Type.h revision 202879
1//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Type interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_TYPE_H
15#define LLVM_CLANG_AST_TYPE_H
16
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/AST/TemplateName.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/type_traits.h"
23#include "llvm/ADT/APSInt.h"
24#include "llvm/ADT/FoldingSet.h"
25#include "llvm/ADT/PointerIntPair.h"
26#include "llvm/ADT/PointerUnion.h"
27
28using llvm::isa;
29using llvm::cast;
30using llvm::cast_or_null;
31using llvm::dyn_cast;
32using llvm::dyn_cast_or_null;
33namespace clang {
34  enum {
35    TypeAlignmentInBits = 3,
36    TypeAlignment = 1 << TypeAlignmentInBits
37  };
38  class Type;
39  class ExtQuals;
40  class QualType;
41}
42
43namespace llvm {
44  template <typename T>
45  class PointerLikeTypeTraits;
46  template<>
47  class PointerLikeTypeTraits< ::clang::Type*> {
48  public:
49    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
50    static inline ::clang::Type *getFromVoidPointer(void *P) {
51      return static_cast< ::clang::Type*>(P);
52    }
53    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
54  };
55  template<>
56  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
57  public:
58    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
59    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
60      return static_cast< ::clang::ExtQuals*>(P);
61    }
62    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
63  };
64
65  template <>
66  struct isPodLike<clang::QualType> { static const bool value = true; };
67}
68
69namespace clang {
70  class ASTContext;
71  class TypedefDecl;
72  class TemplateDecl;
73  class TemplateTypeParmDecl;
74  class NonTypeTemplateParmDecl;
75  class TemplateTemplateParmDecl;
76  class TagDecl;
77  class RecordDecl;
78  class CXXRecordDecl;
79  class EnumDecl;
80  class FieldDecl;
81  class ObjCInterfaceDecl;
82  class ObjCProtocolDecl;
83  class ObjCMethodDecl;
84  class UnresolvedUsingTypenameDecl;
85  class Expr;
86  class Stmt;
87  class SourceLocation;
88  class StmtIteratorBase;
89  class TemplateArgument;
90  class TemplateArgumentLoc;
91  class TemplateArgumentListInfo;
92  class QualifiedNameType;
93  struct PrintingPolicy;
94
95  // Provide forward declarations for all of the *Type classes
96#define TYPE(Class, Base) class Class##Type;
97#include "clang/AST/TypeNodes.def"
98
99/// Qualifiers - The collection of all-type qualifiers we support.
100/// Clang supports five independent qualifiers:
101/// * C99: const, volatile, and restrict
102/// * Embedded C (TR18037): address spaces
103/// * Objective C: the GC attributes (none, weak, or strong)
104class Qualifiers {
105public:
106  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
107    Const    = 0x1,
108    Restrict = 0x2,
109    Volatile = 0x4,
110    CVRMask = Const | Volatile | Restrict
111  };
112
113  enum GC {
114    GCNone = 0,
115    Weak,
116    Strong
117  };
118
119  enum {
120    /// The maximum supported address space number.
121    /// 24 bits should be enough for anyone.
122    MaxAddressSpace = 0xffffffu,
123
124    /// The width of the "fast" qualifier mask.
125    FastWidth = 2,
126
127    /// The fast qualifier mask.
128    FastMask = (1 << FastWidth) - 1
129  };
130
131  Qualifiers() : Mask(0) {}
132
133  static Qualifiers fromFastMask(unsigned Mask) {
134    Qualifiers Qs;
135    Qs.addFastQualifiers(Mask);
136    return Qs;
137  }
138
139  static Qualifiers fromCVRMask(unsigned CVR) {
140    Qualifiers Qs;
141    Qs.addCVRQualifiers(CVR);
142    return Qs;
143  }
144
145  // Deserialize qualifiers from an opaque representation.
146  static Qualifiers fromOpaqueValue(unsigned opaque) {
147    Qualifiers Qs;
148    Qs.Mask = opaque;
149    return Qs;
150  }
151
152  // Serialize these qualifiers into an opaque representation.
153  unsigned getAsOpaqueValue() const {
154    return Mask;
155  }
156
157  bool hasConst() const { return Mask & Const; }
158  void setConst(bool flag) {
159    Mask = (Mask & ~Const) | (flag ? Const : 0);
160  }
161  void removeConst() { Mask &= ~Const; }
162  void addConst() { Mask |= Const; }
163
164  bool hasVolatile() const { return Mask & Volatile; }
165  void setVolatile(bool flag) {
166    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
167  }
168  void removeVolatile() { Mask &= ~Volatile; }
169  void addVolatile() { Mask |= Volatile; }
170
171  bool hasRestrict() const { return Mask & Restrict; }
172  void setRestrict(bool flag) {
173    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
174  }
175  void removeRestrict() { Mask &= ~Restrict; }
176  void addRestrict() { Mask |= Restrict; }
177
178  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
179  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
180  void setCVRQualifiers(unsigned mask) {
181    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
182    Mask = (Mask & ~CVRMask) | mask;
183  }
184  void removeCVRQualifiers(unsigned mask) {
185    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
186    Mask &= ~mask;
187  }
188  void removeCVRQualifiers() {
189    removeCVRQualifiers(CVRMask);
190  }
191  void addCVRQualifiers(unsigned mask) {
192    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
193    Mask |= mask;
194  }
195
196  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
197  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
198  void setObjCGCAttr(GC type) {
199    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
200  }
201  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
202  void addObjCGCAttr(GC type) {
203    assert(type);
204    setObjCGCAttr(type);
205  }
206
207  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
208  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
209  void setAddressSpace(unsigned space) {
210    assert(space <= MaxAddressSpace);
211    Mask = (Mask & ~AddressSpaceMask)
212         | (((uint32_t) space) << AddressSpaceShift);
213  }
214  void removeAddressSpace() { setAddressSpace(0); }
215  void addAddressSpace(unsigned space) {
216    assert(space);
217    setAddressSpace(space);
218  }
219
220  // Fast qualifiers are those that can be allocated directly
221  // on a QualType object.
222  bool hasFastQualifiers() const { return getFastQualifiers(); }
223  unsigned getFastQualifiers() const { return Mask & FastMask; }
224  void setFastQualifiers(unsigned mask) {
225    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
226    Mask = (Mask & ~FastMask) | mask;
227  }
228  void removeFastQualifiers(unsigned mask) {
229    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
230    Mask &= ~mask;
231  }
232  void removeFastQualifiers() {
233    removeFastQualifiers(FastMask);
234  }
235  void addFastQualifiers(unsigned mask) {
236    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
237    Mask |= mask;
238  }
239
240  /// hasNonFastQualifiers - Return true if the set contains any
241  /// qualifiers which require an ExtQuals node to be allocated.
242  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
243  Qualifiers getNonFastQualifiers() const {
244    Qualifiers Quals = *this;
245    Quals.setFastQualifiers(0);
246    return Quals;
247  }
248
249  /// hasQualifiers - Return true if the set contains any qualifiers.
250  bool hasQualifiers() const { return Mask; }
251  bool empty() const { return !Mask; }
252
253  /// \brief Add the qualifiers from the given set to this set.
254  void addQualifiers(Qualifiers Q) {
255    // If the other set doesn't have any non-boolean qualifiers, just
256    // bit-or it in.
257    if (!(Q.Mask & ~CVRMask))
258      Mask |= Q.Mask;
259    else {
260      Mask |= (Q.Mask & CVRMask);
261      if (Q.hasAddressSpace())
262        addAddressSpace(Q.getAddressSpace());
263      if (Q.hasObjCGCAttr())
264        addObjCGCAttr(Q.getObjCGCAttr());
265    }
266  }
267
268  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
269  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
270
271  operator bool() const { return hasQualifiers(); }
272
273  Qualifiers &operator+=(Qualifiers R) {
274    addQualifiers(R);
275    return *this;
276  }
277
278  // Union two qualifier sets.  If an enumerated qualifier appears
279  // in both sets, use the one from the right.
280  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
281    L += R;
282    return L;
283  }
284
285  std::string getAsString() const;
286  std::string getAsString(const PrintingPolicy &Policy) const {
287    std::string Buffer;
288    getAsStringInternal(Buffer, Policy);
289    return Buffer;
290  }
291  void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
292
293  void Profile(llvm::FoldingSetNodeID &ID) const {
294    ID.AddInteger(Mask);
295  }
296
297private:
298
299  // bits:     |0 1 2|3 .. 4|5  ..  31|
300  //           |C R V|GCAttr|AddrSpace|
301  uint32_t Mask;
302
303  static const uint32_t GCAttrMask = 0x18;
304  static const uint32_t GCAttrShift = 3;
305  static const uint32_t AddressSpaceMask = ~(CVRMask | GCAttrMask);
306  static const uint32_t AddressSpaceShift = 5;
307};
308
309
310/// ExtQuals - We can encode up to three bits in the low bits of a
311/// type pointer, but there are many more type qualifiers that we want
312/// to be able to apply to an arbitrary type.  Therefore we have this
313/// struct, intended to be heap-allocated and used by QualType to
314/// store qualifiers.
315///
316/// The current design tags the 'const' and 'restrict' qualifiers in
317/// two low bits on the QualType pointer; a third bit records whether
318/// the pointer is an ExtQuals node.  'const' was chosen because it is
319/// orders of magnitude more common than the other two qualifiers, in
320/// both library and user code.  It's relatively rare to see
321/// 'restrict' in user code, but many standard C headers are saturated
322/// with 'restrict' declarations, so that representing them efficiently
323/// is a critical goal of this representation.
324class ExtQuals : public llvm::FoldingSetNode {
325  // NOTE: changing the fast qualifiers should be straightforward as
326  // long as you don't make 'const' non-fast.
327  // 1. Qualifiers:
328  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
329  //       Fast qualifiers must occupy the low-order bits.
330  //    b) Update Qualifiers::FastWidth and FastMask.
331  // 2. QualType:
332  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
333  //    b) Update remove{Volatile,Restrict}, defined near the end of
334  //       this header.
335  // 3. ASTContext:
336  //    a) Update get{Volatile,Restrict}Type.
337
338  /// Context - the context to which this set belongs.  We save this
339  /// here so that QualifierCollector can use it to reapply extended
340  /// qualifiers to an arbitrary type without requiring a context to
341  /// be pushed through every single API dealing with qualifiers.
342  ASTContext& Context;
343
344  /// BaseType - the underlying type that this qualifies
345  const Type *BaseType;
346
347  /// Quals - the immutable set of qualifiers applied by this
348  /// node;  always contains extended qualifiers.
349  Qualifiers Quals;
350
351public:
352  ExtQuals(ASTContext& Context, const Type *Base, Qualifiers Quals)
353    : Context(Context), BaseType(Base), Quals(Quals)
354  {
355    assert(Quals.hasNonFastQualifiers()
356           && "ExtQuals created with no fast qualifiers");
357    assert(!Quals.hasFastQualifiers()
358           && "ExtQuals created with fast qualifiers");
359  }
360
361  Qualifiers getQualifiers() const { return Quals; }
362
363  bool hasVolatile() const { return Quals.hasVolatile(); }
364
365  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
366  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
367
368  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
369  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
370
371  const Type *getBaseType() const { return BaseType; }
372
373  ASTContext &getContext() const { return Context; }
374
375public:
376  void Profile(llvm::FoldingSetNodeID &ID) const {
377    Profile(ID, getBaseType(), Quals);
378  }
379  static void Profile(llvm::FoldingSetNodeID &ID,
380                      const Type *BaseType,
381                      Qualifiers Quals) {
382    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
383    ID.AddPointer(BaseType);
384    Quals.Profile(ID);
385  }
386};
387
388/// CallingConv - Specifies the calling convention that a function uses.
389enum CallingConv {
390  CC_Default,
391  CC_C,           // __attribute__((cdecl))
392  CC_X86StdCall,  // __attribute__((stdcall))
393  CC_X86FastCall  // __attribute__((fastcall))
394};
395
396
397/// QualType - For efficiency, we don't store CV-qualified types as nodes on
398/// their own: instead each reference to a type stores the qualifiers.  This
399/// greatly reduces the number of nodes we need to allocate for types (for
400/// example we only need one for 'int', 'const int', 'volatile int',
401/// 'const volatile int', etc).
402///
403/// As an added efficiency bonus, instead of making this a pair, we
404/// just store the two bits we care about in the low bits of the
405/// pointer.  To handle the packing/unpacking, we make QualType be a
406/// simple wrapper class that acts like a smart pointer.  A third bit
407/// indicates whether there are extended qualifiers present, in which
408/// case the pointer points to a special structure.
409class QualType {
410  // Thankfully, these are efficiently composable.
411  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
412                       Qualifiers::FastWidth> Value;
413
414  const ExtQuals *getExtQualsUnsafe() const {
415    return Value.getPointer().get<const ExtQuals*>();
416  }
417
418  const Type *getTypePtrUnsafe() const {
419    return Value.getPointer().get<const Type*>();
420  }
421
422  QualType getUnqualifiedTypeSlow() const;
423
424  friend class QualifierCollector;
425public:
426  QualType() {}
427
428  QualType(const Type *Ptr, unsigned Quals)
429    : Value(Ptr, Quals) {}
430  QualType(const ExtQuals *Ptr, unsigned Quals)
431    : Value(Ptr, Quals) {}
432
433  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
434  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
435
436  /// Retrieves a pointer to the underlying (unqualified) type.
437  /// This should really return a const Type, but it's not worth
438  /// changing all the users right now.
