CS_WANDER_THRESH:
2525		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2526		break;
2527#ifdef AUTOKEY
2528	case CS_FLAGS:
2529		if (crypto_flags)
2530			ctl_puthex(sys_var[CS_FLAGS].text,
2531			    crypto_flags);
2532		break;
2533
2534	case CS_DIGEST:
2535		if (crypto_flags) {
2536			strlcpy(str, OBJ_nid2ln(crypto_nid),
2537			    COUNTOF(str));
2538			ctl_putstr(sys_var[CS_DIGEST].text, str,
2539			    strlen(str));
2540		}
2541		break;
2542
2543	case CS_SIGNATURE:
2544		if (crypto_flags) {
2545			const EVP_MD *dp;
2546
2547			dp = EVP_get_digestbynid(crypto_flags >> 16);
2548			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2549			    COUNTOF(str));
2550			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2551			    strlen(str));
2552		}
2553		break;
2554
2555	case CS_HOST:
2556		if (hostval.ptr != NULL)
2557			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2558			    strlen(hostval.ptr));
2559		break;
2560
2561	case CS_IDENT:
2562		if (sys_ident != NULL)
2563			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2564			    strlen(sys_ident));
2565		break;
2566
2567	case CS_CERTIF:
2568		for (cp = cinfo; cp != NULL; cp = cp->link) {
2569			snprintf(str, sizeof(str), "%s %s 0x%x",
2570			    cp->subject, cp->issuer, cp->flags);
2571			ctl_putstr(sys_var[CS_CERTIF].text, str,
2572			    strlen(str));
2573			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2574		}
2575		break;
2576
2577	case CS_PUBLIC:
2578		if (hostval.tstamp != 0)
2579			ctl_putfs(sys_var[CS_PUBLIC].text,
2580			    ntohl(hostval.tstamp));
2581		break;
2582#endif	/* AUTOKEY */
2583
2584	default:
2585		break;
2586	}
2587}
2588
2589
2590/*
2591 * ctl_putpeer - output a peer variable
2592 */
2593static void
2594ctl_putpeer(
2595	int id,
2596	struct peer *p
2597	)
2598{
2599	char buf[CTL_MAX_DATA_LEN];
2600	char *s;
2601	char *t;
2602	char *be;
2603	int i;
2604	const struct ctl_var *k;
2605#ifdef AUTOKEY
2606	struct autokey *ap;
2607	const EVP_MD *dp;
2608	const char *str;
2609#endif	/* AUTOKEY */
2610
2611	switch (id) {
2612
2613	case CP_CONFIG:
2614		ctl_putuint(peer_var[id].text,
2615			    !(FLAG_PREEMPT & p->flags));
2616		break;
2617
2618	case CP_AUTHENABLE:
2619		ctl_putuint(peer_var[id].text, !(p->keyid));
2620		break;
2621
2622	case CP_AUTHENTIC:
2623		ctl_putuint(peer_var[id].text,
2624			    !!(FLAG_AUTHENTIC & p->flags));
2625		break;
2626
2627	case CP_SRCADR:
2628		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2629		break;
2630
2631	case CP_SRCPORT:
2632		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2633		break;
2634
2635	case CP_SRCHOST:
2636		if (p->hostname != NULL)
2637			ctl_putstr(peer_var[id].text, p->hostname,
2638				   strlen(p->hostname));
2639		break;
2640
2641	case CP_DSTADR:
2642		ctl_putadr(peer_var[id].text, 0,
2643			   (p->dstadr != NULL)
2644				? &p->dstadr->sin
2645				: NULL);
2646		break;
2647
2648	case CP_DSTPORT:
2649		ctl_putuint(peer_var[id].text,
2650			    (p->dstadr != NULL)
2651				? SRCPORT(&p->dstadr->sin)
2652				: 0);
2653		break;
2654
2655	case CP_IN:
2656		if (p->r21 > 0.)
2657			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2658		break;
2659
2660	case CP_OUT:
2661		if (p->r34 > 0.)
2662			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2663		break;
2664
2665	case CP_RATE:
2666		ctl_putuint(peer_var[id].text, p->throttle);
2667		break;
2668
2669	case CP_LEAP:
2670		ctl_putuint(peer_var[id].text, p->leap);
2671		break;
2672
2673	case CP_HMODE:
2674		ctl_putuint(peer_var[id].text, p->hmode);
2675		break;
2676
2677	case CP_STRATUM:
2678		ctl_putuint(peer_var[id].text, p->stratum);
2679		break;
2680
2681	case CP_PPOLL:
2682		ctl_putuint(peer_var[id].text, p->ppoll);
2683		break;
2684
2685	case CP_HPOLL:
2686		ctl_putuint(peer_var[id].text, p->hpoll);
2687		break;
2688
2689	case CP_PRECISION:
2690		ctl_putint(peer_var[id].text, p->precision);
2691		break;
2692
2693	case CP_ROOTDELAY:
2694		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2695		break;
2696
2697	case CP_ROOTDISPERSION:
2698		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2699		break;
2700
2701	case CP_REFID:
2702#ifdef REFCLOCK
2703		if (p->flags & FLAG_REFCLOCK) {
2704			ctl_putrefid(peer_var[id].text, p->refid);
2705			break;
2706		}
2707#endif
2708		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2709			ctl_putadr(peer_var[id].text, p->refid,
2710				   NULL);
2711		else
2712			ctl_putrefid(peer_var[id].text, p->refid);
2713		break;
2714
2715	case CP_REFTIME:
2716		ctl_putts(peer_var[id].text, &p->reftime);
2717		break;
2718
2719	case CP_ORG:
2720		ctl_putts(peer_var[id].text, &p->aorg);
2721		break;
2722
2723	case CP_REC:
2724		ctl_putts(peer_var[id].text, &p->dst);
2725		break;
2726
2727	case CP_XMT:
2728		if (p->xleave)
2729			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2730		break;
2731
2732	case CP_BIAS:
2733		if (p->bias != 0.)
2734			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2735		break;
2736
2737	case CP_REACH:
2738		ctl_puthex(peer_var[id].text, p->reach);
2739		break;
2740
2741	case CP_FLASH:
2742		ctl_puthex(peer_var[id].text, p->flash);
2743		break;
2744
2745	case CP_TTL:
2746#ifdef REFCLOCK
2747		if (p->flags & FLAG_REFCLOCK) {
2748			ctl_putuint(peer_var[id].text, p->ttl);
2749			break;
2750		}
2751#endif
2752		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2753			ctl_putint(peer_var[id].text,
2754				   sys_ttl[p->ttl]);
2755		break;
2756
2757	case CP_UNREACH:
2758		ctl_putuint(peer_var[id].text, p->unreach);
2759		break;
2760
2761	case CP_TIMER:
2762		ctl_putuint(peer_var[id].text,
2763			    p->nextdate - current_time);
2764		break;
2765
2766	case CP_DELAY:
2767		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2768		break;
2769
2770	case CP_OFFSET:
2771		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2772		break;
2773
2774	case CP_JITTER:
2775		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2776		break;
2777
2778	case CP_DISPERSION:
2779		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2780		break;
2781
2782	case CP_KEYID:
2783		if (p->keyid > NTP_MAXKEY)
2784			ctl_puthex(peer_var[id].text, p->keyid);
2785		else
2786			ctl_putuint(peer_var[id].text, p->keyid);
2787		break;
2788
2789	case CP_FILTDELAY:
2790		ctl_putarray(peer_var[id].text, p->filter_delay,
2791			     p->filter_nextpt);
2792		break;
2793
2794	case CP_FILTOFFSET:
2795		ctl_putarray(peer_var[id].text, p->filter_offset,
2796			     p->filter_nextpt);
2797		break;
2798
2799	case CP_FILTERROR:
2800		ctl_putarray(peer_var[id].text, p->filter_disp,
2801			     p->filter_nextpt);
2802		break;
2803
2804	case CP_PMODE:
2805		ctl_putuint(peer_var[id].text, p->pmode);
2806		break;
2807
2808	case CP_RECEIVED:
2809		ctl_putuint(peer_var[id].text, p->received);
2810		break;
2811
2812	case CP_SENT:
2813		ctl_putuint(peer_var[id].text, p->sent);
2814		break;
2815
2816	case CP_VARLIST:
2817		s = buf;
2818		be = buf + sizeof(buf);
2819		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2820			break;	/* really long var name */
2821
2822		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2823		s += strlen(s);
2824		t = s;
2825		for (k = peer_var; !(EOV & k->flags); k++) {
2826			if (PADDING & k->flags)
2827				continue;
2828			i = strlen(k->text);
2829			if (s + i + 1 >= be)
2830				break;
2831			if (s != t)
2832				*s++ = ',';
2833			memcpy(s, k->text, i);
2834			s += i;
2835		}
2836		if (s + 2 < be) {
2837			*s++ = '"';
2838			*s = '\0';
2839			ctl_putdata(buf, (u_int)(s - buf), 0);
2840		}
2841		break;
2842
2843	case CP_TIMEREC:
2844		ctl_putuint(peer_var[id].text,
2845			    current_time - p->timereceived);
2846		break;
2847
2848	case CP_TIMEREACH:
2849		ctl_putuint(peer_var[id].text,
2850			    current_time - p->timereachable);
2851		break;
2852
2853	case CP_BADAUTH:
2854		ctl_putuint(peer_var[id].text, p->badauth);
2855		break;
2856
2857	case CP_BOGUSORG:
2858		ctl_putuint(peer_var[id].text, p->bogusorg);
2859		break;
2860
2861	case CP_OLDPKT:
2862		ctl_putuint(peer_var[id].text, p->oldpkt);
2863		break;
2864
2865	case CP_SELDISP:
2866		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2867		break;
2868
2869	case CP_SELBROKEN:
2870		ctl_putuint(peer_var[id].text, p->selbroken);
2871		break;
2872
2873	case CP_CANDIDATE:
2874		ctl_putuint(peer_var[id].text, p->status);
2875		break;
2876#ifdef AUTOKEY
2877	case CP_FLAGS:
2878		if (p->crypto)
2879			ctl_puthex(peer_var[id].text, p->crypto);
2880		break;
2881
2882	case CP_SIGNATURE:
2883		if (p->crypto) {
2884			dp = EVP_get_digestbynid(p->crypto >> 16);
2885			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2886			ctl_putstr(peer_var[id].text, str, strlen(str));
2887		}
2888		break;
2889
2890	case CP_HOST:
2891		if (p->subject != NULL)
2892			ctl_putstr(peer_var[id].text, p->subject,
2893			    strlen(p->subject));
2894		break;
2895
2896	case CP_VALID:		/* not used */
