Type.cpp revision 198398
1//===--- Type.cpp - Type representation and manipulation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related functionality.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Type.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace clang;
24
25bool QualType::isConstant(QualType T, ASTContext &Ctx) {
26  if (T.isConstQualified())
27    return true;
28
29  if (const ArrayType *AT = Ctx.getAsArrayType(T))
30    return AT->getElementType().isConstant(Ctx);
31
32  return false;
33}
34
35void Type::Destroy(ASTContext& C) {
36  this->~Type();
37  C.Deallocate(this);
38}
39
40void VariableArrayType::Destroy(ASTContext& C) {
41  if (SizeExpr)
42    SizeExpr->Destroy(C);
43  this->~VariableArrayType();
44  C.Deallocate(this);
45}
46
47void DependentSizedArrayType::Destroy(ASTContext& C) {
48  // FIXME: Resource contention like in ConstantArrayWithExprType ?
49  // May crash, depending on platform or a particular build.
50  // SizeExpr->Destroy(C);
51  this->~DependentSizedArrayType();
52  C.Deallocate(this);
53}
54
55void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
56                                      ASTContext &Context,
57                                      QualType ET,
58                                      ArraySizeModifier SizeMod,
59                                      unsigned TypeQuals,
60                                      Expr *E) {
61  ID.AddPointer(ET.getAsOpaquePtr());
62  ID.AddInteger(SizeMod);
63  ID.AddInteger(TypeQuals);
64  E->Profile(ID, Context, true);
65}
66
67void
68DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
69                                     ASTContext &Context,
70                                     QualType ElementType, Expr *SizeExpr) {
71  ID.AddPointer(ElementType.getAsOpaquePtr());
72  SizeExpr->Profile(ID, Context, true);
73}
74
75void DependentSizedExtVectorType::Destroy(ASTContext& C) {
76  // FIXME: Deallocate size expression, once we're cloning properly.
77//  if (SizeExpr)
78//    SizeExpr->Destroy(C);
79  this->~DependentSizedExtVectorType();
80  C.Deallocate(this);
81}
82
83/// getArrayElementTypeNoTypeQual - If this is an array type, return the
84/// element type of the array, potentially with type qualifiers missing.
85/// This method should never be used when type qualifiers are meaningful.
86const Type *Type::getArrayElementTypeNoTypeQual() const {
87  // If this is directly an array type, return it.
88  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
89    return ATy->getElementType().getTypePtr();
90
91  // If the canonical form of this type isn't the right kind, reject it.
92  if (!isa<ArrayType>(CanonicalType))
93    return 0;
94
95  // If this is a typedef for an array type, strip the typedef off without
96  // losing all typedef information.
97  return cast<ArrayType>(getUnqualifiedDesugaredType())
98    ->getElementType().getTypePtr();
99}
100
101/// getDesugaredType - Return the specified type with any "sugar" removed from
102/// the type.  This takes off typedefs, typeof's etc.  If the outer level of
103/// the type is already concrete, it returns it unmodified.  This is similar
104/// to getting the canonical type, but it doesn't remove *all* typedefs.  For
105/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
106/// concrete.
107QualType QualType::getDesugaredType(QualType T) {
108  QualifierCollector Qs;
109
110  QualType Cur = T;
111  while (true) {
112    const Type *CurTy = Qs.strip(Cur);
113    switch (CurTy->getTypeClass()) {
114#define ABSTRACT_TYPE(Class, Parent)
115#define TYPE(Class, Parent) \
116    case Type::Class: { \
117      const Class##Type *Ty = cast<Class##Type>(CurTy); \
118      if (!Ty->isSugared()) \
119        return Qs.apply(Cur); \
120      Cur = Ty->desugar(); \
121      break; \
122    }
123#include "clang/AST/TypeNodes.def"
124    }
125  }
126}
127
128/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
129/// sugar off the given type.  This should produce an object of the
130/// same dynamic type as the canonical type.
131const Type *Type::getUnqualifiedDesugaredType() const {
132  const Type *Cur = this;
133
134  while (true) {
135    switch (Cur->getTypeClass()) {
136#define ABSTRACT_TYPE(Class, Parent)
137#define TYPE(Class, Parent) \
138    case Class: { \
139      const Class##Type *Ty = cast<Class##Type>(Cur); \
140      if (!Ty->isSugared()) return Cur; \
141      Cur = Ty->desugar().getTypePtr(); \
142      break; \
143    }
144#include "clang/AST/TypeNodes.def"
145    }
146  }
147}
148
149/// isVoidType - Helper method to determine if this is the 'void' type.
150bool Type::isVoidType() const {
151  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
152    return BT->getKind() == BuiltinType::Void;
153  return false;
154}
155
156bool Type::isObjectType() const {
157  if (isa<FunctionType>(CanonicalType) || isa<ReferenceType>(CanonicalType) ||
158      isa<IncompleteArrayType>(CanonicalType) || isVoidType())
159    return false;
160  return true;
161}
162
163bool Type::isDerivedType() const {
164  switch (CanonicalType->getTypeClass()) {
165  case Pointer:
166  case VariableArray:
167  case ConstantArray:
168  case IncompleteArray:
169  case FunctionProto:
170  case FunctionNoProto:
171  case LValueReference:
172  case RValueReference:
173  case Record:
174    return true;
175  default:
176    return false;
177  }
178}
179
180bool Type::isClassType() const {
181  if (const RecordType *RT = getAs<RecordType>())
182    return RT->getDecl()->isClass();
183  return false;
184}
185bool Type::isStructureType() const {
186  if (const RecordType *RT = getAs<RecordType>())
187    return RT->getDecl()->isStruct();
188  return false;
189}
190bool Type::isVoidPointerType() const {
191  if (const PointerType *PT = getAs<PointerType>())
192    return PT->getPointeeType()->isVoidType();
193  return false;
194}
195
196bool Type::isUnionType() const {
197  if (const RecordType *RT = getAs<RecordType>())
198    return RT->getDecl()->isUnion();
199  return false;
200}
201
202bool Type::isComplexType() const {
203  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
204    return CT->getElementType()->isFloatingType();
205  return false;
206}
207
208bool Type::isComplexIntegerType() const {
209  // Check for GCC complex integer extension.