439  Type *getTypePtr() const {
440    if (hasLocalNonFastQualifiers())
441      return const_cast<Type*>(getExtQualsUnsafe()->getBaseType());
442    return const_cast<Type*>(getTypePtrUnsafe());
443  }
444
445  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
446  static QualType getFromOpaquePtr(void *Ptr) {
447    QualType T;
448    T.Value.setFromOpaqueValue(Ptr);
449    return T;
450  }
451
452  Type &operator*() const {
453    return *getTypePtr();
454  }
455
456  Type *operator->() const {
457    return getTypePtr();
458  }
459
460  bool isCanonical() const;
461  bool isCanonicalAsParam() const;
462
463  /// isNull - Return true if this QualType doesn't point to a type yet.
464  bool isNull() const {
465    return Value.getPointer().isNull();
466  }
467
468  /// \brief Determine whether this particular QualType instance has the
469  /// "const" qualifier set, without looking through typedefs that may have
470  /// added "const" at a different level.
471  bool isLocalConstQualified() const {
472    return (getLocalFastQualifiers() & Qualifiers::Const);
473  }
474
475  /// \brief Determine whether this type is const-qualified.
476  bool isConstQualified() const;
477
478  /// \brief Determine whether this particular QualType instance has the
479  /// "restrict" qualifier set, without looking through typedefs that may have
480  /// added "restrict" at a different level.
481  bool isLocalRestrictQualified() const {
482    return (getLocalFastQualifiers() & Qualifiers::Restrict);
483  }
484
485  /// \brief Determine whether this type is restrict-qualified.
486  bool isRestrictQualified() const;
487
488  /// \brief Determine whether this particular QualType instance has the
489  /// "volatile" qualifier set, without looking through typedefs that may have
490  /// added "volatile" at a different level.
491  bool isLocalVolatileQualified() const {
492    return (hasLocalNonFastQualifiers() && getExtQualsUnsafe()->hasVolatile());
493  }
494
495  /// \brief Determine whether this type is volatile-qualified.
496  bool isVolatileQualified() const;
497
498  /// \brief Determine whether this particular QualType instance has any
499  /// qualifiers, without looking through any typedefs that might add
500  /// qualifiers at a different level.
501  bool hasLocalQualifiers() const {
502    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
503  }
504
505  /// \brief Determine whether this type has any qualifiers.
506  bool hasQualifiers() const;
507
508  /// \brief Determine whether this particular QualType instance has any
509  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
510  /// instance.
511  bool hasLocalNonFastQualifiers() const {
512    return Value.getPointer().is<const ExtQuals*>();
513  }
514
515  /// \brief Retrieve the set of qualifiers local to this particular QualType
516  /// instance, not including any qualifiers acquired through typedefs or
517  /// other sugar.
518  Qualifiers getLocalQualifiers() const {
519    Qualifiers Quals;
520    if (hasLocalNonFastQualifiers())
521      Quals = getExtQualsUnsafe()->getQualifiers();
522    Quals.addFastQualifiers(getLocalFastQualifiers());
523    return Quals;
524  }
525
526  /// \brief Retrieve the set of qualifiers applied to this type.
527  Qualifiers getQualifiers() const;
528
529  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
530  /// local to this particular QualType instance, not including any qualifiers
531  /// acquired through typedefs or other sugar.
532  unsigned getLocalCVRQualifiers() const {
533    unsigned CVR = getLocalFastQualifiers();
534    if (isLocalVolatileQualified())
535      CVR |= Qualifiers::Volatile;
536    return CVR;
537  }
538
539  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
540  /// applied to this type.
541  unsigned getCVRQualifiers() const;
542
543  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
544  /// applied to this type, looking through any number of unqualified array
545  /// types to their element types' qualifiers.
546  unsigned getCVRQualifiersThroughArrayTypes() const;
547
548  bool isConstant(ASTContext& Ctx) const {
549    return QualType::isConstant(*this, Ctx);
550  }
551
552  // Don't promise in the API that anything besides 'const' can be
553  // easily added.
554
555  /// addConst - add the specified type qualifier to this QualType.
556  void addConst() {
557    addFastQualifiers(Qualifiers::Const);
558  }
559  QualType withConst() const {
560    return withFastQualifiers(Qualifiers::Const);
561  }
562
563  void addFastQualifiers(unsigned TQs) {
564    assert(!(TQs & ~Qualifiers::FastMask)
565           && "non-fast qualifier bits set in mask!");
566    Value.setInt(Value.getInt() | TQs);
567  }
568
569  // FIXME: The remove* functions are semantically broken, because they might
570  // not remove a qualifier stored on a typedef. Most of the with* functions
571  // have the same problem.
572  void removeConst();
573  void removeVolatile();
574  void removeRestrict();
575  void removeCVRQualifiers(unsigned Mask);
576
577  void removeFastQualifiers() { Value.setInt(0); }
578  void removeFastQualifiers(unsigned Mask) {
579    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
580    Value.setInt(Value.getInt() & ~Mask);
581  }
582
583  // Creates a type with the given qualifiers in addition to any
584  // qualifiers already on this type.
585  QualType withFastQualifiers(unsigned TQs) const {
586    QualType T = *this;
587    T.addFastQualifiers(TQs);
588    return T;
589  }
590
591  // Creates a type with exactly the given fast qualifiers, removing
592  // any existing fast qualifiers.
593  QualType withExactFastQualifiers(unsigned TQs) const {
594    return withoutFastQualifiers().withFastQualifiers(TQs);
595  }
596
597  // Removes fast qualifiers, but leaves any extended qualifiers in place.
598  QualType withoutFastQualifiers() const {
599    QualType T = *this;
600    T.removeFastQualifiers();
601    return T;
602  }
603
604  /// \brief Return this type with all of the instance-specific qualifiers
605  /// removed, but without removing any qualifiers that may have been applied
606  /// through typedefs.
607  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
608
609  /// \brief Return the unqualified form of the given type, which might be
610  /// desugared to eliminate qualifiers introduced via typedefs.
611  QualType getUnqualifiedType() const {
612    QualType T = getLocalUnqualifiedType();
613    if (!T.hasQualifiers())
614      return T;
615
616    return getUnqualifiedTypeSlow();
617  }
618
619  bool isMoreQualifiedThan(QualType Other) const;
620  bool isAtLeastAsQualifiedAs(QualType Other) const;
621  QualType getNonReferenceType() const;
622
623  /// getDesugaredType - Return the specified type with any "sugar" removed from
624  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
625  /// the type is already concrete, it returns it unmodified.  This is similar
626  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
627  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
628  /// concrete.
629  ///
630  /// Qualifiers are left in place.
631  QualType getDesugaredType() const {
632    return QualType::getDesugaredType(*this);
633  }
634
635  /// operator==/!= - Indicate whether the specified types and qualifiers are
636  /// identical.
637  friend bool operator==(const QualType &LHS, const QualType &RHS) {
638    return LHS.Value == RHS.Value;
639  }
640  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
641    return LHS.Value != RHS.Value;
642  }
643  std::string getAsString() const;
644
645  std::string getAsString(const PrintingPolicy &Policy) const {
646    std::string S;
647    getAsStringInternal(S, Policy);
648    return S;
649  }
650  void getAsStringInternal(std::string &Str,
651                           const PrintingPolicy &Policy) const;
652
653  void dump(const char *s) const;
654  void dump() const;
655
656  void Profile(llvm::FoldingSetNodeID &ID) const {
657    ID.AddPointer(getAsOpaquePtr());
658  }
659
660  /// getAddressSpace - Return the address space of this type.
661  inline unsigned getAddressSpace() const;
662
663  /// GCAttrTypesAttr - Returns gc attribute of this type.
664  inline Qualifiers::GC getObjCGCAttr() const;
665
666  /// isObjCGCWeak true when Type is objc's weak.
667  bool isObjCGCWeak() const {
668    return getObjCGCAttr() == Qualifiers::Weak;
669  }
670
671  /// isObjCGCStrong true when Type is objc's strong.
672  bool isObjCGCStrong() const {
673    return getObjCGCAttr() == Qualifiers::Strong;
674  }
675
676  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
677  /// false otherwise.
678  bool getNoReturnAttr() const;
679
680  /// getCallConv - Returns the calling convention of the type if the type
681  /// is a function type, CC_Default otherwise.
682  CallingConv getCallConv() const;
683
684private:
685  // These methods are implemented in a separate translation unit;
686  // "static"-ize them to avoid creating temporary QualTypes in the
687  // caller.
688  static bool isConstant(QualType T, ASTContext& Ctx);
689  static QualType getDesugaredType(QualType T);
690};
691
692} // end clang.
693
694namespace llvm {
695/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
696/// to a specific Type class.
697template<> struct simplify_type<const ::clang::QualType> {
698  typedef ::clang::Type* SimpleType;
699  static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
700    return Val.getTypePtr();
701  }
702};
703template<> struct simplify_type< ::clang::QualType>
704  : public simplify_type<const ::clang::QualType> {};
705
706// Teach SmallPtrSet that QualType is "basically a pointer".
707template<>
708class PointerLikeTypeTraits<clang::QualType> {
709public:
710  static inline void *getAsVoidPointer(clang::QualType P) {
711    return P.getAsOpaquePtr();
712  }
713  static inline clang::QualType getFromVoidPointer(void *P) {
714    return clang::QualType::getFromOpaquePtr(P);
715  }
716  // Various qualifiers go in low bits.
717  enum { NumLowBitsAvailable = 0 };
718};
719
720} // end namespace llvm
721
722namespace clang {
723
724/// Type - This is the base class of the type hierarchy.  A central concept
725/// with types is that each type always has a canonical type.  A canonical type
726/// is the type with any typedef names stripped out of it or the types it
727/// references.  For example, consider:
728///
729///  typedef int  foo;
730///  typedef foo* bar;
731///    'int *'    'foo *'    'bar'
732///
733/// There will be a Type object created for 'int'.  Since int is canonical, its
734/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
735/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
736/// there is a PointerType that represents 'int*', which, like 'int', is
737/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
738/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
739/// is also 'int*'.
740///
741/// Non-canonical types are useful for emitting diagnostics, without losing
742/// information about typedefs being used.  Canonical types are useful for type
743/// comparisons (they allow by-pointer equality tests) and useful for reasoning
744/// about whether something has a particular form (e.g. is a function type),
745/// because they implicitly, recursively, strip all typedefs out of a type.
746///
747/// Types, once created, are immutable.
748///
749class Type {
750public:
751  enum TypeClass {
752#define TYPE(Class, Base) Class,
753#define ABSTRACT_TYPE(Class, Base)
754#include "clang/AST/TypeNodes.def"
755    TagFirst = Record, TagLast = Enum
756  };
757
758protected:
759  enum { TypeClassBitSize = 6 };
760
761private:
762  QualType CanonicalType;
763
764  /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
765  bool Dependent : 1;
766
767  /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
768  /// Note that this should stay at the end of the ivars for Type so that
769  /// subclasses can pack their bitfields into the same word.
770  unsigned TC : TypeClassBitSize;
771
772  Type(const Type&);           // DO NOT IMPLEMENT.
773  void operator=(const Type&); // DO NOT IMPLEMENT.
774protected:
775  // silence VC++ warning C4355: 'this' : used in base member initializer list
776  Type *this_() { return this; }
777  Type(TypeClass tc, QualType Canonical, bool dependent)
778    : CanonicalType(Canonical.isNull() ? QualType(this_(), 0) : Canonical),
779      Dependent(dependent), TC(tc) {}
780  virtual ~Type() {}
781  virtual void Destroy(ASTContext& C);
782  friend class ASTContext;
783
784public:
785  TypeClass getTypeClass() const { return static_cast<TypeClass>(TC); }
786
787  bool isCanonicalUnqualified() const {
788    return CanonicalType.getTypePtr() == this;
789  }
790
791  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
792  /// object types, function types, and incomplete types.
793
794  /// \brief Determines whether the type describes an object in memory.
795  ///
796  /// Note that this definition of object type corresponds to the C++
797  /// definition of object type, which includes incomplete types, as
798  /// opposed to the C definition (which does not include incomplete
799  /// types).
800  bool isObjectType() const;
801
802  /// isIncompleteType - Return true if this is an incomplete type.
803  /// A type that can describe objects, but which lacks information needed to
804  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
805  /// routine will need to determine if the size is actually required.
806  bool isIncompleteType() const;
807
808  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
809  /// type, in other words, not a function type.
810  bool isIncompleteOrObjectType() const {
811    return !isFunctionType();
812  }
813
814  /// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10).
815  bool isPODType() const;
816
817  /// isLiteralType - Return true if this is a literal type
818  /// (C++0x [basic.types]p10)
819  bool isLiteralType() const;
820
821  /// isVariablyModifiedType (C99 6.7.5.2p2) - Return true for variable array
822  /// types that have a non-constant expression. This does not include "[]".
823  bool isVariablyModifiedType() const;
824
825  /// Helper methods to distinguish type categories. All type predicates
826  /// operate on the canonical type, ignoring typedefs and qualifiers.
827
828  /// isSpecificBuiltinType - Test for a particular builtin type.
829  bool isSpecificBuiltinType(unsigned K) const;
830
831  /// isIntegerType() does *not* include complex integers (a GCC extension).
832  /// isComplexIntegerType() can be used to test for complex integers.
833  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
834  bool isEnumeralType() const;
835  bool isBooleanType() const;
836  bool isCharType() const;
837  bool isWideCharType() const;
838  bool isAnyCharacterType() const;
839  bool isIntegralType() const;
840
841  /// Floating point categories.
842  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
843  /// isComplexType() does *not* include complex integers (a GCC extension).
844  /// isComplexIntegerType() can be used to test for complex integers.
845  bool isComplexType() const;      // C99 6.2.5p11 (complex)
846  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
847  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
848  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
849  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
850  bool isVoidType() const;         // C99 6.2.5p19
851  bool isDerivedType() const;      // C99 6.2.5p20
852  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
853  bool isAggregateType() const;
854
855  // Type Predicates: Check to see if this type is structurally the specified
856  // type, ignoring typedefs and qualifiers.
