ASTContext.cpp revision 194179
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExternalASTSource.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27using namespace clang;
28
29enum FloatingRank {
30  FloatRank, DoubleRank, LongDoubleRank
31};
32
33ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
34                       TargetInfo &t,
35                       IdentifierTable &idents, SelectorTable &sels,
36                       Builtin::Context &builtins,
37                       bool FreeMem, unsigned size_reserve) :
38  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
39  ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts),
40  FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels),
41  BuiltinInfo(builtins), ExternalSource(0) {
42  if (size_reserve > 0) Types.reserve(size_reserve);
43  InitBuiltinTypes();
44  TUDecl = TranslationUnitDecl::Create(*this);
45  PrintingPolicy.CPlusPlus = LangOpts.CPlusPlus;
46}
47
48ASTContext::~ASTContext() {
49  // Deallocate all the types.
50  while (!Types.empty()) {
51    Types.back()->Destroy(*this);
52    Types.pop_back();
53  }
54
55  {
56    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
57      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
58    while (I != E) {
59      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
60      delete R;
61    }
62  }
63
64  {
65    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
66      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
67    while (I != E) {
68      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
69      delete R;
70    }
71  }
72
73  // Destroy nested-name-specifiers.
74  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
75         NNS = NestedNameSpecifiers.begin(),
76         NNSEnd = NestedNameSpecifiers.end();
77       NNS != NNSEnd;
78       /* Increment in loop */)
79    (*NNS++).Destroy(*this);
80
81  if (GlobalNestedNameSpecifier)
82    GlobalNestedNameSpecifier->Destroy(*this);
83
84  TUDecl->Destroy(*this);
85}
86
87void
88ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
89  ExternalSource.reset(Source.take());
90}
91
92void ASTContext::PrintStats() const {
93  fprintf(stderr, "*** AST Context Stats:\n");
94  fprintf(stderr, "  %d types total.\n", (int)Types.size());
95
96  unsigned counts[] = {
97#define TYPE(Name, Parent) 0,
98#define ABSTRACT_TYPE(Name, Parent)
99#include "clang/AST/TypeNodes.def"
100    0 // Extra
101  };
102
103  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
104    Type *T = Types[i];
105    counts[(unsigned)T->getTypeClass()]++;
106  }
107
108  unsigned Idx = 0;
109  unsigned TotalBytes = 0;
110#define TYPE(Name, Parent)                                              \
111  if (counts[Idx])                                                      \
112    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
113  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
114  ++Idx;
115#define ABSTRACT_TYPE(Name, Parent)
116#include "clang/AST/TypeNodes.def"
117
118  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
119
120  if (ExternalSource.get()) {
121    fprintf(stderr, "\n");
122    ExternalSource->PrintStats();
123  }
124}
125
126
127void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
128  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
129}
130
131void ASTContext::InitBuiltinTypes() {
132  assert(VoidTy.isNull() && "Context reinitialized?");
133
134  // C99 6.2.5p19.
135  InitBuiltinType(VoidTy,              BuiltinType::Void);
136
137  // C99 6.2.5p2.
138  InitBuiltinType(BoolTy,              BuiltinType::Bool);
139  // C99 6.2.5p3.
140  if (LangOpts.CharIsSigned)
141    InitBuiltinType(CharTy,            BuiltinType::Char_S);
142  else
143    InitBuiltinType(CharTy,            BuiltinType::Char_U);
144  // C99 6.2.5p4.
145  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
146  InitBuiltinType(ShortTy,             BuiltinType::Short);
147  InitBuiltinType(IntTy,               BuiltinType::Int);
148  InitBuiltinType(LongTy,              BuiltinType::Long);
149  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
150
151  // C99 6.2.5p6.
152  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
153  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
154  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
155  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
156  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
157
158  // C99 6.2.5p10.
159  InitBuiltinType(FloatTy,             BuiltinType::Float);
160  InitBuiltinType(DoubleTy,            BuiltinType::Double);
161  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
162
163  // GNU extension, 128-bit integers.
164  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
165  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
166
167  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
168    InitBuiltinType(WCharTy,           BuiltinType::WChar);
169  else // C99
170    WCharTy = getFromTargetType(Target.getWCharType());
171
172  // Placeholder type for functions.
173  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
174
175  // Placeholder type for type-dependent expressions whose type is
176  // completely unknown. No code should ever check a type against
177  // DependentTy and users should never see it; however, it is here to
178  // help diagnose failures to properly check for type-dependent
179  // expressions.
180  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
181
182  // C99 6.2.5p11.
183  FloatComplexTy      = getComplexType(FloatTy);
184  DoubleComplexTy     = getComplexType(DoubleTy);
185  LongDoubleComplexTy = getComplexType(LongDoubleTy);
186
187  BuiltinVaListType = QualType();
188  ObjCIdType = QualType();
189  IdStructType = 0;
190  ObjCClassType = QualType();
191  ClassStructType = 0;
192
193  ObjCConstantStringType = QualType();
194
195  // void * type
196  VoidPtrTy = getPointerType(VoidTy);
197
198  // nullptr type (C++0x 2.14.7)
199  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
200}
201
202//===----------------------------------------------------------------------===//
203//                         Type Sizing and Analysis
204//===----------------------------------------------------------------------===//
205
206/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
207/// scalar floating point type.
208const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
209  const BuiltinType *BT = T->getAsBuiltinType();
210  assert(BT && "Not a floating point type!");
211  switch (BT->getKind()) {
212  default: assert(0 && "Not a floating point type!");
213  case BuiltinType::Float:      return Target.getFloatFormat();
214  case BuiltinType::Double:     return Target.getDoubleFormat();
215  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
216  }
217}
218
219/// getDeclAlign - Return a conservative estimate of the alignment of the
220/// specified decl.  Note that bitfields do not have a valid alignment, so
221/// this method will assert on them.
222unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
223  unsigned Align = Target.getCharWidth();
224
225  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
226    Align = std::max(Align, AA->getAlignment());
227
228  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
229    QualType T = VD->getType();
230    if (const ReferenceType* RT = T->getAsReferenceType()) {
231      unsigned AS = RT->getPointeeType().getAddressSpace();
232      Align = Target.getPointerAlign(AS);
233    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
234      // Incomplete or function types default to 1.
235      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
236        T = cast<ArrayType>(T)->getElementType();
237
238      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
239    }
240  }
241
242  return Align / Target.getCharWidth();
243}
244
245/// getTypeSize - Return the size of the specified type, in bits.  This method
246/// does not work on incomplete types.
247std::pair<uint64_t, unsigned>
248ASTContext::getTypeInfo(const Type *T) {
249  uint64_t Width=0;
250  unsigned Align=8;
251  switch (T->getTypeClass()) {
252#define TYPE(Class, Base)
253#define ABSTRACT_TYPE(Class, Base)
254#define NON_CANONICAL_TYPE(Class, Base)
255#define DEPENDENT_TYPE(Class, Base) case Type::Class:
256#include "clang/AST/TypeNodes.def"
257    assert(false && "Should not see dependent types");
258    break;
259
260  case Type::FunctionNoProto:
261  case Type::FunctionProto:
262    // GCC extension: alignof(function) = 32 bits
263    Width = 0;
264    Align = 32;
265    break;
266
267  case Type::IncompleteArray:
268  case Type::VariableArray:
269    Width = 0;
270    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
271    break;
272
273  case Type::ConstantArray: {
274    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
275
276    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
277    Width = EltInfo.first*CAT->getSize().getZExtValue();
278    Align = EltInfo.second;
279    break;
280  }
281  case Type::ExtVector:
282  case Type::Vector: {
283    std::pair<uint64_t, unsigned> EltInfo =
284      getTypeInfo(cast<VectorType>(T)->getElementType());
285    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
286    Align = Width;
287    // If the alignment is not a power of 2, round up to the next power of 2.
288    // This happens for non-power-of-2 length vectors.
289    // FIXME: this should probably be a target property.
290    Align = 1 << llvm::Log2_32_Ceil(Align);
291    break;
292  }
293
294  case Type::Builtin:
295    switch (cast<BuiltinType>(T)->getKind()) {
296    default: assert(0 && "Unknown builtin type!");
297    case BuiltinType::Void:
298      // GCC extension: alignof(void) = 8 bits.
299      Width = 0;
300      Align = 8;
301      break;
302
303    case BuiltinType::Bool:
304      Width = Target.getBoolWidth();
305      Align = Target.getBoolAlign();
306      break;
307    case BuiltinType::Char_S:
308    case BuiltinType::Char_U:
309    case BuiltinType::UChar:
310    case BuiltinType::SChar:
311      Width = Target.getCharWidth();
312      Align = Target.getCharAlign();
313      break;
314    case BuiltinType::WChar:
315      Width = Target.getWCharWidth();
316      Align = Target.getWCharAlign();
317      break;
318    case BuiltinType::UShort:
319    case BuiltinType::Short:
320      Width = Target.getShortWidth();
321      Align = Target.getShortAlign();
322      break;
323    case BuiltinType::UInt:
324    case BuiltinType::Int:
325      Width = Target.getIntWidth();
326      Align = Target.getIntAlign();
327      break;
328    case BuiltinType::ULong:
329    case BuiltinType::Long:
330      Width = Target.getLongWidth();
331      Align = Target.getLongAlign();
332      break;
333    case BuiltinType::ULongLong:
334    case BuiltinType::LongLong:
335      Width = Target.getLongLongWidth();
336      Align = Target.getLongLongAlign();
337      break;
338    case BuiltinType::Int128:
339    case BuiltinType::UInt128:
340      Width = 128;
341      Align = 128; // int128_t is 128-bit aligned on all targets.
342      break;
343    case BuiltinType::Float:
344      Width = Target.getFloatWidth();
345      Align = Target.getFloatAlign();
346      break;
347    case BuiltinType::Double:
348      Width = Target.getDoubleWidth();
349      Align = Target.getDoubleAlign();
350      break;
351    case BuiltinType::LongDouble:
352      Width = Target.getLongDoubleWidth();
353      Align = Target.getLongDoubleAlign();
354      break;
355    case BuiltinType::NullPtr:
356      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
357      Align = Target.getPointerAlign(0); //   == sizeof(void*)
358      break;
359    }
360    break;
361  case Type::FixedWidthInt:
362    // FIXME: This isn't precisely correct; the width/alignment should depend
363    // on the available types for the target
364    Width = cast<FixedWidthIntType>(T)->getWidth();
365    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
366    Align = Width;
367    break;
368  case Type::ExtQual:
369    // FIXME: Pointers into different addr spaces could have different sizes and
370    // alignment requirements: getPointerInfo should take an AddrSpace.
371    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
372  case Type::ObjCQualifiedId:
373  case Type::ObjCQualifiedInterface:
374    Width = Target.getPointerWidth(0);
375    Align = Target.getPointerAlign(0);
376    break;
377  case Type::BlockPointer: {
378    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
379    Width = Target.getPointerWidth(AS);
380    Align = Target.getPointerAlign(AS);
381    break;
382  }
383  case Type::Pointer: {
384    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
385    Width = Target.getPointerWidth(AS);
386    Align = Target.getPointerAlign(AS);
387    break;
388  }
389  case Type::LValueReference:
390  case Type::RValueReference:
391    // "When applied to a reference or a reference type, the result is the size
392    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
393    // FIXME: This is wrong for struct layout: a reference in a struct has
394    // pointer size.
395    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
396  case Type::MemberPointer: {
397    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
398    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
399    // If we ever want to support other ABIs this needs to be abstracted.
400
401    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
402    std::pair<uint64_t, unsigned> PtrDiffInfo =
403      getTypeInfo(getPointerDiffType());
404    Width = PtrDiffInfo.first;
405    if (Pointee->isFunctionType())
406      Width *= 2;
407    Align = PtrDiffInfo.second;
408    break;
409  }
410  case Type::Complex: {
411    // Complex types have the same alignment as their elements, but twice the
412    // size.
413    std::pair<uint64_t, unsigned> EltInfo =
414      getTypeInfo(cast<ComplexType>(T)->getElementType());
415    Width = EltInfo.first*2;
416    Align = EltInfo.second;
417    break;
418  }
419  case Type::ObjCInterface: {
420    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
421    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
422    Width = Layout.getSize();
423    Align = Layout.getAlignment();
424    break;
425  }
426  case Type::Record:
427  case Type::Enum: {
428    const TagType *TT = cast<TagType>(T);
429
430    if (TT->getDecl()->isInvalidDecl()) {
431      Width = 1;
432      Align = 1;
433      break;
434    }
435
436    if (const EnumType *ET = dyn_cast<EnumType>(TT))
437      return getTypeInfo(ET->getDecl()->getIntegerType());
438
439    const RecordType *RT = cast<RecordType>(TT);
440    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
441    Width = Layout.getSize();
442    Align = Layout.getAlignment();
443    break;
444  }
445
446  case Type::Typedef: {
447    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
448    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
449      Align = Aligned->getAlignment();
450      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
451    } else
452      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
453    break;
454  }
455
456  case Type::TypeOfExpr:
457    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
458                         .getTypePtr());
459
460  case Type::TypeOf:
461    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
462
463  case Type::QualifiedName:
464    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
465
466  case Type::TemplateSpecialization:
467    assert(getCanonicalType(T) != T &&
468           "Cannot request the size of a dependent type");
469    // FIXME: this is likely to be wrong once we support template
470    // aliases, since a template alias could refer to a typedef that
471    // has an __aligned__ attribute on it.
472    return getTypeInfo(getCanonicalType(T));
473  }
474
475  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
476  return std::make_pair(Width, Align);
477}
478
479/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
480/// type for the current target in bits.  This can be different than the ABI
481/// alignment in cases where it is beneficial for performance to overalign
482/// a data type.
483unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
484  unsigned ABIAlign = getTypeAlign(T);
485
486  // Double and long long should be naturally aligned if possible.
487  if (const ComplexType* CT = T->getAsComplexType())
488    T = CT->getElementType().getTypePtr();
489  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
490      T->isSpecificBuiltinType(BuiltinType::LongLong))
491    return std::max(ABIAlign, (unsigned)getTypeSize(T));
492
493  return ABIAlign;
494}
495
496
497/// LayoutField - Field layout.
498void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
499                                  bool IsUnion, unsigned StructPacking,
500                                  ASTContext &Context) {
501  unsigned FieldPacking = StructPacking;
502  uint64_t FieldOffset = IsUnion ? 0 : Size;
503  uint64_t FieldSize;
504  unsigned FieldAlign;
505
506  // FIXME: Should this override struct packing? Probably we want to
507  // take the minimum?