2897		break;
2898
2899	case CP_INITSEQ:
2900		if (NULL == (ap = p->recval.ptr))
2901			break;
2902
2903		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2904		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2905		ctl_putfs(peer_var[CP_INITTSP].text,
2906			  ntohl(p->recval.tstamp));
2907		break;
2908
2909	case CP_IDENT:
2910		if (p->ident != NULL)
2911			ctl_putstr(peer_var[id].text, p->ident,
2912			    strlen(p->ident));
2913		break;
2914
2915
2916#endif	/* AUTOKEY */
2917	}
2918}
2919
2920
2921#ifdef REFCLOCK
2922/*
2923 * ctl_putclock - output clock variables
2924 */
2925static void
2926ctl_putclock(
2927	int id,
2928	struct refclockstat *pcs,
2929	int mustput
2930	)
2931{
2932	char buf[CTL_MAX_DATA_LEN];
2933	char *s, *t, *be;
2934	const char *ss;
2935	int i;
2936	const struct ctl_var *k;
2937
2938	switch (id) {
2939
2940	case CC_TYPE:
2941		if (mustput || pcs->clockdesc == NULL
2942		    || *(pcs->clockdesc) == '\0') {
2943			ctl_putuint(clock_var[id].text, pcs->type);
2944		}
2945		break;
2946	case CC_TIMECODE:
2947		ctl_putstr(clock_var[id].text,
2948			   pcs->p_lastcode,
2949			   (unsigned)pcs->lencode);
2950		break;
2951
2952	case CC_POLL:
2953		ctl_putuint(clock_var[id].text, pcs->polls);
2954		break;
2955
2956	case CC_NOREPLY:
2957		ctl_putuint(clock_var[id].text,
2958			    pcs->noresponse);
2959		break;
2960
2961	case CC_BADFORMAT:
2962		ctl_putuint(clock_var[id].text,
2963			    pcs->badformat);
2964		break;
2965
2966	case CC_BADDATA:
2967		ctl_putuint(clock_var[id].text,
2968			    pcs->baddata);
2969		break;
2970
2971	case CC_FUDGETIME1:
2972		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2973			ctl_putdbl(clock_var[id].text,
2974				   pcs->fudgetime1 * 1e3);
2975		break;
2976
2977	case CC_FUDGETIME2:
2978		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2979			ctl_putdbl(clock_var[id].text,
2980				   pcs->fudgetime2 * 1e3);
2981		break;
2982
2983	case CC_FUDGEVAL1:
2984		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2985			ctl_putint(clock_var[id].text,
2986				   pcs->fudgeval1);
2987		break;
2988
2989	case CC_FUDGEVAL2:
2990		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2991			if (pcs->fudgeval1 > 1)
2992				ctl_putadr(clock_var[id].text,
2993					   pcs->fudgeval2, NULL);
2994			else
2995				ctl_putrefid(clock_var[id].text,
2996					     pcs->fudgeval2);
2997		}
2998		break;
2999
3000	case CC_FLAGS:
3001		ctl_putuint(clock_var[id].text, pcs->flags);
3002		break;
3003
3004	case CC_DEVICE:
3005		if (pcs->clockdesc == NULL ||
3006		    *(pcs->clockdesc) == '\0') {
3007			if (mustput)
3008				ctl_putstr(clock_var[id].text,
3009					   "", 0);
3010		} else {
3011			ctl_putstr(clock_var[id].text,
3012				   pcs->clockdesc,
3013				   strlen(pcs->clockdesc));
3014		}
3015		break;
3016
3017	case CC_VARLIST:
3018		s = buf;
3019		be = buf + sizeof(buf);
3020		if (strlen(clock_var[CC_VARLIST].text) + 4 >
3021		    sizeof(buf))
3022			break;	/* really long var name */
3023
3024		snprintf(s, sizeof(buf), "%s=\"",
3025			 clock_var[CC_VARLIST].text);
3026		s += strlen(s);
3027		t = s;
3028
3029		for (k = clock_var; !(EOV & k->flags); k++) {
3030			if (PADDING & k->flags)
3031				continue;
3032
3033			i = strlen(k->text);
3034			if (s + i + 1 >= be)
3035				break;
3036
3037			if (s != t)
3038				*s++ = ',';
3039			memcpy(s, k->text, i);
3040			s += i;
3041		}
3042
3043		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3044			if (PADDING & k->flags)
3045				continue;
3046
3047			ss = k->text;
3048			if (NULL == ss)
3049				continue;
3050
3051			while (*ss && *ss != '=')
3052				ss++;
3053			i = ss - k->text;
3054			if (s + i + 1 >= be)
3055				break;
3056
3057			if (s != t)
3058				*s++ = ',';
3059			memcpy(s, k->text, (unsigned)i);
3060			s += i;
3061			*s = '\0';
3062		}
3063		if (s + 2 >= be)
3064			break;
3065
3066		*s++ = '"';
3067		*s = '\0';
3068		ctl_putdata(buf, (unsigned)(s - buf), 0);
3069		break;
3070	}
3071}
3072#endif
3073
3074
3075
3076/*
3077 * ctl_getitem - get the next data item from the incoming packet
3078 */
3079static const struct ctl_var *
3080ctl_getitem(
3081	const struct ctl_var *var_list,
3082	char **data
3083	)
3084{
3085	/* [Bug 3008] First check the packet data sanity, then search
3086	 * the key. This improves the consistency of result values: If
3087	 * the result is NULL once, it will never be EOV again for this
3088	 * packet; If it's EOV, it will never be NULL again until the
3089	 * variable is found and processed in a given 'var_list'. (That
3090	 * is, a result is returned that is neither NULL nor EOV).
3091	 */
3092	static const struct ctl_var eol = { 0, EOV, NULL };
3093	static char buf[128];
3094	static u_long quiet_until;
3095	const struct ctl_var *v;
3096	char *cp;
3097	char *tp;
3098
3099	/*
3100	 * Part One: Validate the packet state
3101	 */
3102
3103	/* Delete leading commas and white space */
3104	while (reqpt < reqend && (*reqpt == ',' ||
3105				  isspace((unsigned char)*reqpt)))
3106		reqpt++;
3107	if (reqpt >= reqend)
3108		return NULL;
3109
3110	/* Scan the string in the packet until we hit comma or
3111	 * EoB. Register position of first '=' on the fly. */
3112	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3113		if (*cp == '=' && tp == NULL)
3114			tp = cp;
3115		if (*cp == ',')
3116			break;
3117	}
3118
3119	/* Process payload, if any. */
3120	*data = NULL;
3121	if (NULL != tp) {
3122		/* eventually strip white space from argument. */
3123		const char *plhead = tp + 1; /* skip the '=' */
3124		const char *pltail = cp;
3125		size_t      plsize;
3126
3127		while (plhead != pltail && isspace((u_char)plhead[0]))
3128			++plhead;
3129		while (plhead != pltail && isspace((u_char)pltail[-1]))
3130			--pltail;
3131
3132		/* check payload size, terminate packet on overflow */
3133		plsize = (size_t)(pltail - plhead);
3134		if (plsize >= sizeof(buf))
3135			goto badpacket;
3136
3137		/* copy data, NUL terminate, and set result data ptr */
3138		memcpy(buf, plhead, plsize);
3139		buf[plsize] = '\0';
3140		*data = buf;
3141	} else {
3142		/* no payload, current end --> current name termination */
3143		tp = cp;
3144	}
3145
3146	/* Part Two
3147	 *
3148	 * Now we're sure that the packet data itself is sane. Scan the
3149	 * list now. Make sure a NULL list is properly treated by
3150	 * returning a synthetic End-Of-Values record. We must not
3151	 * return NULL pointers after this point, or the behaviour would
3152	 * become inconsistent if called several times with different
3153	 * variable lists after an EoV was returned.  (Such a behavior
3154	 * actually caused Bug 3008.)
3155	 */
3156
3157	if (NULL == var_list)
3158		return &eol;
3159
3160	for (v = var_list; !(EOV & v->flags); ++v)
3161		if (!(PADDING & v->flags)) {
3162			/* Check if the var name matches the buffer. The
3163			 * name is bracketed by [reqpt..tp] and not NUL
3164			 * terminated, and it contains no '=' char. The
3165			 * lookup value IS NUL-terminated but might
3166			 * include a '='... We have to look out for
3167			 * that!
3168			 */
3169			const char *sp1 = reqpt;
3170			const char *sp2 = v->text;
3171
3172			while ((sp1 != tp) && (*sp1 == *sp2)) {
3173				++sp1;
3174				++sp2;
3175			}
3176			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3177				break;
3178		}
3179
3180	/* See if we have found a valid entry or not. If found, advance
3181	 * the request pointer for the next round; if not, clear the
3182	 * data pointer so we have no dangling garbage here.
3183	 */
3184	if (EOV & v->flags)
3185		*data = NULL;
3186	else
3187		reqpt = cp + (cp != reqend);
3188	return v;
3189
3190  badpacket:
3191	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3192	numctlbadpkts++;
3193	NLOG(NLOG_SYSEVENT)
3194	    if (quiet_until <= current_time) {
3195		    quiet_until = current_time + 300;
3196		    msyslog(LOG_WARNING,
3197			    "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
3198			    stoa(rmt_addr), SRCPORT(rmt_addr));
3199	    }
3200	reqpt = reqend; /* never again for this packet! */
3201	return NULL;
3202}
3203
3204
3205/*
3206 * control_unspec - response to an unspecified op-code
3207 */
3208/*ARGSUSED*/
3209static void
3210control_unspec(
3211	struct recvbuf *rbufp,
3212	int restrict_mask
3213	)
3214{
3215	struct peer *peer;
3216
3217	/*
3218	 * What is an appropriate response to an unspecified op-code?
3219	 * I return no errors and no data, unless a specified assocation
3220	 * doesn't exist.
3221	 */
3222	if (res_associd) {
3223		peer = findpeerbyassoc(res_associd);
3224		if (NULL == peer) {
3225			ctl_error(CERR_BADASSOC);
3226			return;
3227		}
3228		rpkt.status = htons(ctlpeerstatus(peer));
3229	} else
3230		rpkt.status = htons(ctlsysstatus());
3231	ctl_flushpkt(0);
3232}
3233
3234
3235/*
3236 * read_status - return either a list of associd's, or a particular
3237 * peer's status.