210  return getAsComplexIntegerType();
211}
212
213const ComplexType *Type::getAsComplexIntegerType() const {
214  if (const ComplexType *Complex = getAs<ComplexType>())
215    if (Complex->getElementType()->isIntegerType())
216      return Complex;
217  return 0;
218}
219
220QualType Type::getPointeeType() const {
221  if (const PointerType *PT = getAs<PointerType>())
222    return PT->getPointeeType();
223  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
224    return OPT->getPointeeType();
225  if (const BlockPointerType *BPT = getAs<BlockPointerType>())
226    return BPT->getPointeeType();
227  return QualType();
228}
229
230/// isVariablyModifiedType (C99 6.7.5p3) - Return true for variable length
231/// array types and types that contain variable array types in their
232/// declarator
233bool Type::isVariablyModifiedType() const {
234  // A VLA is a variably modified type.
235  if (isVariableArrayType())
236    return true;
237
238  // An array can contain a variably modified type
239  if (const Type *T = getArrayElementTypeNoTypeQual())
240    return T->isVariablyModifiedType();
241
242  // A pointer can point to a variably modified type.
243  // Also, C++ references and member pointers can point to a variably modified
244  // type, where VLAs appear as an extension to C++, and should be treated
245  // correctly.
246  if (const PointerType *PT = getAs<PointerType>())
247    return PT->getPointeeType()->isVariablyModifiedType();
248  if (const ReferenceType *RT = getAs<ReferenceType>())
249    return RT->getPointeeType()->isVariablyModifiedType();
250  if (const MemberPointerType *PT = getAs<MemberPointerType>())
251    return PT->getPointeeType()->isVariablyModifiedType();
252
253  // A function can return a variably modified type
254  // This one isn't completely obvious, but it follows from the
255  // definition in C99 6.7.5p3. Because of this rule, it's
256  // illegal to declare a function returning a variably modified type.
257  if (const FunctionType *FT = getAs<FunctionType>())
258    return FT->getResultType()->isVariablyModifiedType();
259
260  return false;
261}
262
263const RecordType *Type::getAsStructureType() const {
264  // If this is directly a structure type, return it.
265  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
266    if (RT->getDecl()->isStruct())
267      return RT;
268  }
269
270  // If the canonical form of this type isn't the right kind, reject it.
271  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
272    if (!RT->getDecl()->isStruct())
273      return 0;
274
275    // If this is a typedef for a structure type, strip the typedef off without
276    // losing all typedef information.
277    return cast<RecordType>(getUnqualifiedDesugaredType());
278  }
279  return 0;
280}
281
282const RecordType *Type::getAsUnionType() const {
283  // If this is directly a union type, return it.
284  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
285    if (RT->getDecl()->isUnion())
286      return RT;
287  }
288
289  // If the canonical form of this type isn't the right kind, reject it.
290  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
291    if (!RT->getDecl()->isUnion())
292      return 0;
293
294    // If this is a typedef for a union type, strip the typedef off without
295    // losing all typedef information.
296    return cast<RecordType>(getUnqualifiedDesugaredType());
297  }
298
299  return 0;
300}
301
302const ObjCInterfaceType *Type::getAsObjCQualifiedInterfaceType() const {
303  // There is no sugar for ObjCInterfaceType's, just return the canonical
304  // type pointer if it is the right class.  There is no typedef information to
305  // return and these cannot be Address-space qualified.
306  if (const ObjCInterfaceType *OIT = getAs<ObjCInterfaceType>())
307    if (OIT->getNumProtocols())
308      return OIT;
309  return 0;
310}
311
312bool Type::isObjCQualifiedInterfaceType() const {
313  return getAsObjCQualifiedInterfaceType() != 0;
314}
315
316const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
317  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
318  // type pointer if it is the right class.
319  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
320    if (OPT->isObjCQualifiedIdType())
321      return OPT;
322  }
323  return 0;
324}
325
326const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
327  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
328    if (OPT->getInterfaceType())
329      return OPT;
330  }
331  return 0;
332}
333
334const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
335  if (const PointerType *PT = getAs<PointerType>())
336    if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
337      return dyn_cast<CXXRecordDecl>(RT->getDecl());
338  return 0;
339}
340
341bool Type::isIntegerType() const {
342  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
343    return BT->getKind() >= BuiltinType::Bool &&
344           BT->getKind() <= BuiltinType::Int128;
345  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
346    // Incomplete enum types are not treated as integer types.
347    // FIXME: In C++, enum types are never integer types.
348    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
349      return true;
350  if (isa<FixedWidthIntType>(CanonicalType))
351    return true;
352  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
353    return VT->getElementType()->isIntegerType();
354  return false;
355}
356
357bool Type::isIntegralType() const {
358  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
359    return BT->getKind() >= BuiltinType::Bool &&
360    BT->getKind() <= BuiltinType::LongLong;
361  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
362    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
363      return true;  // Complete enum types are integral.
364                    // FIXME: In C++, enum types are never integral.
365  if (isa<FixedWidthIntType>(CanonicalType))
366    return true;
367  return false;
368}
369
370bool Type::isEnumeralType() const {
371  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
372    return TT->getDecl()->isEnum();
373  return false;
374}
375
376bool Type::isBooleanType() const {
377  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
378    return BT->getKind() == BuiltinType::Bool;
379  return false;
380}
381
382bool Type::isCharType() const {
383  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
384    return BT->getKind() == BuiltinType::Char_U ||
385           BT->getKind() == BuiltinType::UChar ||
386           BT->getKind() == BuiltinType::Char_S ||
387           BT->getKind() == BuiltinType::SChar;
388  return false;
389}
390
391bool Type::isWideCharType() const {
392  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
393    return BT->getKind() == BuiltinType::WChar;
394  return false;
395}
396
397/// isSignedIntegerType - Return true if this is an integer type that is
398/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
399/// an enum decl which has a signed representation, or a vector of signed
400/// integer element type.
401bool Type::isSignedIntegerType() const {
402  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
403    return BT->getKind() >= BuiltinType::Char_S &&
404           BT->getKind() <= BuiltinType::LongLong;
405  }
406
407  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
408    return ET->getDecl()->getIntegerType()->isSignedIntegerType();
409
410  if (const FixedWidthIntType *FWIT =
411          dyn_cast<FixedWidthIntType>(CanonicalType))
412    return FWIT->isSigned();
413
414  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
415    return VT->getElementType()->isSignedIntegerType();
416  return false;
417}
418
419/// isUnsignedIntegerType - Return true if this is an integer type that is
420/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
421/// decl which has an unsigned representation, or a vector of unsigned integer
422/// element type.
