1169689Skan/* Support routines for Value Range Propagation (VRP).
2169689Skan   Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3169689Skan   Contributed by Diego Novillo <dnovillo@redhat.com>.
4169689Skan
5169689SkanThis file is part of GCC.
6169689Skan
7169689SkanGCC is free software; you can redistribute it and/or modify
8169689Skanit under the terms of the GNU General Public License as published by
9169689Skanthe Free Software Foundation; either version 2, or (at your option)
10169689Skanany later version.
11169689Skan
12169689SkanGCC is distributed in the hope that it will be useful,
13169689Skanbut WITHOUT ANY WARRANTY; without even the implied warranty of
14169689SkanMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15169689SkanGNU General Public License for more details.
16169689Skan
17169689SkanYou should have received a copy of the GNU General Public License
18169689Skanalong with GCC; see the file COPYING.  If not, write to
19169689Skanthe Free Software Foundation, 51 Franklin Street, Fifth Floor,
20169689SkanBoston, MA 02110-1301, USA.  */
21169689Skan
22169689Skan#include "config.h"
23169689Skan#include "system.h"
24169689Skan#include "coretypes.h"
25169689Skan#include "tm.h"
26169689Skan#include "ggc.h"
27169689Skan#include "flags.h"
28169689Skan#include "tree.h"
29169689Skan#include "basic-block.h"
30169689Skan#include "tree-flow.h"
31169689Skan#include "tree-pass.h"
32169689Skan#include "tree-dump.h"
33169689Skan#include "timevar.h"
34169689Skan#include "diagnostic.h"
35169689Skan#include "toplev.h"
36169689Skan#include "intl.h"
37169689Skan#include "cfgloop.h"
38169689Skan#include "tree-scalar-evolution.h"
39169689Skan#include "tree-ssa-propagate.h"
40169689Skan#include "tree-chrec.h"
41169689Skan
42169689Skan/* Set of SSA names found during the dominator traversal of a
43169689Skan   sub-graph in find_assert_locations.  */
44169689Skanstatic sbitmap found_in_subgraph;
45169689Skan
46169689Skan/* Local functions.  */
47169689Skanstatic int compare_values (tree val1, tree val2);
48169689Skanstatic int compare_values_warnv (tree val1, tree val2, bool *);
49169689Skanstatic tree vrp_evaluate_conditional_warnv (tree, bool, bool *);
50169689Skan
51169689Skan/* Location information for ASSERT_EXPRs.  Each instance of this
52169689Skan   structure describes an ASSERT_EXPR for an SSA name.  Since a single
53169689Skan   SSA name may have more than one assertion associated with it, these
54169689Skan   locations are kept in a linked list attached to the corresponding
55169689Skan   SSA name.  */
56169689Skanstruct assert_locus_d
57169689Skan{
58169689Skan  /* Basic block where the assertion would be inserted.  */
59169689Skan  basic_block bb;
60169689Skan
61169689Skan  /* Some assertions need to be inserted on an edge (e.g., assertions
62169689Skan     generated by COND_EXPRs).  In those cases, BB will be NULL.  */
63169689Skan  edge e;
64169689Skan
65169689Skan  /* Pointer to the statement that generated this assertion.  */
66169689Skan  block_stmt_iterator si;
67169689Skan
68169689Skan  /* Predicate code for the ASSERT_EXPR.  Must be COMPARISON_CLASS_P.  */
69169689Skan  enum tree_code comp_code;
70169689Skan
71169689Skan  /* Value being compared against.  */
72169689Skan  tree val;
73169689Skan
74169689Skan  /* Next node in the linked list.  */
75169689Skan  struct assert_locus_d *next;
76169689Skan};
77169689Skan
78169689Skantypedef struct assert_locus_d *assert_locus_t;
79169689Skan
80169689Skan/* If bit I is present, it means that SSA name N_i has a list of
81169689Skan   assertions that should be inserted in the IL.  */
82169689Skanstatic bitmap need_assert_for;
83169689Skan
84169689Skan/* Array of locations lists where to insert assertions.  ASSERTS_FOR[I]
85169689Skan   holds a list of ASSERT_LOCUS_T nodes that describe where
86169689Skan   ASSERT_EXPRs for SSA name N_I should be inserted.  */
87169689Skanstatic assert_locus_t *asserts_for;
88169689Skan
89169689Skan/* Set of blocks visited in find_assert_locations.  Used to avoid
90169689Skan   visiting the same block more than once.  */
91169689Skanstatic sbitmap blocks_visited;
92169689Skan
93169689Skan/* Value range array.  After propagation, VR_VALUE[I] holds the range
94169689Skan   of values that SSA name N_I may take.  */
95169689Skanstatic value_range_t **vr_value;
96169689Skan
97169689Skan
98169689Skan/* Return whether TYPE should use an overflow infinity distinct from
99169689Skan   TYPE_{MIN,MAX}_VALUE.  We use an overflow infinity value to
100169689Skan   represent a signed overflow during VRP computations.  An infinity
101169689Skan   is distinct from a half-range, which will go from some number to
102169689Skan   TYPE_{MIN,MAX}_VALUE.  */
103169689Skan
104169689Skanstatic inline bool
105169689Skanneeds_overflow_infinity (tree type)
106169689Skan{
107169689Skan  return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
108169689Skan}
109169689Skan
110169689Skan/* Return whether TYPE can support our overflow infinity
111169689Skan   representation: we use the TREE_OVERFLOW flag, which only exists
112169689Skan   for constants.  If TYPE doesn't support this, we don't optimize
113169689Skan   cases which would require signed overflow--we drop them to
114169689Skan   VARYING.  */
115169689Skan
116169689Skanstatic inline bool
117169689Skansupports_overflow_infinity (tree type)
118169689Skan{
119169689Skan#ifdef ENABLE_CHECKING
120169689Skan  gcc_assert (needs_overflow_infinity (type));
121169689Skan#endif
122169689Skan  return (TYPE_MIN_VALUE (type) != NULL_TREE
123169689Skan	  && CONSTANT_CLASS_P (TYPE_MIN_VALUE (type))
124169689Skan	  && TYPE_MAX_VALUE (type) != NULL_TREE
125169689Skan	  && CONSTANT_CLASS_P (TYPE_MAX_VALUE (type)));
126169689Skan}
127169689Skan
128169689Skan/* VAL is the maximum or minimum value of a type.  Return a
129169689Skan   corresponding overflow infinity.  */
130169689Skan
131169689Skanstatic inline tree
132169689Skanmake_overflow_infinity (tree val)
133169689Skan{
134169689Skan#ifdef ENABLE_CHECKING
135169689Skan  gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
136169689Skan#endif
137169689Skan  val = copy_node (val);
138169689Skan  TREE_OVERFLOW (val) = 1;
139169689Skan  return val;
140169689Skan}
141169689Skan
142169689Skan/* Return a negative overflow infinity for TYPE.  */
143169689Skan
144169689Skanstatic inline tree
145169689Skannegative_overflow_infinity (tree type)
146169689Skan{
147169689Skan#ifdef ENABLE_CHECKING
148169689Skan  gcc_assert (supports_overflow_infinity (type));
149169689Skan#endif
150169689Skan  return make_overflow_infinity (TYPE_MIN_VALUE (type));
151169689Skan}
152169689Skan
153169689Skan/* Return a positive overflow infinity for TYPE.  */
154169689Skan
155169689Skanstatic inline tree
156169689Skanpositive_overflow_infinity (tree type)
157169689Skan{
158169689Skan#ifdef ENABLE_CHECKING
159169689Skan  gcc_assert (supports_overflow_infinity (type));
160169689Skan#endif
161169689Skan  return make_overflow_infinity (TYPE_MAX_VALUE (type));
162169689Skan}
163169689Skan
164169689Skan/* Return whether VAL is a negative overflow infinity.  */
165169689Skan
166169689Skanstatic inline bool
167169689Skanis_negative_overflow_infinity (tree val)
168169689Skan{
169169689Skan  return (needs_overflow_infinity (TREE_TYPE (val))
170169689Skan	  && CONSTANT_CLASS_P (val)
171169689Skan	  && TREE_OVERFLOW (val)
172169689Skan	  && operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
173169689Skan}
174169689Skan
175169689Skan/* Return whether VAL is a positive overflow infinity.  */
176169689Skan
177169689Skanstatic inline bool
178169689Skanis_positive_overflow_infinity (tree val)
179169689Skan{
180169689Skan  return (needs_overflow_infinity (TREE_TYPE (val))
181169689Skan	  && CONSTANT_CLASS_P (val)
182169689Skan	  && TREE_OVERFLOW (val)
183169689Skan	  && operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0));
184169689Skan}
185169689Skan
186169689Skan/* Return whether VAL is a positive or negative overflow infinity.  */
187169689Skan
188169689Skanstatic inline bool
189169689Skanis_overflow_infinity (tree val)
190169689Skan{
191169689Skan  return (needs_overflow_infinity (TREE_TYPE (val))
192169689Skan	  && CONSTANT_CLASS_P (val)
193169689Skan	  && TREE_OVERFLOW (val)
194169689Skan	  && (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0)
195169689Skan	      || operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0)));
196169689Skan}
197169689Skan
198171825Skan/* If VAL is now an overflow infinity, return VAL.  Otherwise, return
199171825Skan   the same value with TREE_OVERFLOW clear.  This can be used to avoid
200171825Skan   confusing a regular value with an overflow value.  */
201169689Skan
202171825Skanstatic inline tree
203171825Skanavoid_overflow_infinity (tree val)
204171825Skan{
205171825Skan  if (!is_overflow_infinity (val))
206171825Skan    return val;
207171825Skan
208171825Skan  if (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0))
209171825Skan    return TYPE_MAX_VALUE (TREE_TYPE (val));
210171825Skan  else
211171825Skan    {
212171825Skan#ifdef ENABLE_CHECKING
213171825Skan      gcc_assert (operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
214171825Skan#endif
215171825Skan      return TYPE_MIN_VALUE (TREE_TYPE (val));
216171825Skan    }
217171825Skan}
218171825Skan
219171825Skan
220169689Skan/* Return whether VAL is equal to the maximum value of its type.  This
221169689Skan   will be true for a positive overflow infinity.  We can't do a
222169689Skan   simple equality comparison with TYPE_MAX_VALUE because C typedefs
223169689Skan   and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
224169689Skan   to the integer constant with the same value in the type.  */
225169689Skan
226169689Skanstatic inline bool
227169689Skanvrp_val_is_max (tree val)
228169689Skan{
229169689Skan  tree type_max = TYPE_MAX_VALUE (TREE_TYPE (val));
230169689Skan
231169689Skan  return (val == type_max
232169689Skan	  || (type_max != NULL_TREE
233169689Skan	      && operand_equal_p (val, type_max, 0)));
234169689Skan}
235169689Skan
236169689Skan/* Return whether VAL is equal to the minimum value of its type.  This
237169689Skan   will be true for a negative overflow infinity.  */
238169689Skan
239169689Skanstatic inline bool
240169689Skanvrp_val_is_min (tree val)
241169689Skan{
242169689Skan  tree type_min = TYPE_MIN_VALUE (TREE_TYPE (val));
243169689Skan
244169689Skan  return (val == type_min
245169689Skan	  || (type_min != NULL_TREE
246169689Skan	      && operand_equal_p (val, type_min, 0)));
247169689Skan}
248169689Skan
249169689Skan
250169689Skan/* Return true if ARG is marked with the nonnull attribute in the
251169689Skan   current function signature.  */
252169689Skan
253169689Skanstatic bool
254169689Skannonnull_arg_p (tree arg)
255169689Skan{
256169689Skan  tree t, attrs, fntype;
257169689Skan  unsigned HOST_WIDE_INT arg_num;
258169689Skan
259169689Skan  gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
260169689Skan
261169689Skan  /* The static chain decl is always non null.  */
262169689Skan  if (arg == cfun->static_chain_decl)
263169689Skan    return true;
264169689Skan
265169689Skan  fntype = TREE_TYPE (current_function_decl);
266169689Skan  attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
267169689Skan
268169689Skan  /* If "nonnull" wasn't specified, we know nothing about the argument.  */
269169689Skan  if (attrs == NULL_TREE)
270169689Skan    return false;
271169689Skan
272169689Skan  /* If "nonnull" applies to all the arguments, then ARG is non-null.  */
273169689Skan  if (TREE_VALUE (attrs) == NULL_TREE)
274169689Skan    return true;
275169689Skan
276169689Skan  /* Get the position number for ARG in the function signature.  */
277169689Skan  for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
278169689Skan       t;
279169689Skan       t = TREE_CHAIN (t), arg_num++)
280169689Skan    {
281169689Skan      if (t == arg)
282169689Skan	break;
283169689Skan    }
284169689Skan
285169689Skan  gcc_assert (t == arg);
286169689Skan
287169689Skan  /* Now see if ARG_NUM is mentioned in the nonnull list.  */
288169689Skan  for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
289169689Skan    {
290169689Skan      if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
291169689Skan	return true;
292169689Skan    }
293169689Skan
294169689Skan  return false;
295169689Skan}
296169689Skan
297169689Skan
298169689Skan/* Set value range VR to {T, MIN, MAX, EQUIV}.  */
299169689Skan
300169689Skanstatic void
301169689Skanset_value_range (value_range_t *vr, enum value_range_type t, tree min,
302169689Skan		 tree max, bitmap equiv)
303169689Skan{
304169689Skan#if defined ENABLE_CHECKING
305169689Skan  /* Check the validity of the range.  */
306169689Skan  if (t == VR_RANGE || t == VR_ANTI_RANGE)
307169689Skan    {
308169689Skan      int cmp;
309169689Skan
310169689Skan      gcc_assert (min && max);
311169689Skan
312169689Skan      if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
313169689Skan	gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
314169689Skan
315169689Skan      cmp = compare_values (min, max);
316169689Skan      gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
317169689Skan
318169689Skan      if (needs_overflow_infinity (TREE_TYPE (min)))
319169689Skan	gcc_assert (!is_overflow_infinity (min)
320169689Skan		    || !is_overflow_infinity (max));
321169689Skan    }
322169689Skan
323169689Skan  if (t == VR_UNDEFINED || t == VR_VARYING)
324169689Skan    gcc_assert (min == NULL_TREE && max == NULL_TREE);
325169689Skan
326169689Skan  if (t == VR_UNDEFINED || t == VR_VARYING)
327169689Skan    gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
328169689Skan#endif
329169689Skan
330169689Skan  vr->type = t;
331169689Skan  vr->min = min;
332169689Skan  vr->max = max;
333169689Skan
334169689Skan  /* Since updating the equivalence set involves deep copying the
335169689Skan     bitmaps, only do it if absolutely necessary.  */
336169689Skan  if (vr->equiv == NULL)
337169689Skan    vr->equiv = BITMAP_ALLOC (NULL);
338169689Skan
339169689Skan  if (equiv != vr->equiv)
340169689Skan    {
341169689Skan      if (equiv && !bitmap_empty_p (equiv))
342169689Skan	bitmap_copy (vr->equiv, equiv);
343169689Skan      else
344169689Skan	bitmap_clear (vr->equiv);
345169689Skan    }
346169689Skan}
347169689Skan
348169689Skan
349169689Skan/* Copy value range FROM into value range TO.  */
350169689Skan
351169689Skanstatic inline void
352169689Skancopy_value_range (value_range_t *to, value_range_t *from)
353169689Skan{
354169689Skan  set_value_range (to, from->type, from->min, from->max, from->equiv);
355169689Skan}
356169689Skan
357169689Skan
358169689Skan/* Set value range VR to VR_VARYING.  */
359169689Skan
360169689Skanstatic inline void
361169689Skanset_value_range_to_varying (value_range_t *vr)
362169689Skan{
363169689Skan  vr->type = VR_VARYING;
364169689Skan  vr->min = vr->max = NULL_TREE;
365169689Skan  if (vr->equiv)
366169689Skan    bitmap_clear (vr->equiv);
367169689Skan}
368169689Skan
369169689Skan/* Set value range VR to a single value.  This function is only called
370169689Skan   with values we get from statements, and exists to clear the
371169689Skan   TREE_OVERFLOW flag so that we don't think we have an overflow
372169689Skan   infinity when we shouldn't.  */
373169689Skan
374169689Skanstatic inline void
375171825Skanset_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
376169689Skan{
377169689Skan  gcc_assert (is_gimple_min_invariant (val));
378171825Skan  val = avoid_overflow_infinity (val);
379171825Skan  set_value_range (vr, VR_RANGE, val, val, equiv);
380169689Skan}
381169689Skan
382169689Skan/* Set value range VR to a non-negative range of type TYPE.
383169689Skan   OVERFLOW_INFINITY indicates whether to use a overflow infinity
384169689Skan   rather than TYPE_MAX_VALUE; this should be true if we determine
385169689Skan   that the range is nonnegative based on the assumption that signed
386169689Skan   overflow does not occur.  */
387169689Skan
388169689Skanstatic inline void
389169689Skanset_value_range_to_nonnegative (value_range_t *vr, tree type,
390169689Skan				bool overflow_infinity)
391169689Skan{
392169689Skan  tree zero;
393169689Skan
394169689Skan  if (overflow_infinity && !supports_overflow_infinity (type))
395169689Skan    {
396169689Skan      set_value_range_to_varying (vr);
397169689Skan      return;
398169689Skan    }
399169689Skan
400169689Skan  zero = build_int_cst (type, 0);
401169689Skan  set_value_range (vr, VR_RANGE, zero,
402169689Skan		   (overflow_infinity
403169689Skan		    ? positive_overflow_infinity (type)
404169689Skan		    : TYPE_MAX_VALUE (type)),
405169689Skan		   vr->equiv);
406169689Skan}
407169689Skan
408169689Skan/* Set value range VR to a non-NULL range of type TYPE.  */
409169689Skan
410169689Skanstatic inline void
411169689Skanset_value_range_to_nonnull (value_range_t *vr, tree type)
412169689Skan{
413169689Skan  tree zero = build_int_cst (type, 0);
414169689Skan  set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
415169689Skan}
416169689Skan
417169689Skan
418169689Skan/* Set value range VR to a NULL range of type TYPE.  */
419169689Skan
420169689Skanstatic inline void
421169689Skanset_value_range_to_null (value_range_t *vr, tree type)
422169689Skan{
423171825Skan  set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
424169689Skan}
425169689Skan
426169689Skan
427169689Skan/* Set value range VR to VR_UNDEFINED.  */
428169689Skan
429169689Skanstatic inline void
430169689Skanset_value_range_to_undefined (value_range_t *vr)
431169689Skan{
432169689Skan  vr->type = VR_UNDEFINED;
433169689Skan  vr->min = vr->max = NULL_TREE;
434169689Skan  if (vr->equiv)
435169689Skan    bitmap_clear (vr->equiv);
436169689Skan}
437169689Skan
438169689Skan
439169689Skan/* Return value range information for VAR.
440169689Skan
441169689Skan   If we have no values ranges recorded (ie, VRP is not running), then
442169689Skan   return NULL.  Otherwise create an empty range if none existed for VAR.  */
443169689Skan
444169689Skanstatic value_range_t *
445169689Skanget_value_range (tree var)
446169689Skan{
447169689Skan  value_range_t *vr;
448169689Skan  tree sym;
449169689Skan  unsigned ver = SSA_NAME_VERSION (var);
450169689Skan
451169689Skan  /* If we have no recorded ranges, then return NULL.  */
452169689Skan  if (! vr_value)
453169689Skan    return NULL;
454169689Skan
455169689Skan  vr = vr_value[ver];
456169689Skan  if (vr)
457169689Skan    return vr;
458169689Skan
459169689Skan  /* Create a default value range.  */
460169689Skan  vr_value[ver] = vr = XNEW (value_range_t);
461169689Skan  memset (vr, 0, sizeof (*vr));
462169689Skan
463169689Skan  /* Allocate an equivalence set.  */
464169689Skan  vr->equiv = BITMAP_ALLOC (NULL);
465169689Skan
466169689Skan  /* If VAR is a default definition, the variable can take any value
467169689Skan     in VAR's type.  */
468169689Skan  sym = SSA_NAME_VAR (var);
469169689Skan  if (var == default_def (sym))
470169689Skan    {
471169689Skan      /* Try to use the "nonnull" attribute to create ~[0, 0]
472169689Skan	 anti-ranges for pointers.  Note that this is only valid with
473169689Skan	 default definitions of PARM_DECLs.  */
474169689Skan      if (TREE_CODE (sym) == PARM_DECL
475169689Skan	  && POINTER_TYPE_P (TREE_TYPE (sym))
476169689Skan	  && nonnull_arg_p (sym))
477169689Skan	set_value_range_to_nonnull (vr, TREE_TYPE (sym));
478169689Skan      else
479169689Skan	set_value_range_to_varying (vr);
480169689Skan    }
481169689Skan
482169689Skan  return vr;
483169689Skan}
484169689Skan
485169689Skan/* Return true, if VAL1 and VAL2 are equal values for VRP purposes.  */
486169689Skan
487169689Skanstatic inline bool
488169689Skanvrp_operand_equal_p (tree val1, tree val2)
489169689Skan{
490169689Skan  if (val1 == val2)
491169689Skan    return true;
492169689Skan  if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
493169689Skan    return false;
494169689Skan  if (is_overflow_infinity (val1))
495169689Skan    return is_overflow_infinity (val2);
496169689Skan  return true;
497169689Skan}
498169689Skan
499169689Skan/* Return true, if the bitmaps B1 and B2 are equal.  */
500169689Skan
501169689Skanstatic inline bool
502169689Skanvrp_bitmap_equal_p (bitmap b1, bitmap b2)
503169689Skan{
504169689Skan  return (b1 == b2
505169689Skan	  || (b1 && b2
506169689Skan	      && bitmap_equal_p (b1, b2)));
507169689Skan}
508169689Skan
509169689Skan/* Update the value range and equivalence set for variable VAR to
510169689Skan   NEW_VR.  Return true if NEW_VR is different from VAR's previous
511169689Skan   value.
512169689Skan
513169689Skan   NOTE: This function assumes that NEW_VR is a temporary value range
514169689Skan   object created for the sole purpose of updating VAR's range.  The
515169689Skan   storage used by the equivalence set from NEW_VR will be freed by
516169689Skan   this function.  Do not call update_value_range when NEW_VR
517169689Skan   is the range object associated with another SSA name.  */
518169689Skan
519169689Skanstatic inline bool
520169689Skanupdate_value_range (tree var, value_range_t *new_vr)
521169689Skan{
522169689Skan  value_range_t *old_vr;
523169689Skan  bool is_new;
524169689Skan
525169689Skan  /* Update the value range, if necessary.  */
526169689Skan  old_vr = get_value_range (var);
527169689Skan  is_new = old_vr->type != new_vr->type
528169689Skan	   || !vrp_operand_equal_p (old_vr->min, new_vr->min)
529169689Skan	   || !vrp_operand_equal_p (old_vr->max, new_vr->max)
530169689Skan	   || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
531169689Skan
532169689Skan  if (is_new)
533169689Skan    set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
534169689Skan	             new_vr->equiv);
535169689Skan
536169689Skan  BITMAP_FREE (new_vr->equiv);
537169689Skan  new_vr->equiv = NULL;
538169689Skan
539169689Skan  return is_new;
540169689Skan}
541169689Skan
542169689Skan
543169689Skan/* Add VAR and VAR's equivalence set to EQUIV.  */
544169689Skan
545169689Skanstatic void
546169689Skanadd_equivalence (bitmap equiv, tree var)
547169689Skan{
548169689Skan  unsigned ver = SSA_NAME_VERSION (var);
549169689Skan  value_range_t *vr = vr_value[ver];
550169689Skan
551169689Skan  bitmap_set_bit (equiv, ver);
552169689Skan  if (vr && vr->equiv)
553169689Skan    bitmap_ior_into (equiv, vr->equiv);
554169689Skan}
555169689Skan
556169689Skan
557169689Skan/* Return true if VR is ~[0, 0].  */
558169689Skan
559169689Skanstatic inline bool
560169689Skanrange_is_nonnull (value_range_t *vr)
561169689Skan{
562169689Skan  return vr->type == VR_ANTI_RANGE
563169689Skan	 && integer_zerop (vr->min)
564169689Skan	 && integer_zerop (vr->max);
565169689Skan}
566169689Skan
567169689Skan
568169689Skan/* Return true if VR is [0, 0].  */
569169689Skan
570169689Skanstatic inline bool
571169689Skanrange_is_null (value_range_t *vr)
572169689Skan{
573169689Skan  return vr->type == VR_RANGE
574169689Skan	 && integer_zerop (vr->min)
575169689Skan	 && integer_zerop (vr->max);
576169689Skan}
577169689Skan
578169689Skan
579169689Skan/* Return true if value range VR involves at least one symbol.  */
580169689Skan
581169689Skanstatic inline bool
582169689Skansymbolic_range_p (value_range_t *vr)
583169689Skan{
584169689Skan  return (!is_gimple_min_invariant (vr->min)
585169689Skan          || !is_gimple_min_invariant (vr->max));
586169689Skan}
587169689Skan
588169689Skan/* Return true if value range VR uses a overflow infinity.  */
589169689Skan
590169689Skanstatic inline bool
591169689Skanoverflow_infinity_range_p (value_range_t *vr)
592169689Skan{
593169689Skan  return (vr->type == VR_RANGE
594169689Skan	  && (is_overflow_infinity (vr->min)
595169689Skan	      || is_overflow_infinity (vr->max)));
596169689Skan}
597169689Skan
598169689Skan/* Return false if we can not make a valid comparison based on VR;
599169689Skan   this will be the case if it uses an overflow infinity and overflow
600169689Skan   is not undefined (i.e., -fno-strict-overflow is in effect).
601169689Skan   Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
602169689Skan   uses an overflow infinity.  */
603169689Skan
604169689Skanstatic bool
605169689Skanusable_range_p (value_range_t *vr, bool *strict_overflow_p)
606169689Skan{
607169689Skan  gcc_assert (vr->type == VR_RANGE);
608169689Skan  if (is_overflow_infinity (vr->min))
609169689Skan    {
610169689Skan      *strict_overflow_p = true;
611169689Skan      if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
612169689Skan	return false;
613169689Skan    }
614169689Skan  if (is_overflow_infinity (vr->max))
615169689Skan    {
616169689Skan      *strict_overflow_p = true;
617169689Skan      if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
618169689Skan	return false;
619169689Skan    }
620169689Skan  return true;
621169689Skan}
622169689Skan
623169689Skan
624169689Skan/* Like tree_expr_nonnegative_warnv_p, but this function uses value
625169689Skan   ranges obtained so far.  */
626169689Skan
627169689Skanstatic bool
628169689Skanvrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
629169689Skan{
630169689Skan  return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
631169689Skan}
632169689Skan
633169689Skan/* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
634169689Skan   obtained so far.  */
635169689Skan
636169689Skanstatic bool
637169689Skanvrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
638169689Skan{
639169689Skan  if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
640169689Skan    return true;
641169689Skan
642169689Skan  /* If we have an expression of the form &X->a, then the expression
643169689Skan     is nonnull if X is nonnull.  */
644169689Skan  if (TREE_CODE (expr) == ADDR_EXPR)
645169689Skan    {
646169689Skan      tree base = get_base_address (TREE_OPERAND (expr, 0));
647169689Skan
648169689Skan      if (base != NULL_TREE
649169689Skan	  && TREE_CODE (base) == INDIRECT_REF
650169689Skan	  && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
651169689Skan	{
652169689Skan	  value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
653169689Skan	  if (range_is_nonnull (vr))
654169689Skan	    return true;
655169689Skan	}
656169689Skan    }
657169689Skan
658169689Skan  return false;
659169689Skan}
660169689Skan
661169689Skan/* Returns true if EXPR is a valid value (as expected by compare_values) --
662169689Skan   a gimple invariant, or SSA_NAME +- CST.  */
663169689Skan
664169689Skanstatic bool
665169689Skanvalid_value_p (tree expr)
666169689Skan{
667169689Skan  if (TREE_CODE (expr) == SSA_NAME)
668169689Skan    return true;
669169689Skan
670169689Skan  if (TREE_CODE (expr) == PLUS_EXPR
671169689Skan      || TREE_CODE (expr) == MINUS_EXPR)
672169689Skan    return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
673169689Skan	    && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
674169689Skan
675169689Skan  return is_gimple_min_invariant (expr);
676169689Skan}
677169689Skan
678169689Skan/* Compare two values VAL1 and VAL2.  Return
679169689Skan
680169689Skan   	-2 if VAL1 and VAL2 cannot be compared at compile-time,
681169689Skan   	-1 if VAL1 < VAL2,
682169689Skan   	 0 if VAL1 == VAL2,
683169689Skan	+1 if VAL1 > VAL2, and
684169689Skan	+2 if VAL1 != VAL2
685169689Skan
686169689Skan   This is similar to tree_int_cst_compare but supports pointer values
687169689Skan   and values that cannot be compared at compile time.