3238 */
3239/*ARGSUSED*/
3240static void
3241read_status(
3242	struct recvbuf *rbufp,
3243	int restrict_mask
3244	)
3245{
3246	struct peer *peer;
3247	const u_char *cp;
3248	size_t n;
3249	/* a_st holds association ID, status pairs alternating */
3250	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3251
3252#ifdef DEBUG
3253	if (debug > 2)
3254		printf("read_status: ID %d\n", res_associd);
3255#endif
3256	/*
3257	 * Two choices here. If the specified association ID is
3258	 * zero we return all known assocation ID's.  Otherwise
3259	 * we return a bunch of stuff about the particular peer.
3260	 */
3261	if (res_associd) {
3262		peer = findpeerbyassoc(res_associd);
3263		if (NULL == peer) {
3264			ctl_error(CERR_BADASSOC);
3265			return;
3266		}
3267		rpkt.status = htons(ctlpeerstatus(peer));
3268		if (res_authokay)
3269			peer->num_events = 0;
3270		/*
3271		 * For now, output everything we know about the
3272		 * peer. May be more selective later.
3273		 */
3274		for (cp = def_peer_var; *cp != 0; cp++)
3275			ctl_putpeer((int)*cp, peer);
3276		ctl_flushpkt(0);
3277		return;
3278	}
3279	n = 0;
3280	rpkt.status = htons(ctlsysstatus());
3281	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3282		a_st[n++] = htons(peer->associd);
3283		a_st[n++] = htons(ctlpeerstatus(peer));
3284		/* two entries each loop iteration, so n + 1 */
3285		if (n + 1 >= COUNTOF(a_st)) {
3286			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3287				    1);
3288			n = 0;
3289		}
3290	}
3291	if (n)
3292		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3293	ctl_flushpkt(0);
3294}
3295
3296
3297/*
3298 * read_peervars - half of read_variables() implementation
3299 */
3300static void
3301read_peervars(void)
3302{
3303	const struct ctl_var *v;
3304	struct peer *peer;
3305	const u_char *cp;
3306	size_t i;
3307	char *	valuep;
3308	u_char	wants[CP_MAXCODE + 1];
3309	u_int	gotvar;
3310
3311	/*
3312	 * Wants info for a particular peer. See if we know
3313	 * the guy.
3314	 */
3315	peer = findpeerbyassoc(res_associd);
3316	if (NULL == peer) {
3317		ctl_error(CERR_BADASSOC);
3318		return;
3319	}
3320	rpkt.status = htons(ctlpeerstatus(peer));
3321	if (res_authokay)
3322		peer->num_events = 0;
3323	ZERO(wants);
3324	gotvar = 0;
3325	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3326		if (v->flags & EOV) {
3327			ctl_error(CERR_UNKNOWNVAR);
3328			return;
3329		}
3330		INSIST(v->code < COUNTOF(wants));
3331		wants[v->code] = 1;
3332		gotvar = 1;
3333	}
3334	if (gotvar) {
3335		for (i = 1; i < COUNTOF(wants); i++)
3336			if (wants[i])
3337				ctl_putpeer(i, peer);
3338	} else
3339		for (cp = def_peer_var; *cp != 0; cp++)
3340			ctl_putpeer((int)*cp, peer);
3341	ctl_flushpkt(0);
3342}
3343
3344
3345/*
3346 * read_sysvars - half of read_variables() implementation
3347 */
3348static void
3349read_sysvars(void)
3350{
3351	const struct ctl_var *v;
3352	struct ctl_var *kv;
3353	u_int	n;
3354	u_int	gotvar;
3355	const u_char *cs;
3356	char *	valuep;
3357	const char * pch;
3358	u_char *wants;
3359	size_t	wants_count;
3360
3361	/*
3362	 * Wants system variables. Figure out which he wants
3363	 * and give them to him.
3364	 */
3365	rpkt.status = htons(ctlsysstatus());
3366	if (res_authokay)
3367		ctl_sys_num_events = 0;
3368	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3369	wants = emalloc_zero(wants_count);
3370	gotvar = 0;
3371	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3372		if (!(EOV & v->flags)) {
3373			INSIST(v->code < wants_count);
3374			wants[v->code] = 1;
3375			gotvar = 1;
3376		} else {
3377			v = ctl_getitem(ext_sys_var, &valuep);
3378			if (NULL == v) {
3379				ctl_error(CERR_BADVALUE);
3380				free(wants);
3381				return;
3382			}
3383			if (EOV & v->flags) {
3384				ctl_error(CERR_UNKNOWNVAR);
3385				free(wants);
3386				return;
3387			}
3388			n = v->code + CS_MAXCODE + 1;
3389			INSIST(n < wants_count);
3390			wants[n] = 1;
3391			gotvar = 1;
3392		}
3393	}
3394	if (gotvar) {
3395		for (n = 1; n <= CS_MAXCODE; n++)
3396			if (wants[n])
3397				ctl_putsys(n);
3398		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3399			if (wants[n + CS_MAXCODE + 1]) {
3400				pch = ext_sys_var[n].text;
3401				ctl_putdata(pch, strlen(pch), 0);
3402			}
3403	} else {
3404		for (cs = def_sys_var; *cs != 0; cs++)
3405			ctl_putsys((int)*cs);
3406		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3407			if (DEF & kv->flags)
3408				ctl_putdata(kv->text, strlen(kv->text),
3409					    0);
3410	}
3411	free(wants);
3412	ctl_flushpkt(0);
3413}
3414
3415
3416/*
3417 * read_variables - return the variables the caller asks for
3418 */
3419/*ARGSUSED*/
3420static void
3421read_variables(
3422	struct recvbuf *rbufp,
3423	int restrict_mask
3424	)
3425{
3426	if (res_associd)
3427		read_peervars();
3428	else
3429		read_sysvars();
3430}
3431
3432
3433/*
3434 * write_variables - write into variables. We only allow leap bit
3435 * writing this way.
3436 */
3437/*ARGSUSED*/
3438static void
3439write_variables(
3440	struct recvbuf *rbufp,
3441	int restrict_mask
3442	)
3443{
3444	const struct ctl_var *v;
3445	int ext_var;
3446	char *valuep;
3447	long val;
3448	size_t octets;
3449	char *vareqv;
3450	const char *t;
3451	char *tt;
3452
3453	val = 0;
3454	/*
3455	 * If he's trying to write into a peer tell him no way
3456	 */
3457	if (res_associd != 0) {
3458		ctl_error(CERR_PERMISSION);
3459		return;
3460	}
3461
3462	/*
3463	 * Set status
3464	 */
3465	rpkt.status = htons(ctlsysstatus());
3466
3467	/*
3468	 * Look through the variables. Dump out at the first sign of
3469	 * trouble.
3470	 */
3471	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3472		ext_var = 0;
3473		if (v->flags & EOV) {
3474			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3475			    0) {
3476				if (v->flags & EOV) {
3477					ctl_error(CERR_UNKNOWNVAR);
3478					return;
3479				}
3480				ext_var = 1;
3481			} else {
3482				break;
3483			}
3484		}
3485		if (!(v->flags & CAN_WRITE)) {
3486			ctl_error(CERR_PERMISSION);
3487			return;
3488		}
3489		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3490							    &val))) {
3491			ctl_error(CERR_BADFMT);
3492			return;
3493		}
3494		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3495			ctl_error(CERR_BADVALUE);
3496			return;
3497		}
3498
3499		if (ext_var) {
3500			octets = strlen(v->text) + strlen(valuep) + 2;
3501			vareqv = emalloc(octets);
3502			tt = vareqv;
3503			t = v->text;
3504			while (*t && *t != '=')
3505				*tt++ = *t++;
3506			*tt++ = '=';
3507			memcpy(tt, valuep, 1 + strlen(valuep));
3508			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3509			free(vareqv);
3510		} else {
3511			ctl_error(CERR_UNSPEC); /* really */
3512			return;
3513		}
3514	}
3515
3516	/*
3517	 * If we got anything, do it. xxx nothing to do ***
3518	 */
3519	/*
3520	  if (leapind != ~0 || leapwarn != ~0) {
3521	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3522	  ctl_error(CERR_PERMISSION);
3523	  return;
3524	  }
3525	  }
3526	*/
3527	ctl_flushpkt(0);
3528}
3529
3530
3531/*
3532 * configure() processes ntpq :config/config-from-file, allowing
3533 *		generic runtime reconfiguration.
3534 */
3535static void configure(
3536	struct recvbuf *rbufp,
3537	int restrict_mask
3538	)
3539{
3540	size_t data_count;
3541	int retval;
3542
3543	/* I haven't yet implemented changes to an existing association.
3544	 * Hence check if the association id is 0
3545	 */
3546	if (res_associd != 0) {
3547		ctl_error(CERR_BADVALUE);
3548		return;
3549	}
3550
3551	if (RES_NOMODIFY & restrict_mask) {
3552		snprintf(remote_config.err_msg,
3553			 sizeof(remote_config.err_msg),
3554			 "runtime configuration prohibited by restrict ... nomodify");
3555		ctl_putdata(remote_config.err_msg,
3556			    strlen(remote_config.err_msg), 0);
3557		ctl_flushpkt(0);
3558		NLOG(NLOG_SYSINFO)
3559			msyslog(LOG_NOTICE,
3560				"runtime config from %s rejected due to nomodify restriction",
3561				stoa(&rbufp->recv_srcadr));
3562		sys_restricted++;
3563		return;
3564	}
3565
3566	/* Initialize the remote config buffer */
3567	data_count = remoteconfig_cmdlength(reqpt, reqend);
3568
3569	if (data_count > sizeof(remote_config.buffer) - 2) {
3570		snprintf(remote_config.err_msg,
3571			 sizeof(remote_config.err_msg),
3572			 "runtime configuration failed: request too long");
3573		ctl_putdata(remote_config.err_msg,
3574			    strlen(remote_config.err_msg), 0);
3575		ctl_flushpkt(0);
3576		msyslog(LOG_NOTICE,
3577			"runtime config from %s rejected: request too long",
3578			stoa(&rbufp->recv_srcadr));
3579		return;
3580	}
3581	/* Bug 2853 -- check if all characters were acceptable */
3582	if (data_count != (size_t)(reqend - reqpt)) {
3583		snprintf(remote_config.err_msg,
3584			 sizeof(remote_config.err_msg),
3585			 "runtime configuration failed: request contains an unprintable character");
3586		ctl_putdata(remote_config.err_msg,
3587			    strlen(remote_config.err_msg), 0);
3588		ctl_flushpkt(0);
3589		msyslog(LOG_NOTICE,
3590			"runtime config from %s rejected: request contains an unprintable character: %0x",
3591			stoa(&rbufp->recv_srcadr),
3592			reqpt[data_count]);
3593		return;
3594	}
3595
3596	memcpy(remote_config.buffer, reqpt, data_count);
3597	/* The buffer has no trailing linefeed or NUL right now. For
3598	 * logging, we do not want a newline, so we do that first after
3599	 * adding the necessary NUL byte.