423bool Type::isUnsignedIntegerType() const {
424  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
425    return BT->getKind() >= BuiltinType::Bool &&
426           BT->getKind() <= BuiltinType::ULongLong;
427  }
428
429  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
430    return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
431
432  if (const FixedWidthIntType *FWIT =
433          dyn_cast<FixedWidthIntType>(CanonicalType))
434    return !FWIT->isSigned();
435
436  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
437    return VT->getElementType()->isUnsignedIntegerType();
438  return false;
439}
440
441bool Type::isFloatingType() const {
442  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
443    return BT->getKind() >= BuiltinType::Float &&
444           BT->getKind() <= BuiltinType::LongDouble;
445  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
446    return CT->getElementType()->isFloatingType();
447  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
448    return VT->getElementType()->isFloatingType();
449  return false;
450}
451
452bool Type::isRealFloatingType() const {
453  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
454    return BT->getKind() >= BuiltinType::Float &&
455           BT->getKind() <= BuiltinType::LongDouble;
456  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
457    return VT->getElementType()->isRealFloatingType();
458  return false;
459}
460
461bool Type::isRealType() const {
462  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
463    return BT->getKind() >= BuiltinType::Bool &&
464           BT->getKind() <= BuiltinType::LongDouble;
465  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
466    return TT->getDecl()->isEnum() && TT->getDecl()->isDefinition();
467  if (isa<FixedWidthIntType>(CanonicalType))
468    return true;
469  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
470    return VT->getElementType()->isRealType();
471  return false;
472}
473
474bool Type::isArithmeticType() const {
475  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
476    return BT->getKind() >= BuiltinType::Bool &&
477           BT->getKind() <= BuiltinType::LongDouble;
478  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
479    // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
480    // If a body isn't seen by the time we get here, return false.
481    return ET->getDecl()->isDefinition();
482  if (isa<FixedWidthIntType>(CanonicalType))
483    return true;
484  return isa<ComplexType>(CanonicalType) || isa<VectorType>(CanonicalType);
485}
486
487bool Type::isScalarType() const {
488  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
489    return BT->getKind() != BuiltinType::Void;
490  if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
491    // Enums are scalar types, but only if they are defined.  Incomplete enums
492    // are not treated as scalar types.
493    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
494      return true;
495    return false;
496  }
497  if (isa<FixedWidthIntType>(CanonicalType))
498    return true;
499  return isa<PointerType>(CanonicalType) ||
500         isa<BlockPointerType>(CanonicalType) ||
501         isa<MemberPointerType>(CanonicalType) ||
502         isa<ComplexType>(CanonicalType) ||
503         isa<ObjCObjectPointerType>(CanonicalType);
504}
505
506/// \brief Determines whether the type is a C++ aggregate type or C
507/// aggregate or union type.
508///
509/// An aggregate type is an array or a class type (struct, union, or
510/// class) that has no user-declared constructors, no private or
511/// protected non-static data members, no base classes, and no virtual
512/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
513/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
514/// includes union types.
515bool Type::isAggregateType() const {
516  if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
517    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
518      return ClassDecl->isAggregate();
519
520    return true;
521  }
522
523  return isa<ArrayType>(CanonicalType);
524}
525
526/// isConstantSizeType - Return true if this is not a variable sized type,
527/// according to the rules of C99 6.7.5p3.  It is not legal to call this on
528/// incomplete types or dependent types.
529bool Type::isConstantSizeType() const {
530  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
531  assert(!isDependentType() && "This doesn't make sense for dependent types");
532  // The VAT must have a size, as it is known to be complete.
533  return !isa<VariableArrayType>(CanonicalType);
534}
535
536/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
537/// - a type that can describe objects, but which lacks information needed to
538/// determine its size.
539bool Type::isIncompleteType() const {
540  switch (CanonicalType->getTypeClass()) {
541  default: return false;
542  case Builtin:
543    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
544    // be completed.
545    return isVoidType();
546  case Record:
547  case Enum:
548    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
549    // forward declaration, but not a full definition (C99 6.2.5p22).
550    return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
551  case IncompleteArray:
552    // An array of unknown size is an incomplete type (C99 6.2.5p22).
553    return true;
554  case ObjCInterface:
555    // ObjC interfaces are incomplete if they are @class, not @interface.
556    return cast<ObjCInterfaceType>(this)->getDecl()->isForwardDecl();
557  }
558}
559
560/// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10)
561bool Type::isPODType() const {
562  // The compiler shouldn't query this for incomplete types, but the user might.
563  // We return false for that case.
564  if (isIncompleteType())
565    return false;
566
567  switch (CanonicalType->getTypeClass()) {
568    // Everything not explicitly mentioned is not POD.
569  default: return false;
570  case VariableArray:
571  case ConstantArray:
572    // IncompleteArray is caught by isIncompleteType() above.
573    return cast<ArrayType>(CanonicalType)->getElementType()->isPODType();
574
575  case Builtin:
576  case Complex:
577  case Pointer:
578  case MemberPointer:
579  case Vector:
580  case ExtVector:
581  case ObjCObjectPointer:
582    return true;
583
584  case Enum:
585    return true;
586
587  case Record:
588    if (CXXRecordDecl *ClassDecl
589          = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
590      return ClassDecl->isPOD();
591
592    // C struct/union is POD.
593    return true;
594  }
595}
596
597bool Type::isPromotableIntegerType() const {
598  if (const BuiltinType *BT = getAs<BuiltinType>())
599    switch (BT->getKind()) {
600    case BuiltinType::Bool:
601    case BuiltinType::Char_S:
602    case BuiltinType::Char_U:
603    case BuiltinType::SChar:
604    case BuiltinType::UChar:
605    case BuiltinType::Short:
606    case BuiltinType::UShort:
607      return true;
608    default:
609      return false;
610    }
611  return false;
612}
613
614bool Type::isNullPtrType() const {
615  if (const BuiltinType *BT = getAs<BuiltinType>())
616    return BT->getKind() == BuiltinType::NullPtr;
617  return false;
618}
619
620bool Type::isSpecifierType() const {
621  // Note that this intentionally does not use the canonical type.