857  bool isFunctionType() const;
858  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
859  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
860  bool isPointerType() const;
861  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
862  bool isBlockPointerType() const;
863  bool isVoidPointerType() const;
864  bool isReferenceType() const;
865  bool isLValueReferenceType() const;
866  bool isRValueReferenceType() const;
867  bool isFunctionPointerType() const;
868  bool isMemberPointerType() const;
869  bool isMemberFunctionPointerType() const;
870  bool isArrayType() const;
871  bool isConstantArrayType() const;
872  bool isIncompleteArrayType() const;
873  bool isVariableArrayType() const;
874  bool isDependentSizedArrayType() const;
875  bool isRecordType() const;
876  bool isClassType() const;
877  bool isStructureType() const;
878  bool isUnionType() const;
879  bool isComplexIntegerType() const;            // GCC _Complex integer type.
880  bool isVectorType() const;                    // GCC vector type.
881  bool isExtVectorType() const;                 // Extended vector type.
882  bool isObjCObjectPointerType() const;         // Pointer to *any* ObjC object.
883  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
884  // for the common case.
885  bool isObjCInterfaceType() const;             // NSString or NSString<foo>
886  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
887  bool isObjCQualifiedIdType() const;           // id<foo>
888  bool isObjCQualifiedClassType() const;        // Class<foo>
889  bool isObjCIdType() const;                    // id
890  bool isObjCClassType() const;                 // Class
891  bool isObjCSelType() const;                 // Class
892  bool isObjCBuiltinType() const;               // 'id' or 'Class'
893  bool isTemplateTypeParmType() const;          // C++ template type parameter
894  bool isNullPtrType() const;                   // C++0x nullptr_t
895
896  /// isDependentType - Whether this type is a dependent type, meaning
897  /// that its definition somehow depends on a template parameter
898  /// (C++ [temp.dep.type]).
899  bool isDependentType() const { return Dependent; }
900  bool isOverloadableType() const;
901
902  /// hasPointerRepresentation - Whether this type is represented
903  /// natively as a pointer; this includes pointers, references, block
904  /// pointers, and Objective-C interface, qualified id, and qualified
905  /// interface types, as well as nullptr_t.
906  bool hasPointerRepresentation() const;
907
908  /// hasObjCPointerRepresentation - Whether this type can represent
909  /// an objective pointer type for the purpose of GC'ability
910  bool hasObjCPointerRepresentation() const;
911
912  // Type Checking Functions: Check to see if this type is structurally the
913  // specified type, ignoring typedefs and qualifiers, and return a pointer to
914  // the best type we can.
915  const RecordType *getAsStructureType() const;
916  /// NOTE: getAs*ArrayType are methods on ASTContext.
917  const RecordType *getAsUnionType() const;
918  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
919  // The following is a convenience method that returns an ObjCObjectPointerType
920  // for object declared using an interface.
921  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
922  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
923  const ObjCInterfaceType *getAsObjCQualifiedInterfaceType() const;
924  const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
925
926  // Member-template getAs<specific type>'.  This scheme will eventually
927  // replace the specific getAsXXXX methods above.
928  //
929  // There are some specializations of this member template listed
930  // immediately following this class.
931  template <typename T> const T *getAs() const;
932
933  /// getAsPointerToObjCInterfaceType - If this is a pointer to an ObjC
934  /// interface, return the interface type, otherwise return null.
935  const ObjCInterfaceType *getAsPointerToObjCInterfaceType() const;
936
937  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
938  /// element type of the array, potentially with type qualifiers missing.
939  /// This method should never be used when type qualifiers are meaningful.
940  const Type *getArrayElementTypeNoTypeQual() const;
941
942  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
943  /// pointer, this returns the respective pointee.
944  QualType getPointeeType() const;
945
946  /// getUnqualifiedDesugaredType() - Return the specified type with
947  /// any "sugar" removed from the type, removing any typedefs,
948  /// typeofs, etc., as well as any qualifiers.
949  const Type *getUnqualifiedDesugaredType() const;
950
951  /// More type predicates useful for type checking/promotion
952  bool isPromotableIntegerType() const; // C99 6.3.1.1p2
953
954  /// isSignedIntegerType - Return true if this is an integer type that is
955  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
956  /// an enum decl which has a signed representation, or a vector of signed
957  /// integer element type.
958  bool isSignedIntegerType() const;
959
960  /// isUnsignedIntegerType - Return true if this is an integer type that is
961  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
962  /// decl which has an unsigned representation, or a vector of unsigned integer
963  /// element type.
964  bool isUnsignedIntegerType() const;
965
966  /// isConstantSizeType - Return true if this is not a variable sized type,
967  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
968  /// incomplete types.
969  bool isConstantSizeType() const;
970
971  /// isSpecifierType - Returns true if this type can be represented by some
972  /// set of type specifiers.
973  bool isSpecifierType() const;
974
975  const char *getTypeClassName() const;
976
977  QualType getCanonicalTypeInternal() const { return CanonicalType; }
978  void dump() const;
979  static bool classof(const Type *) { return true; }
980};
981
982template <> inline const TypedefType *Type::getAs() const {
983  return dyn_cast<TypedefType>(this);
984}
985
986// We can do canonical leaf types faster, because we don't have to
987// worry about preserving child type decoration.
988#define TYPE(Class, Base)
989#define LEAF_TYPE(Class) \
990template <> inline const Class##Type *Type::getAs() const { \
991  return dyn_cast<Class##Type>(CanonicalType); \
992}
993#include "clang/AST/TypeNodes.def"
994
995
996/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
997/// types are always canonical and have a literal name field.
998class BuiltinType : public Type {
999public:
1000  enum Kind {
1001    Void,
1002
1003    Bool,     // This is bool and/or _Bool.
1004    Char_U,   // This is 'char' for targets where char is unsigned.
1005    UChar,    // This is explicitly qualified unsigned char.
1006    Char16,   // This is 'char16_t' for C++.
1007    Char32,   // This is 'char32_t' for C++.
1008    UShort,
1009    UInt,
1010    ULong,
1011    ULongLong,
1012    UInt128,  // __uint128_t
1013
1014    Char_S,   // This is 'char' for targets where char is signed.
1015    SChar,    // This is explicitly qualified signed char.
1016    WChar,    // This is 'wchar_t' for C++.
1017    Short,
1018    Int,
1019    Long,
1020    LongLong,
1021    Int128,   // __int128_t
1022
1023    Float, Double, LongDouble,
1024
1025    NullPtr,  // This is the type of C++0x 'nullptr'.
1026
1027    Overload,  // This represents the type of an overloaded function declaration.
1028    Dependent, // This represents the type of a type-dependent expression.
1029
1030    UndeducedAuto, // In C++0x, this represents the type of an auto variable
1031                   // that has not been deduced yet.
1032    ObjCId,    // This represents the ObjC 'id' type.
1033    ObjCClass, // This represents the ObjC 'Class' type.
1034    ObjCSel    // This represents the ObjC 'SEL' type.
1035  };
1036private:
1037  Kind TypeKind;
1038public:
1039  BuiltinType(Kind K)
1040    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent)),
1041      TypeKind(K) {}
1042
1043  Kind getKind() const { return TypeKind; }
1044  const char *getName(const LangOptions &LO) const;
1045
1046  bool isSugared() const { return false; }
1047  QualType desugar() const { return QualType(this, 0); }
1048
1049  bool isInteger() const {
1050    return TypeKind >= Bool && TypeKind <= Int128;
1051  }
1052
1053  bool isSignedInteger() const {
1054    return TypeKind >= Char_S && TypeKind <= Int128;
1055  }
1056
1057  bool isUnsignedInteger() const {
1058    return TypeKind >= Bool && TypeKind <= UInt128;
1059  }
1060
1061  bool isFloatingPoint() const {
1062    return TypeKind >= Float && TypeKind <= LongDouble;
1063  }
1064
1065  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
1066  static bool classof(const BuiltinType *) { return true; }
1067};
1068
1069/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
1070/// types (_Complex float etc) as well as the GCC integer complex extensions.
1071///
1072class ComplexType : public Type, public llvm::FoldingSetNode {
1073  QualType ElementType;
1074  ComplexType(QualType Element, QualType CanonicalPtr) :
1075    Type(Complex, CanonicalPtr, Element->isDependentType()),
1076    ElementType(Element) {
1077  }
1078  friend class ASTContext;  // ASTContext creates these.
1079public:
1080  QualType getElementType() const { return ElementType; }
1081
1082  bool isSugared() const { return false; }
1083  QualType desugar() const { return QualType(this, 0); }
1084
1085  void Profile(llvm::FoldingSetNodeID &ID) {
1086    Profile(ID, getElementType());
1087  }
1088  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
1089    ID.AddPointer(Element.getAsOpaquePtr());
1090  }
1091
1092  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
1093  static bool classof(const ComplexType *) { return true; }
1094};
1095
1096/// PointerType - C99 6.7.5.1 - Pointer Declarators.
1097///
1098class PointerType : public Type, public llvm::FoldingSetNode {
1099  QualType PointeeType;
1100
1101  PointerType(QualType Pointee, QualType CanonicalPtr) :
1102    Type(Pointer, CanonicalPtr, Pointee->isDependentType()), PointeeType(Pointee) {
1103  }
1104  friend class ASTContext;  // ASTContext creates these.
1105public:
1106
1107  QualType getPointeeType() const { return PointeeType; }
1108
1109  bool isSugared() const { return false; }
1110  QualType desugar() const { return QualType(this, 0); }
1111
1112  void Profile(llvm::FoldingSetNodeID &ID) {
1113    Profile(ID, getPointeeType());
1114  }
1115  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1116    ID.AddPointer(Pointee.getAsOpaquePtr());
1117  }
1118
1119  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
1120  static bool classof(const PointerType *) { return true; }
1121};
1122
1123/// BlockPointerType - pointer to a block type.
1124/// This type is to represent types syntactically represented as
1125/// "void (^)(int)", etc. Pointee is required to always be a function type.
1126///
1127class BlockPointerType : public Type, public llvm::FoldingSetNode {
1128  QualType PointeeType;  // Block is some kind of pointer type
1129  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
1130    Type(BlockPointer, CanonicalCls, Pointee->isDependentType()),
1131    PointeeType(Pointee) {
1132  }
1133  friend class ASTContext;  // ASTContext creates these.
1134public:
1135
1136  // Get the pointee type. Pointee is required to always be a function type.
1137  QualType getPointeeType() const { return PointeeType; }
1138
1139  bool isSugared() const { return false; }
1140  QualType desugar() const { return QualType(this, 0); }
1141
1142  void Profile(llvm::FoldingSetNodeID &ID) {
1143      Profile(ID, getPointeeType());
1144  }
1145  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
1146      ID.AddPointer(Pointee.getAsOpaquePtr());
1147  }
1148
1149  static bool classof(const Type *T) {
1150    return T->getTypeClass() == BlockPointer;
1151  }
1152  static bool classof(const BlockPointerType *) { return true; }
1153};
1154
1155/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
1156///
1157class ReferenceType : public Type, public llvm::FoldingSetNode {
1158  QualType PointeeType;
1159
1160  /// True if the type was originally spelled with an lvalue sigil.
1161  /// This is never true of rvalue references but can also be false
1162  /// on lvalue references because of C++0x [dcl.typedef]p9,
1163  /// as follows:
1164  ///
1165  ///   typedef int &ref;    // lvalue, spelled lvalue
1166  ///   typedef int &&rvref; // rvalue
1167  ///   ref &a;              // lvalue, inner ref, spelled lvalue
1168  ///   ref &&a;             // lvalue, inner ref
1169  ///   rvref &a;            // lvalue, inner ref, spelled lvalue
1170  ///   rvref &&a;           // rvalue, inner ref
1171  bool SpelledAsLValue;
1172
1173  /// True if the inner type is a reference type.  This only happens
1174  /// in non-canonical forms.
1175  bool InnerRef;
1176
1177protected:
1178  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
1179                bool SpelledAsLValue) :
1180    Type(tc, CanonicalRef, Referencee->isDependentType()),
1181    PointeeType(Referencee), SpelledAsLValue(SpelledAsLValue),
1182    InnerRef(Referencee->isReferenceType()) {
1183  }
1184public:
1185  bool isSpelledAsLValue() const { return SpelledAsLValue; }
1186
1187  QualType getPointeeTypeAsWritten() const { return PointeeType; }
1188  QualType getPointeeType() const {
1189    // FIXME: this might strip inner qualifiers; okay?
1190    const ReferenceType *T = this;
1191    while (T->InnerRef)
1192      T = T->PointeeType->getAs<ReferenceType>();
1193    return T->PointeeType;
1194  }
1195
1196  void Profile(llvm::FoldingSetNodeID &ID) {
1197    Profile(ID, PointeeType, SpelledAsLValue);
1198  }
1199  static void Profile(llvm::FoldingSetNodeID &ID,
1200                      QualType Referencee,
1201                      bool SpelledAsLValue) {
1202    ID.AddPointer(Referencee.getAsOpaquePtr());
1203    ID.AddBoolean(SpelledAsLValue);
1204  }
1205
1206  static bool classof(const Type *T) {
1207    return T->getTypeClass() == LValueReference ||
1208           T->getTypeClass() == RValueReference;
1209  }
1210  static bool classof(const ReferenceType *) { return true; }
1211};
1212
1213/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
1214///
1215class LValueReferenceType : public ReferenceType {
1216  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
1217                      bool SpelledAsLValue) :
1218    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
1219  {}
1220  friend class ASTContext; // ASTContext creates these
1221public:
1222  bool isSugared() const { return false; }
1223  QualType desugar() const { return QualType(this, 0); }
1224
1225  static bool classof(const Type *T) {
1226    return T->getTypeClass() == LValueReference;
1227  }
1228  static bool classof(const LValueReferenceType *) { return true; }
1229};
1230
1231/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
1232///
1233class RValueReferenceType : public ReferenceType {
1234  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
1235    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
1236  }
1237  friend class ASTContext; // ASTContext creates these
1238public:
1239  bool isSugared() const { return false; }
1240  QualType desugar() const { return QualType(this, 0); }
1241
1242  static bool classof(const Type *T) {
1243    return T->getTypeClass() == RValueReference;
1244  }
1245  static bool classof(const RValueReferenceType *) { return true; }
1246};
1247
1248/// MemberPointerType - C++ 8.3.3 - Pointers to members
1249///
1250class MemberPointerType : public Type, public llvm::FoldingSetNode {
1251  QualType PointeeType;
1252  /// The class of which the pointee is a member. Must ultimately be a
1253  /// RecordType, but could be a typedef or a template parameter too.