3600	 */
3601	remote_config.buffer[data_count] = '\0';
3602	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3603		remote_config.buffer));
3604	msyslog(LOG_NOTICE, "%s config: %s",
3605		stoa(&rbufp->recv_srcadr),
3606		remote_config.buffer);
3607
3608	/* Now we have to make sure there is a NL/NUL sequence at the
3609	 * end of the buffer before we parse it.
3610	 */
3611	remote_config.buffer[data_count++] = '\n';
3612	remote_config.buffer[data_count] = '\0';
3613	remote_config.pos = 0;
3614	remote_config.err_pos = 0;
3615	remote_config.no_errors = 0;
3616	config_remotely(&rbufp->recv_srcadr);
3617
3618	/*
3619	 * Check if errors were reported. If not, output 'Config
3620	 * Succeeded'.  Else output the error count.  It would be nice
3621	 * to output any parser error messages.
3622	 */
3623	if (0 == remote_config.no_errors) {
3624		retval = snprintf(remote_config.err_msg,
3625				  sizeof(remote_config.err_msg),
3626				  "Config Succeeded");
3627		if (retval > 0)
3628			remote_config.err_pos += retval;
3629	}
3630
3631	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3632	ctl_flushpkt(0);
3633
3634	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3635
3636	if (remote_config.no_errors > 0)
3637		msyslog(LOG_NOTICE, "%d error in %s config",
3638			remote_config.no_errors,
3639			stoa(&rbufp->recv_srcadr));
3640}
3641
3642
3643/*
3644 * derive_nonce - generate client-address-specific nonce value
3645 *		  associated with a given timestamp.
3646 */
3647static u_int32 derive_nonce(
3648	sockaddr_u *	addr,
3649	u_int32		ts_i,
3650	u_int32		ts_f
3651	)
3652{
3653	static u_int32	salt[4];
3654	static u_long	last_salt_update;
3655	union d_tag {
3656		u_char	digest[EVP_MAX_MD_SIZE];
3657		u_int32 extract;
3658	}		d;
3659	EVP_MD_CTX	*ctx;
3660	u_int		len;
3661
3662	while (!salt[0] || current_time - last_salt_update >= 3600) {
3663		salt[0] = ntp_random();
3664		salt[1] = ntp_random();
3665		salt[2] = ntp_random();
3666		salt[3] = ntp_random();
3667		last_salt_update = current_time;
3668	}
3669
3670	ctx = EVP_MD_CTX_new();
3671	EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5));
3672	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3673	EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i));
3674	EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f));
3675	if (IS_IPV4(addr))
3676		EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr),
3677			         sizeof(SOCK_ADDR4(addr)));
3678	else
3679		EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr),
3680			         sizeof(SOCK_ADDR6(addr)));
3681	EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3682	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3683	EVP_DigestFinal(ctx, d.digest, &len);
3684	EVP_MD_CTX_free(ctx);
3685
3686	return d.extract;
3687}
3688
3689
3690/*
3691 * generate_nonce - generate client-address-specific nonce string.
3692 */
3693static void generate_nonce(
3694	struct recvbuf *	rbufp,
3695	char *			nonce,
3696	size_t			nonce_octets
3697	)
3698{
3699	u_int32 derived;
3700
3701	derived = derive_nonce(&rbufp->recv_srcadr,
3702			       rbufp->recv_time.l_ui,
3703			       rbufp->recv_time.l_uf);
3704	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3705		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3706}
3707
3708
3709/*
3710 * validate_nonce - validate client-address-specific nonce string.
3711 *
3712 * Returns TRUE if the local calculation of the nonce matches the
3713 * client-provided value and the timestamp is recent enough.
3714 */
3715static int validate_nonce(
3716	const char *		pnonce,
3717	struct recvbuf *	rbufp
3718	)
3719{
3720	u_int	ts_i;
3721	u_int	ts_f;
3722	l_fp	ts;
3723	l_fp	now_delta;
3724	u_int	supposed;
3725	u_int	derived;
3726
3727	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3728		return FALSE;
3729
3730	ts.l_ui = (u_int32)ts_i;
3731	ts.l_uf = (u_int32)ts_f;
3732	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3733	get_systime(&now_delta);
3734	L_SUB(&now_delta, &ts);
3735
3736	return (supposed == derived && now_delta.l_ui < 16);
3737}
3738
3739
3740/*
3741 * send_random_tag_value - send a randomly-generated three character
3742 *			   tag prefix, a '.', an index, a '=' and a
3743 *			   random integer value.
3744 *
3745 * To try to force clients to ignore unrecognized tags in mrulist,
3746 * reslist, and ifstats responses, the first and last rows are spiced
3747 * with randomly-generated tag names with correct .# index.  Make it
3748 * three characters knowing that none of the currently-used subscripted
3749 * tags have that length, avoiding the need to test for
3750 * tag collision.
3751 */
3752static void
3753send_random_tag_value(
3754	int	indx
3755	)
3756{
3757	int	noise;
3758	char	buf[32];
3759
3760	noise = rand() ^ (rand() << 16);
3761	buf[0] = 'a' + noise % 26;
3762	noise >>= 5;
3763	buf[1] = 'a' + noise % 26;
3764	noise >>= 5;
3765	buf[2] = 'a' + noise % 26;
3766	noise >>= 5;
3767	buf[3] = '.';
3768	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3769	ctl_putuint(buf, noise);
3770}
3771
3772
3773/*
3774 * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3775 *
3776 * To keep clients honest about not depending on the order of values,
3777 * and thereby avoid being locked into ugly workarounds to maintain
3778 * backward compatibility later as new fields are added to the response,
3779 * the order is random.
3780 */
3781static void
3782send_mru_entry(
3783	mon_entry *	mon,
3784	int		count
3785	)
3786{
3787	const char first_fmt[] =	"first.%d";
3788	const char ct_fmt[] =		"ct.%d";
3789	const char mv_fmt[] =		"mv.%d";
3790	const char rs_fmt[] =		"rs.%d";
3791	char	tag[32];
3792	u_char	sent[6]; /* 6 tag=value pairs */
3793	u_int32 noise;
3794	u_int	which;
3795	u_int	remaining;
3796	const char * pch;
3797
3798	remaining = COUNTOF(sent);
3799	ZERO(sent);
3800	noise = (u_int32)(rand() ^ (rand() << 16));
3801	while (remaining > 0) {
3802		which = (noise & 7) % COUNTOF(sent);
3803		noise >>= 3;
3804		while (sent[which])
3805			which = (which + 1) % COUNTOF(sent);
3806
3807		switch (which) {
3808
3809		case 0:
3810			snprintf(tag, sizeof(tag), addr_fmt, count);
3811			pch = sptoa(&mon->rmtadr);
3812			ctl_putunqstr(tag, pch, strlen(pch));
3813			break;
3814
3815		case 1:
3816			snprintf(tag, sizeof(tag), last_fmt, count);
3817			ctl_putts(tag, &mon->last);
3818			break;
3819
3820		case 2:
3821			snprintf(tag, sizeof(tag), first_fmt, count);
3822			ctl_putts(tag, &mon->first);
3823			break;
3824
3825		case 3:
3826			snprintf(tag, sizeof(tag), ct_fmt, count);
3827			ctl_putint(tag, mon->count);
3828			break;
3829
3830		case 4:
3831			snprintf(tag, sizeof(tag), mv_fmt, count);
3832			ctl_putuint(tag, mon->vn_mode);
3833			break;
3834
3835		case 5:
3836			snprintf(tag, sizeof(tag), rs_fmt, count);
3837			ctl_puthex(tag, mon->flags);
3838			break;
3839		}
3840		sent[which] = TRUE;
3841		remaining--;
3842	}
3843}
3844
3845
3846/*
3847 * read_mru_list - supports ntpq's mrulist command.
3848 *
3849 * The challenge here is to match ntpdc's monlist functionality without
3850 * being limited to hundreds of entries returned total, and without
3851 * requiring state on the server.  If state were required, ntpq's
3852 * mrulist command would require authentication.
3853 *
3854 * The approach was suggested by Ry Jones.  A finite and variable number
3855 * of entries are retrieved per request, to avoid having responses with
3856 * such large numbers of packets that socket buffers are overflowed and
3857 * packets lost.  The entries are retrieved oldest-first, taking into
3858 * account that the MRU list will be changing between each request.  We
3859 * can expect to see duplicate entries for addresses updated in the MRU
3860 * list during the fetch operation.  In the end, the client can assemble
3861 * a close approximation of the MRU list at the point in time the last
3862 * response was sent by ntpd.  The only difference is it may be longer,
3863 * containing some number of oldest entries which have since been
3864 * reclaimed.  If necessary, the protocol could be extended to zap those
3865 * from the client snapshot at the end, but so far that doesn't seem
3866 * useful.
3867 *
3868 * To accomodate the changing MRU list, the starting point for requests
3869 * after the first request is supplied as a series of last seen
3870 * timestamps and associated addresses, the newest ones the client has
3871 * received.  As long as at least one of those entries hasn't been
3872 * bumped to the head of the MRU list, ntpd can pick up at that point.
3873 * Otherwise, the request is failed and it is up to ntpq to back up and
3874 * provide the next newest entry's timestamps and addresses, conceivably
3875 * backing up all the way to the starting point.
3876 *
3877 * input parameters:
3878 *	nonce=		Regurgitated nonce retrieved by the client
3879 *			previously using CTL_OP_REQ_NONCE, demonstrating
3880 *			ability to receive traffic sent to its address.
3881 *	frags=		Limit on datagrams (fragments) in response.  Used
3882 *			by newer ntpq versions instead of limit= when
3883 *			retrieving multiple entries.
3884 *	limit=		Limit on MRU entries returned.  One of frags= or
3885 *			limit= must be provided.
3886 *			limit=1 is a special case:  Instead of fetching
3887 *			beginning with the supplied starting point's
3888 *			newer neighbor, fetch the supplied entry, and
3889 *			in that case the #.last timestamp can be zero.
3890 *			This enables fetching a single entry by IP
3891 *			address.  When limit is not one and frags= is
3892 *			provided, the fragment limit controls.
3893 *	mincount=	(decimal) Return entries with count >= mincount.