622  switch (getTypeClass()) {
623  case Builtin:
624  case Record:
625  case Enum:
626  case Typedef:
627  case Complex:
628  case TypeOfExpr:
629  case TypeOf:
630  case TemplateTypeParm:
631  case SubstTemplateTypeParm:
632  case TemplateSpecialization:
633  case QualifiedName:
634  case Typename:
635  case ObjCInterface:
636  case ObjCObjectPointer:
637    return true;
638  default:
639    return false;
640  }
641}
642
643const char *Type::getTypeClassName() const {
644  switch (TC) {
645  default: assert(0 && "Type class not in TypeNodes.def!");
646#define ABSTRACT_TYPE(Derived, Base)
647#define TYPE(Derived, Base) case Derived: return #Derived;
648#include "clang/AST/TypeNodes.def"
649  }
650}
651
652const char *BuiltinType::getName(const LangOptions &LO) const {
653  switch (getKind()) {
654  default: assert(0 && "Unknown builtin type!");
655  case Void:              return "void";
656  case Bool:              return LO.Bool ? "bool" : "_Bool";
657  case Char_S:            return "char";
658  case Char_U:            return "char";
659  case SChar:             return "signed char";
660  case Short:             return "short";
661  case Int:               return "int";
662  case Long:              return "long";
663  case LongLong:          return "long long";
664  case Int128:            return "__int128_t";
665  case UChar:             return "unsigned char";
666  case UShort:            return "unsigned short";
667  case UInt:              return "unsigned int";
668  case ULong:             return "unsigned long";
669  case ULongLong:         return "unsigned long long";
670  case UInt128:           return "__uint128_t";
671  case Float:             return "float";
672  case Double:            return "double";
673  case LongDouble:        return "long double";
674  case WChar:             return "wchar_t";
675  case Char16:            return "char16_t";
676  case Char32:            return "char32_t";
677  case NullPtr:           return "nullptr_t";
678  case Overload:          return "<overloaded function type>";
679  case Dependent:         return "<dependent type>";
680  case UndeducedAuto:     return "auto";
681  case ObjCId:            return "id";
682  case ObjCClass:         return "Class";
683  }
684}
685
686void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
687                                arg_type_iterator ArgTys,
688                                unsigned NumArgs, bool isVariadic,
689                                unsigned TypeQuals, bool hasExceptionSpec,
690                                bool anyExceptionSpec, unsigned NumExceptions,
691                                exception_iterator Exs, bool NoReturn) {
692  ID.AddPointer(Result.getAsOpaquePtr());
693  for (unsigned i = 0; i != NumArgs; ++i)
694    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
695  ID.AddInteger(isVariadic);
696  ID.AddInteger(TypeQuals);
697  ID.AddInteger(hasExceptionSpec);
698  if (hasExceptionSpec) {
699    ID.AddInteger(anyExceptionSpec);
700    for (unsigned i = 0; i != NumExceptions; ++i)
701      ID.AddPointer(Exs[i].getAsOpaquePtr());
702  }
703  ID.AddInteger(NoReturn);
704}
705
706void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID) {
707  Profile(ID, getResultType(), arg_type_begin(), NumArgs, isVariadic(),
708          getTypeQuals(), hasExceptionSpec(), hasAnyExceptionSpec(),
709          getNumExceptions(), exception_begin(), getNoReturnAttr());
710}
711
712void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID,
713                                    QualType OIT, ObjCProtocolDecl **protocols,
714                                    unsigned NumProtocols) {
715  ID.AddPointer(OIT.getAsOpaquePtr());
716  for (unsigned i = 0; i != NumProtocols; i++)
717    ID.AddPointer(protocols[i]);
718}
719
720void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID) {
721  if (getNumProtocols())
722    Profile(ID, getPointeeType(), &Protocols[0], getNumProtocols());
723  else
724    Profile(ID, getPointeeType(), 0, 0);
725}
726
727/// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
728/// potentially looking through *all* consequtive typedefs.  This returns the
729/// sum of the type qualifiers, so if you have:
730///   typedef const int A;
731///   typedef volatile A B;
732/// looking through the typedefs for B will give you "const volatile A".
733///
734QualType TypedefType::LookThroughTypedefs() const {
735  // Usually, there is only a single level of typedefs, be fast in that case.
736  QualType FirstType = getDecl()->getUnderlyingType();
737  if (!isa<TypedefType>(FirstType))
738    return FirstType;
739
740  // Otherwise, do the fully general loop.
741  QualifierCollector Qs;
742
743  QualType CurType;
744  const TypedefType *TDT = this;
745  do {
746    CurType = TDT->getDecl()->getUnderlyingType();
747    TDT = dyn_cast<TypedefType>(Qs.strip(CurType));
748  } while (TDT);
749
750  return Qs.apply(CurType);
751}
752
753QualType TypedefType::desugar() const {
754  return getDecl()->getUnderlyingType();
755}
756
757TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
758  : Type(TypeOfExpr, can, E->isTypeDependent()), TOExpr(E) {
759}
760
761QualType TypeOfExprType::desugar() const {
762  return getUnderlyingExpr()->getType();
763}
764
765void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
766                                      ASTContext &Context, Expr *E) {
767  E->Profile(ID, Context, true);
768}
769
770DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
771  : Type(Decltype, can, E->isTypeDependent()), E(E),
772  UnderlyingType(underlyingType) {
773}
774
775DependentDecltypeType::DependentDecltypeType(ASTContext &Context, Expr *E)
776  : DecltypeType(E, Context.DependentTy), Context(Context) { }
777
778void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
779                                    ASTContext &Context, Expr *E) {
780  E->Profile(ID, Context, true);
781}
782
783TagType::TagType(TypeClass TC, TagDecl *D, QualType can)
784  : Type(TC, can, D->isDependentType()), decl(D, 0) {}
785
786bool RecordType::classof(const TagType *TT) {
787  return isa<RecordDecl>(TT->getDecl());
788}
789
790bool EnumType::classof(const TagType *TT) {
791  return isa<EnumDecl>(TT->getDecl());
792}
793
794bool
795TemplateSpecializationType::
796anyDependentTemplateArguments(const TemplateArgument *Args, unsigned NumArgs) {
797  for (unsigned Idx = 0; Idx < NumArgs; ++Idx) {
798    switch (Args[Idx].getKind()) {
799    case TemplateArgument::Null:
800      assert(false && "Should not have a NULL template argument");
801      break;
802
803    case TemplateArgument::Type:
804      if (Args[Idx].getAsType()->isDependentType())
805        return true;
806      break;
807
808    case TemplateArgument::Declaration:
809    case TemplateArgument::Integral:
810      // Never dependent
811      break;
812
813    case TemplateArgument::Expression:
814      if (Args[Idx].getAsExpr()->isTypeDependent() ||
815          Args[Idx].getAsExpr()->isValueDependent())
816        return true;
817      break;
818
819    case TemplateArgument::Pack:
820      assert(0 && "FIXME: Implement!");
821      break;
822    }
823  }
824
825  return false;
826}
827
828TemplateSpecializationType::
829TemplateSpecializationType(ASTContext &Context, TemplateName T,
830                           const TemplateArgument *Args,
831                           unsigned NumArgs, QualType Canon)
832  : Type(TemplateSpecialization,
833         Canon.isNull()? QualType(this, 0) : Canon,
834         T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)),
835    Context(Context),
836    Template(T), NumArgs(NumArgs) {
837  assert((!Canon.isNull() ||
838          T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)) &&
839         "No canonical type for non-dependent class template specialization");
840
841  TemplateArgument *TemplateArgs
842    = reinterpret_cast<TemplateArgument *>(this + 1);
843  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
844    new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
845}
846
847void TemplateSpecializationType::Destroy(ASTContext& C) {
848  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
849    // FIXME: Not all expressions get cloned, so we can't yet perform
850    // this destruction.
