tc-arm.c revision 218822
1/* tc-arm.c -- Assemble for the ARM
2   Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3   2004, 2005, 2006
4   Free Software Foundation, Inc.
5   Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6	Modified by David Taylor (dtaylor@armltd.co.uk)
7	Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8	Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9	Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11   This file is part of GAS, the GNU Assembler.
12
13   GAS is free software; you can redistribute it and/or modify
14   it under the terms of the GNU General Public License as published by
15   the Free Software Foundation; either version 2, or (at your option)
16   any later version.
17
18   GAS is distributed in the hope that it will be useful,
19   but WITHOUT ANY WARRANTY; without even the implied warranty of
20   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
21   GNU General Public License for more details.
22
23   You should have received a copy of the GNU General Public License
24   along with GAS; see the file COPYING.  If not, write to the Free
25   Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26   02110-1301, USA.  */
27
28#include <limits.h>
29#include <stdarg.h>
30#define	 NO_RELOC 0
31#include "as.h"
32#include "safe-ctype.h"
33#include "subsegs.h"
34#include "obstack.h"
35
36#include "opcode/arm.h"
37
38#ifdef OBJ_ELF
39#include "elf/arm.h"
40#include "dw2gencfi.h"
41#endif
42
43#include "dwarf2dbg.h"
44
45#define WARN_DEPRECATED 1
46
47#ifdef OBJ_ELF
48/* Must be at least the size of the largest unwind opcode (currently two).  */
49#define ARM_OPCODE_CHUNK_SIZE 8
50
51/* This structure holds the unwinding state.  */
52
53static struct
54{
55  symbolS *	  proc_start;
56  symbolS *	  table_entry;
57  symbolS *	  personality_routine;
58  int		  personality_index;
59  /* The segment containing the function.  */
60  segT		  saved_seg;
61  subsegT	  saved_subseg;
62  /* Opcodes generated from this function.  */
63  unsigned char * opcodes;
64  int		  opcode_count;
65  int		  opcode_alloc;
66  /* The number of bytes pushed to the stack.  */
67  offsetT	  frame_size;
68  /* We don't add stack adjustment opcodes immediately so that we can merge
69     multiple adjustments.  We can also omit the final adjustment
70     when using a frame pointer.  */
71  offsetT	  pending_offset;
72  /* These two fields are set by both unwind_movsp and unwind_setfp.  They
73     hold the reg+offset to use when restoring sp from a frame pointer.	 */
74  offsetT	  fp_offset;
75  int		  fp_reg;
76  /* Nonzero if an unwind_setfp directive has been seen.  */
77  unsigned	  fp_used:1;
78  /* Nonzero if the last opcode restores sp from fp_reg.  */
79  unsigned	  sp_restored:1;
80} unwind;
81
82/* Bit N indicates that an R_ARM_NONE relocation has been output for
83   __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
84   emitted only once per section, to save unnecessary bloat.  */
85static unsigned int marked_pr_dependency = 0;
86
87#endif /* OBJ_ELF */
88
89/* Results from operand parsing worker functions.  */
90
91typedef enum
92{
93  PARSE_OPERAND_SUCCESS,
94  PARSE_OPERAND_FAIL,
95  PARSE_OPERAND_FAIL_NO_BACKTRACK
96} parse_operand_result;
97
98enum arm_float_abi
99{
100  ARM_FLOAT_ABI_HARD,
101  ARM_FLOAT_ABI_SOFTFP,
102  ARM_FLOAT_ABI_SOFT
103};
104
105/* Types of processor to assemble for.	*/
106#ifndef CPU_DEFAULT
107#if defined __XSCALE__
108#define CPU_DEFAULT	ARM_ARCH_XSCALE
109#else
110#if defined __thumb__
111#define CPU_DEFAULT	ARM_ARCH_V5T
112#endif
113#endif
114#endif
115
116#ifndef FPU_DEFAULT
117# ifdef TE_LINUX
118#  define FPU_DEFAULT FPU_ARCH_FPA
119# elif defined (TE_NetBSD)
120#  ifdef OBJ_ELF
121#   define FPU_DEFAULT FPU_ARCH_VFP	/* Soft-float, but VFP order.  */
122#  else
123    /* Legacy a.out format.  */
124#   define FPU_DEFAULT FPU_ARCH_FPA	/* Soft-float, but FPA order.  */
125#  endif
126# elif defined (TE_VXWORKS)
127#  define FPU_DEFAULT FPU_ARCH_VFP	/* Soft-float, VFP order.  */
128# else
129   /* For backwards compatibility, default to FPA.  */
130#  define FPU_DEFAULT FPU_ARCH_FPA
131# endif
132#endif /* ifndef FPU_DEFAULT */
133
134#define streq(a, b)	      (strcmp (a, b) == 0)
135
136static arm_feature_set cpu_variant;
137static arm_feature_set arm_arch_used;
138static arm_feature_set thumb_arch_used;
139
140/* Flags stored in private area of BFD structure.  */
141static int uses_apcs_26	     = FALSE;
142static int atpcs	     = FALSE;
143static int support_interwork = FALSE;
144static int uses_apcs_float   = FALSE;
145static int pic_code	     = FALSE;
146
147/* Variables that we set while parsing command-line options.  Once all
148   options have been read we re-process these values to set the real
149   assembly flags.  */
150static const arm_feature_set *legacy_cpu = NULL;
151static const arm_feature_set *legacy_fpu = NULL;
152
153static const arm_feature_set *mcpu_cpu_opt = NULL;
154static const arm_feature_set *mcpu_fpu_opt = NULL;
155static const arm_feature_set *march_cpu_opt = NULL;
156static const arm_feature_set *march_fpu_opt = NULL;
157static const arm_feature_set *mfpu_opt = NULL;
158static const arm_feature_set *object_arch = NULL;
159
160/* Constants for known architecture features.  */
161static const arm_feature_set fpu_default = FPU_DEFAULT;
162static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
163static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
164static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
165static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
166static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
167static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
168static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
169static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
170
171#ifdef CPU_DEFAULT
172static const arm_feature_set cpu_default = CPU_DEFAULT;
173#endif
174
175static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
176static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
177static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
178static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
179static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
180static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
181static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
182static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
183static const arm_feature_set arm_ext_v4t_5 =
184  ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
185static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
186static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
187static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
188static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
189static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
190static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
191static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
192static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
193static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
194static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
195static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
196static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
197static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
198static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
199
200static const arm_feature_set arm_arch_any = ARM_ANY;
201static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
202static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
203static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
204
205static const arm_feature_set arm_cext_iwmmxt2 =
206  ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
207static const arm_feature_set arm_cext_iwmmxt =
208  ARM_FEATURE (0, ARM_CEXT_IWMMXT);
209static const arm_feature_set arm_cext_xscale =
210  ARM_FEATURE (0, ARM_CEXT_XSCALE);
211static const arm_feature_set arm_cext_maverick =
212  ARM_FEATURE (0, ARM_CEXT_MAVERICK);
213static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
214static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
215static const arm_feature_set fpu_vfp_ext_v1xd =
216  ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
217static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
218static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
219static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
220static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
221static const arm_feature_set fpu_vfp_v3_or_neon_ext =
222  ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
223
224static int mfloat_abi_opt = -1;
225/* Record user cpu selection for object attributes.  */
226static arm_feature_set selected_cpu = ARM_ARCH_NONE;
227/* Must be long enough to hold any of the names in arm_cpus.  */
228static char selected_cpu_name[16];
229#ifdef OBJ_ELF
230# ifdef EABI_DEFAULT
231static int meabi_flags = EABI_DEFAULT;
232# else
233static int meabi_flags = EF_ARM_EABI_UNKNOWN;
234# endif
235
236bfd_boolean
237arm_is_eabi(void)
238{
239  return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
240}
241#endif
242
243#ifdef OBJ_ELF
244/* Pre-defined "_GLOBAL_OFFSET_TABLE_"	*/
245symbolS * GOT_symbol;
246#endif
247
248/* 0: assemble for ARM,
249   1: assemble for Thumb,
250   2: assemble for Thumb even though target CPU does not support thumb
251      instructions.  */
252static int thumb_mode = 0;
253
254/* If unified_syntax is true, we are processing the new unified
255   ARM/Thumb syntax.  Important differences from the old ARM mode:
256
257     - Immediate operands do not require a # prefix.
258     - Conditional affixes always appear at the end of the
259       instruction.  (For backward compatibility, those instructions
260       that formerly had them in the middle, continue to accept them
261       there.)
262     - The IT instruction may appear, and if it does is validated
263       against subsequent conditional affixes.  It does not generate
264       machine code.
265
266   Important differences from the old Thumb mode:
267
268     - Immediate operands do not require a # prefix.
269     - Most of the V6T2 instructions are only available in unified mode.
270     - The .N and .W suffixes are recognized and honored (it is an error
271       if they cannot be honored).
272     - All instructions set the flags if and only if they have an 's' affix.
273     - Conditional affixes may be used.  They are validated against
274       preceding IT instructions.  Unlike ARM mode, you cannot use a
275       conditional affix except in the scope of an IT instruction.  */
276
277static bfd_boolean unified_syntax = FALSE;
278
279enum neon_el_type
280{
281  NT_invtype,
282  NT_untyped,
283  NT_integer,
284  NT_float,
285  NT_poly,
286  NT_signed,
287  NT_unsigned
288};
289
290struct neon_type_el
291{
292  enum neon_el_type type;
293  unsigned size;
294};
295
296#define NEON_MAX_TYPE_ELS 4
297
298struct neon_type
299{
300  struct neon_type_el el[NEON_MAX_TYPE_ELS];
301  unsigned elems;
302};
303
304struct arm_it
305{
306  const char *	error;
307  unsigned long instruction;
308  int		size;
309  int		size_req;
310  int		cond;
311  /* "uncond_value" is set to the value in place of the conditional field in
312     unconditional versions of the instruction, or -1 if nothing is
313     appropriate.  */
314  int		uncond_value;
315  struct neon_type vectype;
316  /* Set to the opcode if the instruction needs relaxation.
317     Zero if the instruction is not relaxed.  */
318  unsigned long	relax;
319  struct
320  {
321    bfd_reloc_code_real_type type;
322    expressionS		     exp;
323    int			     pc_rel;
324  } reloc;
325
326  struct
327  {
328    unsigned reg;
329    signed int imm;
330    struct neon_type_el vectype;
331    unsigned present	: 1;  /* Operand present.  */
332    unsigned isreg	: 1;  /* Operand was a register.  */
333    unsigned immisreg	: 1;  /* .imm field is a second register.  */
334    unsigned isscalar   : 1;  /* Operand is a (Neon) scalar.  */
335    unsigned immisalign : 1;  /* Immediate is an alignment specifier.  */
336    unsigned immisfloat : 1;  /* Immediate was parsed as a float.  */
337    /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
338       instructions. This allows us to disambiguate ARM <-> vector insns.  */
339    unsigned regisimm   : 1;  /* 64-bit immediate, reg forms high 32 bits.  */
340    unsigned isvec      : 1;  /* Is a single, double or quad VFP/Neon reg.  */
341    unsigned isquad     : 1;  /* Operand is Neon quad-precision register.  */
342    unsigned issingle   : 1;  /* Operand is VFP single-precision register.  */
343    unsigned hasreloc	: 1;  /* Operand has relocation suffix.  */
344    unsigned writeback	: 1;  /* Operand has trailing !  */
345    unsigned preind	: 1;  /* Preindexed address.  */
346    unsigned postind	: 1;  /* Postindexed address.  */
347    unsigned negative	: 1;  /* Index register was negated.  */
348    unsigned shifted	: 1;  /* Shift applied to operation.  */
349    unsigned shift_kind : 3;  /* Shift operation (enum shift_kind).  */
350  } operands[6];
351};
352
353static struct arm_it inst;
354
355#define NUM_FLOAT_VALS 8
356
357const char * fp_const[] =
358{
359  "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
360};
361
362/* Number of littlenums required to hold an extended precision number.	*/
363#define MAX_LITTLENUMS 6
364
365LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
366
367#define FAIL	(-1)
368#define SUCCESS (0)
369
370#define SUFF_S 1
371#define SUFF_D 2
372#define SUFF_E 3
373#define SUFF_P 4
374
375#define CP_T_X	 0x00008000
376#define CP_T_Y	 0x00400000
377
378#define CONDS_BIT	 0x00100000
379#define LOAD_BIT	 0x00100000
380
381#define DOUBLE_LOAD_FLAG 0x00000001
382
383struct asm_cond
384{
385  const char *	template;
386  unsigned long value;
387};
388
389#define COND_ALWAYS 0xE
390
391struct asm_psr
392{
393  const char *template;
394  unsigned long field;
395};
396
397struct asm_barrier_opt
398{
399  const char *template;
400  unsigned long value;
401};
402
403/* The bit that distinguishes CPSR and SPSR.  */
404#define SPSR_BIT   (1 << 22)
405
406/* The individual PSR flag bits.  */
407#define PSR_c	(1 << 16)
408#define PSR_x	(1 << 17)
409#define PSR_s	(1 << 18)
410#define PSR_f	(1 << 19)
411
412struct reloc_entry
413{
414  char *name;
415  bfd_reloc_code_real_type reloc;
416};
417
418enum vfp_reg_pos
419{
420  VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
421  VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
422};
423
424enum vfp_ldstm_type
425{
426  VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
427};
428
429/* Bits for DEFINED field in neon_typed_alias.  */
430#define NTA_HASTYPE  1
431#define NTA_HASINDEX 2
432
433struct neon_typed_alias
434{
435  unsigned char defined;
436  unsigned char index;
437  struct neon_type_el eltype;
438};
439
440/* ARM register categories.  This includes coprocessor numbers and various
441   architecture extensions' registers.	*/
442enum arm_reg_type
443{
444  REG_TYPE_RN,
445  REG_TYPE_CP,
446  REG_TYPE_CN,
447  REG_TYPE_FN,
448  REG_TYPE_VFS,
449  REG_TYPE_VFD,
450  REG_TYPE_NQ,
451  REG_TYPE_VFSD,
452  REG_TYPE_NDQ,
453  REG_TYPE_NSDQ,
454  REG_TYPE_VFC,
455  REG_TYPE_MVF,
456  REG_TYPE_MVD,
457  REG_TYPE_MVFX,
458  REG_TYPE_MVDX,
459  REG_TYPE_MVAX,
460  REG_TYPE_DSPSC,
461  REG_TYPE_MMXWR,
462  REG_TYPE_MMXWC,
463  REG_TYPE_MMXWCG,
464  REG_TYPE_XSCALE,
465};
466
467/* Structure for a hash table entry for a register.