1254  const Type *Class;
1255
1256  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
1257    Type(MemberPointer, CanonicalPtr,
1258         Cls->isDependentType() || Pointee->isDependentType()),
1259    PointeeType(Pointee), Class(Cls) {
1260  }
1261  friend class ASTContext; // ASTContext creates these.
1262public:
1263
1264  QualType getPointeeType() const { return PointeeType; }
1265
1266  const Type *getClass() const { return Class; }
1267
1268  bool isSugared() const { return false; }
1269  QualType desugar() const { return QualType(this, 0); }
1270
1271  void Profile(llvm::FoldingSetNodeID &ID) {
1272    Profile(ID, getPointeeType(), getClass());
1273  }
1274  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
1275                      const Type *Class) {
1276    ID.AddPointer(Pointee.getAsOpaquePtr());
1277    ID.AddPointer(Class);
1278  }
1279
1280  static bool classof(const Type *T) {
1281    return T->getTypeClass() == MemberPointer;
1282  }
1283  static bool classof(const MemberPointerType *) { return true; }
1284};
1285
1286/// ArrayType - C99 6.7.5.2 - Array Declarators.
1287///
1288class ArrayType : public Type, public llvm::FoldingSetNode {
1289public:
1290  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
1291  /// an array with a static size (e.g. int X[static 4]), or an array
1292  /// with a star size (e.g. int X[*]).
1293  /// 'static' is only allowed on function parameters.
1294  enum ArraySizeModifier {
1295    Normal, Static, Star
1296  };
1297private:
1298  /// ElementType - The element type of the array.
1299  QualType ElementType;
1300
1301  // NOTE: VC++ treats enums as signed, avoid using the ArraySizeModifier enum
1302  /// NOTE: These fields are packed into the bitfields space in the Type class.
1303  unsigned SizeModifier : 2;
1304
1305  /// IndexTypeQuals - Capture qualifiers in declarations like:
1306  /// 'int X[static restrict 4]'. For function parameters only.
1307  unsigned IndexTypeQuals : 3;
1308
1309protected:
1310  // C++ [temp.dep.type]p1:
1311  //   A type is dependent if it is...
1312  //     - an array type constructed from any dependent type or whose
1313  //       size is specified by a constant expression that is
1314  //       value-dependent,
1315  ArrayType(TypeClass tc, QualType et, QualType can,
1316            ArraySizeModifier sm, unsigned tq)
1317    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray),
1318      ElementType(et), SizeModifier(sm), IndexTypeQuals(tq) {}
1319
1320  friend class ASTContext;  // ASTContext creates these.
1321public:
1322  QualType getElementType() const { return ElementType; }
1323  ArraySizeModifier getSizeModifier() const {
1324    return ArraySizeModifier(SizeModifier);
1325  }
1326  Qualifiers getIndexTypeQualifiers() const {
1327    return Qualifiers::fromCVRMask(IndexTypeQuals);
1328  }
1329  unsigned getIndexTypeCVRQualifiers() const { return IndexTypeQuals; }
1330
1331  static bool classof(const Type *T) {
1332    return T->getTypeClass() == ConstantArray ||
1333           T->getTypeClass() == VariableArray ||
1334           T->getTypeClass() == IncompleteArray ||
1335           T->getTypeClass() == DependentSizedArray;
1336  }
1337  static bool classof(const ArrayType *) { return true; }
1338};
1339
1340/// ConstantArrayType - This class represents the canonical version of
1341/// C arrays with a specified constant size.  For example, the canonical
1342/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
1343/// type is 'int' and the size is 404.
1344class ConstantArrayType : public ArrayType {
1345  llvm::APInt Size; // Allows us to unique the type.
1346
1347  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
1348                    ArraySizeModifier sm, unsigned tq)
1349    : ArrayType(ConstantArray, et, can, sm, tq),
1350      Size(size) {}
1351protected:
1352  ConstantArrayType(TypeClass tc, QualType et, QualType can,
1353                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
1354    : ArrayType(tc, et, can, sm, tq), Size(size) {}
1355  friend class ASTContext;  // ASTContext creates these.
1356public:
1357  const llvm::APInt &getSize() const { return Size; }
1358  bool isSugared() const { return false; }
1359  QualType desugar() const { return QualType(this, 0); }
1360
1361  void Profile(llvm::FoldingSetNodeID &ID) {
1362    Profile(ID, getElementType(), getSize(),
1363            getSizeModifier(), getIndexTypeCVRQualifiers());
1364  }
1365  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1366                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
1367                      unsigned TypeQuals) {
1368    ID.AddPointer(ET.getAsOpaquePtr());
1369    ID.AddInteger(ArraySize.getZExtValue());
1370    ID.AddInteger(SizeMod);
1371    ID.AddInteger(TypeQuals);
1372  }
1373  static bool classof(const Type *T) {
1374    return T->getTypeClass() == ConstantArray;
1375  }
1376  static bool classof(const ConstantArrayType *) { return true; }
1377};
1378
1379/// IncompleteArrayType - This class represents C arrays with an unspecified
1380/// size.  For example 'int A[]' has an IncompleteArrayType where the element
1381/// type is 'int' and the size is unspecified.
1382class IncompleteArrayType : public ArrayType {
1383
1384  IncompleteArrayType(QualType et, QualType can,
1385                      ArraySizeModifier sm, unsigned tq)
1386    : ArrayType(IncompleteArray, et, can, sm, tq) {}
1387  friend class ASTContext;  // ASTContext creates these.
1388public:
1389  bool isSugared() const { return false; }
1390  QualType desugar() const { return QualType(this, 0); }
1391
1392  static bool classof(const Type *T) {
1393    return T->getTypeClass() == IncompleteArray;
1394  }
1395  static bool classof(const IncompleteArrayType *) { return true; }
1396
1397  friend class StmtIteratorBase;
1398
1399  void Profile(llvm::FoldingSetNodeID &ID) {
1400    Profile(ID, getElementType(), getSizeModifier(),
1401            getIndexTypeCVRQualifiers());
1402  }
1403
1404  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
1405                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
1406    ID.AddPointer(ET.getAsOpaquePtr());
1407    ID.AddInteger(SizeMod);
1408    ID.AddInteger(TypeQuals);
1409  }
1410};
1411
1412/// VariableArrayType - This class represents C arrays with a specified size
1413/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
1414/// Since the size expression is an arbitrary expression, we store it as such.
1415///
1416/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
1417/// should not be: two lexically equivalent variable array types could mean
1418/// different things, for example, these variables do not have the same type
1419/// dynamically:
1420///
1421/// void foo(int x) {
1422///   int Y[x];
1423///   ++x;
1424///   int Z[x];
1425/// }
1426///
1427class VariableArrayType : public ArrayType {
1428  /// SizeExpr - An assignment expression. VLA's are only permitted within
1429  /// a function block.
1430  Stmt *SizeExpr;
1431  /// Brackets - The left and right array brackets.
1432  SourceRange Brackets;
1433
1434  VariableArrayType(QualType et, QualType can, Expr *e,
1435                    ArraySizeModifier sm, unsigned tq,
1436                    SourceRange brackets)
1437    : ArrayType(VariableArray, et, can, sm, tq),
1438      SizeExpr((Stmt*) e), Brackets(brackets) {}
1439  friend class ASTContext;  // ASTContext creates these.
1440  virtual void Destroy(ASTContext& C);
1441
1442public:
1443  Expr *getSizeExpr() const {
1444    // We use C-style casts instead of cast<> here because we do not wish
1445    // to have a dependency of Type.h on Stmt.h/Expr.h.
1446    return (Expr*) SizeExpr;
1447  }
1448  SourceRange getBracketsRange() const { return Brackets; }
1449  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1450  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1451
1452  bool isSugared() const { return false; }
1453  QualType desugar() const { return QualType(this, 0); }
1454
1455  static bool classof(const Type *T) {
1456    return T->getTypeClass() == VariableArray;
1457  }
1458  static bool classof(const VariableArrayType *) { return true; }
1459
1460  friend class StmtIteratorBase;
1461
1462  void Profile(llvm::FoldingSetNodeID &ID) {
1463    assert(0 && "Cannnot unique VariableArrayTypes.");
1464  }
1465};
1466
1467/// DependentSizedArrayType - This type represents an array type in
1468/// C++ whose size is a value-dependent expression. For example:
1469///
1470/// \code
1471/// template<typename T, int Size>
1472/// class array {
1473///   T data[Size];
1474/// };
1475/// \endcode
1476///
1477/// For these types, we won't actually know what the array bound is
1478/// until template instantiation occurs, at which point this will
1479/// become either a ConstantArrayType or a VariableArrayType.
1480class DependentSizedArrayType : public ArrayType {
1481  ASTContext &Context;
1482
1483  /// \brief An assignment expression that will instantiate to the
1484  /// size of the array.
1485  ///
1486  /// The expression itself might be NULL, in which case the array
1487  /// type will have its size deduced from an initializer.
1488  Stmt *SizeExpr;
1489
1490  /// Brackets - The left and right array brackets.
1491  SourceRange Brackets;
1492
1493  DependentSizedArrayType(ASTContext &Context, QualType et, QualType can,
1494                          Expr *e, ArraySizeModifier sm, unsigned tq,
1495                          SourceRange brackets)
1496    : ArrayType(DependentSizedArray, et, can, sm, tq),
1497      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
1498  friend class ASTContext;  // ASTContext creates these.
1499  virtual void Destroy(ASTContext& C);
1500
1501public:
1502  Expr *getSizeExpr() const {
1503    // We use C-style casts instead of cast<> here because we do not wish
1504    // to have a dependency of Type.h on Stmt.h/Expr.h.
1505    return (Expr*) SizeExpr;
1506  }
1507  SourceRange getBracketsRange() const { return Brackets; }
1508  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
1509  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
1510
1511  bool isSugared() const { return false; }
1512  QualType desugar() const { return QualType(this, 0); }
1513
1514  static bool classof(const Type *T) {
1515    return T->getTypeClass() == DependentSizedArray;
1516  }
1517  static bool classof(const DependentSizedArrayType *) { return true; }
1518
1519  friend class StmtIteratorBase;
1520
1521
1522  void Profile(llvm::FoldingSetNodeID &ID) {
1523    Profile(ID, Context, getElementType(),
1524            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
1525  }
1526
1527  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1528                      QualType ET, ArraySizeModifier SizeMod,
1529                      unsigned TypeQuals, Expr *E);
1530};
1531
1532/// DependentSizedExtVectorType - This type represent an extended vector type
1533/// where either the type or size is dependent. For example:
1534/// @code
1535/// template<typename T, int Size>
1536/// class vector {
1537///   typedef T __attribute__((ext_vector_type(Size))) type;
1538/// }
1539/// @endcode
1540class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
1541  ASTContext &Context;
1542  Expr *SizeExpr;
1543  /// ElementType - The element type of the array.
1544  QualType ElementType;
1545  SourceLocation loc;
1546
1547  DependentSizedExtVectorType(ASTContext &Context, QualType ElementType,
1548                              QualType can, Expr *SizeExpr, SourceLocation loc)
1549    : Type (DependentSizedExtVector, can, true),
1550      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
1551      loc(loc) {}
1552  friend class ASTContext;
1553  virtual void Destroy(ASTContext& C);
1554
1555public:
1556  Expr *getSizeExpr() const { return SizeExpr; }
1557  QualType getElementType() const { return ElementType; }
1558  SourceLocation getAttributeLoc() const { return loc; }
1559
1560  bool isSugared() const { return false; }
1561  QualType desugar() const { return QualType(this, 0); }
1562
1563  static bool classof(const Type *T) {
1564    return T->getTypeClass() == DependentSizedExtVector;
1565  }
1566  static bool classof(const DependentSizedExtVectorType *) { return true; }
1567
1568  void Profile(llvm::FoldingSetNodeID &ID) {
1569    Profile(ID, Context, getElementType(), getSizeExpr());
1570  }
1571
1572  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1573                      QualType ElementType, Expr *SizeExpr);
1574};
1575
1576
1577/// VectorType - GCC generic vector type. This type is created using
1578/// __attribute__((vector_size(n)), where "n" specifies the vector size in
1579/// bytes. Since the constructor takes the number of vector elements, the
1580/// client is responsible for converting the size into the number of elements.
1581class VectorType : public Type, public llvm::FoldingSetNode {
1582protected:
1583  /// ElementType - The element type of the vector.
1584  QualType ElementType;
1585
1586  /// NumElements - The number of elements in the vector.
1587  unsigned NumElements;
1588
1589  VectorType(QualType vecType, unsigned nElements, QualType canonType) :
1590    Type(Vector, canonType, vecType->isDependentType()),
1591    ElementType(vecType), NumElements(nElements) {}
1592  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
1593             QualType canonType)
1594    : Type(tc, canonType, vecType->isDependentType()), ElementType(vecType),
1595      NumElements(nElements) {}
1596  friend class ASTContext;  // ASTContext creates these.