508  if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
509    FieldPacking = PA->getAlignment();
510
511  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
512    // TODO: Need to check this algorithm on other targets!
513    //       (tested on Linux-X86)
514    FieldSize = BitWidthExpr->EvaluateAsInt(Context).getZExtValue();
515
516    std::pair<uint64_t, unsigned> FieldInfo =
517      Context.getTypeInfo(FD->getType());
518    uint64_t TypeSize = FieldInfo.first;
519
520    // Determine the alignment of this bitfield. The packing
521    // attributes define a maximum and the alignment attribute defines
522    // a minimum.
523    // FIXME: What is the right behavior when the specified alignment
524    // is smaller than the specified packing?
525    FieldAlign = FieldInfo.second;
526    if (FieldPacking)
527      FieldAlign = std::min(FieldAlign, FieldPacking);
528    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
529      FieldAlign = std::max(FieldAlign, AA->getAlignment());
530
531    // Check if we need to add padding to give the field the correct
532    // alignment.
533    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
534      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
535
536    // Padding members don't affect overall alignment
537    if (!FD->getIdentifier())
538      FieldAlign = 1;
539  } else {
540    if (FD->getType()->isIncompleteArrayType()) {
541      // This is a flexible array member; we can't directly
542      // query getTypeInfo about these, so we figure it out here.
543      // Flexible array members don't have any size, but they
544      // have to be aligned appropriately for their element type.
545      FieldSize = 0;
546      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
547      FieldAlign = Context.getTypeAlign(ATy->getElementType());
548    } else if (const ReferenceType *RT = FD->getType()->getAsReferenceType()) {
549      unsigned AS = RT->getPointeeType().getAddressSpace();
550      FieldSize = Context.Target.getPointerWidth(AS);
551      FieldAlign = Context.Target.getPointerAlign(AS);
552    } else {
553      std::pair<uint64_t, unsigned> FieldInfo =
554        Context.getTypeInfo(FD->getType());
555      FieldSize = FieldInfo.first;
556      FieldAlign = FieldInfo.second;
557    }
558
559    // Determine the alignment of this bitfield. The packing
560    // attributes define a maximum and the alignment attribute defines
561    // a minimum. Additionally, the packing alignment must be at least
562    // a byte for non-bitfields.
563    //
564    // FIXME: What is the right behavior when the specified alignment
565    // is smaller than the specified packing?
566    if (FieldPacking)
567      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
568    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
569      FieldAlign = std::max(FieldAlign, AA->getAlignment());
570
571    // Round up the current record size to the field's alignment boundary.
572    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
573  }
574
575  // Place this field at the current location.
576  FieldOffsets[FieldNo] = FieldOffset;
577
578  // Reserve space for this field.
579  if (IsUnion) {
580    Size = std::max(Size, FieldSize);
581  } else {
582    Size = FieldOffset + FieldSize;
583  }
584
585  // Remember the next available offset.
586  NextOffset = Size;
587
588  // Remember max struct/class alignment.
589  Alignment = std::max(Alignment, FieldAlign);
590}
591
592static void CollectLocalObjCIvars(ASTContext *Ctx,
593                                  const ObjCInterfaceDecl *OI,
594                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
595  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
596       E = OI->ivar_end(); I != E; ++I) {
597    ObjCIvarDecl *IVDecl = *I;
598    if (!IVDecl->isInvalidDecl())
599      Fields.push_back(cast<FieldDecl>(IVDecl));
600  }
601}
602
603void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
604                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
605  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
606    CollectObjCIvars(SuperClass, Fields);
607  CollectLocalObjCIvars(this, OI, Fields);
608}
609
610/// ShallowCollectObjCIvars -
611/// Collect all ivars, including those synthesized, in the current class.
612///
613void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
614                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
615                                 bool CollectSynthesized) {
616  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
617         E = OI->ivar_end(); I != E; ++I) {
618     Ivars.push_back(*I);
619  }
620  if (CollectSynthesized)
621    CollectSynthesizedIvars(OI, Ivars);
622}
623
624void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
625                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
626  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(*this),
627       E = PD->prop_end(*this); I != E; ++I)
628    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
629      Ivars.push_back(Ivar);
630
631  // Also look into nested protocols.
632  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
633       E = PD->protocol_end(); P != E; ++P)
634    CollectProtocolSynthesizedIvars(*P, Ivars);
635}
636
637/// CollectSynthesizedIvars -
638/// This routine collect synthesized ivars for the designated class.
639///
640void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
641                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
642  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(*this),
643       E = OI->prop_end(*this); I != E; ++I) {
644    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
645      Ivars.push_back(Ivar);
646  }
647  // Also look into interface's protocol list for properties declared
648  // in the protocol and whose ivars are synthesized.
649  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
650       PE = OI->protocol_end(); P != PE; ++P) {
651    ObjCProtocolDecl *PD = (*P);
652    CollectProtocolSynthesizedIvars(PD, Ivars);
653  }
654}
655
656unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
657  unsigned count = 0;
658  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(*this),
659       E = PD->prop_end(*this); I != E; ++I)
660    if ((*I)->getPropertyIvarDecl())
661      ++count;
662
663  // Also look into nested protocols.
664  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
665       E = PD->protocol_end(); P != E; ++P)
666    count += CountProtocolSynthesizedIvars(*P);
667  return count;
668}
669
670unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI)
671{
672  unsigned count = 0;
673  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(*this),
674       E = OI->prop_end(*this); I != E; ++I) {
675    if ((*I)->getPropertyIvarDecl())
676      ++count;
677  }
678  // Also look into interface's protocol list for properties declared
679  // in the protocol and whose ivars are synthesized.
680  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
681       PE = OI->protocol_end(); P != PE; ++P) {
682    ObjCProtocolDecl *PD = (*P);
683    count += CountProtocolSynthesizedIvars(PD);
684  }
685  return count;
686}
687
688/// getInterfaceLayoutImpl - Get or compute information about the
689/// layout of the given interface.
690///
691/// \param Impl - If given, also include the layout of the interface's
692/// implementation. This may differ by including synthesized ivars.
693const ASTRecordLayout &
694ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
695                          const ObjCImplementationDecl *Impl) {
696  assert(!D->isForwardDecl() && "Invalid interface decl!");
697
698  // Look up this layout, if already laid out, return what we have.
699  ObjCContainerDecl *Key =
700    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
701  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
702    return *Entry;
703
704  unsigned FieldCount = D->ivar_size();
705  // Add in synthesized ivar count if laying out an implementation.
706  if (Impl) {
707    unsigned SynthCount = CountSynthesizedIvars(D);
708    FieldCount += SynthCount;
709    // If there aren't any sythesized ivars then reuse the interface
710    // entry. Note we can't cache this because we simply free all
711    // entries later; however we shouldn't look up implementations
712    // frequently.
713    if (SynthCount == 0)
714      return getObjCLayout(D, 0);
715  }
716
717  ASTRecordLayout *NewEntry = NULL;
718  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
719    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
720    unsigned Alignment = SL.getAlignment();
721
722    // We start laying out ivars not at the end of the superclass
723    // structure, but at the next byte following the last field.
724    uint64_t Size = llvm::RoundUpToAlignment(SL.NextOffset, 8);
725
726    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout(Size, Alignment);
727    NewEntry->InitializeLayout(FieldCount);
728  } else {
729    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout();
730    NewEntry->InitializeLayout(FieldCount);
731  }
732
733  unsigned StructPacking = 0;
734  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
735    StructPacking = PA->getAlignment();
736
737  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
738    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
739                                    AA->getAlignment()));
740
741  // Layout each ivar sequentially.
742  unsigned i = 0;
743  llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
744  ShallowCollectObjCIvars(D, Ivars, Impl);
745  for (unsigned k = 0, e = Ivars.size(); k != e; ++k)
746       NewEntry->LayoutField(Ivars[k], i++, false, StructPacking, *this);
747
748  // Finally, round the size of the total struct up to the alignment of the
749  // struct itself.
750  NewEntry->FinalizeLayout();
751  return *NewEntry;
752}
753
754const ASTRecordLayout &
755ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
756  return getObjCLayout(D, 0);
757}
758
759const ASTRecordLayout &
760ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
761  return getObjCLayout(D->getClassInterface(), D);
762}
763
764/// getASTRecordLayout - Get or compute information about the layout of the
765/// specified record (struct/union/class), which indicates its size and field
766/// position information.
767const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
768  D = D->getDefinition(*this);
769  assert(D && "Cannot get layout of forward declarations!");
770
771  // Look up this layout, if already laid out, return what we have.
772  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
773  if (Entry) return *Entry;
774
775  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
776  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
777  ASTRecordLayout *NewEntry = new ASTRecordLayout();
778  Entry = NewEntry;
779
780  // FIXME: Avoid linear walk through the fields, if possible.
781  NewEntry->InitializeLayout(std::distance(D->field_begin(*this),
782                                           D->field_end(*this)));
783  bool IsUnion = D->isUnion();
784
785  unsigned StructPacking = 0;
786  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
787    StructPacking = PA->getAlignment();
788
789  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
790    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
791                                    AA->getAlignment()));
792
793  // Layout each field, for now, just sequentially, respecting alignment.  In
794  // the future, this will need to be tweakable by targets.
795  unsigned FieldIdx = 0;
796  for (RecordDecl::field_iterator Field = D->field_begin(*this),
797                               FieldEnd = D->field_end(*this);
798       Field != FieldEnd; (void)++Field, ++FieldIdx)
799    NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
800
801  // Finally, round the size of the total struct up to the alignment of the
802  // struct itself.
803  NewEntry->FinalizeLayout(getLangOptions().CPlusPlus);
804  return *NewEntry;
805}
806
807//===----------------------------------------------------------------------===//
808//                   Type creation/memoization methods
809//===----------------------------------------------------------------------===//
810
811QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
812  QualType CanT = getCanonicalType(T);
813  if (CanT.getAddressSpace() == AddressSpace)
814    return T;
815
816  // If we are composing extended qualifiers together, merge together into one
817  // ExtQualType node.
818  unsigned CVRQuals = T.getCVRQualifiers();
819  QualType::GCAttrTypes GCAttr = QualType::GCNone;
820  Type *TypeNode = T.getTypePtr();
821
822  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
823    // If this type already has an address space specified, it cannot get
824    // another one.
825    assert(EQT->getAddressSpace() == 0 &&
826           "Type cannot be in multiple addr spaces!");
827    GCAttr = EQT->getObjCGCAttr();
828    TypeNode = EQT->getBaseType();
829  }
830
831  // Check if we've already instantiated this type.
832  llvm::FoldingSetNodeID ID;
833  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
834  void *InsertPos = 0;
835  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
836    return QualType(EXTQy, CVRQuals);
837
838  // If the base type isn't canonical, this won't be a canonical type either,
839  // so fill in the canonical type field.
840  QualType Canonical;
841  if (!TypeNode->isCanonical()) {
842    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
843
844    // Update InsertPos, the previous call could have invalidated it.
845    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
846    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
847  }
848  ExtQualType *New =
849    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
850  ExtQualTypes.InsertNode(New, InsertPos);
851  Types.push_back(New);
852  return QualType(New, CVRQuals);
853}
854
855QualType ASTContext::getObjCGCQualType(QualType T,
856                                       QualType::GCAttrTypes GCAttr) {
857  QualType CanT = getCanonicalType(T);
858  if (CanT.getObjCGCAttr() == GCAttr)
859    return T;
860
861  if (T->isPointerType()) {
862    QualType Pointee = T->getAsPointerType()->getPointeeType();
863    if (Pointee->isPointerType()) {
864      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
865      return getPointerType(ResultType);
866    }
867  }
868  // If we are composing extended qualifiers together, merge together into one
869  // ExtQualType node.
870  unsigned CVRQuals = T.getCVRQualifiers();
871  Type *TypeNode = T.getTypePtr();
872  unsigned AddressSpace = 0;
873
874  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
875    // If this type already has an address space specified, it cannot get
876    // another one.
877    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
878           "Type cannot be in multiple addr spaces!");
879    AddressSpace = EQT->getAddressSpace();
880    TypeNode = EQT->getBaseType();
881  }
882
883  // Check if we've already instantiated an gc qual'd type of this type.
884  llvm::FoldingSetNodeID ID;
885  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
886  void *InsertPos = 0;
887  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
888    return QualType(EXTQy, CVRQuals);
889
890  // If the base type isn't canonical, this won't be a canonical type either,
891  // so fill in the canonical type field.
892  // FIXME: Isn't this also not canonical if the base type is a array
893  // or pointer type?  I can't find any documentation for objc_gc, though...
894  QualType Canonical;
895  if (!T->isCanonical()) {
896    Canonical = getObjCGCQualType(CanT, GCAttr);
897
898    // Update InsertPos, the previous call could have invalidated it.
899    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
900    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
901  }
902  ExtQualType *New =
903    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
904  ExtQualTypes.InsertNode(New, InsertPos);
905  Types.push_back(New);
906  return QualType(New, CVRQuals);
907}
908
909/// getComplexType - Return the uniqued reference to the type for a complex
910/// number with the specified element type.
911QualType ASTContext::getComplexType(QualType T) {
912  // Unique pointers, to guarantee there is only one pointer of a particular
913  // structure.
914  llvm::FoldingSetNodeID ID;
915  ComplexType::Profile(ID, T);
916
917  void *InsertPos = 0;
918  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
919    return QualType(CT, 0);
920
921  // If the pointee type isn't canonical, this won't be a canonical type either,
922  // so fill in the canonical type field.
923  QualType Canonical;
924  if (!T->isCanonical()) {
925    Canonical = getComplexType(getCanonicalType(T));
926
927    // Get the new insert position for the node we care about.
928    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
929    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
930  }
931  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
932  Types.push_back(New);
933  ComplexTypes.InsertNode(New, InsertPos);
934  return QualType(New, 0);
935}
936
937QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
938  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
939     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
940  FixedWidthIntType *&Entry = Map[Width];
941  if (!Entry)
942    Entry = new FixedWidthIntType(Width, Signed);
943  return QualType(Entry, 0);
944}
945
946/// getPointerType - Return the uniqued reference to the type for a pointer to
947/// the specified type.