688169689Skan
689169689Skan   If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
690169689Skan   true if the return value is only valid if we assume that signed
691169689Skan   overflow is undefined.  */
692169689Skan
693169689Skanstatic int
694169689Skancompare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
695169689Skan{
696169689Skan  if (val1 == val2)
697169689Skan    return 0;
698169689Skan
699169689Skan  /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
700169689Skan     both integers.  */
701169689Skan  gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
702169689Skan	      == POINTER_TYPE_P (TREE_TYPE (val2)));
703169689Skan
704169689Skan  if ((TREE_CODE (val1) == SSA_NAME
705169689Skan       || TREE_CODE (val1) == PLUS_EXPR
706169689Skan       || TREE_CODE (val1) == MINUS_EXPR)
707169689Skan      && (TREE_CODE (val2) == SSA_NAME
708169689Skan	  || TREE_CODE (val2) == PLUS_EXPR
709169689Skan	  || TREE_CODE (val2) == MINUS_EXPR))
710169689Skan    {
711169689Skan      tree n1, c1, n2, c2;
712169689Skan      enum tree_code code1, code2;
713169689Skan
714169689Skan      /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
715169689Skan	 return -1 or +1 accordingly.  If VAL1 and VAL2 don't use the
716169689Skan	 same name, return -2.  */
717169689Skan      if (TREE_CODE (val1) == SSA_NAME)
718169689Skan	{
719169689Skan	  code1 = SSA_NAME;
720169689Skan	  n1 = val1;
721169689Skan	  c1 = NULL_TREE;
722169689Skan	}
723169689Skan      else
724169689Skan	{
725169689Skan	  code1 = TREE_CODE (val1);
726169689Skan	  n1 = TREE_OPERAND (val1, 0);
727169689Skan	  c1 = TREE_OPERAND (val1, 1);
728169689Skan	  if (tree_int_cst_sgn (c1) == -1)
729169689Skan	    {
730169689Skan	      if (is_negative_overflow_infinity (c1))
731169689Skan		return -2;
732169689Skan	      c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
733169689Skan	      if (!c1)
734169689Skan		return -2;
735169689Skan	      code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
736169689Skan	    }
737169689Skan	}
738169689Skan
739169689Skan      if (TREE_CODE (val2) == SSA_NAME)
740169689Skan	{
741169689Skan	  code2 = SSA_NAME;
742169689Skan	  n2 = val2;
743169689Skan	  c2 = NULL_TREE;
744169689Skan	}
745169689Skan      else
746169689Skan	{
747169689Skan	  code2 = TREE_CODE (val2);
748169689Skan	  n2 = TREE_OPERAND (val2, 0);
749169689Skan	  c2 = TREE_OPERAND (val2, 1);
750169689Skan	  if (tree_int_cst_sgn (c2) == -1)
751169689Skan	    {
752169689Skan	      if (is_negative_overflow_infinity (c2))
753169689Skan		return -2;
754169689Skan	      c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
755169689Skan	      if (!c2)
756169689Skan		return -2;
757169689Skan	      code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
758169689Skan	    }
759169689Skan	}
760169689Skan
761169689Skan      /* Both values must use the same name.  */
762169689Skan      if (n1 != n2)
763169689Skan	return -2;
764169689Skan
765169689Skan      if (code1 == SSA_NAME
766169689Skan	  && code2 == SSA_NAME)
767169689Skan	/* NAME == NAME  */
768169689Skan	return 0;
769169689Skan
770169689Skan      /* If overflow is defined we cannot simplify more.  */
771169689Skan      if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
772169689Skan	return -2;
773169689Skan
774171825Skan      if (strict_overflow_p != NULL
775171825Skan	  && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
776171825Skan	  && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
777169689Skan	*strict_overflow_p = true;
778169689Skan
779169689Skan      if (code1 == SSA_NAME)
780169689Skan	{
781169689Skan	  if (code2 == PLUS_EXPR)
782169689Skan	    /* NAME < NAME + CST  */
783169689Skan	    return -1;
784169689Skan	  else if (code2 == MINUS_EXPR)
785169689Skan	    /* NAME > NAME - CST  */
786169689Skan	    return 1;
787169689Skan	}
788169689Skan      else if (code1 == PLUS_EXPR)
789169689Skan	{
790169689Skan	  if (code2 == SSA_NAME)
791169689Skan	    /* NAME + CST > NAME  */
792169689Skan	    return 1;
793169689Skan	  else if (code2 == PLUS_EXPR)
794169689Skan	    /* NAME + CST1 > NAME + CST2, if CST1 > CST2  */
795169689Skan	    return compare_values_warnv (c1, c2, strict_overflow_p);
796169689Skan	  else if (code2 == MINUS_EXPR)
797169689Skan	    /* NAME + CST1 > NAME - CST2  */
798169689Skan	    return 1;
799169689Skan	}
800169689Skan      else if (code1 == MINUS_EXPR)
801169689Skan	{
802169689Skan	  if (code2 == SSA_NAME)
803169689Skan	    /* NAME - CST < NAME  */
804169689Skan	    return -1;
805169689Skan	  else if (code2 == PLUS_EXPR)
806169689Skan	    /* NAME - CST1 < NAME + CST2  */
807169689Skan	    return -1;
808169689Skan	  else if (code2 == MINUS_EXPR)
809169689Skan	    /* NAME - CST1 > NAME - CST2, if CST1 < CST2.  Notice that
810169689Skan	       C1 and C2 are swapped in the call to compare_values.  */
811169689Skan	    return compare_values_warnv (c2, c1, strict_overflow_p);
812169689Skan	}
813169689Skan
814169689Skan      gcc_unreachable ();
815169689Skan    }
816169689Skan
817169689Skan  /* We cannot compare non-constants.  */
818169689Skan  if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
819169689Skan    return -2;
820169689Skan
821169689Skan  if (!POINTER_TYPE_P (TREE_TYPE (val1)))
822169689Skan    {
823169689Skan      /* We cannot compare overflowed values, except for overflow
824169689Skan	 infinities.  */
825169689Skan      if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
826169689Skan	{
827169689Skan	  if (strict_overflow_p != NULL)
828169689Skan	    *strict_overflow_p = true;
829169689Skan	  if (is_negative_overflow_infinity (val1))
830169689Skan	    return is_negative_overflow_infinity (val2) ? 0 : -1;
831169689Skan	  else if (is_negative_overflow_infinity (val2))
832169689Skan	    return 1;
833169689Skan	  else if (is_positive_overflow_infinity (val1))
834169689Skan	    return is_positive_overflow_infinity (val2) ? 0 : 1;
835169689Skan	  else if (is_positive_overflow_infinity (val2))
836169689Skan	    return -1;
837169689Skan	  return -2;
838169689Skan	}
839169689Skan
840169689Skan      return tree_int_cst_compare (val1, val2);
841169689Skan    }
842169689Skan  else
843169689Skan    {
844169689Skan      tree t;
845169689Skan
846169689Skan      /* First see if VAL1 and VAL2 are not the same.  */
847169689Skan      if (val1 == val2 || operand_equal_p (val1, val2, 0))
848169689Skan	return 0;
849169689Skan
850169689Skan      /* If VAL1 is a lower address than VAL2, return -1.  */
851169689Skan      t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
852169689Skan      if (t == boolean_true_node)
853169689Skan	return -1;
854169689Skan
855169689Skan      /* If VAL1 is a higher address than VAL2, return +1.  */
856169689Skan      t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
857169689Skan      if (t == boolean_true_node)
858169689Skan	return 1;
859169689Skan
860169689Skan      /* If VAL1 is different than VAL2, return +2.  */
861169689Skan      t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
862169689Skan      if (t == boolean_true_node)
863169689Skan	return 2;
864169689Skan
865169689Skan      return -2;
866169689Skan    }
867169689Skan}
868169689Skan
869169689Skan/* Compare values like compare_values_warnv, but treat comparisons of
870169689Skan   nonconstants which rely on undefined overflow as incomparable.  */
871169689Skan
872169689Skanstatic int
873169689Skancompare_values (tree val1, tree val2)
874169689Skan{
875169689Skan  bool sop;
876169689Skan  int ret;
877169689Skan
878169689Skan  sop = false;
879169689Skan  ret = compare_values_warnv (val1, val2, &sop);
880169689Skan  if (sop
881169689Skan      && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
882169689Skan    ret = -2;
883169689Skan  return ret;
884169689Skan}
885169689Skan
886169689Skan
887169689Skan/* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
888169689Skan          0 if VAL is not inside VR,
889169689Skan	 -2 if we cannot tell either way.
890169689Skan
891169689Skan   FIXME, the current semantics of this functions are a bit quirky
892169689Skan	  when taken in the context of VRP.  In here we do not care
893169689Skan	  about VR's type.  If VR is the anti-range ~[3, 5] the call
894169689Skan	  value_inside_range (4, VR) will return 1.
895169689Skan
896169689Skan	  This is counter-intuitive in a strict sense, but the callers
897169689Skan	  currently expect this.  They are calling the function
898169689Skan	  merely to determine whether VR->MIN <= VAL <= VR->MAX.  The
899169689Skan	  callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
900169689Skan	  themselves.
901169689Skan
902169689Skan	  This also applies to value_ranges_intersect_p and
903169689Skan	  range_includes_zero_p.  The semantics of VR_RANGE and
904169689Skan	  VR_ANTI_RANGE should be encoded here, but that also means
905169689Skan	  adapting the users of these functions to the new semantics.  */
906169689Skan
907169689Skanstatic inline int
908169689Skanvalue_inside_range (tree val, value_range_t *vr)
909169689Skan{
910169689Skan  tree cmp1, cmp2;
911169689Skan
912169689Skan  fold_defer_overflow_warnings ();
913169689Skan
914169689Skan  cmp1 = fold_binary_to_constant (GE_EXPR, boolean_type_node, val, vr->min);
915169689Skan  if (!cmp1)
916169689Skan  {
917169689Skan    fold_undefer_and_ignore_overflow_warnings ();
918169689Skan    return -2;
919169689Skan  }
920169689Skan
921169689Skan  cmp2 = fold_binary_to_constant (LE_EXPR, boolean_type_node, val, vr->max);
922169689Skan
923169689Skan  fold_undefer_and_ignore_overflow_warnings ();
924169689Skan
925169689Skan  if (!cmp2)
926169689Skan    return -2;
927169689Skan
928169689Skan  return cmp1 == boolean_true_node && cmp2 == boolean_true_node;
929169689Skan}
930169689Skan
931169689Skan
932169689Skan/* Return true if value ranges VR0 and VR1 have a non-empty
933169689Skan   intersection.  */
934169689Skan
935169689Skanstatic inline bool
936169689Skanvalue_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
937169689Skan{
938169689Skan  return (value_inside_range (vr1->min, vr0) == 1
939169689Skan	  || value_inside_range (vr1->max, vr0) == 1
940169689Skan	  || value_inside_range (vr0->min, vr1) == 1
941169689Skan	  || value_inside_range (vr0->max, vr1) == 1);
942169689Skan}
943169689Skan
944169689Skan
945169689Skan/* Return true if VR includes the value zero, false otherwise.  FIXME,
946169689Skan   currently this will return false for an anti-range like ~[-4, 3].
947169689Skan   This will be wrong when the semantics of value_inside_range are
948169689Skan   modified (currently the users of this function expect these
949169689Skan   semantics).  */
950169689Skan
951169689Skanstatic inline bool
952169689Skanrange_includes_zero_p (value_range_t *vr)
953169689Skan{
954169689Skan  tree zero;
955169689Skan
956169689Skan  gcc_assert (vr->type != VR_UNDEFINED
957169689Skan              && vr->type != VR_VARYING
958169689Skan	      && !symbolic_range_p (vr));
959169689Skan
960169689Skan  zero = build_int_cst (TREE_TYPE (vr->min), 0);
961169689Skan  return (value_inside_range (zero, vr) == 1);
962169689Skan}
963169689Skan
964169689Skan/* Return true if T, an SSA_NAME, is known to be nonnegative.  Return
965169689Skan   false otherwise or if no value range information is available.  */
966169689Skan
967169689Skanbool
968169689Skanssa_name_nonnegative_p (tree t)
969169689Skan{
970169689Skan  value_range_t *vr = get_value_range (t);
971169689Skan
972169689Skan  if (!vr)
973169689Skan    return false;
974169689Skan
975169689Skan  /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
976169689Skan     which would return a useful value should be encoded as a VR_RANGE.  */
977169689Skan  if (vr->type == VR_RANGE)
978169689Skan    {
979169689Skan      int result = compare_values (vr->min, integer_zero_node);
980169689Skan
981169689Skan      return (result == 0 || result == 1);
982169689Skan    }
983169689Skan  return false;
984169689Skan}
985169689Skan
986169689Skan/* Return true if T, an SSA_NAME, is known to be nonzero.  Return
987169689Skan   false otherwise or if no value range information is available.  */
988169689Skan
989169689Skanbool
990169689Skanssa_name_nonzero_p (tree t)
991169689Skan{
992169689Skan  value_range_t *vr = get_value_range (t);
993169689Skan
994169689Skan  if (!vr)
995169689Skan    return false;
996169689Skan
997169689Skan  /* A VR_RANGE which does not include zero is a nonzero value.  */
998169689Skan  if (vr->type == VR_RANGE && !symbolic_range_p (vr))
999169689Skan    return ! range_includes_zero_p (vr);
1000169689Skan
1001169689Skan  /* A VR_ANTI_RANGE which does include zero is a nonzero value.  */
1002169689Skan  if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1003169689Skan    return range_includes_zero_p (vr);
1004169689Skan
1005169689Skan  return false;
1006169689Skan}
1007169689Skan
1008169689Skan
1009169689Skan/* Extract value range information from an ASSERT_EXPR EXPR and store
1010169689Skan   it in *VR_P.  */
1011169689Skan
1012169689Skanstatic void
1013169689Skanextract_range_from_assert (value_range_t *vr_p, tree expr)
1014169689Skan{
1015169689Skan  tree var, cond, limit, min, max, type;
1016169689Skan  value_range_t *var_vr, *limit_vr;
1017169689Skan  enum tree_code cond_code;
1018169689Skan
1019169689Skan  var = ASSERT_EXPR_VAR (expr);
1020169689Skan  cond = ASSERT_EXPR_COND (expr);
1021169689Skan
1022169689Skan  gcc_assert (COMPARISON_CLASS_P (cond));
1023169689Skan
1024169689Skan  /* Find VAR in the ASSERT_EXPR conditional.  */
1025169689Skan  if (var == TREE_OPERAND (cond, 0))
1026169689Skan    {
1027169689Skan      /* If the predicate is of the form VAR COMP LIMIT, then we just
1028169689Skan	 take LIMIT from the RHS and use the same comparison code.  */
1029169689Skan      limit = TREE_OPERAND (cond, 1);
1030169689Skan      cond_code = TREE_CODE (cond);
1031169689Skan    }
1032169689Skan  else
1033169689Skan    {
1034169689Skan      /* If the predicate is of the form LIMIT COMP VAR, then we need
1035169689Skan	 to flip around the comparison code to create the proper range
1036169689Skan	 for VAR.  */
1037169689Skan      limit = TREE_OPERAND (cond, 0);
1038169689Skan      cond_code = swap_tree_comparison (TREE_CODE (cond));
1039169689Skan    }
1040169689Skan
1041171825Skan  limit = avoid_overflow_infinity (limit);
1042171825Skan
1043169689Skan  type = TREE_TYPE (limit);
1044169689Skan  gcc_assert (limit != var);
1045169689Skan
1046169689Skan  /* For pointer arithmetic, we only keep track of pointer equality
1047169689Skan     and inequality.  */
1048169689Skan  if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1049169689Skan    {
1050169689Skan      set_value_range_to_varying (vr_p);
1051169689Skan      return;
1052169689Skan    }
1053169689Skan
1054169689Skan  /* If LIMIT is another SSA name and LIMIT has a range of its own,
1055169689Skan     try to use LIMIT's range to avoid creating symbolic ranges
1056169689Skan     unnecessarily. */
1057169689Skan  limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1058169689Skan
1059169689Skan  /* LIMIT's range is only interesting if it has any useful information.  */
1060169689Skan  if (limit_vr
1061169689Skan      && (limit_vr->type == VR_UNDEFINED
1062169689Skan	  || limit_vr->type == VR_VARYING
1063169689Skan	  || symbolic_range_p (limit_vr)))
1064169689Skan    limit_vr = NULL;
1065169689Skan
1066169689Skan  /* Initially, the new range has the same set of equivalences of
1067169689Skan     VAR's range.  This will be revised before returning the final
1068169689Skan     value.  Since assertions may be chained via mutually exclusive
1069169689Skan     predicates, we will need to trim the set of equivalences before
1070169689Skan     we are done.  */
1071169689Skan  gcc_assert (vr_p->equiv == NULL);
1072169689Skan  vr_p->equiv = BITMAP_ALLOC (NULL);
1073169689Skan  add_equivalence (vr_p->equiv, var);
1074169689Skan
1075169689Skan  /* Extract a new range based on the asserted comparison for VAR and
1076169689Skan     LIMIT's value range.  Notice that if LIMIT has an anti-range, we
1077169689Skan     will only use it for equality comparisons (EQ_EXPR).  For any
1078169689Skan     other kind of assertion, we cannot derive a range from LIMIT's
1079169689Skan     anti-range that can be used to describe the new range.  For
1080169689Skan     instance, ASSERT_EXPR <x_2, x_2 <= b_4>.  If b_4 is ~[2, 10],
1081169689Skan     then b_4 takes on the ranges [-INF, 1] and [11, +INF].  There is
1082169689Skan     no single range for x_2 that could describe LE_EXPR, so we might
1083169689Skan     as well build the range [b_4, +INF] for it.  */
1084169689Skan  if (cond_code == EQ_EXPR)
1085169689Skan    {
1086169689Skan      enum value_range_type range_type;
1087169689Skan
1088169689Skan      if (limit_vr)
1089169689Skan	{
1090169689Skan	  range_type = limit_vr->type;
1091169689Skan	  min = limit_vr->min;
1092169689Skan	  max = limit_vr->max;
1093169689Skan	}
1094169689Skan      else
1095169689Skan	{
1096169689Skan	  range_type = VR_RANGE;
1097169689Skan	  min = limit;
1098169689Skan	  max = limit;
1099169689Skan	}
1100169689Skan
1101169689Skan      set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1102169689Skan
1103169689Skan      /* When asserting the equality VAR == LIMIT and LIMIT is another
1104169689Skan	 SSA name, the new range will also inherit the equivalence set
1105169689Skan	 from LIMIT.  */
1106169689Skan      if (TREE_CODE (limit) == SSA_NAME)
1107169689Skan	add_equivalence (vr_p->equiv, limit);
1108169689Skan    }
1109169689Skan  else if (cond_code == NE_EXPR)
1110169689Skan    {
1111169689Skan      /* As described above, when LIMIT's range is an anti-range and
1112169689Skan	 this assertion is an inequality (NE_EXPR), then we cannot
1113169689Skan	 derive anything from the anti-range.  For instance, if
1114169689Skan	 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1115169689Skan	 not imply that VAR's range is [0, 0].  So, in the case of
1116169689Skan	 anti-ranges, we just assert the inequality using LIMIT and
1117169689Skan	 not its anti-range.
1118169689Skan
1119169689Skan	 If LIMIT_VR is a range, we can only use it to build a new
1120169689Skan	 anti-range if LIMIT_VR is a single-valued range.  For
1121169689Skan	 instance, if LIMIT_VR is [0, 1], the predicate
1122169689Skan	 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1123169689Skan	 Rather, it means that for value 0 VAR should be ~[0, 0]
1124169689Skan	 and for value 1, VAR should be ~[1, 1].  We cannot
1125169689Skan	 represent these ranges.
1126169689Skan
1127169689Skan	 The only situation in which we can build a valid
1128169689Skan	 anti-range is when LIMIT_VR is a single-valued range
1129169689Skan	 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX).  In that case,
1130169689Skan	 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX].  */
1131169689Skan      if (limit_vr
1132169689Skan	  && limit_vr->type == VR_RANGE
1133169689Skan	  && compare_values (limit_vr->min, limit_vr->max) == 0)
1134169689Skan	{
1135169689Skan	  min = limit_vr->min;
1136169689Skan	  max = limit_vr->max;
1137169689Skan	}
1138169689Skan      else
1139169689Skan	{
1140169689Skan	  /* In any other case, we cannot use LIMIT's range to build a
1141169689Skan	     valid anti-range.  */
1142169689Skan	  min = max = limit;
1143169689Skan	}
1144169689Skan
1145169689Skan      /* If MIN and MAX cover the whole range for their type, then
1146169689Skan	 just use the original LIMIT.  */
1147169689Skan      if (INTEGRAL_TYPE_P (type)
1148169689Skan	  && vrp_val_is_min (min)
1149169689Skan	  && vrp_val_is_max (max))
1150169689Skan	min = max = limit;
1151169689Skan
1152169689Skan      set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1153169689Skan    }
1154169689Skan  else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1155169689Skan    {
1156169689Skan      min = TYPE_MIN_VALUE (type);
1157169689Skan
1158169689Skan      if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1159169689Skan	max = limit;
1160169689Skan      else
1161169689Skan	{
1162169689Skan	  /* If LIMIT_VR is of the form [N1, N2], we need to build the
1163169689Skan	     range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1164169689Skan	     LT_EXPR.  */
1165169689Skan	  max = limit_vr->max;
1166169689Skan	}
1167169689Skan
1168169689Skan      /* If the maximum value forces us to be out of bounds, simply punt.
1169169689Skan	 It would be pointless to try and do anything more since this
1170169689Skan	 all should be optimized away above us.  */
1171169689Skan      if ((cond_code == LT_EXPR
1172169689Skan	   && compare_values (max, min) == 0)
1173169689Skan	  || is_overflow_infinity (max))
1174169689Skan	set_value_range_to_varying (vr_p);
1175169689Skan      else
1176169689Skan	{
1177169689Skan	  /* For LT_EXPR, we create the range [MIN, MAX - 1].  */
1178169689Skan	  if (cond_code == LT_EXPR)
1179169689Skan	    {
1180169689Skan	      tree one = build_int_cst (type, 1);
1181169689Skan	      max = fold_build2 (MINUS_EXPR, type, max, one);
1182171825Skan	      if (EXPR_P (max))
1183171825Skan		TREE_NO_WARNING (max) = 1;
1184169689Skan	    }
1185169689Skan
1186169689Skan	  set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1187169689Skan	}
1188169689Skan    }
1189169689Skan  else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1190169689Skan    {
1191169689Skan      max = TYPE_MAX_VALUE (type);
1192169689Skan
1193169689Skan      if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1194169689Skan	min = limit;
1195169689Skan      else
1196169689Skan	{
1197169689Skan	  /* If LIMIT_VR is of the form [N1, N2], we need to build the
1198169689Skan	     range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1199169689Skan	     GT_EXPR.  */
1200169689Skan	  min = limit_vr->min;
1201169689Skan	}
1202169689Skan
1203169689Skan      /* If the minimum value forces us to be out of bounds, simply punt.
1204169689Skan	 It would be pointless to try and do anything more since this
1205169689Skan	 all should be optimized away above us.  */
1206169689Skan      if ((cond_code == GT_EXPR
1207169689Skan	   && compare_values (min, max) == 0)
1208169689Skan	  || is_overflow_infinity (min))
1209169689Skan	set_value_range_to_varying (vr_p);
1210169689Skan      else
1211169689Skan	{
1212169689Skan	  /* For GT_EXPR, we create the range [MIN + 1, MAX].  */
1213169689Skan	  if (cond_code == GT_EXPR)
1214169689Skan	    {
1215169689Skan	      tree one = build_int_cst (type, 1);
1216169689Skan	      min = fold_build2 (PLUS_EXPR, type, min, one);
1217171825Skan	      if (EXPR_P (min))
1218171825Skan		TREE_NO_WARNING (min) = 1;
1219169689Skan	    }
1220169689Skan
1221169689Skan	  set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1222169689Skan	}
1223169689Skan    }
1224169689Skan  else
1225169689Skan    gcc_unreachable ();
1226169689Skan
1227169689Skan  /* If VAR already had a known range, it may happen that the new
1228169689Skan     range we have computed and VAR's range are not compatible.  For
1229169689Skan     instance,
1230169689Skan
1231169689Skan	if (p_5 == NULL)
1232169689Skan	  p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1233169689Skan	  x_7 = p_6->fld;
1234169689Skan	  p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1235169689Skan
1236169689Skan     While the above comes from a faulty program, it will cause an ICE
1237169689Skan     later because p_8 and p_6 will have incompatible ranges and at
1238169689Skan     the same time will be considered equivalent.  A similar situation
1239169689Skan     would arise from
1240169689Skan
1241169689Skan     	if (i_5 > 10)
1242169689Skan	  i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1243169689Skan	  if (i_5 < 5)
1244169689Skan	    i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1245169689Skan
1246169689Skan     Again i_6 and i_7 will have incompatible ranges.  It would be
1247169689Skan     pointless to try and do anything with i_7's range because
1248169689Skan     anything dominated by 'if (i_5 < 5)' will be optimized away.
1249169689Skan     Note, due to the wa in which simulation proceeds, the statement
1250169689Skan     i_7 = ASSERT_EXPR <...> we would never be visited because the
1251169689Skan     conditional 'if (i_5 < 5)' always evaluates to false.  However,
1252169689Skan     this extra check does not hurt and may protect against future
1253169689Skan     changes to VRP that may get into a situation similar to the
1254169689Skan     NULL pointer dereference example.
1255169689Skan
1256169689Skan     Note that these compatibility tests are only needed when dealing
1257169689Skan     with ranges or a mix of range and anti-range.  If VAR_VR and VR_P
1258169689Skan     are both anti-ranges, they will always be compatible, because two
1259169689Skan     anti-ranges will always have a non-empty intersection.  */
1260169689Skan
1261169689Skan  var_vr = get_value_range (var);
1262169689Skan
1263169689Skan  /* We may need to make adjustments when VR_P and VAR_VR are numeric
1264169689Skan     ranges or anti-ranges.  */
1265169689Skan  if (vr_p->type == VR_VARYING
1266169689Skan      || vr_p->type == VR_UNDEFINED
1267169689Skan      || var_vr->type == VR_VARYING
1268169689Skan      || var_vr->type == VR_UNDEFINED
1269169689Skan      || symbolic_range_p (vr_p)
1270169689Skan      || symbolic_range_p (var_vr))
1271169689Skan    return;
1272169689Skan
1273169689Skan  if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1274169689Skan    {
1275169689Skan      /* If the two ranges have a non-empty intersection, we can
1276169689Skan	 refine the resulting range.  Since the assert expression
1277169689Skan	 creates an equivalency and at the same time it asserts a
1278169689Skan	 predicate, we can take the intersection of the two ranges to
1279169689Skan	 get better precision.  */
1280169689Skan      if (value_ranges_intersect_p (var_vr, vr_p))
1281169689Skan	{
1282169689Skan	  /* Use the larger of the two minimums.  */
1283169689Skan	  if (compare_values (vr_p->min, var_vr->min) == -1)
1284169689Skan	    min = var_vr->min;
1285169689Skan	  else
1286169689Skan	    min = vr_p->min;
1287169689Skan
1288169689Skan	  /* Use the smaller of the two maximums.  */
1289169689Skan	  if (compare_values (vr_p->max, var_vr->max) == 1)
1290169689Skan	    max = var_vr->max;
1291169689Skan	  else
1292169689Skan	    max = vr_p->max;
1293169689Skan
1294169689Skan	  set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1295169689Skan	}
1296169689Skan      else
1297169689Skan	{
1298169689Skan	  /* The two ranges do not intersect, set the new range to
1299169689Skan	     VARYING, because we will not be able to do anything
1300169689Skan	     meaningful with it.  */
1301169689Skan	  set_value_range_to_varying (vr_p);
1302169689Skan	}
1303169689Skan    }
1304169689Skan  else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1305169689Skan           || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1306169689Skan    {
1307169689Skan      /* A range and an anti-range will cancel each other only if
1308169689Skan	 their ends are the same.  For instance, in the example above,
1309169689Skan	 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1310169689Skan	 so VR_P should be set to VR_VARYING.  */
1311169689Skan      if (compare_values (var_vr->min, vr_p->min) == 0
1312169689Skan	  && compare_values (var_vr->max, vr_p->max) == 0)
1313169689Skan	set_value_range_to_varying (vr_p);
1314169689Skan      else
1315169689Skan	{
1316169689Skan	  tree min, max, anti_min, anti_max, real_min, real_max;
1317169689Skan
1318169689Skan	  /* We want to compute the logical AND of the two ranges;
1319169689Skan	     there are three cases to consider.
1320169689Skan
1321169689Skan
1322169689Skan	     1. The VR_ANTI_RANGE range is completely within the
1323169689Skan		VR_RANGE and the endpoints of the ranges are
1324169689Skan		different.  In that case the resulting range
1325169689Skan		should be whichever range is more precise.
1326169689Skan		Typically that will be the VR_RANGE.
1327169689Skan
1328169689Skan	     2. The VR_ANTI_RANGE is completely disjoint from
1329169689Skan		the VR_RANGE.  In this case the resulting range
1330169689Skan		should be the VR_RANGE.
1331169689Skan
1332169689Skan	     3. There is some overlap between the VR_ANTI_RANGE
1333169689Skan		and the VR_RANGE.
1334169689Skan
1335169689Skan		3a. If the high limit of the VR_ANTI_RANGE resides
1336169689Skan		    within the VR_RANGE, then the result is a new
1337169689Skan		    VR_RANGE starting at the high limit of the
1338169689Skan		    the VR_ANTI_RANGE + 1 and extending to the
1339169689Skan		    high limit of the original VR_RANGE.
1340169689Skan
1341169689Skan		3b. If the low limit of the VR_ANTI_RANGE resides
1342169689Skan		    within the VR_RANGE, then the result is a new
1343169689Skan		    VR_RANGE starting at the low limit of the original
1344169689Skan		    VR_RANGE and extending to the low limit of the
1345169689Skan		    VR_ANTI_RANGE - 1.  */
1346169689Skan	  if (vr_p->type == VR_ANTI_RANGE)
1347169689Skan	    {
1348169689Skan	      anti_min = vr_p->min;
1349169689Skan	      anti_max = vr_p->max;
1350169689Skan	      real_min = var_vr->min;
1351169689Skan	      real_max = var_vr->max;
1352169689Skan	    }
1353169689Skan	  else
1354169689Skan	    {
1355169689Skan	      anti_min = var_vr->min;
1356169689Skan	      anti_max = var_vr->max;
1357169689Skan	      real_min = vr_p->min;
1358169689Skan	      real_max = vr_p->max;
1359169689Skan	    }
1360169689Skan
1361169689Skan
1362169689Skan	  /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1363169689Skan	     not including any endpoints.  */
1364169689Skan	  if (compare_values (anti_max, real_max) == -1
1365169689Skan	      && compare_values (anti_min, real_min) == 1)
1366169689Skan	    {
1367169689Skan	      set_value_range (vr_p, VR_RANGE, real_min,
1368169689Skan			       real_max, vr_p->equiv);
1369169689Skan	    }
1370169689Skan	  /* Case 2, VR_ANTI_RANGE completely disjoint from
1371169689Skan	     VR_RANGE.  */
1372169689Skan	  else if (compare_values (anti_min, real_max) == 1
1373169689Skan		   || compare_values (anti_max, real_min) == -1)
1374169689Skan	    {
1375169689Skan	      set_value_range (vr_p, VR_RANGE, real_min,
1376169689Skan			       real_max, vr_p->equiv);
1377169689Skan	    }
1378169689Skan	  /* Case 3a, the anti-range extends into the low
1379169689Skan	     part of the real range.  Thus creating a new
1380169689Skan	     low for the real range.  */
1381169689Skan	  else if ((compare_values (anti_max, real_min) == 1
1382169689Skan		    || compare_values (anti_max, real_min) == 0)
1383169689Skan		   && compare_values (anti_max, real_max) == -1)
1384169689Skan	    {
1385169689Skan	      gcc_assert (!is_positive_overflow_infinity (anti_max));
1386169689Skan	      if (needs_overflow_infinity (TREE_TYPE (anti_max))
1387169689Skan		  && vrp_val_is_max (anti_max))
1388169689Skan		{
1389169689Skan		  if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1390169689Skan		    {
1391169689Skan		      set_value_range_to_varying (vr_p);
1392169689Skan		      return;
1393169689Skan		    }
1394169689Skan		  min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1395169689Skan		}
1396169689Skan	      else
1397169689Skan		min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1398169689Skan				   anti_max,
1399169689Skan				   build_int_cst (TREE_TYPE (var_vr->min), 1));
1400169689Skan	      max = real_max;
1401169689Skan	      set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1402169689Skan	    }
1403169689Skan	  /* Case 3b, the anti-range extends into the high
1404169689Skan	     part of the real range.  Thus creating a new
1405169689Skan	     higher for the real range.  */
1406169689Skan	  else if (compare_values (anti_min, real_min) == 1
1407169689Skan		   && (compare_values (anti_min, real_max) == -1
1408169689Skan		       || compare_values (anti_min, real_max) == 0))
1409169689Skan	    {
1410169689Skan	      gcc_assert (!is_negative_overflow_infinity (anti_min));
1411169689Skan	      if (needs_overflow_infinity (TREE_TYPE (anti_min))
1412169689Skan		  && vrp_val_is_min (anti_min))
1413169689Skan		{
1414169689Skan		  if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1415169689Skan		    {
1416169689Skan		      set_value_range_to_varying (vr_p);
1417169689Skan		      return;
1418169689Skan		    }
1419169689Skan		  max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1420169689Skan		}
1421169689Skan	      else
1422169689Skan		max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1423169689Skan				   anti_min,
1424169689Skan				   build_int_cst (TREE_TYPE (var_vr->min), 1));
1425169689Skan	      min = real_min;
1426169689Skan	      set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1427169689Skan	    }
1428169689Skan	}
1429169689Skan    }
1430169689Skan}
1431169689Skan
1432169689Skan
1433169689Skan/* Extract range information from SSA name VAR and store it in VR.  If
1434169689Skan   VAR has an interesting range, use it.  Otherwise, create the
1435169689Skan   range [VAR, VAR] and return it.  This is useful in situations where
1436169689Skan   we may have conditionals testing values of VARYING names.  For
1437169689Skan   instance,
1438169689Skan
1439169689Skan   	x_3 = y_5;
1440169689Skan	if (x_3 > y_5)
1441169689Skan	  ...