468   If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
469   information which states whether a vector type or index is specified (for a
470   register alias created with .dn or .qn). Otherwise NEON should be NULL.  */
471struct reg_entry
472{
473  const char        *name;
474  unsigned char      number;
475  unsigned char      type;
476  unsigned char      builtin;
477  struct neon_typed_alias *neon;
478};
479
480/* Diagnostics used when we don't get a register of the expected type.	*/
481const char *const reg_expected_msgs[] =
482{
483  N_("ARM register expected"),
484  N_("bad or missing co-processor number"),
485  N_("co-processor register expected"),
486  N_("FPA register expected"),
487  N_("VFP single precision register expected"),
488  N_("VFP/Neon double precision register expected"),
489  N_("Neon quad precision register expected"),
490  N_("VFP single or double precision register expected"),
491  N_("Neon double or quad precision register expected"),
492  N_("VFP single, double or Neon quad precision register expected"),
493  N_("VFP system register expected"),
494  N_("Maverick MVF register expected"),
495  N_("Maverick MVD register expected"),
496  N_("Maverick MVFX register expected"),
497  N_("Maverick MVDX register expected"),
498  N_("Maverick MVAX register expected"),
499  N_("Maverick DSPSC register expected"),
500  N_("iWMMXt data register expected"),
501  N_("iWMMXt control register expected"),
502  N_("iWMMXt scalar register expected"),
503  N_("XScale accumulator register expected"),
504};
505
506/* Some well known registers that we refer to directly elsewhere.  */
507#define REG_SP	13
508#define REG_LR	14
509#define REG_PC	15
510
511/* ARM instructions take 4bytes in the object file, Thumb instructions
512   take 2:  */
513#define INSN_SIZE	4
514
515struct asm_opcode
516{
517  /* Basic string to match.  */
518  const char *template;
519
520  /* Parameters to instruction.	 */
521  unsigned char operands[8];
522
523  /* Conditional tag - see opcode_lookup.  */
524  unsigned int tag : 4;
525
526  /* Basic instruction code.  */
527  unsigned int avalue : 28;
528
529  /* Thumb-format instruction code.  */
530  unsigned int tvalue;
531
532  /* Which architecture variant provides this instruction.  */
533  const arm_feature_set *avariant;
534  const arm_feature_set *tvariant;
535
536  /* Function to call to encode instruction in ARM format.  */
537  void (* aencode) (void);
538
539  /* Function to call to encode instruction in Thumb format.  */
540  void (* tencode) (void);
541};
542
543/* Defines for various bits that we will want to toggle.  */
544#define INST_IMMEDIATE	0x02000000
545#define OFFSET_REG	0x02000000
546#define HWOFFSET_IMM	0x00400000
547#define SHIFT_BY_REG	0x00000010
548#define PRE_INDEX	0x01000000
549#define INDEX_UP	0x00800000
550#define WRITE_BACK	0x00200000
551#define LDM_TYPE_2_OR_3	0x00400000
552#define CPSI_MMOD	0x00020000
553
554#define LITERAL_MASK	0xf000f000
555#define OPCODE_MASK	0xfe1fffff
556#define V4_STR_BIT	0x00000020
557
558#define T2_SUBS_PC_LR	0xf3de8f00
559
560#define DATA_OP_SHIFT	21
561
562#define T2_OPCODE_MASK	0xfe1fffff
563#define T2_DATA_OP_SHIFT 21
564
565/* Codes to distinguish the arithmetic instructions.  */
566#define OPCODE_AND	0
567#define OPCODE_EOR	1
568#define OPCODE_SUB	2
569#define OPCODE_RSB	3
570#define OPCODE_ADD	4
571#define OPCODE_ADC	5
572#define OPCODE_SBC	6
573#define OPCODE_RSC	7
574#define OPCODE_TST	8
575#define OPCODE_TEQ	9
576#define OPCODE_CMP	10
577#define OPCODE_CMN	11
578#define OPCODE_ORR	12
579#define OPCODE_MOV	13
580#define OPCODE_BIC	14
581#define OPCODE_MVN	15
582
583#define T2_OPCODE_AND	0
584#define T2_OPCODE_BIC	1
585#define T2_OPCODE_ORR	2
586#define T2_OPCODE_ORN	3
587#define T2_OPCODE_EOR	4
588#define T2_OPCODE_ADD	8
589#define T2_OPCODE_ADC	10
590#define T2_OPCODE_SBC	11
591#define T2_OPCODE_SUB	13
592#define T2_OPCODE_RSB	14
593
594#define T_OPCODE_MUL 0x4340
595#define T_OPCODE_TST 0x4200
596#define T_OPCODE_CMN 0x42c0
597#define T_OPCODE_NEG 0x4240
598#define T_OPCODE_MVN 0x43c0
599
600#define T_OPCODE_ADD_R3	0x1800
601#define T_OPCODE_SUB_R3 0x1a00
602#define T_OPCODE_ADD_HI 0x4400
603#define T_OPCODE_ADD_ST 0xb000
604#define T_OPCODE_SUB_ST 0xb080
605#define T_OPCODE_ADD_SP 0xa800
606#define T_OPCODE_ADD_PC 0xa000
607#define T_OPCODE_ADD_I8 0x3000
608#define T_OPCODE_SUB_I8 0x3800
609#define T_OPCODE_ADD_I3 0x1c00
610#define T_OPCODE_SUB_I3 0x1e00
611
612#define T_OPCODE_ASR_R	0x4100
613#define T_OPCODE_LSL_R	0x4080
614#define T_OPCODE_LSR_R	0x40c0
615#define T_OPCODE_ROR_R	0x41c0
616#define T_OPCODE_ASR_I	0x1000
617#define T_OPCODE_LSL_I	0x0000
618#define T_OPCODE_LSR_I	0x0800
619
620#define T_OPCODE_MOV_I8	0x2000
621#define T_OPCODE_CMP_I8 0x2800
622#define T_OPCODE_CMP_LR 0x4280
623#define T_OPCODE_MOV_HR 0x4600
624#define T_OPCODE_CMP_HR 0x4500
625
626#define T_OPCODE_LDR_PC 0x4800
627#define T_OPCODE_LDR_SP 0x9800
628#define T_OPCODE_STR_SP 0x9000
629#define T_OPCODE_LDR_IW 0x6800
630#define T_OPCODE_STR_IW 0x6000
631#define T_OPCODE_LDR_IH 0x8800
632#define T_OPCODE_STR_IH 0x8000
633#define T_OPCODE_LDR_IB 0x7800
634#define T_OPCODE_STR_IB 0x7000
635#define T_OPCODE_LDR_RW 0x5800
636#define T_OPCODE_STR_RW 0x5000
637#define T_OPCODE_LDR_RH 0x5a00
638#define T_OPCODE_STR_RH 0x5200
639#define T_OPCODE_LDR_RB 0x5c00
640#define T_OPCODE_STR_RB 0x5400
641
642#define T_OPCODE_PUSH	0xb400
643#define T_OPCODE_POP	0xbc00
644
645#define T_OPCODE_BRANCH 0xe000
646
647#define THUMB_SIZE	2	/* Size of thumb instruction.  */
648#define THUMB_PP_PC_LR 0x0100
649#define THUMB_LOAD_BIT 0x0800
650#define THUMB2_LOAD_BIT 0x00100000
651
652#define BAD_ARGS	_("bad arguments to instruction")
653#define BAD_PC		_("r15 not allowed here")
654#define BAD_COND	_("instruction cannot be conditional")
655#define BAD_OVERLAP	_("registers may not be the same")
656#define BAD_HIREG	_("lo register required")
657#define BAD_THUMB32	_("instruction not supported in Thumb16 mode")
658#define BAD_ADDR_MODE   _("instruction does not accept this addressing mode");
659#define BAD_BRANCH	_("branch must be last instruction in IT block")
660#define BAD_NOT_IT	_("instruction not allowed in IT block")
661#define BAD_FPU		_("selected FPU does not support instruction")
662
663static struct hash_control *arm_ops_hsh;
664static struct hash_control *arm_cond_hsh;
665static struct hash_control *arm_shift_hsh;
666static struct hash_control *arm_psr_hsh;
667static struct hash_control *arm_v7m_psr_hsh;
668static struct hash_control *arm_reg_hsh;
669static struct hash_control *arm_reloc_hsh;
670static struct hash_control *arm_barrier_opt_hsh;
671
672/* Stuff needed to resolve the label ambiguity
673   As:
674     ...
675     label:   <insn>
676   may differ from:
677     ...
678     label:
679	      <insn>
680*/
681
682symbolS *  last_label_seen;
683static int label_is_thumb_function_name = FALSE;
684
685/* Literal pool structure.  Held on a per-section
686   and per-sub-section basis.  */
687
688#define MAX_LITERAL_POOL_SIZE 1024
689typedef struct literal_pool
690{
691  expressionS	 literals [MAX_LITERAL_POOL_SIZE];
692  unsigned int	 next_free_entry;
693  unsigned int	 id;
694  symbolS *	 symbol;
695  segT		 section;
696  subsegT	 sub_section;
697  struct literal_pool * next;
698} literal_pool;
699
700/* Pointer to a linked list of literal pools.  */
701literal_pool * list_of_pools = NULL;
702
703/* State variables for IT block handling.  */
704static bfd_boolean current_it_mask = 0;
705static int current_cc;
706
707
708/* Pure syntax.	 */
709
710/* This array holds the chars that always start a comment.  If the
711   pre-processor is disabled, these aren't very useful.	 */
712const char comment_chars[] = "@";
713
714/* This array holds the chars that only start a comment at the beginning of
715   a line.  If the line seems to have the form '# 123 filename'
716   .line and .file directives will appear in the pre-processed output.	*/
717/* Note that input_file.c hand checks for '#' at the beginning of the
718   first line of the input file.  This is because the compiler outputs
719   #NO_APP at the beginning of its output.  */
720/* Also note that comments like this one will always work.  */
721const char line_comment_chars[] = "#";
722
723const char line_separator_chars[] = ";";
724
725/* Chars that can be used to separate mant
726   from exp in floating point numbers.	*/
727const char EXP_CHARS[] = "eE";
728
729/* Chars that mean this number is a floating point constant.  */
730/* As in 0f12.456  */
731/* or	 0d1.2345e12  */
732
733const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
734
735/* Prefix characters that indicate the start of an immediate
736   value.  */
737#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
738
739/* Separator character handling.  */
740
741#define skip_whitespace(str)  do { if (*(str) == ' ') ++(str); } while (0)
742
743static inline int
744skip_past_char (char ** str, char c)
745{
746  if (**str == c)
747    {
748      (*str)++;
749      return SUCCESS;
750    }
751  else
752    return FAIL;
753}
754#define skip_past_comma(str) skip_past_char (str, ',')
755
756/* Arithmetic expressions (possibly involving symbols).	 */
757
758/* Return TRUE if anything in the expression is a bignum.  */
759
760static int
761walk_no_bignums (symbolS * sp)
762{
763  if (symbol_get_value_expression (sp)->X_op == O_big)
764    return 1;
765
766  if (symbol_get_value_expression (sp)->X_add_symbol)
767    {
768      return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
769	      || (symbol_get_value_expression (sp)->X_op_symbol
770		  && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
771    }
772
773  return 0;
774}
775
776static int in_my_get_expression = 0;
777
778/* Third argument to my_get_expression.	 */
779#define GE_NO_PREFIX 0
780#define GE_IMM_PREFIX 1
781#define GE_OPT_PREFIX 2
782/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
783   immediates, as can be used in Neon VMVN and VMOV immediate instructions.  */
784#define GE_OPT_PREFIX_BIG 3
785
786static int
787my_get_expression (expressionS * ep, char ** str, int prefix_mode)
788{
789  char * save_in;
790  segT	 seg;
791
792  /* In unified syntax, all prefixes are optional.  */
793  if (unified_syntax)
794    prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
795                  : GE_OPT_PREFIX;
796
797  switch (prefix_mode)
798    {
799    case GE_NO_PREFIX: break;
800    case GE_IMM_PREFIX:
801      if (!is_immediate_prefix (**str))
802	{
803	  inst.error = _("immediate expression requires a # prefix");
804	  return FAIL;
805	}
806      (*str)++;
807      break;
808    case GE_OPT_PREFIX:
809    case GE_OPT_PREFIX_BIG:
810      if (is_immediate_prefix (**str))
811	(*str)++;
812      break;
813    default: abort ();
814    }
815
816  memset (ep, 0, sizeof (expressionS));
817
818  save_in = input_line_pointer;
819  input_line_pointer = *str;
820  in_my_get_expression = 1;
821  seg = expression (ep);
822  in_my_get_expression = 0;
823
824  if (ep->X_op == O_illegal)
825    {
826      /* We found a bad expression in md_operand().  */
827      *str = input_line_pointer;
828      input_line_pointer = save_in;
829      if (inst.error == NULL)
830	inst.error = _("bad expression");
831      return 1;
832    }
833
834#ifdef OBJ_AOUT
835  if (seg != absolute_section
836      && seg != text_section
837      && seg != data_section
838      && seg != bss_section
839      && seg != undefined_section)
840    {
841      inst.error = _("bad segment");
842      *str = input_line_pointer;
843      input_line_pointer = save_in;
844      return 1;
845    }
846#endif
847
848  /* Get rid of any bignums now, so that we don't generate an error for which
849     we can't establish a line number later on.	 Big numbers are never valid
850     in instructions, which is where this routine is always called.  */
851  if (prefix_mode != GE_OPT_PREFIX_BIG
852      && (ep->X_op == O_big
853          || (ep->X_add_symbol
854	      && (walk_no_bignums (ep->X_add_symbol)
855	          || (ep->X_op_symbol
856		      && walk_no_bignums (ep->X_op_symbol))))))
857    {
858      inst.error = _("invalid constant");
859      *str = input_line_pointer;
860      input_line_pointer = save_in;
861      return 1;
862    }
863
864  *str = input_line_pointer;
865  input_line_pointer = save_in;
866  return 0;
867}
868
869/* Turn a string in input_line_pointer into a floating point constant
870   of type TYPE, and store the appropriate bytes in *LITP.  The number
871   of LITTLENUMS emitted is stored in *SIZEP.  An error message is
872   returned, or NULL on OK.
873
874   Note that fp constants aren't represent in the normal way on the ARM.
875   In big endian mode, things are as expected.	However, in little endian
876   mode fp constants are big-endian word-wise, and little-endian byte-wise
877   within the words.  For example, (double) 1.1 in big endian mode is
878   the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
879   the byte sequence 99 99 f1 3f 9a 99 99 99.
880
881   ??? The format of 12 byte floats is uncertain according to gcc's arm.h.  */
882
883char *
884md_atof (int type, char * litP, int * sizeP)
885{
886  int prec;
887  LITTLENUM_TYPE words[MAX_LITTLENUMS];
888  char *t;
889  int i;
890
891  switch (type)
892    {
893    case 'f':
894    case 'F':
895    case 's':
896    case 'S':
897      prec = 2;
898      break;
899
900    case 'd':
901    case 'D':
902    case 'r':
903    case 'R':
904      prec = 4;
905      break;
906
907    case 'x':
908    case 'X':
909      prec = 6;
910      break;
911
912    case 'p':
913    case 'P':
914      prec = 6;
915      break;
916
917    default:
918      *sizeP = 0;
919      return _("bad call to MD_ATOF()");
920    }
921
922  t = atof_ieee (input_line_pointer, type, words);
923  if (t)
924    input_line_pointer = t;
925  *sizeP = prec * 2;
926
927  if (target_big_endian)
928    {
929      for (i = 0; i < prec; i++)
930	{
931	  md_number_to_chars (litP, (valueT) words[i], 2);
932	  litP += 2;
933	}
934    }
935  else
936    {
937      if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
938	for (i = prec - 1; i >= 0; i--)
939	  {
940	    md_number_to_chars (litP, (valueT) words[i], 2);
941	    litP += 2;
942	  }
943      else
944	/* For a 4 byte float the order of elements in `words' is 1 0.
945	   For an 8 byte float the order is 1 0 3 2.  */
946	for (i = 0; i < prec; i += 2)
947	  {
948	    md_number_to_chars (litP, (valueT) words[i + 1], 2);
949	    md_number_to_chars (litP + 2, (valueT) words[i], 2);
950	    litP += 4;
951	  }
952    }
953
954  return 0;
955}
956
957/* We handle all bad expressions here, so that we can report the faulty
958   instruction in the error message.  */
959void
960md_operand (expressionS * expr)
961{
962  if (in_my_get_expression)
963    expr->X_op = O_illegal;
964}
965
966/* Immediate values.  */
967
968/* Generic immediate-value read function for use in directives.
969   Accepts anything that 'expression' can fold to a constant.
970   *val receives the number.  */
971#ifdef OBJ_ELF
972static int
973immediate_for_directive (int *val)
974{
975  expressionS exp;
976  exp.X_op = O_illegal;
977
978  if (is_immediate_prefix (*input_line_pointer))
979    {
980      input_line_pointer++;
981      expression (&exp);
982    }
983
984  if (exp.X_op != O_constant)
985    {
986      as_bad (_("expected #constant"));
987      ignore_rest_of_line ();
988      return FAIL;
989    }
990  *val = exp.X_add_number;
991  return SUCCESS;
992}
993#endif
994
995/* Register parsing.  */
996
997/* Generic register parser.  CCP points to what should be the
998   beginning of a register name.  If it is indeed a valid register
999   name, advance CCP over it and return the reg_entry structure;
1000   otherwise return NULL.  Does not issue diagnostics.	*/
1001
1002static struct reg_entry *
1003arm_reg_parse_multi (char **ccp)
1004{
1005  char *start = *ccp;
1006  char *p;
1007  struct reg_entry *reg;
1008
1009#ifdef REGISTER_PREFIX
1010  if (*start != REGISTER_PREFIX)
1011    return NULL;
1012  start++;
1013#endif
1014#ifdef OPTIONAL_REGISTER_PREFIX
1015  if (*start == OPTIONAL_REGISTER_PREFIX)
1016    start++;
1017#endif
1018
1019  p = start;
1020  if (!ISALPHA (*p) || !is_name_beginner (*p))
1021    return NULL;
1022
1023  do
1024    p++;
1025  while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1026
1027  reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1028
1029  if (!reg)
1030    return NULL;
1031
1032  *ccp = p;
1033  return reg;
1034}
1035
1036static int
1037arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1038                    enum arm_reg_type type)
1039{
1040  /* Alternative syntaxes are accepted for a few register classes.  */
1041  switch (type)
1042    {
1043    case REG_TYPE_MVF:
1044    case REG_TYPE_MVD:
1045    case REG_TYPE_MVFX:
1046    case REG_TYPE_MVDX:
1047      /* Generic coprocessor register names are allowed for these.  */
1048      if (reg && reg->type == REG_TYPE_CN)
1049	return reg->number;
1050      break;
1051
1052    case REG_TYPE_CP:
1053      /* For backward compatibility, a bare number is valid here.  */
1054      {
1055	unsigned long processor = strtoul (start, ccp, 10);
1056	if (*ccp != start && processor <= 15)
1057	  return processor;
1058      }
1059
1060    case REG_TYPE_MMXWC:
1061      /* WC includes WCG.  ??? I'm not sure this is true for all
1062	 instructions that take WC registers.  */
1063      if (reg && reg->type == REG_TYPE_MMXWCG)
1064	return reg->number;
1065      break;
1066
1067    default:
1068      break;
1069    }
1070
1071  return FAIL;
1072}
1073
1074/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1075   return value is the register number or FAIL.  */
1076
1077static int
1078arm_reg_parse (char **ccp, enum arm_reg_type type)
1079{
1080  char *start = *ccp;
1081  struct reg_entry *reg = arm_reg_parse_multi (ccp);
1082  int ret;
1083
1084  /* Do not allow a scalar (reg+index) to parse as a register.  */
1085  if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1086    return FAIL;
1087
1088  if (reg && reg->type == type)
1089    return reg->number;
1090
1091  if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1092    return ret;
1093
1094  *ccp = start;
1095  return FAIL;
1096}
1097
1098/* Parse a Neon type specifier. *STR should point at the leading '.'
1099   character. Does no verification at this stage that the type fits the opcode
1100   properly. E.g.,
1101
1102     .i32.i32.s16
1103     .s32.f32
1104     .u16
1105
1106   Can all be legally parsed by this function.
1107
1108   Fills in neon_type struct pointer with parsed information, and updates STR
1109   to point after the parsed type specifier. Returns SUCCESS if this was a legal
1110   type, FAIL if not.  */
1111
1112static int
1113parse_neon_type (struct neon_type *type, char **str)
1114{
1115  char *ptr = *str;
1116
1117  if (type)
1118    type->elems = 0;
1119
1120  while (type->elems < NEON_MAX_TYPE_ELS)
1121    {
1122      enum neon_el_type thistype = NT_untyped;
1123      unsigned thissize = -1u;
1124
1125      if (*ptr != '.')
