Type.cpp revision 218893
1//===--- Type.cpp - Type representation and manipulation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related functionality.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/Type.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/PrettyPrinter.h"
22#include "clang/AST/TypeVisitor.h"
23#include "clang/Basic/Specifiers.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/raw_ostream.h"
26#include <algorithm>
27using namespace clang;
28
29bool QualType::isConstant(QualType T, ASTContext &Ctx) {
30  if (T.isConstQualified())
31    return true;
32
33  if (const ArrayType *AT = Ctx.getAsArrayType(T))
34    return AT->getElementType().isConstant(Ctx);
35
36  return false;
37}
38
39unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
40                                                 QualType ElementType,
41                                               const llvm::APInt &NumElements) {
42  llvm::APSInt SizeExtended(NumElements, true);
43  unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
44  SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
45                                              SizeExtended.getBitWidth()) * 2);
46
47  uint64_t ElementSize
48    = Context.getTypeSizeInChars(ElementType).getQuantity();
49  llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
50  TotalSize *= SizeExtended;
51
52  return TotalSize.getActiveBits();
53}
54
55unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
56  unsigned Bits = Context.getTypeSize(Context.getSizeType());
57
58  // GCC appears to only allow 63 bits worth of address space when compiling
59  // for 64-bit, so we do the same.
60  if (Bits == 64)
61    --Bits;
62
63  return Bits;
64}
65
66DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
67                                                 QualType et, QualType can,
68                                                 Expr *e, ArraySizeModifier sm,
69                                                 unsigned tq,
70                                                 SourceRange brackets)
71    : ArrayType(DependentSizedArray, et, can, sm, tq,
72                (et->containsUnexpandedParameterPack() ||
73                 (e && e->containsUnexpandedParameterPack()))),
74      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
75{
76}
77
78void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
79                                      const ASTContext &Context,
80                                      QualType ET,
81                                      ArraySizeModifier SizeMod,
82                                      unsigned TypeQuals,
83                                      Expr *E) {
84  ID.AddPointer(ET.getAsOpaquePtr());
85  ID.AddInteger(SizeMod);
86  ID.AddInteger(TypeQuals);
87  E->Profile(ID, Context, true);
88}
89
90DependentSizedExtVectorType::DependentSizedExtVectorType(const
91                                                         ASTContext &Context,
92                                                         QualType ElementType,
93                                                         QualType can,
94                                                         Expr *SizeExpr,
95                                                         SourceLocation loc)
96    : Type(DependentSizedExtVector, can, /*Dependent=*/true,
97           ElementType->isVariablyModifiedType(),
98           (ElementType->containsUnexpandedParameterPack() ||
99            (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
100      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
101      loc(loc)
102{
103}
104
105void
106DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
107                                     const ASTContext &Context,
108                                     QualType ElementType, Expr *SizeExpr) {
109  ID.AddPointer(ElementType.getAsOpaquePtr());
110  SizeExpr->Profile(ID, Context, true);
111}
112
113VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
114                       VectorKind vecKind)
115  : Type(Vector, canonType, vecType->isDependentType(),
116         vecType->isVariablyModifiedType(),
117         vecType->containsUnexpandedParameterPack()),
118    ElementType(vecType)
119{
120  VectorTypeBits.VecKind = vecKind;
121  VectorTypeBits.NumElements = nElements;
122}
123
124VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
125                       QualType canonType, VectorKind vecKind)
126  : Type(tc, canonType, vecType->isDependentType(),
127         vecType->isVariablyModifiedType(),
128         vecType->containsUnexpandedParameterPack()),
129    ElementType(vecType)
130{
131  VectorTypeBits.VecKind = vecKind;
132  VectorTypeBits.NumElements = nElements;
133}
134
135/// getArrayElementTypeNoTypeQual - If this is an array type, return the
136/// element type of the array, potentially with type qualifiers missing.
137/// This method should never be used when type qualifiers are meaningful.
138const Type *Type::getArrayElementTypeNoTypeQual() const {
139  // If this is directly an array type, return it.
140  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
141    return ATy->getElementType().getTypePtr();
142
143  // If the canonical form of this type isn't the right kind, reject it.
144  if (!isa<ArrayType>(CanonicalType))
145    return 0;
146
147  // If this is a typedef for an array type, strip the typedef off without
148  // losing all typedef information.
149  return cast<ArrayType>(getUnqualifiedDesugaredType())
150    ->getElementType().getTypePtr();
151}
152
153/// getDesugaredType - Return the specified type with any "sugar" removed from
154/// the type.  This takes off typedefs, typeof's etc.  If the outer level of
155/// the type is already concrete, it returns it unmodified.  This is similar
156/// to getting the canonical type, but it doesn't remove *all* typedefs.  For
157/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
158/// concrete.
159QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
160  SplitQualType split = getSplitDesugaredType(T);
161  return Context.getQualifiedType(split.first, split.second);
162}
163
164SplitQualType QualType::getSplitDesugaredType(QualType T) {
165  QualifierCollector Qs;
166
167  QualType Cur = T;
168  while (true) {
169    const Type *CurTy = Qs.strip(Cur);
170    switch (CurTy->getTypeClass()) {
171#define ABSTRACT_TYPE(Class, Parent)
172#define TYPE(Class, Parent) \
173    case Type::Class: { \
174      const Class##Type *Ty = cast<Class##Type>(CurTy); \
175      if (!Ty->isSugared()) \
176        return SplitQualType(Ty, Qs); \
177      Cur = Ty->desugar(); \
178      break; \
179    }
180#include "clang/AST/TypeNodes.def"
181    }
182  }
183}
184
185SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
186  SplitQualType split = type.split();
187
188  // All the qualifiers we've seen so far.
189  Qualifiers quals = split.second;
190
191  // The last type node we saw with any nodes inside it.
192  const Type *lastTypeWithQuals = split.first;
193
194  while (true) {
195    QualType next;
196
197    // Do a single-step desugar, aborting the loop if the type isn't
198    // sugared.
199    switch (split.first->getTypeClass()) {
200#define ABSTRACT_TYPE(Class, Parent)
201#define TYPE(Class, Parent) \
202    case Type::Class: { \
203      const Class##Type *ty = cast<Class##Type>(split.first); \
204      if (!ty->isSugared()) goto done; \
205      next = ty->desugar(); \
206      break; \
207    }
208#include "clang/AST/TypeNodes.def"
209    }
210
211    // Otherwise, split the underlying type.  If that yields qualifiers,
212    // update the information.
213    split = next.split();
214    if (!split.second.empty()) {
215      lastTypeWithQuals = split.first;
216      quals.addConsistentQualifiers(split.second);
217    }
218  }
219
220 done:
221  return SplitQualType(lastTypeWithQuals, quals);
222}
223
224QualType QualType::IgnoreParens(QualType T) {
225  // FIXME: this seems inherently un-qualifiers-safe.