1442169689Skan
1443169689Skan    Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1444169689Skan    always false.  */
1445169689Skan
1446169689Skanstatic void
1447169689Skanextract_range_from_ssa_name (value_range_t *vr, tree var)
1448169689Skan{
1449169689Skan  value_range_t *var_vr = get_value_range (var);
1450169689Skan
1451169689Skan  if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1452169689Skan    copy_value_range (vr, var_vr);
1453169689Skan  else
1454169689Skan    set_value_range (vr, VR_RANGE, var, var, NULL);
1455169689Skan
1456169689Skan  add_equivalence (vr->equiv, var);
1457169689Skan}
1458169689Skan
1459169689Skan
1460169689Skan/* Wrapper around int_const_binop.  If the operation overflows and we
1461169689Skan   are not using wrapping arithmetic, then adjust the result to be
1462169689Skan   -INF or +INF depending on CODE, VAL1 and VAL2.  This can return
1463169689Skan   NULL_TREE if we need to use an overflow infinity representation but
1464169689Skan   the type does not support it.  */
1465169689Skan
1466169689Skanstatic tree
1467169689Skanvrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1468169689Skan{
1469169689Skan  tree res;
1470169689Skan
1471169689Skan  res = int_const_binop (code, val1, val2, 0);
1472169689Skan
1473169689Skan  /* If we are not using wrapping arithmetic, operate symbolically
1474169689Skan     on -INF and +INF.  */
1475169689Skan  if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1476169689Skan    {
1477169689Skan      int checkz = compare_values (res, val1);
1478169689Skan      bool overflow = false;
1479169689Skan
1480169689Skan      /* Ensure that res = val1 [+*] val2 >= val1
1481169689Skan         or that res = val1 - val2 <= val1.  */
1482169689Skan      if ((code == PLUS_EXPR
1483169689Skan	   && !(checkz == 1 || checkz == 0))
1484169689Skan          || (code == MINUS_EXPR
1485169689Skan	      && !(checkz == 0 || checkz == -1)))
1486169689Skan	{
1487169689Skan	  overflow = true;
1488169689Skan	}
1489169689Skan      /* Checking for multiplication overflow is done by dividing the
1490169689Skan	 output of the multiplication by the first input of the
1491169689Skan	 multiplication.  If the result of that division operation is
1492169689Skan	 not equal to the second input of the multiplication, then the
1493169689Skan	 multiplication overflowed.  */
1494169689Skan      else if (code == MULT_EXPR && !integer_zerop (val1))
1495169689Skan	{
1496169689Skan	  tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1497169689Skan				      res,
1498169689Skan				      val1, 0);
1499169689Skan	  int check = compare_values (tmp, val2);
1500169689Skan
1501169689Skan	  if (check != 0)
1502169689Skan	    overflow = true;
1503169689Skan	}
1504169689Skan
1505169689Skan      if (overflow)
1506169689Skan	{
1507169689Skan	  res = copy_node (res);
1508169689Skan	  TREE_OVERFLOW (res) = 1;
1509169689Skan	}
1510169689Skan
1511169689Skan    }
1512169689Skan  else if ((TREE_OVERFLOW (res)
1513169689Skan	    && !TREE_OVERFLOW (val1)
1514169689Skan	    && !TREE_OVERFLOW (val2))
1515169689Skan	   || is_overflow_infinity (val1)
1516169689Skan	   || is_overflow_infinity (val2))
1517169689Skan    {
1518169689Skan      /* If the operation overflowed but neither VAL1 nor VAL2 are
1519169689Skan	 overflown, return -INF or +INF depending on the operation
1520169689Skan	 and the combination of signs of the operands.  */
1521169689Skan      int sgn1 = tree_int_cst_sgn (val1);
1522169689Skan      int sgn2 = tree_int_cst_sgn (val2);
1523169689Skan
1524169689Skan      if (needs_overflow_infinity (TREE_TYPE (res))
1525169689Skan	  && !supports_overflow_infinity (TREE_TYPE (res)))
1526169689Skan	return NULL_TREE;
1527169689Skan
1528169689Skan      /* We have to punt on adding infinities of different signs,
1529169689Skan	 since we can't tell what the sign of the result should be.
1530169689Skan	 Likewise for subtracting infinities of the same sign.  */
1531169689Skan      if (((code == PLUS_EXPR && sgn1 != sgn2)
1532169689Skan	   || (code == MINUS_EXPR && sgn1 == sgn2))
1533169689Skan	  && is_overflow_infinity (val1)
1534169689Skan	  && is_overflow_infinity (val2))
1535169689Skan	return NULL_TREE;
1536169689Skan
1537169689Skan      /* Don't try to handle division or shifting of infinities.  */
1538169689Skan      if ((code == TRUNC_DIV_EXPR
1539169689Skan	   || code == FLOOR_DIV_EXPR
1540169689Skan	   || code == CEIL_DIV_EXPR
1541169689Skan	   || code == EXACT_DIV_EXPR
1542169689Skan	   || code == ROUND_DIV_EXPR
1543169689Skan	   || code == RSHIFT_EXPR)
1544169689Skan	  && (is_overflow_infinity (val1)
1545169689Skan	      || is_overflow_infinity (val2)))
1546169689Skan	return NULL_TREE;
1547169689Skan
1548169689Skan      /* Notice that we only need to handle the restricted set of
1549169689Skan	 operations handled by extract_range_from_binary_expr.
1550169689Skan	 Among them, only multiplication, addition and subtraction
1551169689Skan	 can yield overflow without overflown operands because we
1552169689Skan	 are working with integral types only... except in the
1553169689Skan	 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1554169689Skan	 for division too.  */
1555169689Skan
1556169689Skan      /* For multiplication, the sign of the overflow is given
1557169689Skan	 by the comparison of the signs of the operands.  */
1558169689Skan      if ((code == MULT_EXPR && sgn1 == sgn2)
1559169689Skan          /* For addition, the operands must be of the same sign
1560169689Skan	     to yield an overflow.  Its sign is therefore that
1561169689Skan	     of one of the operands, for example the first.  For
1562169689Skan	     infinite operands X + -INF is negative, not positive.  */
1563169689Skan	  || (code == PLUS_EXPR
1564169689Skan	      && (sgn1 >= 0
1565169689Skan		  ? !is_negative_overflow_infinity (val2)
1566169689Skan		  : is_positive_overflow_infinity (val2)))
1567169689Skan	  /* For subtraction, non-infinite operands must be of
1568169689Skan	     different signs to yield an overflow.  Its sign is
1569169689Skan	     therefore that of the first operand or the opposite of
1570169689Skan	     that of the second operand.  A first operand of 0 counts
1571169689Skan	     as positive here, for the corner case 0 - (-INF), which
1572169689Skan	     overflows, but must yield +INF.  For infinite operands 0
1573169689Skan	     - INF is negative, not positive.  */
1574169689Skan	  || (code == MINUS_EXPR
1575169689Skan	      && (sgn1 >= 0
1576169689Skan		  ? !is_positive_overflow_infinity (val2)
1577169689Skan		  : is_negative_overflow_infinity (val2)))
1578169689Skan	  /* For division, the only case is -INF / -1 = +INF.  */
1579169689Skan	  || code == TRUNC_DIV_EXPR
1580169689Skan	  || code == FLOOR_DIV_EXPR
1581169689Skan	  || code == CEIL_DIV_EXPR
1582169689Skan	  || code == EXACT_DIV_EXPR
1583169689Skan	  || code == ROUND_DIV_EXPR)
1584169689Skan	return (needs_overflow_infinity (TREE_TYPE (res))
1585169689Skan		? positive_overflow_infinity (TREE_TYPE (res))
1586169689Skan		: TYPE_MAX_VALUE (TREE_TYPE (res)));
1587169689Skan      else
1588169689Skan	return (needs_overflow_infinity (TREE_TYPE (res))
1589169689Skan		? negative_overflow_infinity (TREE_TYPE (res))
1590169689Skan		: TYPE_MIN_VALUE (TREE_TYPE (res)));
1591169689Skan    }
1592169689Skan
1593169689Skan  return res;
1594169689Skan}
1595169689Skan
1596169689Skan
1597169689Skan/* Extract range information from a binary expression EXPR based on
1598169689Skan   the ranges of each of its operands and the expression code.  */
1599169689Skan
1600169689Skanstatic void
1601169689Skanextract_range_from_binary_expr (value_range_t *vr, tree expr)
1602169689Skan{
1603169689Skan  enum tree_code code = TREE_CODE (expr);
1604169689Skan  enum value_range_type type;
1605169689Skan  tree op0, op1, min, max;
1606169689Skan  int cmp;
1607169689Skan  value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1608169689Skan  value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1609169689Skan
1610169689Skan  /* Not all binary expressions can be applied to ranges in a
1611169689Skan     meaningful way.  Handle only arithmetic operations.  */
1612169689Skan  if (code != PLUS_EXPR
1613169689Skan      && code != MINUS_EXPR
1614169689Skan      && code != MULT_EXPR
1615169689Skan      && code != TRUNC_DIV_EXPR
1616169689Skan      && code != FLOOR_DIV_EXPR
1617169689Skan      && code != CEIL_DIV_EXPR
1618169689Skan      && code != EXACT_DIV_EXPR
1619169689Skan      && code != ROUND_DIV_EXPR
1620169689Skan      && code != MIN_EXPR
1621169689Skan      && code != MAX_EXPR
1622169689Skan      && code != BIT_AND_EXPR
1623169689Skan      && code != TRUTH_ANDIF_EXPR
1624169689Skan      && code != TRUTH_ORIF_EXPR
1625169689Skan      && code != TRUTH_AND_EXPR
1626169689Skan      && code != TRUTH_OR_EXPR)
1627169689Skan    {
1628169689Skan      set_value_range_to_varying (vr);
1629169689Skan      return;
1630169689Skan    }
1631169689Skan
1632169689Skan  /* Get value ranges for each operand.  For constant operands, create
1633169689Skan     a new value range with the operand to simplify processing.  */
1634169689Skan  op0 = TREE_OPERAND (expr, 0);
1635169689Skan  if (TREE_CODE (op0) == SSA_NAME)
1636169689Skan    vr0 = *(get_value_range (op0));
1637169689Skan  else if (is_gimple_min_invariant (op0))
1638171825Skan    set_value_range_to_value (&vr0, op0, NULL);
1639169689Skan  else
1640169689Skan    set_value_range_to_varying (&vr0);
1641169689Skan
1642169689Skan  op1 = TREE_OPERAND (expr, 1);
1643169689Skan  if (TREE_CODE (op1) == SSA_NAME)
1644169689Skan    vr1 = *(get_value_range (op1));
1645169689Skan  else if (is_gimple_min_invariant (op1))
1646171825Skan    set_value_range_to_value (&vr1, op1, NULL);
1647169689Skan  else
1648169689Skan    set_value_range_to_varying (&vr1);
1649169689Skan
1650169689Skan  /* If either range is UNDEFINED, so is the result.  */
1651169689Skan  if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1652169689Skan    {
1653169689Skan      set_value_range_to_undefined (vr);
1654169689Skan      return;
1655169689Skan    }
1656169689Skan
1657169689Skan  /* The type of the resulting value range defaults to VR0.TYPE.  */
1658169689Skan  type = vr0.type;
1659169689Skan
1660169689Skan  /* Refuse to operate on VARYING ranges, ranges of different kinds
1661169689Skan     and symbolic ranges.  As an exception, we allow BIT_AND_EXPR
1662169689Skan     because we may be able to derive a useful range even if one of
1663169689Skan     the operands is VR_VARYING or symbolic range.  TODO, we may be
1664169689Skan     able to derive anti-ranges in some cases.  */
1665169689Skan  if (code != BIT_AND_EXPR
1666169689Skan      && code != TRUTH_AND_EXPR
1667169689Skan      && code != TRUTH_OR_EXPR
1668169689Skan      && (vr0.type == VR_VARYING
1669169689Skan	  || vr1.type == VR_VARYING
1670169689Skan	  || vr0.type != vr1.type
1671169689Skan	  || symbolic_range_p (&vr0)
1672169689Skan	  || symbolic_range_p (&vr1)))
1673169689Skan    {
1674169689Skan      set_value_range_to_varying (vr);
1675169689Skan      return;
1676169689Skan    }
1677169689Skan
1678169689Skan  /* Now evaluate the expression to determine the new range.  */
1679169689Skan  if (POINTER_TYPE_P (TREE_TYPE (expr))
1680169689Skan      || POINTER_TYPE_P (TREE_TYPE (op0))
1681169689Skan      || POINTER_TYPE_P (TREE_TYPE (op1)))
1682169689Skan    {
1683169689Skan      /* For pointer types, we are really only interested in asserting
1684169689Skan	 whether the expression evaluates to non-NULL.  FIXME, we used
1685169689Skan	 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1686169689Skan	 ivopts is generating expressions with pointer multiplication
1687169689Skan	 in them.  */
1688169689Skan      if (code == PLUS_EXPR)
1689169689Skan	{
1690169689Skan	  if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1691169689Skan	    set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1692169689Skan	  else if (range_is_null (&vr0) && range_is_null (&vr1))
1693169689Skan	    set_value_range_to_null (vr, TREE_TYPE (expr));
1694169689Skan	  else
1695169689Skan	    set_value_range_to_varying (vr);
1696169689Skan	}
1697169689Skan      else
1698169689Skan	{
1699169689Skan	  /* Subtracting from a pointer, may yield 0, so just drop the
1700169689Skan	     resulting range to varying.  */
1701169689Skan	  set_value_range_to_varying (vr);
1702169689Skan	}
1703169689Skan
1704169689Skan      return;
1705169689Skan    }
1706169689Skan
1707169689Skan  /* For integer ranges, apply the operation to each end of the
1708169689Skan     range and see what we end up with.  */
1709169689Skan  if (code == TRUTH_ANDIF_EXPR
1710169689Skan      || code == TRUTH_ORIF_EXPR
1711169689Skan      || code == TRUTH_AND_EXPR
1712169689Skan      || code == TRUTH_OR_EXPR)
1713169689Skan    {
1714169689Skan      /* If one of the operands is zero, we know that the whole
1715169689Skan	 expression evaluates zero.  */
1716169689Skan      if (code == TRUTH_AND_EXPR
1717169689Skan	  && ((vr0.type == VR_RANGE
1718169689Skan	       && integer_zerop (vr0.min)
1719169689Skan	       && integer_zerop (vr0.max))
1720169689Skan	      || (vr1.type == VR_RANGE
1721169689Skan		  && integer_zerop (vr1.min)
1722169689Skan		  && integer_zerop (vr1.max))))
1723169689Skan	{
1724169689Skan	  type = VR_RANGE;
1725169689Skan	  min = max = build_int_cst (TREE_TYPE (expr), 0);
1726169689Skan	}
1727169689Skan      /* If one of the operands is one, we know that the whole
1728169689Skan	 expression evaluates one.  */
1729169689Skan      else if (code == TRUTH_OR_EXPR
1730169689Skan	       && ((vr0.type == VR_RANGE
1731169689Skan		    && integer_onep (vr0.min)
1732169689Skan		    && integer_onep (vr0.max))
1733169689Skan		   || (vr1.type == VR_RANGE
1734169689Skan		       && integer_onep (vr1.min)
1735169689Skan		       && integer_onep (vr1.max))))
1736169689Skan	{
1737169689Skan	  type = VR_RANGE;
1738169689Skan	  min = max = build_int_cst (TREE_TYPE (expr), 1);
1739169689Skan	}
1740169689Skan      else if (vr0.type != VR_VARYING
1741169689Skan	       && vr1.type != VR_VARYING
1742169689Skan	       && vr0.type == vr1.type
1743169689Skan	       && !symbolic_range_p (&vr0)
1744169689Skan	       && !overflow_infinity_range_p (&vr0)
1745169689Skan	       && !symbolic_range_p (&vr1)
1746169689Skan	       && !overflow_infinity_range_p (&vr1))
1747169689Skan	{
1748169689Skan	  /* Boolean expressions cannot be folded with int_const_binop.  */
1749169689Skan	  min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1750169689Skan	  max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1751169689Skan	}
1752169689Skan      else
1753169689Skan	{
1754169689Skan	  set_value_range_to_varying (vr);
1755169689Skan	  return;
1756169689Skan	}
1757169689Skan    }
1758169689Skan  else if (code == PLUS_EXPR
1759169689Skan	   || code == MIN_EXPR
1760169689Skan	   || code == MAX_EXPR)
1761169689Skan    {
1762169689Skan      /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1763169689Skan	 VR_VARYING.  It would take more effort to compute a precise
1764169689Skan	 range for such a case.  For example, if we have op0 == 1 and
1765169689Skan	 op1 == -1 with their ranges both being ~[0,0], we would have
1766169689Skan	 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1767169689Skan	 Note that we are guaranteed to have vr0.type == vr1.type at
1768169689Skan	 this point.  */
1769169689Skan      if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1770169689Skan	{
1771169689Skan	  set_value_range_to_varying (vr);
1772169689Skan	  return;
1773169689Skan	}
1774169689Skan
1775169689Skan      /* For operations that make the resulting range directly
1776169689Skan	 proportional to the original ranges, apply the operation to
1777169689Skan	 the same end of each range.  */
1778169689Skan      min = vrp_int_const_binop (code, vr0.min, vr1.min);
1779169689Skan      max = vrp_int_const_binop (code, vr0.max, vr1.max);
1780169689Skan    }
1781169689Skan  else if (code == MULT_EXPR
1782169689Skan	   || code == TRUNC_DIV_EXPR
1783169689Skan	   || code == FLOOR_DIV_EXPR
1784169689Skan	   || code == CEIL_DIV_EXPR
1785169689Skan	   || code == EXACT_DIV_EXPR
1786169689Skan	   || code == ROUND_DIV_EXPR)
1787169689Skan    {
1788169689Skan      tree val[4];
1789169689Skan      size_t i;
1790169689Skan      bool sop;
1791169689Skan
1792169689Skan      /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1793169689Skan	 drop to VR_VARYING.  It would take more effort to compute a
1794169689Skan	 precise range for such a case.  For example, if we have
1795169689Skan	 op0 == 65536 and op1 == 65536 with their ranges both being
1796169689Skan	 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1797169689Skan	 we cannot claim that the product is in ~[0,0].  Note that we
1798169689Skan	 are guaranteed to have vr0.type == vr1.type at this
1799169689Skan	 point.  */
1800169689Skan      if (code == MULT_EXPR
1801169689Skan	  && vr0.type == VR_ANTI_RANGE
1802169689Skan	  && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
1803169689Skan	{
1804169689Skan	  set_value_range_to_varying (vr);
1805169689Skan	  return;
1806169689Skan	}
1807169689Skan
1808169689Skan      /* Multiplications and divisions are a bit tricky to handle,
1809169689Skan	 depending on the mix of signs we have in the two ranges, we
1810169689Skan	 need to operate on different values to get the minimum and
1811169689Skan	 maximum values for the new range.  One approach is to figure
1812169689Skan	 out all the variations of range combinations and do the
1813169689Skan	 operations.
1814169689Skan
1815169689Skan	 However, this involves several calls to compare_values and it
1816169689Skan	 is pretty convoluted.  It's simpler to do the 4 operations
1817169689Skan	 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1818169689Skan	 MAX1) and then figure the smallest and largest values to form
1819169689Skan	 the new range.  */
1820169689Skan
1821169689Skan      /* Divisions by zero result in a VARYING value.  */
1822169689Skan      if (code != MULT_EXPR
1823169689Skan	  && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1824169689Skan	{
1825169689Skan	  set_value_range_to_varying (vr);
1826169689Skan	  return;
1827169689Skan	}
1828169689Skan
1829169689Skan      /* Compute the 4 cross operations.  */
1830169689Skan      sop = false;
1831169689Skan      val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1832169689Skan      if (val[0] == NULL_TREE)
1833169689Skan	sop = true;
1834169689Skan
1835169689Skan      if (vr1.max == vr1.min)
1836169689Skan	val[1] = NULL_TREE;
1837169689Skan      else
1838169689Skan	{
1839169689Skan	  val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
1840169689Skan	  if (val[1] == NULL_TREE)
1841169689Skan	    sop = true;
1842169689Skan	}
1843169689Skan
1844169689Skan      if (vr0.max == vr0.min)
1845169689Skan	val[2] = NULL_TREE;
1846169689Skan      else
1847169689Skan	{
1848169689Skan	  val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
1849169689Skan	  if (val[2] == NULL_TREE)
1850169689Skan	    sop = true;
1851169689Skan	}
1852169689Skan
1853169689Skan      if (vr0.min == vr0.max || vr1.min == vr1.max)
1854169689Skan	val[3] = NULL_TREE;
1855169689Skan      else
1856169689Skan	{
1857169689Skan	  val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
1858169689Skan	  if (val[3] == NULL_TREE)
1859169689Skan	    sop = true;
1860169689Skan	}
1861169689Skan
1862169689Skan      if (sop)
1863169689Skan	{
1864169689Skan	  set_value_range_to_varying (vr);
1865169689Skan	  return;
1866169689Skan	}
1867169689Skan
1868169689Skan      /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1869169689Skan	 of VAL[i].  */
1870169689Skan      min = val[0];
1871169689Skan      max = val[0];
1872169689Skan      for (i = 1; i < 4; i++)
1873169689Skan	{
1874169689Skan	  if (!is_gimple_min_invariant (min)
1875169689Skan	      || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1876169689Skan	      || !is_gimple_min_invariant (max)
1877169689Skan	      || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1878169689Skan	    break;
1879169689Skan
1880169689Skan	  if (val[i])
1881169689Skan	    {
1882169689Skan	      if (!is_gimple_min_invariant (val[i])
1883169689Skan		  || (TREE_OVERFLOW (val[i])
1884169689Skan		      && !is_overflow_infinity (val[i])))
1885169689Skan		{
1886169689Skan		  /* If we found an overflowed value, set MIN and MAX
1887169689Skan		     to it so that we set the resulting range to
1888169689Skan		     VARYING.  */
1889169689Skan		  min = max = val[i];
1890169689Skan		  break;
1891169689Skan		}
1892169689Skan
1893169689Skan	      if (compare_values (val[i], min) == -1)
1894169689Skan		min = val[i];
1895169689Skan
1896169689Skan	      if (compare_values (val[i], max) == 1)
1897169689Skan		max = val[i];
1898169689Skan	    }
1899169689Skan	}
1900169689Skan    }
1901169689Skan  else if (code == MINUS_EXPR)
1902169689Skan    {
1903169689Skan      /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1904169689Skan	 VR_VARYING.  It would take more effort to compute a precise
1905169689Skan	 range for such a case.  For example, if we have op0 == 1 and
1906169689Skan	 op1 == 1 with their ranges both being ~[0,0], we would have
1907169689Skan	 op0 - op1 == 0, so we cannot claim that the difference is in
1908169689Skan	 ~[0,0].  Note that we are guaranteed to have
1909169689Skan	 vr0.type == vr1.type at this point.  */
1910169689Skan      if (vr0.type == VR_ANTI_RANGE)
1911169689Skan	{
1912169689Skan	  set_value_range_to_varying (vr);
1913169689Skan	  return;
1914169689Skan	}
1915169689Skan
1916169689Skan      /* For MINUS_EXPR, apply the operation to the opposite ends of
1917169689Skan	 each range.  */
1918169689Skan      min = vrp_int_const_binop (code, vr0.min, vr1.max);
1919169689Skan      max = vrp_int_const_binop (code, vr0.max, vr1.min);
1920169689Skan    }
1921169689Skan  else if (code == BIT_AND_EXPR)
1922169689Skan    {
1923169689Skan      if (vr0.type == VR_RANGE
1924169689Skan	  && vr0.min == vr0.max
1925169689Skan	  && TREE_CODE (vr0.max) == INTEGER_CST
1926169689Skan	  && !TREE_OVERFLOW (vr0.max)
1927169689Skan	  && tree_int_cst_sgn (vr0.max) >= 0)
1928169689Skan	{
1929169689Skan	  min = build_int_cst (TREE_TYPE (expr), 0);
1930169689Skan	  max = vr0.max;
1931169689Skan	}
1932169689Skan      else if (vr1.type == VR_RANGE
1933169689Skan	       && vr1.min == vr1.max
1934169689Skan	       && TREE_CODE (vr1.max) == INTEGER_CST
1935169689Skan	       && !TREE_OVERFLOW (vr1.max)
1936169689Skan	       && tree_int_cst_sgn (vr1.max) >= 0)
1937169689Skan	{
1938169689Skan	  type = VR_RANGE;
1939169689Skan	  min = build_int_cst (TREE_TYPE (expr), 0);
1940169689Skan	  max = vr1.max;
1941169689Skan	}
1942169689Skan      else
1943169689Skan	{
1944169689Skan	  set_value_range_to_varying (vr);
1945169689Skan	  return;
1946169689Skan	}
1947169689Skan    }
1948169689Skan  else
1949169689Skan    gcc_unreachable ();
1950169689Skan
1951169689Skan  /* If either MIN or MAX overflowed, then set the resulting range to
1952169689Skan     VARYING.  But we do accept an overflow infinity
1953169689Skan     representation.  */
1954169689Skan  if (min == NULL_TREE
1955169689Skan      || !is_gimple_min_invariant (min)
1956169689Skan      || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1957169689Skan      || max == NULL_TREE
1958169689Skan      || !is_gimple_min_invariant (max)
1959169689Skan      || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1960169689Skan    {
1961169689Skan      set_value_range_to_varying (vr);
1962169689Skan      return;
1963169689Skan    }
1964169689Skan
1965169689Skan  /* We punt if:
1966169689Skan     1) [-INF, +INF]
1967169689Skan     2) [-INF, +-INF(OVF)]
1968169689Skan     3) [+-INF(OVF), +INF]
1969169689Skan     4) [+-INF(OVF), +-INF(OVF)]
1970169689Skan     We learn nothing when we have INF and INF(OVF) on both sides.