1126	break;
1127
1128      ptr++;
1129
1130      /* Just a size without an explicit type.  */
1131      if (ISDIGIT (*ptr))
1132	goto parsesize;
1133
1134      switch (TOLOWER (*ptr))
1135	{
1136	case 'i': thistype = NT_integer; break;
1137	case 'f': thistype = NT_float; break;
1138	case 'p': thistype = NT_poly; break;
1139	case 's': thistype = NT_signed; break;
1140	case 'u': thistype = NT_unsigned; break;
1141        case 'd':
1142          thistype = NT_float;
1143          thissize = 64;
1144          ptr++;
1145          goto done;
1146	default:
1147	  as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1148	  return FAIL;
1149	}
1150
1151      ptr++;
1152
1153      /* .f is an abbreviation for .f32.  */
1154      if (thistype == NT_float && !ISDIGIT (*ptr))
1155	thissize = 32;
1156      else
1157	{
1158	parsesize:
1159	  thissize = strtoul (ptr, &ptr, 10);
1160
1161	  if (thissize != 8 && thissize != 16 && thissize != 32
1162              && thissize != 64)
1163            {
1164              as_bad (_("bad size %d in type specifier"), thissize);
1165	      return FAIL;
1166	    }
1167	}
1168
1169      done:
1170      if (type)
1171        {
1172          type->el[type->elems].type = thistype;
1173	  type->el[type->elems].size = thissize;
1174	  type->elems++;
1175	}
1176    }
1177
1178  /* Empty/missing type is not a successful parse.  */
1179  if (type->elems == 0)
1180    return FAIL;
1181
1182  *str = ptr;
1183
1184  return SUCCESS;
1185}
1186
1187/* Errors may be set multiple times during parsing or bit encoding
1188   (particularly in the Neon bits), but usually the earliest error which is set
1189   will be the most meaningful. Avoid overwriting it with later (cascading)
1190   errors by calling this function.  */
1191
1192static void
1193first_error (const char *err)
1194{
1195  if (!inst.error)
1196    inst.error = err;
1197}
1198
1199/* Parse a single type, e.g. ".s32", leading period included.  */
1200static int
1201parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1202{
1203  char *str = *ccp;
1204  struct neon_type optype;
1205
1206  if (*str == '.')
1207    {
1208      if (parse_neon_type (&optype, &str) == SUCCESS)
1209        {
1210          if (optype.elems == 1)
1211            *vectype = optype.el[0];
1212          else
1213            {
1214              first_error (_("only one type should be specified for operand"));
1215              return FAIL;
1216            }
1217        }
1218      else
1219        {
1220          first_error (_("vector type expected"));
1221          return FAIL;
1222        }
1223    }
1224  else
1225    return FAIL;
1226
1227  *ccp = str;
1228
1229  return SUCCESS;
1230}
1231
1232/* Special meanings for indices (which have a range of 0-7), which will fit into
1233   a 4-bit integer.  */
1234
1235#define NEON_ALL_LANES		15
1236#define NEON_INTERLEAVE_LANES	14
1237
1238/* Parse either a register or a scalar, with an optional type. Return the
1239   register number, and optionally fill in the actual type of the register
1240   when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1241   type/index information in *TYPEINFO.  */
1242
1243static int
1244parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1245                           enum arm_reg_type *rtype,
1246                           struct neon_typed_alias *typeinfo)
1247{
1248  char *str = *ccp;
1249  struct reg_entry *reg = arm_reg_parse_multi (&str);
1250  struct neon_typed_alias atype;
1251  struct neon_type_el parsetype;
1252
1253  atype.defined = 0;
1254  atype.index = -1;
1255  atype.eltype.type = NT_invtype;
1256  atype.eltype.size = -1;
1257
1258  /* Try alternate syntax for some types of register. Note these are mutually
1259     exclusive with the Neon syntax extensions.  */
1260  if (reg == NULL)
1261    {
1262      int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1263      if (altreg != FAIL)
1264        *ccp = str;
1265      if (typeinfo)
1266        *typeinfo = atype;
1267      return altreg;
1268    }
1269
1270  /* Undo polymorphism when a set of register types may be accepted.  */
1271  if ((type == REG_TYPE_NDQ
1272       && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1273      || (type == REG_TYPE_VFSD
1274          && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1275      || (type == REG_TYPE_NSDQ
1276          && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1277              || reg->type == REG_TYPE_NQ))
1278      || (type == REG_TYPE_MMXWC
1279	  && (reg->type == REG_TYPE_MMXWCG)))
1280    type = reg->type;
1281
1282  if (type != reg->type)
1283    return FAIL;
1284
1285  if (reg->neon)
1286    atype = *reg->neon;
1287
1288  if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1289    {
1290      if ((atype.defined & NTA_HASTYPE) != 0)
1291        {
1292          first_error (_("can't redefine type for operand"));
1293          return FAIL;
1294        }
1295      atype.defined |= NTA_HASTYPE;
1296      atype.eltype = parsetype;
1297    }
1298
1299  if (skip_past_char (&str, '[') == SUCCESS)
1300    {
1301      if (type != REG_TYPE_VFD)
1302        {
1303          first_error (_("only D registers may be indexed"));
1304          return FAIL;
1305        }
1306
1307      if ((atype.defined & NTA_HASINDEX) != 0)
1308        {
1309          first_error (_("can't change index for operand"));
1310          return FAIL;
1311        }
1312
1313      atype.defined |= NTA_HASINDEX;
1314
1315      if (skip_past_char (&str, ']') == SUCCESS)
1316        atype.index = NEON_ALL_LANES;
1317      else
1318        {
1319          expressionS exp;
1320
1321          my_get_expression (&exp, &str, GE_NO_PREFIX);
1322
1323          if (exp.X_op != O_constant)
1324            {
1325              first_error (_("constant expression required"));
1326              return FAIL;
1327            }
1328
1329          if (skip_past_char (&str, ']') == FAIL)
1330            return FAIL;
1331
1332          atype.index = exp.X_add_number;
1333        }
1334    }
1335
1336  if (typeinfo)
1337    *typeinfo = atype;
1338
1339  if (rtype)
1340    *rtype = type;
1341
1342  *ccp = str;
1343
1344  return reg->number;
1345}
1346
1347/* Like arm_reg_parse, but allow allow the following extra features:
1348    - If RTYPE is non-zero, return the (possibly restricted) type of the
1349      register (e.g. Neon double or quad reg when either has been requested).
1350    - If this is a Neon vector type with additional type information, fill
1351      in the struct pointed to by VECTYPE (if non-NULL).
1352   This function will fault on encountering a scalar.
1353*/
1354
1355static int
1356arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1357                     enum arm_reg_type *rtype, struct neon_type_el *vectype)
1358{
1359  struct neon_typed_alias atype;
1360  char *str = *ccp;
1361  int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1362
1363  if (reg == FAIL)
1364    return FAIL;
1365
1366  /* Do not allow a scalar (reg+index) to parse as a register.  */
1367  if ((atype.defined & NTA_HASINDEX) != 0)
1368    {
1369      first_error (_("register operand expected, but got scalar"));
1370      return FAIL;
1371    }
1372
1373  if (vectype)
1374    *vectype = atype.eltype;
1375
1376  *ccp = str;
1377
1378  return reg;
1379}
1380
1381#define NEON_SCALAR_REG(X)	((X) >> 4)
1382#define NEON_SCALAR_INDEX(X)	((X) & 15)
1383
1384/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1385   have enough information to be able to do a good job bounds-checking. So, we
1386   just do easy checks here, and do further checks later.  */
1387
1388static int
1389parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1390{
1391  int reg;
1392  char *str = *ccp;
1393  struct neon_typed_alias atype;
1394
1395  reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1396
1397  if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1398    return FAIL;
1399
1400  if (atype.index == NEON_ALL_LANES)
1401    {
1402      first_error (_("scalar must have an index"));
1403      return FAIL;
1404    }
1405  else if (atype.index >= 64 / elsize)
1406    {
1407      first_error (_("scalar index out of range"));
1408      return FAIL;
1409    }
1410
1411  if (type)
1412    *type = atype.eltype;
1413
1414  *ccp = str;
1415
1416  return reg * 16 + atype.index;
1417}
1418
1419/* Parse an ARM register list.  Returns the bitmask, or FAIL.  */
1420static long
1421parse_reg_list (char ** strp)
1422{
1423  char * str = * strp;
1424  long	 range = 0;
1425  int	 another_range;
1426
1427  /* We come back here if we get ranges concatenated by '+' or '|'.  */
1428  do
1429    {
1430      another_range = 0;
1431
1432      if (*str == '{')
1433	{
1434	  int in_range = 0;
1435	  int cur_reg = -1;
1436
1437	  str++;
1438	  do
1439	    {
1440	      int reg;
1441
1442	      if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1443		{
1444		  first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1445		  return FAIL;
1446		}
1447
1448	      if (in_range)
1449		{
1450		  int i;
1451
1452		  if (reg <= cur_reg)
1453		    {
1454		      first_error (_("bad range in register list"));
1455		      return FAIL;
1456		    }
1457
1458		  for (i = cur_reg + 1; i < reg; i++)
1459		    {
1460		      if (range & (1 << i))
1461			as_tsktsk
1462			  (_("Warning: duplicated register (r%d) in register list"),
1463			   i);
1464		      else
1465			range |= 1 << i;
1466		    }
1467		  in_range = 0;
1468		}
1469
1470	      if (range & (1 << reg))
1471		as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1472			   reg);
1473	      else if (reg <= cur_reg)
1474		as_tsktsk (_("Warning: register range not in ascending order"));
1475
1476	      range |= 1 << reg;
1477	      cur_reg = reg;
1478	    }
1479	  while (skip_past_comma (&str) != FAIL
1480		 || (in_range = 1, *str++ == '-'));
1481	  str--;
1482
1483	  if (*str++ != '}')
1484	    {
1485	      first_error (_("missing `}'"));
1486	      return FAIL;
1487	    }
1488	}
1489      else
1490	{
1491	  expressionS expr;
1492
1493	  if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1494	    return FAIL;
1495
1496	  if (expr.X_op == O_constant)
1497	    {
1498	      if (expr.X_add_number
1499		  != (expr.X_add_number & 0x0000ffff))
1500		{
1501		  inst.error = _("invalid register mask");
1502		  return FAIL;
1503		}
1504
1505	      if ((range & expr.X_add_number) != 0)
1506		{
1507		  int regno = range & expr.X_add_number;
1508
1509		  regno &= -regno;
1510		  regno = (1 << regno) - 1;
1511		  as_tsktsk
1512		    (_("Warning: duplicated register (r%d) in register list"),
1513		     regno);
1514		}
1515
1516	      range |= expr.X_add_number;
1517	    }
1518	  else
1519	    {
1520	      if (inst.reloc.type != 0)
1521		{
1522		  inst.error = _("expression too complex");
1523		  return FAIL;
1524		}
1525
1526	      memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1527	      inst.reloc.type = BFD_RELOC_ARM_MULTI;
1528	      inst.reloc.pc_rel = 0;
1529	    }
1530	}
1531
1532      if (*str == '|' || *str == '+')
1533	{
1534	  str++;
1535	  another_range = 1;
1536	}
1537    }
1538  while (another_range);
1539
1540  *strp = str;
1541  return range;
1542}
1543
1544/* Types of registers in a list.  */
1545
1546enum reg_list_els
1547{
1548  REGLIST_VFP_S,
1549  REGLIST_VFP_D,
1550  REGLIST_NEON_D
1551};
1552
1553/* Parse a VFP register list.  If the string is invalid return FAIL.
1554   Otherwise return the number of registers, and set PBASE to the first
1555   register.  Parses registers of type ETYPE.
1556   If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1557     - Q registers can be used to specify pairs of D registers
1558     - { } can be omitted from around a singleton register list
1559         FIXME: This is not implemented, as it would require backtracking in
1560         some cases, e.g.:
1561           vtbl.8 d3,d4,d5
1562         This could be done (the meaning isn't really ambiguous), but doesn't
1563         fit in well with the current parsing framework.
1564     - 32 D registers may be used (also true for VFPv3).
1565   FIXME: Types are ignored in these register lists, which is probably a
1566   bug.  */
1567
1568static int
1569parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1570{
1571  char *str = *ccp;
1572  int base_reg;
1573  int new_base;
1574  enum arm_reg_type regtype = 0;
1575  int max_regs = 0;
1576  int count = 0;
1577  int warned = 0;
1578  unsigned long mask = 0;
1579  int i;
1580
1581  if (*str != '{')
1582    {
1583      inst.error = _("expecting {");
1584      return FAIL;
1585    }
1586
1587  str++;
1588
1589  switch (etype)
1590    {
1591    case REGLIST_VFP_S:
1592      regtype = REG_TYPE_VFS;
1593      max_regs = 32;
1594      break;
1595
1596    case REGLIST_VFP_D:
1597      regtype = REG_TYPE_VFD;
1598      break;
1599
1600    case REGLIST_NEON_D:
1601      regtype = REG_TYPE_NDQ;
1602      break;
1603    }
1604
1605  if (etype != REGLIST_VFP_S)
1606    {
1607      /* VFPv3 allows 32 D registers.  */
1608      if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
1609        {
1610          max_regs = 32;
1611          if (thumb_mode)
1612            ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1613                                    fpu_vfp_ext_v3);
1614          else
1615            ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1616                                    fpu_vfp_ext_v3);
1617        }
1618      else
1619        max_regs = 16;
1620    }
1621
1622  base_reg = max_regs;
1623
1624  do
1625    {
1626      int setmask = 1, addregs = 1;
1627
1628      new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1629
1630      if (new_base == FAIL)
1631	{
1632	  first_error (_(reg_expected_msgs[regtype]));
1633	  return FAIL;
1634	}
1635
1636      if (new_base >= max_regs)
1637        {
1638          first_error (_("register out of range in list"));
1639          return FAIL;
1640        }
1641
1642      /* Note: a value of 2 * n is returned for the register Q<n>.  */
1643      if (regtype == REG_TYPE_NQ)
1644        {
1645          setmask = 3;
1646          addregs = 2;
1647        }
1648
1649      if (new_base < base_reg)
1650	base_reg = new_base;
1651
1652      if (mask & (setmask << new_base))
1653	{
1654	  first_error (_("invalid register list"));
1655	  return FAIL;
1656	}
1657
1658      if ((mask >> new_base) != 0 && ! warned)
1659	{
1660	  as_tsktsk (_("register list not in ascending order"));
1661	  warned = 1;
1662	}
1663
1664      mask |= setmask << new_base;
1665      count += addregs;
1666
1667      if (*str == '-') /* We have the start of a range expression */
1668	{
1669	  int high_range;
1670
1671	  str++;
1672
1673	  if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1674              == FAIL)
1675	    {
1676	      inst.error = gettext (reg_expected_msgs[regtype]);
1677	      return FAIL;
1678	    }
1679
1680          if (high_range >= max_regs)
1681            {
1682              first_error (_("register out of range in list"));
1683              return FAIL;
1684            }
1685
1686          if (regtype == REG_TYPE_NQ)
1687            high_range = high_range + 1;
1688
1689	  if (high_range <= new_base)
1690	    {
1691	      inst.error = _("register range not in ascending order");
1692	      return FAIL;
1693	    }
1694
1695	  for (new_base += addregs; new_base <= high_range; new_base += addregs)
1696	    {
1697	      if (mask & (setmask << new_base))
1698		{
1699		  inst.error = _("invalid register list");
1700		  return FAIL;
1701		}
1702
1703	      mask |= setmask << new_base;
1704	      count += addregs;
1705	    }
1706	}
1707    }
1708  while (skip_past_comma (&str) != FAIL);
1709
1710  str++;
1711
1712  /* Sanity check -- should have raised a parse error above.  */
1713  if (count == 0 || count > max_regs)
1714    abort ();
1715
1716  *pbase = base_reg;
1717
1718  /* Final test -- the registers must be consecutive.  */
1719  mask >>= base_reg;
1720  for (i = 0; i < count; i++)
1721    {
1722      if ((mask & (1u << i)) == 0)
1723	{
1724	  inst.error = _("non-contiguous register range");
1725	  return FAIL;
1726	}
1727    }
1728
1729  *ccp = str;
1730
1731  return count;
1732}
1733
1734/* True if two alias types are the same.  */
1735
1736static int
1737neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1738{
1739  if (!a && !b)
1740    return 1;
1741
1742  if (!a || !b)
1743    return 0;
1744
1745  if (a->defined != b->defined)
1746    return 0;
1747
1748  if ((a->defined & NTA_HASTYPE) != 0
1749      && (a->eltype.type != b->eltype.type
1750          || a->eltype.size != b->eltype.size))
1751    return 0;
1752
1753  if ((a->defined & NTA_HASINDEX) != 0
1754      && (a->index != b->index))
1755    return 0;
1756
1757  return 1;
1758}
1759
1760/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1761   The base register is put in *PBASE.