226  while (const ParenType *PT = T->getAs<ParenType>())
227    T = PT->getInnerType();
228  return T;
229}
230
231/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
232/// sugar off the given type.  This should produce an object of the
233/// same dynamic type as the canonical type.
234const Type *Type::getUnqualifiedDesugaredType() const {
235  const Type *Cur = this;
236
237  while (true) {
238    switch (Cur->getTypeClass()) {
239#define ABSTRACT_TYPE(Class, Parent)
240#define TYPE(Class, Parent) \
241    case Class: { \
242      const Class##Type *Ty = cast<Class##Type>(Cur); \
243      if (!Ty->isSugared()) return Cur; \
244      Cur = Ty->desugar().getTypePtr(); \
245      break; \
246    }
247#include "clang/AST/TypeNodes.def"
248    }
249  }
250}
251
252/// isVoidType - Helper method to determine if this is the 'void' type.
253bool Type::isVoidType() const {
254  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
255    return BT->getKind() == BuiltinType::Void;
256  return false;
257}
258
259bool Type::isDerivedType() const {
260  switch (CanonicalType->getTypeClass()) {
261  case Pointer:
262  case VariableArray:
263  case ConstantArray:
264  case IncompleteArray:
265  case FunctionProto:
266  case FunctionNoProto:
267  case LValueReference:
268  case RValueReference:
269  case Record:
270    return true;
271  default:
272    return false;
273  }
274}
275
276bool Type::isClassType() const {
277  if (const RecordType *RT = getAs<RecordType>())
278    return RT->getDecl()->isClass();
279  return false;
280}
281bool Type::isStructureType() const {
282  if (const RecordType *RT = getAs<RecordType>())
283    return RT->getDecl()->isStruct();
284  return false;
285}
286bool Type::isStructureOrClassType() const {
287  if (const RecordType *RT = getAs<RecordType>())
288    return RT->getDecl()->isStruct() || RT->getDecl()->isClass();
289  return false;
290}
291bool Type::isVoidPointerType() const {
292  if (const PointerType *PT = getAs<PointerType>())
293    return PT->getPointeeType()->isVoidType();
294  return false;
295}
296
297bool Type::isUnionType() const {
298  if (const RecordType *RT = getAs<RecordType>())
299    return RT->getDecl()->isUnion();
300  return false;
301}
302
303bool Type::isComplexType() const {
304  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
305    return CT->getElementType()->isFloatingType();
306  return false;
307}
308
309bool Type::isComplexIntegerType() const {
310  // Check for GCC complex integer extension.
311  return getAsComplexIntegerType();
312}
313
314const ComplexType *Type::getAsComplexIntegerType() const {
315  if (const ComplexType *Complex = getAs<ComplexType>())
316    if (Complex->getElementType()->isIntegerType())
317      return Complex;
318  return 0;
319}
320
321QualType Type::getPointeeType() const {
322  if (const PointerType *PT = getAs<PointerType>())
323    return PT->getPointeeType();
324  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
325    return OPT->getPointeeType();
326  if (const BlockPointerType *BPT = getAs<BlockPointerType>())
327    return BPT->getPointeeType();
328  if (const ReferenceType *RT = getAs<ReferenceType>())
329    return RT->getPointeeType();
330  return QualType();
331}
332
333const RecordType *Type::getAsStructureType() const {
334  // If this is directly a structure type, return it.
335  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
336    if (RT->getDecl()->isStruct())
337      return RT;
338  }
339
340  // If the canonical form of this type isn't the right kind, reject it.
341  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
342    if (!RT->getDecl()->isStruct())
343      return 0;
344
345    // If this is a typedef for a structure type, strip the typedef off without
346    // losing all typedef information.
347    return cast<RecordType>(getUnqualifiedDesugaredType());
348  }
349  return 0;
350}
351
352const RecordType *Type::getAsUnionType() const {
353  // If this is directly a union type, return it.
354  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
355    if (RT->getDecl()->isUnion())
356      return RT;
357  }
358
359  // If the canonical form of this type isn't the right kind, reject it.
360  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
361    if (!RT->getDecl()->isUnion())
362      return 0;
363
364    // If this is a typedef for a union type, strip the typedef off without
365    // losing all typedef information.
366    return cast<RecordType>(getUnqualifiedDesugaredType());
367  }
368
369  return 0;
370}
371
372ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
373                               ObjCProtocolDecl * const *Protocols,
374                               unsigned NumProtocols)
375  : Type(ObjCObject, Canonical, false, false, false),
376    BaseType(Base)
377{
378  ObjCObjectTypeBits.NumProtocols = NumProtocols;
379  assert(getNumProtocols() == NumProtocols &&
380         "bitfield overflow in protocol count");
381  if (NumProtocols)
382    memcpy(getProtocolStorage(), Protocols,
383           NumProtocols * sizeof(ObjCProtocolDecl*));
384}
385
386const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
387  // There is no sugar for ObjCObjectType's, just return the canonical
388  // type pointer if it is the right class.  There is no typedef information to
389  // return and these cannot be Address-space qualified.
390  if (const ObjCObjectType *T = getAs<ObjCObjectType>())
391    if (T->getNumProtocols() && T->getInterface())
392      return T;
393  return 0;
394}
395
396bool Type::isObjCQualifiedInterfaceType() const {
397  return getAsObjCQualifiedInterfaceType() != 0;
398}
399
400const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
401  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
402  // type pointer if it is the right class.
403  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
404    if (OPT->isObjCQualifiedIdType())
405      return OPT;
406  }
407  return 0;
408}
409
410const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
411  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
412    if (OPT->getInterfaceType())
413      return OPT;
414  }
415  return 0;
416}
417
418const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
419  if (const PointerType *PT = getAs<PointerType>())
420    if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
421      return dyn_cast<CXXRecordDecl>(RT->getDecl());
422  return 0;
423}
424
425CXXRecordDecl *Type::getAsCXXRecordDecl() const {
426  if (const RecordType *RT = getAs<RecordType>())
427    return dyn_cast<CXXRecordDecl>(RT->getDecl());
428  else if (const InjectedClassNameType *Injected
429                                  = getAs<InjectedClassNameType>())
430    return Injected->getDecl();
431
432  return 0;
433}
434
435namespace {
436  class GetContainedAutoVisitor :
437    public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
438  public:
439    using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
440    AutoType *Visit(QualType T) {
441      if (T.isNull())
442        return 0;
443      return Visit(T.getTypePtr());
444    }
445
446    // The 'auto' type itself.
447    AutoType *VisitAutoType(const AutoType *AT) {
448      return const_cast<AutoType*>(AT);
449    }
450
451    // Only these types can contain the desired 'auto' type.