1971169689Skan     Note that we do accept [-INF, -INF] and [+INF, +INF] without
1972169689Skan     overflow.  */
1973169689Skan  if ((vrp_val_is_min (min) || is_overflow_infinity (min))
1974169689Skan      && (vrp_val_is_max (max) || is_overflow_infinity (max)))
1975169689Skan    {
1976169689Skan      set_value_range_to_varying (vr);
1977169689Skan      return;
1978169689Skan    }
1979169689Skan
1980169689Skan  cmp = compare_values (min, max);
1981169689Skan  if (cmp == -2 || cmp == 1)
1982169689Skan    {
1983169689Skan      /* If the new range has its limits swapped around (MIN > MAX),
1984169689Skan	 then the operation caused one of them to wrap around, mark
1985169689Skan	 the new range VARYING.  */
1986169689Skan      set_value_range_to_varying (vr);
1987169689Skan    }
1988169689Skan  else
1989169689Skan    set_value_range (vr, type, min, max, NULL);
1990169689Skan}
1991169689Skan
1992169689Skan
1993169689Skan/* Extract range information from a unary expression EXPR based on
1994169689Skan   the range of its operand and the expression code.  */
1995169689Skan
1996169689Skanstatic void
1997169689Skanextract_range_from_unary_expr (value_range_t *vr, tree expr)
1998169689Skan{
1999169689Skan  enum tree_code code = TREE_CODE (expr);
2000169689Skan  tree min, max, op0;
2001169689Skan  int cmp;
2002169689Skan  value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2003169689Skan
2004169689Skan  /* Refuse to operate on certain unary expressions for which we
2005169689Skan     cannot easily determine a resulting range.  */
2006169689Skan  if (code == FIX_TRUNC_EXPR
2007169689Skan      || code == FIX_CEIL_EXPR
2008169689Skan      || code == FIX_FLOOR_EXPR
2009169689Skan      || code == FIX_ROUND_EXPR
2010169689Skan      || code == FLOAT_EXPR
2011169689Skan      || code == BIT_NOT_EXPR
2012169689Skan      || code == NON_LVALUE_EXPR
2013169689Skan      || code == CONJ_EXPR)
2014169689Skan    {
2015169689Skan      set_value_range_to_varying (vr);
2016169689Skan      return;
2017169689Skan    }
2018169689Skan
2019169689Skan  /* Get value ranges for the operand.  For constant operands, create
2020169689Skan     a new value range with the operand to simplify processing.  */
2021169689Skan  op0 = TREE_OPERAND (expr, 0);
2022169689Skan  if (TREE_CODE (op0) == SSA_NAME)
2023169689Skan    vr0 = *(get_value_range (op0));
2024169689Skan  else if (is_gimple_min_invariant (op0))
2025171825Skan    set_value_range_to_value (&vr0, op0, NULL);
2026169689Skan  else
2027169689Skan    set_value_range_to_varying (&vr0);
2028169689Skan
2029169689Skan  /* If VR0 is UNDEFINED, so is the result.  */
2030169689Skan  if (vr0.type == VR_UNDEFINED)
2031169689Skan    {
2032169689Skan      set_value_range_to_undefined (vr);
2033169689Skan      return;
2034169689Skan    }
2035169689Skan
2036169689Skan  /* Refuse to operate on symbolic ranges, or if neither operand is
2037169689Skan     a pointer or integral type.  */
2038169689Skan  if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2039169689Skan       && !POINTER_TYPE_P (TREE_TYPE (op0)))
2040169689Skan      || (vr0.type != VR_VARYING
2041169689Skan	  && symbolic_range_p (&vr0)))
2042169689Skan    {
2043169689Skan      set_value_range_to_varying (vr);
2044169689Skan      return;
2045169689Skan    }
2046169689Skan
2047169689Skan  /* If the expression involves pointers, we are only interested in
2048169689Skan     determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]).  */
2049169689Skan  if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
2050169689Skan    {
2051169689Skan      bool sop;
2052169689Skan
2053169689Skan      sop = false;
2054169689Skan      if (range_is_nonnull (&vr0)
2055169689Skan	  || (tree_expr_nonzero_warnv_p (expr, &sop)
2056169689Skan	      && !sop))
2057169689Skan	set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2058169689Skan      else if (range_is_null (&vr0))
2059169689Skan	set_value_range_to_null (vr, TREE_TYPE (expr));
2060169689Skan      else
2061169689Skan	set_value_range_to_varying (vr);
2062169689Skan
2063169689Skan      return;
2064169689Skan    }
2065169689Skan
2066169689Skan  /* Handle unary expressions on integer ranges.  */
2067169689Skan  if (code == NOP_EXPR || code == CONVERT_EXPR)
2068169689Skan    {
2069169689Skan      tree inner_type = TREE_TYPE (op0);
2070169689Skan      tree outer_type = TREE_TYPE (expr);
2071169689Skan
2072169689Skan      /* If VR0 represents a simple range, then try to convert
2073169689Skan	 the min and max values for the range to the same type
2074169689Skan	 as OUTER_TYPE.  If the results compare equal to VR0's
2075169689Skan	 min and max values and the new min is still less than
2076169689Skan	 or equal to the new max, then we can safely use the newly
2077169689Skan	 computed range for EXPR.  This allows us to compute
2078169689Skan	 accurate ranges through many casts.  */
2079169689Skan      if ((vr0.type == VR_RANGE
2080169689Skan	   && !overflow_infinity_range_p (&vr0))
2081169689Skan	  || (vr0.type == VR_VARYING
2082169689Skan	      && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
2083169689Skan	{
2084169689Skan	  tree new_min, new_max, orig_min, orig_max;
2085169689Skan
2086169689Skan	  /* Convert the input operand min/max to OUTER_TYPE.   If
2087169689Skan	     the input has no range information, then use the min/max
2088169689Skan	     for the input's type.  */
2089169689Skan	  if (vr0.type == VR_RANGE)
2090169689Skan	    {
2091169689Skan	      orig_min = vr0.min;
2092169689Skan	      orig_max = vr0.max;
2093169689Skan	    }
2094169689Skan	  else
2095169689Skan	    {
2096169689Skan	      orig_min = TYPE_MIN_VALUE (inner_type);
2097169689Skan	      orig_max = TYPE_MAX_VALUE (inner_type);
2098169689Skan	    }
2099169689Skan
2100169689Skan	  new_min = fold_convert (outer_type, orig_min);
2101169689Skan	  new_max = fold_convert (outer_type, orig_max);
2102169689Skan
2103169689Skan	  /* Verify the new min/max values are gimple values and
2104169689Skan	     that they compare equal to the original input's
2105169689Skan	     min/max values.  */
2106169689Skan	  if (is_gimple_val (new_min)
2107169689Skan	      && is_gimple_val (new_max)
2108169689Skan	      && tree_int_cst_equal (new_min, orig_min)
2109169689Skan	      && tree_int_cst_equal (new_max, orig_max)
2110171825Skan	      && (!is_overflow_infinity (new_min)
2111171825Skan		  || !is_overflow_infinity (new_max))
2112169689Skan	      && compare_values (new_min, new_max) <= 0
2113169689Skan	      && compare_values (new_min, new_max) >= -1)
2114169689Skan	    {
2115169689Skan	      set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
2116169689Skan	      return;
2117169689Skan	    }
2118169689Skan	}
2119169689Skan
2120169689Skan      /* When converting types of different sizes, set the result to
2121169689Skan	 VARYING.  Things like sign extensions and precision loss may
2122169689Skan	 change the range.  For instance, if x_3 is of type 'long long
2123169689Skan	 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
2124169689Skan	 is impossible to know at compile time whether y_5 will be
2125169689Skan	 ~[0, 0].  */
2126169689Skan      if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
2127169689Skan	  || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
2128169689Skan	{
2129169689Skan	  set_value_range_to_varying (vr);
2130169689Skan	  return;
2131169689Skan	}
2132169689Skan    }
2133169689Skan
2134169689Skan  /* Conversion of a VR_VARYING value to a wider type can result
2135169689Skan     in a usable range.  So wait until after we've handled conversions
2136169689Skan     before dropping the result to VR_VARYING if we had a source
2137169689Skan     operand that is VR_VARYING.  */
2138169689Skan  if (vr0.type == VR_VARYING)
2139169689Skan    {
2140169689Skan      set_value_range_to_varying (vr);
2141169689Skan      return;
2142169689Skan    }
2143169689Skan
2144169689Skan  /* Apply the operation to each end of the range and see what we end
2145169689Skan     up with.  */
2146169689Skan  if (code == NEGATE_EXPR
2147169689Skan      && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2148169689Skan    {
2149169689Skan      /* NEGATE_EXPR flips the range around.  We need to treat
2150169689Skan	 TYPE_MIN_VALUE specially.  */
2151169689Skan      if (is_positive_overflow_infinity (vr0.max))
2152169689Skan	min = negative_overflow_infinity (TREE_TYPE (expr));
2153169689Skan      else if (is_negative_overflow_infinity (vr0.max))
2154169689Skan	min = positive_overflow_infinity (TREE_TYPE (expr));
2155169689Skan      else if (!vrp_val_is_min (vr0.max))
2156169689Skan	min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2157169689Skan      else if (needs_overflow_infinity (TREE_TYPE (expr)))
2158169689Skan	{
2159169689Skan	  if (supports_overflow_infinity (TREE_TYPE (expr))
2160169689Skan	      && !is_overflow_infinity (vr0.min)
2161169689Skan	      && !vrp_val_is_min (vr0.min))
2162169689Skan	    min = positive_overflow_infinity (TREE_TYPE (expr));
2163169689Skan	  else
2164169689Skan	    {
2165169689Skan	      set_value_range_to_varying (vr);
2166169689Skan	      return;
2167169689Skan	    }
2168169689Skan	}
2169169689Skan      else
2170169689Skan	min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2171169689Skan
2172169689Skan      if (is_positive_overflow_infinity (vr0.min))
2173169689Skan	max = negative_overflow_infinity (TREE_TYPE (expr));
2174169689Skan      else if (is_negative_overflow_infinity (vr0.min))
2175169689Skan	max = positive_overflow_infinity (TREE_TYPE (expr));
2176169689Skan      else if (!vrp_val_is_min (vr0.min))
2177169689Skan	max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2178169689Skan      else if (needs_overflow_infinity (TREE_TYPE (expr)))
2179169689Skan	{
2180169689Skan	  if (supports_overflow_infinity (TREE_TYPE (expr)))
2181169689Skan	    max = positive_overflow_infinity (TREE_TYPE (expr));
2182169689Skan	  else
2183169689Skan	    {
2184169689Skan	      set_value_range_to_varying (vr);
2185169689Skan	      return;
2186169689Skan	    }
2187169689Skan	}
2188169689Skan      else
2189169689Skan	max = TYPE_MIN_VALUE (TREE_TYPE (expr));
2190169689Skan    }
2191169689Skan  else if (code == NEGATE_EXPR
2192169689Skan	   && TYPE_UNSIGNED (TREE_TYPE (expr)))
2193169689Skan    {
2194169689Skan      if (!range_includes_zero_p (&vr0))
2195169689Skan	{
2196169689Skan	  max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2197169689Skan	  min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2198169689Skan	}
2199169689Skan      else
2200169689Skan	{
2201169689Skan	  if (range_is_null (&vr0))
2202169689Skan	    set_value_range_to_null (vr, TREE_TYPE (expr));
2203169689Skan	  else
2204169689Skan	    set_value_range_to_varying (vr);
2205169689Skan	  return;
2206169689Skan	}
2207169689Skan    }
2208169689Skan  else if (code == ABS_EXPR
2209169689Skan           && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2210169689Skan    {
2211169689Skan      /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2212169689Skan         useful range.  */
2213169689Skan      if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (expr))
2214169689Skan	  && ((vr0.type == VR_RANGE
2215169689Skan	       && vrp_val_is_min (vr0.min))
2216169689Skan	      || (vr0.type == VR_ANTI_RANGE
2217169689Skan		  && !vrp_val_is_min (vr0.min)
2218169689Skan		  && !range_includes_zero_p (&vr0))))
2219169689Skan	{
2220169689Skan	  set_value_range_to_varying (vr);
2221169689Skan	  return;
2222169689Skan	}
2223169689Skan
2224169689Skan      /* ABS_EXPR may flip the range around, if the original range
2225169689Skan	 included negative values.  */
2226169689Skan      if (is_overflow_infinity (vr0.min))
2227169689Skan	min = positive_overflow_infinity (TREE_TYPE (expr));
2228169689Skan      else if (!vrp_val_is_min (vr0.min))
2229169689Skan	min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2230169689Skan      else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2231169689Skan	min = TYPE_MAX_VALUE (TREE_TYPE (expr));
2232169689Skan      else if (supports_overflow_infinity (TREE_TYPE (expr)))
2233169689Skan	min = positive_overflow_infinity (TREE_TYPE (expr));
2234169689Skan      else
2235169689Skan	{
2236169689Skan	  set_value_range_to_varying (vr);
2237169689Skan	  return;
2238169689Skan	}
2239169689Skan
2240169689Skan      if (is_overflow_infinity (vr0.max))
2241169689Skan	max = positive_overflow_infinity (TREE_TYPE (expr));
2242169689Skan      else if (!vrp_val_is_min (vr0.max))
2243169689Skan	max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2244169689Skan      else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2245169689Skan	max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2246169689Skan      else if (supports_overflow_infinity (TREE_TYPE (expr)))
2247169689Skan	max = positive_overflow_infinity (TREE_TYPE (expr));
2248169689Skan      else
2249169689Skan	{
2250169689Skan	  set_value_range_to_varying (vr);
2251169689Skan	  return;
2252169689Skan	}
2253169689Skan
2254169689Skan      cmp = compare_values (min, max);
2255169689Skan
2256169689Skan      /* If a VR_ANTI_RANGEs contains zero, then we have
2257169689Skan	 ~[-INF, min(MIN, MAX)].  */
2258169689Skan      if (vr0.type == VR_ANTI_RANGE)
2259169689Skan	{
2260169689Skan	  if (range_includes_zero_p (&vr0))
2261169689Skan	    {
2262169689Skan	      /* Take the lower of the two values.  */
2263169689Skan	      if (cmp != 1)
2264169689Skan		max = min;
2265169689Skan
2266169689Skan	      /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2267169689Skan	         or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2268169689Skan		 flag_wrapv is set and the original anti-range doesn't include
2269169689Skan	         TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE.  */
2270169689Skan	      if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
2271169689Skan		{
2272169689Skan		  tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
2273169689Skan
2274169689Skan		  min = (vr0.min != type_min_value
2275169689Skan			 ? int_const_binop (PLUS_EXPR, type_min_value,
2276169689Skan					    integer_one_node, 0)
2277169689Skan			 : type_min_value);
2278169689Skan		}
2279169689Skan	      else
2280169689Skan		{
2281169689Skan		  if (overflow_infinity_range_p (&vr0))
2282169689Skan		    min = negative_overflow_infinity (TREE_TYPE (expr));
2283169689Skan		  else
2284169689Skan		    min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2285169689Skan		}
2286169689Skan	    }
2287169689Skan	  else
2288169689Skan	    {
2289169689Skan	      /* All else has failed, so create the range [0, INF], even for
2290169689Skan	         flag_wrapv since TYPE_MIN_VALUE is in the original
2291169689Skan	         anti-range.  */
2292169689Skan	      vr0.type = VR_RANGE;
2293169689Skan	      min = build_int_cst (TREE_TYPE (expr), 0);
2294169689Skan	      if (needs_overflow_infinity (TREE_TYPE (expr)))
2295169689Skan		{
2296169689Skan		  if (supports_overflow_infinity (TREE_TYPE (expr)))
2297169689Skan		    max = positive_overflow_infinity (TREE_TYPE (expr));
2298169689Skan		  else
2299169689Skan		    {
2300169689Skan		      set_value_range_to_varying (vr);
2301169689Skan		      return;
2302169689Skan		    }
2303169689Skan		}
2304169689Skan	      else
2305169689Skan		max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2306169689Skan	    }
2307169689Skan	}
2308169689Skan
2309169689Skan      /* If the range contains zero then we know that the minimum value in the
2310169689Skan         range will be zero.  */
2311169689Skan      else if (range_includes_zero_p (&vr0))
2312169689Skan	{
2313169689Skan	  if (cmp == 1)
2314169689Skan	    max = min;
2315169689Skan	  min = build_int_cst (TREE_TYPE (expr), 0);
2316169689Skan	}
2317169689Skan      else
2318169689Skan	{
2319169689Skan          /* If the range was reversed, swap MIN and MAX.  */
2320169689Skan	  if (cmp == 1)
2321169689Skan	    {
2322169689Skan	      tree t = min;
2323169689Skan	      min = max;
2324169689Skan	      max = t;
2325169689Skan	    }
2326169689Skan	}
2327169689Skan    }
2328169689Skan  else
2329169689Skan    {
2330169689Skan      /* Otherwise, operate on each end of the range.  */
2331169689Skan      min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2332169689Skan      max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2333169689Skan
2334169689Skan      if (needs_overflow_infinity (TREE_TYPE (expr)))
2335169689Skan	{
2336169689Skan	  gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2337169689Skan
2338169689Skan	  /* If both sides have overflowed, we don't know
2339169689Skan	     anything.  */
2340169689Skan	  if ((is_overflow_infinity (vr0.min)
2341169689Skan	       || TREE_OVERFLOW (min))
2342169689Skan	      && (is_overflow_infinity (vr0.max)
2343169689Skan		  || TREE_OVERFLOW (max)))
2344169689Skan	    {
2345169689Skan	      set_value_range_to_varying (vr);
2346169689Skan	      return;
2347169689Skan	    }
2348169689Skan
2349169689Skan	  if (is_overflow_infinity (vr0.min))
2350169689Skan	    min = vr0.min;
2351169689Skan	  else if (TREE_OVERFLOW (min))
2352169689Skan	    {
2353169689Skan	      if (supports_overflow_infinity (TREE_TYPE (expr)))
2354169689Skan		min = (tree_int_cst_sgn (min) >= 0
2355169689Skan		       ? positive_overflow_infinity (TREE_TYPE (min))
2356169689Skan		       : negative_overflow_infinity (TREE_TYPE (min)));
2357169689Skan	      else
2358169689Skan		{
2359169689Skan		  set_value_range_to_varying (vr);
2360169689Skan		  return;
2361169689Skan		}
2362169689Skan	    }
2363169689Skan
2364169689Skan	  if (is_overflow_infinity (vr0.max))
2365169689Skan	    max = vr0.max;
2366169689Skan	  else if (TREE_OVERFLOW (max))
2367169689Skan	    {
2368169689Skan	      if (supports_overflow_infinity (TREE_TYPE (expr)))
2369169689Skan		max = (tree_int_cst_sgn (max) >= 0
2370169689Skan		       ? positive_overflow_infinity (TREE_TYPE (max))
2371169689Skan		       : negative_overflow_infinity (TREE_TYPE (max)));
2372169689Skan	      else
2373169689Skan		{
2374169689Skan		  set_value_range_to_varying (vr);
2375169689Skan		  return;
2376169689Skan		}
2377169689Skan	    }
2378169689Skan	}
2379169689Skan    }
2380169689Skan
2381169689Skan  cmp = compare_values (min, max);
2382169689Skan  if (cmp == -2 || cmp == 1)
2383169689Skan    {
2384169689Skan      /* If the new range has its limits swapped around (MIN > MAX),
2385169689Skan	 then the operation caused one of them to wrap around, mark
2386169689Skan	 the new range VARYING.  */
2387169689Skan      set_value_range_to_varying (vr);
2388169689Skan    }
2389169689Skan  else
2390169689Skan    set_value_range (vr, vr0.type, min, max, NULL);
2391169689Skan}
2392169689Skan
2393169689Skan
2394169689Skan/* Extract range information from a comparison expression EXPR based
2395169689Skan   on the range of its operand and the expression code.  */
2396169689Skan
2397169689Skanstatic void
2398169689Skanextract_range_from_comparison (value_range_t *vr, tree expr)
2399169689Skan{
2400169689Skan  bool sop = false;
2401169689Skan  tree val = vrp_evaluate_conditional_warnv (expr, false, &sop);
2402169689Skan
2403169689Skan  /* A disadvantage of using a special infinity as an overflow
2404169689Skan     representation is that we lose the ability to record overflow
2405169689Skan     when we don't have an infinity.  So we have to ignore a result
2406169689Skan     which relies on overflow.  */
2407169689Skan
2408169689Skan  if (val && !is_overflow_infinity (val) && !sop)
2409169689Skan    {
2410169689Skan      /* Since this expression was found on the RHS of an assignment,
2411169689Skan	 its type may be different from _Bool.  Convert VAL to EXPR's
2412169689Skan	 type.  */
2413169689Skan      val = fold_convert (TREE_TYPE (expr), val);
2414171825Skan      if (is_gimple_min_invariant (val))
2415171825Skan	set_value_range_to_value (vr, val, vr->equiv);
2416171825Skan      else
2417171825Skan	set_value_range (vr, VR_RANGE, val, val, vr->equiv);
2418169689Skan    }
2419169689Skan  else
2420169689Skan    set_value_range_to_varying (vr);
2421169689Skan}
2422169689Skan
2423169689Skan
2424169689Skan/* Try to compute a useful range out of expression EXPR and store it
2425169689Skan   in *VR.  */
2426169689Skan
2427169689Skanstatic void
2428169689Skanextract_range_from_expr (value_range_t *vr, tree expr)
2429169689Skan{
2430169689Skan  enum tree_code code = TREE_CODE (expr);
2431169689Skan
2432169689Skan  if (code == ASSERT_EXPR)
2433169689Skan    extract_range_from_assert (vr, expr);
2434169689Skan  else if (code == SSA_NAME)
2435169689Skan    extract_range_from_ssa_name (vr, expr);
2436169689Skan  else if (TREE_CODE_CLASS (code) == tcc_binary
2437169689Skan	   || code == TRUTH_ANDIF_EXPR
2438169689Skan	   || code == TRUTH_ORIF_EXPR
2439169689Skan	   || code == TRUTH_AND_EXPR
2440169689Skan	   || code == TRUTH_OR_EXPR
2441169689Skan	   || code == TRUTH_XOR_EXPR)
2442169689Skan    extract_range_from_binary_expr (vr, expr);
2443169689Skan  else if (TREE_CODE_CLASS (code) == tcc_unary)
2444169689Skan    extract_range_from_unary_expr (vr, expr);
2445169689Skan  else if (TREE_CODE_CLASS (code) == tcc_comparison)
2446169689Skan    extract_range_from_comparison (vr, expr);
2447169689Skan  else if (is_gimple_min_invariant (expr))
2448171825Skan    set_value_range_to_value (vr, expr, NULL);
2449169689Skan  else
2450169689Skan    set_value_range_to_varying (vr);
2451169689Skan
2452169689Skan  /* If we got a varying range from the tests above, try a final
2453169689Skan     time to derive a nonnegative or nonzero range.  This time
2454169689Skan     relying primarily on generic routines in fold in conjunction
2455169689Skan     with range data.  */
2456169689Skan  if (vr->type == VR_VARYING)
2457169689Skan    {
2458169689Skan      bool sop = false;
2459169689Skan
2460169689Skan      if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2461169689Skan	  && vrp_expr_computes_nonnegative (expr, &sop))
2462169689Skan	set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
2463169689Skan					sop || is_overflow_infinity (expr));
2464169689Skan      else if (vrp_expr_computes_nonzero (expr, &sop)
2465169689Skan	       && !sop)
2466169689Skan        set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2467169689Skan    }
2468169689Skan}
2469169689Skan
2470169689Skan/* Given a range VR, a LOOP and a variable VAR, determine whether it
2471169689Skan   would be profitable to adjust VR using scalar evolution information
2472169689Skan   for VAR.  If so, update VR with the new limits.  */
2473169689Skan
2474169689Skanstatic void
2475169689Skanadjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2476169689Skan			tree var)
2477169689Skan{
2478169689Skan  tree init, step, chrec, tmin, tmax, min, max, type;
2479169689Skan  enum ev_direction dir;
2480169689Skan
2481169689Skan  /* TODO.  Don't adjust anti-ranges.  An anti-range may provide
2482169689Skan     better opportunities than a regular range, but I'm not sure.  */
2483169689Skan  if (vr->type == VR_ANTI_RANGE)
2484169689Skan    return;
2485169689Skan
2486169689Skan  chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2487169689Skan  if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2488169689Skan    return;
2489169689Skan
2490169689Skan  init = initial_condition_in_loop_num (chrec, loop->num);
2491169689Skan  step = evolution_part_in_loop_num (chrec, loop->num);
2492169689Skan
2493169689Skan  /* If STEP is symbolic, we can't know whether INIT will be the
2494169689Skan     minimum or maximum value in the range.  Also, unless INIT is
2495169689Skan     a simple expression, compare_values and possibly other functions
2496169689Skan     in tree-vrp won't be able to handle it.  */
2497169689Skan  if (step == NULL_TREE
2498169689Skan      || !is_gimple_min_invariant (step)
2499169689Skan      || !valid_value_p (init))
2500169689Skan    return;
2501169689Skan
2502169689Skan  dir = scev_direction (chrec);
2503169689Skan  if (/* Do not adjust ranges if we do not know whether the iv increases
2504169689Skan	 or decreases,  ... */
2505169689Skan      dir == EV_DIR_UNKNOWN
2506169689Skan      /* ... or if it may wrap.  */
2507169689Skan      || scev_probably_wraps_p (init, step, stmt,
2508169689Skan				current_loops->parray[CHREC_VARIABLE (chrec)],
2509169689Skan				true))
2510169689Skan    return;
2511169689Skan
2512259405Spfg  type = TREE_TYPE (var);
2513259405Spfg
2514259405Spfg  /* If we see a pointer type starting at a constant, then we have an
2515259405Spfg     unusual ivopt.  It may legitimately wrap.  */
2516259405Spfg  if (POINTER_TYPE_P (type) && is_gimple_min_invariant (init))
2517259405Spfg    return;
2518259405Spfg
2519169689Skan  /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
2520169689Skan     negative_overflow_infinity and positive_overflow_infinity,
2521169689Skan     because we have concluded that the loop probably does not
2522169689Skan     wrap.  */
2523169689Skan
2524169689Skan  if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2525169689Skan    tmin = lower_bound_in_type (type, type);
2526169689Skan  else
2527169689Skan    tmin = TYPE_MIN_VALUE (type);
2528169689Skan  if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2529169689Skan    tmax = upper_bound_in_type (type, type);
2530169689Skan  else
2531169689Skan    tmax = TYPE_MAX_VALUE (type);
2532169689Skan
2533169689Skan  if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2534169689Skan    {
2535169689Skan      min = tmin;
2536169689Skan      max = tmax;
2537169689Skan
2538169689Skan      /* For VARYING or UNDEFINED ranges, just about anything we get
2539169689Skan	 from scalar evolutions should be better.  */
2540169689Skan
2541169689Skan      if (dir == EV_DIR_DECREASES)
2542169689Skan	max = init;
2543169689Skan      else
2544169689Skan	min = init;
2545169689Skan
2546169689Skan      /* If we would create an invalid range, then just assume we
2547169689Skan	 know absolutely nothing.  This may be over-conservative,
2548169689Skan	 but it's clearly safe, and should happen only in unreachable
2549169689Skan         parts of code, or for invalid programs.  */
2550169689Skan      if (compare_values (min, max) == 1)
2551169689Skan	return;
2552169689Skan
2553169689Skan      set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2554169689Skan    }
2555169689Skan  else if (vr->type == VR_RANGE)
2556169689Skan    {
2557169689Skan      min = vr->min;
2558169689Skan      max = vr->max;
2559169689Skan
2560169689Skan      if (dir == EV_DIR_DECREASES)
2561169689Skan	{
2562169689Skan	  /* INIT is the maximum value.  If INIT is lower than VR->MAX
2563169689Skan	     but no smaller than VR->MIN, set VR->MAX to INIT.  */
2564169689Skan	  if (compare_values (init, max) == -1)
2565169689Skan	    {
2566169689Skan	      max = init;
2567169689Skan
2568169689Skan	      /* If we just created an invalid range with the minimum
2569169689Skan		 greater than the maximum, we fail conservatively.
2570169689Skan		 This should happen only in unreachable
2571169689Skan		 parts of code, or for invalid programs.  */
2572169689Skan	      if (compare_values (min, max) == 1)
2573169689Skan		return;
2574169689Skan	    }
2575171825Skan
2576171825Skan	  /* According to the loop information, the variable does not
2577171825Skan	     overflow.  If we think it does, probably because of an
2578171825Skan	     overflow due to arithmetic on a different INF value,
2579171825Skan	     reset now.  */
2580171825Skan	  if (is_negative_overflow_infinity (min))
2581171825Skan	    min = tmin;
2582169689Skan	}
2583169689Skan      else
2584169689Skan	{
2585169689Skan	  /* If INIT is bigger than VR->MIN, set VR->MIN to INIT.  */
2586169689Skan	  if (compare_values (init, min) == 1)
2587169689Skan	    {
2588169689Skan	      min = init;
2589169689Skan
2590169689Skan	      /* Again, avoid creating invalid range by failing.  */
2591169689Skan	      if (compare_values (min, max) == 1)
2592169689Skan		return;
2593169689Skan	    }
2594171825Skan
2595171825Skan	  if (is_positive_overflow_infinity (max))
2596171825Skan	    max = tmax;
2597169689Skan	}
2598169689Skan
2599169689Skan      set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2600169689Skan    }
2601169689Skan}
2602169689Skan
2603171825Skan/* Return true if VAR may overflow at STMT.  This checks any available
2604171825Skan   loop information to see if we can determine that VAR does not
2605171825Skan   overflow.  */
2606169689Skan
2607171825Skanstatic bool
2608171825Skanvrp_var_may_overflow (tree var, tree stmt)
2609171825Skan{
2610171825Skan  struct loop *l;
2611171825Skan  tree chrec, init, step;
2612171825Skan
2613171825Skan  if (current_loops == NULL)
2614171825Skan    return true;
2615171825Skan
2616171825Skan  l = loop_containing_stmt (stmt);
2617171825Skan  if (l == NULL)
2618171825Skan    return true;
2619171825Skan
2620171825Skan  chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
2621171825Skan  if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2622171825Skan    return true;
2623171825Skan
2624171825Skan  init = initial_condition_in_loop_num (chrec, l->num);
2625171825Skan  step = evolution_part_in_loop_num (chrec, l->num);
2626171825Skan
2627171825Skan  if (step == NULL_TREE
2628171825Skan      || !is_gimple_min_invariant (step)
2629171825Skan      || !valid_value_p (init))
2630171825Skan    return true;
2631171825Skan
2632171825Skan  /* If we get here, we know something useful about VAR based on the
2633171825Skan     loop information.  If it wraps, it may overflow.  */
2634171825Skan
2635171825Skan  if (scev_probably_wraps_p (init, step, stmt,
2636171825Skan			     current_loops->parray[CHREC_VARIABLE (chrec)],
2637171825Skan			     true))
2638171825Skan    return true;
2639171825Skan
2640171825Skan  if (dump_file && (dump_flags & TDF_DETAILS) != 0)
2641171825Skan    {
2642171825Skan      print_generic_expr (dump_file, var, 0);
2643171825Skan      fprintf (dump_file, ": loop information indicates does not overflow\n");
2644171825Skan    }
2645171825Skan
2646171825Skan  return false;
2647171825Skan}
2648171825Skan
2649171825Skan
2650169689Skan/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2651169689Skan
2652169689Skan   - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2653169689Skan     all the values in the ranges.
2654169689Skan
2655169689Skan   - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2656169689Skan
2657169689Skan   - Return NULL_TREE if it is not always possible to determine the
2658169689Skan     value of the comparison.