3894 *	laddr=		Return entries associated with the server's IP
3895 *			address given.  No port specification is needed,
3896 *			and any supplied is ignored.
3897 *	resall=		0x-prefixed hex restrict bits which must all be
3898 *			lit for an MRU entry to be included.
3899 *			Has precedence over any resany=.
3900 *	resany=		0x-prefixed hex restrict bits, at least one of
3901 *			which must be list for an MRU entry to be
3902 *			included.
3903 *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3904 *			which client previously received.
3905 *	addr.0=		text of newest entry's IP address and port,
3906 *			IPv6 addresses in bracketed form: [::]:123
3907 *	last.1=		timestamp of 2nd newest entry client has.
3908 *	addr.1=		address of 2nd newest entry.
3909 *	[...]
3910 *
3911 * ntpq provides as many last/addr pairs as will fit in a single request
3912 * packet, except for the first request in a MRU fetch operation.
3913 *
3914 * The response begins with a new nonce value to be used for any
3915 * followup request.  Following the nonce is the next newer entry than
3916 * referred to by last.0 and addr.0, if the "0" entry has not been
3917 * bumped to the front.  If it has, the first entry returned will be the
3918 * next entry newer than referred to by last.1 and addr.1, and so on.
3919 * If none of the referenced entries remain unchanged, the request fails
3920 * and ntpq backs up to the next earlier set of entries to resync.
3921 *
3922 * Except for the first response, the response begins with confirmation
3923 * of the entry that precedes the first additional entry provided:
3924 *
3925 *	last.older=	hex l_fp timestamp matching one of the input
3926 *			.last timestamps, which entry now precedes the
3927 *			response 0. entry in the MRU list.
3928 *	addr.older=	text of address corresponding to older.last.
3929 *
3930 * And in any case, a successful response contains sets of values
3931 * comprising entries, with the oldest numbered 0 and incrementing from
3932 * there:
3933 *
3934 *	addr.#		text of IPv4 or IPv6 address and port
3935 *	last.#		hex l_fp timestamp of last receipt
3936 *	first.#		hex l_fp timestamp of first receipt
3937 *	ct.#		count of packets received
3938 *	mv.#		mode and version
3939 *	rs.#		restriction mask (RES_* bits)
3940 *
3941 * Note the code currently assumes there are no valid three letter
3942 * tags sent with each row, and needs to be adjusted if that changes.
3943 *
3944 * The client should accept the values in any order, and ignore .#
3945 * values which it does not understand, to allow a smooth path to
3946 * future changes without requiring a new opcode.  Clients can rely
3947 * on all *.0 values preceding any *.1 values, that is all values for
3948 * a given index number are together in the response.
3949 *
3950 * The end of the response list is noted with one or two tag=value
3951 * pairs.  Unconditionally:
3952 *
3953 *	now=		0x-prefixed l_fp timestamp at the server marking
3954 *			the end of the operation.
3955 *
3956 * If any entries were returned, now= is followed by:
3957 *
3958 *	last.newest=	hex l_fp identical to last.# of the prior
3959 *			entry.
3960 */
3961static void read_mru_list(
3962	struct recvbuf *rbufp,
3963	int restrict_mask
3964	)
3965{
3966	static const char	nulltxt[1] = 		{ '\0' };
3967	static const char	nonce_text[] =		"nonce";
3968	static const char	frags_text[] =		"frags";
3969	static const char	limit_text[] =		"limit";
3970	static const char	mincount_text[] =	"mincount";
3971	static const char	resall_text[] =		"resall";
3972	static const char	resany_text[] =		"resany";
3973	static const char	maxlstint_text[] =	"maxlstint";
3974	static const char	laddr_text[] =		"laddr";
3975	static const char	resaxx_fmt[] =		"0x%hx";
3976
3977	u_int			limit;
3978	u_short			frags;
3979	u_short			resall;
3980	u_short			resany;
3981	int			mincount;
3982	u_int			maxlstint;
3983	sockaddr_u		laddr;
3984	struct interface *	lcladr;
3985	u_int			count;
3986	u_int			ui;
3987	u_int			uf;
3988	l_fp			last[16];
3989	sockaddr_u		addr[COUNTOF(last)];
3990	char			buf[128];
3991	struct ctl_var *	in_parms;
3992	const struct ctl_var *	v;
3993	const char *		val;
3994	const char *		pch;
3995	char *			pnonce;
3996	int			nonce_valid;
3997	size_t			i;
3998	int			priors;
3999	u_short			hash;
4000	mon_entry *		mon;
4001	mon_entry *		prior_mon;
4002	l_fp			now;
4003
4004	if (RES_NOMRULIST & restrict_mask) {
4005		ctl_error(CERR_PERMISSION);
4006		NLOG(NLOG_SYSINFO)
4007			msyslog(LOG_NOTICE,
4008				"mrulist from %s rejected due to nomrulist restriction",
4009				stoa(&rbufp->recv_srcadr));
4010		sys_restricted++;
4011		return;
4012	}
4013	/*
4014	 * fill in_parms var list with all possible input parameters.
4015	 */
4016	in_parms = NULL;
4017	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
4018	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4019	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4020	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4021	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4022	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4023	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4024	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4025	for (i = 0; i < COUNTOF(last); i++) {
4026		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4027		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4028		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4029		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4030	}
4031
4032	/* decode input parms */
4033	pnonce = NULL;
4034	frags = 0;
4035	limit = 0;
4036	mincount = 0;
4037	resall = 0;
4038	resany = 0;
4039	maxlstint = 0;
4040	lcladr = NULL;
4041	priors = 0;
4042	ZERO(last);
4043	ZERO(addr);
4044
4045	/* have to go through '(void*)' to drop 'const' property from pointer.
4046	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
4047	 */
4048	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
4049	       !(EOV & v->flags)) {
4050		int si;
4051
4052		if (NULL == val)
4053			val = nulltxt;
4054
4055		if (!strcmp(nonce_text, v->text)) {
4056			free(pnonce);
4057			pnonce = (*val) ? estrdup(val) : NULL;
4058		} else if (!strcmp(frags_text, v->text)) {
4059			if (1 != sscanf(val, "%hu", &frags))
4060				goto blooper;
4061		} else if (!strcmp(limit_text, v->text)) {
4062			if (1 != sscanf(val, "%u", &limit))
4063				goto blooper;
4064		} else if (!strcmp(mincount_text, v->text)) {
4065			if (1 != sscanf(val, "%d", &mincount))
4066				goto blooper;
4067			if (mincount < 0)
4068				mincount = 0;
4069		} else if (!strcmp(resall_text, v->text)) {
4070			if (1 != sscanf(val, resaxx_fmt, &resall))
4071				goto blooper;
4072		} else if (!strcmp(resany_text, v->text)) {
4073			if (1 != sscanf(val, resaxx_fmt, &resany))
4074				goto blooper;
4075		} else if (!strcmp(maxlstint_text, v->text)) {
4076			if (1 != sscanf(val, "%u", &maxlstint))
4077				goto blooper;
4078		} else if (!strcmp(laddr_text, v->text)) {
4079			if (!decodenetnum(val, &laddr))
4080				goto blooper;
4081			lcladr = getinterface(&laddr, 0);
4082		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4083			   (size_t)si < COUNTOF(last)) {
4084			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4085				goto blooper;
4086			last[si].l_ui = ui;
4087			last[si].l_uf = uf;
4088			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4089				priors++;
4090		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4091			   (size_t)si < COUNTOF(addr)) {
4092			if (!decodenetnum(val, &addr[si]))
4093				goto blooper;
4094			if (last[si].l_ui && last[si].l_uf && si == priors)
4095				priors++;
4096		} else {
4097			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4098				    v->text));
4099			continue;
4100
4101		blooper:
4102			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4103				    v->text, val));
4104			free(pnonce);
4105			pnonce = NULL;
4106			break;
4107		}
4108	}
4109	free_varlist(in_parms);
4110	in_parms = NULL;
4111
4112	/* return no responses until the nonce is validated */
4113	if (NULL == pnonce)
4114		return;
4115
4116	nonce_valid = validate_nonce(pnonce, rbufp);
4117	free(pnonce);
4118	if (!nonce_valid)
4119		return;
4120
4121	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4122	    frags > MRU_FRAGS_LIMIT) {
4123		ctl_error(CERR_BADVALUE);
4124		return;
4125	}
4126
4127	/*
4128	 * If either frags or limit is not given, use the max.
4129	 */
4130	if (0 != frags && 0 == limit)
4131		limit = UINT_MAX;
4132	else if (0 != limit && 0 == frags)
4133		frags = MRU_FRAGS_LIMIT;
4134
4135	/*
4136	 * Find the starting point if one was provided.
4137	 */
4138	mon = NULL;
4139	for (i = 0; i < (size_t)priors; i++) {
4140		hash = MON_HASH(&addr[i]);
4141		for (mon = mon_hash[hash];
4142		     mon != NULL;
4143		     mon = mon->hash_next)
4144			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4145				break;
4146		if (mon != NULL) {
4147			if (L_ISEQU(&mon->last, &last[i]))
4148				break;
4149			mon = NULL;
4150		}
4151	}
4152
4153	/* If a starting point was provided... */
4154	if (priors) {
4155		/* and none could be found unmodified... */
4156		if (NULL == mon) {
4157			/* tell ntpq to try again with older entries */
4158			ctl_error(CERR_UNKNOWNVAR);
4159			return;
4160		}
4161		/* confirm the prior entry used as starting point */
4162		ctl_putts("last.older", &mon->last);
4163		pch = sptoa(&mon->rmtadr);
4164		ctl_putunqstr("addr.older", pch, strlen(pch));
4165
4166		/*
4167		 * Move on to the first entry the client doesn't have,
4168		 * except in the special case of a limit of one.  In
4169		 * that case return the starting point entry.
4170		 */
4171		if (limit > 1)
4172			mon = PREV_DLIST(mon_mru_list, mon, mru);
4173	} else {	/* start with the oldest */
4174		mon = TAIL_DLIST(mon_mru_list, mru);
4175	}
4176
4177	/*
4178	 * send up to limit= entries in up to frags= datagrams
4179	 */
4180	get_systime(&now);
4181	generate_nonce(rbufp, buf, sizeof(buf));
4182	ctl_putunqstr("nonce", buf, strlen(buf));
4183	prior_mon = NULL;
4184	for (count = 0;
4185	     mon != NULL && res_frags < frags && count < limit;
4186	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4187
4188		if (mon->count < mincount)
4189			continue;
4190		if (resall && resall != (resall & mon->flags))
4191			continue;
4192		if (resany && !(resany & mon->flags))
4193			continue;
4194		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4195		    maxlstint)
4196			continue;
4197		if (lcladr != NULL && mon->lcladr != lcladr)
4198			continue;
4199
4200		send_mru_entry(mon, count);
4201		if (!count)
4202			send_random_tag_value(0);
4203		count++;
4204		prior_mon = mon;
4205	}
4206
4207	/*
4208	 * If this batch completes the MRU list, say so explicitly with
4209	 * a now= l_fp timestamp.