452    AutoType *VisitPointerType(const PointerType *T) {
453      return Visit(T->getPointeeType());
454    }
455    AutoType *VisitBlockPointerType(const BlockPointerType *T) {
456      return Visit(T->getPointeeType());
457    }
458    AutoType *VisitReferenceType(const ReferenceType *T) {
459      return Visit(T->getPointeeTypeAsWritten());
460    }
461    AutoType *VisitMemberPointerType(const MemberPointerType *T) {
462      return Visit(T->getPointeeType());
463    }
464    AutoType *VisitArrayType(const ArrayType *T) {
465      return Visit(T->getElementType());
466    }
467    AutoType *VisitDependentSizedExtVectorType(
468      const DependentSizedExtVectorType *T) {
469      return Visit(T->getElementType());
470    }
471    AutoType *VisitVectorType(const VectorType *T) {
472      return Visit(T->getElementType());
473    }
474    AutoType *VisitFunctionType(const FunctionType *T) {
475      return Visit(T->getResultType());
476    }
477    AutoType *VisitParenType(const ParenType *T) {
478      return Visit(T->getInnerType());
479    }
480    AutoType *VisitAttributedType(const AttributedType *T) {
481      return Visit(T->getModifiedType());
482    }
483  };
484}
485
486AutoType *Type::getContainedAutoType() const {
487  return GetContainedAutoVisitor().Visit(this);
488}
489
490bool Type::isIntegerType() const {
491  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
492    return BT->getKind() >= BuiltinType::Bool &&
493           BT->getKind() <= BuiltinType::Int128;
494  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
495    // Incomplete enum types are not treated as integer types.
496    // FIXME: In C++, enum types are never integer types.
497    return ET->getDecl()->isComplete();
498  return false;
499}
500
501bool Type::hasIntegerRepresentation() const {
502  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
503    return VT->getElementType()->isIntegerType();
504  else
505    return isIntegerType();
506}
507
508/// \brief Determine whether this type is an integral type.
509///
510/// This routine determines whether the given type is an integral type per
511/// C++ [basic.fundamental]p7. Although the C standard does not define the
512/// term "integral type", it has a similar term "integer type", and in C++
513/// the two terms are equivalent. However, C's "integer type" includes
514/// enumeration types, while C++'s "integer type" does not. The \c ASTContext
515/// parameter is used to determine whether we should be following the C or
516/// C++ rules when determining whether this type is an integral/integer type.
517///
518/// For cases where C permits "an integer type" and C++ permits "an integral
519/// type", use this routine.
520///
521/// For cases where C permits "an integer type" and C++ permits "an integral
522/// or enumeration type", use \c isIntegralOrEnumerationType() instead.
523///
524/// \param Ctx The context in which this type occurs.
525///
526/// \returns true if the type is considered an integral type, false otherwise.
527bool Type::isIntegralType(ASTContext &Ctx) const {
528  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
529    return BT->getKind() >= BuiltinType::Bool &&
530    BT->getKind() <= BuiltinType::Int128;
531
532  if (!Ctx.getLangOptions().CPlusPlus)
533    if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
534      return ET->getDecl()->isComplete(); // Complete enum types are integral in C.
535
536  return false;
537}
538
539bool Type::isIntegralOrEnumerationType() const {
540  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
541    return BT->getKind() >= BuiltinType::Bool &&
542           BT->getKind() <= BuiltinType::Int128;
543
544  // Check for a complete enum type; incomplete enum types are not properly an
545  // enumeration type in the sense required here.
546  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
547    return ET->getDecl()->isComplete();
548
549  return false;
550}
551
552bool Type::isIntegralOrUnscopedEnumerationType() const {
553  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
554    return BT->getKind() >= BuiltinType::Bool &&
555           BT->getKind() <= BuiltinType::Int128;
556
557  // Check for a complete enum type; incomplete enum types are not properly an
558  // enumeration type in the sense required here.
559  // C++0x: However, if the underlying type of the enum is fixed, it is
560  // considered complete.
561  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
562    return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
563
564  return false;
565}
566
567
568bool Type::isBooleanType() const {
569  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
570    return BT->getKind() == BuiltinType::Bool;
571  return false;
572}
573
574bool Type::isCharType() const {
575  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
576    return BT->getKind() == BuiltinType::Char_U ||
577           BT->getKind() == BuiltinType::UChar ||
578           BT->getKind() == BuiltinType::Char_S ||
579           BT->getKind() == BuiltinType::SChar;
580  return false;
581}
582
583bool Type::isWideCharType() const {
584  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
585    return BT->getKind() == BuiltinType::WChar_S ||
586           BT->getKind() == BuiltinType::WChar_U;
587  return false;
588}
589
590/// \brief Determine whether this type is any of the built-in character
591/// types.
592bool Type::isAnyCharacterType() const {
593  const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
594  if (BT == 0) return false;
595  switch (BT->getKind()) {
596  default: return false;
597  case BuiltinType::Char_U:
598  case BuiltinType::UChar:
599  case BuiltinType::WChar_U:
600  case BuiltinType::Char16:
601  case BuiltinType::Char32:
602  case BuiltinType::Char_S:
603  case BuiltinType::SChar:
604  case BuiltinType::WChar_S:
605    return true;
606  }
607}
608
609/// isSignedIntegerType - Return true if this is an integer type that is
610/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
611/// an enum decl which has a signed representation
612bool Type::isSignedIntegerType() const {
613  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
614    return BT->getKind() >= BuiltinType::Char_S &&
615           BT->getKind() <= BuiltinType::Int128;
616  }
617
618  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
619    // Incomplete enum types are not treated as integer types.
620    // FIXME: In C++, enum types are never integer types.
621    if (ET->getDecl()->isComplete())
622      return ET->getDecl()->getIntegerType()->isSignedIntegerType();
623  }
624
625  return false;
626}
627
628bool Type::hasSignedIntegerRepresentation() const {
629  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
630    return VT->getElementType()->isSignedIntegerType();
631  else
632    return isSignedIntegerType();
633}
634
635/// isUnsignedIntegerType - Return true if this is an integer type that is
636/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
637/// decl which has an unsigned representation
638bool Type::isUnsignedIntegerType() const {
639  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
640    return BT->getKind() >= BuiltinType::Bool &&
641           BT->getKind() <= BuiltinType::UInt128;
642  }
643
644  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
645    // Incomplete enum types are not treated as integer types.
646    // FIXME: In C++, enum types are never integer types.