1762   The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1763   the return value.
1764   The register stride (minus one) is put in bit 4 of the return value.
1765   Bits [6:5] encode the list length (minus one).
1766   The type of the list elements is put in *ELTYPE, if non-NULL.  */
1767
1768#define NEON_LANE(X)		((X) & 0xf)
1769#define NEON_REG_STRIDE(X)	((((X) >> 4) & 1) + 1)
1770#define NEON_REGLIST_LENGTH(X)	((((X) >> 5) & 3) + 1)
1771
1772static int
1773parse_neon_el_struct_list (char **str, unsigned *pbase,
1774                           struct neon_type_el *eltype)
1775{
1776  char *ptr = *str;
1777  int base_reg = -1;
1778  int reg_incr = -1;
1779  int count = 0;
1780  int lane = -1;
1781  int leading_brace = 0;
1782  enum arm_reg_type rtype = REG_TYPE_NDQ;
1783  int addregs = 1;
1784  const char *const incr_error = "register stride must be 1 or 2";
1785  const char *const type_error = "mismatched element/structure types in list";
1786  struct neon_typed_alias firsttype;
1787
1788  if (skip_past_char (&ptr, '{') == SUCCESS)
1789    leading_brace = 1;
1790
1791  do
1792    {
1793      struct neon_typed_alias atype;
1794      int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1795
1796      if (getreg == FAIL)
1797        {
1798          first_error (_(reg_expected_msgs[rtype]));
1799          return FAIL;
1800        }
1801
1802      if (base_reg == -1)
1803        {
1804          base_reg = getreg;
1805          if (rtype == REG_TYPE_NQ)
1806            {
1807              reg_incr = 1;
1808              addregs = 2;
1809            }
1810          firsttype = atype;
1811        }
1812      else if (reg_incr == -1)
1813        {
1814          reg_incr = getreg - base_reg;
1815          if (reg_incr < 1 || reg_incr > 2)
1816            {
1817              first_error (_(incr_error));
1818              return FAIL;
1819            }
1820        }
1821      else if (getreg != base_reg + reg_incr * count)
1822        {
1823          first_error (_(incr_error));
1824          return FAIL;
1825        }
1826
1827      if (!neon_alias_types_same (&atype, &firsttype))
1828        {
1829          first_error (_(type_error));
1830          return FAIL;
1831        }
1832
1833      /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1834         modes.  */
1835      if (ptr[0] == '-')
1836        {
1837          struct neon_typed_alias htype;
1838          int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1839          if (lane == -1)
1840            lane = NEON_INTERLEAVE_LANES;
1841          else if (lane != NEON_INTERLEAVE_LANES)
1842            {
1843              first_error (_(type_error));
1844              return FAIL;
1845            }
1846          if (reg_incr == -1)
1847            reg_incr = 1;
1848          else if (reg_incr != 1)
1849            {
1850              first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1851              return FAIL;
1852            }
1853          ptr++;
1854          hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1855          if (hireg == FAIL)
1856            {
1857              first_error (_(reg_expected_msgs[rtype]));
1858              return FAIL;
1859            }
1860          if (!neon_alias_types_same (&htype, &firsttype))
1861            {
1862              first_error (_(type_error));
1863              return FAIL;
1864            }
1865          count += hireg + dregs - getreg;
1866          continue;
1867        }
1868
1869      /* If we're using Q registers, we can't use [] or [n] syntax.  */
1870      if (rtype == REG_TYPE_NQ)
1871        {
1872          count += 2;
1873          continue;
1874        }
1875
1876      if ((atype.defined & NTA_HASINDEX) != 0)
1877        {
1878          if (lane == -1)
1879            lane = atype.index;
1880          else if (lane != atype.index)
1881            {
1882              first_error (_(type_error));
1883              return FAIL;
1884            }
1885        }
1886      else if (lane == -1)
1887        lane = NEON_INTERLEAVE_LANES;
1888      else if (lane != NEON_INTERLEAVE_LANES)
1889        {
1890          first_error (_(type_error));
1891          return FAIL;
1892        }
1893      count++;
1894    }
1895  while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1896
1897  /* No lane set by [x]. We must be interleaving structures.  */
1898  if (lane == -1)
1899    lane = NEON_INTERLEAVE_LANES;
1900
1901  /* Sanity check.  */
1902  if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1903      || (count > 1 && reg_incr == -1))
1904    {
1905      first_error (_("error parsing element/structure list"));
1906      return FAIL;
1907    }
1908
1909  if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1910    {
1911      first_error (_("expected }"));
1912      return FAIL;
1913    }
1914
1915  if (reg_incr == -1)
1916    reg_incr = 1;
1917
1918  if (eltype)
1919    *eltype = firsttype.eltype;
1920
1921  *pbase = base_reg;
1922  *str = ptr;
1923
1924  return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1925}
1926
1927/* Parse an explicit relocation suffix on an expression.  This is
1928   either nothing, or a word in parentheses.  Note that if !OBJ_ELF,
1929   arm_reloc_hsh contains no entries, so this function can only
1930   succeed if there is no () after the word.  Returns -1 on error,
1931   BFD_RELOC_UNUSED if there wasn't any suffix.	 */
1932static int
1933parse_reloc (char **str)
1934{
1935  struct reloc_entry *r;
1936  char *p, *q;
1937
1938  if (**str != '(')
1939    return BFD_RELOC_UNUSED;
1940
1941  p = *str + 1;
1942  q = p;
1943
1944  while (*q && *q != ')' && *q != ',')
1945    q++;
1946  if (*q != ')')
1947    return -1;
1948
1949  if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1950    return -1;
1951
1952  *str = q + 1;
1953  return r->reloc;
1954}
1955
1956/* Directives: register aliases.  */
1957
1958static struct reg_entry *
1959insert_reg_alias (char *str, int number, int type)
1960{
1961  struct reg_entry *new;
1962  const char *name;
1963
1964  if ((new = hash_find (arm_reg_hsh, str)) != 0)
1965    {
1966      if (new->builtin)
1967	as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
1968
1969      /* Only warn about a redefinition if it's not defined as the
1970	 same register.	 */
1971      else if (new->number != number || new->type != type)
1972	as_warn (_("ignoring redefinition of register alias '%s'"), str);
1973
1974      return 0;
1975    }
1976
1977  name = xstrdup (str);
1978  new = xmalloc (sizeof (struct reg_entry));
1979
1980  new->name = name;
1981  new->number = number;
1982  new->type = type;
1983  new->builtin = FALSE;
1984  new->neon = NULL;
1985
1986  if (hash_insert (arm_reg_hsh, name, (PTR) new))
1987    abort ();
1988
1989  return new;
1990}
1991
1992static void
1993insert_neon_reg_alias (char *str, int number, int type,
1994                       struct neon_typed_alias *atype)
1995{
1996  struct reg_entry *reg = insert_reg_alias (str, number, type);
1997
1998  if (!reg)
1999    {
2000      first_error (_("attempt to redefine typed alias"));
2001      return;
2002    }
2003
2004  if (atype)
2005    {
2006      reg->neon = xmalloc (sizeof (struct neon_typed_alias));
2007      *reg->neon = *atype;
2008    }
2009}
2010
2011/* Look for the .req directive.	 This is of the form:
2012
2013	new_register_name .req existing_register_name
2014
2015   If we find one, or if it looks sufficiently like one that we want to
2016   handle any error here, return non-zero.  Otherwise return zero.  */
2017
2018static int
2019create_register_alias (char * newname, char *p)
2020{
2021  struct reg_entry *old;
2022  char *oldname, *nbuf;
2023  size_t nlen;
2024
2025  /* The input scrubber ensures that whitespace after the mnemonic is
2026     collapsed to single spaces.  */
2027  oldname = p;
2028  if (strncmp (oldname, " .req ", 6) != 0)
2029    return 0;
2030
2031  oldname += 6;
2032  if (*oldname == '\0')
2033    return 0;
2034
2035  old = hash_find (arm_reg_hsh, oldname);
2036  if (!old)
2037    {
2038      as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2039      return 1;
2040    }
2041
2042  /* If TC_CASE_SENSITIVE is defined, then newname already points to
2043     the desired alias name, and p points to its end.  If not, then
2044     the desired alias name is in the global original_case_string.  */
2045#ifdef TC_CASE_SENSITIVE
2046  nlen = p - newname;
2047#else
2048  newname = original_case_string;
2049  nlen = strlen (newname);
2050#endif
2051
2052  nbuf = alloca (nlen + 1);
2053  memcpy (nbuf, newname, nlen);
2054  nbuf[nlen] = '\0';
2055
2056  /* Create aliases under the new name as stated; an all-lowercase
2057     version of the new name; and an all-uppercase version of the new
2058     name.  */
2059  insert_reg_alias (nbuf, old->number, old->type);
2060
2061  for (p = nbuf; *p; p++)
2062    *p = TOUPPER (*p);
2063
2064  if (strncmp (nbuf, newname, nlen))
2065    insert_reg_alias (nbuf, old->number, old->type);
2066
2067  for (p = nbuf; *p; p++)
2068    *p = TOLOWER (*p);
2069
2070  if (strncmp (nbuf, newname, nlen))
2071    insert_reg_alias (nbuf, old->number, old->type);
2072
2073  return 1;
2074}
2075
2076/* Create a Neon typed/indexed register alias using directives, e.g.:
2077     X .dn d5.s32[1]
2078     Y .qn 6.s16
2079     Z .dn d7
2080     T .dn Z[0]
2081   These typed registers can be used instead of the types specified after the
2082   Neon mnemonic, so long as all operands given have types. Types can also be
2083   specified directly, e.g.:
2084     vadd d0.s32, d1.s32, d2.s32
2085*/
2086
2087static int
2088create_neon_reg_alias (char *newname, char *p)
2089{
2090  enum arm_reg_type basetype;
2091  struct reg_entry *basereg;
2092  struct reg_entry mybasereg;
2093  struct neon_type ntype;
2094  struct neon_typed_alias typeinfo;
2095  char *namebuf, *nameend;
2096  int namelen;
2097
2098  typeinfo.defined = 0;
2099  typeinfo.eltype.type = NT_invtype;
2100  typeinfo.eltype.size = -1;
2101  typeinfo.index = -1;
2102
2103  nameend = p;
2104
2105  if (strncmp (p, " .dn ", 5) == 0)
2106    basetype = REG_TYPE_VFD;
2107  else if (strncmp (p, " .qn ", 5) == 0)
2108    basetype = REG_TYPE_NQ;
2109  else
2110    return 0;
2111
2112  p += 5;
2113
2114  if (*p == '\0')
2115    return 0;
2116
2117  basereg = arm_reg_parse_multi (&p);
2118
2119  if (basereg && basereg->type != basetype)
2120    {
2121      as_bad (_("bad type for register"));
2122      return 0;
2123    }
2124
2125  if (basereg == NULL)
2126    {
2127      expressionS exp;
2128      /* Try parsing as an integer.  */
2129      my_get_expression (&exp, &p, GE_NO_PREFIX);
2130      if (exp.X_op != O_constant)
2131        {
2132          as_bad (_("expression must be constant"));
2133          return 0;
2134        }
2135      basereg = &mybasereg;
2136      basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2137                                                  : exp.X_add_number;
2138      basereg->neon = 0;
2139    }
2140
2141  if (basereg->neon)
2142    typeinfo = *basereg->neon;
2143
2144  if (parse_neon_type (&ntype, &p) == SUCCESS)
2145    {
2146      /* We got a type.  */
2147      if (typeinfo.defined & NTA_HASTYPE)
2148        {
2149          as_bad (_("can't redefine the type of a register alias"));
2150          return 0;
2151        }
2152
2153      typeinfo.defined |= NTA_HASTYPE;
2154      if (ntype.elems != 1)
2155        {
2156          as_bad (_("you must specify a single type only"));
2157          return 0;
2158        }
2159      typeinfo.eltype = ntype.el[0];
2160    }
2161
2162  if (skip_past_char (&p, '[') == SUCCESS)
2163    {
2164      expressionS exp;
2165      /* We got a scalar index.  */
2166
2167      if (typeinfo.defined & NTA_HASINDEX)
2168        {
2169          as_bad (_("can't redefine the index of a scalar alias"));
2170          return 0;
2171        }
2172
2173      my_get_expression (&exp, &p, GE_NO_PREFIX);
2174
2175      if (exp.X_op != O_constant)
2176        {
2177          as_bad (_("scalar index must be constant"));
2178          return 0;
2179        }
2180
2181      typeinfo.defined |= NTA_HASINDEX;
2182      typeinfo.index = exp.X_add_number;
2183
2184      if (skip_past_char (&p, ']') == FAIL)
2185        {
2186          as_bad (_("expecting ]"));
2187          return 0;
2188        }
2189    }
2190
2191  namelen = nameend - newname;
2192  namebuf = alloca (namelen + 1);
2193  strncpy (namebuf, newname, namelen);
2194  namebuf[namelen] = '\0';
2195
2196  insert_neon_reg_alias (namebuf, basereg->number, basetype,
2197                         typeinfo.defined != 0 ? &typeinfo : NULL);
2198
2199  /* Insert name in all uppercase.  */
2200  for (p = namebuf; *p; p++)
2201    *p = TOUPPER (*p);
2202
2203  if (strncmp (namebuf, newname, namelen))
2204    insert_neon_reg_alias (namebuf, basereg->number, basetype,
2205                           typeinfo.defined != 0 ? &typeinfo : NULL);
2206
2207  /* Insert name in all lowercase.  */
2208  for (p = namebuf; *p; p++)
2209    *p = TOLOWER (*p);
2210
2211  if (strncmp (namebuf, newname, namelen))
2212    insert_neon_reg_alias (namebuf, basereg->number, basetype,
2213                           typeinfo.defined != 0 ? &typeinfo : NULL);
2214
2215  return 1;
2216}
2217
2218/* Should never be called, as .req goes between the alias and the
2219   register name, not at the beginning of the line.  */
2220static void
2221s_req (int a ATTRIBUTE_UNUSED)
2222{
2223  as_bad (_("invalid syntax for .req directive"));
2224}
2225
2226static void
2227s_dn (int a ATTRIBUTE_UNUSED)
2228{
2229  as_bad (_("invalid syntax for .dn directive"));
2230}
2231
2232static void
2233s_qn (int a ATTRIBUTE_UNUSED)
2234{
2235  as_bad (_("invalid syntax for .qn directive"));
2236}
2237
2238/* The .unreq directive deletes an alias which was previously defined
2239   by .req.  For example:
2240
2241       my_alias .req r11
2242       .unreq my_alias	  */
2243
2244static void
2245s_unreq (int a ATTRIBUTE_UNUSED)
2246{
2247  char * name;
2248  char saved_char;
2249
2250  name = input_line_pointer;
2251
2252  while (*input_line_pointer != 0
2253	 && *input_line_pointer != ' '
2254	 && *input_line_pointer != '\n')
2255    ++input_line_pointer;
2256
2257  saved_char = *input_line_pointer;
2258  *input_line_pointer = 0;
2259
2260  if (!*name)
2261    as_bad (_("invalid syntax for .unreq directive"));
2262  else
2263    {
2264      struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2265
2266      if (!reg)
2267	as_bad (_("unknown register alias '%s'"), name);
2268      else if (reg->builtin)
2269	as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2270		 name);
2271      else
2272	{
2273	  hash_delete (arm_reg_hsh, name);
2274	  free ((char *) reg->name);
2275          if (reg->neon)
2276            free (reg->neon);
2277	  free (reg);
2278	}
2279    }
2280
2281  *input_line_pointer = saved_char;
2282  demand_empty_rest_of_line ();
2283}
2284
2285/* Directives: Instruction set selection.  */
2286
2287#ifdef OBJ_ELF
2288/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2289   (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2290   Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2291   and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped.  */
2292
2293static enum mstate mapstate = MAP_UNDEFINED;
2294
2295void
2296mapping_state (enum mstate state)
2297{
2298  symbolS * symbolP;
2299  const char * symname;
2300  int type;
2301
2302  if (mapstate == state)
2303    /* The mapping symbol has already been emitted.
2304       There is nothing else to do.  */
2305    return;
2306
2307  mapstate = state;
2308
2309  switch (state)
2310    {
2311    case MAP_DATA:
2312      symname = "$d";
2313      type = BSF_NO_FLAGS;
2314      break;
2315    case MAP_ARM:
2316      symname = "$a";
2317      type = BSF_NO_FLAGS;
2318      break;
2319    case MAP_THUMB:
2320      symname = "$t";
2321      type = BSF_NO_FLAGS;
2322      break;
2323    case MAP_UNDEFINED:
2324      return;
2325    default:
2326      abort ();
2327    }
2328
2329  seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2330
2331  symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2332  symbol_table_insert (symbolP);
2333  symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2334
2335  switch (state)
2336    {
2337    case MAP_ARM:
2338      THUMB_SET_FUNC (symbolP, 0);
2339      ARM_SET_THUMB (symbolP, 0);
2340      ARM_SET_INTERWORK (symbolP, support_interwork);
2341      break;
2342
2343    case MAP_THUMB:
2344      THUMB_SET_FUNC (symbolP, 1);
2345      ARM_SET_THUMB (symbolP, 1);
2346      ARM_SET_INTERWORK (symbolP, support_interwork);
2347      break;
2348
2349    case MAP_DATA:
2350    default:
2351      return;
2352    }
2353}
2354#else
2355#define mapping_state(x) /* nothing */
2356#endif
2357
2358/* Find the real, Thumb encoded start of a Thumb function.  */
2359
2360static symbolS *
2361find_real_start (symbolS * symbolP)
2362{
2363  char *       real_start;
2364  const char * name = S_GET_NAME (symbolP);
2365  symbolS *    new_target;
2366
2367  /* This definition must agree with the one in gcc/config/arm/thumb.c.	 */
2368#define STUB_NAME ".real_start_of"
2369
2370  if (name == NULL)
2371    abort ();
2372
2373  /* The compiler may generate BL instructions to local labels because
2374     it needs to perform a branch to a far away location. These labels
2375     do not have a corresponding ".real_start_of" label.  We check
2376     both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2377     the ".real_start_of" convention for nonlocal branches.  */
2378  if (S_IS_LOCAL (symbolP) || name[0] == '.')
2379    return symbolP;
2380
2381  real_start = ACONCAT ((STUB_NAME, name, NULL));
2382  new_target = symbol_find (real_start);
2383
2384  if (new_target == NULL)
2385    {
2386      as_warn ("Failed to find real start of function: %s\n", name);
2387      new_target = symbolP;
2388    }
2389
2390  return new_target;
2391}
2392
2393static void
2394opcode_select (int width)
2395{
2396  switch (width)
2397    {
2398    case 16:
2399      if (! thumb_mode)
2400	{
2401	  if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2402	    as_bad (_("selected processor does not support THUMB opcodes"));
2403
2404	  thumb_mode = 1;
2405	  /* No need to force the alignment, since we will have been
2406	     coming from ARM mode, which is word-aligned.  */
2407	  record_alignment (now_seg, 1);
2408	}
2409      mapping_state (MAP_THUMB);
2410      break;
2411
2412    case 32:
2413      if (thumb_mode)
2414	{
2415	  if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2416	    as_bad (_("selected processor does not support ARM opcodes"));
2417
2418	  thumb_mode = 0;
2419
2420	  if (!need_pass_2)
2421	    frag_align (2, 0, 0);
2422
2423	  record_alignment (now_seg, 1);
2424	}
2425      mapping_state (MAP_ARM);
2426      break;
2427
2428    default:
2429      as_bad (_("invalid instruction size selected (%d)"), width);
2430    }
2431}
2432
2433static void
2434s_arm (int ignore ATTRIBUTE_UNUSED)
2435{
2436  opcode_select (32);
2437  demand_empty_rest_of_line ();
2438}
2439
2440static void
2441s_thumb (int ignore ATTRIBUTE_UNUSED)
2442{
2443  opcode_select (16);
2444  demand_empty_rest_of_line ();
2445}
2446
2447static void
2448s_code (int unused ATTRIBUTE_UNUSED)
2449{
2450  int temp;
2451
2452  temp = get_absolute_expression ();
2453  switch (temp)
2454    {
2455    case 16:
2456    case 32:
2457      opcode_select (temp);
2458      break;
2459
2460    default:
2461      as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2462    }
2463}
2464
2465static void
2466s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2467{
2468  /* If we are not already in thumb mode go into it, EVEN if
2469     the target processor does not support thumb instructions.
2470     This is used by gcc/config/arm/lib1funcs.asm for example
2471     to compile interworking support functions even if the
2472     target processor should not support interworking.	*/
2473  if (! thumb_mode)
2474    {
2475      thumb_mode = 2;
2476      record_alignment (now_seg, 1);
2477    }
2478
2479  demand_empty_rest_of_line ();
2480}
2481
2482static void
2483s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2484{
2485  s_thumb (0);
2486
2487  /* The following label is the name/address of the start of a Thumb function.