851    //    if (Expr *E = getArg(Arg).getAsExpr())
852    //      E->Destroy(C);
853  }
854}
855
856TemplateSpecializationType::iterator
857TemplateSpecializationType::end() const {
858  return begin() + getNumArgs();
859}
860
861const TemplateArgument &
862TemplateSpecializationType::getArg(unsigned Idx) const {
863  assert(Idx < getNumArgs() && "Template argument out of range");
864  return getArgs()[Idx];
865}
866
867void
868TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
869                                    TemplateName T,
870                                    const TemplateArgument *Args,
871                                    unsigned NumArgs,
872                                    ASTContext &Context) {
873  T.Profile(ID);
874  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
875    Args[Idx].Profile(ID, Context);
876}
877
878QualType QualifierCollector::apply(QualType QT) const {
879  if (!hasNonFastQualifiers())
880    return QT.withFastQualifiers(getFastQualifiers());
881
882  assert(Context && "extended qualifiers but no context!");
883  return Context->getQualifiedType(QT, *this);
884}
885
886QualType QualifierCollector::apply(const Type *T) const {
887  if (!hasNonFastQualifiers())
888    return QualType(T, getFastQualifiers());
889
890  assert(Context && "extended qualifiers but no context!");
891  return Context->getQualifiedType(T, *this);
892}
893
894
895//===----------------------------------------------------------------------===//
896// Type Printing
897//===----------------------------------------------------------------------===//
898
899void QualType::dump(const char *msg) const {
900  std::string R = "identifier";
901  LangOptions LO;
902  getAsStringInternal(R, PrintingPolicy(LO));
903  if (msg)
904    fprintf(stderr, "%s: %s\n", msg, R.c_str());
905  else
906    fprintf(stderr, "%s\n", R.c_str());
907}
908void QualType::dump() const {
909  dump("");
910}
911
912void Type::dump() const {
913  std::string S = "identifier";
914  LangOptions LO;
915  getAsStringInternal(S, PrintingPolicy(LO));
916  fprintf(stderr, "%s\n", S.c_str());
917}
918
919
920
921static void AppendTypeQualList(std::string &S, unsigned TypeQuals) {
922  if (TypeQuals & Qualifiers::Const) {
923    if (!S.empty()) S += ' ';
924    S += "const";
925  }
926  if (TypeQuals & Qualifiers::Volatile) {
927    if (!S.empty()) S += ' ';
928    S += "volatile";
929  }
930  if (TypeQuals & Qualifiers::Restrict) {
931    if (!S.empty()) S += ' ';
932    S += "restrict";
933  }
934}
935
936std::string Qualifiers::getAsString() const {
937  LangOptions LO;
938  return getAsString(PrintingPolicy(LO));
939}
940
941// Appends qualifiers to the given string, separated by spaces.  Will
942// prefix a space if the string is non-empty.  Will not append a final
943// space.
944void Qualifiers::getAsStringInternal(std::string &S,
945                                     const PrintingPolicy&) const {
946  AppendTypeQualList(S, getCVRQualifiers());
947  if (unsigned AddressSpace = getAddressSpace()) {
948    if (!S.empty()) S += ' ';
949    S += "__attribute__((address_space(";
950    S += llvm::utostr_32(AddressSpace);
951    S += ")))";
952  }
953  if (Qualifiers::GC GCAttrType = getObjCGCAttr()) {
954    if (!S.empty()) S += ' ';
955    S += "__attribute__((objc_gc(";
956    if (GCAttrType == Qualifiers::Weak)
957      S += "weak";
958    else
959      S += "strong";
960    S += ")))";
961  }
962}
963
964std::string QualType::getAsString() const {
965  std::string S;
966  LangOptions LO;
967  getAsStringInternal(S, PrintingPolicy(LO));
968  return S;
969}
970
971void
972QualType::getAsStringInternal(std::string &S,
973                              const PrintingPolicy &Policy) const {
974  if (isNull()) {
975    S += "NULL TYPE";
976    return;
977  }
978
979  if (Policy.SuppressSpecifiers && getTypePtr()->isSpecifierType())
980    return;
981
982  // Print qualifiers as appropriate.
983  Qualifiers Quals = getQualifiers();
984  if (!Quals.empty()) {
985    std::string TQS;
986    Quals.getAsStringInternal(TQS, Policy);
987
988    if (!S.empty()) {
989      TQS += ' ';
990      TQS += S;
991    }
992    std::swap(S, TQS);
993  }
994
995  getTypePtr()->getAsStringInternal(S, Policy);
996}
997
998void BuiltinType::getAsStringInternal(std::string &S,
999                                      const PrintingPolicy &Policy) const {
1000  if (S.empty()) {
1001    S = getName(Policy.LangOpts);
1002  } else {
1003    // Prefix the basic type, e.g. 'int X'.
1004    S = ' ' + S;
1005    S = getName(Policy.LangOpts) + S;
1006  }
1007}
1008
1009void FixedWidthIntType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1010  // FIXME: Once we get bitwidth attribute, write as
1011  // "int __attribute__((bitwidth(x)))".