4210	 */
4211	if (NULL == mon) {
4212		if (count > 1)
4213			send_random_tag_value(count - 1);
4214		ctl_putts("now", &now);
4215		/* if any entries were returned confirm the last */
4216		if (prior_mon != NULL)
4217			ctl_putts("last.newest", &prior_mon->last);
4218	}
4219	ctl_flushpkt(0);
4220}
4221
4222
4223/*
4224 * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4225 *
4226 * To keep clients honest about not depending on the order of values,
4227 * and thereby avoid being locked into ugly workarounds to maintain
4228 * backward compatibility later as new fields are added to the response,
4229 * the order is random.
4230 */
4231static void
4232send_ifstats_entry(
4233	endpt *	la,
4234	u_int	ifnum
4235	)
4236{
4237	const char addr_fmtu[] =	"addr.%u";
4238	const char bcast_fmt[] =	"bcast.%u";
4239	const char en_fmt[] =		"en.%u";	/* enabled */
4240	const char name_fmt[] =		"name.%u";
4241	const char flags_fmt[] =	"flags.%u";
4242	const char tl_fmt[] =		"tl.%u";	/* ttl */
4243	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4244	const char rx_fmt[] =		"rx.%u";
4245	const char tx_fmt[] =		"tx.%u";
4246	const char txerr_fmt[] =	"txerr.%u";
4247	const char pc_fmt[] =		"pc.%u";	/* peer count */
4248	const char up_fmt[] =		"up.%u";	/* uptime */
4249	char	tag[32];
4250	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4251	int	noisebits;
4252	u_int32 noise;
4253	u_int	which;
4254	u_int	remaining;
4255	const char *pch;
4256
4257	remaining = COUNTOF(sent);
4258	ZERO(sent);
4259	noise = 0;
4260	noisebits = 0;
4261	while (remaining > 0) {
4262		if (noisebits < 4) {
4263			noise = rand() ^ (rand() << 16);
4264			noisebits = 31;
4265		}
4266		which = (noise & 0xf) % COUNTOF(sent);
4267		noise >>= 4;
4268		noisebits -= 4;
4269
4270		while (sent[which])
4271			which = (which + 1) % COUNTOF(sent);
4272
4273		switch (which) {
4274
4275		case 0:
4276			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4277			pch = sptoa(&la->sin);
4278			ctl_putunqstr(tag, pch, strlen(pch));
4279			break;
4280
4281		case 1:
4282			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4283			if (INT_BCASTOPEN & la->flags)
4284				pch = sptoa(&la->bcast);
4285			else
4286				pch = "";
4287			ctl_putunqstr(tag, pch, strlen(pch));
4288			break;
4289
4290		case 2:
4291			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4292			ctl_putint(tag, !la->ignore_packets);
4293			break;
4294
4295		case 3:
4296			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4297			ctl_putstr(tag, la->name, strlen(la->name));
4298			break;
4299
4300		case 4:
4301			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4302			ctl_puthex(tag, (u_int)la->flags);
4303			break;
4304
4305		case 5:
4306			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4307			ctl_putint(tag, la->last_ttl);
4308			break;
4309
4310		case 6:
4311			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4312			ctl_putint(tag, la->num_mcast);
4313			break;
4314
4315		case 7:
4316			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4317			ctl_putint(tag, la->received);
4318			break;
4319
4320		case 8:
4321			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4322			ctl_putint(tag, la->sent);
4323			break;
4324
4325		case 9:
4326			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4327			ctl_putint(tag, la->notsent);
4328			break;
4329
4330		case 10:
4331			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4332			ctl_putuint(tag, la->peercnt);
4333			break;
4334
4335		case 11:
4336			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4337			ctl_putuint(tag, current_time - la->starttime);
4338			break;
4339		}
4340		sent[which] = TRUE;
4341		remaining--;
4342	}
4343	send_random_tag_value((int)ifnum);
4344}
4345
4346
4347/*
4348 * read_ifstats - send statistics for each local address, exposed by
4349 *		  ntpq -c ifstats
4350 */
4351static void
4352read_ifstats(
4353	struct recvbuf *	rbufp
4354	)
4355{
4356	u_int	ifidx;
4357	endpt *	la;
4358
4359	/*
4360	 * loop over [0..sys_ifnum] searching ep_list for each
4361	 * ifnum in turn.
4362	 */
4363	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4364		for (la = ep_list; la != NULL; la = la->elink)
4365			if (ifidx == la->ifnum)
4366				break;
4367		if (NULL == la)
4368			continue;
4369		/* return stats for one local address */
4370		send_ifstats_entry(la, ifidx);
4371	}
4372	ctl_flushpkt(0);
4373}
4374
4375static void
4376sockaddrs_from_restrict_u(
4377	sockaddr_u *	psaA,
4378	sockaddr_u *	psaM,
4379	restrict_u *	pres,
4380	int		ipv6
4381	)
4382{
4383	ZERO(*psaA);
4384	ZERO(*psaM);
4385	if (!ipv6) {
4386		psaA->sa.sa_family = AF_INET;
4387		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4388		psaM->sa.sa_family = AF_INET;
4389		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4390	} else {
4391		psaA->sa.sa_family = AF_INET6;
4392		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4393		       sizeof(psaA->sa6.sin6_addr));
4394		psaM->sa.sa_family = AF_INET6;
4395		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4396		       sizeof(psaA->sa6.sin6_addr));
4397	}
4398}
4399
4400
4401/*
4402 * Send a restrict entry in response to a "ntpq -c reslist" request.
4403 *
4404 * To keep clients honest about not depending on the order of values,
4405 * and thereby avoid being locked into ugly workarounds to maintain
4406 * backward compatibility later as new fields are added to the response,
4407 * the order is random.
4408 */
4409static void
4410send_restrict_entry(
4411	restrict_u *	pres,
4412	int		ipv6,
4413	u_int		idx
4414	)
4415{
4416	const char addr_fmtu[] =	"addr.%u";
4417	const char mask_fmtu[] =	"mask.%u";
4418	const char hits_fmt[] =		"hits.%u";
4419	const char flags_fmt[] =	"flags.%u";
4420	char		tag[32];
4421	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4422	int		noisebits;
4423	u_int32		noise;
4424	u_int		which;
4425	u_int		remaining;
4426	sockaddr_u	addr;
4427	sockaddr_u	mask;
4428	const char *	pch;
4429	char *		buf;
4430	const char *	match_str;
4431	const char *	access_str;
4432
4433	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4434	remaining = COUNTOF(sent);
4435	ZERO(sent);
4436	noise = 0;
4437	noisebits = 0;
4438	while (remaining > 0) {
4439		if (noisebits < 2) {
4440			noise = rand() ^ (rand() << 16);
4441			noisebits = 31;
4442		}
4443		which = (noise & 0x3) % COUNTOF(sent);
4444		noise >>= 2;
4445		noisebits -= 2;
4446
4447		while (sent[which])
4448			which = (which + 1) % COUNTOF(sent);
4449
4450		switch (which) {
4451
4452		case 0:
4453			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4454			pch = stoa(&addr);
4455			ctl_putunqstr(tag, pch, strlen(pch));
4456			break;
4457
4458		case 1:
4459			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4460			pch = stoa(&mask);
4461			ctl_putunqstr(tag, pch, strlen(pch));
4462			break;
4463
4464		case 2:
4465			snprintf(tag, sizeof(tag), hits_fmt, idx);
4466			ctl_putuint(tag, pres->count);
4467			break;
4468
4469		case 3:
4470			snprintf(tag, sizeof(tag), flags_fmt, idx);
4471			match_str = res_match_flags(pres->mflags);
4472			access_str = res_access_flags(pres->flags);
4473			if ('\0' == match_str[0]) {
4474				pch = access_str;
4475			} else {
4476				LIB_GETBUF(buf);
4477				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4478					 match_str, access_str);
4479				pch = buf;
4480			}
4481			ctl_putunqstr(tag, pch, strlen(pch));
4482			break;
4483		}
4484		sent[which] = TRUE;
4485		remaining--;
4486	}
4487	send_random_tag_value((int)idx);
4488}
4489
4490
4491static void
4492send_restrict_list(
4493	restrict_u *	pres,
4494	int		ipv6,
4495	u_int *		pidx
4496	)
4497{
4498	for ( ; pres != NULL; pres = pres->link) {
4499		send_restrict_entry(pres, ipv6, *pidx);
4500		(*pidx)++;
4501	}
4502}
4503
4504
4505/*
4506 * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4507 */
4508static void
4509read_addr_restrictions(
4510	struct recvbuf *	rbufp
4511)
4512{
4513	u_int idx;
4514
4515	idx = 0;
4516	send_restrict_list(restrictlist4, FALSE, &idx);
4517	send_restrict_list(restrictlist6, TRUE, &idx);
4518	ctl_flushpkt(0);
4519}
4520
4521
4522/*
4523 * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4524 */
4525static void
4526read_ordlist(
4527	struct recvbuf *	rbufp,
4528	int			restrict_mask
4529	)
4530{
4531	const char ifstats_s[] = "ifstats";
4532	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4533	const char addr_rst_s[] = "addr_restrictions";
4534	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4535	struct ntp_control *	cpkt;
4536	u_short			qdata_octets;
4537
4538	/*
4539	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4540	 * used only for ntpq -c ifstats.  With the addition of reslist
4541	 * the same opcode was generalized to retrieve ordered lists
4542	 * which require authentication.  The request data is empty or
4543	 * contains "ifstats" (not null terminated) to retrieve local
4544	 * addresses and associated stats.  It is "addr_restrictions"
4545	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4546	 * which are access control lists.  Other request data return
4547	 * CERR_UNKNOWNVAR.