647    if (ET->getDecl()->isComplete())
648      return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
649  }
650
651  return false;
652}
653
654bool Type::hasUnsignedIntegerRepresentation() const {
655  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
656    return VT->getElementType()->isUnsignedIntegerType();
657  else
658    return isUnsignedIntegerType();
659}
660
661bool Type::isFloatingType() const {
662  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
663    return BT->getKind() >= BuiltinType::Float &&
664           BT->getKind() <= BuiltinType::LongDouble;
665  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
666    return CT->getElementType()->isFloatingType();
667  return false;
668}
669
670bool Type::hasFloatingRepresentation() const {
671  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
672    return VT->getElementType()->isFloatingType();
673  else
674    return isFloatingType();
675}
676
677bool Type::isRealFloatingType() const {
678  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
679    return BT->isFloatingPoint();
680  return false;
681}
682
683bool Type::isRealType() const {
684  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
685    return BT->getKind() >= BuiltinType::Bool &&
686           BT->getKind() <= BuiltinType::LongDouble;
687  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
688      return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
689  return false;
690}
691
692bool Type::isArithmeticType() const {
693  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
694    return BT->getKind() >= BuiltinType::Bool &&
695           BT->getKind() <= BuiltinType::LongDouble;
696  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
697    // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
698    // If a body isn't seen by the time we get here, return false.
699    //
700    // C++0x: Enumerations are not arithmetic types. For now, just return
701    // false for scoped enumerations since that will disable any
702    // unwanted implicit conversions.
703    return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
704  return isa<ComplexType>(CanonicalType);
705}
706
707bool Type::isScalarType() const {
708  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
709    return BT->getKind() > BuiltinType::Void &&
710           BT->getKind() <= BuiltinType::NullPtr;
711  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
712    // Enums are scalar types, but only if they are defined.  Incomplete enums
713    // are not treated as scalar types.
714    return ET->getDecl()->isComplete();
715  return isa<PointerType>(CanonicalType) ||
716         isa<BlockPointerType>(CanonicalType) ||
717         isa<MemberPointerType>(CanonicalType) ||
718         isa<ComplexType>(CanonicalType) ||
719         isa<ObjCObjectPointerType>(CanonicalType);
720}
721
722Type::ScalarTypeKind Type::getScalarTypeKind() const {
723  assert(isScalarType());
724
725  const Type *T = CanonicalType.getTypePtr();
726  if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
727    if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
728    if (BT->getKind() == BuiltinType::NullPtr) return STK_Pointer;
729    if (BT->isInteger()) return STK_Integral;
730    if (BT->isFloatingPoint()) return STK_Floating;
731    llvm_unreachable("unknown scalar builtin type");
732  } else if (isa<PointerType>(T) ||
733             isa<BlockPointerType>(T) ||
734             isa<ObjCObjectPointerType>(T)) {
735    return STK_Pointer;
736  } else if (isa<MemberPointerType>(T)) {
737    return STK_MemberPointer;
738  } else if (isa<EnumType>(T)) {
739    assert(cast<EnumType>(T)->getDecl()->isComplete());
740    return STK_Integral;
741  } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
742    if (CT->getElementType()->isRealFloatingType())
743      return STK_FloatingComplex;
744    return STK_IntegralComplex;
745  }
746
747  llvm_unreachable("unknown scalar type");
748  return STK_Pointer;
749}
750
751/// \brief Determines whether the type is a C++ aggregate type or C
752/// aggregate or union type.
753///
754/// An aggregate type is an array or a class type (struct, union, or
755/// class) that has no user-declared constructors, no private or
756/// protected non-static data members, no base classes, and no virtual
757/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
758/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
759/// includes union types.
760bool Type::isAggregateType() const {
761  if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
762    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
763      return ClassDecl->isAggregate();
764
765    return true;
766  }
767
768  return isa<ArrayType>(CanonicalType);
769}
770
771/// isConstantSizeType - Return true if this is not a variable sized type,
772/// according to the rules of C99 6.7.5p3.  It is not legal to call this on
773/// incomplete types or dependent types.
774bool Type::isConstantSizeType() const {
775  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
776  assert(!isDependentType() && "This doesn't make sense for dependent types");
777  // The VAT must have a size, as it is known to be complete.
778  return !isa<VariableArrayType>(CanonicalType);
779}
780
781/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
782/// - a type that can describe objects, but which lacks information needed to
783/// determine its size.
784bool Type::isIncompleteType() const {
785  switch (CanonicalType->getTypeClass()) {
786  default: return false;
787  case Builtin:
788    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
789    // be completed.
790    return isVoidType();
791  case Enum:
792    // An enumeration with fixed underlying type is complete (C++0x 7.2p3).
793    if (cast<EnumType>(CanonicalType)->getDecl()->isFixed())
794        return false;
795    // Fall through.
796  case Record:
797    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
798    // forward declaration, but not a full definition (C99 6.2.5p22).
799    return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
800  case ConstantArray:
801    // An array is incomplete if its element type is incomplete
802    // (C++ [dcl.array]p1).
803    // We don't handle variable arrays (they're not allowed in C++) or
804    // dependent-sized arrays (dependent types are never treated as incomplete).
805    return cast<ArrayType>(CanonicalType)->getElementType()->isIncompleteType();
806  case IncompleteArray:
807    // An array of unknown size is an incomplete type (C99 6.2.5p22).
808    return true;
809  case ObjCObject:
810    return cast<ObjCObjectType>(CanonicalType)->getBaseType()
811                                                         ->isIncompleteType();
812  case ObjCInterface:
813    // ObjC interfaces are incomplete if they are @class, not @interface.
814    return cast<ObjCInterfaceType>(CanonicalType)->getDecl()->isForwardDecl();
815  }
816}
817
818/// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10)
819bool Type::isPODType() const {
820  // The compiler shouldn't query this for incomplete types, but the user might.
821  // We return false for that case. Except for incomplete arrays of PODs, which
822  // are PODs according to the standard.
823  if (isIncompleteArrayType() &&
824      cast<ArrayType>(CanonicalType)->getElementType()->isPODType())
825    return true;
826  if (isIncompleteType())
827    return false;
828
829  switch (CanonicalType->getTypeClass()) {
830    // Everything not explicitly mentioned is not POD.
831  default: return false;
832  case VariableArray:
833  case ConstantArray:
834    // IncompleteArray is handled above.
835    return cast<ArrayType>(CanonicalType)->getElementType()->isPODType();
836
837  case Builtin:
838  case Complex:
839  case Pointer:
840  case MemberPointer:
841  case Vector:
842  case ExtVector:
843  case ObjCObjectPointer:
844  case BlockPointer:
845    return true;
846
847  case Enum:
848    return true;
849
850  case Record:
851    if (CXXRecordDecl *ClassDecl
852          = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
853      return ClassDecl->isPOD();
854
855    // C struct/union is POD.
856    return true;
857  }
858}
859
860bool Type::isLiteralType() const {
861  if (isIncompleteType())
862    return false;
863
864  // C++0x [basic.types]p10:
865  //   A type is a literal type if it is:
866  switch (CanonicalType->getTypeClass()) {
867    // We're whitelisting
868  default: return false;
869
870    //   -- a scalar type
871  case Builtin:
872  case Complex:
873  case Pointer:
874  case MemberPointer:
875  case Vector:
876  case ExtVector:
877  case ObjCObjectPointer:
878  case Enum:
879    return true;
880
881    //   -- a class type with ...