1012  std::string prefix = "__clang_fixedwidth";
1013  prefix += llvm::utostr_32(Width);
1014  prefix += (char)(Signed ? 'S' : 'U');
1015  if (S.empty()) {
1016    S = prefix;
1017  } else {
1018    // Prefix the basic type, e.g. 'int X'.
1019    S = prefix + S;
1020  }
1021}
1022
1023
1024void ComplexType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1025  ElementType->getAsStringInternal(S, Policy);
1026  S = "_Complex " + S;
1027}
1028
1029void PointerType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1030  S = '*' + S;
1031
1032  // Handle things like 'int (*A)[4];' correctly.
1033  // FIXME: this should include vectors, but vectors use attributes I guess.
1034  if (isa<ArrayType>(getPointeeType()))
1035    S = '(' + S + ')';
1036
1037  getPointeeType().getAsStringInternal(S, Policy);
1038}
1039
1040void BlockPointerType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1041  S = '^' + S;
1042  PointeeType.getAsStringInternal(S, Policy);
1043}
1044
1045void LValueReferenceType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1046  S = '&' + S;
1047
1048  // Handle things like 'int (&A)[4];' correctly.
1049  // FIXME: this should include vectors, but vectors use attributes I guess.
1050  if (isa<ArrayType>(getPointeeTypeAsWritten()))
1051    S = '(' + S + ')';
1052
1053  getPointeeTypeAsWritten().getAsStringInternal(S, Policy);
1054}
1055
1056void RValueReferenceType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1057  S = "&&" + S;
1058
1059  // Handle things like 'int (&&A)[4];' correctly.
1060  // FIXME: this should include vectors, but vectors use attributes I guess.
1061  if (isa<ArrayType>(getPointeeTypeAsWritten()))
1062    S = '(' + S + ')';
1063
1064  getPointeeTypeAsWritten().getAsStringInternal(S, Policy);
1065}
1066
1067void MemberPointerType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1068  std::string C;
1069  Class->getAsStringInternal(C, Policy);
1070  C += "::*";
1071  S = C + S;
1072
1073  // Handle things like 'int (Cls::*A)[4];' correctly.
1074  // FIXME: this should include vectors, but vectors use attributes I guess.
1075  if (isa<ArrayType>(getPointeeType()))
1076    S = '(' + S + ')';
1077
1078  getPointeeType().getAsStringInternal(S, Policy);
1079}
1080
1081void ConstantArrayType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1082  S += '[';
1083  S += llvm::utostr(getSize().getZExtValue());
1084  S += ']';
1085
1086  getElementType().getAsStringInternal(S, Policy);
1087}
1088
1089void IncompleteArrayType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1090  S += "[]";
1091
1092  getElementType().getAsStringInternal(S, Policy);
1093}
1094
1095void VariableArrayType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1096  S += '[';
1097
1098  if (getIndexTypeQualifiers().hasQualifiers()) {
1099    AppendTypeQualList(S, getIndexTypeCVRQualifiers());
1100    S += ' ';
1101  }
1102
1103  if (getSizeModifier() == Static)
1104    S += "static";
1105  else if (getSizeModifier() == Star)
1106    S += '*';
1107
1108  if (getSizeExpr()) {
1109    std::string SStr;
1110    llvm::raw_string_ostream s(SStr);
1111    getSizeExpr()->printPretty(s, 0, Policy);
1112    S += s.str();
1113  }
1114  S += ']';
1115
1116  getElementType().getAsStringInternal(S, Policy);
1117}
1118
1119void DependentSizedArrayType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1120  S += '[';
1121
1122  if (getIndexTypeQualifiers().hasQualifiers()) {
1123    AppendTypeQualList(S, getIndexTypeCVRQualifiers());
1124    S += ' ';
1125  }
1126
1127  if (getSizeModifier() == Static)
1128    S += "static";
1129  else if (getSizeModifier() == Star)
1130    S += '*';
1131
1132  if (getSizeExpr()) {
1133    std::string SStr;
1134    llvm::raw_string_ostream s(SStr);
1135    getSizeExpr()->printPretty(s, 0, Policy);
1136    S += s.str();
1137  }
1138  S += ']';
1139
1140  getElementType().getAsStringInternal(S, Policy);
1141}
1142
1143void DependentSizedExtVectorType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1144  getElementType().getAsStringInternal(S, Policy);
1145
1146  S += " __attribute__((ext_vector_type(";
1147  if (getSizeExpr()) {
1148    std::string SStr;
1149    llvm::raw_string_ostream s(SStr);
1150    getSizeExpr()->printPretty(s, 0, Policy);
1151    S += s.str();
1152  }
1153  S += ")))";
1154}
1155
1156void VectorType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1157  // FIXME: We prefer to print the size directly here, but have no way
1158  // to get the size of the type.
1159  S += " __attribute__((__vector_size__(";
1160  S += llvm::utostr_32(NumElements); // convert back to bytes.
1161  S += " * sizeof(" + ElementType.getAsString() + "))))";
1162  ElementType.getAsStringInternal(S, Policy);
1163}
1164
1165void ExtVectorType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1166  S += " __attribute__((ext_vector_type(";
1167  S += llvm::utostr_32(NumElements);
1168  S += ")))";
1169  ElementType.getAsStringInternal(S, Policy);
1170}
1171
1172void TypeOfExprType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1173  if (!InnerString.empty())    // Prefix the basic type, e.g. 'typeof(e) X'.
1174    InnerString = ' ' + InnerString;
1175  std::string Str;
1176  llvm::raw_string_ostream s(Str);
1177  getUnderlyingExpr()->printPretty(s, 0, Policy);
1178  InnerString = "typeof " + s.str() + InnerString;
1179}
1180
1181void TypeOfType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1182  if (!InnerString.empty())    // Prefix the basic type, e.g. 'typeof(t) X'.
1183    InnerString = ' ' + InnerString;
1184  std::string Tmp;
1185  getUnderlyingType().getAsStringInternal(Tmp, Policy);
1186  InnerString = "typeof(" + Tmp + ")" + InnerString;
1187}
1188
1189void DecltypeType::getAsStringInternal(std::string &InnerString,
1190                                       const PrintingPolicy &Policy) const {
1191  if (!InnerString.empty())    // Prefix the basic type, e.g. 'decltype(t) X'.
1192    InnerString = ' ' + InnerString;
1193  std::string Str;
1194  llvm::raw_string_ostream s(Str);
1195  getUnderlyingExpr()->printPretty(s, 0, Policy);
1196  InnerString = "decltype(" + s.str() + ")" + InnerString;
1197}
1198
1199void FunctionNoProtoType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1200  // If needed for precedence reasons, wrap the inner part in grouping parens.