2488     We need to know this for the interworking support.	 */
2489  label_is_thumb_function_name = TRUE;
2490}
2491
2492/* Perform a .set directive, but also mark the alias as
2493   being a thumb function.  */
2494
2495static void
2496s_thumb_set (int equiv)
2497{
2498  /* XXX the following is a duplicate of the code for s_set() in read.c
2499     We cannot just call that code as we need to get at the symbol that
2500     is created.  */
2501  char *    name;
2502  char	    delim;
2503  char *    end_name;
2504  symbolS * symbolP;
2505
2506  /* Especial apologies for the random logic:
2507     This just grew, and could be parsed much more simply!
2508     Dean - in haste.  */
2509  name	    = input_line_pointer;
2510  delim	    = get_symbol_end ();
2511  end_name  = input_line_pointer;
2512  *end_name = delim;
2513
2514  if (*input_line_pointer != ',')
2515    {
2516      *end_name = 0;
2517      as_bad (_("expected comma after name \"%s\""), name);
2518      *end_name = delim;
2519      ignore_rest_of_line ();
2520      return;
2521    }
2522
2523  input_line_pointer++;
2524  *end_name = 0;
2525
2526  if (name[0] == '.' && name[1] == '\0')
2527    {
2528      /* XXX - this should not happen to .thumb_set.  */
2529      abort ();
2530    }
2531
2532  if ((symbolP = symbol_find (name)) == NULL
2533      && (symbolP = md_undefined_symbol (name)) == NULL)
2534    {
2535#ifndef NO_LISTING
2536      /* When doing symbol listings, play games with dummy fragments living
2537	 outside the normal fragment chain to record the file and line info
2538	 for this symbol.  */
2539      if (listing & LISTING_SYMBOLS)
2540	{
2541	  extern struct list_info_struct * listing_tail;
2542	  fragS * dummy_frag = xmalloc (sizeof (fragS));
2543
2544	  memset (dummy_frag, 0, sizeof (fragS));
2545	  dummy_frag->fr_type = rs_fill;
2546	  dummy_frag->line = listing_tail;
2547	  symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2548	  dummy_frag->fr_symbol = symbolP;
2549	}
2550      else
2551#endif
2552	symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2553
2554#ifdef OBJ_COFF
2555      /* "set" symbols are local unless otherwise specified.  */
2556      SF_SET_LOCAL (symbolP);
2557#endif /* OBJ_COFF  */
2558    }				/* Make a new symbol.  */
2559
2560  symbol_table_insert (symbolP);
2561
2562  * end_name = delim;
2563
2564  if (equiv
2565      && S_IS_DEFINED (symbolP)
2566      && S_GET_SEGMENT (symbolP) != reg_section)
2567    as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2568
2569  pseudo_set (symbolP);
2570
2571  demand_empty_rest_of_line ();
2572
2573  /* XXX Now we come to the Thumb specific bit of code.	 */
2574
2575  THUMB_SET_FUNC (symbolP, 1);
2576  ARM_SET_THUMB (symbolP, 1);
2577#if defined OBJ_ELF || defined OBJ_COFF
2578  ARM_SET_INTERWORK (symbolP, support_interwork);
2579#endif
2580}
2581
2582/* Directives: Mode selection.  */
2583
2584/* .syntax [unified|divided] - choose the new unified syntax
2585   (same for Arm and Thumb encoding, modulo slight differences in what
2586   can be represented) or the old divergent syntax for each mode.  */
2587static void
2588s_syntax (int unused ATTRIBUTE_UNUSED)
2589{
2590  char *name, delim;
2591
2592  name = input_line_pointer;
2593  delim = get_symbol_end ();
2594
2595  if (!strcasecmp (name, "unified"))
2596    unified_syntax = TRUE;
2597  else if (!strcasecmp (name, "divided"))
2598    unified_syntax = FALSE;
2599  else
2600    {
2601      as_bad (_("unrecognized syntax mode \"%s\""), name);
2602      return;
2603    }
2604  *input_line_pointer = delim;
2605  demand_empty_rest_of_line ();
2606}
2607
2608/* Directives: sectioning and alignment.  */
2609
2610/* Same as s_align_ptwo but align 0 => align 2.	 */
2611
2612static void
2613s_align (int unused ATTRIBUTE_UNUSED)
2614{
2615  int temp;
2616  bfd_boolean fill_p;
2617  long temp_fill;
2618  long max_alignment = 15;
2619
2620  temp = get_absolute_expression ();
2621  if (temp > max_alignment)
2622    as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2623  else if (temp < 0)
2624    {
2625      as_bad (_("alignment negative. 0 assumed."));
2626      temp = 0;
2627    }
2628
2629  if (*input_line_pointer == ',')
2630    {
2631      input_line_pointer++;
2632      temp_fill = get_absolute_expression ();
2633      fill_p = TRUE;
2634    }
2635  else
2636    {
2637      fill_p = FALSE;
2638      temp_fill = 0;
2639    }
2640
2641  if (!temp)
2642    temp = 2;
2643
2644  /* Only make a frag if we HAVE to.  */
2645  if (temp && !need_pass_2)
2646    {
2647      if (!fill_p && subseg_text_p (now_seg))
2648	frag_align_code (temp, 0);
2649      else
2650	frag_align (temp, (int) temp_fill, 0);
2651    }
2652  demand_empty_rest_of_line ();
2653
2654  record_alignment (now_seg, temp);
2655}
2656
2657static void
2658s_bss (int ignore ATTRIBUTE_UNUSED)
2659{
2660  /* We don't support putting frags in the BSS segment, we fake it by
2661     marking in_bss, then looking at s_skip for clues.	*/
2662  subseg_set (bss_section, 0);
2663  demand_empty_rest_of_line ();
2664  mapping_state (MAP_DATA);
2665}
2666
2667static void
2668s_even (int ignore ATTRIBUTE_UNUSED)
2669{
2670  /* Never make frag if expect extra pass.  */
2671  if (!need_pass_2)
2672    frag_align (1, 0, 0);
2673
2674  record_alignment (now_seg, 1);
2675
2676  demand_empty_rest_of_line ();
2677}
2678
2679/* Directives: Literal pools.  */
2680
2681static literal_pool *
2682find_literal_pool (void)
2683{
2684  literal_pool * pool;
2685
2686  for (pool = list_of_pools; pool != NULL; pool = pool->next)
2687    {
2688      if (pool->section == now_seg
2689	  && pool->sub_section == now_subseg)
2690	break;
2691    }
2692
2693  return pool;
2694}
2695
2696static literal_pool *
2697find_or_make_literal_pool (void)
2698{
2699  /* Next literal pool ID number.  */
2700  static unsigned int latest_pool_num = 1;
2701  literal_pool *      pool;
2702
2703  pool = find_literal_pool ();
2704
2705  if (pool == NULL)
2706    {
2707      /* Create a new pool.  */
2708      pool = xmalloc (sizeof (* pool));
2709      if (! pool)
2710	return NULL;
2711
2712      pool->next_free_entry = 0;
2713      pool->section	    = now_seg;
2714      pool->sub_section	    = now_subseg;
2715      pool->next	    = list_of_pools;
2716      pool->symbol	    = NULL;
2717
2718      /* Add it to the list.  */
2719      list_of_pools = pool;
2720    }
2721
2722  /* New pools, and emptied pools, will have a NULL symbol.  */
2723  if (pool->symbol == NULL)
2724    {
2725      pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2726				    (valueT) 0, &zero_address_frag);
2727      pool->id = latest_pool_num ++;
2728    }
2729
2730  /* Done.  */
2731  return pool;
2732}
2733
2734/* Add the literal in the global 'inst'
2735   structure to the relevent literal pool.  */
2736
2737static int
2738add_to_lit_pool (void)
2739{
2740  literal_pool * pool;
2741  unsigned int entry;
2742
2743  pool = find_or_make_literal_pool ();
2744
2745  /* Check if this literal value is already in the pool.  */
2746  for (entry = 0; entry < pool->next_free_entry; entry ++)
2747    {
2748      if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2749	  && (inst.reloc.exp.X_op == O_constant)
2750	  && (pool->literals[entry].X_add_number
2751	      == inst.reloc.exp.X_add_number)
2752	  && (pool->literals[entry].X_unsigned
2753	      == inst.reloc.exp.X_unsigned))
2754	break;
2755
2756      if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2757	  && (inst.reloc.exp.X_op == O_symbol)
2758	  && (pool->literals[entry].X_add_number
2759	      == inst.reloc.exp.X_add_number)
2760	  && (pool->literals[entry].X_add_symbol
2761	      == inst.reloc.exp.X_add_symbol)
2762	  && (pool->literals[entry].X_op_symbol
2763	      == inst.reloc.exp.X_op_symbol))
2764	break;
2765    }
2766
2767  /* Do we need to create a new entry?	*/
2768  if (entry == pool->next_free_entry)
2769    {
2770      if (entry >= MAX_LITERAL_POOL_SIZE)
2771	{
2772	  inst.error = _("literal pool overflow");
2773	  return FAIL;
2774	}
2775
2776      pool->literals[entry] = inst.reloc.exp;
2777      pool->next_free_entry += 1;
2778    }
2779
2780  inst.reloc.exp.X_op	      = O_symbol;
2781  inst.reloc.exp.X_add_number = ((int) entry) * 4;
2782  inst.reloc.exp.X_add_symbol = pool->symbol;
2783
2784  return SUCCESS;
2785}
2786
2787/* Can't use symbol_new here, so have to create a symbol and then at
2788   a later date assign it a value. Thats what these functions do.  */
2789
2790static void
2791symbol_locate (symbolS *    symbolP,
2792	       const char * name,	/* It is copied, the caller can modify.	 */
2793	       segT	    segment,	/* Segment identifier (SEG_<something>).  */
2794	       valueT	    valu,	/* Symbol value.  */
2795	       fragS *	    frag)	/* Associated fragment.	 */
2796{
2797  unsigned int name_length;
2798  char * preserved_copy_of_name;
2799
2800  name_length = strlen (name) + 1;   /* +1 for \0.  */
2801  obstack_grow (&notes, name, name_length);
2802  preserved_copy_of_name = obstack_finish (&notes);
2803
2804#ifdef tc_canonicalize_symbol_name
2805  preserved_copy_of_name =
2806    tc_canonicalize_symbol_name (preserved_copy_of_name);
2807#endif
2808
2809  S_SET_NAME (symbolP, preserved_copy_of_name);
2810
2811  S_SET_SEGMENT (symbolP, segment);
2812  S_SET_VALUE (symbolP, valu);
2813  symbol_clear_list_pointers (symbolP);
2814
2815  symbol_set_frag (symbolP, frag);
2816
2817  /* Link to end of symbol chain.  */
2818  {
2819    extern int symbol_table_frozen;
2820
2821    if (symbol_table_frozen)
2822      abort ();
2823  }
2824
2825  symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
2826
2827  obj_symbol_new_hook (symbolP);
2828
2829#ifdef tc_symbol_new_hook
2830  tc_symbol_new_hook (symbolP);
2831#endif
2832
2833#ifdef DEBUG_SYMS
2834  verify_symbol_chain (symbol_rootP, symbol_lastP);
2835#endif /* DEBUG_SYMS  */
2836}
2837
2838
2839static void
2840s_ltorg (int ignored ATTRIBUTE_UNUSED)
2841{
2842  unsigned int entry;
2843  literal_pool * pool;
2844  char sym_name[20];
2845
2846  pool = find_literal_pool ();
2847  if (pool == NULL
2848      || pool->symbol == NULL
2849      || pool->next_free_entry == 0)
2850    return;
2851
2852  mapping_state (MAP_DATA);
2853
2854  /* Align pool as you have word accesses.
2855     Only make a frag if we have to.  */
2856  if (!need_pass_2)
2857    frag_align (2, 0, 0);
2858
2859  record_alignment (now_seg, 2);
2860
2861  sprintf (sym_name, "$$lit_\002%x", pool->id);
2862
2863  symbol_locate (pool->symbol, sym_name, now_seg,
2864		 (valueT) frag_now_fix (), frag_now);
2865  symbol_table_insert (pool->symbol);
2866
2867  ARM_SET_THUMB (pool->symbol, thumb_mode);
2868
2869#if defined OBJ_COFF || defined OBJ_ELF
2870  ARM_SET_INTERWORK (pool->symbol, support_interwork);
2871#endif
2872
2873  for (entry = 0; entry < pool->next_free_entry; entry ++)
2874    /* First output the expression in the instruction to the pool.  */
2875    emit_expr (&(pool->literals[entry]), 4); /* .word  */
2876
2877  /* Mark the pool as empty.  */
2878  pool->next_free_entry = 0;
2879  pool->symbol = NULL;
2880}
2881
2882#ifdef OBJ_ELF
2883/* Forward declarations for functions below, in the MD interface
2884   section.  */
2885static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2886static valueT create_unwind_entry (int);
2887static void start_unwind_section (const segT, int);
2888static void add_unwind_opcode (valueT, int);
2889static void flush_pending_unwind (void);
2890
2891/* Directives: Data.  */
2892
2893static void
2894s_arm_elf_cons (int nbytes)
2895{
2896  expressionS exp;
2897
2898#ifdef md_flush_pending_output
2899  md_flush_pending_output ();
2900#endif
2901
2902  if (is_it_end_of_statement ())
2903    {
2904      demand_empty_rest_of_line ();
2905      return;
2906    }
2907
2908#ifdef md_cons_align
2909  md_cons_align (nbytes);
2910#endif
2911
2912  mapping_state (MAP_DATA);
2913  do
2914    {
2915      int reloc;
2916      char *base = input_line_pointer;
2917
2918      expression (& exp);
2919
2920      if (exp.X_op != O_symbol)
2921	emit_expr (&exp, (unsigned int) nbytes);
2922      else
2923	{
2924	  char *before_reloc = input_line_pointer;
2925	  reloc = parse_reloc (&input_line_pointer);
2926	  if (reloc == -1)
2927	    {
2928	      as_bad (_("unrecognized relocation suffix"));
2929	      ignore_rest_of_line ();
2930	      return;
2931	    }
2932	  else if (reloc == BFD_RELOC_UNUSED)
2933	    emit_expr (&exp, (unsigned int) nbytes);
2934	  else
2935	    {
2936	      reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2937	      int size = bfd_get_reloc_size (howto);
2938
2939	      if (reloc == BFD_RELOC_ARM_PLT32)
2940		{
2941		  as_bad (_("(plt) is only valid on branch targets"));
2942		  reloc = BFD_RELOC_UNUSED;
2943		  size = 0;
2944		}
2945
2946	      if (size > nbytes)
2947		as_bad (_("%s relocations do not fit in %d bytes"),
2948			howto->name, nbytes);
2949	      else
2950		{
2951		  /* We've parsed an expression stopping at O_symbol.
2952		     But there may be more expression left now that we
2953		     have parsed the relocation marker.  Parse it again.