882  case Record:
883    // FIXME: Do the tests
884    return false;
885
886    //   -- an array of literal type
887    // Extension: variable arrays cannot be literal types, since they're
888    // runtime-sized.
889  case ConstantArray:
890    return cast<ArrayType>(CanonicalType)->getElementType()->isLiteralType();
891  }
892}
893
894bool Type::isPromotableIntegerType() const {
895  if (const BuiltinType *BT = getAs<BuiltinType>())
896    switch (BT->getKind()) {
897    case BuiltinType::Bool:
898    case BuiltinType::Char_S:
899    case BuiltinType::Char_U:
900    case BuiltinType::SChar:
901    case BuiltinType::UChar:
902    case BuiltinType::Short:
903    case BuiltinType::UShort:
904      return true;
905    default:
906      return false;
907    }
908
909  // Enumerated types are promotable to their compatible integer types
910  // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
911  if (const EnumType *ET = getAs<EnumType>()){
912    if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
913        || ET->getDecl()->isScoped())
914      return false;
915
916    const BuiltinType *BT
917      = ET->getDecl()->getPromotionType()->getAs<BuiltinType>();
918    return BT->getKind() == BuiltinType::Int
919           || BT->getKind() == BuiltinType::UInt;
920  }
921
922  return false;
923}
924
925bool Type::isNullPtrType() const {
926  if (const BuiltinType *BT = getAs<BuiltinType>())
927    return BT->getKind() == BuiltinType::NullPtr;
928  return false;
929}
930
931bool Type::isSpecifierType() const {
932  // Note that this intentionally does not use the canonical type.
933  switch (getTypeClass()) {
934  case Builtin:
935  case Record:
936  case Enum:
937  case Typedef:
938  case Complex:
939  case TypeOfExpr:
940  case TypeOf:
941  case TemplateTypeParm:
942  case SubstTemplateTypeParm:
943  case TemplateSpecialization:
944  case Elaborated:
945  case DependentName:
946  case DependentTemplateSpecialization:
947  case ObjCInterface:
948  case ObjCObject:
949  case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
950    return true;
951  default:
952    return false;
953  }
954}
955
956ElaboratedTypeKeyword
957TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
958  switch (TypeSpec) {
959  default: return ETK_None;
960  case TST_typename: return ETK_Typename;
961  case TST_class: return ETK_Class;
962  case TST_struct: return ETK_Struct;
963  case TST_union: return ETK_Union;
964  case TST_enum: return ETK_Enum;
965  }
966}
967
968TagTypeKind
969TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
970  switch(TypeSpec) {
971  case TST_class: return TTK_Class;
972  case TST_struct: return TTK_Struct;
973  case TST_union: return TTK_Union;
974  case TST_enum: return TTK_Enum;
975  }
976
977  llvm_unreachable("Type specifier is not a tag type kind.");
978  return TTK_Union;
979}
980
981ElaboratedTypeKeyword
982TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
983  switch (Kind) {
984  case TTK_Class: return ETK_Class;
985  case TTK_Struct: return ETK_Struct;
986  case TTK_Union: return ETK_Union;
987  case TTK_Enum: return ETK_Enum;
988  }
989  llvm_unreachable("Unknown tag type kind.");
990}
991
992TagTypeKind
993TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
994  switch (Keyword) {
995  case ETK_Class: return TTK_Class;
996  case ETK_Struct: return TTK_Struct;
997  case ETK_Union: return TTK_Union;
998  case ETK_Enum: return TTK_Enum;
999  case ETK_None: // Fall through.
1000  case ETK_Typename:
1001    llvm_unreachable("Elaborated type keyword is not a tag type kind.");
1002  }
1003  llvm_unreachable("Unknown elaborated type keyword.");
1004}
1005
1006bool
1007TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
1008  switch (Keyword) {
1009  case ETK_None:
1010  case ETK_Typename:
1011    return false;
1012  case ETK_Class:
1013  case ETK_Struct:
1014  case ETK_Union:
1015  case ETK_Enum:
1016    return true;
1017  }
1018  llvm_unreachable("Unknown elaborated type keyword.");
1019}
1020
1021const char*
1022TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
1023  switch (Keyword) {
1024  case ETK_None: return "";
1025  case ETK_Typename: return "typename";
1026  case ETK_Class:  return "class";
1027  case ETK_Struct: return "struct";
1028  case ETK_Union:  return "union";
1029  case ETK_Enum:   return "enum";
1030  }
1031
1032  llvm_unreachable("Unknown elaborated type keyword.");
1033  return "";
1034}
1035
1036DependentTemplateSpecializationType::DependentTemplateSpecializationType(
1037                         ElaboratedTypeKeyword Keyword,
1038                         NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1039                         unsigned NumArgs, const TemplateArgument *Args,
1040                         QualType Canon)
1041  : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true,
1042                    /*VariablyModified=*/false,
1043                    NNS->containsUnexpandedParameterPack()),
1044    NNS(NNS), Name(Name), NumArgs(NumArgs) {
1045  assert(NNS && NNS->isDependent() &&
1046         "DependentTemplateSpecializatonType requires dependent qualifier");
1047  for (unsigned I = 0; I != NumArgs; ++I) {
1048    if (Args[I].containsUnexpandedParameterPack())
1049      setContainsUnexpandedParameterPack();
1050
1051    new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
1052  }
1053}
1054
1055void
1056DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1057                                             const ASTContext &Context,
1058                                             ElaboratedTypeKeyword Keyword,
1059                                             NestedNameSpecifier *Qualifier,
1060                                             const IdentifierInfo *Name,
1061                                             unsigned NumArgs,
1062                                             const TemplateArgument *Args) {
1063  ID.AddInteger(Keyword);
1064  ID.AddPointer(Qualifier);
1065  ID.AddPointer(Name);
1066  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1067    Args[Idx].Profile(ID, Context);
1068}
1069
1070bool Type::isElaboratedTypeSpecifier() const {
1071  ElaboratedTypeKeyword Keyword;
1072  if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
1073    Keyword = Elab->getKeyword();
1074  else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
1075    Keyword = DepName->getKeyword();
1076  else if (const DependentTemplateSpecializationType *DepTST =
1077             dyn_cast<DependentTemplateSpecializationType>(this))
1078    Keyword = DepTST->getKeyword();
1079  else
1080    return false;
1081
1082  return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
1083}
1084
1085const char *Type::getTypeClassName() const {
1086  switch (TypeBits.TC) {
1087#define ABSTRACT_TYPE(Derived, Base)
1088#define TYPE(Derived, Base) case Derived: return #Derived;
1089#include "clang/AST/TypeNodes.def"
1090  }
1091
1092  llvm_unreachable("Invalid type class.");
1093  return 0;
1094}
1095
1096const char *BuiltinType::getName(const LangOptions &LO) const {
1097  switch (getKind()) {
1098  case Void:              return "void";
1099  case Bool:              return LO.Bool ? "bool" : "_Bool";
1100  case Char_S:            return "char";
1101  case Char_U:            return "char";
1102  case SChar:             return "signed char";
1103  case Short:             return "short";
1104  case Int:               return "int";
1105  case Long:              return "long";
1106  case LongLong:          return "long long";
1107  case Int128:            return "__int128_t";
1108  case UChar:             return "unsigned char";
1109  case UShort:            return "unsigned short";
1110  case UInt:              return "unsigned int";
1111  case ULong:             return "unsigned long";
1112  case ULongLong:         return "unsigned long long";
1113  case UInt128:           return "__uint128_t";
1114  case Float:             return "float";
1115  case Double:            return "double";
1116  case LongDouble:        return "long double";
1117  case WChar_S:
1118  case WChar_U:           return "wchar_t";
1119  case Char16:            return "char16_t";
1120  case Char32:            return "char32_t";
1121  case NullPtr:           return "nullptr_t";
1122  case Overload:          return "<overloaded function type>";
1123  case Dependent:         return "<dependent type>";
1124  case ObjCId:            return "id";
1125  case ObjCClass:         return "Class";
1126  case ObjCSel:           return "SEL";
1127  }
1128
1129  llvm_unreachable("Invalid builtin type.");
1130  return 0;
1131}
1132
1133QualType QualType::getNonLValueExprType(ASTContext &Context) const {
1134  if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
1135    return RefType->getPointeeType();
1136
1137  // C++0x [basic.lval]:
1138  //   Class prvalues can have cv-qualified types; non-class prvalues always
1139  //   have cv-unqualified types.