4548	 */
4549	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4550	qdata_octets = ntohs(cpkt->count);
4551	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4552	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4553		read_ifstats(rbufp);
4554		return;
4555	}
4556	if (a_r_chars == qdata_octets &&
4557	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4558		read_addr_restrictions(rbufp);
4559		return;
4560	}
4561	ctl_error(CERR_UNKNOWNVAR);
4562}
4563
4564
4565/*
4566 * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4567 */
4568static void req_nonce(
4569	struct recvbuf *	rbufp,
4570	int			restrict_mask
4571	)
4572{
4573	char	buf[64];
4574
4575	generate_nonce(rbufp, buf, sizeof(buf));
4576	ctl_putunqstr("nonce", buf, strlen(buf));
4577	ctl_flushpkt(0);
4578}
4579
4580
4581/*
4582 * read_clockstatus - return clock radio status
4583 */
4584/*ARGSUSED*/
4585static void
4586read_clockstatus(
4587	struct recvbuf *rbufp,
4588	int restrict_mask
4589	)
4590{
4591#ifndef REFCLOCK
4592	/*
4593	 * If no refclock support, no data to return
4594	 */
4595	ctl_error(CERR_BADASSOC);
4596#else
4597	const struct ctl_var *	v;
4598	int			i;
4599	struct peer *		peer;
4600	char *			valuep;
4601	u_char *		wants;
4602	size_t			wants_alloc;
4603	int			gotvar;
4604	const u_char *		cc;
4605	struct ctl_var *	kv;
4606	struct refclockstat	cs;
4607
4608	if (res_associd != 0) {
4609		peer = findpeerbyassoc(res_associd);
4610	} else {
4611		/*
4612		 * Find a clock for this jerk.	If the system peer
4613		 * is a clock use it, else search peer_list for one.
4614		 */
4615		if (sys_peer != NULL && (FLAG_REFCLOCK &
4616		    sys_peer->flags))
4617			peer = sys_peer;
4618		else
4619			for (peer = peer_list;
4620			     peer != NULL;
4621			     peer = peer->p_link)
4622				if (FLAG_REFCLOCK & peer->flags)
4623					break;
4624	}
4625	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4626		ctl_error(CERR_BADASSOC);
4627		return;
4628	}
4629	/*
4630	 * If we got here we have a peer which is a clock. Get his
4631	 * status.
4632	 */
4633	cs.kv_list = NULL;
4634	refclock_control(&peer->srcadr, NULL, &cs);
4635	kv = cs.kv_list;
4636	/*
4637	 * Look for variables in the packet.
4638	 */
4639	rpkt.status = htons(ctlclkstatus(&cs));
4640	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4641	wants = emalloc_zero(wants_alloc);
4642	gotvar = FALSE;
4643	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4644		if (!(EOV & v->flags)) {
4645			wants[v->code] = TRUE;
4646			gotvar = TRUE;
4647		} else {
4648			v = ctl_getitem(kv, &valuep);
4649			if (NULL == v) {
4650				ctl_error(CERR_BADVALUE);
4651				free(wants);
4652				free_varlist(cs.kv_list);
4653				return;
4654			}
4655			if (EOV & v->flags) {
4656				ctl_error(CERR_UNKNOWNVAR);
4657				free(wants);
4658				free_varlist(cs.kv_list);
4659				return;
4660			}
4661			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4662			gotvar = TRUE;
4663		}
4664	}
4665
4666	if (gotvar) {
4667		for (i = 1; i <= CC_MAXCODE; i++)
4668			if (wants[i])
4669				ctl_putclock(i, &cs, TRUE);
4670		if (kv != NULL)
4671			for (i = 0; !(EOV & kv[i].flags); i++)
4672				if (wants[i + CC_MAXCODE + 1])
4673					ctl_putdata(kv[i].text,
4674						    strlen(kv[i].text),
4675						    FALSE);
4676	} else {
4677		for (cc = def_clock_var; *cc != 0; cc++)
4678			ctl_putclock((int)*cc, &cs, FALSE);
4679		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4680			if (DEF & kv->flags)
4681				ctl_putdata(kv->text, strlen(kv->text),
4682					    FALSE);
4683	}
4684
4685	free(wants);
4686	free_varlist(cs.kv_list);
4687
4688	ctl_flushpkt(0);
4689#endif
4690}
4691
4692
4693/*
4694 * write_clockstatus - we don't do this
4695 */
4696/*ARGSUSED*/
4697static void
4698write_clockstatus(
4699	struct recvbuf *rbufp,
4700	int restrict_mask
4701	)
4702{
4703	ctl_error(CERR_PERMISSION);
4704}
4705
4706/*
4707 * Trap support from here on down. We send async trap messages when the
4708 * upper levels report trouble. Traps can by set either by control
4709 * messages or by configuration.
4710 */
4711/*
4712 * set_trap - set a trap in response to a control message
4713 */
4714static void
4715set_trap(
4716	struct recvbuf *rbufp,
4717	int restrict_mask
4718	)
4719{
4720	int traptype;
4721
4722	/*
4723	 * See if this guy is allowed
4724	 */
4725	if (restrict_mask & RES_NOTRAP) {
4726		ctl_error(CERR_PERMISSION);
4727		return;
4728	}
4729
4730	/*
4731	 * Determine his allowed trap type.
4732	 */
4733	traptype = TRAP_TYPE_PRIO;
4734	if (restrict_mask & RES_LPTRAP)
4735		traptype = TRAP_TYPE_NONPRIO;
4736
4737	/*
4738	 * Call ctlsettrap() to do the work.  Return
4739	 * an error if it can't assign the trap.
4740	 */
4741	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4742			(int)res_version))
4743		ctl_error(CERR_NORESOURCE);
4744	ctl_flushpkt(0);
4745}
4746
4747
4748/*
4749 * unset_trap - unset a trap in response to a control message
4750 */
4751static void
4752unset_trap(
4753	struct recvbuf *rbufp,
4754	int restrict_mask
4755	)
4756{
4757	int traptype;
4758
4759	/*
4760	 * We don't prevent anyone from removing his own trap unless the
4761	 * trap is configured. Note we also must be aware of the
4762	 * possibility that restriction flags were changed since this
4763	 * guy last set his trap. Set the trap type based on this.
4764	 */
4765	traptype = TRAP_TYPE_PRIO;
4766	if (restrict_mask & RES_LPTRAP)
4767		traptype = TRAP_TYPE_NONPRIO;
4768
4769	/*
4770	 * Call ctlclrtrap() to clear this out.
4771	 */
4772	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4773		ctl_error(CERR_BADASSOC);
4774	ctl_flushpkt(0);
4775}
4776
4777
4778/*
4779 * ctlsettrap - called to set a trap
4780 */
4781int
4782ctlsettrap(
4783	sockaddr_u *raddr,
4784	struct interface *linter,
4785	int traptype,
4786	int version
4787	)
4788{
4789	size_t n;
4790	struct ctl_trap *tp;
4791	struct ctl_trap *tptouse;
4792
4793	/*
4794	 * See if we can find this trap.  If so, we only need update
4795	 * the flags and the time.
4796	 */
4797	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4798		switch (traptype) {
4799
4800		case TRAP_TYPE_CONFIG:
4801			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4802			break;
4803
4804		case TRAP_TYPE_PRIO:
4805			if (tp->tr_flags & TRAP_CONFIGURED)
4806				return (1); /* don't change anything */
4807			tp->tr_flags = TRAP_INUSE;
4808			break;
4809
4810		case TRAP_TYPE_NONPRIO:
4811			if (tp->tr_flags & TRAP_CONFIGURED)
4812				return (1); /* don't change anything */
4813			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4814			break;
4815		}
4816		tp->tr_settime = current_time;
4817		tp->tr_resets++;
4818		return (1);
4819	}
4820
4821	/*
4822	 * First we heard of this guy.	Try to find a trap structure
4823	 * for him to use, clearing out lesser priority guys if we
4824	 * have to. Clear out anyone who's expired while we're at it.
4825	 */
4826	tptouse = NULL;
4827	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4828		tp = &ctl_traps[n];
4829		if ((TRAP_INUSE & tp->tr_flags) &&
4830		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4831		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4832			tp->tr_flags = 0;
4833			num_ctl_traps--;
4834		}
4835		if (!(TRAP_INUSE & tp->tr_flags)) {
4836			tptouse = tp;
4837		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4838			switch (traptype) {
4839
4840			case TRAP_TYPE_CONFIG:
4841				if (tptouse == NULL) {
4842					tptouse = tp;
4843					break;
4844				}
4845				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4846				    !(TRAP_NONPRIO & tp->tr_flags))
4847					break;
4848
4849				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4850				    && (TRAP_NONPRIO & tp->tr_flags)) {
4851					tptouse = tp;
4852					break;
4853				}
4854				if (tptouse->tr_origtime <
4855				    tp->tr_origtime)
4856					tptouse = tp;
4857				break;
4858
4859			case TRAP_TYPE_PRIO:
4860				if ( TRAP_NONPRIO & tp->tr_flags) {
4861					if (tptouse == NULL ||
4862					    ((TRAP_INUSE &
4863					      tptouse->tr_flags) &&
4864					     tptouse->tr_origtime <
4865					     tp->tr_origtime))
4866						tptouse = tp;
4867				}
4868				break;
4869
4870			case TRAP_TYPE_NONPRIO:
4871				break;
4872			}
4873		}
4874	}
4875
4876	/*
4877	 * If we don't have room for him return an error.
4878	 */
4879	if (tptouse == NULL)
4880		return (0);
4881
4882	/*
4883	 * Set up this structure for him.
4884	 */
4885	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4886	tptouse->tr_count = tptouse->tr_resets = 0;
4887	tptouse->tr_sequence = 1;
4888	tptouse->tr_addr = *raddr;
4889	tptouse->tr_localaddr = linter;
4890	tptouse->tr_version = (u_char) version;
4891	tptouse->tr_flags = TRAP_INUSE;
4892	if (traptype == TRAP_TYPE_CONFIG)
4893		tptouse->tr_flags |= TRAP_CONFIGURED;
4894	else if (traptype == TRAP_TYPE_NONPRIO)
4895		tptouse->tr_flags |= TRAP_NONPRIO;
4896	num_ctl_traps++;
4897	return (1);
4898}
4899
4900
4901/*
4902 * ctlclrtrap - called to clear a trap
4903 */
4904int
4905ctlclrtrap(
4906	sockaddr_u *raddr,
4907	struct interface *linter,
4908	int traptype
4909	)
4910{
4911	register struct ctl_trap *tp;
4912
4913	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4914		return (0);
4915
4916	if (tp->tr_flags & TRAP_CONFIGURED
4917	    && traptype != TRAP_TYPE_CONFIG)
4918		return (0);
4919
4920	tp->tr_flags = 0;
4921	num_ctl_traps--;
4922	return (1);
4923}
4924
4925
4926/*
4927 * ctlfindtrap - find a trap given the remote and local addresses
4928 */
4929static struct ctl_trap *
4930ctlfindtrap(
4931	sockaddr_u *raddr,
4932	struct interface *linter
4933	)
4934{
4935	size_t	n;
4936
4937	for (n = 0; n < COUNTOF(ctl_traps); n++)
4938		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4939		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4940		    && (linter == ctl_traps[n].tr_localaddr))
4941			return &ctl_traps[n];
4942
4943	return NULL;
4944}
4945
4946
4947/*
4948 * report_event - report an event to the trappers
4949 */
4950void
4951report_event(
4952	int	err,		/* error code */
4953	struct peer *peer,	/* peer structure pointer */
4954	const char *str		/* protostats string */
4955	)
4956{
4957	char	statstr[NTP_MAXSTRLEN];
4958	int	i;
4959	size_t	len;
4960
4961	/*
4962	 * Report the error to the protostats file, system log and
4963	 * trappers.