2954		     XXX Surely there is a cleaner way to do this.  */
2955		  char *p = input_line_pointer;
2956		  int offset;
2957		  char *save_buf = alloca (input_line_pointer - base);
2958		  memcpy (save_buf, base, input_line_pointer - base);
2959		  memmove (base + (input_line_pointer - before_reloc),
2960			   base, before_reloc - base);
2961
2962		  input_line_pointer = base + (input_line_pointer-before_reloc);
2963		  expression (&exp);
2964		  memcpy (base, save_buf, p - base);
2965
2966		  offset = nbytes - size;
2967		  p = frag_more ((int) nbytes);
2968		  fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
2969			       size, &exp, 0, reloc);
2970		}
2971	    }
2972	}
2973    }
2974  while (*input_line_pointer++ == ',');
2975
2976  /* Put terminator back into stream.  */
2977  input_line_pointer --;
2978  demand_empty_rest_of_line ();
2979}
2980
2981
2982/* Parse a .rel31 directive.  */
2983
2984static void
2985s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
2986{
2987  expressionS exp;
2988  char *p;
2989  valueT highbit;
2990
2991  highbit = 0;
2992  if (*input_line_pointer == '1')
2993    highbit = 0x80000000;
2994  else if (*input_line_pointer != '0')
2995    as_bad (_("expected 0 or 1"));
2996
2997  input_line_pointer++;
2998  if (*input_line_pointer != ',')
2999    as_bad (_("missing comma"));
3000  input_line_pointer++;
3001
3002#ifdef md_flush_pending_output
3003  md_flush_pending_output ();
3004#endif
3005
3006#ifdef md_cons_align
3007  md_cons_align (4);
3008#endif
3009
3010  mapping_state (MAP_DATA);
3011
3012  expression (&exp);
3013
3014  p = frag_more (4);
3015  md_number_to_chars (p, highbit, 4);
3016  fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3017	       BFD_RELOC_ARM_PREL31);
3018
3019  demand_empty_rest_of_line ();
3020}
3021
3022/* Directives: AEABI stack-unwind tables.  */
3023
3024/* Parse an unwind_fnstart directive.  Simply records the current location.  */
3025
3026static void
3027s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3028{
3029  demand_empty_rest_of_line ();
3030  /* Mark the start of the function.  */
3031  unwind.proc_start = expr_build_dot ();
3032
3033  /* Reset the rest of the unwind info.	 */
3034  unwind.opcode_count = 0;
3035  unwind.table_entry = NULL;
3036  unwind.personality_routine = NULL;
3037  unwind.personality_index = -1;
3038  unwind.frame_size = 0;
3039  unwind.fp_offset = 0;
3040  unwind.fp_reg = 13;
3041  unwind.fp_used = 0;
3042  unwind.sp_restored = 0;
3043}
3044
3045
3046/* Parse a handlerdata directive.  Creates the exception handling table entry
3047   for the function.  */
3048
3049static void
3050s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3051{
3052  demand_empty_rest_of_line ();
3053  if (unwind.table_entry)
3054    as_bad (_("dupicate .handlerdata directive"));
3055
3056  create_unwind_entry (1);
3057}
3058
3059/* Parse an unwind_fnend directive.  Generates the index table entry.  */
3060
3061static void
3062s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3063{
3064  long where;
3065  char *ptr;
3066  valueT val;
3067
3068  demand_empty_rest_of_line ();
3069
3070  /* Add eh table entry.  */
3071  if (unwind.table_entry == NULL)
3072    val = create_unwind_entry (0);
3073  else
3074    val = 0;
3075
3076  /* Add index table entry.  This is two words.	 */
3077  start_unwind_section (unwind.saved_seg, 1);
3078  frag_align (2, 0, 0);
3079  record_alignment (now_seg, 2);
3080
3081  ptr = frag_more (8);
3082  where = frag_now_fix () - 8;
3083
3084  /* Self relative offset of the function start.  */
3085  fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3086	   BFD_RELOC_ARM_PREL31);
3087
3088  /* Indicate dependency on EHABI-defined personality routines to the
3089     linker, if it hasn't been done already.  */
3090  if (unwind.personality_index >= 0 && unwind.personality_index < 3
3091      && !(marked_pr_dependency & (1 << unwind.personality_index)))
3092    {
3093      static const char *const name[] = {
3094	"__aeabi_unwind_cpp_pr0",
3095	"__aeabi_unwind_cpp_pr1",
3096	"__aeabi_unwind_cpp_pr2"
3097      };
3098      symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3099      fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3100      marked_pr_dependency |= 1 << unwind.personality_index;
3101      seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3102	= marked_pr_dependency;
3103    }
3104
3105  if (val)
3106    /* Inline exception table entry.  */
3107    md_number_to_chars (ptr + 4, val, 4);
3108  else
3109    /* Self relative offset of the table entry.	 */
3110    fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3111	     BFD_RELOC_ARM_PREL31);
3112
3113  /* Restore the original section.  */
3114  subseg_set (unwind.saved_seg, unwind.saved_subseg);
3115}
3116
3117
3118/* Parse an unwind_cantunwind directive.  */
3119
3120static void
3121s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3122{
3123  demand_empty_rest_of_line ();
3124  if (unwind.personality_routine || unwind.personality_index != -1)
3125    as_bad (_("personality routine specified for cantunwind frame"));
3126
3127  unwind.personality_index = -2;
3128}
3129
3130
3131/* Parse a personalityindex directive.	*/
3132
3133static void
3134s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3135{
3136  expressionS exp;
3137
3138  if (unwind.personality_routine || unwind.personality_index != -1)
3139    as_bad (_("duplicate .personalityindex directive"));
3140
3141  expression (&exp);
3142
3143  if (exp.X_op != O_constant
3144      || exp.X_add_number < 0 || exp.X_add_number > 15)
3145    {
3146      as_bad (_("bad personality routine number"));
3147      ignore_rest_of_line ();
3148      return;
3149    }
3150
3151  unwind.personality_index = exp.X_add_number;
3152
3153  demand_empty_rest_of_line ();
3154}
3155
3156
3157/* Parse a personality directive.  */
3158
3159static void
3160s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3161{
3162  char *name, *p, c;
3163
3164  if (unwind.personality_routine || unwind.personality_index != -1)
3165    as_bad (_("duplicate .personality directive"));
3166
3167  name = input_line_pointer;
3168  c = get_symbol_end ();
3169  p = input_line_pointer;
3170  unwind.personality_routine = symbol_find_or_make (name);
3171  *p = c;
3172  demand_empty_rest_of_line ();
3173}
3174
3175
3176/* Parse a directive saving core registers.  */
3177
3178static void
3179s_arm_unwind_save_core (void)
3180{
3181  valueT op;
3182  long range;
3183  int n;
3184
3185  range = parse_reg_list (&input_line_pointer);
3186  if (range == FAIL)
3187    {
3188      as_bad (_("expected register list"));
3189      ignore_rest_of_line ();
3190      return;
3191    }
3192
3193  demand_empty_rest_of_line ();
3194
3195  /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3196     into .unwind_save {..., sp...}.  We aren't bothered about the value of
3197     ip because it is clobbered by calls.  */
3198  if (unwind.sp_restored && unwind.fp_reg == 12
3199      && (range & 0x3000) == 0x1000)
3200    {
3201      unwind.opcode_count--;
3202      unwind.sp_restored = 0;
3203      range = (range | 0x2000) & ~0x1000;
3204      unwind.pending_offset = 0;
3205    }
3206
3207  /* Pop r4-r15.  */
3208  if (range & 0xfff0)
3209    {
3210      /* See if we can use the short opcodes.  These pop a block of up to 8
3211	 registers starting with r4, plus maybe r14.  */
3212      for (n = 0; n < 8; n++)
3213	{
3214	  /* Break at the first non-saved register.	 */
3215	  if ((range & (1 << (n + 4))) == 0)
3216	    break;
3217	}
3218      /* See if there are any other bits set.  */
3219      if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3220	{
3221	  /* Use the long form.  */
3222	  op = 0x8000 | ((range >> 4) & 0xfff);
3223	  add_unwind_opcode (op, 2);
3224	}
3225      else
3226	{
3227	  /* Use the short form.  */
3228	  if (range & 0x4000)
3229	    op = 0xa8; /* Pop r14.	*/
3230	  else
3231	    op = 0xa0; /* Do not pop r14.  */
3232	  op |= (n - 1);
3233	  add_unwind_opcode (op, 1);
3234	}
3235    }
3236
3237  /* Pop r0-r3.	 */
3238  if (range & 0xf)
3239    {
3240      op = 0xb100 | (range & 0xf);
3241      add_unwind_opcode (op, 2);
3242    }
3243
3244  /* Record the number of bytes pushed.	 */
3245  for (n = 0; n < 16; n++)
3246    {
3247      if (range & (1 << n))
3248	unwind.frame_size += 4;
3249    }
3250}
3251
3252
3253/* Parse a directive saving FPA registers.  */
3254
3255static void
3256s_arm_unwind_save_fpa (int reg)
3257{
3258  expressionS exp;
3259  int num_regs;
3260  valueT op;
3261
3262  /* Get Number of registers to transfer.  */
3263  if (skip_past_comma (&input_line_pointer) != FAIL)
3264    expression (&exp);
3265  else
3266    exp.X_op = O_illegal;
3267
3268  if (exp.X_op != O_constant)
3269    {
3270      as_bad (_("expected , <constant>"));
3271      ignore_rest_of_line ();
3272      return;
3273    }
3274
3275  num_regs = exp.X_add_number;
3276
3277  if (num_regs < 1 || num_regs > 4)
3278    {
3279      as_bad (_("number of registers must be in the range [1:4]"));
3280      ignore_rest_of_line ();
3281      return;
3282    }
3283
3284  demand_empty_rest_of_line ();
3285
3286  if (reg == 4)
3287    {
3288      /* Short form.  */
3289      op = 0xb4 | (num_regs - 1);
3290      add_unwind_opcode (op, 1);
3291    }
3292  else
3293    {
3294      /* Long form.  */
3295      op = 0xc800 | (reg << 4) | (num_regs - 1);
3296      add_unwind_opcode (op, 2);
3297    }
3298  unwind.frame_size += num_regs * 12;
3299}
3300
3301
3302/* Parse a directive saving VFP registers for ARMv6 and above.  */
3303
3304static void
3305s_arm_unwind_save_vfp_armv6 (void)
3306{
3307  int count;
3308  unsigned int start;
3309  valueT op;
3310  int num_vfpv3_regs = 0;
3311  int num_regs_below_16;
3312
3313  count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3314  if (count == FAIL)
3315    {
3316      as_bad (_("expected register list"));
3317      ignore_rest_of_line ();
3318      return;
3319    }
3320
3321  demand_empty_rest_of_line ();
3322
3323  /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3324     than FSTMX/FLDMX-style ones).  */
3325
3326  /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31.  */
3327  if (start >= 16)
3328    num_vfpv3_regs = count;
3329  else if (start + count > 16)
3330    num_vfpv3_regs = start + count - 16;
3331
3332  if (num_vfpv3_regs > 0)
3333    {
3334      int start_offset = start > 16 ? start - 16 : 0;
3335      op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3336      add_unwind_opcode (op, 2);
3337    }
3338
3339  /* Generate opcode for registers numbered in the range 0 .. 15.  */
3340  num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3341  assert (num_regs_below_16 + num_vfpv3_regs == count);
3342  if (num_regs_below_16 > 0)
3343    {
3344      op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3345      add_unwind_opcode (op, 2);
3346    }
3347
3348  unwind.frame_size += count * 8;
3349}
3350
3351
3352/* Parse a directive saving VFP registers for pre-ARMv6.  */
3353
3354static void
3355s_arm_unwind_save_vfp (void)
3356{
3357  int count;
3358  unsigned int reg;
3359  valueT op;
3360
3361  count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3362  if (count == FAIL)
3363    {
3364      as_bad (_("expected register list"));
3365      ignore_rest_of_line ();
3366      return;
3367    }
3368
3369  demand_empty_rest_of_line ();
3370
3371  if (reg == 8)
3372    {
3373      /* Short form.  */
3374      op = 0xb8 | (count - 1);
3375      add_unwind_opcode (op, 1);
3376    }
3377  else
3378    {
3379      /* Long form.  */
3380      op = 0xb300 | (reg << 4) | (count - 1);
3381      add_unwind_opcode (op, 2);
3382    }
3383  unwind.frame_size += count * 8 + 4;
3384}
3385
3386
3387/* Parse a directive saving iWMMXt data registers.  */
3388
3389static void
3390s_arm_unwind_save_mmxwr (void)
3391{
3392  int reg;
3393  int hi_reg;
3394  int i;
3395  unsigned mask = 0;
3396  valueT op;
3397
3398  if (*input_line_pointer == '{')
3399    input_line_pointer++;
3400
3401  do
3402    {
3403      reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3404
3405      if (reg == FAIL)
3406	{
3407	  as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3408	  goto error;
3409	}
3410
3411      if (mask >> reg)
3412	as_tsktsk (_("register list not in ascending order"));
3413      mask |= 1 << reg;
3414
3415      if (*input_line_pointer == '-')
3416	{
3417	  input_line_pointer++;
3418	  hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3419	  if (hi_reg == FAIL)
3420	    {
3421	      as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3422	      goto error;
3423	    }
3424	  else if (reg >= hi_reg)
3425	    {
3426	      as_bad (_("bad register range"));
3427	      goto error;
3428	    }
3429	  for (; reg < hi_reg; reg++)
3430	    mask |= 1 << reg;
3431	}
3432    }
3433  while (skip_past_comma (&input_line_pointer) != FAIL);
3434
3435  if (*input_line_pointer == '}')
3436    input_line_pointer++;
3437
3438  demand_empty_rest_of_line ();
3439
3440  /* Generate any deferred opcodes because we're going to be looking at
3441     the list.	*/
3442  flush_pending_unwind ();
3443
3444  for (i = 0; i < 16; i++)
3445    {
3446      if (mask & (1 << i))
3447	unwind.frame_size += 8;
3448    }
3449
3450  /* Attempt to combine with a previous opcode.	 We do this because gcc
3451     likes to output separate unwind directives for a single block of
3452     registers.	 */
3453  if (unwind.opcode_count > 0)
3454    {
3455      i = unwind.opcodes[unwind.opcode_count - 1];
3456      if ((i & 0xf8) == 0xc0)
3457	{
3458	  i &= 7;
3459	  /* Only merge if the blocks are contiguous.  */
3460	  if (i < 6)
3461	    {
3462	      if ((mask & 0xfe00) == (1 << 9))
3463		{
3464		  mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3465		  unwind.opcode_count--;
3466		}
3467	    }
3468	  else if (i == 6 && unwind.opcode_count >= 2)
3469	    {
3470	      i = unwind.opcodes[unwind.opcode_count - 2];
3471	      reg = i >> 4;
3472	      i &= 0xf;
3473
3474	      op = 0xffff << (reg - 1);
3475	      if (reg > 0
3476		  && ((mask & op) == (1u << (reg - 1))))
3477		{
3478		  op = (1 << (reg + i + 1)) - 1;
3479		  op &= ~((1 << reg) - 1);
3480		  mask |= op;
3481		  unwind.opcode_count -= 2;
3482		}
3483	    }
3484	}
3485    }
3486
3487  hi_reg = 15;
3488  /* We want to generate opcodes in the order the registers have been
3489     saved, ie. descending order.  */
3490  for (reg = 15; reg >= -1; reg--)
3491    {
3492      /* Save registers in blocks.  */
3493      if (reg < 0
3494	  || !(mask & (1 << reg)))
3495	{
3496	  /* We found an unsaved reg.  Generate opcodes to save the
3497	     preceeding block.	*/
3498	  if (reg != hi_reg)
3499	    {
3500	      if (reg == 9)
3501		{
3502		  /* Short form.  */
3503		  op = 0xc0 | (hi_reg - 10);
3504		  add_unwind_opcode (op, 1);
3505		}
3506	      else
3507		{
3508		  /* Long form.	 */
3509		  op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3510		  add_unwind_opcode (op, 2);
3511		}
3512	    }
3513	  hi_reg = reg - 1;
3514	}
3515    }
3516
3517  return;
3518error:
3519  ignore_rest_of_line ();
3520}
3521
3522static void
3523s_arm_unwind_save_mmxwcg (void)
3524{
3525  int reg;
3526  int hi_reg;
3527  unsigned mask = 0;
3528  valueT op;
3529
3530  if (*input_line_pointer == '{')
3531    input_line_pointer++;
3532
3533  do
3534    {
3535      reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3536
3537      if (reg == FAIL)
3538	{
3539	  as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3540	  goto error;
3541	}
3542
3543      reg -= 8;
3544      if (mask >> reg)
3545	as_tsktsk (_("register list not in ascending order"));
3546      mask |= 1 << reg;
3547
3548      if (*input_line_pointer == '-')
3549	{
3550	  input_line_pointer++;
3551	  hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3552	  if (hi_reg == FAIL)
3553	    {
3554	      as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3555	      goto error;
3556	    }
3557	  else if (reg >= hi_reg)
3558	    {
3559	      as_bad (_("bad register range"));
3560	      goto error;
3561	    }
3562	  for (; reg < hi_reg; reg++)
3563	    mask |= 1 << reg;
3564	}
3565    }
3566  while (skip_past_comma (&input_line_pointer) != FAIL);
3567
3568  if (*input_line_pointer == '}')
3569    input_line_pointer++;
3570
3571  demand_empty_rest_of_line ();
3572
3573  /* Generate any deferred opcodes because we're going to be looking at
3574     the list.	*/
3575  flush_pending_unwind ();
3576
3577  for (reg = 0; reg < 16; reg++)
3578    {
3579      if (mask & (1 << reg))
3580	unwind.frame_size += 4;
3581    }
3582  op = 0xc700 | mask;
3583  add_unwind_opcode (op, 2);
3584  return;
3585error:
3586  ignore_rest_of_line ();
3587}
3588
3589
3590/* Parse an unwind_save directive.