948QualType ASTContext::getPointerType(QualType T) {
949  // Unique pointers, to guarantee there is only one pointer of a particular
950  // structure.
951  llvm::FoldingSetNodeID ID;
952  PointerType::Profile(ID, T);
953
954  void *InsertPos = 0;
955  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
956    return QualType(PT, 0);
957
958  // If the pointee type isn't canonical, this won't be a canonical type either,
959  // so fill in the canonical type field.
960  QualType Canonical;
961  if (!T->isCanonical()) {
962    Canonical = getPointerType(getCanonicalType(T));
963
964    // Get the new insert position for the node we care about.
965    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
966    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
967  }
968  PointerType *New = new (*this,8) PointerType(T, Canonical);
969  Types.push_back(New);
970  PointerTypes.InsertNode(New, InsertPos);
971  return QualType(New, 0);
972}
973
974/// getBlockPointerType - Return the uniqued reference to the type for
975/// a pointer to the specified block.
976QualType ASTContext::getBlockPointerType(QualType T) {
977  assert(T->isFunctionType() && "block of function types only");
978  // Unique pointers, to guarantee there is only one block of a particular
979  // structure.
980  llvm::FoldingSetNodeID ID;
981  BlockPointerType::Profile(ID, T);
982
983  void *InsertPos = 0;
984  if (BlockPointerType *PT =
985        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
986    return QualType(PT, 0);
987
988  // If the block pointee type isn't canonical, this won't be a canonical
989  // type either so fill in the canonical type field.
990  QualType Canonical;
991  if (!T->isCanonical()) {
992    Canonical = getBlockPointerType(getCanonicalType(T));
993
994    // Get the new insert position for the node we care about.
995    BlockPointerType *NewIP =
996      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
997    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
998  }
999  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
1000  Types.push_back(New);
1001  BlockPointerTypes.InsertNode(New, InsertPos);
1002  return QualType(New, 0);
1003}
1004
1005/// getLValueReferenceType - Return the uniqued reference to the type for an
1006/// lvalue reference to the specified type.
1007QualType ASTContext::getLValueReferenceType(QualType T) {
1008  // Unique pointers, to guarantee there is only one pointer of a particular
1009  // structure.
1010  llvm::FoldingSetNodeID ID;
1011  ReferenceType::Profile(ID, T);
1012
1013  void *InsertPos = 0;
1014  if (LValueReferenceType *RT =
1015        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1016    return QualType(RT, 0);
1017
1018  // If the referencee type isn't canonical, this won't be a canonical type
1019  // either, so fill in the canonical type field.
1020  QualType Canonical;
1021  if (!T->isCanonical()) {
1022    Canonical = getLValueReferenceType(getCanonicalType(T));
1023
1024    // Get the new insert position for the node we care about.
1025    LValueReferenceType *NewIP =
1026      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1027    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1028  }
1029
1030  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1031  Types.push_back(New);
1032  LValueReferenceTypes.InsertNode(New, InsertPos);
1033  return QualType(New, 0);
1034}
1035
1036/// getRValueReferenceType - Return the uniqued reference to the type for an
1037/// rvalue reference to the specified type.
1038QualType ASTContext::getRValueReferenceType(QualType T) {
1039  // Unique pointers, to guarantee there is only one pointer of a particular
1040  // structure.
1041  llvm::FoldingSetNodeID ID;
1042  ReferenceType::Profile(ID, T);
1043
1044  void *InsertPos = 0;
1045  if (RValueReferenceType *RT =
1046        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1047    return QualType(RT, 0);
1048
1049  // If the referencee type isn't canonical, this won't be a canonical type
1050  // either, so fill in the canonical type field.
1051  QualType Canonical;
1052  if (!T->isCanonical()) {
1053    Canonical = getRValueReferenceType(getCanonicalType(T));
1054
1055    // Get the new insert position for the node we care about.
1056    RValueReferenceType *NewIP =
1057      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1058    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1059  }
1060
1061  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1062  Types.push_back(New);
1063  RValueReferenceTypes.InsertNode(New, InsertPos);
1064  return QualType(New, 0);
1065}
1066
1067/// getMemberPointerType - Return the uniqued reference to the type for a
1068/// member pointer to the specified type, in the specified class.
1069QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1070{
1071  // Unique pointers, to guarantee there is only one pointer of a particular
1072  // structure.
1073  llvm::FoldingSetNodeID ID;
1074  MemberPointerType::Profile(ID, T, Cls);
1075
1076  void *InsertPos = 0;
1077  if (MemberPointerType *PT =
1078      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1079    return QualType(PT, 0);
1080
1081  // If the pointee or class type isn't canonical, this won't be a canonical
1082  // type either, so fill in the canonical type field.
1083  QualType Canonical;
1084  if (!T->isCanonical()) {
1085    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1086
1087    // Get the new insert position for the node we care about.
1088    MemberPointerType *NewIP =
1089      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1090    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1091  }
1092  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1093  Types.push_back(New);
1094  MemberPointerTypes.InsertNode(New, InsertPos);
1095  return QualType(New, 0);
1096}
1097
1098/// getConstantArrayType - Return the unique reference to the type for an
1099/// array of the specified element type.
1100QualType ASTContext::getConstantArrayType(QualType EltTy,
1101                                          const llvm::APInt &ArySizeIn,
1102                                          ArrayType::ArraySizeModifier ASM,
1103                                          unsigned EltTypeQuals) {
1104  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1105         "Constant array of VLAs is illegal!");
1106
1107  // Convert the array size into a canonical width matching the pointer size for
1108  // the target.
1109  llvm::APInt ArySize(ArySizeIn);
1110  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1111
1112  llvm::FoldingSetNodeID ID;
1113  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1114
1115  void *InsertPos = 0;
1116  if (ConstantArrayType *ATP =
1117      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1118    return QualType(ATP, 0);
1119
1120  // If the element type isn't canonical, this won't be a canonical type either,
1121  // so fill in the canonical type field.
1122  QualType Canonical;
1123  if (!EltTy->isCanonical()) {
1124    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1125                                     ASM, EltTypeQuals);
1126    // Get the new insert position for the node we care about.
1127    ConstantArrayType *NewIP =
1128      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1129    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1130  }
1131
1132  ConstantArrayType *New =
1133    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1134  ConstantArrayTypes.InsertNode(New, InsertPos);
1135  Types.push_back(New);
1136  return QualType(New, 0);
1137}
1138
1139/// getVariableArrayType - Returns a non-unique reference to the type for a
1140/// variable array of the specified element type.
1141QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
1142                                          ArrayType::ArraySizeModifier ASM,
1143                                          unsigned EltTypeQuals) {
1144  // Since we don't unique expressions, it isn't possible to unique VLA's
1145  // that have an expression provided for their size.
1146
1147  VariableArrayType *New =
1148    new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
1149
1150  VariableArrayTypes.push_back(New);
1151  Types.push_back(New);
1152  return QualType(New, 0);
1153}
1154
1155/// getDependentSizedArrayType - Returns a non-unique reference to
1156/// the type for a dependently-sized array of the specified element
1157/// type. FIXME: We will need these to be uniqued, or at least
1158/// comparable, at some point.
1159QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1160                                                ArrayType::ArraySizeModifier ASM,
1161                                                unsigned EltTypeQuals) {
1162  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1163         "Size must be type- or value-dependent!");
1164
1165  // Since we don't unique expressions, it isn't possible to unique
1166  // dependently-sized array types.
1167
1168  DependentSizedArrayType *New =
1169      new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
1170                                            ASM, EltTypeQuals);
1171
1172  DependentSizedArrayTypes.push_back(New);
1173  Types.push_back(New);
1174  return QualType(New, 0);
1175}
1176
1177QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1178                                            ArrayType::ArraySizeModifier ASM,
1179                                            unsigned EltTypeQuals) {
1180  llvm::FoldingSetNodeID ID;
1181  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1182
1183  void *InsertPos = 0;
1184  if (IncompleteArrayType *ATP =
1185       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1186    return QualType(ATP, 0);
1187
1188  // If the element type isn't canonical, this won't be a canonical type
1189  // either, so fill in the canonical type field.
1190  QualType Canonical;
1191
1192  if (!EltTy->isCanonical()) {
1193    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1194                                       ASM, EltTypeQuals);
1195
1196    // Get the new insert position for the node we care about.
1197    IncompleteArrayType *NewIP =
1198      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1199    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1200  }
1201
1202  IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1203                                                           ASM, EltTypeQuals);
1204
1205  IncompleteArrayTypes.InsertNode(New, InsertPos);
1206  Types.push_back(New);
1207  return QualType(New, 0);
1208}
1209
1210/// getVectorType - Return the unique reference to a vector type of
1211/// the specified element type and size. VectorType must be a built-in type.
1212QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1213  BuiltinType *baseType;
1214
1215  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1216  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1217
1218  // Check if we've already instantiated a vector of this type.
1219  llvm::FoldingSetNodeID ID;
1220  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1221  void *InsertPos = 0;
1222  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1223    return QualType(VTP, 0);
1224
1225  // If the element type isn't canonical, this won't be a canonical type either,
1226  // so fill in the canonical type field.
1227  QualType Canonical;
1228  if (!vecType->isCanonical()) {
1229    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1230
1231    // Get the new insert position for the node we care about.
1232    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1233    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1234  }
1235  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1236  VectorTypes.InsertNode(New, InsertPos);
1237  Types.push_back(New);
1238  return QualType(New, 0);
1239}
1240
1241/// getExtVectorType - Return the unique reference to an extended vector type of
1242/// the specified element type and size. VectorType must be a built-in type.
1243QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1244  BuiltinType *baseType;
1245
1246  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1247  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1248
1249  // Check if we've already instantiated a vector of this type.
1250  llvm::FoldingSetNodeID ID;
1251  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1252  void *InsertPos = 0;
1253  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1254    return QualType(VTP, 0);
1255
1256  // If the element type isn't canonical, this won't be a canonical type either,
1257  // so fill in the canonical type field.
1258  QualType Canonical;
1259  if (!vecType->isCanonical()) {
1260    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1261
1262    // Get the new insert position for the node we care about.
1263    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1264    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1265  }
1266  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1267  VectorTypes.InsertNode(New, InsertPos);
1268  Types.push_back(New);
1269  return QualType(New, 0);
1270}
1271
1272/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1273///
1274QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
1275  // Unique functions, to guarantee there is only one function of a particular
1276  // structure.
1277  llvm::FoldingSetNodeID ID;
1278  FunctionNoProtoType::Profile(ID, ResultTy);
1279
1280  void *InsertPos = 0;
1281  if (FunctionNoProtoType *FT =
1282        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1283    return QualType(FT, 0);
1284
1285  QualType Canonical;
1286  if (!ResultTy->isCanonical()) {
1287    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
1288
1289    // Get the new insert position for the node we care about.
1290    FunctionNoProtoType *NewIP =
1291      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1292    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1293  }
1294
1295  FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
1296  Types.push_back(New);
1297  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1298  return QualType(New, 0);
1299}
1300
1301/// getFunctionType - Return a normal function type with a typed argument
1302/// list.  isVariadic indicates whether the argument list includes '...'.
1303QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1304                                     unsigned NumArgs, bool isVariadic,
1305                                     unsigned TypeQuals, bool hasExceptionSpec,
1306                                     bool hasAnyExceptionSpec, unsigned NumExs,
1307                                     const QualType *ExArray) {
1308  // Unique functions, to guarantee there is only one function of a particular
1309  // structure.
1310  llvm::FoldingSetNodeID ID;
1311  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1312                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1313                             NumExs, ExArray);
1314
1315  void *InsertPos = 0;
1316  if (FunctionProtoType *FTP =
1317        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1318    return QualType(FTP, 0);
1319
1320  // Determine whether the type being created is already canonical or not.
1321  bool isCanonical = ResultTy->isCanonical();
1322  if (hasExceptionSpec)
1323    isCanonical = false;
1324  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1325    if (!ArgArray[i]->isCanonical())
1326      isCanonical = false;
1327
1328  // If this type isn't canonical, get the canonical version of it.
1329  // The exception spec is not part of the canonical type.
1330  QualType Canonical;
1331  if (!isCanonical) {
1332    llvm::SmallVector<QualType, 16> CanonicalArgs;
1333    CanonicalArgs.reserve(NumArgs);
1334    for (unsigned i = 0; i != NumArgs; ++i)
1335      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1336
1337    Canonical = getFunctionType(getCanonicalType(ResultTy),
1338                                CanonicalArgs.data(), NumArgs,
1339                                isVariadic, TypeQuals);
1340
1341    // Get the new insert position for the node we care about.
1342    FunctionProtoType *NewIP =
1343      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1344    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1345  }
1346
1347  // FunctionProtoType objects are allocated with extra bytes after them
1348  // for two variable size arrays (for parameter and exception types) at the
1349  // end of them.
1350  FunctionProtoType *FTP =
1351    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1352                                 NumArgs*sizeof(QualType) +
1353                                 NumExs*sizeof(QualType), 8);
1354  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1355                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1356                              ExArray, NumExs, Canonical);
1357  Types.push_back(FTP);
1358  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1359  return QualType(FTP, 0);
1360}
1361
1362/// getTypeDeclType - Return the unique reference to the type for the
1363/// specified type declaration.
1364QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1365  assert(Decl && "Passed null for Decl param");
1366  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1367
1368  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1369    return getTypedefType(Typedef);
1370  else if (isa<TemplateTypeParmDecl>(Decl)) {
1371    assert(false && "Template type parameter types are always available.");
1372  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1373    return getObjCInterfaceType(ObjCInterface);
1374
1375  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1376    if (PrevDecl)
1377      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1378    else
1379      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1380  }
1381  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1382    if (PrevDecl)
1383      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1384    else
1385      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1386  }
1387  else
1388    assert(false && "TypeDecl without a type?");
1389
1390  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1391  return QualType(Decl->TypeForDecl, 0);
1392}
1393
1394/// getTypedefType - Return the unique reference to the type for the
1395/// specified typename decl.
1396QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1397  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1398
1399  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1400  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1401  Types.push_back(Decl->TypeForDecl);
1402  return QualType(Decl->TypeForDecl, 0);
1403}
1404
1405/// getObjCInterfaceType - Return the unique reference to the type for the
1406/// specified ObjC interface decl.