2659169689Skan
2660169689Skan   Also set *STRICT_OVERFLOW_P to indicate whether a range with an
2661169689Skan   overflow infinity was used in the test.  */
2662169689Skan
2663169689Skan
2664169689Skanstatic tree
2665169689Skancompare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
2666169689Skan		bool *strict_overflow_p)
2667169689Skan{
2668169689Skan  /* VARYING or UNDEFINED ranges cannot be compared.  */
2669169689Skan  if (vr0->type == VR_VARYING
2670169689Skan      || vr0->type == VR_UNDEFINED
2671169689Skan      || vr1->type == VR_VARYING
2672169689Skan      || vr1->type == VR_UNDEFINED)
2673169689Skan    return NULL_TREE;
2674169689Skan
2675169689Skan  /* Anti-ranges need to be handled separately.  */
2676169689Skan  if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2677169689Skan    {
2678169689Skan      /* If both are anti-ranges, then we cannot compute any
2679169689Skan	 comparison.  */
2680169689Skan      if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2681169689Skan	return NULL_TREE;
2682169689Skan
2683169689Skan      /* These comparisons are never statically computable.  */
2684169689Skan      if (comp == GT_EXPR
2685169689Skan	  || comp == GE_EXPR
2686169689Skan	  || comp == LT_EXPR
2687169689Skan	  || comp == LE_EXPR)
2688169689Skan	return NULL_TREE;
2689169689Skan
2690169689Skan      /* Equality can be computed only between a range and an
2691169689Skan	 anti-range.  ~[VAL1, VAL2] == [VAL1, VAL2] is always false.  */
2692169689Skan      if (vr0->type == VR_RANGE)
2693169689Skan	{
2694169689Skan	  /* To simplify processing, make VR0 the anti-range.  */
2695169689Skan	  value_range_t *tmp = vr0;
2696169689Skan	  vr0 = vr1;
2697169689Skan	  vr1 = tmp;
2698169689Skan	}
2699169689Skan
2700169689Skan      gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2701169689Skan
2702169689Skan      if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
2703169689Skan	  && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
2704169689Skan	return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2705169689Skan
2706169689Skan      return NULL_TREE;
2707169689Skan    }
2708169689Skan
2709169689Skan  if (!usable_range_p (vr0, strict_overflow_p)
2710169689Skan      || !usable_range_p (vr1, strict_overflow_p))
2711169689Skan    return NULL_TREE;
2712169689Skan
2713169689Skan  /* Simplify processing.  If COMP is GT_EXPR or GE_EXPR, switch the
2714169689Skan     operands around and change the comparison code.  */
2715169689Skan  if (comp == GT_EXPR || comp == GE_EXPR)
2716169689Skan    {
2717169689Skan      value_range_t *tmp;
2718169689Skan      comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2719169689Skan      tmp = vr0;
2720169689Skan      vr0 = vr1;
2721169689Skan      vr1 = tmp;
2722169689Skan    }
2723169689Skan
2724169689Skan  if (comp == EQ_EXPR)
2725169689Skan    {
2726169689Skan      /* Equality may only be computed if both ranges represent
2727169689Skan	 exactly one value.  */
2728169689Skan      if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
2729169689Skan	  && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
2730169689Skan	{
2731169689Skan	  int cmp_min = compare_values_warnv (vr0->min, vr1->min,
2732169689Skan					      strict_overflow_p);
2733169689Skan	  int cmp_max = compare_values_warnv (vr0->max, vr1->max,
2734169689Skan					      strict_overflow_p);
2735169689Skan	  if (cmp_min == 0 && cmp_max == 0)
2736169689Skan	    return boolean_true_node;
2737169689Skan	  else if (cmp_min != -2 && cmp_max != -2)
2738169689Skan	    return boolean_false_node;
2739169689Skan	}
2740169689Skan      /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1.  */
2741169689Skan      else if (compare_values_warnv (vr0->min, vr1->max,
2742169689Skan				     strict_overflow_p) == 1
2743169689Skan	       || compare_values_warnv (vr1->min, vr0->max,
2744169689Skan					strict_overflow_p) == 1)
2745169689Skan	return boolean_false_node;
2746169689Skan
2747169689Skan      return NULL_TREE;
2748169689Skan    }
2749169689Skan  else if (comp == NE_EXPR)
2750169689Skan    {
2751169689Skan      int cmp1, cmp2;
2752169689Skan
2753169689Skan      /* If VR0 is completely to the left or completely to the right
2754169689Skan	 of VR1, they are always different.  Notice that we need to
2755169689Skan	 make sure that both comparisons yield similar results to
2756169689Skan	 avoid comparing values that cannot be compared at
2757169689Skan	 compile-time.  */
2758169689Skan      cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2759169689Skan      cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2760169689Skan      if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2761169689Skan	return boolean_true_node;
2762169689Skan
2763169689Skan      /* If VR0 and VR1 represent a single value and are identical,
2764169689Skan	 return false.  */
2765169689Skan      else if (compare_values_warnv (vr0->min, vr0->max,
2766169689Skan				     strict_overflow_p) == 0
2767169689Skan	       && compare_values_warnv (vr1->min, vr1->max,
2768169689Skan					strict_overflow_p) == 0
2769169689Skan	       && compare_values_warnv (vr0->min, vr1->min,
2770169689Skan					strict_overflow_p) == 0
2771169689Skan	       && compare_values_warnv (vr0->max, vr1->max,
2772169689Skan					strict_overflow_p) == 0)
2773169689Skan	return boolean_false_node;
2774169689Skan
2775169689Skan      /* Otherwise, they may or may not be different.  */
2776169689Skan      else
2777169689Skan	return NULL_TREE;
2778169689Skan    }
2779169689Skan  else if (comp == LT_EXPR || comp == LE_EXPR)
2780169689Skan    {
2781169689Skan      int tst;
2782169689Skan
2783169689Skan      /* If VR0 is to the left of VR1, return true.  */
2784169689Skan      tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2785169689Skan      if ((comp == LT_EXPR && tst == -1)
2786169689Skan	  || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2787169689Skan	{
2788169689Skan	  if (overflow_infinity_range_p (vr0)
2789169689Skan	      || overflow_infinity_range_p (vr1))
2790169689Skan	    *strict_overflow_p = true;
2791169689Skan	  return boolean_true_node;
2792169689Skan	}
2793169689Skan
2794169689Skan      /* If VR0 is to the right of VR1, return false.  */
2795169689Skan      tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2796169689Skan      if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2797169689Skan	  || (comp == LE_EXPR && tst == 1))
2798169689Skan	{
2799169689Skan	  if (overflow_infinity_range_p (vr0)
2800169689Skan	      || overflow_infinity_range_p (vr1))
2801169689Skan	    *strict_overflow_p = true;
2802169689Skan	  return boolean_false_node;
2803169689Skan	}
2804169689Skan
2805169689Skan      /* Otherwise, we don't know.  */
2806169689Skan      return NULL_TREE;
2807169689Skan    }
2808169689Skan
2809169689Skan  gcc_unreachable ();
2810169689Skan}
2811169689Skan
2812169689Skan
2813169689Skan/* Given a value range VR, a value VAL and a comparison code COMP, return
2814169689Skan   BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2815169689Skan   values in VR.  Return BOOLEAN_FALSE_NODE if the comparison
2816169689Skan   always returns false.  Return NULL_TREE if it is not always
2817169689Skan   possible to determine the value of the comparison.  Also set
2818169689Skan   *STRICT_OVERFLOW_P to indicate whether a range with an overflow
2819169689Skan   infinity was used in the test.  */
2820169689Skan
2821169689Skanstatic tree
2822169689Skancompare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
2823169689Skan			  bool *strict_overflow_p)
2824169689Skan{
2825169689Skan  if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2826169689Skan    return NULL_TREE;
2827169689Skan
2828169689Skan  /* Anti-ranges need to be handled separately.  */
2829169689Skan  if (vr->type == VR_ANTI_RANGE)
2830169689Skan    {
2831169689Skan      /* For anti-ranges, the only predicates that we can compute at
2832169689Skan	 compile time are equality and inequality.  */
2833169689Skan      if (comp == GT_EXPR
2834169689Skan	  || comp == GE_EXPR
2835169689Skan	  || comp == LT_EXPR
2836169689Skan	  || comp == LE_EXPR)
2837169689Skan	return NULL_TREE;
2838169689Skan
2839169689Skan      /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2.  */
2840169689Skan      if (value_inside_range (val, vr) == 1)
2841169689Skan	return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2842169689Skan
2843169689Skan      return NULL_TREE;
2844169689Skan    }
2845169689Skan
2846169689Skan  if (!usable_range_p (vr, strict_overflow_p))
2847169689Skan    return NULL_TREE;
2848169689Skan
2849169689Skan  if (comp == EQ_EXPR)
2850169689Skan    {
2851169689Skan      /* EQ_EXPR may only be computed if VR represents exactly
2852169689Skan	 one value.  */
2853169689Skan      if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
2854169689Skan	{
2855169689Skan	  int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
2856169689Skan	  if (cmp == 0)
2857169689Skan	    return boolean_true_node;
2858169689Skan	  else if (cmp == -1 || cmp == 1 || cmp == 2)
2859169689Skan	    return boolean_false_node;
2860169689Skan	}
2861169689Skan      else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
2862169689Skan	       || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
2863169689Skan	return boolean_false_node;
2864169689Skan
2865169689Skan      return NULL_TREE;
2866169689Skan    }
2867169689Skan  else if (comp == NE_EXPR)
2868169689Skan    {
2869169689Skan      /* If VAL is not inside VR, then they are always different.  */
2870169689Skan      if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
2871169689Skan	  || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
2872169689Skan	return boolean_true_node;
2873169689Skan
2874169689Skan      /* If VR represents exactly one value equal to VAL, then return
2875169689Skan	 false.  */
2876169689Skan      if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
2877169689Skan	  && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
2878169689Skan	return boolean_false_node;
2879169689Skan
2880169689Skan      /* Otherwise, they may or may not be different.  */
2881169689Skan      return NULL_TREE;
2882169689Skan    }
2883169689Skan  else if (comp == LT_EXPR || comp == LE_EXPR)
2884169689Skan    {
2885169689Skan      int tst;
2886169689Skan
2887169689Skan      /* If VR is to the left of VAL, return true.  */
2888169689Skan      tst = compare_values_warnv (vr->max, val, strict_overflow_p);
2889169689Skan      if ((comp == LT_EXPR && tst == -1)
2890169689Skan	  || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2891169689Skan	{
2892169689Skan	  if (overflow_infinity_range_p (vr))
2893169689Skan	    *strict_overflow_p = true;
2894169689Skan	  return boolean_true_node;
2895169689Skan	}
2896169689Skan
2897169689Skan      /* If VR is to the right of VAL, return false.  */
2898169689Skan      tst = compare_values_warnv (vr->min, val, strict_overflow_p);
2899169689Skan      if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2900169689Skan	  || (comp == LE_EXPR && tst == 1))
2901169689Skan	{
2902169689Skan	  if (overflow_infinity_range_p (vr))
2903169689Skan	    *strict_overflow_p = true;
2904169689Skan	  return boolean_false_node;
2905169689Skan	}
2906169689Skan
2907169689Skan      /* Otherwise, we don't know.  */
2908169689Skan      return NULL_TREE;
2909169689Skan    }
2910169689Skan  else if (comp == GT_EXPR || comp == GE_EXPR)
2911169689Skan    {
2912169689Skan      int tst;
2913169689Skan
2914169689Skan      /* If VR is to the right of VAL, return true.  */
2915169689Skan      tst = compare_values_warnv (vr->min, val, strict_overflow_p);
2916169689Skan      if ((comp == GT_EXPR && tst == 1)
2917169689Skan	  || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2918169689Skan	{
2919169689Skan	  if (overflow_infinity_range_p (vr))
2920169689Skan	    *strict_overflow_p = true;
2921169689Skan	  return boolean_true_node;
2922169689Skan	}
2923169689Skan
2924169689Skan      /* If VR is to the left of VAL, return false.  */
2925169689Skan      tst = compare_values_warnv (vr->max, val, strict_overflow_p);
2926169689Skan      if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2927169689Skan	  || (comp == GE_EXPR && tst == -1))
2928169689Skan	{
2929169689Skan	  if (overflow_infinity_range_p (vr))
2930169689Skan	    *strict_overflow_p = true;
2931169689Skan	  return boolean_false_node;
2932169689Skan	}
2933169689Skan
2934169689Skan      /* Otherwise, we don't know.  */
2935169689Skan      return NULL_TREE;
2936169689Skan    }
2937169689Skan
2938169689Skan  gcc_unreachable ();
2939169689Skan}
2940169689Skan
2941169689Skan
2942169689Skan/* Debugging dumps.  */
2943169689Skan
2944169689Skanvoid dump_value_range (FILE *, value_range_t *);
2945169689Skanvoid debug_value_range (value_range_t *);
2946169689Skanvoid dump_all_value_ranges (FILE *);
2947169689Skanvoid debug_all_value_ranges (void);
2948169689Skanvoid dump_vr_equiv (FILE *, bitmap);
2949169689Skanvoid debug_vr_equiv (bitmap);
2950169689Skan
2951169689Skan
2952169689Skan/* Dump value range VR to FILE.  */
2953169689Skan
2954169689Skanvoid
2955169689Skandump_value_range (FILE *file, value_range_t *vr)
2956169689Skan{
2957169689Skan  if (vr == NULL)
2958169689Skan    fprintf (file, "[]");
2959169689Skan  else if (vr->type == VR_UNDEFINED)
2960169689Skan    fprintf (file, "UNDEFINED");
2961169689Skan  else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2962169689Skan    {
2963169689Skan      tree type = TREE_TYPE (vr->min);
2964169689Skan
2965169689Skan      fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2966169689Skan
2967169689Skan      if (is_negative_overflow_infinity (vr->min))
2968169689Skan	fprintf (file, "-INF(OVF)");
2969169689Skan      else if (INTEGRAL_TYPE_P (type)
2970169689Skan	       && !TYPE_UNSIGNED (type)
2971169689Skan	       && vrp_val_is_min (vr->min))
2972169689Skan	fprintf (file, "-INF");
2973169689Skan      else
2974169689Skan	print_generic_expr (file, vr->min, 0);
2975169689Skan
2976169689Skan      fprintf (file, ", ");
2977169689Skan
2978169689Skan      if (is_positive_overflow_infinity (vr->max))
2979169689Skan	fprintf (file, "+INF(OVF)");
2980169689Skan      else if (INTEGRAL_TYPE_P (type)
2981169689Skan	       && vrp_val_is_max (vr->max))
2982169689Skan	fprintf (file, "+INF");
2983169689Skan      else
2984169689Skan	print_generic_expr (file, vr->max, 0);
2985169689Skan
2986169689Skan      fprintf (file, "]");
2987169689Skan
2988169689Skan      if (vr->equiv)
2989169689Skan	{
2990169689Skan	  bitmap_iterator bi;
2991169689Skan	  unsigned i, c = 0;
2992169689Skan
2993169689Skan	  fprintf (file, "  EQUIVALENCES: { ");
2994169689Skan
2995169689Skan	  EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2996169689Skan	    {
2997169689Skan	      print_generic_expr (file, ssa_name (i), 0);
2998169689Skan	      fprintf (file, " ");
2999169689Skan	      c++;
3000169689Skan	    }
3001169689Skan
3002169689Skan	  fprintf (file, "} (%u elements)", c);
3003169689Skan	}
3004169689Skan    }
3005169689Skan  else if (vr->type == VR_VARYING)
3006169689Skan    fprintf (file, "VARYING");
3007169689Skan  else
3008169689Skan    fprintf (file, "INVALID RANGE");
3009169689Skan}
3010169689Skan
3011169689Skan
3012169689Skan/* Dump value range VR to stderr.  */
3013169689Skan
3014169689Skanvoid
3015169689Skandebug_value_range (value_range_t *vr)
3016169689Skan{
3017169689Skan  dump_value_range (stderr, vr);
3018169689Skan  fprintf (stderr, "\n");
3019169689Skan}
3020169689Skan
3021169689Skan
3022169689Skan/* Dump value ranges of all SSA_NAMEs to FILE.  */
3023169689Skan
3024169689Skanvoid
3025169689Skandump_all_value_ranges (FILE *file)
3026169689Skan{
3027169689Skan  size_t i;
3028169689Skan
3029169689Skan  for (i = 0; i < num_ssa_names; i++)
3030169689Skan    {
3031169689Skan      if (vr_value[i])
3032169689Skan	{
3033169689Skan	  print_generic_expr (file, ssa_name (i), 0);
3034169689Skan	  fprintf (file, ": ");
3035169689Skan	  dump_value_range (file, vr_value[i]);
3036169689Skan	  fprintf (file, "\n");
3037169689Skan	}
3038169689Skan    }
3039169689Skan
3040169689Skan  fprintf (file, "\n");
3041169689Skan}
3042169689Skan
3043169689Skan
3044169689Skan/* Dump all value ranges to stderr.  */
3045169689Skan
3046169689Skanvoid
3047169689Skandebug_all_value_ranges (void)
3048169689Skan{
3049169689Skan  dump_all_value_ranges (stderr);
3050169689Skan}
3051169689Skan
3052169689Skan
3053169689Skan/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3054169689Skan   create a new SSA name N and return the assertion assignment
3055169689Skan   'V = ASSERT_EXPR <V, V OP W>'.  */
3056169689Skan
3057169689Skanstatic tree
3058169689Skanbuild_assert_expr_for (tree cond, tree v)
3059169689Skan{
3060169689Skan  tree n, assertion;
3061169689Skan
3062169689Skan  gcc_assert (TREE_CODE (v) == SSA_NAME);
3063169689Skan  n = duplicate_ssa_name (v, NULL_TREE);
3064169689Skan
3065169689Skan  if (COMPARISON_CLASS_P (cond))
3066169689Skan    {
3067169689Skan      tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3068169689Skan      assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, a);
3069169689Skan    }
3070169689Skan  else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3071169689Skan    {
3072169689Skan      /* Given !V, build the assignment N = false.  */
3073169689Skan      tree op0 = TREE_OPERAND (cond, 0);
3074169689Skan      gcc_assert (op0 == v);
3075169689Skan      assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
3076169689Skan    }
3077169689Skan  else if (TREE_CODE (cond) == SSA_NAME)
3078169689Skan    {
3079169689Skan      /* Given V, build the assignment N = true.  */
3080169689Skan      gcc_assert (v == cond);
3081169689Skan      assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
3082169689Skan    }
3083169689Skan  else
3084169689Skan    gcc_unreachable ();
3085169689Skan
3086169689Skan  SSA_NAME_DEF_STMT (n) = assertion;
3087169689Skan
3088169689Skan  /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3089169689Skan     operand of the ASSERT_EXPR. Register the new name and the old one
3090169689Skan     in the replacement table so that we can fix the SSA web after
3091169689Skan     adding all the ASSERT_EXPRs.  */
3092169689Skan  register_new_name_mapping (n, v);
3093169689Skan
3094169689Skan  return assertion;
3095169689Skan}
3096169689Skan
3097169689Skan
3098169689Skan/* Return false if EXPR is a predicate expression involving floating
3099169689Skan   point values.  */
3100169689Skan
3101169689Skanstatic inline bool
3102169689Skanfp_predicate (tree expr)
3103169689Skan{
3104169689Skan  return (COMPARISON_CLASS_P (expr)
3105169689Skan	  && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
3106169689Skan}
3107169689Skan
3108169689Skan
3109169689Skan/* If the range of values taken by OP can be inferred after STMT executes,
3110169689Skan   return the comparison code (COMP_CODE_P) and value (VAL_P) that
3111169689Skan   describes the inferred range.  Return true if a range could be
3112169689Skan   inferred.  */
3113169689Skan
3114169689Skanstatic bool
3115169689Skaninfer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3116169689Skan{
3117169689Skan  *val_p = NULL_TREE;
3118169689Skan  *comp_code_p = ERROR_MARK;
3119169689Skan
3120169689Skan  /* Do not attempt to infer anything in names that flow through
3121169689Skan     abnormal edges.  */
3122169689Skan  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3123169689Skan    return false;
3124169689Skan
3125169689Skan  /* Similarly, don't infer anything from statements that may throw
3126169689Skan     exceptions.  */
3127169689Skan  if (tree_could_throw_p (stmt))
3128169689Skan    return false;
3129169689Skan
3130169689Skan  /* If STMT is the last statement of a basic block with no
3131169689Skan     successors, there is no point inferring anything about any of its
3132169689Skan     operands.  We would not be able to find a proper insertion point
3133169689Skan     for the assertion, anyway.  */
3134169689Skan  if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
3135169689Skan    return false;
3136169689Skan
3137169689Skan  /* We can only assume that a pointer dereference will yield
3138169689Skan     non-NULL if -fdelete-null-pointer-checks is enabled.  */
3139169689Skan  if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
3140169689Skan    {
3141169689Skan      bool is_store;
3142169689Skan      unsigned num_uses, num_derefs;
3143169689Skan
3144169689Skan      count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
3145169689Skan      if (num_derefs > 0)
3146169689Skan	{
3147169689Skan	  *val_p = build_int_cst (TREE_TYPE (op), 0);
3148169689Skan	  *comp_code_p = NE_EXPR;
3149169689Skan	  return true;
3150169689Skan	}
3151169689Skan    }
3152169689Skan
3153169689Skan  return false;
3154169689Skan}
3155169689Skan
3156169689Skan
3157169689Skanvoid dump_asserts_for (FILE *, tree);
3158169689Skanvoid debug_asserts_for (tree);
3159169689Skanvoid dump_all_asserts (FILE *);
3160169689Skanvoid debug_all_asserts (void);
3161169689Skan
3162169689Skan/* Dump all the registered assertions for NAME to FILE.  */
3163169689Skan
3164169689Skanvoid
3165169689Skandump_asserts_for (FILE *file, tree name)
3166169689Skan{
3167169689Skan  assert_locus_t loc;
3168169689Skan
3169169689Skan  fprintf (file, "Assertions to be inserted for ");
3170169689Skan  print_generic_expr (file, name, 0);
3171169689Skan  fprintf (file, "\n");
3172169689Skan
3173169689Skan  loc = asserts_for[SSA_NAME_VERSION (name)];
3174169689Skan  while (loc)
3175169689Skan    {
3176169689Skan      fprintf (file, "\t");
3177169689Skan      print_generic_expr (file, bsi_stmt (loc->si), 0);
3178169689Skan      fprintf (file, "\n\tBB #%d", loc->bb->index);
3179169689Skan      if (loc->e)
3180169689Skan	{
3181169689Skan	  fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3182169689Skan	           loc->e->dest->index);
3183169689Skan	  dump_edge_info (file, loc->e, 0);
3184169689Skan	}
3185169689Skan      fprintf (file, "\n\tPREDICATE: ");
3186169689Skan      print_generic_expr (file, name, 0);
3187169689Skan      fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3188169689Skan      print_generic_expr (file, loc->val, 0);
3189169689Skan      fprintf (file, "\n\n");
3190169689Skan      loc = loc->next;
3191169689Skan    }
3192169689Skan
3193169689Skan  fprintf (file, "\n");
3194169689Skan}
3195169689Skan
3196169689Skan
3197169689Skan/* Dump all the registered assertions for NAME to stderr.  */
3198169689Skan
3199169689Skanvoid
3200169689Skandebug_asserts_for (tree name)
3201169689Skan{
3202169689Skan  dump_asserts_for (stderr, name);
3203169689Skan}
3204169689Skan
3205169689Skan
3206169689Skan/* Dump all the registered assertions for all the names to FILE.  */
3207169689Skan
3208169689Skanvoid
3209169689Skandump_all_asserts (FILE *file)
3210169689Skan{
3211169689Skan  unsigned i;
3212169689Skan  bitmap_iterator bi;
3213169689Skan
3214169689Skan  fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3215169689Skan  EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3216169689Skan    dump_asserts_for (file, ssa_name (i));
3217169689Skan  fprintf (file, "\n");
3218169689Skan}
3219169689Skan
3220169689Skan
3221169689Skan/* Dump all the registered assertions for all the names to stderr.  */
3222169689Skan
3223169689Skanvoid
3224169689Skandebug_all_asserts (void)
3225169689Skan{
3226169689Skan  dump_all_asserts (stderr);
3227169689Skan}
3228169689Skan
3229169689Skan
3230169689Skan/* If NAME doesn't have an ASSERT_EXPR registered for asserting
3231169689Skan   'NAME COMP_CODE VAL' at a location that dominates block BB or
3232169689Skan   E->DEST, then register this location as a possible insertion point
3233169689Skan   for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
3234169689Skan
3235169689Skan   BB, E and SI provide the exact insertion point for the new
3236169689Skan   ASSERT_EXPR.  If BB is NULL, then the ASSERT_EXPR is to be inserted
3237169689Skan   on edge E.  Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3238169689Skan   BB.  If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3239169689Skan   must not be NULL.  */
3240169689Skan
3241169689Skanstatic void
3242169689Skanregister_new_assert_for (tree name,
3243169689Skan			 enum tree_code comp_code,
3244169689Skan			 tree val,
3245169689Skan			 basic_block bb,
3246169689Skan			 edge e,
3247169689Skan			 block_stmt_iterator si)
3248169689Skan{
3249169689Skan  assert_locus_t n, loc, last_loc;
3250169689Skan  bool found;
3251169689Skan  basic_block dest_bb;
3252169689Skan
3253169689Skan#if defined ENABLE_CHECKING
3254169689Skan  gcc_assert (bb == NULL || e == NULL);
3255169689Skan
3256169689Skan  if (e == NULL)
3257169689Skan    gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
3258169689Skan		&& TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
3259169689Skan#endif
3260169689Skan
3261169689Skan  /* The new assertion A will be inserted at BB or E.  We need to
3262169689Skan     determine if the new location is dominated by a previously
3263169689Skan     registered location for A.  If we are doing an edge insertion,
3264169689Skan     assume that A will be inserted at E->DEST.  Note that this is not
3265169689Skan     necessarily true.
3266169689Skan
3267169689Skan     If E is a critical edge, it will be split.  But even if E is
3268169689Skan     split, the new block will dominate the same set of blocks that
3269169689Skan     E->DEST dominates.
3270169689Skan
3271169689Skan     The reverse, however, is not true, blocks dominated by E->DEST
3272169689Skan     will not be dominated by the new block created to split E.  So,
3273169689Skan     if the insertion location is on a critical edge, we will not use
3274169689Skan     the new location to move another assertion previously registered
3275169689Skan     at a block dominated by E->DEST.  */
3276169689Skan  dest_bb = (bb) ? bb : e->dest;
3277169689Skan
3278169689Skan  /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3279169689Skan     VAL at a block dominating DEST_BB, then we don't need to insert a new
3280169689Skan     one.  Similarly, if the same assertion already exists at a block
3281169689Skan     dominated by DEST_BB and the new location is not on a critical
3282169689Skan     edge, then update the existing location for the assertion (i.e.,
3283169689Skan     move the assertion up in the dominance tree).
3284169689Skan
3285169689Skan     Note, this is implemented as a simple linked list because there
3286169689Skan     should not be more than a handful of assertions registered per
3287169689Skan     name.  If this becomes a performance problem, a table hashed by
3288169689Skan     COMP_CODE and VAL could be implemented.  */
3289169689Skan  loc = asserts_for[SSA_NAME_VERSION (name)];
3290169689Skan  last_loc = loc;
3291169689Skan  found = false;
3292169689Skan  while (loc)
3293169689Skan    {
3294169689Skan      if (loc->comp_code == comp_code
3295169689Skan	  && (loc->val == val
3296169689Skan	      || operand_equal_p (loc->val, val, 0)))
3297169689Skan	{
3298169689Skan	  /* If the assertion NAME COMP_CODE VAL has already been
3299169689Skan	     registered at a basic block that dominates DEST_BB, then
3300169689Skan	     we don't need to insert the same assertion again.  Note
3301169689Skan	     that we don't check strict dominance here to avoid
3302169689Skan	     replicating the same assertion inside the same basic
3303169689Skan	     block more than once (e.g., when a pointer is
3304169689Skan	     dereferenced several times inside a block).
3305169689Skan
3306169689Skan	     An exception to this rule are edge insertions.  If the
3307169689Skan	     new assertion is to be inserted on edge E, then it will
3308169689Skan	     dominate all the other insertions that we may want to
3309169689Skan	     insert in DEST_BB.  So, if we are doing an edge
3310169689Skan	     insertion, don't do this dominance check.  */
3311169689Skan          if (e == NULL
3312169689Skan	      && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3313169689Skan	    return;
3314169689Skan
3315169689Skan	  /* Otherwise, if E is not a critical edge and DEST_BB
3316169689Skan	     dominates the existing location for the assertion, move
3317169689Skan	     the assertion up in the dominance tree by updating its
3318169689Skan	     location information.  */
3319169689Skan	  if ((e == NULL || !EDGE_CRITICAL_P (e))
3320169689Skan	      && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3321169689Skan	    {
3322169689Skan	      loc->bb = dest_bb;
3323169689Skan	      loc->e = e;
3324169689Skan	      loc->si = si;
3325169689Skan	      return;
3326169689Skan	    }
3327169689Skan	}
3328169689Skan
3329169689Skan      /* Update the last node of the list and move to the next one.  */
3330169689Skan      last_loc = loc;
3331169689Skan      loc = loc->next;
3332169689Skan    }
3333169689Skan
3334169689Skan  /* If we didn't find an assertion already registered for
3335169689Skan     NAME COMP_CODE VAL, add a new one at the end of the list of
3336169689Skan     assertions associated with NAME.  */
3337169689Skan  n = XNEW (struct assert_locus_d);
3338169689Skan  n->bb = dest_bb;
3339169689Skan  n->e = e;
3340169689Skan  n->si = si;
3341169689Skan  n->comp_code = comp_code;
3342169689Skan  n->val = val;
3343169689Skan  n->next = NULL;
3344169689Skan
3345169689Skan  if (last_loc)
3346169689Skan    last_loc->next = n;
3347169689Skan  else
3348169689Skan    asserts_for[SSA_NAME_VERSION (name)] = n;
3349169689Skan
3350169689Skan  bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3351169689Skan}
3352169689Skan
3353169689Skan
3354169689Skan/* Try to register an edge assertion for SSA name NAME on edge E for
3355169689Skan   the conditional jump pointed to by SI.  Return true if an assertion
3356169689Skan   for NAME could be registered.  */
3357169689Skan
3358169689Skanstatic bool
3359169689Skanregister_edge_assert_for (tree name, edge e, block_stmt_iterator si)
3360169689Skan{
3361169689Skan  tree val, stmt;
3362169689Skan  enum tree_code comp_code;
3363169689Skan
3364169689Skan  stmt = bsi_stmt (si);
3365169689Skan
3366169689Skan  /* Do not attempt to infer anything in names that flow through
3367169689Skan     abnormal edges.  */
3368169689Skan  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3369169689Skan    return false;
3370169689Skan
3371169689Skan  /* If NAME was not found in the sub-graph reachable from E, then
3372169689Skan     there's nothing to do.  */
3373169689Skan  if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
3374169689Skan    return false;
3375169689Skan
3376169689Skan  /* We found a use of NAME in the sub-graph rooted at E->DEST.
3377169689Skan     Register an assertion for NAME according to the value that NAME
3378169689Skan     takes on edge E.  */
3379169689Skan  if (TREE_CODE (stmt) == COND_EXPR)
3380169689Skan    {
3381169689Skan      /* If BB ends in a COND_EXPR then NAME then we should insert
3382169689Skan	 the original predicate on EDGE_TRUE_VALUE and the
3383169689Skan	 opposite predicate on EDGE_FALSE_VALUE.  */
3384169689Skan      tree cond = COND_EXPR_COND (stmt);
3385169689Skan      bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3386169689Skan
3387169689Skan      /* Predicates may be a single SSA name or NAME OP VAL.  */
3388169689Skan      if (cond == name)
3389169689Skan	{
3390169689Skan	  /* If the predicate is a name, it must be NAME, in which
3391169689Skan	     case we create the predicate NAME == true or
3392169689Skan	     NAME == false accordingly.  */
3393169689Skan	  comp_code = EQ_EXPR;
3394169689Skan	  val = (is_else_edge) ? boolean_false_node : boolean_true_node;
3395169689Skan	}
3396169689Skan      else
3397169689Skan	{
3398169689Skan	  /* Otherwise, we have a comparison of the form NAME COMP VAL
3399169689Skan	     or VAL COMP NAME.  */
3400169689Skan	  if (name == TREE_OPERAND (cond, 1))
3401169689Skan	    {
3402169689Skan	      /* If the predicate is of the form VAL COMP NAME, flip
3403169689Skan		 COMP around because we need to register NAME as the
3404169689Skan		 first operand in the predicate.  */
3405169689Skan	      comp_code = swap_tree_comparison (TREE_CODE (cond));
3406169689Skan	      val = TREE_OPERAND (cond, 0);
3407169689Skan	    }
3408169689Skan	  else
3409169689Skan	    {
3410169689Skan	      /* The comparison is of the form NAME COMP VAL, so the
3411169689Skan		 comparison code remains unchanged.  */
3412169689Skan	      comp_code = TREE_CODE (cond);
3413169689Skan	      val = TREE_OPERAND (cond, 1);
3414169689Skan	    }
3415169689Skan
3416169689Skan	  /* If we are inserting the assertion on the ELSE edge, we
3417169689Skan	     need to invert the sign comparison.  */
3418169689Skan	  if (is_else_edge)
3419169689Skan	    comp_code = invert_tree_comparison (comp_code, 0);
3420169689Skan
3421169689Skan	  /* Do not register always-false predicates.  FIXME, this
3422169689Skan	     works around a limitation in fold() when dealing with
3423169689Skan	     enumerations.  Given 'enum { N1, N2 } x;', fold will not
3424169689Skan	     fold 'if (x > N2)' to 'if (0)'.  */
3425169689Skan	  if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3426169689Skan	      && (INTEGRAL_TYPE_P (TREE_TYPE (val))
3427169689Skan		  || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
3428169689Skan	    {
3429169689Skan	      tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3430169689Skan	      tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3431169689Skan
3432169689Skan	      if (comp_code == GT_EXPR && compare_values (val, max) == 0)
3433169689Skan		return false;
3434169689Skan
3435169689Skan	      if (comp_code == LT_EXPR && compare_values (val, min) == 0)
3436169689Skan		return false;
3437169689Skan	    }
3438169689Skan	}
3439169689Skan    }
3440169689Skan  else
3441169689Skan    {
3442169689Skan      /* FIXME.  Handle SWITCH_EXPR.  */
3443169689Skan      gcc_unreachable ();
3444169689Skan    }
3445169689Skan
3446169689Skan  register_new_assert_for (name, comp_code, val, NULL, e, si);
3447169689Skan  return true;
3448169689Skan}
3449169689Skan
3450169689Skan
3451169689Skanstatic bool find_assert_locations (basic_block bb);
3452169689Skan
3453169689Skan/* Determine whether the outgoing edges of BB should receive an
3454169689Skan   ASSERT_EXPR for each of the operands of BB's last statement.  The
3455169689Skan   last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
3456169689Skan
3457169689Skan   If any of the sub-graphs rooted at BB have an interesting use of
3458169689Skan   the predicate operands, an assert location node is added to the
3459169689Skan   list of assertions for the corresponding operands.  */
3460169689Skan
3461169689Skanstatic bool
3462169689Skanfind_conditional_asserts (basic_block bb)
3463169689Skan{
3464169689Skan  bool need_assert;
3465169689Skan  block_stmt_iterator last_si;
3466169689Skan  tree op, last;
3467169689Skan  edge_iterator ei;
3468169689Skan  edge e;
3469169689Skan  ssa_op_iter iter;
3470169689Skan
3471169689Skan  need_assert = false;
3472169689Skan  last_si = bsi_last (bb);
3473169689Skan  last = bsi_stmt (last_si);
3474169689Skan
3475169689Skan  /* Look for uses of the operands in each of the sub-graphs
3476169689Skan     rooted at BB.  We need to check each of the outgoing edges
3477169689Skan     separately, so that we know what kind of ASSERT_EXPR to
3478169689Skan     insert.  */
3479169689Skan  FOR_EACH_EDGE (e, ei, bb->succs)
3480169689Skan    {
3481169689Skan      if (e->dest == bb)
3482169689Skan	continue;
3483169689Skan
3484169689Skan      /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
3485169689Skan	 Otherwise, when we finish traversing each of the sub-graphs, we
3486169689Skan	 won't know whether the variables were found in the sub-graphs or
3487169689Skan	 if they had been found in a block upstream from BB.