1201  if (!S.empty())
1202    S = "(" + S + ")";
1203
1204  S += "()";
1205  if (getNoReturnAttr())
1206    S += " __attribute__((noreturn))";
1207  getResultType().getAsStringInternal(S, Policy);
1208}
1209
1210void FunctionProtoType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1211  // If needed for precedence reasons, wrap the inner part in grouping parens.
1212  if (!S.empty())
1213    S = "(" + S + ")";
1214
1215  S += "(";
1216  std::string Tmp;
1217  PrintingPolicy ParamPolicy(Policy);
1218  ParamPolicy.SuppressSpecifiers = false;
1219  for (unsigned i = 0, e = getNumArgs(); i != e; ++i) {
1220    if (i) S += ", ";
1221    getArgType(i).getAsStringInternal(Tmp, ParamPolicy);
1222    S += Tmp;
1223    Tmp.clear();
1224  }
1225
1226  if (isVariadic()) {
1227    if (getNumArgs())
1228      S += ", ";
1229    S += "...";
1230  } else if (getNumArgs() == 0 && !Policy.LangOpts.CPlusPlus) {
1231    // Do not emit int() if we have a proto, emit 'int(void)'.
1232    S += "void";
1233  }
1234
1235  S += ")";
1236  if (getNoReturnAttr())
1237    S += " __attribute__((noreturn))";
1238  getResultType().getAsStringInternal(S, Policy);
1239}
1240
1241
1242void TypedefType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1243  if (!InnerString.empty())    // Prefix the basic type, e.g. 'typedefname X'.
1244    InnerString = ' ' + InnerString;
1245  InnerString = getDecl()->getIdentifier()->getName().str() + InnerString;
1246}
1247
1248void TemplateTypeParmType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1249  if (!InnerString.empty())    // Prefix the basic type, e.g. 'parmname X'.
1250    InnerString = ' ' + InnerString;
1251
1252  if (!Name)
1253    InnerString = "type-parameter-" + llvm::utostr_32(Depth) + '-' +
1254      llvm::utostr_32(Index) + InnerString;
1255  else
1256    InnerString = Name->getName().str() + InnerString;
1257}
1258
1259void SubstTemplateTypeParmType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1260  getReplacementType().getAsStringInternal(InnerString, Policy);
1261}
1262
1263std::string
1264TemplateSpecializationType::PrintTemplateArgumentList(
1265                                                  const TemplateArgument *Args,
1266                                                  unsigned NumArgs,
1267                                                  const PrintingPolicy &Policy) {
1268  std::string SpecString;
1269  SpecString += '<';
1270  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
1271    if (Arg)
1272      SpecString += ", ";
1273
1274    // Print the argument into a string.
1275    std::string ArgString;
1276    switch (Args[Arg].getKind()) {
1277    case TemplateArgument::Null:
1278      assert(false && "Null template argument");
1279      break;
1280
1281    case TemplateArgument::Type:
1282      Args[Arg].getAsType().getAsStringInternal(ArgString, Policy);
1283      break;
1284
1285    case TemplateArgument::Declaration:
1286      ArgString = cast<NamedDecl>(Args[Arg].getAsDecl())->getNameAsString();
1287      break;
1288
1289    case TemplateArgument::Integral:
1290      ArgString = Args[Arg].getAsIntegral()->toString(10, true);
1291      break;
1292
1293    case TemplateArgument::Expression: {
1294      llvm::raw_string_ostream s(ArgString);
1295      Args[Arg].getAsExpr()->printPretty(s, 0, Policy);
1296      break;
1297    }
1298    case TemplateArgument::Pack:
1299      assert(0 && "FIXME: Implement!");
1300      break;
1301    }
1302
1303    // If this is the first argument and its string representation
1304    // begins with the global scope specifier ('::foo'), add a space
1305    // to avoid printing the diagraph '<:'.
1306    if (!Arg && !ArgString.empty() && ArgString[0] == ':')
1307      SpecString += ' ';
1308
1309    SpecString += ArgString;
1310  }
1311
1312  // If the last character of our string is '>', add another space to
1313  // keep the two '>''s separate tokens. We don't *have* to do this in
1314  // C++0x, but it's still good hygiene.
1315  if (SpecString[SpecString.size() - 1] == '>')
1316    SpecString += ' ';
1317
1318  SpecString += '>';
1319
1320  return SpecString;
1321}
1322
1323void
1324TemplateSpecializationType::
1325getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1326  std::string SpecString;
1327
1328  {
1329    llvm::raw_string_ostream OS(SpecString);
1330    Template.print(OS, Policy);
1331  }
1332
1333  SpecString += PrintTemplateArgumentList(getArgs(), getNumArgs(), Policy);
1334  if (InnerString.empty())
1335    InnerString.swap(SpecString);
1336  else
1337    InnerString = SpecString + ' ' + InnerString;
1338}
1339
1340void QualifiedNameType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1341  std::string MyString;
1342
1343  {
1344    llvm::raw_string_ostream OS(MyString);
1345    NNS->print(OS, Policy);
1346  }
1347
1348  std::string TypeStr;
1349  PrintingPolicy InnerPolicy(Policy);
1350  InnerPolicy.SuppressTagKind = true;
1351  InnerPolicy.SuppressScope = true;
1352  NamedType.getAsStringInternal(TypeStr, InnerPolicy);
1353
1354  MyString += TypeStr;
1355  if (InnerString.empty())
1356    InnerString.swap(MyString);
1357  else
1358    InnerString = MyString + ' ' + InnerString;
1359}
1360
1361void TypenameType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1362  std::string MyString;
1363
1364  {
1365    llvm::raw_string_ostream OS(MyString);
1366    OS << "typename ";
1367    NNS->print(OS, Policy);
1368
1369    if (const IdentifierInfo *Ident = getIdentifier())
1370      OS << Ident->getName();
1371    else if (const TemplateSpecializationType *Spec = getTemplateId()) {
1372      Spec->getTemplateName().print(OS, Policy, true);
1373      OS << TemplateSpecializationType::PrintTemplateArgumentList(
1374                                                               Spec->getArgs(),
1375                                                            Spec->getNumArgs(),
1376                                                               Policy);
1377    }
1378  }
1379
1380  if (InnerString.empty())
1381    InnerString.swap(MyString);
1382  else
1383    InnerString = MyString + ' ' + InnerString;
1384}
1385
1386void ObjCInterfaceType::Profile(llvm::FoldingSetNodeID &ID,
1387                                         const ObjCInterfaceDecl *Decl,
1388                                         ObjCProtocolDecl **protocols,
1389                                         unsigned NumProtocols) {
1390  ID.AddPointer(Decl);
1391  for (unsigned i = 0; i != NumProtocols; i++)
1392    ID.AddPointer(protocols[i]);
1393}
1394
1395void ObjCInterfaceType::Profile(llvm::FoldingSetNodeID &ID) {
1396  if (getNumProtocols())
1397    Profile(ID, getDecl(), &Protocols[0], getNumProtocols());
1398  else
1399    Profile(ID, getDecl(), 0, 0);
1400}
1401
1402void ObjCInterfaceType::getAsStringInternal(std::string &InnerString,
1403                                           const PrintingPolicy &Policy) const {
1404  if (!InnerString.empty())    // Prefix the basic type, e.g. 'typedefname X'.