1597public:
1598
1599  QualType getElementType() const { return ElementType; }
1600  unsigned getNumElements() const { return NumElements; }
1601
1602  bool isSugared() const { return false; }
1603  QualType desugar() const { return QualType(this, 0); }
1604
1605  void Profile(llvm::FoldingSetNodeID &ID) {
1606    Profile(ID, getElementType(), getNumElements(), getTypeClass());
1607  }
1608  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
1609                      unsigned NumElements, TypeClass TypeClass) {
1610    ID.AddPointer(ElementType.getAsOpaquePtr());
1611    ID.AddInteger(NumElements);
1612    ID.AddInteger(TypeClass);
1613  }
1614  static bool classof(const Type *T) {
1615    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
1616  }
1617  static bool classof(const VectorType *) { return true; }
1618};
1619
1620/// ExtVectorType - Extended vector type. This type is created using
1621/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
1622/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
1623/// class enables syntactic extensions, like Vector Components for accessing
1624/// points, colors, and textures (modeled after OpenGL Shading Language).
1625class ExtVectorType : public VectorType {
1626  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
1627    VectorType(ExtVector, vecType, nElements, canonType) {}
1628  friend class ASTContext;  // ASTContext creates these.
1629public:
1630  static int getPointAccessorIdx(char c) {
1631    switch (c) {
1632    default: return -1;
1633    case 'x': return 0;
1634    case 'y': return 1;
1635    case 'z': return 2;
1636    case 'w': return 3;
1637    }
1638  }
1639  static int getNumericAccessorIdx(char c) {
1640    switch (c) {
1641      default: return -1;
1642      case '0': return 0;
1643      case '1': return 1;
1644      case '2': return 2;
1645      case '3': return 3;
1646      case '4': return 4;
1647      case '5': return 5;
1648      case '6': return 6;
1649      case '7': return 7;
1650      case '8': return 8;
1651      case '9': return 9;
1652      case 'A':
1653      case 'a': return 10;
1654      case 'B':
1655      case 'b': return 11;
1656      case 'C':
1657      case 'c': return 12;
1658      case 'D':
1659      case 'd': return 13;
1660      case 'E':
1661      case 'e': return 14;
1662      case 'F':
1663      case 'f': return 15;
1664    }
1665  }
1666
1667  static int getAccessorIdx(char c) {
1668    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
1669    return getNumericAccessorIdx(c);
1670  }
1671
1672  bool isAccessorWithinNumElements(char c) const {
1673    if (int idx = getAccessorIdx(c)+1)
1674      return unsigned(idx-1) < NumElements;
1675    return false;
1676  }
1677  bool isSugared() const { return false; }
1678  QualType desugar() const { return QualType(this, 0); }
1679
1680  static bool classof(const Type *T) {
1681    return T->getTypeClass() == ExtVector;
1682  }
1683  static bool classof(const ExtVectorType *) { return true; }
1684};
1685
1686/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
1687/// class of FunctionNoProtoType and FunctionProtoType.
1688///
1689class FunctionType : public Type {
1690  /// SubClassData - This field is owned by the subclass, put here to pack
1691  /// tightly with the ivars in Type.
1692  bool SubClassData : 1;
1693
1694  /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
1695  /// other bitfields.
1696  /// The qualifiers are part of FunctionProtoType because...
1697  ///
1698  /// C++ 8.3.5p4: The return type, the parameter type list and the
1699  /// cv-qualifier-seq, [...], are part of the function type.
1700  ///
1701  unsigned TypeQuals : 3;
1702
1703  /// NoReturn - Indicates if the function type is attribute noreturn.
1704  unsigned NoReturn : 1;
1705
1706  /// CallConv - The calling convention used by the function.
1707  unsigned CallConv : 2;
1708
1709  // The type returned by the function.
1710  QualType ResultType;
1711protected:
1712  FunctionType(TypeClass tc, QualType res, bool SubclassInfo,
1713               unsigned typeQuals, QualType Canonical, bool Dependent,
1714               bool noReturn = false, CallingConv callConv = CC_Default)
1715    : Type(tc, Canonical, Dependent),
1716      SubClassData(SubclassInfo), TypeQuals(typeQuals), NoReturn(noReturn),
1717      CallConv(callConv), ResultType(res) {}
1718  bool getSubClassData() const { return SubClassData; }
1719  unsigned getTypeQuals() const { return TypeQuals; }
1720public:
1721
1722  QualType getResultType() const { return ResultType; }
1723  bool getNoReturnAttr() const { return NoReturn; }
1724  CallingConv getCallConv() const { return (CallingConv)CallConv; }
1725
1726  static bool classof(const Type *T) {
1727    return T->getTypeClass() == FunctionNoProto ||
1728           T->getTypeClass() == FunctionProto;
1729  }
1730  static bool classof(const FunctionType *) { return true; }
1731};
1732
1733/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
1734/// no information available about its arguments.
1735class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
1736  FunctionNoProtoType(QualType Result, QualType Canonical,
1737                      bool NoReturn = false, CallingConv CallConv = CC_Default)
1738    : FunctionType(FunctionNoProto, Result, false, 0, Canonical,
1739                   /*Dependent=*/false, NoReturn, CallConv) {}
1740  friend class ASTContext;  // ASTContext creates these.
1741public:
1742  // No additional state past what FunctionType provides.
1743
1744  bool isSugared() const { return false; }
1745  QualType desugar() const { return QualType(this, 0); }
1746
1747  void Profile(llvm::FoldingSetNodeID &ID) {
1748    Profile(ID, getResultType(), getNoReturnAttr());
1749  }
1750  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
1751                      bool NoReturn) {
1752    ID.AddInteger(NoReturn);
1753    ID.AddPointer(ResultType.getAsOpaquePtr());
1754  }
1755
1756  static bool classof(const Type *T) {
1757    return T->getTypeClass() == FunctionNoProto;
1758  }
1759  static bool classof(const FunctionNoProtoType *) { return true; }
1760};
1761
1762/// FunctionProtoType - Represents a prototype with argument type info, e.g.
1763/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
1764/// arguments, not as having a single void argument. Such a type can have an
1765/// exception specification, but this specification is not part of the canonical
1766/// type.
1767class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
1768  /// hasAnyDependentType - Determine whether there are any dependent
1769  /// types within the arguments passed in.
1770  static bool hasAnyDependentType(const QualType *ArgArray, unsigned numArgs) {
1771    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
1772      if (ArgArray[Idx]->isDependentType())
1773    return true;
1774
1775    return false;
1776  }
1777
1778  FunctionProtoType(QualType Result, const QualType *ArgArray, unsigned numArgs,
1779                    bool isVariadic, unsigned typeQuals, bool hasExs,
1780                    bool hasAnyExs, const QualType *ExArray,
1781                    unsigned numExs, QualType Canonical, bool NoReturn,
1782                    CallingConv CallConv)
1783    : FunctionType(FunctionProto, Result, isVariadic, typeQuals, Canonical,
1784                   (Result->isDependentType() ||
1785                    hasAnyDependentType(ArgArray, numArgs)), NoReturn,
1786                   CallConv),
1787      NumArgs(numArgs), NumExceptions(numExs), HasExceptionSpec(hasExs),
1788      AnyExceptionSpec(hasAnyExs) {
1789    // Fill in the trailing argument array.
1790    QualType *ArgInfo = reinterpret_cast<QualType*>(this+1);
1791    for (unsigned i = 0; i != numArgs; ++i)
1792      ArgInfo[i] = ArgArray[i];
1793    // Fill in the exception array.
1794    QualType *Ex = ArgInfo + numArgs;
1795    for (unsigned i = 0; i != numExs; ++i)
1796      Ex[i] = ExArray[i];
1797  }
1798
1799  /// NumArgs - The number of arguments this function has, not counting '...'.
1800  unsigned NumArgs : 20;
1801
1802  /// NumExceptions - The number of types in the exception spec, if any.
1803  unsigned NumExceptions : 10;
1804
1805  /// HasExceptionSpec - Whether this function has an exception spec at all.
1806  bool HasExceptionSpec : 1;
1807
1808  /// AnyExceptionSpec - Whether this function has a throw(...) spec.
1809  bool AnyExceptionSpec : 1;
1810
1811  /// ArgInfo - There is an variable size array after the class in memory that
1812  /// holds the argument types.
1813
1814  /// Exceptions - There is another variable size array after ArgInfo that
1815  /// holds the exception types.
1816
1817  friend class ASTContext;  // ASTContext creates these.
1818
1819public:
1820  unsigned getNumArgs() const { return NumArgs; }
1821  QualType getArgType(unsigned i) const {
1822    assert(i < NumArgs && "Invalid argument number!");
1823    return arg_type_begin()[i];
1824  }
1825
1826  bool hasExceptionSpec() const { return HasExceptionSpec; }
1827  bool hasAnyExceptionSpec() const { return AnyExceptionSpec; }
1828  unsigned getNumExceptions() const { return NumExceptions; }
1829  QualType getExceptionType(unsigned i) const {
1830    assert(i < NumExceptions && "Invalid exception number!");
1831    return exception_begin()[i];
1832  }
1833  bool hasEmptyExceptionSpec() const {
1834    return hasExceptionSpec() && !hasAnyExceptionSpec() &&
1835      getNumExceptions() == 0;
1836  }
1837
1838  bool isVariadic() const { return getSubClassData(); }
1839  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
1840
1841  typedef const QualType *arg_type_iterator;
1842  arg_type_iterator arg_type_begin() const {
1843    return reinterpret_cast<const QualType *>(this+1);
1844  }
1845  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
1846
1847  typedef const QualType *exception_iterator;
1848  exception_iterator exception_begin() const {
1849    // exceptions begin where arguments end
1850    return arg_type_end();
1851  }
1852  exception_iterator exception_end() const {
1853    return exception_begin() + NumExceptions;
1854  }
1855
1856  bool isSugared() const { return false; }
1857  QualType desugar() const { return QualType(this, 0); }
1858
1859  static bool classof(const Type *T) {
1860    return T->getTypeClass() == FunctionProto;
1861  }
1862  static bool classof(const FunctionProtoType *) { return true; }
1863
1864  void Profile(llvm::FoldingSetNodeID &ID);
1865  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1866                      arg_type_iterator ArgTys, unsigned NumArgs,
1867                      bool isVariadic, unsigned TypeQuals,
1868                      bool hasExceptionSpec, bool anyExceptionSpec,
1869                      unsigned NumExceptions, exception_iterator Exs,
1870                      bool NoReturn);
1871};
1872
1873
1874/// \brief Represents the dependent type named by a dependently-scoped
1875/// typename using declaration, e.g.
1876///   using typename Base<T>::foo;
1877/// Template instantiation turns these into the underlying type.
1878class UnresolvedUsingType : public Type {
1879  UnresolvedUsingTypenameDecl *Decl;
1880
1881  UnresolvedUsingType(UnresolvedUsingTypenameDecl *D)
1882    : Type(UnresolvedUsing, QualType(), true), Decl(D) {}
1883  friend class ASTContext; // ASTContext creates these.
1884public:
1885
1886  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
1887
1888  bool isSugared() const { return false; }
1889  QualType desugar() const { return QualType(this, 0); }
1890
1891  static bool classof(const Type *T) {
1892    return T->getTypeClass() == UnresolvedUsing;
1893  }
1894  static bool classof(const UnresolvedUsingType *) { return true; }
1895
1896  void Profile(llvm::FoldingSetNodeID &ID) {
1897    return Profile(ID, Decl);
1898  }
1899  static void Profile(llvm::FoldingSetNodeID &ID,
1900                      UnresolvedUsingTypenameDecl *D) {
1901    ID.AddPointer(D);
1902  }
1903};
1904
1905
1906class TypedefType : public Type {
1907  TypedefDecl *Decl;
1908protected:
1909  TypedefType(TypeClass tc, TypedefDecl *D, QualType can)
1910    : Type(tc, can, can->isDependentType()), Decl(D) {
1911    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1912  }
1913  friend class ASTContext;  // ASTContext creates these.
1914public:
1915
1916  TypedefDecl *getDecl() const { return Decl; }
1917
1918  /// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
1919  /// potentially looking through *all* consecutive typedefs.  This returns the
1920  /// sum of the type qualifiers, so if you have:
1921  ///   typedef const int A;
1922  ///   typedef volatile A B;
1923  /// looking through the typedefs for B will give you "const volatile A".
1924  QualType LookThroughTypedefs() const;
1925
1926  bool isSugared() const { return true; }
1927  QualType desugar() const;
1928
1929  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
1930  static bool classof(const TypedefType *) { return true; }
1931};
1932
1933/// TypeOfExprType (GCC extension).
1934class TypeOfExprType : public Type {
1935  Expr *TOExpr;
1936
1937protected:
1938  TypeOfExprType(Expr *E, QualType can = QualType());
1939  friend class ASTContext;  // ASTContext creates these.
1940public:
1941  Expr *getUnderlyingExpr() const { return TOExpr; }
1942
1943  /// \brief Remove a single level of sugar.
1944  QualType desugar() const;
1945
1946  /// \brief Returns whether this type directly provides sugar.
1947  bool isSugared() const { return true; }
1948
1949  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
1950  static bool classof(const TypeOfExprType *) { return true; }
1951};
1952
1953/// Subclass of TypeOfExprType that is used for canonical, dependent
1954/// typeof(expr) types.
1955class DependentTypeOfExprType
1956  : public TypeOfExprType, public llvm::FoldingSetNode {
1957  ASTContext &Context;
1958
1959public:
1960  DependentTypeOfExprType(ASTContext &Context, Expr *E)
1961    : TypeOfExprType(E), Context(Context) { }
1962
1963  bool isSugared() const { return false; }
1964  QualType desugar() const { return QualType(this, 0); }
1965
1966  void Profile(llvm::FoldingSetNodeID &ID) {
1967    Profile(ID, Context, getUnderlyingExpr());
1968  }
1969
1970  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
1971                      Expr *E);
1972};
1973
1974/// TypeOfType (GCC extension).