1140  //
1141  // See also C99 6.3.2.1p2.
1142  if (!Context.getLangOptions().CPlusPlus ||
1143      (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
1144    return getUnqualifiedType();
1145
1146  return *this;
1147}
1148
1149llvm::StringRef FunctionType::getNameForCallConv(CallingConv CC) {
1150  switch (CC) {
1151  case CC_Default:
1152    llvm_unreachable("no name for default cc");
1153    return "";
1154
1155  case CC_C: return "cdecl";
1156  case CC_X86StdCall: return "stdcall";
1157  case CC_X86FastCall: return "fastcall";
1158  case CC_X86ThisCall: return "thiscall";
1159  case CC_X86Pascal: return "pascal";
1160  }
1161
1162  llvm_unreachable("Invalid calling convention.");
1163  return "";
1164}
1165
1166FunctionProtoType::FunctionProtoType(QualType result, const QualType *args,
1167                                     unsigned numArgs, QualType canonical,
1168                                     const ExtProtoInfo &epi)
1169  : FunctionType(FunctionProto, result, epi.Variadic, epi.TypeQuals,
1170                 epi.RefQualifier, canonical,
1171                 result->isDependentType(),
1172                 result->isVariablyModifiedType(),
1173                 result->containsUnexpandedParameterPack(),
1174                 epi.ExtInfo),
1175    NumArgs(numArgs), NumExceptions(epi.NumExceptions),
1176    HasExceptionSpec(epi.HasExceptionSpec),
1177    HasAnyExceptionSpec(epi.HasAnyExceptionSpec)
1178{
1179  // Fill in the trailing argument array.
1180  QualType *argSlot = reinterpret_cast<QualType*>(this+1);
1181  for (unsigned i = 0; i != numArgs; ++i) {
1182    if (args[i]->isDependentType())
1183      setDependent();
1184
1185    if (args[i]->containsUnexpandedParameterPack())
1186      setContainsUnexpandedParameterPack();
1187
1188    argSlot[i] = args[i];
1189  }
1190
1191  // Fill in the exception array.
1192  QualType *exnSlot = argSlot + numArgs;
1193  for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) {
1194    if (epi.Exceptions[i]->isDependentType())
1195      setDependent();
1196
1197    if (epi.Exceptions[i]->containsUnexpandedParameterPack())
1198      setContainsUnexpandedParameterPack();
1199
1200    exnSlot[i] = epi.Exceptions[i];
1201  }
1202}
1203
1204bool FunctionProtoType::isTemplateVariadic() const {
1205  for (unsigned ArgIdx = getNumArgs(); ArgIdx; --ArgIdx)
1206    if (isa<PackExpansionType>(getArgType(ArgIdx - 1)))
1207      return true;
1208
1209  return false;
1210}
1211
1212void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1213                                const QualType *ArgTys, unsigned NumArgs,
1214                                const ExtProtoInfo &epi) {
1215  ID.AddPointer(Result.getAsOpaquePtr());
1216  for (unsigned i = 0; i != NumArgs; ++i)
1217    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
1218  ID.AddBoolean(epi.Variadic);
1219  ID.AddInteger(epi.TypeQuals);
1220  ID.AddInteger(epi.RefQualifier);
1221  if (epi.HasExceptionSpec) {
1222    ID.AddBoolean(epi.HasAnyExceptionSpec);
1223    for (unsigned i = 0; i != epi.NumExceptions; ++i)
1224      ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr());
1225  }
1226  epi.ExtInfo.Profile(ID);
1227}
1228
1229void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID) {
1230  Profile(ID, getResultType(), arg_type_begin(), NumArgs, getExtProtoInfo());
1231}
1232
1233QualType TypedefType::desugar() const {
1234  return getDecl()->getUnderlyingType();
1235}
1236
1237TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
1238  : Type(TypeOfExpr, can, E->isTypeDependent(),
1239         E->getType()->isVariablyModifiedType(),
1240         E->containsUnexpandedParameterPack()),
1241    TOExpr(E) {
1242}
1243
1244QualType TypeOfExprType::desugar() const {
1245  return getUnderlyingExpr()->getType();
1246}
1247
1248void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
1249                                      const ASTContext &Context, Expr *E) {
1250  E->Profile(ID, Context, true);
1251}
1252
1253DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
1254  : Type(Decltype, can, E->isTypeDependent(),
1255         E->getType()->isVariablyModifiedType(),
1256         E->containsUnexpandedParameterPack()),
1257    E(E),
1258  UnderlyingType(underlyingType) {
1259}
1260
1261DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
1262  : DecltypeType(E, Context.DependentTy), Context(Context) { }
1263
1264void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
1265                                    const ASTContext &Context, Expr *E) {
1266  E->Profile(ID, Context, true);
1267}
1268
1269TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
1270  : Type(TC, can, D->isDependentType(), /*VariablyModified=*/false,
1271         /*ContainsUnexpandedParameterPack=*/false),
1272    decl(const_cast<TagDecl*>(D)) {}
1273
1274static TagDecl *getInterestingTagDecl(TagDecl *decl) {
1275  for (TagDecl::redecl_iterator I = decl->redecls_begin(),
1276                                E = decl->redecls_end();
1277       I != E; ++I) {
1278    if (I->isDefinition() || I->isBeingDefined())
1279      return *I;
1280  }
1281  // If there's no definition (not even in progress), return what we have.