1407QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
1408  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1409
1410  ObjCInterfaceDecl *OID = const_cast<ObjCInterfaceDecl*>(Decl);
1411  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, OID);
1412  Types.push_back(Decl->TypeForDecl);
1413  return QualType(Decl->TypeForDecl, 0);
1414}
1415
1416/// \brief Retrieve the template type parameter type for a template
1417/// parameter with the given depth, index, and (optionally) name.
1418QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1419                                             IdentifierInfo *Name) {
1420  llvm::FoldingSetNodeID ID;
1421  TemplateTypeParmType::Profile(ID, Depth, Index, Name);
1422  void *InsertPos = 0;
1423  TemplateTypeParmType *TypeParm
1424    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1425
1426  if (TypeParm)
1427    return QualType(TypeParm, 0);
1428
1429  if (Name)
1430    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name,
1431                                         getTemplateTypeParmType(Depth, Index));
1432  else
1433    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index);
1434
1435  Types.push_back(TypeParm);
1436  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1437
1438  return QualType(TypeParm, 0);
1439}
1440
1441QualType
1442ASTContext::getTemplateSpecializationType(TemplateName Template,
1443                                          const TemplateArgument *Args,
1444                                          unsigned NumArgs,
1445                                          QualType Canon) {
1446  if (!Canon.isNull())
1447    Canon = getCanonicalType(Canon);
1448
1449  llvm::FoldingSetNodeID ID;
1450  TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1451
1452  void *InsertPos = 0;
1453  TemplateSpecializationType *Spec
1454    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1455
1456  if (Spec)
1457    return QualType(Spec, 0);
1458
1459  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1460                        sizeof(TemplateArgument) * NumArgs),
1461                       8);
1462  Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1463  Types.push_back(Spec);
1464  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1465
1466  return QualType(Spec, 0);
1467}
1468
1469QualType
1470ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1471                                 QualType NamedType) {
1472  llvm::FoldingSetNodeID ID;
1473  QualifiedNameType::Profile(ID, NNS, NamedType);
1474
1475  void *InsertPos = 0;
1476  QualifiedNameType *T
1477    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1478  if (T)
1479    return QualType(T, 0);
1480
1481  T = new (*this) QualifiedNameType(NNS, NamedType,
1482                                    getCanonicalType(NamedType));
1483  Types.push_back(T);
1484  QualifiedNameTypes.InsertNode(T, InsertPos);
1485  return QualType(T, 0);
1486}
1487
1488QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1489                                     const IdentifierInfo *Name,
1490                                     QualType Canon) {
1491  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1492
1493  if (Canon.isNull()) {
1494    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1495    if (CanonNNS != NNS)
1496      Canon = getTypenameType(CanonNNS, Name);
1497  }
1498
1499  llvm::FoldingSetNodeID ID;
1500  TypenameType::Profile(ID, NNS, Name);
1501
1502  void *InsertPos = 0;
1503  TypenameType *T
1504    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1505  if (T)
1506    return QualType(T, 0);
1507
1508  T = new (*this) TypenameType(NNS, Name, Canon);
1509  Types.push_back(T);
1510  TypenameTypes.InsertNode(T, InsertPos);
1511  return QualType(T, 0);
1512}
1513
1514QualType
1515ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1516                            const TemplateSpecializationType *TemplateId,
1517                            QualType Canon) {
1518  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1519
1520  if (Canon.isNull()) {
1521    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1522    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1523    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1524      const TemplateSpecializationType *CanonTemplateId
1525        = CanonType->getAsTemplateSpecializationType();
1526      assert(CanonTemplateId &&
1527             "Canonical type must also be a template specialization type");
1528      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1529    }
1530  }
1531
1532  llvm::FoldingSetNodeID ID;
1533  TypenameType::Profile(ID, NNS, TemplateId);
1534
1535  void *InsertPos = 0;
1536  TypenameType *T
1537    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1538  if (T)
1539    return QualType(T, 0);
1540
1541  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1542  Types.push_back(T);
1543  TypenameTypes.InsertNode(T, InsertPos);
1544  return QualType(T, 0);
1545}
1546
1547/// CmpProtocolNames - Comparison predicate for sorting protocols
1548/// alphabetically.
1549static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1550                            const ObjCProtocolDecl *RHS) {
1551  return LHS->getDeclName() < RHS->getDeclName();
1552}
1553
1554static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1555                                   unsigned &NumProtocols) {
1556  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1557
1558  // Sort protocols, keyed by name.
1559  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1560
1561  // Remove duplicates.
1562  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1563  NumProtocols = ProtocolsEnd-Protocols;
1564}
1565
1566
1567/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
1568/// the given interface decl and the conforming protocol list.
1569QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
1570                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1571  // Sort the protocol list alphabetically to canonicalize it.
1572  SortAndUniqueProtocols(Protocols, NumProtocols);
1573
1574  llvm::FoldingSetNodeID ID;
1575  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1576
1577  void *InsertPos = 0;
1578  if (ObjCQualifiedInterfaceType *QT =
1579      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1580    return QualType(QT, 0);
1581
1582  // No Match;
1583  ObjCQualifiedInterfaceType *QType =
1584    new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
1585
1586  Types.push_back(QType);
1587  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
1588  return QualType(QType, 0);
1589}
1590
1591/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
1592/// and the conforming protocol list.
1593QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
1594                                            unsigned NumProtocols) {
1595  // Sort the protocol list alphabetically to canonicalize it.
1596  SortAndUniqueProtocols(Protocols, NumProtocols);
1597
1598  llvm::FoldingSetNodeID ID;
1599  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
1600
1601  void *InsertPos = 0;
1602  if (ObjCQualifiedIdType *QT =
1603        ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
1604    return QualType(QT, 0);
1605
1606  // No Match;
1607  ObjCQualifiedIdType *QType =
1608    new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols);
1609  Types.push_back(QType);
1610  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
1611  return QualType(QType, 0);
1612}
1613
1614/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1615/// TypeOfExprType AST's (since expression's are never shared). For example,
1616/// multiple declarations that refer to "typeof(x)" all contain different
1617/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1618/// on canonical type's (which are always unique).
1619QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1620  QualType Canonical = getCanonicalType(tofExpr->getType());
1621  TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1622  Types.push_back(toe);
1623  return QualType(toe, 0);
1624}
1625
1626/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1627/// TypeOfType AST's. The only motivation to unique these nodes would be
1628/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1629/// an issue. This doesn't effect the type checker, since it operates
1630/// on canonical type's (which are always unique).
1631QualType ASTContext::getTypeOfType(QualType tofType) {
1632  QualType Canonical = getCanonicalType(tofType);
1633  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1634  Types.push_back(tot);
1635  return QualType(tot, 0);
1636}
1637
1638/// getTagDeclType - Return the unique reference to the type for the
1639/// specified TagDecl (struct/union/class/enum) decl.
1640QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1641  assert (Decl);
1642  return getTypeDeclType(Decl);
1643}
1644
1645/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1646/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1647/// needs to agree with the definition in <stddef.h>.
1648QualType ASTContext::getSizeType() const {
1649  return getFromTargetType(Target.getSizeType());
1650}
1651
1652/// getSignedWCharType - Return the type of "signed wchar_t".
1653/// Used when in C++, as a GCC extension.
1654QualType ASTContext::getSignedWCharType() const {
1655  // FIXME: derive from "Target" ?
1656  return WCharTy;
1657}
1658
1659/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1660/// Used when in C++, as a GCC extension.
1661QualType ASTContext::getUnsignedWCharType() const {
1662  // FIXME: derive from "Target" ?
1663  return UnsignedIntTy;
1664}
1665
1666/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1667/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1668QualType ASTContext::getPointerDiffType() const {
1669  return getFromTargetType(Target.getPtrDiffType(0));
1670}
1671
1672//===----------------------------------------------------------------------===//
1673//                              Type Operators
1674//===----------------------------------------------------------------------===//
1675
1676/// getCanonicalType - Return the canonical (structural) type corresponding to
1677/// the specified potentially non-canonical type.  The non-canonical version
1678/// of a type may have many "decorated" versions of types.  Decorators can
1679/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1680/// to be free of any of these, allowing two canonical types to be compared
1681/// for exact equality with a simple pointer comparison.
1682QualType ASTContext::getCanonicalType(QualType T) {
1683  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1684
1685  // If the result has type qualifiers, make sure to canonicalize them as well.
1686  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1687  if (TypeQuals == 0) return CanType;
1688
1689  // If the type qualifiers are on an array type, get the canonical type of the
1690  // array with the qualifiers applied to the element type.
1691  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1692  if (!AT)
1693    return CanType.getQualifiedType(TypeQuals);
1694
1695  // Get the canonical version of the element with the extra qualifiers on it.
1696  // This can recursively sink qualifiers through multiple levels of arrays.
1697  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1698  NewEltTy = getCanonicalType(NewEltTy);
1699
1700  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1701    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1702                                CAT->getIndexTypeQualifier());
1703  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1704    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1705                                  IAT->getIndexTypeQualifier());
1706
1707  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1708    return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
1709                                      DSAT->getSizeModifier(),
1710                                      DSAT->getIndexTypeQualifier());
1711
1712  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1713  return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1714                              VAT->getSizeModifier(),
1715                              VAT->getIndexTypeQualifier());
1716}
1717
1718Decl *ASTContext::getCanonicalDecl(Decl *D) {
1719  if (!D)
1720    return 0;
1721
1722  if (TagDecl *Tag = dyn_cast<TagDecl>(D)) {
1723    QualType T = getTagDeclType(Tag);
1724    return cast<TagDecl>(cast<TagType>(T.getTypePtr()->CanonicalType)
1725                         ->getDecl());
1726  }
1727
1728  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(D)) {
1729    while (Template->getPreviousDeclaration())
1730      Template = Template->getPreviousDeclaration();
1731    return Template;
1732  }
1733
1734  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1735    while (Function->getPreviousDeclaration())
1736      Function = Function->getPreviousDeclaration();
1737    return const_cast<FunctionDecl *>(Function);
1738  }
1739
1740  if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1741    while (Var->getPreviousDeclaration())
1742      Var = Var->getPreviousDeclaration();
1743    return const_cast<VarDecl *>(Var);
1744  }
1745
1746  return D;
1747}
1748
1749TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
1750  // If this template name refers to a template, the canonical
1751  // template name merely stores the template itself.
1752  if (TemplateDecl *Template = Name.getAsTemplateDecl())
1753    return TemplateName(cast<TemplateDecl>(getCanonicalDecl(Template)));
1754
1755  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
1756  assert(DTN && "Non-dependent template names must refer to template decls.");
1757  return DTN->CanonicalTemplateName;
1758}
1759
1760NestedNameSpecifier *
1761ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
1762  if (!NNS)
1763    return 0;
1764
1765  switch (NNS->getKind()) {
1766  case NestedNameSpecifier::Identifier:
1767    // Canonicalize the prefix but keep the identifier the same.
1768    return NestedNameSpecifier::Create(*this,
1769                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
1770                                       NNS->getAsIdentifier());
1771
1772  case NestedNameSpecifier::Namespace:
1773    // A namespace is canonical; build a nested-name-specifier with
1774    // this namespace and no prefix.
1775    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
1776
1777  case NestedNameSpecifier::TypeSpec:
1778  case NestedNameSpecifier::TypeSpecWithTemplate: {
1779    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
1780    NestedNameSpecifier *Prefix = 0;
1781
1782    // FIXME: This isn't the right check!
1783    if (T->isDependentType())
1784      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
1785
1786    return NestedNameSpecifier::Create(*this, Prefix,
1787                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
1788                                       T.getTypePtr());
1789  }
1790
1791  case NestedNameSpecifier::Global:
1792    // The global specifier is canonical and unique.
1793    return NNS;
1794  }
1795
1796  // Required to silence a GCC warning
1797  return 0;
1798}
1799
1800
1801const ArrayType *ASTContext::getAsArrayType(QualType T) {
1802  // Handle the non-qualified case efficiently.
1803  if (T.getCVRQualifiers() == 0) {
1804    // Handle the common positive case fast.
1805    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1806      return AT;
1807  }
1808
1809  // Handle the common negative case fast, ignoring CVR qualifiers.
1810  QualType CType = T->getCanonicalTypeInternal();
1811
1812  // Make sure to look through type qualifiers (like ExtQuals) for the negative
1813  // test.
1814  if (!isa<ArrayType>(CType) &&
1815      !isa<ArrayType>(CType.getUnqualifiedType()))
1816    return 0;
1817
1818  // Apply any CVR qualifiers from the array type to the element type.  This
1819  // implements C99 6.7.3p8: "If the specification of an array type includes
1820  // any type qualifiers, the element type is so qualified, not the array type."
1821
1822  // If we get here, we either have type qualifiers on the type, or we have
1823  // sugar such as a typedef in the way.  If we have type qualifiers on the type
1824  // we must propagate them down into the elemeng type.
1825  unsigned CVRQuals = T.getCVRQualifiers();
1826  unsigned AddrSpace = 0;
1827  Type *Ty = T.getTypePtr();
1828
1829  // Rip through ExtQualType's and typedefs to get to a concrete type.
1830  while (1) {
1831    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
1832      AddrSpace = EXTQT->getAddressSpace();
1833      Ty = EXTQT->getBaseType();
1834    } else {
1835      T = Ty->getDesugaredType();
1836      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
1837        break;
1838      CVRQuals |= T.getCVRQualifiers();
1839      Ty = T.getTypePtr();
1840    }
1841  }
1842
1843  // If we have a simple case, just return now.
1844  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1845  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
1846    return ATy;
1847
1848  // Otherwise, we have an array and we have qualifiers on it.  Push the
1849  // qualifiers into the array element type and return a new array type.
1850  // Get the canonical version of the element with the extra qualifiers on it.
1851  // This can recursively sink qualifiers through multiple levels of arrays.
1852  QualType NewEltTy = ATy->getElementType();
1853  if (AddrSpace)
1854    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
1855  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
1856
1857  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
1858    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
1859                                                CAT->getSizeModifier(),
1860                                                CAT->getIndexTypeQualifier()));
1861  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
1862    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
1863                                                  IAT->getSizeModifier(),
1864                                                 IAT->getIndexTypeQualifier()));
1865
1866  if (const DependentSizedArrayType *DSAT
1867        = dyn_cast<DependentSizedArrayType>(ATy))
1868    return cast<ArrayType>(
1869                     getDependentSizedArrayType(NewEltTy,
1870                                                DSAT->getSizeExpr(),
1871                                                DSAT->getSizeModifier(),
1872                                                DSAT->getIndexTypeQualifier()));
1873
1874  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
1875  return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1876                                              VAT->getSizeModifier(),
1877                                              VAT->getIndexTypeQualifier()));
1878}
1879
1880
1881/// getArrayDecayedType - Return the properly qualified result of decaying the
1882/// specified array type to a pointer.  This operation is non-trivial when
1883/// handling typedefs etc.  The canonical type of "T" must be an array type,
1884/// this returns a pointer to a properly qualified element of the array.