3488169689Skan
3489169689Skan	 This is actually a bad idea is some cases, particularly jump
3490169689Skan	 threading.  Consider a CFG like the following:
3491169689Skan
3492169689Skan                    0
3493169689Skan                   /|
3494169689Skan                  1 |
3495169689Skan                   \|
3496169689Skan                    2
3497169689Skan                   / \
3498169689Skan                  3   4
3499169689Skan
3500169689Skan	 Assume that one or more operands in the conditional at the
3501169689Skan	 end of block 0 are used in a conditional in block 2, but not
3502169689Skan	 anywhere in block 1.  In this case we will not insert any
3503169689Skan	 assert statements in block 1, which may cause us to miss
3504169689Skan	 opportunities to optimize, particularly for jump threading.  */
3505169689Skan      FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3506169689Skan	RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3507169689Skan
3508169689Skan      /* Traverse the strictly dominated sub-graph rooted at E->DEST
3509169689Skan	 to determine if any of the operands in the conditional
3510169689Skan	 predicate are used.  */
3511169689Skan      if (e->dest != bb)
3512169689Skan	need_assert |= find_assert_locations (e->dest);
3513169689Skan
3514169689Skan      /* Register the necessary assertions for each operand in the
3515169689Skan	 conditional predicate.  */
3516169689Skan      FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3517169689Skan	need_assert |= register_edge_assert_for (op, e, last_si);
3518169689Skan    }
3519169689Skan
3520169689Skan  /* Finally, indicate that we have found the operands in the
3521169689Skan     conditional.  */
3522169689Skan  FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3523169689Skan    SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3524169689Skan
3525169689Skan  return need_assert;
3526169689Skan}
3527169689Skan
3528169689Skan
3529169689Skan/* Traverse all the statements in block BB looking for statements that
3530169689Skan   may generate useful assertions for the SSA names in their operand.
3531169689Skan   If a statement produces a useful assertion A for name N_i, then the
3532169689Skan   list of assertions already generated for N_i is scanned to
3533169689Skan   determine if A is actually needed.
3534169689Skan
3535169689Skan   If N_i already had the assertion A at a location dominating the
3536169689Skan   current location, then nothing needs to be done.  Otherwise, the
3537169689Skan   new location for A is recorded instead.
3538169689Skan
3539169689Skan   1- For every statement S in BB, all the variables used by S are
3540169689Skan      added to bitmap FOUND_IN_SUBGRAPH.
3541169689Skan
3542169689Skan   2- If statement S uses an operand N in a way that exposes a known
3543169689Skan      value range for N, then if N was not already generated by an
3544169689Skan      ASSERT_EXPR, create a new assert location for N.  For instance,
3545169689Skan      if N is a pointer and the statement dereferences it, we can
3546169689Skan      assume that N is not NULL.
3547169689Skan
3548169689Skan   3- COND_EXPRs are a special case of #2.  We can derive range
3549169689Skan      information from the predicate but need to insert different
3550169689Skan      ASSERT_EXPRs for each of the sub-graphs rooted at the
3551169689Skan      conditional block.  If the last statement of BB is a conditional
3552169689Skan      expression of the form 'X op Y', then
3553169689Skan
3554169689Skan      a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3555169689Skan
3556169689Skan      b) If the conditional is the only entry point to the sub-graph
3557169689Skan	 corresponding to the THEN_CLAUSE, recurse into it.  On
3558169689Skan	 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3559169689Skan	 an ASSERT_EXPR is added for the corresponding variable.
3560169689Skan
3561169689Skan      c) Repeat step (b) on the ELSE_CLAUSE.
3562169689Skan
3563169689Skan      d) Mark X and Y in FOUND_IN_SUBGRAPH.
3564169689Skan
3565169689Skan      For instance,
3566169689Skan
3567169689Skan	    if (a == 9)
3568169689Skan	      b = a;
3569169689Skan	    else
3570169689Skan	      b = c + 1;
3571169689Skan
3572169689Skan      In this case, an assertion on the THEN clause is useful to
3573169689Skan      determine that 'a' is always 9 on that edge.  However, an assertion
3574169689Skan      on the ELSE clause would be unnecessary.
3575169689Skan
3576169689Skan   4- If BB does not end in a conditional expression, then we recurse
3577169689Skan      into BB's dominator children.
3578169689Skan
3579169689Skan   At the end of the recursive traversal, every SSA name will have a
3580169689Skan   list of locations where ASSERT_EXPRs should be added.  When a new
3581169689Skan   location for name N is found, it is registered by calling
3582169689Skan   register_new_assert_for.  That function keeps track of all the
3583169689Skan   registered assertions to prevent adding unnecessary assertions.
3584169689Skan   For instance, if a pointer P_4 is dereferenced more than once in a
3585169689Skan   dominator tree, only the location dominating all the dereference of
3586169689Skan   P_4 will receive an ASSERT_EXPR.
3587169689Skan
3588169689Skan   If this function returns true, then it means that there are names
3589169689Skan   for which we need to generate ASSERT_EXPRs.  Those assertions are
3590169689Skan   inserted by process_assert_insertions.
3591169689Skan
3592169689Skan   TODO.  Handle SWITCH_EXPR.  */
3593169689Skan
3594169689Skanstatic bool
3595169689Skanfind_assert_locations (basic_block bb)
3596169689Skan{
3597169689Skan  block_stmt_iterator si;
3598169689Skan  tree last, phi;
3599169689Skan  bool need_assert;
3600169689Skan  basic_block son;
3601169689Skan
3602169689Skan  if (TEST_BIT (blocks_visited, bb->index))
3603169689Skan    return false;
3604169689Skan
3605169689Skan  SET_BIT (blocks_visited, bb->index);
3606169689Skan
3607169689Skan  need_assert = false;
3608169689Skan
3609169689Skan  /* Traverse all PHI nodes in BB marking used operands.  */
3610169689Skan  for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3611169689Skan    {
3612169689Skan      use_operand_p arg_p;
3613169689Skan      ssa_op_iter i;
3614169689Skan
3615169689Skan      FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3616169689Skan	{
3617169689Skan	  tree arg = USE_FROM_PTR (arg_p);
3618169689Skan	  if (TREE_CODE (arg) == SSA_NAME)
3619169689Skan	    {
3620169689Skan	      gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
3621169689Skan	      SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
3622169689Skan	    }
3623169689Skan	}
3624169689Skan    }
3625169689Skan
3626169689Skan  /* Traverse all the statements in BB marking used names and looking
3627169689Skan     for statements that may infer assertions for their used operands.  */
3628169689Skan  last = NULL_TREE;
3629169689Skan  for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3630169689Skan    {
3631169689Skan      tree stmt, op;
3632169689Skan      ssa_op_iter i;
3633169689Skan
3634169689Skan      stmt = bsi_stmt (si);
3635169689Skan
3636169689Skan      /* See if we can derive an assertion for any of STMT's operands.  */
3637169689Skan      FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3638169689Skan	{
3639169689Skan	  tree value;
3640169689Skan	  enum tree_code comp_code;
3641169689Skan
3642169689Skan	  /* Mark OP in bitmap FOUND_IN_SUBGRAPH.  If STMT is inside
3643169689Skan	     the sub-graph of a conditional block, when we return from
3644169689Skan	     this recursive walk, our parent will use the
3645169689Skan	     FOUND_IN_SUBGRAPH bitset to determine if one of the
3646169689Skan	     operands it was looking for was present in the sub-graph.  */
3647169689Skan	  SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3648169689Skan
3649169689Skan	  /* If OP is used in such a way that we can infer a value
3650169689Skan	     range for it, and we don't find a previous assertion for
3651169689Skan	     it, create a new assertion location node for OP.  */
3652169689Skan	  if (infer_value_range (stmt, op, &comp_code, &value))
3653169689Skan	    {
3654169689Skan	      /* If we are able to infer a nonzero value range for OP,
3655169689Skan		 then walk backwards through the use-def chain to see if OP
3656169689Skan		 was set via a typecast.
3657169689Skan
3658169689Skan		 If so, then we can also infer a nonzero value range
3659169689Skan		 for the operand of the NOP_EXPR.  */
3660169689Skan	      if (comp_code == NE_EXPR && integer_zerop (value))
3661169689Skan		{
3662169689Skan		  tree t = op;
3663169689Skan		  tree def_stmt = SSA_NAME_DEF_STMT (t);
3664169689Skan
3665169689Skan		  while (TREE_CODE (def_stmt) == MODIFY_EXPR
3666169689Skan			 && TREE_CODE (TREE_OPERAND (def_stmt, 1)) == NOP_EXPR
3667169689Skan			 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0)) == SSA_NAME
3668169689Skan			 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0))))
3669169689Skan		    {
3670169689Skan		      t = TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0);
3671169689Skan		      def_stmt = SSA_NAME_DEF_STMT (t);
3672169689Skan
3673169689Skan		      /* Note we want to register the assert for the
3674169689Skan			 operand of the NOP_EXPR after SI, not after the
3675169689Skan			 conversion.  */
3676169689Skan		      if (! has_single_use (t))
3677169689Skan			{
3678169689Skan			  register_new_assert_for (t, comp_code, value,
3679169689Skan						   bb, NULL, si);
3680169689Skan			  need_assert = true;
3681169689Skan			}
3682169689Skan		    }
3683169689Skan		}
3684169689Skan
3685169689Skan	      /* If OP is used only once, namely in this STMT, don't
3686169689Skan		 bother creating an ASSERT_EXPR for it.  Such an
3687169689Skan		 ASSERT_EXPR would do nothing but increase compile time.  */
3688169689Skan	      if (!has_single_use (op))
3689169689Skan		{
3690169689Skan		  register_new_assert_for (op, comp_code, value, bb, NULL, si);
3691169689Skan		  need_assert = true;
3692169689Skan		}
3693169689Skan	    }
3694169689Skan	}
3695169689Skan
3696169689Skan      /* Remember the last statement of the block.  */
3697169689Skan      last = stmt;
3698169689Skan    }
3699169689Skan
3700169689Skan  /* If BB's last statement is a conditional expression
3701169689Skan     involving integer operands, recurse into each of the sub-graphs
3702169689Skan     rooted at BB to determine if we need to add ASSERT_EXPRs.  */
3703169689Skan  if (last
3704169689Skan      && TREE_CODE (last) == COND_EXPR
3705169689Skan      && !fp_predicate (COND_EXPR_COND (last))
3706169689Skan      && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3707169689Skan    need_assert |= find_conditional_asserts (bb);
3708169689Skan
3709169689Skan  /* Recurse into the dominator children of BB.  */
3710169689Skan  for (son = first_dom_son (CDI_DOMINATORS, bb);
3711169689Skan       son;
3712169689Skan       son = next_dom_son (CDI_DOMINATORS, son))
3713169689Skan    need_assert |= find_assert_locations (son);
3714169689Skan
3715169689Skan  return need_assert;
3716169689Skan}
3717169689Skan
3718169689Skan
3719169689Skan/* Create an ASSERT_EXPR for NAME and insert it in the location
3720169689Skan   indicated by LOC.  Return true if we made any edge insertions.  */
3721169689Skan
3722169689Skanstatic bool
3723169689Skanprocess_assert_insertions_for (tree name, assert_locus_t loc)
3724169689Skan{
3725169689Skan  /* Build the comparison expression NAME_i COMP_CODE VAL.  */
3726169689Skan  tree stmt, cond, assert_expr;
3727169689Skan  edge_iterator ei;
3728169689Skan  edge e;
3729169689Skan
3730169689Skan  cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
3731169689Skan  assert_expr = build_assert_expr_for (cond, name);
3732169689Skan
3733169689Skan  if (loc->e)
3734169689Skan    {
3735169689Skan      /* We have been asked to insert the assertion on an edge.  This
3736169689Skan	 is used only by COND_EXPR and SWITCH_EXPR assertions.  */
3737169689Skan#if defined ENABLE_CHECKING
3738169689Skan      gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
3739169689Skan	  || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
3740169689Skan#endif
3741169689Skan
3742169689Skan      bsi_insert_on_edge (loc->e, assert_expr);
3743169689Skan      return true;
3744169689Skan    }
3745169689Skan
3746169689Skan  /* Otherwise, we can insert right after LOC->SI iff the
3747169689Skan     statement must not be the last statement in the block.  */
3748169689Skan  stmt = bsi_stmt (loc->si);
3749169689Skan  if (!stmt_ends_bb_p (stmt))
3750169689Skan    {
3751169689Skan      bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
3752169689Skan      return false;
3753169689Skan    }
3754169689Skan
3755169689Skan  /* If STMT must be the last statement in BB, we can only insert new
3756169689Skan     assertions on the non-abnormal edge out of BB.  Note that since
3757169689Skan     STMT is not control flow, there may only be one non-abnormal edge
3758169689Skan     out of BB.  */
3759169689Skan  FOR_EACH_EDGE (e, ei, loc->bb->succs)
3760169689Skan    if (!(e->flags & EDGE_ABNORMAL))
3761169689Skan      {
3762169689Skan	bsi_insert_on_edge (e, assert_expr);
3763169689Skan	return true;
3764169689Skan      }
3765169689Skan
3766169689Skan  gcc_unreachable ();
3767169689Skan}
3768169689Skan
3769169689Skan
3770169689Skan/* Process all the insertions registered for every name N_i registered
3771169689Skan   in NEED_ASSERT_FOR.  The list of assertions to be inserted are
3772169689Skan   found in ASSERTS_FOR[i].  */
3773169689Skan
3774169689Skanstatic void
3775169689Skanprocess_assert_insertions (void)
3776169689Skan{
3777169689Skan  unsigned i;
3778169689Skan  bitmap_iterator bi;
3779169689Skan  bool update_edges_p = false;
3780169689Skan  int num_asserts = 0;
3781169689Skan
3782169689Skan  if (dump_file && (dump_flags & TDF_DETAILS))
3783169689Skan    dump_all_asserts (dump_file);
3784169689Skan
3785169689Skan  EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3786169689Skan    {
3787169689Skan      assert_locus_t loc = asserts_for[i];
3788169689Skan      gcc_assert (loc);
3789169689Skan
3790169689Skan      while (loc)
3791169689Skan	{
3792169689Skan	  assert_locus_t next = loc->next;
3793169689Skan	  update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3794169689Skan	  free (loc);
3795169689Skan	  loc = next;
3796169689Skan	  num_asserts++;
3797169689Skan	}
3798169689Skan    }
3799169689Skan
3800169689Skan  if (update_edges_p)
3801169689Skan    bsi_commit_edge_inserts ();
3802169689Skan
3803169689Skan  if (dump_file && (dump_flags & TDF_STATS))
3804169689Skan    fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3805169689Skan	     num_asserts);
3806169689Skan}
3807169689Skan
3808169689Skan
3809169689Skan/* Traverse the flowgraph looking for conditional jumps to insert range
3810169689Skan   expressions.  These range expressions are meant to provide information
3811169689Skan   to optimizations that need to reason in terms of value ranges.  They
3812169689Skan   will not be expanded into RTL.  For instance, given:
3813169689Skan
3814169689Skan   x = ...
3815169689Skan   y = ...
3816169689Skan   if (x < y)
3817169689Skan     y = x - 2;
3818169689Skan   else
3819169689Skan     x = y + 3;
3820169689Skan
3821169689Skan   this pass will transform the code into:
3822169689Skan
3823169689Skan   x = ...
3824169689Skan   y = ...
3825169689Skan   if (x < y)
3826169689Skan    {
3827169689Skan      x = ASSERT_EXPR <x, x < y>
3828169689Skan      y = x - 2
3829169689Skan    }
3830169689Skan   else
3831169689Skan    {
3832169689Skan      y = ASSERT_EXPR <y, x <= y>
3833169689Skan      x = y + 3
3834169689Skan    }
3835169689Skan
3836169689Skan   The idea is that once copy and constant propagation have run, other
3837169689Skan   optimizations will be able to determine what ranges of values can 'x'
3838169689Skan   take in different paths of the code, simply by checking the reaching
3839169689Skan   definition of 'x'.  */
3840169689Skan
3841169689Skanstatic void
3842169689Skaninsert_range_assertions (void)
3843169689Skan{
3844169689Skan  edge e;
3845169689Skan  edge_iterator ei;
3846169689Skan  bool update_ssa_p;
3847169689Skan
3848169689Skan  found_in_subgraph = sbitmap_alloc (num_ssa_names);
3849169689Skan  sbitmap_zero (found_in_subgraph);
3850169689Skan
3851169689Skan  blocks_visited = sbitmap_alloc (last_basic_block);
3852169689Skan  sbitmap_zero (blocks_visited);
3853169689Skan
3854169689Skan  need_assert_for = BITMAP_ALLOC (NULL);
3855169689Skan  asserts_for = XNEWVEC (assert_locus_t, num_ssa_names);
3856169689Skan  memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
3857169689Skan
3858169689Skan  calculate_dominance_info (CDI_DOMINATORS);
3859169689Skan
3860169689Skan  update_ssa_p = false;
3861169689Skan  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3862169689Skan    if (find_assert_locations (e->dest))
3863169689Skan      update_ssa_p = true;
3864169689Skan
3865169689Skan  if (update_ssa_p)
3866169689Skan    {
3867169689Skan      process_assert_insertions ();
3868169689Skan      update_ssa (TODO_update_ssa_no_phi);
3869169689Skan    }
3870169689Skan
3871169689Skan  if (dump_file && (dump_flags & TDF_DETAILS))
3872169689Skan    {
3873169689Skan      fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3874169689Skan      dump_function_to_file (current_function_decl, dump_file, dump_flags);
3875169689Skan    }
3876169689Skan
3877169689Skan  sbitmap_free (found_in_subgraph);
3878169689Skan  free (asserts_for);
3879169689Skan  BITMAP_FREE (need_assert_for);
3880169689Skan}
3881169689Skan
3882169689Skan
3883169689Skan/* Convert range assertion expressions into the implied copies and
3884169689Skan   copy propagate away the copies.  Doing the trivial copy propagation
3885169689Skan   here avoids the need to run the full copy propagation pass after
3886169689Skan   VRP.
3887169689Skan
3888169689Skan   FIXME, this will eventually lead to copy propagation removing the
3889169689Skan   names that had useful range information attached to them.  For
3890169689Skan   instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3891169689Skan   then N_i will have the range [3, +INF].
3892169689Skan
3893169689Skan   However, by converting the assertion into the implied copy
3894169689Skan   operation N_i = N_j, we will then copy-propagate N_j into the uses
3895169689Skan   of N_i and lose the range information.  We may want to hold on to
3896169689Skan   ASSERT_EXPRs a little while longer as the ranges could be used in
3897169689Skan   things like jump threading.
3898169689Skan
3899169689Skan   The problem with keeping ASSERT_EXPRs around is that passes after
3900169689Skan   VRP need to handle them appropriately.
3901169689Skan
3902169689Skan   Another approach would be to make the range information a first
3903169689Skan   class property of the SSA_NAME so that it can be queried from
3904169689Skan   any pass.  This is made somewhat more complex by the need for
3905169689Skan   multiple ranges to be associated with one SSA_NAME.  */
3906169689Skan
3907169689Skanstatic void
3908169689Skanremove_range_assertions (void)
3909169689Skan{
3910169689Skan  basic_block bb;
3911169689Skan  block_stmt_iterator si;
3912169689Skan
3913169689Skan  /* Note that the BSI iterator bump happens at the bottom of the
3914169689Skan     loop and no bump is necessary if we're removing the statement
3915169689Skan     referenced by the current BSI.  */
3916169689Skan  FOR_EACH_BB (bb)
3917169689Skan    for (si = bsi_start (bb); !bsi_end_p (si);)
3918169689Skan      {
3919169689Skan	tree stmt = bsi_stmt (si);
3920169689Skan	tree use_stmt;
3921169689Skan
3922169689Skan	if (TREE_CODE (stmt) == MODIFY_EXPR
3923169689Skan	    && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
3924169689Skan	  {
3925169689Skan	    tree rhs = TREE_OPERAND (stmt, 1), var;
3926169689Skan	    tree cond = fold (ASSERT_EXPR_COND (rhs));
3927169689Skan	    use_operand_p use_p;
3928169689Skan	    imm_use_iterator iter;
3929169689Skan
3930169689Skan	    gcc_assert (cond != boolean_false_node);
3931169689Skan
3932169689Skan	    /* Propagate the RHS into every use of the LHS.  */
3933169689Skan	    var = ASSERT_EXPR_VAR (rhs);
3934169689Skan	    FOR_EACH_IMM_USE_STMT (use_stmt, iter, TREE_OPERAND (stmt, 0))
3935169689Skan	      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3936169689Skan		{
3937169689Skan		  SET_USE (use_p, var);
3938169689Skan		  gcc_assert (TREE_CODE (var) == SSA_NAME);
3939169689Skan		}
3940169689Skan
3941169689Skan	    /* And finally, remove the copy, it is not needed.  */
3942169689Skan	    bsi_remove (&si, true);
3943169689Skan	  }
3944169689Skan	else
3945169689Skan	  bsi_next (&si);
3946169689Skan      }
3947169689Skan
3948169689Skan  sbitmap_free (blocks_visited);
3949169689Skan}
3950169689Skan
3951169689Skan
3952169689Skan/* Return true if STMT is interesting for VRP.  */
3953169689Skan
3954169689Skanstatic bool
3955169689Skanstmt_interesting_for_vrp (tree stmt)
3956169689Skan{
3957169689Skan  if (TREE_CODE (stmt) == PHI_NODE
3958169689Skan      && is_gimple_reg (PHI_RESULT (stmt))
3959169689Skan      && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3960169689Skan	  || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3961169689Skan    return true;
3962169689Skan  else if (TREE_CODE (stmt) == MODIFY_EXPR)
3963169689Skan    {
3964169689Skan      tree lhs = TREE_OPERAND (stmt, 0);
3965169689Skan      tree rhs = TREE_OPERAND (stmt, 1);
3966169689Skan
3967169689Skan      /* In general, assignments with virtual operands are not useful
3968169689Skan	 for deriving ranges, with the obvious exception of calls to
3969169689Skan	 builtin functions.  */
3970169689Skan      if (TREE_CODE (lhs) == SSA_NAME
3971169689Skan	  && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3972169689Skan	      || POINTER_TYPE_P (TREE_TYPE (lhs)))
3973169689Skan	  && ((TREE_CODE (rhs) == CALL_EXPR
3974169689Skan	       && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3975169689Skan	       && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3976169689Skan	       && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3977169689Skan	      || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
3978169689Skan	return true;
3979169689Skan    }
3980169689Skan  else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3981169689Skan    return true;
3982169689Skan
3983169689Skan  return false;
3984169689Skan}
3985169689Skan
3986169689Skan
3987169689Skan/* Initialize local data structures for VRP.  */
3988169689Skan
3989169689Skanstatic void
3990169689Skanvrp_initialize (void)
3991169689Skan{
3992169689Skan  basic_block bb;
3993169689Skan
3994169689Skan  vr_value = XNEWVEC (value_range_t *, num_ssa_names);
3995169689Skan  memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
3996169689Skan
3997169689Skan  FOR_EACH_BB (bb)
3998169689Skan    {
3999169689Skan      block_stmt_iterator si;
4000169689Skan      tree phi;
4001169689Skan
4002169689Skan      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4003169689Skan	{
4004169689Skan	  if (!stmt_interesting_for_vrp (phi))
4005169689Skan	    {
4006169689Skan	      tree lhs = PHI_RESULT (phi);
4007169689Skan	      set_value_range_to_varying (get_value_range (lhs));
4008169689Skan	      DONT_SIMULATE_AGAIN (phi) = true;
4009169689Skan	    }
4010169689Skan	  else
4011169689Skan	    DONT_SIMULATE_AGAIN (phi) = false;
4012169689Skan	}
4013169689Skan
4014169689Skan      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4015169689Skan        {
4016169689Skan	  tree stmt = bsi_stmt (si);
4017169689Skan
4018169689Skan	  if (!stmt_interesting_for_vrp (stmt))
4019169689Skan	    {
4020169689Skan	      ssa_op_iter i;
4021169689Skan	      tree def;
4022169689Skan	      FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
4023169689Skan		set_value_range_to_varying (get_value_range (def));
4024169689Skan	      DONT_SIMULATE_AGAIN (stmt) = true;
4025169689Skan	    }
4026169689Skan	  else
4027169689Skan	    {
4028169689Skan	      DONT_SIMULATE_AGAIN (stmt) = false;
4029169689Skan	    }
4030169689Skan	}
4031169689Skan    }
4032169689Skan}
4033169689Skan
4034169689Skan
4035169689Skan/* Visit assignment STMT.  If it produces an interesting range, record
4036169689Skan   the SSA name in *OUTPUT_P.  */
4037169689Skan
4038169689Skanstatic enum ssa_prop_result
4039169689Skanvrp_visit_assignment (tree stmt, tree *output_p)
4040169689Skan{
4041169689Skan  tree lhs, rhs, def;
4042169689Skan  ssa_op_iter iter;
4043169689Skan
4044169689Skan  lhs = TREE_OPERAND (stmt, 0);
4045169689Skan  rhs = TREE_OPERAND (stmt, 1);
4046169689Skan
4047169689Skan  /* We only keep track of ranges in integral and pointer types.  */
4048169689Skan  if (TREE_CODE (lhs) == SSA_NAME
4049169689Skan      && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4050169689Skan	   /* It is valid to have NULL MIN/MAX values on a type.  See
4051169689Skan	      build_range_type.  */
4052169689Skan	   && TYPE_MIN_VALUE (TREE_TYPE (lhs))
4053169689Skan	   && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
4054169689Skan	  || POINTER_TYPE_P (TREE_TYPE (lhs))))
4055169689Skan    {
4056169689Skan      struct loop *l;
4057169689Skan      value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4058169689Skan
4059169689Skan      extract_range_from_expr (&new_vr, rhs);
4060169689Skan
4061169689Skan      /* If STMT is inside a loop, we may be able to know something
4062169689Skan	 else about the range of LHS by examining scalar evolution
4063169689Skan	 information.  */
4064169689Skan      if (current_loops && (l = loop_containing_stmt (stmt)))
4065169689Skan	adjust_range_with_scev (&new_vr, l, stmt, lhs);
4066169689Skan
4067169689Skan      if (update_value_range (lhs, &new_vr))
4068169689Skan	{
4069169689Skan	  *output_p = lhs;
4070169689Skan
4071169689Skan	  if (dump_file && (dump_flags & TDF_DETAILS))
4072169689Skan	    {
4073169689Skan	      fprintf (dump_file, "Found new range for ");
4074169689Skan	      print_generic_expr (dump_file, lhs, 0);
4075169689Skan	      fprintf (dump_file, ": ");
4076169689Skan	      dump_value_range (dump_file, &new_vr);
4077169689Skan	      fprintf (dump_file, "\n\n");
4078169689Skan	    }
4079169689Skan
4080169689Skan	  if (new_vr.type == VR_VARYING)
4081169689Skan	    return SSA_PROP_VARYING;
4082169689Skan
4083169689Skan	  return SSA_PROP_INTERESTING;
4084169689Skan	}
4085169689Skan
4086169689Skan      return SSA_PROP_NOT_INTERESTING;
4087169689Skan    }
4088169689Skan
4089169689Skan  /* Every other statement produces no useful ranges.  */
4090169689Skan  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4091169689Skan    set_value_range_to_varying (get_value_range (def));
4092169689Skan
4093169689Skan  return SSA_PROP_VARYING;
4094169689Skan}
4095169689Skan
4096169689Skan
4097169689Skan/* Compare all the value ranges for names equivalent to VAR with VAL
4098169689Skan   using comparison code COMP.  Return the same value returned by
4099169689Skan   compare_range_with_value, including the setting of
4100169689Skan   *STRICT_OVERFLOW_P.  */
4101169689Skan
4102169689Skanstatic tree
4103169689Skancompare_name_with_value (enum tree_code comp, tree var, tree val,
4104169689Skan			 bool *strict_overflow_p)
4105169689Skan{
4106169689Skan  bitmap_iterator bi;
4107169689Skan  unsigned i;
4108169689Skan  bitmap e;
4109169689Skan  tree retval, t;
4110169689Skan  int used_strict_overflow;
4111169689Skan
4112169689Skan  t = retval = NULL_TREE;
4113169689Skan
4114169689Skan  /* Get the set of equivalences for VAR.  */
4115169689Skan  e = get_value_range (var)->equiv;
4116169689Skan
4117169689Skan  /* Add VAR to its own set of equivalences so that VAR's value range
4118169689Skan     is processed by this loop (otherwise, we would have to replicate
4119169689Skan     the body of the loop just to check VAR's value range).  */
4120169689Skan  bitmap_set_bit (e, SSA_NAME_VERSION (var));
4121169689Skan
4122169689Skan  /* Start at -1.  Set it to 0 if we do a comparison without relying
4123169689Skan     on overflow, or 1 if all comparisons rely on overflow.  */
4124169689Skan  used_strict_overflow = -1;
4125169689Skan
4126169689Skan  EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
4127169689Skan    {
4128169689Skan      bool sop;
4129169689Skan
4130169689Skan      value_range_t equiv_vr = *(vr_value[i]);
4131169689Skan
4132169689Skan      /* If name N_i does not have a valid range, use N_i as its own
4133169689Skan	 range.  This allows us to compare against names that may
4134169689Skan	 have N_i in their ranges.  */
4135169689Skan      if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
4136169689Skan	{
4137169689Skan	  equiv_vr.type = VR_RANGE;
4138169689Skan	  equiv_vr.min = ssa_name (i);
4139169689Skan	  equiv_vr.max = ssa_name (i);
4140169689Skan	}
4141169689Skan
4142169689Skan      sop = false;
4143169689Skan      t = compare_range_with_value (comp, &equiv_vr, val, &sop);
4144169689Skan      if (t)
4145169689Skan	{
4146169689Skan	  /* If we get different answers from different members
4147169689Skan	     of the equivalence set this check must be in a dead
4148169689Skan	     code region.  Folding it to a trap representation
4149169689Skan	     would be correct here.  For now just return don't-know.  */
4150169689Skan	  if (retval != NULL
4151169689Skan	      && t != retval)
4152169689Skan	    {
4153169689Skan	      retval = NULL_TREE;
4154169689Skan	      break;
4155169689Skan	    }
4156169689Skan	  retval = t;
4157169689Skan
4158169689Skan	  if (!sop)
4159169689Skan	    used_strict_overflow = 0;
4160169689Skan	  else if (used_strict_overflow < 0)
4161169689Skan	    used_strict_overflow = 1;
4162169689Skan	}
4163169689Skan    }
4164169689Skan
4165169689Skan  /* Remove VAR from its own equivalence set.  */
4166169689Skan  bitmap_clear_bit (e, SSA_NAME_VERSION (var));
4167169689Skan
4168169689Skan  if (retval)
4169169689Skan    {
4170169689Skan      if (used_strict_overflow > 0)
4171169689Skan	*strict_overflow_p = true;
4172169689Skan      return retval;
4173169689Skan    }
4174169689Skan
4175169689Skan  /* We couldn't find a non-NULL value for the predicate.  */
4176169689Skan  return NULL_TREE;
4177169689Skan}
4178169689Skan
4179169689Skan
4180169689Skan/* Given a comparison code COMP and names N1 and N2, compare all the
4181169689Skan   ranges equivalent to N1 against all the ranges equivalent to N2
4182169689Skan   to determine the value of N1 COMP N2.  Return the same value
4183169689Skan   returned by compare_ranges.  Set *STRICT_OVERFLOW_P to indicate
4184169689Skan   whether we relied on an overflow infinity in the comparison.  */
4185169689Skan
4186169689Skan
4187169689Skanstatic tree
4188169689Skancompare_names (enum tree_code comp, tree n1, tree n2,
4189169689Skan	       bool *strict_overflow_p)
4190169689Skan{
4191169689Skan  tree t, retval;
4192169689Skan  bitmap e1, e2;
4193169689Skan  bitmap_iterator bi1, bi2;
4194169689Skan  unsigned i1, i2;
4195169689Skan  int used_strict_overflow;
4196169689Skan
4197169689Skan  /* Compare the ranges of every name equivalent to N1 against the
4198169689Skan     ranges of every name equivalent to N2.  */
4199169689Skan  e1 = get_value_range (n1)->equiv;
4200169689Skan  e2 = get_value_range (n2)->equiv;
4201169689Skan
4202169689Skan  /* Add N1 and N2 to their own set of equivalences to avoid
4203169689Skan     duplicating the body of the loop just to check N1 and N2
4204169689Skan     ranges.  */
4205169689Skan  bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
4206169689Skan  bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
4207169689Skan
4208169689Skan  /* If the equivalence sets have a common intersection, then the two
4209169689Skan     names can be compared without checking their ranges.  */
4210169689Skan  if (bitmap_intersect_p (e1, e2))
4211169689Skan    {
4212169689Skan      bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4213169689Skan      bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4214169689Skan
4215169689Skan      return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
4216169689Skan	     ? boolean_true_node
4217169689Skan	     : boolean_false_node;
4218169689Skan    }
4219169689Skan
4220169689Skan  /* Start at -1.  Set it to 0 if we do a comparison without relying
4221169689Skan     on overflow, or 1 if all comparisons rely on overflow.  */
4222169689Skan  used_strict_overflow = -1;
4223169689Skan
4224169689Skan  /* Otherwise, compare all the equivalent ranges.  First, add N1 and
4225169689Skan     N2 to their own set of equivalences to avoid duplicating the body
4226169689Skan     of the loop just to check N1 and N2 ranges.  */
4227169689Skan  EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
4228169689Skan    {
4229169689Skan      value_range_t vr1 = *(vr_value[i1]);
4230169689Skan
4231169689Skan      /* If the range is VARYING or UNDEFINED, use the name itself.  */
4232169689Skan      if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
4233169689Skan	{
4234169689Skan	  vr1.type = VR_RANGE;
4235169689Skan	  vr1.min = ssa_name (i1);
4236169689Skan	  vr1.max = ssa_name (i1);
4237169689Skan	}
4238169689Skan
4239169689Skan      t = retval = NULL_TREE;
4240169689Skan      EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
4241169689Skan	{
4242171825Skan	  bool sop = false;
4243169689Skan
4244169689Skan	  value_range_t vr2 = *(vr_value[i2]);
4245169689Skan
4246169689Skan	  if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
4247169689Skan	    {
4248169689Skan	      vr2.type = VR_RANGE;
4249169689Skan	      vr2.min = ssa_name (i2);
4250169689Skan	      vr2.max = ssa_name (i2);
4251169689Skan	    }
4252169689Skan
4253169689Skan	  t = compare_ranges (comp, &vr1, &vr2, &sop);
4254169689Skan	  if (t)
4255169689Skan	    {
4256169689Skan	      /* If we get different answers from different members
4257169689Skan		 of the equivalence set this check must be in a dead
4258169689Skan		 code region.  Folding it to a trap representation
4259169689Skan		 would be correct here.  For now just return don't-know.  */
4260169689Skan	      if (retval != NULL
4261169689Skan		  && t != retval)
4262169689Skan		{
4263169689Skan		  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4264169689Skan		  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4265169689Skan		  return NULL_TREE;
4266169689Skan		}
4267169689Skan	      retval = t;
4268169689Skan
4269169689Skan	      if (!sop)
4270169689Skan		used_strict_overflow = 0;
4271169689Skan	      else if (used_strict_overflow < 0)
4272169689Skan		used_strict_overflow = 1;
4273169689Skan	    }
4274169689Skan	}
4275169689Skan
4276169689Skan      if (retval)
4277169689Skan	{
4278169689Skan	  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4279169689Skan	  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4280169689Skan	  if (used_strict_overflow > 0)
4281169689Skan	    *strict_overflow_p = true;
4282169689Skan	  return retval;
4283169689Skan	}
4284169689Skan    }
4285169689Skan
4286169689Skan  /* None of the equivalent ranges are useful in computing this
4287169689Skan     comparison.  */
4288169689Skan  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4289169689Skan  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4290169689Skan  return NULL_TREE;
4291169689Skan}
4292169689Skan
4293169689Skan
4294169689Skan/* Given a conditional predicate COND, try to determine if COND yields
4295169689Skan   true or false based on the value ranges of its operands.  Return
4296169689Skan   BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
4297169689Skan   BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
4298169689Skan   NULL if the conditional cannot be evaluated at compile time.