1282  return decl;
1283}
1284
1285TagDecl *TagType::getDecl() const {
1286  return getInterestingTagDecl(decl);
1287}
1288
1289bool TagType::isBeingDefined() const {
1290  return getDecl()->isBeingDefined();
1291}
1292
1293CXXRecordDecl *InjectedClassNameType::getDecl() const {
1294  return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
1295}
1296
1297bool RecordType::classof(const TagType *TT) {
1298  return isa<RecordDecl>(TT->getDecl());
1299}
1300
1301bool EnumType::classof(const TagType *TT) {
1302  return isa<EnumDecl>(TT->getDecl());
1303}
1304
1305SubstTemplateTypeParmPackType::
1306SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
1307                              QualType Canon,
1308                              const TemplateArgument &ArgPack)
1309  : Type(SubstTemplateTypeParmPack, Canon, true, false, true), Replaced(Param),
1310    Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
1311{
1312}
1313
1314TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
1315  return TemplateArgument(Arguments, NumArguments);
1316}
1317
1318void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
1319  Profile(ID, getReplacedParameter(), getArgumentPack());
1320}
1321
1322void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
1323                                           const TemplateTypeParmType *Replaced,
1324                                            const TemplateArgument &ArgPack) {
1325  ID.AddPointer(Replaced);
1326  ID.AddInteger(ArgPack.pack_size());
1327  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
1328                                    PEnd = ArgPack.pack_end();
1329       P != PEnd; ++P)
1330    ID.AddPointer(P->getAsType().getAsOpaquePtr());
1331}
1332
1333bool TemplateSpecializationType::
1334anyDependentTemplateArguments(const TemplateArgumentListInfo &Args) {
1335  return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size());
1336}
1337
1338bool TemplateSpecializationType::
1339anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N) {
1340  for (unsigned i = 0; i != N; ++i)
1341    if (Args[i].getArgument().isDependent())
1342      return true;
1343  return false;
1344}
1345
1346bool TemplateSpecializationType::
1347anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N) {
1348  for (unsigned i = 0; i != N; ++i)
1349    if (Args[i].isDependent())
1350      return true;
1351  return false;
1352}
1353
1354TemplateSpecializationType::
1355TemplateSpecializationType(TemplateName T,
1356                           const TemplateArgument *Args,
1357                           unsigned NumArgs, QualType Canon)
1358  : Type(TemplateSpecialization,
1359         Canon.isNull()? QualType(this, 0) : Canon,
1360         T.isDependent(), false,
1361         T.containsUnexpandedParameterPack()),
1362    Template(T), NumArgs(NumArgs)
1363{
1364  assert((!Canon.isNull() ||
1365          T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)) &&
1366         "No canonical type for non-dependent class template specialization");
1367
1368  TemplateArgument *TemplateArgs
1369    = reinterpret_cast<TemplateArgument *>(this + 1);
1370  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
1371    // Update dependent and variably-modified bits.
1372    if (Args[Arg].isDependent())
1373      setDependent();
1374    if (Args[Arg].getKind() == TemplateArgument::Type &&
1375        Args[Arg].getAsType()->isVariablyModifiedType())
1376      setVariablyModified();
1377    if (Args[Arg].containsUnexpandedParameterPack())
1378      setContainsUnexpandedParameterPack();
1379
1380    new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
1381  }
1382}
1383
1384void
1385TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1386                                    TemplateName T,
1387                                    const TemplateArgument *Args,
1388                                    unsigned NumArgs,
1389                                    const ASTContext &Context) {
1390  T.Profile(ID);
1391  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1392    Args[Idx].Profile(ID, Context);
1393}
1394
1395QualType
1396QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
1397  if (!hasNonFastQualifiers())
1398    return QT.withFastQualifiers(getFastQualifiers());
1399
1400  return Context.getQualifiedType(QT, *this);
1401}
1402
1403QualType
1404QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
1405  if (!hasNonFastQualifiers())
1406    return QualType(T, getFastQualifiers());
1407
1408  return Context.getQualifiedType(T, *this);
1409}
1410
1411void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
1412                                 QualType BaseType,
1413                                 ObjCProtocolDecl * const *Protocols,
1414                                 unsigned NumProtocols) {
1415  ID.AddPointer(BaseType.getAsOpaquePtr());
1416  for (unsigned i = 0; i != NumProtocols; i++)
1417    ID.AddPointer(Protocols[i]);
1418}
1419
1420void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
1421  Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
1422}
1423
1424namespace {
1425
1426/// \brief The cached properties of a type.
1427class CachedProperties {
1428  char linkage;
1429  char visibility;
1430  bool local;
1431
1432public:
1433  CachedProperties(Linkage linkage, Visibility visibility, bool local)
1434    : linkage(linkage), visibility(visibility), local(local) {}
1435
1436  Linkage getLinkage() const { return (Linkage) linkage; }
1437  Visibility getVisibility() const { return (Visibility) visibility; }
1438  bool hasLocalOrUnnamedType() const { return local; }
1439
1440  friend CachedProperties merge(CachedProperties L, CachedProperties R) {
1441    return CachedProperties(minLinkage(L.getLinkage(), R.getLinkage()),
1442                            minVisibility(L.getVisibility(), R.getVisibility()),
1443                         L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
1444  }
1445};
1446}
1447
1448static CachedProperties computeCachedProperties(const Type *T);
1449
1450namespace clang {
1451/// The type-property cache.  This is templated so as to be
1452/// instantiated at an internal type to prevent unnecessary symbol
1453/// leakage.
1454template <class Private> class TypePropertyCache {
1455public:
1456  static CachedProperties get(QualType T) {
1457    return get(T.getTypePtr());
1458  }
1459
1460  static CachedProperties get(const Type *T) {
1461    ensure(T);
1462    return CachedProperties(T->TypeBits.getLinkage(),
1463                            T->TypeBits.getVisibility(),
1464                            T->TypeBits.hasLocalOrUnnamedType());
1465  }
1466
1467  static void ensure(const Type *T) {
1468    // If the cache is valid, we're okay.
1469    if (T->TypeBits.isCacheValid()) return;
1470
1471    // If this type is non-canonical, ask its canonical type for the
1472    // relevant information.