1885///
1886/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1887QualType ASTContext::getArrayDecayedType(QualType Ty) {
1888  // Get the element type with 'getAsArrayType' so that we don't lose any
1889  // typedefs in the element type of the array.  This also handles propagation
1890  // of type qualifiers from the array type into the element type if present
1891  // (C99 6.7.3p8).
1892  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
1893  assert(PrettyArrayType && "Not an array type!");
1894
1895  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
1896
1897  // int x[restrict 4] ->  int *restrict
1898  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
1899}
1900
1901QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
1902  QualType ElemTy = VAT->getElementType();
1903
1904  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
1905    return getBaseElementType(VAT);
1906
1907  return ElemTy;
1908}
1909
1910/// getFloatingRank - Return a relative rank for floating point types.
1911/// This routine will assert if passed a built-in type that isn't a float.
1912static FloatingRank getFloatingRank(QualType T) {
1913  if (const ComplexType *CT = T->getAsComplexType())
1914    return getFloatingRank(CT->getElementType());
1915
1916  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
1917  switch (T->getAsBuiltinType()->getKind()) {
1918  default: assert(0 && "getFloatingRank(): not a floating type");
1919  case BuiltinType::Float:      return FloatRank;
1920  case BuiltinType::Double:     return DoubleRank;
1921  case BuiltinType::LongDouble: return LongDoubleRank;
1922  }
1923}
1924
1925/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1926/// point or a complex type (based on typeDomain/typeSize).
1927/// 'typeDomain' is a real floating point or complex type.
1928/// 'typeSize' is a real floating point or complex type.
1929QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1930                                                       QualType Domain) const {
1931  FloatingRank EltRank = getFloatingRank(Size);
1932  if (Domain->isComplexType()) {
1933    switch (EltRank) {
1934    default: assert(0 && "getFloatingRank(): illegal value for rank");
1935    case FloatRank:      return FloatComplexTy;
1936    case DoubleRank:     return DoubleComplexTy;
1937    case LongDoubleRank: return LongDoubleComplexTy;
1938    }
1939  }
1940
1941  assert(Domain->isRealFloatingType() && "Unknown domain!");
1942  switch (EltRank) {
1943  default: assert(0 && "getFloatingRank(): illegal value for rank");
1944  case FloatRank:      return FloatTy;
1945  case DoubleRank:     return DoubleTy;
1946  case LongDoubleRank: return LongDoubleTy;
1947  }
1948}
1949
1950/// getFloatingTypeOrder - Compare the rank of the two specified floating
1951/// point types, ignoring the domain of the type (i.e. 'double' ==
1952/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1953/// LHS < RHS, return -1.
1954int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1955  FloatingRank LHSR = getFloatingRank(LHS);
1956  FloatingRank RHSR = getFloatingRank(RHS);
1957
1958  if (LHSR == RHSR)
1959    return 0;
1960  if (LHSR > RHSR)
1961    return 1;
1962  return -1;
1963}
1964
1965/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1966/// routine will assert if passed a built-in type that isn't an integer or enum,
1967/// or if it is not canonicalized.
1968unsigned ASTContext::getIntegerRank(Type *T) {
1969  assert(T->isCanonical() && "T should be canonicalized");
1970  if (EnumType* ET = dyn_cast<EnumType>(T))
1971    T = ET->getDecl()->getIntegerType().getTypePtr();
1972
1973  // There are two things which impact the integer rank: the width, and
1974  // the ordering of builtins.  The builtin ordering is encoded in the
1975  // bottom three bits; the width is encoded in the bits above that.
1976  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
1977    return FWIT->getWidth() << 3;
1978
1979  switch (cast<BuiltinType>(T)->getKind()) {
1980  default: assert(0 && "getIntegerRank(): not a built-in integer");
1981  case BuiltinType::Bool:
1982    return 1 + (getIntWidth(BoolTy) << 3);
1983  case BuiltinType::Char_S:
1984  case BuiltinType::Char_U:
1985  case BuiltinType::SChar:
1986  case BuiltinType::UChar:
1987    return 2 + (getIntWidth(CharTy) << 3);
1988  case BuiltinType::Short:
1989  case BuiltinType::UShort:
1990    return 3 + (getIntWidth(ShortTy) << 3);
1991  case BuiltinType::Int:
1992  case BuiltinType::UInt:
1993    return 4 + (getIntWidth(IntTy) << 3);
1994  case BuiltinType::Long:
1995  case BuiltinType::ULong:
1996    return 5 + (getIntWidth(LongTy) << 3);
1997  case BuiltinType::LongLong:
1998  case BuiltinType::ULongLong:
1999    return 6 + (getIntWidth(LongLongTy) << 3);
2000  case BuiltinType::Int128:
2001  case BuiltinType::UInt128:
2002    return 7 + (getIntWidth(Int128Ty) << 3);
2003  }
2004}
2005
2006/// getIntegerTypeOrder - Returns the highest ranked integer type:
2007/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2008/// LHS < RHS, return -1.
2009int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2010  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2011  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2012  if (LHSC == RHSC) return 0;
2013
2014  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2015  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2016
2017  unsigned LHSRank = getIntegerRank(LHSC);
2018  unsigned RHSRank = getIntegerRank(RHSC);
2019
2020  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2021    if (LHSRank == RHSRank) return 0;
2022    return LHSRank > RHSRank ? 1 : -1;
2023  }
2024
2025  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2026  if (LHSUnsigned) {
2027    // If the unsigned [LHS] type is larger, return it.
2028    if (LHSRank >= RHSRank)
2029      return 1;
2030
2031    // If the signed type can represent all values of the unsigned type, it
2032    // wins.  Because we are dealing with 2's complement and types that are
2033    // powers of two larger than each other, this is always safe.
2034    return -1;
2035  }
2036
2037  // If the unsigned [RHS] type is larger, return it.
2038  if (RHSRank >= LHSRank)
2039    return -1;
2040
2041  // If the signed type can represent all values of the unsigned type, it
2042  // wins.  Because we are dealing with 2's complement and types that are
2043  // powers of two larger than each other, this is always safe.
2044  return 1;
2045}
2046
2047// getCFConstantStringType - Return the type used for constant CFStrings.
2048QualType ASTContext::getCFConstantStringType() {
2049  if (!CFConstantStringTypeDecl) {
2050    CFConstantStringTypeDecl =
2051      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2052                         &Idents.get("NSConstantString"));
2053    QualType FieldTypes[4];
2054
2055    // const int *isa;
2056    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2057    // int flags;
2058    FieldTypes[1] = IntTy;
2059    // const char *str;
2060    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2061    // long length;
2062    FieldTypes[3] = LongTy;
2063
2064    // Create fields
2065    for (unsigned i = 0; i < 4; ++i) {
2066      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2067                                           SourceLocation(), 0,
2068                                           FieldTypes[i], /*BitWidth=*/0,
2069                                           /*Mutable=*/false);
2070      CFConstantStringTypeDecl->addDecl(*this, Field);
2071    }
2072
2073    CFConstantStringTypeDecl->completeDefinition(*this);
2074  }
2075
2076  return getTagDeclType(CFConstantStringTypeDecl);
2077}
2078
2079void ASTContext::setCFConstantStringType(QualType T) {
2080  const RecordType *Rec = T->getAsRecordType();
2081  assert(Rec && "Invalid CFConstantStringType");
2082  CFConstantStringTypeDecl = Rec->getDecl();
2083}
2084
2085QualType ASTContext::getObjCFastEnumerationStateType()
2086{
2087  if (!ObjCFastEnumerationStateTypeDecl) {
2088    ObjCFastEnumerationStateTypeDecl =
2089      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2090                         &Idents.get("__objcFastEnumerationState"));
2091
2092    QualType FieldTypes[] = {
2093      UnsignedLongTy,
2094      getPointerType(ObjCIdType),
2095      getPointerType(UnsignedLongTy),
2096      getConstantArrayType(UnsignedLongTy,
2097                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2098    };
2099
2100    for (size_t i = 0; i < 4; ++i) {
2101      FieldDecl *Field = FieldDecl::Create(*this,
2102                                           ObjCFastEnumerationStateTypeDecl,
2103                                           SourceLocation(), 0,
2104                                           FieldTypes[i], /*BitWidth=*/0,
2105                                           /*Mutable=*/false);
2106      ObjCFastEnumerationStateTypeDecl->addDecl(*this, Field);
2107    }
2108
2109    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2110  }
2111
2112  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2113}
2114
2115void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2116  const RecordType *Rec = T->getAsRecordType();
2117  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2118  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2119}
2120
2121// This returns true if a type has been typedefed to BOOL:
2122// typedef <type> BOOL;
2123static bool isTypeTypedefedAsBOOL(QualType T) {
2124  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2125    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2126      return II->isStr("BOOL");
2127
2128  return false;
2129}
2130
2131/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2132/// purpose.
2133int ASTContext::getObjCEncodingTypeSize(QualType type) {
2134  uint64_t sz = getTypeSize(type);
2135
2136  // Make all integer and enum types at least as large as an int
2137  if (sz > 0 && type->isIntegralType())
2138    sz = std::max(sz, getTypeSize(IntTy));
2139  // Treat arrays as pointers, since that's how they're passed in.
2140  else if (type->isArrayType())
2141    sz = getTypeSize(VoidPtrTy);
2142  return sz / getTypeSize(CharTy);
2143}
2144
2145/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2146/// declaration.
2147void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2148                                              std::string& S) {
2149  // FIXME: This is not very efficient.
2150  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2151  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2152  // Encode result type.
2153  getObjCEncodingForType(Decl->getResultType(), S);
2154  // Compute size of all parameters.
2155  // Start with computing size of a pointer in number of bytes.
2156  // FIXME: There might(should) be a better way of doing this computation!
2157  SourceLocation Loc;
2158  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2159  // The first two arguments (self and _cmd) are pointers; account for
2160  // their size.
2161  int ParmOffset = 2 * PtrSize;
2162  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2163       E = Decl->param_end(); PI != E; ++PI) {
2164    QualType PType = (*PI)->getType();
2165    int sz = getObjCEncodingTypeSize(PType);
2166    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2167    ParmOffset += sz;
2168  }
2169  S += llvm::utostr(ParmOffset);
2170  S += "@0:";
2171  S += llvm::utostr(PtrSize);
2172
2173  // Argument types.
2174  ParmOffset = 2 * PtrSize;
2175  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2176       E = Decl->param_end(); PI != E; ++PI) {
2177    ParmVarDecl *PVDecl = *PI;
2178    QualType PType = PVDecl->getOriginalType();
2179    if (const ArrayType *AT =
2180          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2181      // Use array's original type only if it has known number of
2182      // elements.
2183      if (!isa<ConstantArrayType>(AT))
2184        PType = PVDecl->getType();
2185    } else if (PType->isFunctionType())
2186      PType = PVDecl->getType();
2187    // Process argument qualifiers for user supplied arguments; such as,
2188    // 'in', 'inout', etc.
2189    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2190    getObjCEncodingForType(PType, S);
2191    S += llvm::utostr(ParmOffset);
2192    ParmOffset += getObjCEncodingTypeSize(PType);
2193  }
2194}
2195
2196/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2197/// property declaration. If non-NULL, Container must be either an
2198/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2199/// NULL when getting encodings for protocol properties.
2200/// Property attributes are stored as a comma-delimited C string. The simple
2201/// attributes readonly and bycopy are encoded as single characters. The
2202/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2203/// encoded as single characters, followed by an identifier. Property types
2204/// are also encoded as a parametrized attribute. The characters used to encode
2205/// these attributes are defined by the following enumeration:
2206/// @code
2207/// enum PropertyAttributes {
2208/// kPropertyReadOnly = 'R',   // property is read-only.
2209/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2210/// kPropertyByref = '&',  // property is a reference to the value last assigned
2211/// kPropertyDynamic = 'D',    // property is dynamic
2212/// kPropertyGetter = 'G',     // followed by getter selector name
2213/// kPropertySetter = 'S',     // followed by setter selector name
2214/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2215/// kPropertyType = 't'              // followed by old-style type encoding.
2216/// kPropertyWeak = 'W'              // 'weak' property
2217/// kPropertyStrong = 'P'            // property GC'able
2218/// kPropertyNonAtomic = 'N'         // property non-atomic
2219/// };
2220/// @endcode
2221void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2222                                                const Decl *Container,
2223                                                std::string& S) {
2224  // Collect information from the property implementation decl(s).
2225  bool Dynamic = false;
2226  ObjCPropertyImplDecl *SynthesizePID = 0;
2227
2228  // FIXME: Duplicated code due to poor abstraction.
2229  if (Container) {
2230    if (const ObjCCategoryImplDecl *CID =
2231        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2232      for (ObjCCategoryImplDecl::propimpl_iterator
2233             i = CID->propimpl_begin(*this), e = CID->propimpl_end(*this);
2234           i != e; ++i) {
2235        ObjCPropertyImplDecl *PID = *i;
2236        if (PID->getPropertyDecl() == PD) {
2237          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2238            Dynamic = true;
2239          } else {
2240            SynthesizePID = PID;
2241          }
2242        }
2243      }
2244    } else {
2245      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2246      for (ObjCCategoryImplDecl::propimpl_iterator
2247             i = OID->propimpl_begin(*this), e = OID->propimpl_end(*this);
2248           i != e; ++i) {
2249        ObjCPropertyImplDecl *PID = *i;
2250        if (PID->getPropertyDecl() == PD) {
2251          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2252            Dynamic = true;
2253          } else {
2254            SynthesizePID = PID;
2255          }
2256        }
2257      }
2258    }
2259  }
2260
2261  // FIXME: This is not very efficient.
2262  S = "T";
2263
2264  // Encode result type.
2265  // GCC has some special rules regarding encoding of properties which
2266  // closely resembles encoding of ivars.