4299169689Skan
4300169689Skan   If USE_EQUIV_P is true, the ranges of all the names equivalent with
4301169689Skan   the operands in COND are used when trying to compute its value.
4302169689Skan   This is only used during final substitution.  During propagation,
4303169689Skan   we only check the range of each variable and not its equivalents.
4304169689Skan
4305169689Skan   Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
4306169689Skan   infinity to produce the result.  */
4307169689Skan
4308169689Skanstatic tree
4309169689Skanvrp_evaluate_conditional_warnv (tree cond, bool use_equiv_p,
4310169689Skan				bool *strict_overflow_p)
4311169689Skan{
4312169689Skan  gcc_assert (TREE_CODE (cond) == SSA_NAME
4313169689Skan              || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
4314169689Skan
4315169689Skan  if (TREE_CODE (cond) == SSA_NAME)
4316169689Skan    {
4317169689Skan      value_range_t *vr;
4318169689Skan      tree retval;
4319169689Skan
4320169689Skan      if (use_equiv_p)
4321169689Skan	retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node,
4322169689Skan					  strict_overflow_p);
4323169689Skan      else
4324169689Skan	{
4325169689Skan	  value_range_t *vr = get_value_range (cond);
4326169689Skan	  retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node,
4327169689Skan					     strict_overflow_p);
4328169689Skan	}
4329169689Skan
4330169689Skan      /* If COND has a known boolean range, return it.  */
4331169689Skan      if (retval)
4332169689Skan	return retval;
4333169689Skan
4334169689Skan      /* Otherwise, if COND has a symbolic range of exactly one value,
4335169689Skan	 return it.  */
4336169689Skan      vr = get_value_range (cond);
4337169689Skan      if (vr->type == VR_RANGE && vr->min == vr->max)
4338169689Skan	return vr->min;
4339169689Skan    }
4340169689Skan  else
4341169689Skan    {
4342169689Skan      tree op0 = TREE_OPERAND (cond, 0);
4343169689Skan      tree op1 = TREE_OPERAND (cond, 1);
4344169689Skan
4345169689Skan      /* We only deal with integral and pointer types.  */
4346169689Skan      if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
4347169689Skan	  && !POINTER_TYPE_P (TREE_TYPE (op0)))
4348169689Skan	return NULL_TREE;
4349169689Skan
4350169689Skan      if (use_equiv_p)
4351169689Skan	{
4352169689Skan	  if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
4353169689Skan	    return compare_names (TREE_CODE (cond), op0, op1,
4354169689Skan				  strict_overflow_p);
4355169689Skan	  else if (TREE_CODE (op0) == SSA_NAME)
4356169689Skan	    return compare_name_with_value (TREE_CODE (cond), op0, op1,
4357169689Skan					    strict_overflow_p);
4358169689Skan	  else if (TREE_CODE (op1) == SSA_NAME)
4359169689Skan	    return (compare_name_with_value
4360169689Skan		    (swap_tree_comparison (TREE_CODE (cond)), op1, op0,
4361169689Skan		     strict_overflow_p));
4362169689Skan	}
4363169689Skan      else
4364169689Skan	{
4365169689Skan	  value_range_t *vr0, *vr1;
4366169689Skan
4367169689Skan	  vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
4368169689Skan	  vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
4369169689Skan
4370169689Skan	  if (vr0 && vr1)
4371169689Skan	    return compare_ranges (TREE_CODE (cond), vr0, vr1,
4372169689Skan				   strict_overflow_p);
4373169689Skan	  else if (vr0 && vr1 == NULL)
4374169689Skan	    return compare_range_with_value (TREE_CODE (cond), vr0, op1,
4375169689Skan					     strict_overflow_p);
4376169689Skan	  else if (vr0 == NULL && vr1)
4377169689Skan	    return (compare_range_with_value
4378169689Skan		    (swap_tree_comparison (TREE_CODE (cond)), vr1, op0,
4379169689Skan		     strict_overflow_p));
4380169689Skan	}
4381169689Skan    }
4382169689Skan
4383169689Skan  /* Anything else cannot be computed statically.  */
4384169689Skan  return NULL_TREE;
4385169689Skan}
4386169689Skan
4387169689Skan/* Given COND within STMT, try to simplify it based on value range
4388169689Skan   information.  Return NULL if the conditional can not be evaluated.
4389169689Skan   The ranges of all the names equivalent with the operands in COND
4390169689Skan   will be used when trying to compute the value.  If the result is
4391169689Skan   based on undefined signed overflow, issue a warning if
4392169689Skan   appropriate.  */
4393169689Skan
4394169689Skantree
4395169689Skanvrp_evaluate_conditional (tree cond, tree stmt)
4396169689Skan{
4397169689Skan  bool sop;
4398169689Skan  tree ret;
4399169689Skan
4400169689Skan  sop = false;
4401169689Skan  ret = vrp_evaluate_conditional_warnv (cond, true, &sop);
4402169689Skan
4403169689Skan  if (ret && sop)
4404169689Skan    {
4405169689Skan      enum warn_strict_overflow_code wc;
4406169689Skan      const char* warnmsg;
4407169689Skan
4408169689Skan      if (is_gimple_min_invariant (ret))
4409169689Skan	{
4410169689Skan	  wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
4411169689Skan	  warnmsg = G_("assuming signed overflow does not occur when "
4412169689Skan		       "simplifying conditional to constant");
4413169689Skan	}
4414169689Skan      else
4415169689Skan	{
4416169689Skan	  wc = WARN_STRICT_OVERFLOW_COMPARISON;
4417169689Skan	  warnmsg = G_("assuming signed overflow does not occur when "
4418169689Skan		       "simplifying conditional");
4419169689Skan	}
4420169689Skan
4421169689Skan      if (issue_strict_overflow_warning (wc))
4422169689Skan	{
4423169689Skan	  location_t locus;
4424169689Skan
4425169689Skan	  if (!EXPR_HAS_LOCATION (stmt))
4426169689Skan	    locus = input_location;
4427169689Skan	  else
4428169689Skan	    locus = EXPR_LOCATION (stmt);
4429169689Skan	  warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
4430169689Skan	}
4431169689Skan    }
4432169689Skan
4433169689Skan  return ret;
4434169689Skan}
4435169689Skan
4436169689Skan
4437169689Skan/* Visit conditional statement STMT.  If we can determine which edge
4438169689Skan   will be taken out of STMT's basic block, record it in
4439169689Skan   *TAKEN_EDGE_P and return SSA_PROP_INTERESTING.  Otherwise, return
4440169689Skan   SSA_PROP_VARYING.  */
4441169689Skan
4442169689Skanstatic enum ssa_prop_result
4443169689Skanvrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
4444169689Skan{
4445169689Skan  tree cond, val;
4446169689Skan  bool sop;
4447169689Skan
4448169689Skan  *taken_edge_p = NULL;
4449169689Skan
4450169689Skan  /* FIXME.  Handle SWITCH_EXPRs.  But first, the assert pass needs to
4451169689Skan     add ASSERT_EXPRs for them.  */
4452169689Skan  if (TREE_CODE (stmt) == SWITCH_EXPR)
4453169689Skan    return SSA_PROP_VARYING;
4454169689Skan
4455169689Skan  cond = COND_EXPR_COND (stmt);
4456169689Skan
4457169689Skan  if (dump_file && (dump_flags & TDF_DETAILS))
4458169689Skan    {
4459169689Skan      tree use;
4460169689Skan      ssa_op_iter i;
4461169689Skan
4462169689Skan      fprintf (dump_file, "\nVisiting conditional with predicate: ");
4463169689Skan      print_generic_expr (dump_file, cond, 0);
4464169689Skan      fprintf (dump_file, "\nWith known ranges\n");
4465169689Skan
4466169689Skan      FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4467169689Skan	{
4468169689Skan	  fprintf (dump_file, "\t");
4469169689Skan	  print_generic_expr (dump_file, use, 0);
4470169689Skan	  fprintf (dump_file, ": ");
4471169689Skan	  dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
4472169689Skan	}
4473169689Skan
4474169689Skan      fprintf (dump_file, "\n");
4475169689Skan    }
4476169689Skan
4477169689Skan  /* Compute the value of the predicate COND by checking the known
4478169689Skan     ranges of each of its operands.
4479169689Skan
4480169689Skan     Note that we cannot evaluate all the equivalent ranges here
4481169689Skan     because those ranges may not yet be final and with the current
4482169689Skan     propagation strategy, we cannot determine when the value ranges
4483169689Skan     of the names in the equivalence set have changed.
4484169689Skan
4485169689Skan     For instance, given the following code fragment
4486169689Skan
4487169689Skan        i_5 = PHI <8, i_13>
4488169689Skan	...
4489169689Skan     	i_14 = ASSERT_EXPR <i_5, i_5 != 0>
4490169689Skan	if (i_14 == 1)
4491169689Skan	  ...
4492169689Skan
4493169689Skan     Assume that on the first visit to i_14, i_5 has the temporary
4494169689Skan     range [8, 8] because the second argument to the PHI function is
4495169689Skan     not yet executable.  We derive the range ~[0, 0] for i_14 and the
4496169689Skan     equivalence set { i_5 }.  So, when we visit 'if (i_14 == 1)' for
4497169689Skan     the first time, since i_14 is equivalent to the range [8, 8], we
4498169689Skan     determine that the predicate is always false.
4499169689Skan
4500169689Skan     On the next round of propagation, i_13 is determined to be
4501169689Skan     VARYING, which causes i_5 to drop down to VARYING.  So, another
4502169689Skan     visit to i_14 is scheduled.  In this second visit, we compute the
4503169689Skan     exact same range and equivalence set for i_14, namely ~[0, 0] and
4504169689Skan     { i_5 }.  But we did not have the previous range for i_5
4505169689Skan     registered, so vrp_visit_assignment thinks that the range for
4506169689Skan     i_14 has not changed.  Therefore, the predicate 'if (i_14 == 1)'
4507169689Skan     is not visited again, which stops propagation from visiting
4508169689Skan     statements in the THEN clause of that if().
4509169689Skan
4510169689Skan     To properly fix this we would need to keep the previous range
4511169689Skan     value for the names in the equivalence set.  This way we would've
4512169689Skan     discovered that from one visit to the other i_5 changed from
4513169689Skan     range [8, 8] to VR_VARYING.
4514169689Skan
4515169689Skan     However, fixing this apparent limitation may not be worth the
4516169689Skan     additional checking.  Testing on several code bases (GCC, DLV,
4517169689Skan     MICO, TRAMP3D and SPEC2000) showed that doing this results in
4518169689Skan     4 more predicates folded in SPEC.  */
4519169689Skan  sop = false;
4520169689Skan  val = vrp_evaluate_conditional_warnv (cond, false, &sop);
4521169689Skan  if (val)
4522169689Skan    {
4523169689Skan      if (!sop)
4524169689Skan	*taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
4525169689Skan      else
4526169689Skan	{
4527169689Skan	  if (dump_file && (dump_flags & TDF_DETAILS))
4528169689Skan	    fprintf (dump_file,
4529169689Skan		     "\nIgnoring predicate evaluation because "
4530169689Skan		     "it assumes that signed overflow is undefined");
4531169689Skan	  val = NULL_TREE;
4532169689Skan	}
4533169689Skan    }
4534169689Skan
4535169689Skan  if (dump_file && (dump_flags & TDF_DETAILS))
4536169689Skan    {
4537169689Skan      fprintf (dump_file, "\nPredicate evaluates to: ");
4538169689Skan      if (val == NULL_TREE)
4539169689Skan	fprintf (dump_file, "DON'T KNOW\n");
4540169689Skan      else
4541169689Skan	print_generic_stmt (dump_file, val, 0);
4542169689Skan    }
4543169689Skan
4544169689Skan  return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
4545169689Skan}
4546169689Skan
4547169689Skan
4548169689Skan/* Evaluate statement STMT.  If the statement produces a useful range,
4549169689Skan   return SSA_PROP_INTERESTING and record the SSA name with the
4550169689Skan   interesting range into *OUTPUT_P.
4551169689Skan
4552169689Skan   If STMT is a conditional branch and we can determine its truth
4553169689Skan   value, the taken edge is recorded in *TAKEN_EDGE_P.
4554169689Skan
4555169689Skan   If STMT produces a varying value, return SSA_PROP_VARYING.  */
4556169689Skan
4557169689Skanstatic enum ssa_prop_result
4558169689Skanvrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
4559169689Skan{
4560169689Skan  tree def;
4561169689Skan  ssa_op_iter iter;
4562169689Skan  stmt_ann_t ann;
4563169689Skan
4564169689Skan  if (dump_file && (dump_flags & TDF_DETAILS))
4565169689Skan    {
4566169689Skan      fprintf (dump_file, "\nVisiting statement:\n");
4567169689Skan      print_generic_stmt (dump_file, stmt, dump_flags);
4568169689Skan      fprintf (dump_file, "\n");
4569169689Skan    }
4570169689Skan
4571169689Skan  ann = stmt_ann (stmt);
4572169689Skan  if (TREE_CODE (stmt) == MODIFY_EXPR)
4573169689Skan    {
4574169689Skan      tree rhs = TREE_OPERAND (stmt, 1);
4575169689Skan
4576169689Skan      /* In general, assignments with virtual operands are not useful
4577169689Skan	 for deriving ranges, with the obvious exception of calls to
4578169689Skan	 builtin functions.  */
4579169689Skan      if ((TREE_CODE (rhs) == CALL_EXPR
4580169689Skan	   && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
4581169689Skan	   && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
4582169689Skan	   && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
4583169689Skan	  || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
4584169689Skan	return vrp_visit_assignment (stmt, output_p);
4585169689Skan    }
4586169689Skan  else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4587169689Skan    return vrp_visit_cond_stmt (stmt, taken_edge_p);
4588169689Skan
4589169689Skan  /* All other statements produce nothing of interest for VRP, so mark
4590169689Skan     their outputs varying and prevent further simulation.  */
4591169689Skan  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4592169689Skan    set_value_range_to_varying (get_value_range (def));
4593169689Skan
4594169689Skan  return SSA_PROP_VARYING;
4595169689Skan}
4596169689Skan
4597169689Skan
4598169689Skan/* Meet operation for value ranges.  Given two value ranges VR0 and
4599169689Skan   VR1, store in VR0 the result of meeting VR0 and VR1.
4600169689Skan
4601169689Skan   The meeting rules are as follows:
4602169689Skan
4603169689Skan   1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
4604169689Skan
4605169689Skan   2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
4606169689Skan      union of VR0 and VR1.  */
4607169689Skan
4608169689Skanstatic void
4609169689Skanvrp_meet (value_range_t *vr0, value_range_t *vr1)
4610169689Skan{
4611169689Skan  if (vr0->type == VR_UNDEFINED)
4612169689Skan    {
4613169689Skan      copy_value_range (vr0, vr1);
4614169689Skan      return;
4615169689Skan    }
4616169689Skan
4617169689Skan  if (vr1->type == VR_UNDEFINED)
4618169689Skan    {
4619169689Skan      /* Nothing to do.  VR0 already has the resulting range.  */
4620169689Skan      return;
4621169689Skan    }
4622169689Skan
4623169689Skan  if (vr0->type == VR_VARYING)
4624169689Skan    {
4625169689Skan      /* Nothing to do.  VR0 already has the resulting range.  */
4626169689Skan      return;
4627169689Skan    }
4628169689Skan
4629169689Skan  if (vr1->type == VR_VARYING)
4630169689Skan    {
4631169689Skan      set_value_range_to_varying (vr0);
4632169689Skan      return;
4633169689Skan    }
4634169689Skan
4635169689Skan  if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
4636169689Skan    {
4637169689Skan      /* If VR0 and VR1 have a non-empty intersection, compute the
4638169689Skan	 union of both ranges.  */
4639169689Skan      if (value_ranges_intersect_p (vr0, vr1))
4640169689Skan	{
4641169689Skan	  int cmp;
4642169689Skan	  tree min, max;
4643169689Skan
4644169689Skan	  /* The lower limit of the new range is the minimum of the
4645169689Skan	     two ranges.  If they cannot be compared, the result is
4646169689Skan	     VARYING.  */
4647169689Skan	  cmp = compare_values (vr0->min, vr1->min);
4648169689Skan	  if (cmp == 0 || cmp == 1)
4649169689Skan	    min = vr1->min;
4650169689Skan	  else if (cmp == -1)
4651169689Skan	    min = vr0->min;
4652169689Skan	  else
4653169689Skan	    {
4654169689Skan	      set_value_range_to_varying (vr0);
4655169689Skan	      return;
4656169689Skan	    }
4657169689Skan
4658169689Skan	  /* Similarly, the upper limit of the new range is the
4659169689Skan	     maximum of the two ranges.  If they cannot be compared,
4660169689Skan	     the result is VARYING.  */
4661169689Skan	  cmp = compare_values (vr0->max, vr1->max);
4662169689Skan	  if (cmp == 0 || cmp == -1)
4663169689Skan	    max = vr1->max;
4664169689Skan	  else if (cmp == 1)
4665169689Skan	    max = vr0->max;
4666169689Skan	  else
4667169689Skan	    {
4668169689Skan	      set_value_range_to_varying (vr0);
4669169689Skan	      return;
4670169689Skan	    }
4671169689Skan
4672169689Skan	  /* Check for useless ranges.  */
4673169689Skan	  if (INTEGRAL_TYPE_P (TREE_TYPE (min))
4674169689Skan	      && ((vrp_val_is_min (min) || is_overflow_infinity (min))
4675169689Skan		  && (vrp_val_is_max (max) || is_overflow_infinity (max))))
4676169689Skan	    {
4677169689Skan	      set_value_range_to_varying (vr0);
4678169689Skan	      return;
4679169689Skan	    }
4680169689Skan
4681169689Skan	  /* The resulting set of equivalences is the intersection of
4682169689Skan	     the two sets.  */
4683169689Skan	  if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4684169689Skan	    bitmap_and_into (vr0->equiv, vr1->equiv);
4685169689Skan	  else if (vr0->equiv && !vr1->equiv)
4686169689Skan	    bitmap_clear (vr0->equiv);
4687169689Skan
4688169689Skan	  set_value_range (vr0, vr0->type, min, max, vr0->equiv);
4689169689Skan	}
4690169689Skan      else
4691169689Skan	goto no_meet;
4692169689Skan    }
4693169689Skan  else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4694169689Skan    {
4695169689Skan      /* Two anti-ranges meet only if they are both identical.  */
4696169689Skan      if (compare_values (vr0->min, vr1->min) == 0
4697169689Skan	  && compare_values (vr0->max, vr1->max) == 0
4698169689Skan	  && compare_values (vr0->min, vr0->max) == 0)
4699169689Skan	{
4700169689Skan	  /* The resulting set of equivalences is the intersection of
4701169689Skan	     the two sets.  */
4702169689Skan	  if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4703169689Skan	    bitmap_and_into (vr0->equiv, vr1->equiv);
4704169689Skan	  else if (vr0->equiv && !vr1->equiv)
4705169689Skan	    bitmap_clear (vr0->equiv);
4706169689Skan	}
4707169689Skan      else
4708169689Skan	goto no_meet;
4709169689Skan    }
4710169689Skan  else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4711169689Skan    {
4712169689Skan      /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
4713169689Skan	 meet only if the ranges have an empty intersection.  The
4714169689Skan	 result of the meet operation is the anti-range.  */
4715169689Skan      if (!symbolic_range_p (vr0)
4716169689Skan	  && !symbolic_range_p (vr1)
4717169689Skan	  && !value_ranges_intersect_p (vr0, vr1))
4718169689Skan	{
4719169689Skan	  /* Copy most of VR1 into VR0.  Don't copy VR1's equivalence
4720169689Skan	     set.  We need to compute the intersection of the two
4721169689Skan	     equivalence sets.  */
4722169689Skan	  if (vr1->type == VR_ANTI_RANGE)
4723169689Skan	    set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
4724169689Skan
4725169689Skan	  /* The resulting set of equivalences is the intersection of
4726169689Skan	     the two sets.  */
4727169689Skan	  if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4728169689Skan	    bitmap_and_into (vr0->equiv, vr1->equiv);
4729169689Skan	  else if (vr0->equiv && !vr1->equiv)
4730169689Skan	    bitmap_clear (vr0->equiv);
4731169689Skan	}
4732169689Skan      else
4733169689Skan	goto no_meet;
4734169689Skan    }
4735169689Skan  else
4736169689Skan    gcc_unreachable ();
4737169689Skan
4738169689Skan  return;
4739169689Skan
4740169689Skanno_meet:
4741169689Skan  /* The two range VR0 and VR1 do not meet.  Before giving up and
4742169689Skan     setting the result to VARYING, see if we can at least derive a
4743169689Skan     useful anti-range.  FIXME, all this nonsense about distinguishing
4744169689Skan     anti-ranges from ranges is necessary because of the odd
4745169689Skan     semantics of range_includes_zero_p and friends.  */
4746169689Skan  if (!symbolic_range_p (vr0)
4747169689Skan      && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
4748169689Skan	  || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
4749169689Skan      && !symbolic_range_p (vr1)
4750169689Skan      && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
4751169689Skan	  || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
4752169689Skan    {
4753169689Skan      set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
4754169689Skan
4755169689Skan      /* Since this meet operation did not result from the meeting of
4756169689Skan	 two equivalent names, VR0 cannot have any equivalences.  */
4757169689Skan      if (vr0->equiv)
4758169689Skan	bitmap_clear (vr0->equiv);
4759169689Skan    }
4760169689Skan  else
4761169689Skan    set_value_range_to_varying (vr0);
4762169689Skan}
4763169689Skan
4764169689Skan
4765169689Skan/* Visit all arguments for PHI node PHI that flow through executable
4766169689Skan   edges.  If a valid value range can be derived from all the incoming
4767169689Skan   value ranges, set a new range for the LHS of PHI.  */
4768169689Skan
4769169689Skanstatic enum ssa_prop_result
4770169689Skanvrp_visit_phi_node (tree phi)
4771169689Skan{
4772169689Skan  int i;
4773169689Skan  tree lhs = PHI_RESULT (phi);
4774169689Skan  value_range_t *lhs_vr = get_value_range (lhs);
4775169689Skan  value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4776169689Skan
4777169689Skan  copy_value_range (&vr_result, lhs_vr);
4778169689Skan
4779169689Skan  if (dump_file && (dump_flags & TDF_DETAILS))
4780169689Skan    {
4781169689Skan      fprintf (dump_file, "\nVisiting PHI node: ");
4782169689Skan      print_generic_expr (dump_file, phi, dump_flags);
4783169689Skan    }
4784169689Skan
4785169689Skan  for (i = 0; i < PHI_NUM_ARGS (phi); i++)
4786169689Skan    {
4787169689Skan      edge e = PHI_ARG_EDGE (phi, i);
4788169689Skan
4789169689Skan      if (dump_file && (dump_flags & TDF_DETAILS))
4790169689Skan	{
4791169689Skan	  fprintf (dump_file,
4792169689Skan	      "\n    Argument #%d (%d -> %d %sexecutable)\n",
4793169689Skan	      i, e->src->index, e->dest->index,
4794169689Skan	      (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
4795169689Skan	}
4796169689Skan
4797169689Skan      if (e->flags & EDGE_EXECUTABLE)
4798169689Skan	{
4799169689Skan	  tree arg = PHI_ARG_DEF (phi, i);
4800169689Skan	  value_range_t vr_arg;
4801169689Skan
4802169689Skan	  if (TREE_CODE (arg) == SSA_NAME)
4803169689Skan	    vr_arg = *(get_value_range (arg));
4804169689Skan	  else
4805169689Skan	    {
4806169689Skan	      if (is_overflow_infinity (arg))
4807169689Skan		{
4808169689Skan		  arg = copy_node (arg);
4809169689Skan		  TREE_OVERFLOW (arg) = 0;
4810169689Skan		}
4811169689Skan
4812169689Skan	      vr_arg.type = VR_RANGE;
4813169689Skan	      vr_arg.min = arg;
4814169689Skan	      vr_arg.max = arg;
4815169689Skan	      vr_arg.equiv = NULL;
4816169689Skan	    }
4817169689Skan
4818169689Skan	  if (dump_file && (dump_flags & TDF_DETAILS))
4819169689Skan	    {
4820169689Skan	      fprintf (dump_file, "\t");
4821169689Skan	      print_generic_expr (dump_file, arg, dump_flags);
4822169689Skan	      fprintf (dump_file, "\n\tValue: ");
4823169689Skan	      dump_value_range (dump_file, &vr_arg);
4824169689Skan	      fprintf (dump_file, "\n");
4825169689Skan	    }
4826169689Skan
4827169689Skan	  vrp_meet (&vr_result, &vr_arg);
4828169689Skan
4829169689Skan	  if (vr_result.type == VR_VARYING)
4830169689Skan	    break;
4831169689Skan	}
4832169689Skan    }
4833169689Skan
4834169689Skan  if (vr_result.type == VR_VARYING)
4835169689Skan    goto varying;
4836169689Skan
4837169689Skan  /* To prevent infinite iterations in the algorithm, derive ranges
4838169689Skan     when the new value is slightly bigger or smaller than the
4839169689Skan     previous one.  */
4840169689Skan  if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
4841169689Skan    {
4842169689Skan      if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
4843169689Skan	{
4844169689Skan	  int cmp_min = compare_values (lhs_vr->min, vr_result.min);
4845169689Skan	  int cmp_max = compare_values (lhs_vr->max, vr_result.max);
4846169689Skan
4847169689Skan	  /* If the new minimum is smaller or larger than the previous
4848169689Skan	     one, go all the way to -INF.  In the first case, to avoid
4849169689Skan	     iterating millions of times to reach -INF, and in the
4850169689Skan	     other case to avoid infinite bouncing between different
4851169689Skan	     minimums.  */
4852169689Skan	  if (cmp_min > 0 || cmp_min < 0)
4853169689Skan	    {
4854169689Skan	      /* If we will end up with a (-INF, +INF) range, set it
4855169689Skan		 to VARYING.  */
4856169689Skan	      if (vrp_val_is_max (vr_result.max))
4857169689Skan		goto varying;
4858169689Skan
4859171825Skan	      if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
4860171825Skan		  || !vrp_var_may_overflow (lhs, phi))
4861169689Skan		vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
4862169689Skan	      else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
4863169689Skan		vr_result.min =
4864169689Skan		  negative_overflow_infinity (TREE_TYPE (vr_result.min));
4865169689Skan	      else
4866169689Skan		goto varying;
4867169689Skan	    }
4868169689Skan
4869169689Skan	  /* Similarly, if the new maximum is smaller or larger than
4870169689Skan	     the previous one, go all the way to +INF.  */
4871169689Skan	  if (cmp_max < 0 || cmp_max > 0)
4872169689Skan	    {
4873169689Skan	      /* If we will end up with a (-INF, +INF) range, set it
4874169689Skan		 to VARYING.  */
4875169689Skan	      if (vrp_val_is_min (vr_result.min))
4876169689Skan		goto varying;
4877169689Skan
4878171825Skan	      if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
4879171825Skan		  || !vrp_var_may_overflow (lhs, phi))
4880169689Skan		vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
4881169689Skan	      else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
4882169689Skan		vr_result.max =
4883169689Skan		  positive_overflow_infinity (TREE_TYPE (vr_result.max));
4884169689Skan	      else
4885169689Skan		goto varying;
4886169689Skan	    }
4887169689Skan	}
4888169689Skan    }
4889169689Skan
4890169689Skan  /* If the new range is different than the previous value, keep
4891169689Skan     iterating.  */
4892169689Skan  if (update_value_range (lhs, &vr_result))
4893169689Skan    return SSA_PROP_INTERESTING;
4894169689Skan
4895169689Skan  /* Nothing changed, don't add outgoing edges.  */
4896169689Skan  return SSA_PROP_NOT_INTERESTING;
4897169689Skan
4898169689Skan  /* No match found.  Set the LHS to VARYING.  */
4899169689Skanvarying:
4900169689Skan  set_value_range_to_varying (lhs_vr);
4901169689Skan  return SSA_PROP_VARYING;
4902169689Skan}
4903169689Skan
4904169689Skan/* Simplify a division or modulo operator to a right shift or
4905169689Skan   bitwise and if the first operand is unsigned or is greater
4906169689Skan   than zero and the second operand is an exact power of two.  */
4907169689Skan
4908169689Skanstatic void
4909169689Skansimplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
4910169689Skan{
4911169689Skan  tree val = NULL;
4912169689Skan  tree op = TREE_OPERAND (rhs, 0);
4913169689Skan  value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4914169689Skan
4915169689Skan  if (TYPE_UNSIGNED (TREE_TYPE (op)))
4916169689Skan    {
4917169689Skan      val = integer_one_node;
4918169689Skan    }
4919169689Skan  else
4920169689Skan    {
4921169689Skan      bool sop = false;
4922169689Skan
4923259268Spfg      val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
4924169689Skan
4925169689Skan      if (val
4926169689Skan	  && sop
4927169689Skan	  && integer_onep (val)
4928169689Skan	  && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
4929169689Skan	{
4930169689Skan	  location_t locus;
4931169689Skan
4932169689Skan	  if (!EXPR_HAS_LOCATION (stmt))
4933169689Skan	    locus = input_location;
4934169689Skan	  else
4935169689Skan	    locus = EXPR_LOCATION (stmt);
4936169689Skan	  warning (OPT_Wstrict_overflow,
4937169689Skan		   ("%Hassuming signed overflow does not occur when "
4938169689Skan		    "simplifying / or %% to >> or &"),
4939169689Skan		   &locus);
4940169689Skan	}
4941169689Skan    }
4942169689Skan
4943169689Skan  if (val && integer_onep (val))
4944169689Skan    {
4945169689Skan      tree t;
4946169689Skan      tree op0 = TREE_OPERAND (rhs, 0);
4947169689Skan      tree op1 = TREE_OPERAND (rhs, 1);
4948169689Skan
4949169689Skan      if (rhs_code == TRUNC_DIV_EXPR)
4950169689Skan	{
4951169689Skan	  t = build_int_cst (NULL_TREE, tree_log2 (op1));
4952169689Skan	  t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
4953169689Skan	}
4954169689Skan      else
4955169689Skan	{
4956169689Skan	  t = build_int_cst (TREE_TYPE (op1), 1);
4957169689Skan	  t = int_const_binop (MINUS_EXPR, op1, t, 0);
4958169689Skan	  t = fold_convert (TREE_TYPE (op0), t);
4959169689Skan	  t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
4960169689Skan	}
4961169689Skan
4962169689Skan      TREE_OPERAND (stmt, 1) = t;
4963169689Skan      update_stmt (stmt);
4964169689Skan    }
4965169689Skan}
4966169689Skan
4967169689Skan/* If the operand to an ABS_EXPR is >= 0, then eliminate the
4968169689Skan   ABS_EXPR.  If the operand is <= 0, then simplify the
4969169689Skan   ABS_EXPR into a NEGATE_EXPR.  */
4970169689Skan
4971169689Skanstatic void
4972169689Skansimplify_abs_using_ranges (tree stmt, tree rhs)
4973169689Skan{
4974169689Skan  tree val = NULL;
4975169689Skan  tree op = TREE_OPERAND (rhs, 0);
4976169689Skan  tree type = TREE_TYPE (op);
4977169689Skan  value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4978169689Skan
4979169689Skan  if (TYPE_UNSIGNED (type))
4980169689Skan    {
4981169689Skan      val = integer_zero_node;
4982169689Skan    }
4983169689Skan  else if (vr)
4984169689Skan    {
4985169689Skan      bool sop = false;
4986169689Skan
4987169689Skan      val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
4988169689Skan      if (!val)
4989169689Skan	{
4990169689Skan	  sop = false;
4991169689Skan	  val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
4992169689Skan					  &sop);
4993169689Skan
4994169689Skan	  if (val)
4995169689Skan	    {
4996169689Skan	      if (integer_zerop (val))
4997169689Skan		val = integer_one_node;
4998169689Skan	      else if (integer_onep (val))
4999169689Skan		val = integer_zero_node;
5000169689Skan	    }
5001169689Skan	}
5002169689Skan
5003169689Skan      if (val
5004169689Skan	  && (integer_onep (val) || integer_zerop (val)))
5005169689Skan	{
5006169689Skan	  tree t;
5007169689Skan
5008169689Skan	  if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5009169689Skan	    {
5010169689Skan	      location_t locus;
5011169689Skan
5012169689Skan	      if (!EXPR_HAS_LOCATION (stmt))
5013169689Skan		locus = input_location;
5014169689Skan	      else
5015169689Skan		locus = EXPR_LOCATION (stmt);
5016169689Skan	      warning (OPT_Wstrict_overflow,
5017169689Skan		       ("%Hassuming signed overflow does not occur when "
5018169689Skan			"simplifying abs (X) to X or -X"),
5019169689Skan		       &locus);
5020169689Skan	    }
5021169689Skan
5022169689Skan	  if (integer_onep (val))
5023169689Skan	    t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
5024169689Skan	  else
5025169689Skan	    t = op;
5026169689Skan
5027169689Skan	  TREE_OPERAND (stmt, 1) = t;
5028169689Skan	  update_stmt (stmt);
5029169689Skan	}
5030169689Skan    }
5031169689Skan}
5032169689Skan
5033169689Skan/* We are comparing trees OP0 and OP1 using COND_CODE.  OP0 has
5034169689Skan   a known value range VR.