1975class TypeOfType : public Type {
1976  QualType TOType;
1977  TypeOfType(QualType T, QualType can)
1978    : Type(TypeOf, can, T->isDependentType()), TOType(T) {
1979    assert(!isa<TypedefType>(can) && "Invalid canonical type");
1980  }
1981  friend class ASTContext;  // ASTContext creates these.
1982public:
1983  QualType getUnderlyingType() const { return TOType; }
1984
1985  /// \brief Remove a single level of sugar.
1986  QualType desugar() const { return getUnderlyingType(); }
1987
1988  /// \brief Returns whether this type directly provides sugar.
1989  bool isSugared() const { return true; }
1990
1991  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
1992  static bool classof(const TypeOfType *) { return true; }
1993};
1994
1995/// DecltypeType (C++0x)
1996class DecltypeType : public Type {
1997  Expr *E;
1998
1999  // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
2000  // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
2001  // from it.
2002  QualType UnderlyingType;
2003
2004protected:
2005  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
2006  friend class ASTContext;  // ASTContext creates these.
2007public:
2008  Expr *getUnderlyingExpr() const { return E; }
2009  QualType getUnderlyingType() const { return UnderlyingType; }
2010
2011  /// \brief Remove a single level of sugar.
2012  QualType desugar() const { return getUnderlyingType(); }
2013
2014  /// \brief Returns whether this type directly provides sugar.
2015  bool isSugared() const { return !isDependentType(); }
2016
2017  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
2018  static bool classof(const DecltypeType *) { return true; }
2019};
2020
2021/// Subclass of DecltypeType that is used for canonical, dependent
2022/// C++0x decltype types.
2023class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
2024  ASTContext &Context;
2025
2026public:
2027  DependentDecltypeType(ASTContext &Context, Expr *E);
2028
2029  bool isSugared() const { return false; }
2030  QualType desugar() const { return QualType(this, 0); }
2031
2032  void Profile(llvm::FoldingSetNodeID &ID) {
2033    Profile(ID, Context, getUnderlyingExpr());
2034  }
2035
2036  static void Profile(llvm::FoldingSetNodeID &ID, ASTContext &Context,
2037                      Expr *E);
2038};
2039
2040class TagType : public Type {
2041  /// Stores the TagDecl associated with this type. The decl will
2042  /// point to the TagDecl that actually defines the entity (or is a
2043  /// definition in progress), if there is such a definition. The
2044  /// single-bit value will be non-zero when this tag is in the
2045  /// process of being defined.
2046  mutable llvm::PointerIntPair<TagDecl *, 1> decl;
2047  friend class ASTContext;
2048  friend class TagDecl;
2049
2050protected:
2051  TagType(TypeClass TC, TagDecl *D, QualType can);
2052
2053public:
2054  TagDecl *getDecl() const { return decl.getPointer(); }
2055
2056  /// @brief Determines whether this type is in the process of being
2057  /// defined.
2058  bool isBeingDefined() const { return decl.getInt(); }
2059  void setBeingDefined(bool Def) const { decl.setInt(Def? 1 : 0); }
2060
2061  static bool classof(const Type *T) {
2062    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
2063  }
2064  static bool classof(const TagType *) { return true; }
2065  static bool classof(const RecordType *) { return true; }
2066  static bool classof(const EnumType *) { return true; }
2067};
2068
2069/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
2070/// to detect TagType objects of structs/unions/classes.
2071class RecordType : public TagType {
2072protected:
2073  explicit RecordType(RecordDecl *D)
2074    : TagType(Record, reinterpret_cast<TagDecl*>(D), QualType()) { }
2075  explicit RecordType(TypeClass TC, RecordDecl *D)
2076    : TagType(TC, reinterpret_cast<TagDecl*>(D), QualType()) { }
2077  friend class ASTContext;   // ASTContext creates these.
2078public:
2079
2080  RecordDecl *getDecl() const {
2081    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
2082  }
2083
2084  // FIXME: This predicate is a helper to QualType/Type. It needs to
2085  // recursively check all fields for const-ness. If any field is declared
2086  // const, it needs to return false.
2087  bool hasConstFields() const { return false; }
2088
2089  // FIXME: RecordType needs to check when it is created that all fields are in
2090  // the same address space, and return that.
2091  unsigned getAddressSpace() const { return 0; }
2092
2093  bool isSugared() const { return false; }
2094  QualType desugar() const { return QualType(this, 0); }
2095
2096  static bool classof(const TagType *T);
2097  static bool classof(const Type *T) {
2098    return isa<TagType>(T) && classof(cast<TagType>(T));
2099  }
2100  static bool classof(const RecordType *) { return true; }
2101};
2102
2103/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
2104/// to detect TagType objects of enums.
2105class EnumType : public TagType {
2106  explicit EnumType(EnumDecl *D)
2107    : TagType(Enum, reinterpret_cast<TagDecl*>(D), QualType()) { }
2108  friend class ASTContext;   // ASTContext creates these.
2109public:
2110
2111  EnumDecl *getDecl() const {
2112    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
2113  }
2114
2115  bool isSugared() const { return false; }
2116  QualType desugar() const { return QualType(this, 0); }
2117
2118  static bool classof(const TagType *T);
2119  static bool classof(const Type *T) {
2120    return isa<TagType>(T) && classof(cast<TagType>(T));
2121  }
2122  static bool classof(const EnumType *) { return true; }
2123};
2124
2125/// ElaboratedType - A non-canonical type used to represents uses of
2126/// elaborated type specifiers in C++.  For example:
2127///
2128///   void foo(union MyUnion);
2129///            ^^^^^^^^^^^^^
2130///
2131/// At the moment, for efficiency we do not create elaborated types in
2132/// C, since outside of typedefs all references to structs would
2133/// necessarily be elaborated.
2134class ElaboratedType : public Type, public llvm::FoldingSetNode {
2135public:
2136  enum TagKind {
2137    TK_struct,
2138    TK_union,
2139    TK_class,
2140    TK_enum
2141  };
2142
2143private:
2144  /// The tag that was used in this elaborated type specifier.
2145  TagKind Tag;
2146
2147  /// The underlying type.
2148  QualType UnderlyingType;
2149
2150  explicit ElaboratedType(QualType Ty, TagKind Tag, QualType Canon)
2151    : Type(Elaborated, Canon, Canon->isDependentType()),
2152      Tag(Tag), UnderlyingType(Ty) { }
2153  friend class ASTContext;   // ASTContext creates these.
2154
2155public:
2156  TagKind getTagKind() const { return Tag; }
2157  QualType getUnderlyingType() const { return UnderlyingType; }
2158
2159  /// \brief Remove a single level of sugar.
2160  QualType desugar() const { return getUnderlyingType(); }
2161
2162  /// \brief Returns whether this type directly provides sugar.
2163  bool isSugared() const { return true; }
2164
2165  static const char *getNameForTagKind(TagKind Kind) {
2166    switch (Kind) {
2167    default: assert(0 && "Unknown TagKind!");
2168    case TK_struct: return "struct";
2169    case TK_union:  return "union";
2170    case TK_class:  return "class";
2171    case TK_enum:   return "enum";
2172    }
2173  }
2174
2175  void Profile(llvm::FoldingSetNodeID &ID) {
2176    Profile(ID, getUnderlyingType(), getTagKind());
2177  }
2178  static void Profile(llvm::FoldingSetNodeID &ID, QualType T, TagKind Tag) {
2179    ID.AddPointer(T.getAsOpaquePtr());
2180    ID.AddInteger(Tag);
2181  }
2182
2183  static bool classof(const ElaboratedType*) { return true; }
2184  static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
2185};
2186
2187class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2188  unsigned Depth : 15;
2189  unsigned Index : 16;
2190  unsigned ParameterPack : 1;
2191  IdentifierInfo *Name;
2192
2193  TemplateTypeParmType(unsigned D, unsigned I, bool PP, IdentifierInfo *N,
2194                       QualType Canon)
2195    : Type(TemplateTypeParm, Canon, /*Dependent=*/true),
2196      Depth(D), Index(I), ParameterPack(PP), Name(N) { }
2197
2198  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
2199    : Type(TemplateTypeParm, QualType(this, 0), /*Dependent=*/true),
2200      Depth(D), Index(I), ParameterPack(PP), Name(0) { }
2201
2202  friend class ASTContext;  // ASTContext creates these
2203
2204public:
2205  unsigned getDepth() const { return Depth; }
2206  unsigned getIndex() const { return Index; }
2207  bool isParameterPack() const { return ParameterPack; }
2208  IdentifierInfo *getName() const { return Name; }
2209
2210  bool isSugared() const { return false; }
2211  QualType desugar() const { return QualType(this, 0); }
2212
2213  void Profile(llvm::FoldingSetNodeID &ID) {
2214    Profile(ID, Depth, Index, ParameterPack, Name);
2215  }
2216
2217  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
2218                      unsigned Index, bool ParameterPack,
2219                      IdentifierInfo *Name) {
2220    ID.AddInteger(Depth);
2221    ID.AddInteger(Index);
2222    ID.AddBoolean(ParameterPack);
2223    ID.AddPointer(Name);
2224  }
2225
2226  static bool classof(const Type *T) {
2227    return T->getTypeClass() == TemplateTypeParm;
2228  }
2229  static bool classof(const TemplateTypeParmType *T) { return true; }
2230};
2231
2232/// \brief Represents the result of substituting a type for a template
2233/// type parameter.
2234///
2235/// Within an instantiated template, all template type parameters have
2236/// been replaced with these.  They are used solely to record that a
2237/// type was originally written as a template type parameter;
2238/// therefore they are never canonical.
2239class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
2240  // The original type parameter.
2241  const TemplateTypeParmType *Replaced;
2242
2243  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
2244    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType()),
2245      Replaced(Param) { }
2246
2247  friend class ASTContext;
2248
2249public:
2250  IdentifierInfo *getName() const { return Replaced->getName(); }
2251
2252  /// Gets the template parameter that was substituted for.
2253  const TemplateTypeParmType *getReplacedParameter() const {
2254    return Replaced;
2255  }
2256
2257  /// Gets the type that was substituted for the template
2258  /// parameter.
2259  QualType getReplacementType() const {
2260    return getCanonicalTypeInternal();
2261  }
2262
2263  bool isSugared() const { return true; }
2264  QualType desugar() const { return getReplacementType(); }
2265
2266  void Profile(llvm::FoldingSetNodeID &ID) {
2267    Profile(ID, getReplacedParameter(), getReplacementType());
2268  }
2269  static void Profile(llvm::FoldingSetNodeID &ID,
2270                      const TemplateTypeParmType *Replaced,
2271                      QualType Replacement) {
2272    ID.AddPointer(Replaced);
2273    ID.AddPointer(Replacement.getAsOpaquePtr());
2274  }
2275
2276  static bool classof(const Type *T) {
2277    return T->getTypeClass() == SubstTemplateTypeParm;
2278  }
2279  static bool classof(const SubstTemplateTypeParmType *T) { return true; }
2280};
2281
2282/// \brief Represents the type of a template specialization as written
2283/// in the source code.
2284///
2285/// Template specialization types represent the syntactic form of a
2286/// template-id that refers to a type, e.g., @c vector<int>. Some
2287/// template specialization types are syntactic sugar, whose canonical
2288/// type will point to some other type node that represents the
2289/// instantiation or class template specialization. For example, a
2290/// class template specialization type of @c vector<int> will refer to
2291/// a tag type for the instantiation
2292/// @c std::vector<int, std::allocator<int>>.
2293///
2294/// Other template specialization types, for which the template name
2295/// is dependent, may be canonical types. These types are always
2296/// dependent.
2297class TemplateSpecializationType
2298  : public Type, public llvm::FoldingSetNode {
2299
2300  // FIXME: Currently needed for profiling expressions; can we avoid this?
2301  ASTContext &Context;
2302
2303    /// \brief The name of the template being specialized.
2304  TemplateName Template;
2305
2306  /// \brief - The number of template arguments named in this class
2307  /// template specialization.
2308  unsigned NumArgs;
2309
2310  TemplateSpecializationType(ASTContext &Context,
2311                             TemplateName T,
2312                             const TemplateArgument *Args,
2313                             unsigned NumArgs, QualType Canon);
2314
2315  virtual void Destroy(ASTContext& C);
2316
2317  friend class ASTContext;  // ASTContext creates these
2318
2319public:
2320  /// \brief Determine whether any of the given template arguments are
2321  /// dependent.
2322  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
2323                                            unsigned NumArgs);
2324
2325  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
2326                                            unsigned NumArgs);
2327
2328  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &);
2329
2330  /// \brief Print a template argument list, including the '<' and '>'
2331  /// enclosing the template arguments.
2332  static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
2333                                               unsigned NumArgs,
2334                                               const PrintingPolicy &Policy);
2335
2336  static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
2337                                               unsigned NumArgs,
2338                                               const PrintingPolicy &Policy);
2339
2340  static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
2341                                               const PrintingPolicy &Policy);
2342
2343  typedef const TemplateArgument * iterator;
2344
2345  iterator begin() const { return getArgs(); }
2346  iterator end() const;
2347
2348  /// \brief Retrieve the name of the template that we are specializing.
2349  TemplateName getTemplateName() const { return Template; }
2350
2351  /// \brief Retrieve the template arguments.
2352  const TemplateArgument *getArgs() const {
2353    return reinterpret_cast<const TemplateArgument *>(this + 1);
2354  }
2355
2356  /// \brief Retrieve the number of template arguments.
2357  unsigned getNumArgs() const { return NumArgs; }
2358
2359  /// \brief Retrieve a specific template argument as a type.