1473    if (!T->isCanonicalUnqualified()) {
1474      const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
1475      ensure(CT);
1476      T->TypeBits.CacheValidAndVisibility =
1477        CT->TypeBits.CacheValidAndVisibility;
1478      T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
1479      T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
1480      return;
1481    }
1482
1483    // Compute the cached properties and then set the cache.
1484    CachedProperties Result = computeCachedProperties(T);
1485    T->TypeBits.CacheValidAndVisibility = Result.getVisibility() + 1U;
1486    assert(T->TypeBits.isCacheValid() &&
1487           T->TypeBits.getVisibility() == Result.getVisibility());
1488    T->TypeBits.CachedLinkage = Result.getLinkage();
1489    T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
1490  }
1491};
1492}
1493
1494// Instantiate the friend template at a private class.  In a
1495// reasonable implementation, these symbols will be internal.
1496// It is terrible that this is the best way to accomplish this.
1497namespace { class Private {}; }
1498typedef TypePropertyCache<Private> Cache;
1499
1500static CachedProperties computeCachedProperties(const Type *T) {
1501  switch (T->getTypeClass()) {
1502#define TYPE(Class,Base)
1503#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
1504#include "clang/AST/TypeNodes.def"
1505    llvm_unreachable("didn't expect a non-canonical type here");
1506
1507#define TYPE(Class,Base)
1508#define DEPENDENT_TYPE(Class,Base) case Type::Class:
1509#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
1510#include "clang/AST/TypeNodes.def"
1511    // Treat dependent types as external.
1512    assert(T->isDependentType());
1513    return CachedProperties(ExternalLinkage, DefaultVisibility, false);
1514
1515  case Type::Builtin:
1516    // C++ [basic.link]p8:
1517    //   A type is said to have linkage if and only if:
1518    //     - it is a fundamental type (3.9.1); or
1519    return CachedProperties(ExternalLinkage, DefaultVisibility, false);
1520
1521  case Type::Record:
1522  case Type::Enum: {
1523    const TagDecl *Tag = cast<TagType>(T)->getDecl();
1524
1525    // C++ [basic.link]p8:
1526    //     - it is a class or enumeration type that is named (or has a name
1527    //       for linkage purposes (7.1.3)) and the name has linkage; or
1528    //     -  it is a specialization of a class template (14); or
1529    NamedDecl::LinkageInfo LV = Tag->getLinkageAndVisibility();
1530    bool IsLocalOrUnnamed =
1531      Tag->getDeclContext()->isFunctionOrMethod() ||
1532      (!Tag->getIdentifier() && !Tag->getTypedefForAnonDecl());
1533    return CachedProperties(LV.linkage(), LV.visibility(), IsLocalOrUnnamed);
1534  }
1535
1536    // C++ [basic.link]p8:
1537    //   - it is a compound type (3.9.2) other than a class or enumeration,
1538    //     compounded exclusively from types that have linkage; or
1539  case Type::Complex:
1540    return Cache::get(cast<ComplexType>(T)->getElementType());
1541  case Type::Pointer:
1542    return Cache::get(cast<PointerType>(T)->getPointeeType());
1543  case Type::BlockPointer:
1544    return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
1545  case Type::LValueReference:
1546  case Type::RValueReference:
1547    return Cache::get(cast<ReferenceType>(T)->getPointeeType());
1548  case Type::MemberPointer: {
1549    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1550    return merge(Cache::get(MPT->getClass()),
1551                 Cache::get(MPT->getPointeeType()));
1552  }
1553  case Type::ConstantArray:
1554  case Type::IncompleteArray:
1555  case Type::VariableArray:
1556    return Cache::get(cast<ArrayType>(T)->getElementType());
1557  case Type::Vector:
1558  case Type::ExtVector:
1559    return Cache::get(cast<VectorType>(T)->getElementType());
1560  case Type::FunctionNoProto:
1561    return Cache::get(cast<FunctionType>(T)->getResultType());
1562  case Type::FunctionProto: {
1563    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1564    CachedProperties result = Cache::get(FPT->getResultType());
1565    for (FunctionProtoType::arg_type_iterator ai = FPT->arg_type_begin(),
1566           ae = FPT->arg_type_end(); ai != ae; ++ai)
1567      result = merge(result, Cache::get(*ai));
1568    return result;
1569  }
1570  case Type::ObjCInterface: {
1571    NamedDecl::LinkageInfo LV =
1572      cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
1573    return CachedProperties(LV.linkage(), LV.visibility(), false);
1574  }
1575  case Type::ObjCObject:
1576    return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
1577  case Type::ObjCObjectPointer:
1578    return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
1579  }
1580
1581  llvm_unreachable("unhandled type class");
1582
1583  // C++ [basic.link]p8:
1584  //   Names not covered by these rules have no linkage.
1585  return CachedProperties(NoLinkage, DefaultVisibility, false);
1586}
1587
1588/// \brief Determine the linkage of this type.
1589Linkage Type::getLinkage() const {
1590  Cache::ensure(this);
1591  return TypeBits.getLinkage();
1592}
1593
1594/// \brief Determine the linkage of this type.
1595Visibility Type::getVisibility() const {
1596  Cache::ensure(this);
1597  return TypeBits.getVisibility();
1598}
1599
1600bool Type::hasUnnamedOrLocalType() const {
1601  Cache::ensure(this);
1602  return TypeBits.hasLocalOrUnnamedType();
1603}
1604
1605std::pair<Linkage,Visibility> Type::getLinkageAndVisibility() const {
1606  Cache::ensure(this);
1607  return std::make_pair(TypeBits.getLinkage(), TypeBits.getVisibility());
1608}
1609
1610void Type::ClearLinkageCache() {
1611  TypeBits.CacheValidAndVisibility = 0;
1612  if (QualType(this, 0) != CanonicalType)
1613    CanonicalType->TypeBits.CacheValidAndVisibility = 0;
1614}
1615
1616bool Type::hasSizedVLAType() const {
1617  if (!isVariablyModifiedType()) return false;
1618
1619  if (const PointerType *ptr = getAs<PointerType>())
1620    return ptr->getPointeeType()->hasSizedVLAType();
1621  if (const ReferenceType *ref = getAs<ReferenceType>())
1622    return ref->getPointeeType()->hasSizedVLAType();
1623  if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
1624    if (isa<VariableArrayType>(arr) &&
1625        cast<VariableArrayType>(arr)->getSizeExpr())
1626      return true;
1627
1628    return arr->getElementType()->hasSizedVLAType();
1629  }
1630
1631  return false;
1632}
1633
1634QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
1635  /// Currently, the only destruction kind we recognize is C++ objects
1636  /// with non-trivial destructors.
1637  const CXXRecordDecl *record =
1638    type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1639  if (record && !record->hasTrivialDestructor())
1640    return DK_cxx_destructor;
1641
1642  return DK_none;
1643}
1644