3591   If the argument is non-zero, this is a .vsave directive.  */
3592
3593static void
3594s_arm_unwind_save (int arch_v6)
3595{
3596  char *peek;
3597  struct reg_entry *reg;
3598  bfd_boolean had_brace = FALSE;
3599
3600  /* Figure out what sort of save we have.  */
3601  peek = input_line_pointer;
3602
3603  if (*peek == '{')
3604    {
3605      had_brace = TRUE;
3606      peek++;
3607    }
3608
3609  reg = arm_reg_parse_multi (&peek);
3610
3611  if (!reg)
3612    {
3613      as_bad (_("register expected"));
3614      ignore_rest_of_line ();
3615      return;
3616    }
3617
3618  switch (reg->type)
3619    {
3620    case REG_TYPE_FN:
3621      if (had_brace)
3622	{
3623	  as_bad (_("FPA .unwind_save does not take a register list"));
3624	  ignore_rest_of_line ();
3625	  return;
3626	}
3627      s_arm_unwind_save_fpa (reg->number);
3628      return;
3629
3630    case REG_TYPE_RN:	  s_arm_unwind_save_core ();   return;
3631    case REG_TYPE_VFD:
3632      if (arch_v6)
3633        s_arm_unwind_save_vfp_armv6 ();
3634      else
3635        s_arm_unwind_save_vfp ();
3636      return;
3637    case REG_TYPE_MMXWR:  s_arm_unwind_save_mmxwr ();  return;
3638    case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3639
3640    default:
3641      as_bad (_(".unwind_save does not support this kind of register"));
3642      ignore_rest_of_line ();
3643    }
3644}
3645
3646
3647/* Parse an unwind_movsp directive.  */
3648
3649static void
3650s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3651{
3652  int reg;
3653  valueT op;
3654  int offset;
3655
3656  reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3657  if (reg == FAIL)
3658    {
3659      as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
3660      ignore_rest_of_line ();
3661      return;
3662    }
3663
3664  /* Optional constant.	 */
3665  if (skip_past_comma (&input_line_pointer) != FAIL)
3666    {
3667      if (immediate_for_directive (&offset) == FAIL)
3668	return;
3669    }
3670  else
3671    offset = 0;
3672
3673  demand_empty_rest_of_line ();
3674
3675  if (reg == REG_SP || reg == REG_PC)
3676    {
3677      as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
3678      return;
3679    }
3680
3681  if (unwind.fp_reg != REG_SP)
3682    as_bad (_("unexpected .unwind_movsp directive"));
3683
3684  /* Generate opcode to restore the value.  */
3685  op = 0x90 | reg;
3686  add_unwind_opcode (op, 1);
3687
3688  /* Record the information for later.	*/
3689  unwind.fp_reg = reg;
3690  unwind.fp_offset = unwind.frame_size - offset;
3691  unwind.sp_restored = 1;
3692}
3693
3694/* Parse an unwind_pad directive.  */
3695
3696static void
3697s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
3698{
3699  int offset;
3700
3701  if (immediate_for_directive (&offset) == FAIL)
3702    return;
3703
3704  if (offset & 3)
3705    {
3706      as_bad (_("stack increment must be multiple of 4"));
3707      ignore_rest_of_line ();
3708      return;
3709    }
3710
3711  /* Don't generate any opcodes, just record the details for later.  */
3712  unwind.frame_size += offset;
3713  unwind.pending_offset += offset;
3714
3715  demand_empty_rest_of_line ();
3716}
3717
3718/* Parse an unwind_setfp directive.  */
3719
3720static void
3721s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
3722{
3723  int sp_reg;
3724  int fp_reg;
3725  int offset;
3726
3727  fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3728  if (skip_past_comma (&input_line_pointer) == FAIL)
3729    sp_reg = FAIL;
3730  else
3731    sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3732
3733  if (fp_reg == FAIL || sp_reg == FAIL)
3734    {
3735      as_bad (_("expected <reg>, <reg>"));
3736      ignore_rest_of_line ();
3737      return;
3738    }
3739
3740  /* Optional constant.	 */
3741  if (skip_past_comma (&input_line_pointer) != FAIL)
3742    {
3743      if (immediate_for_directive (&offset) == FAIL)
3744	return;
3745    }
3746  else
3747    offset = 0;
3748
3749  demand_empty_rest_of_line ();
3750
3751  if (sp_reg != 13 && sp_reg != unwind.fp_reg)
3752    {
3753      as_bad (_("register must be either sp or set by a previous"
3754		"unwind_movsp directive"));
3755      return;
3756    }
3757
3758  /* Don't generate any opcodes, just record the information for later.	 */
3759  unwind.fp_reg = fp_reg;
3760  unwind.fp_used = 1;
3761  if (sp_reg == 13)
3762    unwind.fp_offset = unwind.frame_size - offset;
3763  else
3764    unwind.fp_offset -= offset;
3765}
3766
3767/* Parse an unwind_raw directive.  */
3768
3769static void
3770s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
3771{
3772  expressionS exp;
3773  /* This is an arbitrary limit.	 */
3774  unsigned char op[16];
3775  int count;
3776
3777  expression (&exp);
3778  if (exp.X_op == O_constant
3779      && skip_past_comma (&input_line_pointer) != FAIL)
3780    {
3781      unwind.frame_size += exp.X_add_number;
3782      expression (&exp);
3783    }
3784  else
3785    exp.X_op = O_illegal;
3786
3787  if (exp.X_op != O_constant)
3788    {
3789      as_bad (_("expected <offset>, <opcode>"));
3790      ignore_rest_of_line ();
3791      return;
3792    }
3793
3794  count = 0;
3795
3796  /* Parse the opcode.	*/
3797  for (;;)
3798    {
3799      if (count >= 16)
3800	{
3801	  as_bad (_("unwind opcode too long"));
3802	  ignore_rest_of_line ();
3803	}
3804      if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
3805	{
3806	  as_bad (_("invalid unwind opcode"));
3807	  ignore_rest_of_line ();
3808	  return;
3809	}
3810      op[count++] = exp.X_add_number;
3811
3812      /* Parse the next byte.  */
3813      if (skip_past_comma (&input_line_pointer) == FAIL)
3814	break;
3815
3816      expression (&exp);
3817    }
3818
3819  /* Add the opcode bytes in reverse order.  */
3820  while (count--)
3821    add_unwind_opcode (op[count], 1);
3822
3823  demand_empty_rest_of_line ();
3824}
3825
3826
3827/* Parse a .eabi_attribute directive.  */
3828
3829static void
3830s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3831{
3832  s_vendor_attribute (OBJ_ATTR_PROC);
3833}
3834#endif /* OBJ_ELF */
3835
3836static void s_arm_arch (int);
3837static void s_arm_object_arch (int);
3838static void s_arm_cpu (int);
3839static void s_arm_fpu (int);
3840
3841#ifdef TE_PE
3842
3843static void
3844pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
3845{
3846  expressionS exp;
3847
3848  do
3849    {
3850      expression (&exp);
3851      if (exp.X_op == O_symbol)
3852	exp.X_op = O_secrel;
3853
3854      emit_expr (&exp, 4);
3855    }
3856  while (*input_line_pointer++ == ',');
3857
3858  input_line_pointer--;
3859  demand_empty_rest_of_line ();
3860}
3861#endif /* TE_PE */
3862
3863/* This table describes all the machine specific pseudo-ops the assembler
3864   has to support.  The fields are:
3865     pseudo-op name without dot
3866     function to call to execute this pseudo-op
3867     Integer arg to pass to the function.  */
3868
3869const pseudo_typeS md_pseudo_table[] =
3870{
3871  /* Never called because '.req' does not start a line.	 */
3872  { "req",	   s_req,	  0 },
3873  /* Following two are likewise never called.  */
3874  { "dn",	   s_dn,          0 },
3875  { "qn",          s_qn,          0 },
3876  { "unreq",	   s_unreq,	  0 },
3877  { "bss",	   s_bss,	  0 },
3878  { "align",	   s_align,	  0 },
3879  { "arm",	   s_arm,	  0 },
3880  { "thumb",	   s_thumb,	  0 },
3881  { "code",	   s_code,	  0 },
3882  { "force_thumb", s_force_thumb, 0 },
3883  { "thumb_func",  s_thumb_func,  0 },
3884  { "thumb_set",   s_thumb_set,	  0 },
3885  { "even",	   s_even,	  0 },
3886  { "ltorg",	   s_ltorg,	  0 },
3887  { "pool",	   s_ltorg,	  0 },
3888  { "syntax",	   s_syntax,	  0 },
3889  { "cpu",	   s_arm_cpu,	  0 },
3890  { "arch",	   s_arm_arch,	  0 },
3891  { "object_arch", s_arm_object_arch,	0 },
3892  { "fpu",	   s_arm_fpu,	  0 },
3893#ifdef OBJ_ELF
3894  { "word",	   s_arm_elf_cons, 4 },
3895  { "long",	   s_arm_elf_cons, 4 },
3896  { "rel31",	   s_arm_rel31,	  0 },
3897  { "fnstart",		s_arm_unwind_fnstart,	0 },
3898  { "fnend",		s_arm_unwind_fnend,	0 },
3899  { "cantunwind",	s_arm_unwind_cantunwind, 0 },
3900  { "personality",	s_arm_unwind_personality, 0 },
3901  { "personalityindex",	s_arm_unwind_personalityindex, 0 },
3902  { "handlerdata",	s_arm_unwind_handlerdata, 0 },
3903  { "save",		s_arm_unwind_save,	0 },
3904  { "vsave",		s_arm_unwind_save,	1 },
3905  { "movsp",		s_arm_unwind_movsp,	0 },
3906  { "pad",		s_arm_unwind_pad,	0 },
3907  { "setfp",		s_arm_unwind_setfp,	0 },
3908  { "unwind_raw",	s_arm_unwind_raw,	0 },
3909  { "eabi_attribute",	s_arm_eabi_attribute,	0 },
3910#else
3911  { "word",	   cons, 4},
3912
3913  /* These are used for dwarf.  */
3914  {"2byte", cons, 2},
3915  {"4byte", cons, 4},
3916  {"8byte", cons, 8},
3917  /* These are used for dwarf2.  */
3918  { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3919  { "loc",  dwarf2_directive_loc,  0 },
3920  { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
3921#endif
3922  { "extend",	   float_cons, 'x' },
3923  { "ldouble",	   float_cons, 'x' },
3924  { "packed",	   float_cons, 'p' },
3925#ifdef TE_PE
3926  {"secrel32", pe_directive_secrel, 0},
3927#endif
3928  { 0, 0, 0 }
3929};
3930
3931/* Parser functions used exclusively in instruction operands.  */
3932
3933/* Generic immediate-value read function for use in insn parsing.
3934   STR points to the beginning of the immediate (the leading #);
3935   VAL receives the value; if the value is outside [MIN, MAX]
3936   issue an error.  PREFIX_OPT is true if the immediate prefix is
3937   optional.  */
3938
3939static int
3940parse_immediate (char **str, int *val, int min, int max,
3941		 bfd_boolean prefix_opt)
3942{
3943  expressionS exp;
3944  my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
3945  if (exp.X_op != O_constant)
3946    {
3947      inst.error = _("constant expression required");
3948      return FAIL;
3949    }
3950
3951  if (exp.X_add_number < min || exp.X_add_number > max)
3952    {
3953      inst.error = _("immediate value out of range");
3954      return FAIL;
3955    }
3956
3957  *val = exp.X_add_number;
3958  return SUCCESS;
3959}
3960
3961/* Less-generic immediate-value read function with the possibility of loading a
3962   big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
3963   instructions. Puts the result directly in inst.operands[i].  */
3964
3965static int
3966parse_big_immediate (char **str, int i)
3967{
3968  expressionS exp;
3969  char *ptr = *str;
3970
3971  my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
3972
3973  if (exp.X_op == O_constant)
3974    {
3975      inst.operands[i].imm = exp.X_add_number & 0xffffffff;
3976      /* If we're on a 64-bit host, then a 64-bit number can be returned using
3977	 O_constant.  We have to be careful not to break compilation for
3978	 32-bit X_add_number, though.  */
3979      if ((exp.X_add_number & ~0xffffffffl) != 0)
3980	{
3981          /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4.  */
3982	  inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
3983	  inst.operands[i].regisimm = 1;
3984	}
3985    }
3986  else if (exp.X_op == O_big
3987           && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
3988           && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
3989    {
3990      unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
3991      /* Bignums have their least significant bits in
3992         generic_bignum[0]. Make sure we put 32 bits in imm and
3993         32 bits in reg,  in a (hopefully) portable way.  */
3994      assert (parts != 0);
3995      inst.operands[i].imm = 0;
3996      for (j = 0; j < parts; j++, idx++)
3997        inst.operands[i].imm |= generic_bignum[idx]
3998                                << (LITTLENUM_NUMBER_OF_BITS * j);
3999      inst.operands[i].reg = 0;
4000      for (j = 0; j < parts; j++, idx++)
4001        inst.operands[i].reg |= generic_bignum[idx]
4002                                << (LITTLENUM_NUMBER_OF_BITS * j);
4003      inst.operands[i].regisimm = 1;
4004    }
4005  else
4006    return FAIL;
4007
4008  *str = ptr;
4009
4010  return SUCCESS;
4011}
4012
4013/* Returns the pseudo-register number of an FPA immediate constant,
4014   or FAIL if there isn't a valid constant here.  */
4015
4016static int
4017parse_fpa_immediate (char ** str)
4018{
4019  LITTLENUM_TYPE words[MAX_LITTLENUMS];
4020  char *	 save_in;
4021  expressionS	 exp;
4022  int		 i;
4023  int		 j;
4024
4025  /* First try and match exact strings, this is to guarantee
4026     that some formats will work even for cross assembly.  */
4027
4028  for (i = 0; fp_const[i]; i++)
4029    {
4030      if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4031	{
4032	  char *start = *str;
4033
4034	  *str += strlen (fp_const[i]);
4035	  if (is_end_of_line[(unsigned char) **str])
4036	    return i + 8;
4037	  *str = start;
4038	}
4039    }
4040
4041  /* Just because we didn't get a match doesn't mean that the constant
4042     isn't valid, just that it is in a format that we don't
4043     automatically recognize.  Try parsing it with the standard
4044     expression routines.  */
4045
4046  memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4047
4048  /* Look for a raw floating point number.  */
4049  if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4050      && is_end_of_line[(unsigned char) *save_in])
4051    {
4052      for (i = 0; i < NUM_FLOAT_VALS; i++)
4053	{
4054	  for (j = 0; j < MAX_LITTLENUMS; j++)
4055	    {
4056	      if (words[j] != fp_values[i][j])
4057		break;
4058	    }
4059
4060	  if (j == MAX_LITTLENUMS)
4061	    {
4062	      *str = save_in;
4063	      return i + 8;
4064	    }
4065	}
4066    }
4067
4068  /* Try and parse a more complex expression, this will probably fail
4069     unless the code uses a floating point prefix (eg "0f").  */
4070  save_in = input_line_pointer;
4071  input_line_pointer = *str;
4072  if (expression (&exp) == absolute_section
4073      && exp.X_op == O_big
4074      && exp.X_add_number < 0)
4075    {
4076      /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4077	 Ditto for 15.	*/
4078      if (gen_to_words (words, 5, (long) 15) == 0)
4079	{
4080	  for (i = 0; i < NUM_FLOAT_VALS; i++)
4081	    {
4082	      for (j = 0; j < MAX_LITTLENUMS; j++)
4083		{
4084		  if (words[j] != fp_values[i][j])
4085		    break;
4086		}
4087
4088	      if (j == MAX_LITTLENUMS)
4089		{
4090		  *str = input_line_pointer;
4091		  input_line_pointer = save_in;
4092		  return i + 8;
4093		}
4094	    }
4095	}
4096    }
4097
4098  *str = input_line_pointer;
4099  input_line_pointer = save_in;
4100  inst.error = _("invalid FPA immediate expression");
4101  return FAIL;
4102}
4103
4104/* Returns 1 if a number has "quarter-precision" float format
4105   0baBbbbbbc defgh000 00000000 00000000.  */
4106
4107static int
4108is_quarter_float (unsigned imm)
4109{
4110  int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4111  return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4112}
4113
4114/* Parse an 8-bit "quarter-precision" floating point number of the form:
4115   0baBbbbbbc defgh000 00000000 00000000.
4116   The zero and minus-zero cases need special handling, since they can't be
4117   encoded in the "quarter-precision" float format, but can nonetheless be
4118   loaded as integer constants.  */
4119
4120static unsigned
4121parse_qfloat_immediate (char **ccp, int *immed)
4122{
4123  char *str = *ccp;
4124  char *fpnum;
4125  LITTLENUM_TYPE words[MAX_LITTLENUMS];
4126  int found_fpchar = 0;
4127
4128  skip_past_char (&str, '#');
4129
4130  /* We must not accidentally parse an integer as a floating-point number. Make
4131     sure that the value we parse is not an integer by checking for special
4132     characters '.' or 'e'.
4133     FIXME: This is a horrible hack, but doing better is tricky because type
4134     information isn't in a very usable state at parse time.  */
4135  fpnum = str;
4136  skip_whitespace (fpnum);
4137
4138  if (strncmp (fpnum, "0x", 2) == 0)
4139    return FAIL;
4140  else
4141    {
4142      for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4143        if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4144          {
4145            found_fpchar = 1;
4146            break;
4147          }
4148
4149      if (!found_fpchar)
4150        return FAIL;
4151    }
4152
4153  if ((str = atof_ieee (str, 's', words)) != NULL)
4154    {
4155      unsigned fpword = 0;
4156      int i;
4157
4158      /* Our FP word must be 32 bits (single-precision FP).  */
4159      for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4160        {
4161          fpword <<= LITTLENUM_NUMBER_OF_BITS;
4162          fpword |= words[i];
4163        }
4164
4165      if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4166        *immed = fpword;
4167      else
4168        return FAIL;
4169
4170      *ccp = str;
4171
4172      return SUCCESS;
4173    }
4174
4175  return FAIL;
4176}
4177
4178/* Shift operands.  */
4179enum shift_kind
4180{
4181  SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4182};
4183
4184struct asm_shift_name
4185{
4186  const char	  *name;
4187  enum shift_kind  kind;
4188};
4189
4190/* Third argument to parse_shift.  */
4191enum parse_shift_mode
4192{
4193  NO_SHIFT_RESTRICT,		/* Any kind of shift is accepted.  */
4194  SHIFT_IMMEDIATE,		/* Shift operand must be an immediate.	*/
4195  SHIFT_LSL_OR_ASR_IMMEDIATE,	/* Shift must be LSL or ASR immediate.	*/
4196  SHIFT_ASR_IMMEDIATE,		/* Shift must be ASR immediate.	 */
4197  SHIFT_LSL_IMMEDIATE,		/* Shift must be LSL immediate.	 */
4198};
4199
4200/* Parse a <shift> specifier on an ARM data processing instruction.
4201   This has three forms:
4202
4203     (LSL|LSR|ASL|ASR|ROR) Rs
4204     (LSL|LSR|ASL|ASR|ROR) #imm
4205     RRX
4206
4207   Note that ASL is assimilated to LSL in the instruction encoding, and
4208   RRX to ROR #0 (which cannot be written as such).  */
4209
4210static int
4211parse_shift (char **str, int i, enum parse_shift_mode mode)
4212{
4213  const struct asm_shift_name *shift_name;
4214  enum shift_kind shift;
4215  char *s = *str;
4216  char *p = s;
4217  int reg;
4218
4219  for (p = *str; ISALPHA (*p); p++)
4220    ;
4221
4222  if (p == *str)
4223    {
4224      inst.error = _("shift expression expected");
4225      return FAIL;
4226    }
4227
4228  shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4229
4230  if (shift_name == NULL)
4231    {
4232      inst.error = _("shift expression expected");
4233      return FAIL;
4234    }
4235
4236  shift = shift_name->kind;
4237
4238  switch (mode)
4239    {
4240    case NO_SHIFT_RESTRICT:
4241    case SHIFT_IMMEDIATE:   break;
4242
4243    case SHIFT_LSL_OR_ASR_IMMEDIATE:
4244      if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4245	{
4246	  inst.error = _("'LSL' or 'ASR' required");
4247	  return FAIL;
4248	}
4249      break;
4250
4251    case SHIFT_LSL_IMMEDIATE:
4252      if (shift != SHIFT_LSL)
4253	{
4254	  inst.error = _("'LSL' required");
4255	  return FAIL;
4256	}
4257      break;
4258
4259    case SHIFT_ASR_IMMEDIATE:
4260      if (shift != SHIFT_ASR)
4261	{
4262	  inst.error = _("'ASR' required");
4263	  return FAIL;
4264	}
4265      break;
4266
4267    default: abort ();
4268    }
4269
4270  if (shift != SHIFT_RRX)
4271    {
4272      /* Whitespace can appear here if the next thing is a bare digit.	*/
4273      skip_whitespace (p);
4274
4275      if (mode == NO_SHIFT_RESTRICT
4276	  && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4277	{
4278	  inst.operands[i].imm = reg;
4279	  inst.operands[i].immisreg = 1;
4280	}
4281      else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4282	return FAIL;
4283    }
4284  inst.operands[i].shift_kind = shift;
4285  inst.operands[i].shifted = 1;
4286  *str = p;
4287  return SUCCESS;
4288}
4289
4290/* Parse a <shifter_operand> for an ARM data processing instruction:
4291
4292      #<immediate>
4293      #<immediate>, <rotate>
4294      <Rm>
4295      <Rm>, <shift>
4296
4297   where <shift> is defined by parse_shift above, and <rotate> is a
4298   multiple of 2 between 0 and 30.  Validation of immediate operands
4299   is deferred to md_apply_fix.  */
4300
4301static int
4302parse_shifter_operand (char **str, int i)
4303{
4304  int value;
4305  expressionS expr;
4306
4307  if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4308    {
4309      inst.operands[i].reg = value;
4310      inst.operands[i].isreg = 1;
4311
4312      /* parse_shift will override this if appropriate */
4313      inst.reloc.exp.X_op = O_constant;
4314      inst.reloc.exp.X_add_number = 0;
4315
4316      if (skip_past_comma (str) == FAIL)
4317	return SUCCESS;
4318
4319      /* Shift operation on register.  */
4320      return parse_shift (str, i, NO_SHIFT_RESTRICT);
4321    }
4322
4323  if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4324    return FAIL;
4325
4326  if (skip_past_comma (str) == SUCCESS)
4327    {
4328      /* #x, y -- ie explicit rotation by Y.  */
4329      if (my_get_expression (&expr, str, GE_NO_PREFIX))
4330	return FAIL;
4331
4332      if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4333	{
4334	  inst.error = _("constant expression expected");
4335	  return FAIL;
4336	}
4337
4338      value = expr.X_add_number;
4339      if (value < 0 || value > 30 || value % 2 != 0)
4340	{
4341	  inst.error = _("invalid rotation");
4342	  return FAIL;
4343	}
4344      if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4345	{
4346	  inst.error = _("invalid constant");
4347	  return FAIL;
4348	}
4349
4350      /* Convert to decoded value.  md_apply_fix will put it back.  */
4351      inst.reloc.exp.X_add_number
4352	= (((inst.reloc.exp.X_add_number << (32 - value))
4353	    | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4354    }
4355
4356  inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4357  inst.reloc.pc_rel = 0;
4358  return SUCCESS;
4359}
4360
4361/* Group relocation information.  Each entry in the table contains the
4362   textual name of the relocation as may appear in assembler source
4363   and must end with a colon.