4964	 */
4965	if (peer == NULL) {
4966
4967		/*
4968		 * Discard a system report if the number of reports of
4969		 * the same type exceeds the maximum.
4970		 */
4971		if (ctl_sys_last_event != (u_char)err)
4972			ctl_sys_num_events= 0;
4973		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4974			return;
4975
4976		ctl_sys_last_event = (u_char)err;
4977		ctl_sys_num_events++;
4978		snprintf(statstr, sizeof(statstr),
4979		    "0.0.0.0 %04x %02x %s",
4980		    ctlsysstatus(), err, eventstr(err));
4981		if (str != NULL) {
4982			len = strlen(statstr);
4983			snprintf(statstr + len, sizeof(statstr) - len,
4984			    " %s", str);
4985		}
4986		NLOG(NLOG_SYSEVENT)
4987			msyslog(LOG_INFO, "%s", statstr);
4988	} else {
4989
4990		/*
4991		 * Discard a peer report if the number of reports of
4992		 * the same type exceeds the maximum for that peer.
4993		 */
4994		const char *	src;
4995		u_char		errlast;
4996
4997		errlast = (u_char)err & ~PEER_EVENT;
4998		if (peer->last_event == errlast)
4999			peer->num_events = 0;
5000		if (peer->num_events >= CTL_PEER_MAXEVENTS)
5001			return;
5002
5003		peer->last_event = errlast;
5004		peer->num_events++;
5005		if (ISREFCLOCKADR(&peer->srcadr))
5006			src = refnumtoa(&peer->srcadr);
5007		else
5008			src = stoa(&peer->srcadr);
5009
5010		snprintf(statstr, sizeof(statstr),
5011		    "%s %04x %02x %s", src,
5012		    ctlpeerstatus(peer), err, eventstr(err));
5013		if (str != NULL) {
5014			len = strlen(statstr);
5015			snprintf(statstr + len, sizeof(statstr) - len,
5016			    " %s", str);
5017		}
5018		NLOG(NLOG_PEEREVENT)
5019			msyslog(LOG_INFO, "%s", statstr);
5020	}
5021	record_proto_stats(statstr);
5022#if DEBUG
5023	if (debug)
5024		printf("event at %lu %s\n", current_time, statstr);
5025#endif
5026
5027	/*
5028	 * If no trappers, return.
5029	 */
5030	if (num_ctl_traps <= 0)
5031		return;
5032
5033	/* [Bug 3119]
5034	 * Peer Events should be associated with a peer -- hence the
5035	 * name. But there are instances where this function is called
5036	 * *without* a valid peer. This happens e.g. with an unsolicited
5037	 * CryptoNAK, or when a leap second alarm is going off while
5038	 * currently without a system peer.
5039	 *
5040	 * The most sensible approach to this seems to bail out here if
5041	 * this happens. Avoiding to call this function would also
5042	 * bypass the log reporting in the first part of this function,
5043	 * and this is probably not the best of all options.
5044	 *   -*-perlinger@ntp.org-*-
5045	 */
5046	if ((err & PEER_EVENT) && !peer)
5047		return;
5048
5049	/*
5050	 * Set up the outgoing packet variables
5051	 */
5052	res_opcode = CTL_OP_ASYNCMSG;
5053	res_offset = 0;
5054	res_async = TRUE;
5055	res_authenticate = FALSE;
5056	datapt = rpkt.u.data;
5057	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5058	if (!(err & PEER_EVENT)) {
5059		rpkt.associd = 0;
5060		rpkt.status = htons(ctlsysstatus());
5061
5062		/* Include the core system variables and the list. */
5063		for (i = 1; i <= CS_VARLIST; i++)
5064			ctl_putsys(i);
5065	} else if (NULL != peer) { /* paranoia -- skip output */
5066		rpkt.associd = htons(peer->associd);
5067		rpkt.status = htons(ctlpeerstatus(peer));
5068
5069		/* Dump it all. Later, maybe less. */
5070		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5071			ctl_putpeer(i, peer);
5072#	    ifdef REFCLOCK
5073		/*
5074		 * for clock exception events: add clock variables to
5075		 * reflect info on exception
5076		 */
5077		if (err == PEVNT_CLOCK) {
5078			struct refclockstat cs;
5079			struct ctl_var *kv;
5080
5081			cs.kv_list = NULL;
5082			refclock_control(&peer->srcadr, NULL, &cs);
5083
5084			ctl_puthex("refclockstatus",
5085				   ctlclkstatus(&cs));
5086
5087			for (i = 1; i <= CC_MAXCODE; i++)
5088				ctl_putclock(i, &cs, FALSE);
5089			for (kv = cs.kv_list;
5090			     kv != NULL && !(EOV & kv->flags);
5091			     kv++)
5092				if (DEF & kv->flags)
5093					ctl_putdata(kv->text,
5094						    strlen(kv->text),
5095						    FALSE);
5096			free_varlist(cs.kv_list);
5097		}
5098#	    endif /* REFCLOCK */
5099	}
5100
5101	/*
5102	 * We're done, return.
5103	 */
5104	ctl_flushpkt(0);
5105}
5106
5107
5108/*
5109 * mprintf_event - printf-style varargs variant of report_event()
5110 */
5111int
5112mprintf_event(
5113	int		evcode,		/* event code */
5114	struct peer *	p,		/* may be NULL */
5115	const char *	fmt,		/* msnprintf format */
5116	...
5117	)
5118{
5119	va_list	ap;
5120	int	rc;
5121	char	msg[512];
5122
5123	va_start(ap, fmt);
5124	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5125	va_end(ap);
5126	report_event(evcode, p, msg);
5127
5128	return rc;
5129}
5130
5131
5132/*
5133 * ctl_clr_stats - clear stat counters
5134 */
5135void
5136ctl_clr_stats(void)
5137{
5138	ctltimereset = current_time;
5139	numctlreq = 0;
5140	numctlbadpkts = 0;
5141	numctlresponses = 0;
5142	numctlfrags = 0;
5143	numctlerrors = 0;
5144	numctlfrags = 0;
5145	numctltooshort = 0;
5146	numctlinputresp = 0;
5147	numctlinputfrag = 0;
5148	numctlinputerr = 0;
5149	numctlbadoffset = 0;
5150	numctlbadversion = 0;
5151	numctldatatooshort = 0;
5152	numctlbadop = 0;
5153	numasyncmsgs = 0;
5154}
5155
5156static u_short
5157count_var(
5158	const struct ctl_var *k
5159	)
5160{
5161	u_int c;
5162
5163	if (NULL == k)
5164		return 0;
5165
5166	c = 0;
5167	while (!(EOV & (k++)->flags))
5168		c++;
5169
5170	ENSURE(c <= USHRT_MAX);
5171	return (u_short)c;
5172}
5173
5174
5175char *
5176add_var(
5177	struct ctl_var **kv,
5178	u_long size,
5179	u_short def
5180	)
5181{
5182	u_short		c;
5183	struct ctl_var *k;
5184	char *		buf;
5185
5186	c = count_var(*kv);
5187	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5188	k = *kv;
5189	buf = emalloc(size);
5190	k[c].code  = c;
5191	k[c].text  = buf;
5192	k[c].flags = def;
5193	k[c + 1].code  = 0;
5194	k[c + 1].text  = NULL;
5195	k[c + 1].flags = EOV;
5196
5197	return buf;
5198}
5199
5200
5201void
5202set_var(
5203	struct ctl_var **kv,
5204	const char *data,
5205	u_long size,
5206	u_short def
5207	)
5208{
5209	struct ctl_var *k;
5210	const char *s;
5211	const char *t;
5212	char *td;
5213
5214	if (NULL == data || !size)
5215		return;
5216
5217	k = *kv;
5218	if (k != NULL) {
5219		while (!(EOV & k->flags)) {
5220			if (NULL == k->text)	{
5221				td = emalloc(size);
5222				memcpy(td, data, size);
5223				k->text = td;
5224				k->flags = def;
5225				return;
5226			} else {
5227				s = data;
5228				t = k->text;
5229				while (*t != '=' && *s == *t) {
5230					s++;
5231					t++;
5232				}
5233				if (*s == *t && ((*t == '=') || !*t)) {
5234					td = erealloc((void *)(intptr_t)k->text, size);
5235					memcpy(td, data, size);
5236					k->text = td;
5237					k->flags = def;
5238					return;
5239				}
5240			}
5241			k++;
5242		}
5243	}
5244	td = add_var(kv, size, def);
5245	memcpy(td, data, size);
5246}
5247
5248
5249void
5250set_sys_var(
5251	const char *data,
5252	u_long size,
5253	u_short def
5254	)
5255{
5256	set_var(&ext_sys_var, data, size, def);
5257}
5258
5259
5260/*
5261 * get_ext_sys_var() retrieves the value of a user-defined variable or
5262 * NULL if the variable has not been setvar'd.
5263 */
5264const char *
5265get_ext_sys_var(const char *tag)
5266{
5267	struct ctl_var *	v;
5268	size_t			c;
5269	const char *		val;
5270
5271	val = NULL;
5272	c = strlen(tag);
5273	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5274		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5275			if ('=' == v->text[c]) {
5276				val = v->text + c + 1;
5277				break;
5278			} else if ('\0' == v->text[c]) {
5279				val = "";
5280				break;
5281			}
5282		}
5283	}
5284
5285	return val;
5286}
5287
5288
5289void
5290free_varlist(
5291	struct ctl_var *kv
5292	)
5293{
5294	struct ctl_var *k;
5295	if (kv) {
5296		for (k = kv; !(k->flags & EOV); k++)
5297			free((void *)(intptr_t)k->text);
5298		free((void *)kv);
5299	}
5300}
5301