5035169689Skan
5036169689Skan   If there is one and only one value which will satisfy the
5037169689Skan   conditional, then return that value.  Else return NULL.  */
5038169689Skan
5039169689Skanstatic tree
5040169689Skantest_for_singularity (enum tree_code cond_code, tree op0,
5041169689Skan		      tree op1, value_range_t *vr)
5042169689Skan{
5043169689Skan  tree min = NULL;
5044169689Skan  tree max = NULL;
5045169689Skan
5046169689Skan  /* Extract minimum/maximum values which satisfy the
5047169689Skan     the conditional as it was written.  */
5048169689Skan  if (cond_code == LE_EXPR || cond_code == LT_EXPR)
5049169689Skan    {
5050169689Skan      /* This should not be negative infinity; there is no overflow
5051169689Skan	 here.  */
5052169689Skan      min = TYPE_MIN_VALUE (TREE_TYPE (op0));
5053169689Skan
5054169689Skan      max = op1;
5055169689Skan      if (cond_code == LT_EXPR && !is_overflow_infinity (max))
5056169689Skan	{
5057169689Skan	  tree one = build_int_cst (TREE_TYPE (op0), 1);
5058169689Skan	  max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
5059171825Skan	  if (EXPR_P (max))
5060171825Skan	    TREE_NO_WARNING (max) = 1;
5061169689Skan	}
5062169689Skan    }
5063169689Skan  else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
5064169689Skan    {
5065169689Skan      /* This should not be positive infinity; there is no overflow
5066169689Skan	 here.  */
5067169689Skan      max = TYPE_MAX_VALUE (TREE_TYPE (op0));
5068169689Skan
5069169689Skan      min = op1;
5070169689Skan      if (cond_code == GT_EXPR && !is_overflow_infinity (min))
5071169689Skan	{
5072169689Skan	  tree one = build_int_cst (TREE_TYPE (op0), 1);
5073169689Skan	  min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
5074171825Skan	  if (EXPR_P (min))
5075171825Skan	    TREE_NO_WARNING (min) = 1;
5076169689Skan	}
5077169689Skan    }
5078169689Skan
5079169689Skan  /* Now refine the minimum and maximum values using any
5080169689Skan     value range information we have for op0.  */
5081169689Skan  if (min && max)
5082169689Skan    {
5083169689Skan      if (compare_values (vr->min, min) == -1)
5084169689Skan	min = min;
5085169689Skan      else
5086169689Skan	min = vr->min;
5087169689Skan      if (compare_values (vr->max, max) == 1)
5088169689Skan	max = max;
5089169689Skan      else
5090169689Skan	max = vr->max;
5091169689Skan
5092169689Skan      /* If the new min/max values have converged to a single value,
5093169689Skan	 then there is only one value which can satisfy the condition,
5094169689Skan	 return that value.  */
5095169689Skan      if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
5096169689Skan	return min;
5097169689Skan    }
5098169689Skan  return NULL;
5099169689Skan}
5100169689Skan
5101169689Skan/* Simplify a conditional using a relational operator to an equality
5102169689Skan   test if the range information indicates only one value can satisfy
5103169689Skan   the original conditional.  */
5104169689Skan
5105169689Skanstatic void
5106169689Skansimplify_cond_using_ranges (tree stmt)
5107169689Skan{
5108169689Skan  tree cond = COND_EXPR_COND (stmt);
5109169689Skan  tree op0 = TREE_OPERAND (cond, 0);
5110169689Skan  tree op1 = TREE_OPERAND (cond, 1);
5111169689Skan  enum tree_code cond_code = TREE_CODE (cond);
5112169689Skan
5113169689Skan  if (cond_code != NE_EXPR
5114169689Skan      && cond_code != EQ_EXPR
5115169689Skan      && TREE_CODE (op0) == SSA_NAME
5116169689Skan      && INTEGRAL_TYPE_P (TREE_TYPE (op0))
5117169689Skan      && is_gimple_min_invariant (op1))
5118169689Skan    {
5119169689Skan      value_range_t *vr = get_value_range (op0);
5120169689Skan
5121169689Skan      /* If we have range information for OP0, then we might be
5122169689Skan	 able to simplify this conditional. */
5123169689Skan      if (vr->type == VR_RANGE)
5124169689Skan	{
5125169689Skan	  tree new = test_for_singularity (cond_code, op0, op1, vr);
5126169689Skan
5127169689Skan	  if (new)
5128169689Skan	    {
5129169689Skan	      if (dump_file)
5130169689Skan		{
5131169689Skan		  fprintf (dump_file, "Simplified relational ");
5132169689Skan		  print_generic_expr (dump_file, cond, 0);
5133169689Skan		  fprintf (dump_file, " into ");
5134169689Skan		}
5135169689Skan
5136169689Skan	      COND_EXPR_COND (stmt)
5137169689Skan		= build2 (EQ_EXPR, boolean_type_node, op0, new);
5138169689Skan	      update_stmt (stmt);
5139169689Skan
5140169689Skan	      if (dump_file)
5141169689Skan		{
5142169689Skan		  print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5143169689Skan		  fprintf (dump_file, "\n");
5144169689Skan		}
5145169689Skan	      return;
5146169689Skan
5147169689Skan	    }
5148169689Skan
5149169689Skan	  /* Try again after inverting the condition.  We only deal
5150169689Skan	     with integral types here, so no need to worry about
5151169689Skan	     issues with inverting FP comparisons.  */
5152169689Skan	  cond_code = invert_tree_comparison (cond_code, false);
5153169689Skan	  new = test_for_singularity (cond_code, op0, op1, vr);
5154169689Skan
5155169689Skan	  if (new)
5156169689Skan	    {
5157169689Skan	      if (dump_file)
5158169689Skan		{
5159169689Skan		  fprintf (dump_file, "Simplified relational ");
5160169689Skan		  print_generic_expr (dump_file, cond, 0);
5161169689Skan		  fprintf (dump_file, " into ");
5162169689Skan		}
5163169689Skan
5164169689Skan	      COND_EXPR_COND (stmt)
5165169689Skan		= build2 (NE_EXPR, boolean_type_node, op0, new);
5166169689Skan	      update_stmt (stmt);
5167169689Skan
5168169689Skan	      if (dump_file)
5169169689Skan		{
5170169689Skan		  print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5171169689Skan		  fprintf (dump_file, "\n");
5172169689Skan		}
5173169689Skan	      return;
5174169689Skan
5175169689Skan	    }
5176169689Skan	}
5177169689Skan    }
5178169689Skan}
5179169689Skan
5180169689Skan/* Simplify STMT using ranges if possible.  */
5181169689Skan
5182169689Skanvoid
5183169689Skansimplify_stmt_using_ranges (tree stmt)
5184169689Skan{
5185169689Skan  if (TREE_CODE (stmt) == MODIFY_EXPR)
5186169689Skan    {
5187169689Skan      tree rhs = TREE_OPERAND (stmt, 1);
5188169689Skan      enum tree_code rhs_code = TREE_CODE (rhs);
5189169689Skan
5190169689Skan      /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
5191169689Skan	 and BIT_AND_EXPR respectively if the first operand is greater
5192169689Skan	 than zero and the second operand is an exact power of two.  */
5193169689Skan      if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
5194169689Skan	  && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
5195169689Skan	  && integer_pow2p (TREE_OPERAND (rhs, 1)))
5196169689Skan	simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
5197169689Skan
5198169689Skan      /* Transform ABS (X) into X or -X as appropriate.  */
5199169689Skan      if (rhs_code == ABS_EXPR
5200169689Skan	  && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
5201169689Skan	  && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
5202169689Skan	simplify_abs_using_ranges (stmt, rhs);
5203169689Skan    }
5204169689Skan  else if (TREE_CODE (stmt) == COND_EXPR
5205169689Skan	   && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
5206169689Skan    {
5207169689Skan      simplify_cond_using_ranges (stmt);
5208169689Skan    }
5209169689Skan}
5210169689Skan
5211169689Skan/* Stack of dest,src equivalency pairs that need to be restored after
5212169689Skan   each attempt to thread a block's incoming edge to an outgoing edge.
5213169689Skan
5214169689Skan   A NULL entry is used to mark the end of pairs which need to be
5215169689Skan   restored.  */
5216169689Skanstatic VEC(tree,heap) *stack;
5217169689Skan
5218169689Skan/* A trivial wrapper so that we can present the generic jump threading
5219169689Skan   code with a simple API for simplifying statements.  STMT is the
5220169689Skan   statement we want to simplify, WITHIN_STMT provides the location
5221169689Skan   for any overflow warnings.  */
5222169689Skan
5223169689Skanstatic tree
5224169689Skansimplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
5225169689Skan{
5226169689Skan  /* We only use VRP information to simplify conditionals.  This is
5227169689Skan     overly conservative, but it's unclear if doing more would be
5228169689Skan     worth the compile time cost.  */
5229169689Skan  if (TREE_CODE (stmt) != COND_EXPR)
5230169689Skan    return NULL;
5231169689Skan
5232169689Skan  return vrp_evaluate_conditional (COND_EXPR_COND (stmt), within_stmt);
5233169689Skan}
5234169689Skan
5235169689Skan/* Blocks which have more than one predecessor and more than
5236169689Skan   one successor present jump threading opportunities.  ie,
5237169689Skan   when the block is reached from a specific predecessor, we
5238169689Skan   may be able to determine which of the outgoing edges will
5239169689Skan   be traversed.  When this optimization applies, we are able
5240169689Skan   to avoid conditionals at runtime and we may expose secondary
5241169689Skan   optimization opportunities.
5242169689Skan
5243169689Skan   This routine is effectively a driver for the generic jump
5244169689Skan   threading code.  It basically just presents the generic code
5245169689Skan   with edges that may be suitable for jump threading.
5246169689Skan
5247169689Skan   Unlike DOM, we do not iterate VRP if jump threading was successful.
5248169689Skan   While iterating may expose new opportunities for VRP, it is expected
5249169689Skan   those opportunities would be very limited and the compile time cost
5250169689Skan   to expose those opportunities would be significant.
5251169689Skan
5252169689Skan   As jump threading opportunities are discovered, they are registered
5253169689Skan   for later realization.  */
5254169689Skan
5255169689Skanstatic void
5256169689Skanidentify_jump_threads (void)
5257169689Skan{
5258169689Skan  basic_block bb;
5259169689Skan  tree dummy;
5260169689Skan
5261169689Skan  /* Ugh.  When substituting values earlier in this pass we can
5262169689Skan     wipe the dominance information.  So rebuild the dominator
5263169689Skan     information as we need it within the jump threading code.  */
5264169689Skan  calculate_dominance_info (CDI_DOMINATORS);
5265169689Skan
5266169689Skan  /* We do not allow VRP information to be used for jump threading
5267169689Skan     across a back edge in the CFG.  Otherwise it becomes too
5268169689Skan     difficult to avoid eliminating loop exit tests.  Of course
5269169689Skan     EDGE_DFS_BACK is not accurate at this time so we have to
5270169689Skan     recompute it.  */
5271169689Skan  mark_dfs_back_edges ();
5272169689Skan
5273169689Skan  /* Allocate our unwinder stack to unwind any temporary equivalences
5274169689Skan     that might be recorded.  */
5275169689Skan  stack = VEC_alloc (tree, heap, 20);
5276169689Skan
5277169689Skan  /* To avoid lots of silly node creation, we create a single
5278169689Skan     conditional and just modify it in-place when attempting to
5279169689Skan     thread jumps.  */
5280169689Skan  dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
5281169689Skan  dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
5282169689Skan
5283169689Skan  /* Walk through all the blocks finding those which present a
5284169689Skan     potential jump threading opportunity.  We could set this up
5285169689Skan     as a dominator walker and record data during the walk, but
5286169689Skan     I doubt it's worth the effort for the classes of jump
5287169689Skan     threading opportunities we are trying to identify at this
5288169689Skan     point in compilation.  */
5289169689Skan  FOR_EACH_BB (bb)
5290169689Skan    {
5291169689Skan      tree last, cond;
5292169689Skan
5293169689Skan      /* If the generic jump threading code does not find this block
5294169689Skan	 interesting, then there is nothing to do.  */
5295169689Skan      if (! potentially_threadable_block (bb))
5296169689Skan	continue;
5297169689Skan
5298169689Skan      /* We only care about blocks ending in a COND_EXPR.  While there
5299169689Skan	 may be some value in handling SWITCH_EXPR here, I doubt it's
5300169689Skan	 terribly important.  */
5301169689Skan      last = bsi_stmt (bsi_last (bb));
5302169689Skan      if (TREE_CODE (last) != COND_EXPR)
5303169689Skan	continue;
5304169689Skan
5305169689Skan      /* We're basically looking for any kind of conditional with
5306169689Skan	 integral type arguments.  */
5307169689Skan      cond = COND_EXPR_COND (last);
5308169689Skan      if ((TREE_CODE (cond) == SSA_NAME
5309169689Skan	   && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
5310169689Skan	  || (COMPARISON_CLASS_P (cond)
5311169689Skan	      && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
5312169689Skan	      && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
5313169689Skan	      && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
5314169689Skan		  || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
5315169689Skan	      && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
5316169689Skan	{
5317169689Skan	  edge_iterator ei;
5318169689Skan	  edge e;
5319169689Skan
5320169689Skan	  /* We've got a block with multiple predecessors and multiple
5321169689Skan	     successors which also ends in a suitable conditional.  For
5322169689Skan	     each predecessor, see if we can thread it to a specific
5323169689Skan	     successor.  */
5324169689Skan	  FOR_EACH_EDGE (e, ei, bb->preds)
5325169689Skan	    {
5326169689Skan	      /* Do not thread across back edges or abnormal edges
5327169689Skan		 in the CFG.  */
5328169689Skan	      if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
5329169689Skan		continue;
5330169689Skan
5331169689Skan	      thread_across_edge (dummy, e, true,
5332169689Skan				  &stack,
5333169689Skan				  simplify_stmt_for_jump_threading);
5334169689Skan	    }
5335169689Skan	}
5336169689Skan    }
5337169689Skan
5338169689Skan  /* We do not actually update the CFG or SSA graphs at this point as
5339169689Skan     ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
5340169689Skan     handle ASSERT_EXPRs gracefully.  */
5341169689Skan}
5342169689Skan
5343169689Skan/* We identified all the jump threading opportunities earlier, but could
5344169689Skan   not transform the CFG at that time.  This routine transforms the
5345169689Skan   CFG and arranges for the dominator tree to be rebuilt if necessary.
5346169689Skan
5347169689Skan   Note the SSA graph update will occur during the normal TODO
5348169689Skan   processing by the pass manager.  */
5349169689Skanstatic void
5350169689Skanfinalize_jump_threads (void)
5351169689Skan{
5352169689Skan  bool cfg_altered = false;
5353169689Skan  cfg_altered = thread_through_all_blocks ();
5354169689Skan
5355169689Skan  /* If we threaded jumps, then we need to recompute the dominance
5356169689Skan     information, to safely do that we must clean up the CFG first.  */
5357169689Skan  if (cfg_altered)
5358169689Skan    {
5359169689Skan      free_dominance_info (CDI_DOMINATORS);
5360169689Skan      cleanup_tree_cfg ();
5361169689Skan      calculate_dominance_info (CDI_DOMINATORS);
5362169689Skan    }
5363169689Skan  VEC_free (tree, heap, stack);
5364169689Skan}
5365169689Skan
5366169689Skan
5367169689Skan/* Traverse all the blocks folding conditionals with known ranges.  */
5368169689Skan
5369169689Skanstatic void
5370169689Skanvrp_finalize (void)
5371169689Skan{
5372169689Skan  size_t i;
5373169689Skan  prop_value_t *single_val_range;
5374169689Skan  bool do_value_subst_p;
5375169689Skan
5376169689Skan  if (dump_file)
5377169689Skan    {
5378169689Skan      fprintf (dump_file, "\nValue ranges after VRP:\n\n");
5379169689Skan      dump_all_value_ranges (dump_file);
5380169689Skan      fprintf (dump_file, "\n");
5381169689Skan    }
5382169689Skan
5383169689Skan  /* We may have ended with ranges that have exactly one value.  Those
5384169689Skan     values can be substituted as any other copy/const propagated
5385169689Skan     value using substitute_and_fold.  */
5386169689Skan  single_val_range = XNEWVEC (prop_value_t, num_ssa_names);
5387169689Skan  memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
5388169689Skan
5389169689Skan  do_value_subst_p = false;
5390169689Skan  for (i = 0; i < num_ssa_names; i++)
5391169689Skan    if (vr_value[i]
5392169689Skan	&& vr_value[i]->type == VR_RANGE
5393169689Skan	&& vr_value[i]->min == vr_value[i]->max)
5394169689Skan      {
5395169689Skan	single_val_range[i].value = vr_value[i]->min;
5396169689Skan	do_value_subst_p = true;
5397169689Skan      }
5398169689Skan
5399169689Skan  if (!do_value_subst_p)
5400169689Skan    {
5401169689Skan      /* We found no single-valued ranges, don't waste time trying to
5402169689Skan	 do single value substitution in substitute_and_fold.  */
5403169689Skan      free (single_val_range);
5404169689Skan      single_val_range = NULL;
5405169689Skan    }
5406169689Skan
5407169689Skan  substitute_and_fold (single_val_range, true);
5408169689Skan
5409169689Skan  /* We must identify jump threading opportunities before we release
5410169689Skan     the datastructures built by VRP.  */
5411169689Skan  identify_jump_threads ();
5412169689Skan
5413169689Skan  /* Free allocated memory.  */
5414169689Skan  for (i = 0; i < num_ssa_names; i++)
5415169689Skan    if (vr_value[i])
5416169689Skan      {
5417169689Skan	BITMAP_FREE (vr_value[i]->equiv);
5418169689Skan	free (vr_value[i]);
5419169689Skan      }
5420169689Skan
5421169689Skan  free (single_val_range);
5422169689Skan  free (vr_value);
5423169689Skan
5424169689Skan  /* So that we can distinguish between VRP data being available
5425169689Skan     and not available.  */
5426169689Skan  vr_value = NULL;
5427169689Skan}
5428169689Skan
5429169689Skan
5430169689Skan/* Main entry point to VRP (Value Range Propagation).  This pass is
5431169689Skan   loosely based on J. R. C. Patterson, ``Accurate Static Branch
5432169689Skan   Prediction by Value Range Propagation,'' in SIGPLAN Conference on
5433169689Skan   Programming Language Design and Implementation, pp. 67-78, 1995.
5434169689Skan   Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
5435169689Skan
5436169689Skan   This is essentially an SSA-CCP pass modified to deal with ranges
5437169689Skan   instead of constants.
5438169689Skan
5439169689Skan   While propagating ranges, we may find that two or more SSA name
5440169689Skan   have equivalent, though distinct ranges.  For instance,
5441169689Skan
5442169689Skan     1	x_9 = p_3->a;
5443169689Skan     2	p_4 = ASSERT_EXPR <p_3, p_3 != 0>
5444169689Skan     3	if (p_4 == q_2)
5445169689Skan     4	  p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
5446169689Skan     5	endif
5447169689Skan     6	if (q_2)
5448169689Skan
5449169689Skan   In the code above, pointer p_5 has range [q_2, q_2], but from the
5450169689Skan   code we can also determine that p_5 cannot be NULL and, if q_2 had
5451169689Skan   a non-varying range, p_5's range should also be compatible with it.
5452169689Skan
5453169689Skan   These equivalences are created by two expressions: ASSERT_EXPR and
5454169689Skan   copy operations.  Since p_5 is an assertion on p_4, and p_4 was the
5455169689Skan   result of another assertion, then we can use the fact that p_5 and
5456169689Skan   p_4 are equivalent when evaluating p_5's range.
5457169689Skan
5458169689Skan   Together with value ranges, we also propagate these equivalences
5459169689Skan   between names so that we can take advantage of information from
5460169689Skan   multiple ranges when doing final replacement.  Note that this
5461169689Skan   equivalency relation is transitive but not symmetric.
5462169689Skan
5463169689Skan   In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
5464169689Skan   cannot assert that q_2 is equivalent to p_5 because q_2 may be used
5465169689Skan   in contexts where that assertion does not hold (e.g., in line 6).
5466169689Skan
5467169689Skan   TODO, the main difference between this pass and Patterson's is that
5468169689Skan   we do not propagate edge probabilities.  We only compute whether
5469169689Skan   edges can be taken or not.  That is, instead of having a spectrum
5470169689Skan   of jump probabilities between 0 and 1, we only deal with 0, 1 and
5471169689Skan   DON'T KNOW.  In the future, it may be worthwhile to propagate
5472169689Skan   probabilities to aid branch prediction.  */
5473169689Skan
5474169689Skanstatic unsigned int
5475169689Skanexecute_vrp (void)
5476169689Skan{
5477169689Skan  insert_range_assertions ();
5478169689Skan
5479169689Skan  current_loops = loop_optimizer_init (LOOPS_NORMAL);
5480169689Skan  if (current_loops)
5481169689Skan    scev_initialize (current_loops);
5482169689Skan
5483169689Skan  vrp_initialize ();
5484169689Skan  ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
5485169689Skan  vrp_finalize ();
5486169689Skan
5487169689Skan  if (current_loops)
5488169689Skan    {
5489169689Skan      scev_finalize ();
5490169689Skan      loop_optimizer_finalize (current_loops);
5491169689Skan      current_loops = NULL;
5492169689Skan    }
5493169689Skan
5494169689Skan  /* ASSERT_EXPRs must be removed before finalizing jump threads
5495169689Skan     as finalizing jump threads calls the CFG cleanup code which
5496169689Skan     does not properly handle ASSERT_EXPRs.  */
5497169689Skan  remove_range_assertions ();
5498169689Skan
5499169689Skan  /* If we exposed any new variables, go ahead and put them into
5500169689Skan     SSA form now, before we handle jump threading.  This simplifies
5501169689Skan     interactions between rewriting of _DECL nodes into SSA form
5502169689Skan     and rewriting SSA_NAME nodes into SSA form after block
5503169689Skan     duplication and CFG manipulation.  */
5504169689Skan  update_ssa (TODO_update_ssa);
5505169689Skan
5506169689Skan  finalize_jump_threads ();
5507169689Skan  return 0;
5508169689Skan}
5509169689Skan
5510169689Skanstatic bool
5511169689Skangate_vrp (void)
5512169689Skan{
5513169689Skan  return flag_tree_vrp != 0;
5514169689Skan}
5515169689Skan
5516169689Skanstruct tree_opt_pass pass_vrp =
5517169689Skan{
5518169689Skan  "vrp",				/* name */
5519169689Skan  gate_vrp,				/* gate */
5520169689Skan  execute_vrp,				/* execute */
5521169689Skan  NULL,					/* sub */
5522169689Skan  NULL,					/* next */
5523169689Skan  0,					/* static_pass_number */
5524169689Skan  TV_TREE_VRP,				/* tv_id */
5525169689Skan  PROP_ssa | PROP_alias,		/* properties_required */
5526169689Skan  0,					/* properties_provided */
5527169689Skan  PROP_smt_usage,			/* properties_destroyed */
5528169689Skan  0,					/* todo_flags_start */
5529169689Skan  TODO_cleanup_cfg
5530169689Skan    | TODO_ggc_collect
5531169689Skan    | TODO_verify_ssa
5532169689Skan    | TODO_dump_func
5533169689Skan    | TODO_update_ssa
5534169689Skan    | TODO_update_smt_usage,			/* todo_flags_finish */
5535169689Skan  0					/* letter */
5536169689Skan};
5537