2267  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2268                             true /* outermost type */,
2269                             true /* encoding for property */);
2270
2271  if (PD->isReadOnly()) {
2272    S += ",R";
2273  } else {
2274    switch (PD->getSetterKind()) {
2275    case ObjCPropertyDecl::Assign: break;
2276    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2277    case ObjCPropertyDecl::Retain: S += ",&"; break;
2278    }
2279  }
2280
2281  // It really isn't clear at all what this means, since properties
2282  // are "dynamic by default".
2283  if (Dynamic)
2284    S += ",D";
2285
2286  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2287    S += ",N";
2288
2289  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2290    S += ",G";
2291    S += PD->getGetterName().getAsString();
2292  }
2293
2294  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2295    S += ",S";
2296    S += PD->getSetterName().getAsString();
2297  }
2298
2299  if (SynthesizePID) {
2300    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2301    S += ",V";
2302    S += OID->getNameAsString();
2303  }
2304
2305  // FIXME: OBJCGC: weak & strong
2306}
2307
2308/// getLegacyIntegralTypeEncoding -
2309/// Another legacy compatibility encoding: 32-bit longs are encoded as
2310/// 'l' or 'L' , but not always.  For typedefs, we need to use
2311/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2312///
2313void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2314  if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
2315    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2316      if (BT->getKind() == BuiltinType::ULong &&
2317          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2318        PointeeTy = UnsignedIntTy;
2319      else
2320        if (BT->getKind() == BuiltinType::Long &&
2321            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2322          PointeeTy = IntTy;
2323    }
2324  }
2325}
2326
2327void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2328                                        const FieldDecl *Field) {
2329  // We follow the behavior of gcc, expanding structures which are
2330  // directly pointed to, and expanding embedded structures. Note that
2331  // these rules are sufficient to prevent recursive encoding of the
2332  // same type.
2333  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2334                             true /* outermost type */);
2335}
2336
2337static void EncodeBitField(const ASTContext *Context, std::string& S,
2338                           const FieldDecl *FD) {
2339  const Expr *E = FD->getBitWidth();
2340  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2341  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2342  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2343  S += 'b';
2344  S += llvm::utostr(N);
2345}
2346
2347void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2348                                            bool ExpandPointedToStructures,
2349                                            bool ExpandStructures,
2350                                            const FieldDecl *FD,
2351                                            bool OutermostType,
2352                                            bool EncodingProperty) {
2353  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2354    if (FD && FD->isBitField()) {
2355      EncodeBitField(this, S, FD);
2356    }
2357    else {
2358      char encoding;
2359      switch (BT->getKind()) {
2360      default: assert(0 && "Unhandled builtin type kind");
2361      case BuiltinType::Void:       encoding = 'v'; break;
2362      case BuiltinType::Bool:       encoding = 'B'; break;
2363      case BuiltinType::Char_U:
2364      case BuiltinType::UChar:      encoding = 'C'; break;
2365      case BuiltinType::UShort:     encoding = 'S'; break;
2366      case BuiltinType::UInt:       encoding = 'I'; break;
2367      case BuiltinType::ULong:
2368          encoding =
2369            (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2370          break;
2371      case BuiltinType::UInt128:    encoding = 'T'; break;
2372      case BuiltinType::ULongLong:  encoding = 'Q'; break;
2373      case BuiltinType::Char_S:
2374      case BuiltinType::SChar:      encoding = 'c'; break;
2375      case BuiltinType::Short:      encoding = 's'; break;
2376      case BuiltinType::Int:        encoding = 'i'; break;
2377      case BuiltinType::Long:
2378        encoding =
2379          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2380        break;
2381      case BuiltinType::LongLong:   encoding = 'q'; break;
2382      case BuiltinType::Int128:     encoding = 't'; break;
2383      case BuiltinType::Float:      encoding = 'f'; break;
2384      case BuiltinType::Double:     encoding = 'd'; break;
2385      case BuiltinType::LongDouble: encoding = 'd'; break;
2386      }
2387
2388      S += encoding;
2389    }
2390  } else if (const ComplexType *CT = T->getAsComplexType()) {
2391    S += 'j';
2392    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2393                               false);
2394  } else if (T->isObjCQualifiedIdType()) {
2395    getObjCEncodingForTypeImpl(getObjCIdType(), S,
2396                               ExpandPointedToStructures,
2397                               ExpandStructures, FD);
2398    if (FD || EncodingProperty) {
2399      // Note that we do extended encoding of protocol qualifer list
2400      // Only when doing ivar or property encoding.
2401      const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType();
2402      S += '"';
2403      for (ObjCQualifiedIdType::qual_iterator I = QIDT->qual_begin(),
2404           E = QIDT->qual_end(); I != E; ++I) {
2405        S += '<';
2406        S += (*I)->getNameAsString();
2407        S += '>';
2408      }
2409      S += '"';
2410    }
2411    return;
2412  }
2413  else if (const PointerType *PT = T->getAsPointerType()) {
2414    QualType PointeeTy = PT->getPointeeType();
2415    bool isReadOnly = false;
2416    // For historical/compatibility reasons, the read-only qualifier of the
2417    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2418    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2419    // Also, do not emit the 'r' for anything but the outermost type!
2420    if (dyn_cast<TypedefType>(T.getTypePtr())) {
2421      if (OutermostType && T.isConstQualified()) {
2422        isReadOnly = true;
2423        S += 'r';
2424      }
2425    }
2426    else if (OutermostType) {
2427      QualType P = PointeeTy;
2428      while (P->getAsPointerType())
2429        P = P->getAsPointerType()->getPointeeType();
2430      if (P.isConstQualified()) {
2431        isReadOnly = true;
2432        S += 'r';
2433      }
2434    }
2435    if (isReadOnly) {
2436      // Another legacy compatibility encoding. Some ObjC qualifier and type
2437      // combinations need to be rearranged.
2438      // Rewrite "in const" from "nr" to "rn"
2439      const char * s = S.c_str();
2440      int len = S.length();
2441      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2442        std::string replace = "rn";
2443        S.replace(S.end()-2, S.end(), replace);
2444      }
2445    }
2446    if (isObjCIdStructType(PointeeTy)) {
2447      S += '@';
2448      return;
2449    }
2450    else if (PointeeTy->isObjCInterfaceType()) {
2451      if (!EncodingProperty &&
2452          isa<TypedefType>(PointeeTy.getTypePtr())) {
2453        // Another historical/compatibility reason.
2454        // We encode the underlying type which comes out as
2455        // {...};
2456        S += '^';
2457        getObjCEncodingForTypeImpl(PointeeTy, S,
2458                                   false, ExpandPointedToStructures,
2459                                   NULL);
2460        return;
2461      }
2462      S += '@';
2463      if (FD || EncodingProperty) {
2464        const ObjCInterfaceType *OIT =
2465                PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
2466        ObjCInterfaceDecl *OI = OIT->getDecl();
2467        S += '"';
2468        S += OI->getNameAsCString();
2469        for (ObjCInterfaceType::qual_iterator I = OIT->qual_begin(),
2470             E = OIT->qual_end(); I != E; ++I) {
2471          S += '<';
2472          S += (*I)->getNameAsString();
2473          S += '>';
2474        }
2475        S += '"';
2476      }
2477      return;
2478    } else if (isObjCClassStructType(PointeeTy)) {
2479      S += '#';
2480      return;
2481    } else if (isObjCSelType(PointeeTy)) {
2482      S += ':';
2483      return;
2484    }
2485
2486    if (PointeeTy->isCharType()) {
2487      // char pointer types should be encoded as '*' unless it is a
2488      // type that has been typedef'd to 'BOOL'.
2489      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2490        S += '*';
2491        return;
2492      }
2493    }
2494
2495    S += '^';
2496    getLegacyIntegralTypeEncoding(PointeeTy);
2497
2498    getObjCEncodingForTypeImpl(PointeeTy, S,
2499                               false, ExpandPointedToStructures,
2500                               NULL);
2501  } else if (const ArrayType *AT =
2502               // Ignore type qualifiers etc.
2503               dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2504    if (isa<IncompleteArrayType>(AT)) {
2505      // Incomplete arrays are encoded as a pointer to the array element.
2506      S += '^';
2507
2508      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2509                                 false, ExpandStructures, FD);
2510    } else {
2511      S += '[';
2512
2513      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2514        S += llvm::utostr(CAT->getSize().getZExtValue());
2515      else {
2516        //Variable length arrays are encoded as a regular array with 0 elements.
2517        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2518        S += '0';
2519      }
2520
2521      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2522                                 false, ExpandStructures, FD);
2523      S += ']';
2524    }
2525  } else if (T->getAsFunctionType()) {
2526    S += '?';
2527  } else if (const RecordType *RTy = T->getAsRecordType()) {
2528    RecordDecl *RDecl = RTy->getDecl();
2529    S += RDecl->isUnion() ? '(' : '{';
2530    // Anonymous structures print as '?'
2531    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2532      S += II->getName();
2533    } else {
2534      S += '?';
2535    }
2536    if (ExpandStructures) {
2537      S += '=';
2538      for (RecordDecl::field_iterator Field = RDecl->field_begin(*this),
2539                                   FieldEnd = RDecl->field_end(*this);
2540           Field != FieldEnd; ++Field) {
2541        if (FD) {
2542          S += '"';
2543          S += Field->getNameAsString();
2544          S += '"';
2545        }
2546
2547        // Special case bit-fields.
2548        if (Field->isBitField()) {
2549          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2550                                     (*Field));
2551        } else {
2552          QualType qt = Field->getType();
2553          getLegacyIntegralTypeEncoding(qt);
2554          getObjCEncodingForTypeImpl(qt, S, false, true,
2555                                     FD);
2556        }
2557      }
2558    }
2559    S += RDecl->isUnion() ? ')' : '}';
2560  } else if (T->isEnumeralType()) {
2561    if (FD && FD->isBitField())
2562      EncodeBitField(this, S, FD);
2563    else
2564      S += 'i';
2565  } else if (T->isBlockPointerType()) {
2566    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2567  } else if (T->isObjCInterfaceType()) {
2568    // @encode(class_name)
2569    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2570    S += '{';
2571    const IdentifierInfo *II = OI->getIdentifier();
2572    S += II->getName();
2573    S += '=';
2574    llvm::SmallVector<FieldDecl*, 32> RecFields;
2575    CollectObjCIvars(OI, RecFields);
2576    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2577      if (RecFields[i]->isBitField())
2578        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2579                                   RecFields[i]);
2580      else
2581        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2582                                   FD);
2583    }
2584    S += '}';
2585  }
2586  else
2587    assert(0 && "@encode for type not implemented!");
2588}
2589
2590void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2591                                                 std::string& S) const {
2592  if (QT & Decl::OBJC_TQ_In)
2593    S += 'n';
2594  if (QT & Decl::OBJC_TQ_Inout)
2595    S += 'N';
2596  if (QT & Decl::OBJC_TQ_Out)
2597    S += 'o';
2598  if (QT & Decl::OBJC_TQ_Bycopy)
2599    S += 'O';
2600  if (QT & Decl::OBJC_TQ_Byref)
2601    S += 'R';
2602  if (QT & Decl::OBJC_TQ_Oneway)
2603    S += 'V';
2604}
2605
2606void ASTContext::setBuiltinVaListType(QualType T)
2607{
2608  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2609
2610  BuiltinVaListType = T;
2611}
2612
2613void ASTContext::setObjCIdType(QualType T)
2614{
2615  ObjCIdType = T;
2616
2617  const TypedefType *TT = T->getAsTypedefType();
2618  if (!TT)
2619    return;
2620
2621  TypedefDecl *TD = TT->getDecl();
2622
2623  // typedef struct objc_object *id;
2624  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2625  // User error - caller will issue diagnostics.
2626  if (!ptr)
2627    return;
2628  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2629  // User error - caller will issue diagnostics.
2630  if (!rec)
2631    return;
2632  IdStructType = rec;
2633}
2634
2635void ASTContext::setObjCSelType(QualType T)
2636{
2637  ObjCSelType = T;
2638
2639  const TypedefType *TT = T->getAsTypedefType();
2640  if (!TT)
2641    return;
2642  TypedefDecl *TD = TT->getDecl();
2643
2644  // typedef struct objc_selector *SEL;
2645  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2646  if (!ptr)
2647    return;
2648  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2649  if (!rec)
2650    return;
2651  SelStructType = rec;
2652}
2653
2654void ASTContext::setObjCProtoType(QualType QT)
2655{
2656  ObjCProtoType = QT;
2657}
2658
2659void ASTContext::setObjCClassType(QualType T)
2660{
2661  ObjCClassType = T;
2662
2663  const TypedefType *TT = T->getAsTypedefType();
2664  if (!TT)
2665    return;
2666  TypedefDecl *TD = TT->getDecl();
2667
2668  // typedef struct objc_class *Class;
2669  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2670  assert(ptr && "'Class' incorrectly typed");
2671  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2672  assert(rec && "'Class' incorrectly typed");
2673  ClassStructType = rec;
2674}
2675
2676void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2677  assert(ObjCConstantStringType.isNull() &&
2678         "'NSConstantString' type already set!");
2679
2680  ObjCConstantStringType = getObjCInterfaceType(Decl);
2681}
2682
2683/// \brief Retrieve the template name that represents a qualified
2684/// template name such as \c std::vector.
2685TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
2686                                                  bool TemplateKeyword,
2687                                                  TemplateDecl *Template) {
2688  llvm::FoldingSetNodeID ID;
2689  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
2690
2691  void *InsertPos = 0;
2692  QualifiedTemplateName *QTN =
2693    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2694  if (!QTN) {
2695    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
2696    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
2697  }
2698
2699  return TemplateName(QTN);
2700}
2701
2702/// \brief Retrieve the template name that represents a dependent
2703/// template name such as \c MetaFun::template apply.
2704TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
2705                                                  const IdentifierInfo *Name) {
2706  assert(NNS->isDependent() && "Nested name specifier must be dependent");
2707
2708  llvm::FoldingSetNodeID ID;
2709  DependentTemplateName::Profile(ID, NNS, Name);
2710
2711  void *InsertPos = 0;
2712  DependentTemplateName *QTN =
2713    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2714
2715  if (QTN)
2716    return TemplateName(QTN);
2717
2718  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2719  if (CanonNNS == NNS) {
2720    QTN = new (*this,4) DependentTemplateName(NNS, Name);
2721  } else {
2722    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
2723    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
2724  }
2725
2726  DependentTemplateNames.InsertNode(QTN, InsertPos);
2727  return TemplateName(QTN);
2728}
2729
2730/// getFromTargetType - Given one of the integer types provided by
2731/// TargetInfo, produce the corresponding type. The unsigned @p Type
2732/// is actually a value of type @c TargetInfo::IntType.