2360  /// \precondition @c isArgType(Arg)
2361  const TemplateArgument &getArg(unsigned Idx) const;
2362
2363  bool isSugared() const { return !isDependentType(); }
2364  QualType desugar() const { return getCanonicalTypeInternal(); }
2365
2366  void Profile(llvm::FoldingSetNodeID &ID) {
2367    Profile(ID, Template, getArgs(), NumArgs, Context);
2368  }
2369
2370  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
2371                      const TemplateArgument *Args, unsigned NumArgs,
2372                      ASTContext &Context);
2373
2374  static bool classof(const Type *T) {
2375    return T->getTypeClass() == TemplateSpecialization;
2376  }
2377  static bool classof(const TemplateSpecializationType *T) { return true; }
2378};
2379
2380/// \brief Represents a type that was referred to via a qualified
2381/// name, e.g., N::M::type.
2382///
2383/// This type is used to keep track of a type name as written in the
2384/// source code, including any nested-name-specifiers. The type itself
2385/// is always "sugar", used to express what was written in the source
2386/// code but containing no additional semantic information.
2387class QualifiedNameType : public Type, public llvm::FoldingSetNode {
2388  /// \brief The nested name specifier containing the qualifier.
2389  NestedNameSpecifier *NNS;
2390
2391  /// \brief The type that this qualified name refers to.
2392  QualType NamedType;
2393
2394  QualifiedNameType(NestedNameSpecifier *NNS, QualType NamedType,
2395                    QualType CanonType)
2396    : Type(QualifiedName, CanonType, NamedType->isDependentType()),
2397      NNS(NNS), NamedType(NamedType) { }
2398
2399  friend class ASTContext;  // ASTContext creates these
2400
2401public:
2402  /// \brief Retrieve the qualification on this type.
2403  NestedNameSpecifier *getQualifier() const { return NNS; }
2404
2405  /// \brief Retrieve the type named by the qualified-id.
2406  QualType getNamedType() const { return NamedType; }
2407
2408  /// \brief Remove a single level of sugar.
2409  QualType desugar() const { return getNamedType(); }
2410
2411  /// \brief Returns whether this type directly provides sugar.
2412  bool isSugared() const { return true; }
2413
2414  void Profile(llvm::FoldingSetNodeID &ID) {
2415    Profile(ID, NNS, NamedType);
2416  }
2417
2418  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2419                      QualType NamedType) {
2420    ID.AddPointer(NNS);
2421    NamedType.Profile(ID);
2422  }
2423
2424  static bool classof(const Type *T) {
2425    return T->getTypeClass() == QualifiedName;
2426  }
2427  static bool classof(const QualifiedNameType *T) { return true; }
2428};
2429
2430/// \brief Represents a 'typename' specifier that names a type within
2431/// a dependent type, e.g., "typename T::type".
2432///
2433/// TypenameType has a very similar structure to QualifiedNameType,
2434/// which also involves a nested-name-specifier following by a type,
2435/// and (FIXME!) both can even be prefixed by the 'typename'
2436/// keyword. However, the two types serve very different roles:
2437/// QualifiedNameType is a non-semantic type that serves only as sugar
2438/// to show how a particular type was written in the source
2439/// code. TypenameType, on the other hand, only occurs when the
2440/// nested-name-specifier is dependent, such that we cannot resolve
2441/// the actual type until after instantiation.
2442class TypenameType : public Type, public llvm::FoldingSetNode {
2443  /// \brief The nested name specifier containing the qualifier.
2444  NestedNameSpecifier *NNS;
2445
2446  typedef llvm::PointerUnion<const IdentifierInfo *,
2447                             const TemplateSpecializationType *> NameType;
2448
2449  /// \brief The type that this typename specifier refers to.
2450  NameType Name;
2451
2452  TypenameType(NestedNameSpecifier *NNS, const IdentifierInfo *Name,
2453               QualType CanonType)
2454    : Type(Typename, CanonType, true), NNS(NNS), Name(Name) {
2455    assert(NNS->isDependent() &&
2456           "TypenameType requires a dependent nested-name-specifier");
2457  }
2458
2459  TypenameType(NestedNameSpecifier *NNS, const TemplateSpecializationType *Ty,
2460               QualType CanonType)
2461    : Type(Typename, CanonType, true), NNS(NNS), Name(Ty) {
2462    assert(NNS->isDependent() &&
2463           "TypenameType requires a dependent nested-name-specifier");
2464  }
2465
2466  friend class ASTContext;  // ASTContext creates these
2467
2468public:
2469  /// \brief Retrieve the qualification on this type.
2470  NestedNameSpecifier *getQualifier() const { return NNS; }
2471
2472  /// \brief Retrieve the type named by the typename specifier as an
2473  /// identifier.
2474  ///
2475  /// This routine will return a non-NULL identifier pointer when the
2476  /// form of the original typename was terminated by an identifier,
2477  /// e.g., "typename T::type".
2478  const IdentifierInfo *getIdentifier() const {
2479    return Name.dyn_cast<const IdentifierInfo *>();
2480  }
2481
2482  /// \brief Retrieve the type named by the typename specifier as a
2483  /// type specialization.
2484  const TemplateSpecializationType *getTemplateId() const {
2485    return Name.dyn_cast<const TemplateSpecializationType *>();
2486  }
2487
2488  bool isSugared() const { return false; }
2489  QualType desugar() const { return QualType(this, 0); }
2490
2491  void Profile(llvm::FoldingSetNodeID &ID) {
2492    Profile(ID, NNS, Name);
2493  }
2494
2495  static void Profile(llvm::FoldingSetNodeID &ID, NestedNameSpecifier *NNS,
2496                      NameType Name) {
2497    ID.AddPointer(NNS);
2498    ID.AddPointer(Name.getOpaqueValue());
2499  }
2500
2501  static bool classof(const Type *T) {
2502    return T->getTypeClass() == Typename;
2503  }
2504  static bool classof(const TypenameType *T) { return true; }
2505};
2506
2507/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
2508/// object oriented design.  They basically correspond to C++ classes.  There
2509/// are two kinds of interface types, normal interfaces like "NSString" and
2510/// qualified interfaces, which are qualified with a protocol list like
2511/// "NSString<NSCopyable, NSAmazing>".
2512class ObjCInterfaceType : public Type, public llvm::FoldingSetNode {
2513  ObjCInterfaceDecl *Decl;
2514
2515  // List of protocols for this protocol conforming object type
2516  // List is sorted on protocol name. No protocol is enterred more than once.
2517  ObjCProtocolDecl **Protocols;
2518  unsigned NumProtocols;
2519
2520  ObjCInterfaceType(ASTContext &Ctx, QualType Canonical, ObjCInterfaceDecl *D,
2521                    ObjCProtocolDecl **Protos, unsigned NumP);
2522  friend class ASTContext;  // ASTContext creates these.
2523public:
2524  void Destroy(ASTContext& C);
2525
2526  ObjCInterfaceDecl *getDecl() const { return Decl; }
2527
2528  /// getNumProtocols - Return the number of qualifying protocols in this
2529  /// interface type, or 0 if there are none.
2530  unsigned getNumProtocols() const { return NumProtocols; }
2531
2532  /// qual_iterator and friends: this provides access to the (potentially empty)
2533  /// list of protocols qualifying this interface.
2534  typedef ObjCProtocolDecl*  const * qual_iterator;
2535  qual_iterator qual_begin() const {
2536    return Protocols;
2537  }
2538  qual_iterator qual_end() const   {
2539    return Protocols ? Protocols + NumProtocols : 0;
2540  }
2541  bool qual_empty() const { return NumProtocols == 0; }
2542
2543  bool isSugared() const { return false; }
2544  QualType desugar() const { return QualType(this, 0); }
2545
2546  void Profile(llvm::FoldingSetNodeID &ID);
2547  static void Profile(llvm::FoldingSetNodeID &ID,
2548                      const ObjCInterfaceDecl *Decl,
2549                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2550
2551  static bool classof(const Type *T) {
2552    return T->getTypeClass() == ObjCInterface;
2553  }
2554  static bool classof(const ObjCInterfaceType *) { return true; }
2555};
2556
2557/// ObjCObjectPointerType - Used to represent 'id', 'Interface *', 'id <p>',
2558/// and 'Interface <p> *'.
2559///
2560/// Duplicate protocols are removed and protocol list is canonicalized to be in
2561/// alphabetical order.
2562class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
2563  QualType PointeeType; // A builtin or interface type.
2564
2565  // List of protocols for this protocol conforming object type
2566  // List is sorted on protocol name. No protocol is entered more than once.
2567  ObjCProtocolDecl **Protocols;
2568  unsigned NumProtocols;
2569
2570  ObjCObjectPointerType(ASTContext &Ctx, QualType Canonical, QualType T,
2571                        ObjCProtocolDecl **Protos, unsigned NumP);
2572  friend class ASTContext;  // ASTContext creates these.
2573
2574public:
2575  void Destroy(ASTContext& C);
2576
2577  // Get the pointee type. Pointee will either be:
2578  // - a built-in type (for 'id' and 'Class').
2579  // - an interface type (for user-defined types).
2580  // - a TypedefType whose canonical type is an interface (as in 'T' below).
2581  //   For example: typedef NSObject T; T *var;
2582  QualType getPointeeType() const { return PointeeType; }
2583
2584  const ObjCInterfaceType *getInterfaceType() const {
2585    return PointeeType->getAs<ObjCInterfaceType>();
2586  }
2587  /// getInterfaceDecl - returns an interface decl for user-defined types.
2588  ObjCInterfaceDecl *getInterfaceDecl() const {
2589    return getInterfaceType() ? getInterfaceType()->getDecl() : 0;
2590  }
2591  /// isObjCIdType - true for "id".
2592  bool isObjCIdType() const {
2593    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2594           !NumProtocols;
2595  }
2596  /// isObjCClassType - true for "Class".
2597  bool isObjCClassType() const {
2598    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2599           !NumProtocols;
2600  }
2601
2602  /// isObjCQualifiedIdType - true for "id <p>".
2603  bool isObjCQualifiedIdType() const {
2604    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2605           NumProtocols;
2606  }
2607  /// isObjCQualifiedClassType - true for "Class <p>".
2608  bool isObjCQualifiedClassType() const {
2609    return getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCClass) &&
2610           NumProtocols;
2611  }
2612  /// qual_iterator and friends: this provides access to the (potentially empty)
2613  /// list of protocols qualifying this interface.
2614  typedef ObjCProtocolDecl*  const * qual_iterator;
2615
2616  qual_iterator qual_begin() const {
2617    return Protocols;
2618  }
2619  qual_iterator qual_end() const   {
2620    return Protocols ? Protocols + NumProtocols : NULL;
2621  }
2622  bool qual_empty() const { return NumProtocols == 0; }
2623
2624  /// getNumProtocols - Return the number of qualifying protocols in this
2625  /// interface type, or 0 if there are none.
2626  unsigned getNumProtocols() const { return NumProtocols; }
2627
2628  bool isSugared() const { return false; }
2629  QualType desugar() const { return QualType(this, 0); }
2630
2631  void Profile(llvm::FoldingSetNodeID &ID);
2632  static void Profile(llvm::FoldingSetNodeID &ID, QualType T,
2633                      ObjCProtocolDecl **protocols, unsigned NumProtocols);
2634  static bool classof(const Type *T) {
2635    return T->getTypeClass() == ObjCObjectPointer;
2636  }
2637  static bool classof(const ObjCObjectPointerType *) { return true; }
2638};
2639
2640/// A qualifier set is used to build a set of qualifiers.
2641class QualifierCollector : public Qualifiers {
2642  ASTContext *Context;
2643
2644public:
2645  QualifierCollector(Qualifiers Qs = Qualifiers())
2646    : Qualifiers(Qs), Context(0) {}
2647  QualifierCollector(ASTContext &Context, Qualifiers Qs = Qualifiers())
2648    : Qualifiers(Qs), Context(&Context) {}
2649
2650  void setContext(ASTContext &C) { Context = &C; }
2651
2652  /// Collect any qualifiers on the given type and return an
2653  /// unqualified type.
2654  const Type *strip(QualType QT) {
2655    addFastQualifiers(QT.getLocalFastQualifiers());
2656    if (QT.hasLocalNonFastQualifiers()) {
2657      const ExtQuals *EQ = QT.getExtQualsUnsafe();
2658      Context = &EQ->getContext();
2659      addQualifiers(EQ->getQualifiers());
2660      return EQ->getBaseType();
2661    }
2662    return QT.getTypePtrUnsafe();
2663  }
2664
2665  /// Apply the collected qualifiers to the given type.
2666  QualType apply(QualType QT) const;
2667
2668  /// Apply the collected qualifiers to the given type.
2669  QualType apply(const Type* T) const;
2670
2671};
2672
2673
2674// Inline function definitions.
2675
2676inline bool QualType::isCanonical() const {
2677  const Type *T = getTypePtr();
2678  if (hasLocalQualifiers())
2679    return T->isCanonicalUnqualified() && !isa<ArrayType>(T);
2680  return T->isCanonicalUnqualified();
2681}
2682
2683inline bool QualType::isCanonicalAsParam() const {
2684  if (hasLocalQualifiers()) return false;
2685  const Type *T = getTypePtr();
2686  return T->isCanonicalUnqualified() &&
2687           !isa<FunctionType>(T) && !isa<ArrayType>(T);
2688}
2689
2690inline bool QualType::isConstQualified() const {
2691  return isLocalConstQualified() ||
2692              getTypePtr()->getCanonicalTypeInternal().isLocalConstQualified();
2693}
2694
2695inline bool QualType::isRestrictQualified() const {
2696  return isLocalRestrictQualified() ||
2697            getTypePtr()->getCanonicalTypeInternal().isLocalRestrictQualified();
2698}
2699
2700
2701inline bool QualType::isVolatileQualified() const {
2702  return isLocalVolatileQualified() ||
2703  getTypePtr()->getCanonicalTypeInternal().isLocalVolatileQualified();
2704}
2705
2706inline bool QualType::hasQualifiers() const {
2707  return hasLocalQualifiers() ||
2708                  getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers();
2709}
2710
2711inline Qualifiers QualType::getQualifiers() const {
2712  Qualifiers Quals = getLocalQualifiers();
2713  Quals.addQualifiers(
2714                 getTypePtr()->getCanonicalTypeInternal().getLocalQualifiers());
2715  return Quals;
2716}
2717
2718inline unsigned QualType::getCVRQualifiers() const {
2719  return getLocalCVRQualifiers() |
2720              getTypePtr()->getCanonicalTypeInternal().getLocalCVRQualifiers();
2721}
2722
2723/// getCVRQualifiersThroughArrayTypes - If there are CVR qualifiers for this
2724/// type, returns them. Otherwise, if this is an array type, recurses
2725/// on the element type until some qualifiers have been found or a non-array
2726/// type reached.