1405    InnerString = ' ' + InnerString;
1406
1407  std::string ObjCQIString = getDecl()->getNameAsString();
1408  if (getNumProtocols()) {
1409    ObjCQIString += '<';
1410    bool isFirst = true;
1411    for (qual_iterator I = qual_begin(), E = qual_end(); I != E; ++I) {
1412      if (isFirst)
1413        isFirst = false;
1414      else
1415        ObjCQIString += ',';
1416      ObjCQIString += (*I)->getNameAsString();
1417    }
1418    ObjCQIString += '>';
1419  }
1420  InnerString = ObjCQIString + InnerString;
1421}
1422
1423void ObjCObjectPointerType::getAsStringInternal(std::string &InnerString,
1424                                                const PrintingPolicy &Policy) const {
1425  std::string ObjCQIString;
1426
1427  if (isObjCIdType() || isObjCQualifiedIdType())
1428    ObjCQIString = "id";
1429  else if (isObjCClassType() || isObjCQualifiedClassType())
1430    ObjCQIString = "Class";
1431  else
1432    ObjCQIString = getInterfaceDecl()->getNameAsString();
1433
1434  if (!qual_empty()) {
1435    ObjCQIString += '<';
1436    for (qual_iterator I = qual_begin(), E = qual_end(); I != E; ++I) {
1437      ObjCQIString += (*I)->getNameAsString();
1438      if (I+1 != E)
1439        ObjCQIString += ',';
1440    }
1441    ObjCQIString += '>';
1442  }
1443
1444  PointeeType.getQualifiers().getAsStringInternal(ObjCQIString, Policy);
1445
1446  if (!isObjCIdType() && !isObjCQualifiedIdType())
1447    ObjCQIString += " *"; // Don't forget the implicit pointer.
1448  else if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
1449    InnerString = ' ' + InnerString;
1450
1451  InnerString = ObjCQIString + InnerString;
1452}
1453
1454void ElaboratedType::getAsStringInternal(std::string &InnerString,
1455                                         const PrintingPolicy &Policy) const {
1456  std::string TypeStr;
1457  PrintingPolicy InnerPolicy(Policy);
1458  InnerPolicy.SuppressTagKind = true;
1459  UnderlyingType.getAsStringInternal(InnerString, InnerPolicy);
1460
1461  InnerString = std::string(getNameForTagKind(getTagKind())) + ' ' + InnerString;
1462}
1463
1464void TagType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1465  if (Policy.SuppressTag)
1466    return;
1467
1468  if (!InnerString.empty())    // Prefix the basic type, e.g. 'typedefname X'.
1469    InnerString = ' ' + InnerString;
1470
1471  const char *Kind = Policy.SuppressTagKind? 0 : getDecl()->getKindName();
1472  const char *ID;
1473  if (const IdentifierInfo *II = getDecl()->getIdentifier())
1474    ID = II->getNameStart();
1475  else if (TypedefDecl *Typedef = getDecl()->getTypedefForAnonDecl()) {
1476    Kind = 0;
1477    assert(Typedef->getIdentifier() && "Typedef without identifier?");
1478    ID = Typedef->getIdentifier()->getNameStart();
1479  } else
1480    ID = "<anonymous>";
1481
1482  // If this is a class template specialization, print the template
1483  // arguments.
1484  if (ClassTemplateSpecializationDecl *Spec
1485        = dyn_cast<ClassTemplateSpecializationDecl>(getDecl())) {
1486    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1487    std::string TemplateArgsStr
1488      = TemplateSpecializationType::PrintTemplateArgumentList(
1489                                            TemplateArgs.getFlatArgumentList(),
1490                                            TemplateArgs.flat_size(),
1491                                                              Policy);
1492    InnerString = TemplateArgsStr + InnerString;
1493  }
1494
1495  if (!Policy.SuppressScope) {
1496    // Compute the full nested-name-specifier for this type. In C,
1497    // this will always be empty.
1498    std::string ContextStr;
1499    for (DeclContext *DC = getDecl()->getDeclContext();
1500         !DC->isTranslationUnit(); DC = DC->getParent()) {
1501      std::string MyPart;
1502      if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(DC)) {
1503        if (NS->getIdentifier())
1504          MyPart = NS->getNameAsString();
1505      } else if (ClassTemplateSpecializationDecl *Spec
1506                   = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1507        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1508        std::string TemplateArgsStr
1509          = TemplateSpecializationType::PrintTemplateArgumentList(
1510                                           TemplateArgs.getFlatArgumentList(),
1511                                           TemplateArgs.flat_size(),
1512                                           Policy);
1513        MyPart = Spec->getIdentifier()->getName().str() + TemplateArgsStr;
1514      } else if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
1515        if (TypedefDecl *Typedef = Tag->getTypedefForAnonDecl())
1516          MyPart = Typedef->getIdentifier()->getName();
1517        else if (Tag->getIdentifier())
1518          MyPart = Tag->getIdentifier()->getName();
1519      }
1520
1521      if (!MyPart.empty())
1522        ContextStr = MyPart + "::" + ContextStr;
1523    }
1524
1525    if (Kind)
1526      InnerString = std::string(Kind) + ' ' + ContextStr + ID + InnerString;
1527    else
1528      InnerString = ContextStr + ID + InnerString;
1529  } else
1530    InnerString = ID + InnerString;
1531}
1532