2733QualType ASTContext::getFromTargetType(unsigned Type) const {
2734  switch (Type) {
2735  case TargetInfo::NoInt: return QualType();
2736  case TargetInfo::SignedShort: return ShortTy;
2737  case TargetInfo::UnsignedShort: return UnsignedShortTy;
2738  case TargetInfo::SignedInt: return IntTy;
2739  case TargetInfo::UnsignedInt: return UnsignedIntTy;
2740  case TargetInfo::SignedLong: return LongTy;
2741  case TargetInfo::UnsignedLong: return UnsignedLongTy;
2742  case TargetInfo::SignedLongLong: return LongLongTy;
2743  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
2744  }
2745
2746  assert(false && "Unhandled TargetInfo::IntType value");
2747  return QualType();
2748}
2749
2750//===----------------------------------------------------------------------===//
2751//                        Type Predicates.
2752//===----------------------------------------------------------------------===//
2753
2754/// isObjCNSObjectType - Return true if this is an NSObject object using
2755/// NSObject attribute on a c-style pointer type.
2756/// FIXME - Make it work directly on types.
2757///
2758bool ASTContext::isObjCNSObjectType(QualType Ty) const {
2759  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2760    if (TypedefDecl *TD = TDT->getDecl())
2761      if (TD->getAttr<ObjCNSObjectAttr>())
2762        return true;
2763  }
2764  return false;
2765}
2766
2767/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
2768/// to an object type.  This includes "id" and "Class" (two 'special' pointers
2769/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
2770/// ID type).
2771bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
2772  if (Ty->isObjCQualifiedIdType())
2773    return true;
2774
2775  // Blocks are objects.
2776  if (Ty->isBlockPointerType())
2777    return true;
2778
2779  // All other object types are pointers.
2780  const PointerType *PT = Ty->getAsPointerType();
2781  if (PT == 0)
2782    return false;
2783
2784  // If this a pointer to an interface (e.g. NSString*), it is ok.
2785  if (PT->getPointeeType()->isObjCInterfaceType() ||
2786      // If is has NSObject attribute, OK as well.
2787      isObjCNSObjectType(Ty))
2788    return true;
2789
2790  // Check to see if this is 'id' or 'Class', both of which are typedefs for
2791  // pointer types.  This looks for the typedef specifically, not for the
2792  // underlying type.  Iteratively strip off typedefs so that we can handle
2793  // typedefs of typedefs.
2794  while (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2795    if (Ty.getUnqualifiedType() == getObjCIdType() ||
2796        Ty.getUnqualifiedType() == getObjCClassType())
2797      return true;
2798
2799    Ty = TDT->getDecl()->getUnderlyingType();
2800  }
2801
2802  return false;
2803}
2804
2805/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
2806/// garbage collection attribute.
2807///
2808QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
2809  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
2810  if (getLangOptions().ObjC1 &&
2811      getLangOptions().getGCMode() != LangOptions::NonGC) {
2812    GCAttrs = Ty.getObjCGCAttr();
2813    // Default behavious under objective-c's gc is for objective-c pointers
2814    // (or pointers to them) be treated as though they were declared
2815    // as __strong.
2816    if (GCAttrs == QualType::GCNone) {
2817      if (isObjCObjectPointerType(Ty))
2818        GCAttrs = QualType::Strong;
2819      else if (Ty->isPointerType())
2820        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
2821    }
2822    // Non-pointers have none gc'able attribute regardless of the attribute
2823    // set on them.
2824    else if (!Ty->isPointerType() && !isObjCObjectPointerType(Ty))
2825      return QualType::GCNone;
2826  }
2827  return GCAttrs;
2828}
2829
2830//===----------------------------------------------------------------------===//
2831//                        Type Compatibility Testing
2832//===----------------------------------------------------------------------===//
2833
2834/// areCompatVectorTypes - Return true if the two specified vector types are
2835/// compatible.
2836static bool areCompatVectorTypes(const VectorType *LHS,
2837                                 const VectorType *RHS) {
2838  assert(LHS->isCanonical() && RHS->isCanonical());
2839  return LHS->getElementType() == RHS->getElementType() &&
2840         LHS->getNumElements() == RHS->getNumElements();
2841}
2842
2843/// canAssignObjCInterfaces - Return true if the two interface types are
2844/// compatible for assignment from RHS to LHS.  This handles validation of any
2845/// protocol qualifiers on the LHS or RHS.
2846///
2847bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
2848                                         const ObjCInterfaceType *RHS) {
2849  // Verify that the base decls are compatible: the RHS must be a subclass of
2850  // the LHS.
2851  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
2852    return false;
2853
2854  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
2855  // protocol qualified at all, then we are good.
2856  if (!isa<ObjCQualifiedInterfaceType>(LHS))
2857    return true;
2858
2859  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
2860  // isn't a superset.
2861  if (!isa<ObjCQualifiedInterfaceType>(RHS))
2862    return true;  // FIXME: should return false!
2863
2864  // Finally, we must have two protocol-qualified interfaces.
2865  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
2866  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
2867
2868  // All LHS protocols must have a presence on the RHS.
2869  assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
2870
2871  for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
2872                                                 LHSPE = LHSP->qual_end();
2873       LHSPI != LHSPE; LHSPI++) {
2874    bool RHSImplementsProtocol = false;
2875
2876    // If the RHS doesn't implement the protocol on the left, the types
2877    // are incompatible.
2878    for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
2879                                                   RHSPE = RHSP->qual_end();
2880         !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
2881      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
2882        RHSImplementsProtocol = true;
2883    }
2884    // FIXME: For better diagnostics, consider passing back the protocol name.
2885    if (!RHSImplementsProtocol)
2886      return false;
2887  }
2888  // The RHS implements all protocols listed on the LHS.
2889  return true;
2890}
2891
2892bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
2893  // get the "pointed to" types
2894  const PointerType *LHSPT = LHS->getAsPointerType();
2895  const PointerType *RHSPT = RHS->getAsPointerType();
2896
2897  if (!LHSPT || !RHSPT)
2898    return false;
2899
2900  QualType lhptee = LHSPT->getPointeeType();
2901  QualType rhptee = RHSPT->getPointeeType();
2902  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2903  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2904  // ID acts sort of like void* for ObjC interfaces
2905  if (LHSIface && isObjCIdStructType(rhptee))
2906    return true;
2907  if (RHSIface && isObjCIdStructType(lhptee))
2908    return true;
2909  if (!LHSIface || !RHSIface)
2910    return false;
2911  return canAssignObjCInterfaces(LHSIface, RHSIface) ||
2912         canAssignObjCInterfaces(RHSIface, LHSIface);
2913}
2914
2915/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
2916/// both shall have the identically qualified version of a compatible type.
2917/// C99 6.2.7p1: Two types have compatible types if their types are the
2918/// same. See 6.7.[2,3,5] for additional rules.
2919bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
2920  return !mergeTypes(LHS, RHS).isNull();
2921}
2922
2923QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
2924  const FunctionType *lbase = lhs->getAsFunctionType();
2925  const FunctionType *rbase = rhs->getAsFunctionType();
2926  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2927  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2928  bool allLTypes = true;
2929  bool allRTypes = true;
2930
2931  // Check return type
2932  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
2933  if (retType.isNull()) return QualType();
2934  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
2935    allLTypes = false;
2936  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
2937    allRTypes = false;
2938
2939  if (lproto && rproto) { // two C99 style function prototypes
2940    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
2941           "C++ shouldn't be here");
2942    unsigned lproto_nargs = lproto->getNumArgs();
2943    unsigned rproto_nargs = rproto->getNumArgs();
2944
2945    // Compatible functions must have the same number of arguments
2946    if (lproto_nargs != rproto_nargs)
2947      return QualType();
2948
2949    // Variadic and non-variadic functions aren't compatible
2950    if (lproto->isVariadic() != rproto->isVariadic())
2951      return QualType();
2952
2953    if (lproto->getTypeQuals() != rproto->getTypeQuals())
2954      return QualType();
2955
2956    // Check argument compatibility
2957    llvm::SmallVector<QualType, 10> types;
2958    for (unsigned i = 0; i < lproto_nargs; i++) {
2959      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
2960      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
2961      QualType argtype = mergeTypes(largtype, rargtype);
2962      if (argtype.isNull()) return QualType();
2963      types.push_back(argtype);
2964      if (getCanonicalType(argtype) != getCanonicalType(largtype))
2965        allLTypes = false;
2966      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
2967        allRTypes = false;
2968    }
2969    if (allLTypes) return lhs;
2970    if (allRTypes) return rhs;
2971    return getFunctionType(retType, types.begin(), types.size(),
2972                           lproto->isVariadic(), lproto->getTypeQuals());
2973  }
2974
2975  if (lproto) allRTypes = false;
2976  if (rproto) allLTypes = false;
2977
2978  const FunctionProtoType *proto = lproto ? lproto : rproto;
2979  if (proto) {
2980    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
2981    if (proto->isVariadic()) return QualType();
2982    // Check that the types are compatible with the types that
2983    // would result from default argument promotions (C99 6.7.5.3p15).
2984    // The only types actually affected are promotable integer
2985    // types and floats, which would be passed as a different
2986    // type depending on whether the prototype is visible.
2987    unsigned proto_nargs = proto->getNumArgs();
2988    for (unsigned i = 0; i < proto_nargs; ++i) {
2989      QualType argTy = proto->getArgType(i);
2990      if (argTy->isPromotableIntegerType() ||
2991          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
2992        return QualType();
2993    }
2994
2995    if (allLTypes) return lhs;
2996    if (allRTypes) return rhs;
2997    return getFunctionType(retType, proto->arg_type_begin(),
2998                           proto->getNumArgs(), lproto->isVariadic(),
2999                           lproto->getTypeQuals());
3000  }
3001
3002  if (allLTypes) return lhs;
3003  if (allRTypes) return rhs;
3004  return getFunctionNoProtoType(retType);
3005}
3006
3007QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3008  // C++ [expr]: If an expression initially has the type "reference to T", the
3009  // type is adjusted to "T" prior to any further analysis, the expression
3010  // designates the object or function denoted by the reference, and the
3011  // expression is an lvalue unless the reference is an rvalue reference and
3012  // the expression is a function call (possibly inside parentheses).
3013  // FIXME: C++ shouldn't be going through here!  The rules are different
3014  // enough that they should be handled separately.
3015  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3016  // shouldn't be going through here!
3017  if (const ReferenceType *RT = LHS->getAsReferenceType())
3018    LHS = RT->getPointeeType();
3019  if (const ReferenceType *RT = RHS->getAsReferenceType())
3020    RHS = RT->getPointeeType();
3021
3022  QualType LHSCan = getCanonicalType(LHS),
3023           RHSCan = getCanonicalType(RHS);
3024
3025  // If two types are identical, they are compatible.
3026  if (LHSCan == RHSCan)
3027    return LHS;
3028
3029  // If the qualifiers are different, the types aren't compatible
3030  // Note that we handle extended qualifiers later, in the
3031  // case for ExtQualType.
3032  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3033    return QualType();
3034
3035  Type::TypeClass LHSClass = LHSCan->getTypeClass();
3036  Type::TypeClass RHSClass = RHSCan->getTypeClass();
3037
3038  // We want to consider the two function types to be the same for these
3039  // comparisons, just force one to the other.
3040  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3041  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3042
3043  // Strip off objc_gc attributes off the top level so they can be merged.
3044  // This is a complete mess, but the attribute itself doesn't make much sense.
3045  if (RHSClass == Type::ExtQual) {
3046    QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
3047    if (GCAttr != QualType::GCNone) {
3048      QualType::GCAttrTypes GCLHSAttr = LHSCan.getObjCGCAttr();
3049      // __weak attribute must appear on both declarations.
3050      // __strong attribue is redundant if other decl is an objective-c
3051      // object pointer (or decorated with __strong attribute); otherwise
3052      // issue error.
3053      if ((GCAttr == QualType::Weak && GCLHSAttr != GCAttr) ||
3054          (GCAttr == QualType::Strong && GCLHSAttr != GCAttr &&
3055           LHSCan->isPointerType() && !isObjCObjectPointerType(LHSCan) &&
3056           !isObjCIdStructType(LHSCan->getAsPointerType()->getPointeeType())))
3057        return QualType();
3058
3059      RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
3060                     RHS.getCVRQualifiers());
3061      QualType Result = mergeTypes(LHS, RHS);
3062      if (!Result.isNull()) {
3063        if (Result.getObjCGCAttr() == QualType::GCNone)
3064          Result = getObjCGCQualType(Result, GCAttr);
3065        else if (Result.getObjCGCAttr() != GCAttr)
3066          Result = QualType();
3067      }
3068      return Result;
3069    }
3070  }
3071  if (LHSClass == Type::ExtQual) {
3072    QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
3073    if (GCAttr != QualType::GCNone) {
3074      QualType::GCAttrTypes GCRHSAttr = RHSCan.getObjCGCAttr();
3075      // __weak attribute must appear on both declarations. __strong
3076      // __strong attribue is redundant if other decl is an objective-c
3077      // object pointer (or decorated with __strong attribute); otherwise
3078      // issue error.
3079      if ((GCAttr == QualType::Weak && GCRHSAttr != GCAttr) ||
3080          (GCAttr == QualType::Strong && GCRHSAttr != GCAttr &&
3081           RHSCan->isPointerType() && !isObjCObjectPointerType(RHSCan) &&
3082           !isObjCIdStructType(RHSCan->getAsPointerType()->getPointeeType())))
3083        return QualType();
3084
3085      LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
3086                     LHS.getCVRQualifiers());
3087      QualType Result = mergeTypes(LHS, RHS);
3088      if (!Result.isNull()) {
3089        if (Result.getObjCGCAttr() == QualType::GCNone)
3090          Result = getObjCGCQualType(Result, GCAttr);
3091        else if (Result.getObjCGCAttr() != GCAttr)
3092          Result = QualType();
3093      }
3094      return Result;
3095    }
3096  }
3097
3098  // Same as above for arrays
3099  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3100    LHSClass = Type::ConstantArray;
3101  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3102    RHSClass = Type::ConstantArray;
3103
3104  // Canonicalize ExtVector -> Vector.