2727inline unsigned QualType::getCVRQualifiersThroughArrayTypes() const {
2728  if (unsigned Quals = getCVRQualifiers())
2729    return Quals;
2730  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2731  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2732    return AT->getElementType().getCVRQualifiersThroughArrayTypes();
2733  return 0;
2734}
2735
2736inline void QualType::removeConst() {
2737  removeFastQualifiers(Qualifiers::Const);
2738}
2739
2740inline void QualType::removeRestrict() {
2741  removeFastQualifiers(Qualifiers::Restrict);
2742}
2743
2744inline void QualType::removeVolatile() {
2745  QualifierCollector Qc;
2746  const Type *Ty = Qc.strip(*this);
2747  if (Qc.hasVolatile()) {
2748    Qc.removeVolatile();
2749    *this = Qc.apply(Ty);
2750  }
2751}
2752
2753inline void QualType::removeCVRQualifiers(unsigned Mask) {
2754  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
2755
2756  // Fast path: we don't need to touch the slow qualifiers.
2757  if (!(Mask & ~Qualifiers::FastMask)) {
2758    removeFastQualifiers(Mask);
2759    return;
2760  }
2761
2762  QualifierCollector Qc;
2763  const Type *Ty = Qc.strip(*this);
2764  Qc.removeCVRQualifiers(Mask);
2765  *this = Qc.apply(Ty);
2766}
2767
2768/// getAddressSpace - Return the address space of this type.
2769inline unsigned QualType::getAddressSpace() const {
2770  if (hasLocalNonFastQualifiers()) {
2771    const ExtQuals *EQ = getExtQualsUnsafe();
2772    if (EQ->hasAddressSpace())
2773      return EQ->getAddressSpace();
2774  }
2775
2776  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2777  if (CT.hasLocalNonFastQualifiers()) {
2778    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2779    if (EQ->hasAddressSpace())
2780      return EQ->getAddressSpace();
2781  }
2782
2783  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2784    return AT->getElementType().getAddressSpace();
2785  if (const RecordType *RT = dyn_cast<RecordType>(CT))
2786    return RT->getAddressSpace();
2787  return 0;
2788}
2789
2790/// getObjCGCAttr - Return the gc attribute of this type.
2791inline Qualifiers::GC QualType::getObjCGCAttr() const {
2792  if (hasLocalNonFastQualifiers()) {
2793    const ExtQuals *EQ = getExtQualsUnsafe();
2794    if (EQ->hasObjCGCAttr())
2795      return EQ->getObjCGCAttr();
2796  }
2797
2798  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2799  if (CT.hasLocalNonFastQualifiers()) {
2800    const ExtQuals *EQ = CT.getExtQualsUnsafe();
2801    if (EQ->hasObjCGCAttr())
2802      return EQ->getObjCGCAttr();
2803  }
2804
2805  if (const ArrayType *AT = dyn_cast<ArrayType>(CT))
2806      return AT->getElementType().getObjCGCAttr();
2807  if (const ObjCObjectPointerType *PT = CT->getAs<ObjCObjectPointerType>())
2808    return PT->getPointeeType().getObjCGCAttr();
2809  // We most look at all pointer types, not just pointer to interface types.
2810  if (const PointerType *PT = CT->getAs<PointerType>())
2811    return PT->getPointeeType().getObjCGCAttr();
2812  return Qualifiers::GCNone;
2813}
2814
2815  /// getNoReturnAttr - Returns true if the type has the noreturn attribute,
2816  /// false otherwise.
2817inline bool QualType::getNoReturnAttr() const {
2818  QualType CT = getTypePtr()->getCanonicalTypeInternal();
2819  if (const PointerType *PT = getTypePtr()->getAs<PointerType>()) {
2820    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
2821      return FT->getNoReturnAttr();
2822  } else if (const FunctionType *FT = getTypePtr()->getAs<FunctionType>())
2823    return FT->getNoReturnAttr();
2824
2825  return false;
2826}
2827
2828/// getCallConv - Returns the calling convention of the type if the type
2829/// is a function type, CC_Default otherwise.
2830inline CallingConv QualType::getCallConv() const {
2831  if (const PointerType *PT = getTypePtr()->getAs<PointerType>())
2832    return PT->getPointeeType().getCallConv();
2833  else if (const ReferenceType *RT = getTypePtr()->getAs<ReferenceType>())
2834    return RT->getPointeeType().getCallConv();
2835  else if (const MemberPointerType *MPT =
2836           getTypePtr()->getAs<MemberPointerType>())
2837    return MPT->getPointeeType().getCallConv();
2838  else if (const BlockPointerType *BPT =
2839           getTypePtr()->getAs<BlockPointerType>()) {
2840    if (const FunctionType *FT = BPT->getPointeeType()->getAs<FunctionType>())
2841      return FT->getCallConv();
2842  } else if (const FunctionType *FT = getTypePtr()->getAs<FunctionType>())
2843    return FT->getCallConv();
2844
2845  return CC_Default;
2846}
2847
2848/// isMoreQualifiedThan - Determine whether this type is more
2849/// qualified than the Other type. For example, "const volatile int"
2850/// is more qualified than "const int", "volatile int", and
2851/// "int". However, it is not more qualified than "const volatile
2852/// int".
2853inline bool QualType::isMoreQualifiedThan(QualType Other) const {
2854  // FIXME: work on arbitrary qualifiers
2855  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
2856  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
2857  if (getAddressSpace() != Other.getAddressSpace())
2858    return false;
2859  return MyQuals != OtherQuals && (MyQuals | OtherQuals) == MyQuals;
2860}
2861
2862/// isAtLeastAsQualifiedAs - Determine whether this type is at last
2863/// as qualified as the Other type. For example, "const volatile
2864/// int" is at least as qualified as "const int", "volatile int",
2865/// "int", and "const volatile int".
2866inline bool QualType::isAtLeastAsQualifiedAs(QualType Other) const {
2867  // FIXME: work on arbitrary qualifiers
2868  unsigned MyQuals = this->getCVRQualifiersThroughArrayTypes();
2869  unsigned OtherQuals = Other.getCVRQualifiersThroughArrayTypes();
2870  if (getAddressSpace() != Other.getAddressSpace())
2871    return false;
2872  return (MyQuals | OtherQuals) == MyQuals;
2873}
2874
2875/// getNonReferenceType - If Type is a reference type (e.g., const
2876/// int&), returns the type that the reference refers to ("const
2877/// int"). Otherwise, returns the type itself. This routine is used
2878/// throughout Sema to implement C++ 5p6:
2879///
2880///   If an expression initially has the type "reference to T" (8.3.2,
2881///   8.5.3), the type is adjusted to "T" prior to any further
2882///   analysis, the expression designates the object or function
2883///   denoted by the reference, and the expression is an lvalue.
2884inline QualType QualType::getNonReferenceType() const {
2885  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
2886    return RefType->getPointeeType();
2887  else
2888    return *this;
2889}
2890
2891inline const ObjCInterfaceType *Type::getAsPointerToObjCInterfaceType() const {
2892  if (const PointerType *PT = getAs<PointerType>())
2893    return PT->getPointeeType()->getAs<ObjCInterfaceType>();
2894  return 0;
2895}
2896
2897inline bool Type::isFunctionType() const {
2898  return isa<FunctionType>(CanonicalType);
2899}
2900inline bool Type::isPointerType() const {
2901  return isa<PointerType>(CanonicalType);
2902}
2903inline bool Type::isAnyPointerType() const {
2904  return isPointerType() || isObjCObjectPointerType();
2905}
2906inline bool Type::isBlockPointerType() const {
2907  return isa<BlockPointerType>(CanonicalType);
2908}
2909inline bool Type::isReferenceType() const {
2910  return isa<ReferenceType>(CanonicalType);
2911}
2912inline bool Type::isLValueReferenceType() const {
2913  return isa<LValueReferenceType>(CanonicalType);
2914}
2915inline bool Type::isRValueReferenceType() const {
2916  return isa<RValueReferenceType>(CanonicalType);
2917}
2918inline bool Type::isFunctionPointerType() const {
2919  if (const PointerType* T = getAs<PointerType>())
2920    return T->getPointeeType()->isFunctionType();
2921  else
2922    return false;
2923}
2924inline bool Type::isMemberPointerType() const {
2925  return isa<MemberPointerType>(CanonicalType);
2926}
2927inline bool Type::isMemberFunctionPointerType() const {
2928  if (const MemberPointerType* T = getAs<MemberPointerType>())
2929    return T->getPointeeType()->isFunctionType();
2930  else
2931    return false;
2932}
2933inline bool Type::isArrayType() const {
2934  return isa<ArrayType>(CanonicalType);
2935}
2936inline bool Type::isConstantArrayType() const {
2937  return isa<ConstantArrayType>(CanonicalType);
2938}
2939inline bool Type::isIncompleteArrayType() const {
2940  return isa<IncompleteArrayType>(CanonicalType);
2941}
2942inline bool Type::isVariableArrayType() const {
2943  return isa<VariableArrayType>(CanonicalType);
2944}
2945inline bool Type::isDependentSizedArrayType() const {
2946  return isa<DependentSizedArrayType>(CanonicalType);
2947}
2948inline bool Type::isRecordType() const {
2949  return isa<RecordType>(CanonicalType);
2950}
2951inline bool Type::isAnyComplexType() const {
2952  return isa<ComplexType>(CanonicalType);
2953}
2954inline bool Type::isVectorType() const {
2955  return isa<VectorType>(CanonicalType);
2956}
2957inline bool Type::isExtVectorType() const {
2958  return isa<ExtVectorType>(CanonicalType);
2959}
2960inline bool Type::isObjCObjectPointerType() const {
2961  return isa<ObjCObjectPointerType>(CanonicalType);
2962}
2963inline bool Type::isObjCInterfaceType() const {
2964  return isa<ObjCInterfaceType>(CanonicalType);
2965}
2966inline bool Type::isObjCQualifiedIdType() const {
2967  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2968    return OPT->isObjCQualifiedIdType();
2969  return false;
2970}
2971inline bool Type::isObjCQualifiedClassType() const {
2972  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2973    return OPT->isObjCQualifiedClassType();
2974  return false;
2975}
2976inline bool Type::isObjCIdType() const {
2977  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2978    return OPT->isObjCIdType();
2979  return false;
2980}
2981inline bool Type::isObjCClassType() const {
2982  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
2983    return OPT->isObjCClassType();
2984  return false;
2985}
2986inline bool Type::isObjCSelType() const {
2987  if (const PointerType *OPT = getAs<PointerType>())
2988    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
2989  return false;
2990}
2991inline bool Type::isObjCBuiltinType() const {
2992  return isObjCIdType() || isObjCClassType() || isObjCSelType();
2993}
2994inline bool Type::isTemplateTypeParmType() const {
2995  return isa<TemplateTypeParmType>(CanonicalType);
2996}
2997
2998inline bool Type::isSpecificBuiltinType(unsigned K) const {
2999  if (const BuiltinType *BT = getAs<BuiltinType>())
3000    if (BT->getKind() == (BuiltinType::Kind) K)
3001      return true;
3002  return false;
3003}
3004
3005/// \brief Determines whether this is a type for which one can define
3006/// an overloaded operator.
3007inline bool Type::isOverloadableType() const {
3008  return isDependentType() || isRecordType() || isEnumeralType();
3009}
3010
3011inline bool Type::hasPointerRepresentation() const {
3012  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
3013          isObjCInterfaceType() || isObjCObjectPointerType() ||
3014          isObjCQualifiedInterfaceType() || isNullPtrType());
3015}
3016
3017inline bool Type::hasObjCPointerRepresentation() const {
3018  return (isObjCInterfaceType() || isObjCObjectPointerType() ||
3019          isObjCQualifiedInterfaceType());
3020}
3021
3022/// Insertion operator for diagnostics.  This allows sending QualType's into a
3023/// diagnostic with <<.
3024inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3025                                           QualType T) {
3026  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
3027                  Diagnostic::ak_qualtype);
3028  return DB;
3029}
3030
3031// Helper class template that is used by Type::getAs to ensure that one does
3032// not try to look through a qualified type to get to an array type.
3033template<typename T,
3034         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
3035                             llvm::is_base_of<ArrayType, T>::value)>
3036struct ArrayType_cannot_be_used_with_getAs { };
3037
3038template<typename T>
3039struct ArrayType_cannot_be_used_with_getAs<T, true>;
3040
3041/// Member-template getAs<specific type>'.
3042template <typename T> const T *Type::getAs() const {
3043  ArrayType_cannot_be_used_with_getAs<T> at;
3044  (void)at;
3045
3046  // If this is directly a T type, return it.
3047  if (const T *Ty = dyn_cast<T>(this))
3048    return Ty;
3049
3050  // If the canonical form of this type isn't the right kind, reject it.
3051  if (!isa<T>(CanonicalType))
3052    return 0;
3053
3054  // If this is a typedef for the type, strip the typedef off without
3055  // losing all typedef information.
3056  return cast<T>(getUnqualifiedDesugaredType());
3057}
3058
3059}  // end namespace clang
3060
3061#endif
3062