3105  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3106  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3107
3108  // Consider qualified interfaces and interfaces the same.
3109  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
3110  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
3111
3112  // If the canonical type classes don't match.
3113  if (LHSClass != RHSClass) {
3114    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3115    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3116
3117    // 'id' and 'Class' act sort of like void* for ObjC interfaces
3118    if (LHSIface && (isObjCIdStructType(RHS) || isObjCClassStructType(RHS)))
3119      return LHS;
3120    if (RHSIface && (isObjCIdStructType(LHS) || isObjCClassStructType(LHS)))
3121      return RHS;
3122
3123    // ID is compatible with all qualified id types.
3124    if (LHS->isObjCQualifiedIdType()) {
3125      if (const PointerType *PT = RHS->getAsPointerType()) {
3126        QualType pType = PT->getPointeeType();
3127        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3128          return LHS;
3129        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3130        // Unfortunately, this API is part of Sema (which we don't have access
3131        // to. Need to refactor. The following check is insufficient, since we
3132        // need to make sure the class implements the protocol.
3133        if (pType->isObjCInterfaceType())
3134          return LHS;
3135      }
3136    }
3137    if (RHS->isObjCQualifiedIdType()) {
3138      if (const PointerType *PT = LHS->getAsPointerType()) {
3139        QualType pType = PT->getPointeeType();
3140        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3141          return RHS;
3142        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3143        // Unfortunately, this API is part of Sema (which we don't have access
3144        // to. Need to refactor. The following check is insufficient, since we
3145        // need to make sure the class implements the protocol.
3146        if (pType->isObjCInterfaceType())
3147          return RHS;
3148      }
3149    }
3150    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3151    // a signed integer type, or an unsigned integer type.
3152    if (const EnumType* ETy = LHS->getAsEnumType()) {
3153      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3154        return RHS;
3155    }
3156    if (const EnumType* ETy = RHS->getAsEnumType()) {
3157      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3158        return LHS;
3159    }
3160
3161    return QualType();
3162  }
3163
3164  // The canonical type classes match.
3165  switch (LHSClass) {
3166#define TYPE(Class, Base)
3167#define ABSTRACT_TYPE(Class, Base)
3168#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3169#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3170#include "clang/AST/TypeNodes.def"
3171    assert(false && "Non-canonical and dependent types shouldn't get here");
3172    return QualType();
3173
3174  case Type::LValueReference:
3175  case Type::RValueReference:
3176  case Type::MemberPointer:
3177    assert(false && "C++ should never be in mergeTypes");
3178    return QualType();
3179
3180  case Type::IncompleteArray:
3181  case Type::VariableArray:
3182  case Type::FunctionProto:
3183  case Type::ExtVector:
3184  case Type::ObjCQualifiedInterface:
3185    assert(false && "Types are eliminated above");
3186    return QualType();
3187
3188  case Type::Pointer:
3189  {
3190    // Merge two pointer types, while trying to preserve typedef info
3191    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
3192    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
3193    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3194    if (ResultType.isNull()) return QualType();
3195    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3196      return LHS;
3197    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3198      return RHS;
3199    return getPointerType(ResultType);
3200  }
3201  case Type::BlockPointer:
3202  {
3203    // Merge two block pointer types, while trying to preserve typedef info
3204    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
3205    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
3206    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3207    if (ResultType.isNull()) return QualType();
3208    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3209      return LHS;
3210    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3211      return RHS;
3212    return getBlockPointerType(ResultType);
3213  }
3214  case Type::ConstantArray:
3215  {
3216    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3217    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3218    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3219      return QualType();
3220
3221    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3222    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3223    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3224    if (ResultType.isNull()) return QualType();
3225    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3226      return LHS;
3227    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3228      return RHS;
3229    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3230                                          ArrayType::ArraySizeModifier(), 0);
3231    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3232                                          ArrayType::ArraySizeModifier(), 0);
3233    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3234    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3235    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3236      return LHS;
3237    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3238      return RHS;
3239    if (LVAT) {
3240      // FIXME: This isn't correct! But tricky to implement because
3241      // the array's size has to be the size of LHS, but the type
3242      // has to be different.
3243      return LHS;
3244    }
3245    if (RVAT) {
3246      // FIXME: This isn't correct! But tricky to implement because
3247      // the array's size has to be the size of RHS, but the type
3248      // has to be different.
3249      return RHS;
3250    }
3251    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3252    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3253    return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
3254  }
3255  case Type::FunctionNoProto:
3256    return mergeFunctionTypes(LHS, RHS);
3257  case Type::Record:
3258  case Type::Enum:
3259    // FIXME: Why are these compatible?
3260    if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
3261    if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
3262    return QualType();
3263  case Type::Builtin:
3264    // Only exactly equal builtin types are compatible, which is tested above.
3265    return QualType();
3266  case Type::Complex:
3267    // Distinct complex types are incompatible.
3268    return QualType();
3269  case Type::Vector:
3270    // FIXME: The merged type should be an ExtVector!
3271    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3272      return LHS;
3273    return QualType();
3274  case Type::ObjCInterface: {
3275    // Check if the interfaces are assignment compatible.
3276    // FIXME: This should be type compatibility, e.g. whether
3277    // "LHS x; RHS x;" at global scope is legal.
3278    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3279    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3280    if (LHSIface && RHSIface &&
3281        canAssignObjCInterfaces(LHSIface, RHSIface))
3282      return LHS;
3283
3284    return QualType();
3285  }
3286  case Type::ObjCQualifiedId:
3287    // Distinct qualified id's are not compatible.
3288    return QualType();
3289  case Type::FixedWidthInt:
3290    // Distinct fixed-width integers are not compatible.
3291    return QualType();
3292  case Type::ExtQual:
3293    // FIXME: ExtQual types can be compatible even if they're not
3294    // identical!
3295    return QualType();
3296    // First attempt at an implementation, but I'm not really sure it's
3297    // right...
3298#if 0
3299    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3300    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3301    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3302        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3303      return QualType();
3304    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3305    LHSBase = QualType(LQual->getBaseType(), 0);
3306    RHSBase = QualType(RQual->getBaseType(), 0);
3307    ResultType = mergeTypes(LHSBase, RHSBase);
3308    if (ResultType.isNull()) return QualType();
3309    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3310    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3311      return LHS;
3312    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3313      return RHS;
3314    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3315    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3316    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3317    return ResultType;
3318#endif
3319
3320  case Type::TemplateSpecialization:
3321    assert(false && "Dependent types have no size");
3322    break;
3323  }
3324
3325  return QualType();
3326}
3327
3328//===----------------------------------------------------------------------===//
3329//                         Integer Predicates
3330//===----------------------------------------------------------------------===//
3331
3332unsigned ASTContext::getIntWidth(QualType T) {
3333  if (T == BoolTy)
3334    return 1;
3335  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3336    return FWIT->getWidth();
3337  }
3338  // For builtin types, just use the standard type sizing method
3339  return (unsigned)getTypeSize(T);
3340}
3341
3342QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3343  assert(T->isSignedIntegerType() && "Unexpected type");
3344  if (const EnumType* ETy = T->getAsEnumType())
3345    T = ETy->getDecl()->getIntegerType();
3346  const BuiltinType* BTy = T->getAsBuiltinType();
3347  assert (BTy && "Unexpected signed integer type");
3348  switch (BTy->getKind()) {
3349  case BuiltinType::Char_S:
3350  case BuiltinType::SChar:
3351    return UnsignedCharTy;
3352  case BuiltinType::Short:
3353    return UnsignedShortTy;
3354  case BuiltinType::Int:
3355    return UnsignedIntTy;
3356  case BuiltinType::Long:
3357    return UnsignedLongTy;
3358  case BuiltinType::LongLong:
3359    return UnsignedLongLongTy;
3360  case BuiltinType::Int128:
3361    return UnsignedInt128Ty;
3362  default:
3363    assert(0 && "Unexpected signed integer type");
3364    return QualType();
3365  }
3366}
3367
3368ExternalASTSource::~ExternalASTSource() { }
3369
3370void ExternalASTSource::PrintStats() { }
3371
3372
3373//===----------------------------------------------------------------------===//
3374//                          Builtin Type Computation
3375//===----------------------------------------------------------------------===//
3376
3377/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
3378/// pointer over the consumed characters.  This returns the resultant type.
3379static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
3380                                  ASTContext::GetBuiltinTypeError &Error,
3381                                  bool AllowTypeModifiers = true) {
3382  // Modifiers.
3383  int HowLong = 0;
3384  bool Signed = false, Unsigned = false;
3385
3386  // Read the modifiers first.
3387  bool Done = false;
3388  while (!Done) {
3389    switch (*Str++) {
3390    default: Done = true; --Str; break;
3391    case 'S':
3392      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
3393      assert(!Signed && "Can't use 'S' modifier multiple times!");
3394      Signed = true;
3395      break;
3396    case 'U':
3397      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
3398      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
3399      Unsigned = true;
3400      break;
3401    case 'L':
3402      assert(HowLong <= 2 && "Can't have LLLL modifier");
3403      ++HowLong;
3404      break;
3405    }
3406  }
3407
3408  QualType Type;
3409
3410  // Read the base type.
3411  switch (*Str++) {
3412  default: assert(0 && "Unknown builtin type letter!");
3413  case 'v':
3414    assert(HowLong == 0 && !Signed && !Unsigned &&
3415           "Bad modifiers used with 'v'!");
3416    Type = Context.VoidTy;
3417    break;
3418  case 'f':
3419    assert(HowLong == 0 && !Signed && !Unsigned &&
3420           "Bad modifiers used with 'f'!");
3421    Type = Context.FloatTy;
3422    break;
3423  case 'd':
3424    assert(HowLong < 2 && !Signed && !Unsigned &&
3425           "Bad modifiers used with 'd'!");
3426    if (HowLong)
3427      Type = Context.LongDoubleTy;
3428    else
3429      Type = Context.DoubleTy;
3430    break;
3431  case 's':
3432    assert(HowLong == 0 && "Bad modifiers used with 's'!");
3433    if (Unsigned)
3434      Type = Context.UnsignedShortTy;
3435    else
3436      Type = Context.ShortTy;
3437    break;
3438  case 'i':
3439    if (HowLong == 3)
3440      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
3441    else if (HowLong == 2)
3442      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
3443    else if (HowLong == 1)
3444      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
3445    else
3446      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
3447    break;
3448  case 'c':
3449    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
3450    if (Signed)
3451      Type = Context.SignedCharTy;
3452    else if (Unsigned)
3453      Type = Context.UnsignedCharTy;
3454    else
3455      Type = Context.CharTy;
3456    break;
3457  case 'b': // boolean
3458    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
3459    Type = Context.BoolTy;
3460    break;
3461  case 'z':  // size_t.
3462    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
3463    Type = Context.getSizeType();
3464    break;
3465  case 'F':
3466    Type = Context.getCFConstantStringType();
3467    break;
3468  case 'a':
3469    Type = Context.getBuiltinVaListType();
3470    assert(!Type.isNull() && "builtin va list type not initialized!");
3471    break;
3472  case 'A':
3473    // This is a "reference" to a va_list; however, what exactly
3474    // this means depends on how va_list is defined. There are two
3475    // different kinds of va_list: ones passed by value, and ones
3476    // passed by reference.  An example of a by-value va_list is
3477    // x86, where va_list is a char*. An example of by-ref va_list
3478    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
3479    // we want this argument to be a char*&; for x86-64, we want
3480    // it to be a __va_list_tag*.
3481    Type = Context.getBuiltinVaListType();
3482    assert(!Type.isNull() && "builtin va list type not initialized!");
3483    if (Type->isArrayType()) {
3484      Type = Context.getArrayDecayedType(Type);
3485    } else {
3486      Type = Context.getLValueReferenceType(Type);
3487    }
3488    break;
3489  case 'V': {
3490    char *End;
3491
3492    unsigned NumElements = strtoul(Str, &End, 10);
3493    assert(End != Str && "Missing vector size");
3494
3495    Str = End;
3496
3497    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
3498    Type = Context.getVectorType(ElementType, NumElements);
3499    break;
3500  }
3501  case 'P': {
3502    IdentifierInfo *II = &Context.Idents.get("FILE");
3503    DeclContext::lookup_result Lookup
3504      = Context.getTranslationUnitDecl()->lookup(Context, II);
3505    if (Lookup.first != Lookup.second && isa<TypeDecl>(*Lookup.first)) {
3506      Type = Context.getTypeDeclType(cast<TypeDecl>(*Lookup.first));
3507      break;
3508    }
3509    else {
3510      Error = ASTContext::GE_Missing_FILE;
3511      return QualType();
3512    }
3513  }
3514  }
3515
3516  if (!AllowTypeModifiers)
3517    return Type;
3518
3519  Done = false;
3520  while (!Done) {
3521    switch (*Str++) {
3522      default: Done = true; --Str; break;
3523      case '*':
3524        Type = Context.getPointerType(Type);
3525        break;
3526      case '&':
3527        Type = Context.getLValueReferenceType(Type);
3528        break;
3529      // FIXME: There's no way to have a built-in with an rvalue ref arg.
3530      case 'C':
3531        Type = Type.getQualifiedType(QualType::Const);
3532        break;
3533    }
3534  }
3535
3536  return Type;
3537}
3538
3539/// GetBuiltinType - Return the type for the specified builtin.
3540QualType ASTContext::GetBuiltinType(unsigned id,
3541                                    GetBuiltinTypeError &Error) {
3542  const char *TypeStr = BuiltinInfo.GetTypeString(id);
3543
3544  llvm::SmallVector<QualType, 8> ArgTypes;
3545
3546  Error = GE_None;
3547  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
3548  if (Error != GE_None)
3549    return QualType();
3550  while (TypeStr[0] && TypeStr[0] != '.') {
3551    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
3552    if (Error != GE_None)
3553      return QualType();
3554
3555    // Do array -> pointer decay.  The builtin should use the decayed type.
3556    if (Ty->isArrayType())
3557      Ty = getArrayDecayedType(Ty);
3558
3559    ArgTypes.push_back(Ty);
3560  }
3561
3562  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
3563         "'.' should only occur at end of builtin type list!");
3564
3565  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
3566  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
3567    return getFunctionNoProtoType(ResType);
3568  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
3569                         TypeStr[0] == '.', 0);
3570}
3571