4364   Along with this textual name are the relocation codes to be used if
4365   the corresponding instruction is an ALU instruction (ADD or SUB only),
4366   an LDR, an LDRS, or an LDC.  */
4367
4368struct group_reloc_table_entry
4369{
4370  const char *name;
4371  int alu_code;
4372  int ldr_code;
4373  int ldrs_code;
4374  int ldc_code;
4375};
4376
4377typedef enum
4378{
4379  /* Varieties of non-ALU group relocation.  */
4380
4381  GROUP_LDR,
4382  GROUP_LDRS,
4383  GROUP_LDC
4384} group_reloc_type;
4385
4386static struct group_reloc_table_entry group_reloc_table[] =
4387  { /* Program counter relative: */
4388    { "pc_g0_nc",
4389      BFD_RELOC_ARM_ALU_PC_G0_NC,	/* ALU */
4390      0,				/* LDR */
4391      0,				/* LDRS */
4392      0 },				/* LDC */
4393    { "pc_g0",
4394      BFD_RELOC_ARM_ALU_PC_G0,		/* ALU */
4395      BFD_RELOC_ARM_LDR_PC_G0,		/* LDR */
4396      BFD_RELOC_ARM_LDRS_PC_G0,		/* LDRS */
4397      BFD_RELOC_ARM_LDC_PC_G0 },	/* LDC */
4398    { "pc_g1_nc",
4399      BFD_RELOC_ARM_ALU_PC_G1_NC,	/* ALU */
4400      0,				/* LDR */
4401      0,				/* LDRS */
4402      0 },				/* LDC */
4403    { "pc_g1",
4404      BFD_RELOC_ARM_ALU_PC_G1,		/* ALU */
4405      BFD_RELOC_ARM_LDR_PC_G1, 		/* LDR */
4406      BFD_RELOC_ARM_LDRS_PC_G1,		/* LDRS */
4407      BFD_RELOC_ARM_LDC_PC_G1 },	/* LDC */
4408    { "pc_g2",
4409      BFD_RELOC_ARM_ALU_PC_G2,		/* ALU */
4410      BFD_RELOC_ARM_LDR_PC_G2,		/* LDR */
4411      BFD_RELOC_ARM_LDRS_PC_G2,		/* LDRS */
4412      BFD_RELOC_ARM_LDC_PC_G2 },	/* LDC */
4413    /* Section base relative */
4414    { "sb_g0_nc",
4415      BFD_RELOC_ARM_ALU_SB_G0_NC,	/* ALU */
4416      0,				/* LDR */
4417      0,				/* LDRS */
4418      0 },				/* LDC */
4419    { "sb_g0",
4420      BFD_RELOC_ARM_ALU_SB_G0,		/* ALU */
4421      BFD_RELOC_ARM_LDR_SB_G0,		/* LDR */
4422      BFD_RELOC_ARM_LDRS_SB_G0,		/* LDRS */
4423      BFD_RELOC_ARM_LDC_SB_G0 },	/* LDC */
4424    { "sb_g1_nc",
4425      BFD_RELOC_ARM_ALU_SB_G1_NC,	/* ALU */
4426      0,				/* LDR */
4427      0,				/* LDRS */
4428      0 },				/* LDC */
4429    { "sb_g1",
4430      BFD_RELOC_ARM_ALU_SB_G1,		/* ALU */
4431      BFD_RELOC_ARM_LDR_SB_G1, 		/* LDR */
4432      BFD_RELOC_ARM_LDRS_SB_G1,		/* LDRS */
4433      BFD_RELOC_ARM_LDC_SB_G1 },	/* LDC */
4434    { "sb_g2",
4435      BFD_RELOC_ARM_ALU_SB_G2,		/* ALU */
4436      BFD_RELOC_ARM_LDR_SB_G2,		/* LDR */
4437      BFD_RELOC_ARM_LDRS_SB_G2,		/* LDRS */
4438      BFD_RELOC_ARM_LDC_SB_G2 }	};	/* LDC */
4439
4440/* Given the address of a pointer pointing to the textual name of a group
4441   relocation as may appear in assembler source, attempt to find its details
4442   in group_reloc_table.  The pointer will be updated to the character after
4443   the trailing colon.  On failure, FAIL will be returned; SUCCESS
4444   otherwise.  On success, *entry will be updated to point at the relevant
4445   group_reloc_table entry. */
4446
4447static int
4448find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4449{
4450  unsigned int i;
4451  for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4452    {
4453      int length = strlen (group_reloc_table[i].name);
4454
4455      if (strncasecmp (group_reloc_table[i].name, *str, length) == 0 &&
4456          (*str)[length] == ':')
4457        {
4458          *out = &group_reloc_table[i];
4459          *str += (length + 1);
4460          return SUCCESS;
4461        }
4462    }
4463
4464  return FAIL;
4465}
4466
4467/* Parse a <shifter_operand> for an ARM data processing instruction
4468   (as for parse_shifter_operand) where group relocations are allowed:
4469
4470      #<immediate>
4471      #<immediate>, <rotate>
4472      #:<group_reloc>:<expression>
4473      <Rm>
4474      <Rm>, <shift>
4475
4476   where <group_reloc> is one of the strings defined in group_reloc_table.
4477   The hashes are optional.
4478
4479   Everything else is as for parse_shifter_operand.  */
4480
4481static parse_operand_result
4482parse_shifter_operand_group_reloc (char **str, int i)
4483{
4484  /* Determine if we have the sequence of characters #: or just :
4485     coming next.  If we do, then we check for a group relocation.
4486     If we don't, punt the whole lot to parse_shifter_operand.  */
4487
4488  if (((*str)[0] == '#' && (*str)[1] == ':')
4489      || (*str)[0] == ':')
4490    {
4491      struct group_reloc_table_entry *entry;
4492
4493      if ((*str)[0] == '#')
4494        (*str) += 2;
4495      else
4496        (*str)++;
4497
4498      /* Try to parse a group relocation.  Anything else is an error.  */
4499      if (find_group_reloc_table_entry (str, &entry) == FAIL)
4500        {
4501          inst.error = _("unknown group relocation");
4502          return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4503        }
4504
4505      /* We now have the group relocation table entry corresponding to
4506         the name in the assembler source.  Next, we parse the expression.  */
4507      if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4508        return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4509
4510      /* Record the relocation type (always the ALU variant here).  */
4511      inst.reloc.type = entry->alu_code;
4512      assert (inst.reloc.type != 0);
4513
4514      return PARSE_OPERAND_SUCCESS;
4515    }
4516  else
4517    return parse_shifter_operand (str, i) == SUCCESS
4518           ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4519
4520  /* Never reached.  */
4521}
4522
4523/* Parse all forms of an ARM address expression.  Information is written
4524   to inst.operands[i] and/or inst.reloc.
4525
4526   Preindexed addressing (.preind=1):
4527
4528   [Rn, #offset]       .reg=Rn .reloc.exp=offset
4529   [Rn, +/-Rm]	       .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4530   [Rn, +/-Rm, shift]  .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4531		       .shift_kind=shift .reloc.exp=shift_imm
4532
4533   These three may have a trailing ! which causes .writeback to be set also.
4534
4535   Postindexed addressing (.postind=1, .writeback=1):
4536
4537   [Rn], #offset       .reg=Rn .reloc.exp=offset
4538   [Rn], +/-Rm	       .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4539   [Rn], +/-Rm, shift  .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4540		       .shift_kind=shift .reloc.exp=shift_imm
4541
4542   Unindexed addressing (.preind=0, .postind=0):
4543
4544   [Rn], {option}      .reg=Rn .imm=option .immisreg=0
4545
4546   Other:
4547
4548   [Rn]{!}	       shorthand for [Rn,#0]{!}
4549   =immediate	       .isreg=0 .reloc.exp=immediate
4550   label	       .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4551
4552  It is the caller's responsibility to check for addressing modes not
4553  supported by the instruction, and to set inst.reloc.type.  */
4554
4555static parse_operand_result
4556parse_address_main (char **str, int i, int group_relocations,
4557                    group_reloc_type group_type)
4558{
4559  char *p = *str;
4560  int reg;
4561
4562  if (skip_past_char (&p, '[') == FAIL)
4563    {
4564      if (skip_past_char (&p, '=') == FAIL)
4565	{
4566	  /* bare address - translate to PC-relative offset */
4567	  inst.reloc.pc_rel = 1;
4568	  inst.operands[i].reg = REG_PC;
4569	  inst.operands[i].isreg = 1;
4570	  inst.operands[i].preind = 1;
4571	}
4572      /* else a load-constant pseudo op, no special treatment needed here */
4573
4574      if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4575	return PARSE_OPERAND_FAIL;
4576
4577      *str = p;
4578      return PARSE_OPERAND_SUCCESS;
4579    }
4580
4581  if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4582    {
4583      inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4584      return PARSE_OPERAND_FAIL;
4585    }
4586  inst.operands[i].reg = reg;
4587  inst.operands[i].isreg = 1;
4588
4589  if (skip_past_comma (&p) == SUCCESS)
4590    {
4591      inst.operands[i].preind = 1;
4592
4593      if (*p == '+') p++;
4594      else if (*p == '-') p++, inst.operands[i].negative = 1;
4595
4596      if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4597	{
4598	  inst.operands[i].imm = reg;
4599	  inst.operands[i].immisreg = 1;
4600
4601	  if (skip_past_comma (&p) == SUCCESS)
4602	    if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4603	      return PARSE_OPERAND_FAIL;
4604	}
4605      else if (skip_past_char (&p, ':') == SUCCESS)
4606        {
4607          /* FIXME: '@' should be used here, but it's filtered out by generic
4608             code before we get to see it here. This may be subject to
4609             change.  */
4610          expressionS exp;
4611          my_get_expression (&exp, &p, GE_NO_PREFIX);
4612          if (exp.X_op != O_constant)
4613            {
4614              inst.error = _("alignment must be constant");
4615              return PARSE_OPERAND_FAIL;
4616            }
4617          inst.operands[i].imm = exp.X_add_number << 8;
4618          inst.operands[i].immisalign = 1;
4619          /* Alignments are not pre-indexes.  */
4620          inst.operands[i].preind = 0;
4621        }
4622      else
4623	{
4624	  if (inst.operands[i].negative)
4625	    {
4626	      inst.operands[i].negative = 0;
4627	      p--;
4628	    }
4629
4630	  if (group_relocations &&
4631              ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4632
4633	    {
4634	      struct group_reloc_table_entry *entry;
4635
4636              /* Skip over the #: or : sequence.  */
4637              if (*p == '#')
4638                p += 2;
4639              else
4640                p++;
4641
4642	      /* Try to parse a group relocation.  Anything else is an
4643                 error.  */
4644	      if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4645		{
4646		  inst.error = _("unknown group relocation");
4647		  return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4648		}
4649
4650	      /* We now have the group relocation table entry corresponding to
4651		 the name in the assembler source.  Next, we parse the
4652                 expression.  */
4653	      if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4654		return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4655
4656	      /* Record the relocation type.  */
4657              switch (group_type)
4658                {
4659                  case GROUP_LDR:
4660	            inst.reloc.type = entry->ldr_code;
4661                    break;
4662
4663                  case GROUP_LDRS:
4664	            inst.reloc.type = entry->ldrs_code;
4665                    break;
4666
4667                  case GROUP_LDC:
4668	            inst.reloc.type = entry->ldc_code;
4669                    break;
4670
4671                  default:
4672                    assert (0);
4673                }
4674
4675              if (inst.reloc.type == 0)
4676		{
4677		  inst.error = _("this group relocation is not allowed on this instruction");
4678		  return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4679		}
4680            }
4681          else
4682	    if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4683	      return PARSE_OPERAND_FAIL;
4684	}
4685    }
4686
4687  if (skip_past_char (&p, ']') == FAIL)
4688    {
4689      inst.error = _("']' expected");
4690      return PARSE_OPERAND_FAIL;
4691    }
4692
4693  if (skip_past_char (&p, '!') == SUCCESS)
4694    inst.operands[i].writeback = 1;
4695
4696  else if (skip_past_comma (&p) == SUCCESS)
4697    {
4698      if (skip_past_char (&p, '{') == SUCCESS)
4699	{
4700	  /* [Rn], {expr} - unindexed, with option */
4701	  if (parse_immediate (&p, &inst.operands[i].imm,
4702			       0, 255, TRUE) == FAIL)
4703	    return PARSE_OPERAND_FAIL;
4704
4705	  if (skip_past_char (&p, '}') == FAIL)
4706	    {
4707	      inst.error = _("'}' expected at end of 'option' field");
4708	      return PARSE_OPERAND_FAIL;
4709	    }
4710	  if (inst.operands[i].preind)
4711	    {
4712	      inst.error = _("cannot combine index with option");
4713	      return PARSE_OPERAND_FAIL;
4714	    }
4715	  *str = p;
4716	  return PARSE_OPERAND_SUCCESS;
4717	}
4718      else
4719	{
4720	  inst.operands[i].postind = 1;
4721	  inst.operands[i].writeback = 1;
4722
4723	  if (inst.operands[i].preind)
4724	    {
4725	      inst.error = _("cannot combine pre- and post-indexing");
4726	      return PARSE_OPERAND_FAIL;
4727	    }
4728
4729	  if (*p == '+') p++;
4730	  else if (*p == '-') p++, inst.operands[i].negative = 1;
4731
4732	  if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4733	    {
4734              /* We might be using the immediate for alignment already. If we
4735                 are, OR the register number into the low-order bits.  */
4736              if (inst.operands[i].immisalign)
4737	        inst.operands[i].imm |= reg;
4738              else
4739                inst.operands[i].imm = reg;
4740	      inst.operands[i].immisreg = 1;
4741
4742	      if (skip_past_comma (&p) == SUCCESS)
4743		if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4744		  return PARSE_OPERAND_FAIL;
4745	    }
4746	  else
4747	    {
4748	      if (inst.operands[i].negative)
4749		{
4750		  inst.operands[i].negative = 0;
4751		  p--;
4752		}
4753	      if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4754		return PARSE_OPERAND_FAIL;
4755	    }
4756	}
4757    }
4758
4759  /* If at this point neither .preind nor .postind is set, we have a
4760     bare [Rn]{!}, which is shorthand for [Rn,#0]{!}.  */
4761  if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4762    {
4763      inst.operands[i].preind = 1;
4764      inst.reloc.exp.X_op = O_constant;
4765      inst.reloc.exp.X_add_number = 0;
4766    }
4767  *str = p;
4768  return PARSE_OPERAND_SUCCESS;
4769}
4770
4771static int
4772parse_address (char **str, int i)
4773{
4774  return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4775         ? SUCCESS : FAIL;
4776}
4777
4778static parse_operand_result
4779parse_address_group_reloc (char **str, int i, group_reloc_type type)
4780{
4781  return parse_address_main (str, i, 1, type);
4782}
4783
4784/* Parse an operand for a MOVW or MOVT instruction.  */
4785static int
4786parse_half (char **str)
4787{
4788  char * p;
4789
4790  p = *str;
4791  skip_past_char (&p, '#');
4792  if (strncasecmp (p, ":lower16:", 9) == 0)
4793    inst.reloc.type = BFD_RELOC_ARM_MOVW;
4794  else if (strncasecmp (p, ":upper16:", 9) == 0)
4795    inst.reloc.type = BFD_RELOC_ARM_MOVT;
4796
4797  if (inst.reloc.type != BFD_RELOC_UNUSED)
4798    {
4799      p += 9;
4800      skip_whitespace(p);
4801    }
4802
4803  if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4804    return FAIL;
4805
4806  if (inst.reloc.type == BFD_RELOC_UNUSED)
4807    {
4808      if (inst.reloc.exp.X_op != O_constant)
4809	{
4810	  inst.error = _("constant expression expected");
4811	  return FAIL;
4812	}
4813      if (inst.reloc.exp.X_add_number < 0
4814	  || inst.reloc.exp.X_add_number > 0xffff)
4815	{
4816	  inst.error = _("immediate value out of range");
4817	  return FAIL;
4818	}
4819    }
4820  *str = p;
4821  return SUCCESS;
4822}
4823
4824/* Miscellaneous. */
4825
4826/* Parse a PSR flag operand.  The value returned is FAIL on syntax error,
4827   or a bitmask suitable to be or-ed into the ARM msr instruction.  */
4828static int
4829parse_psr (char **str)
4830{
4831  char *p;
4832  unsigned long psr_field;
4833  const struct asm_psr *psr;
4834  char *start;
4835
4836  /* CPSR's and SPSR's can now be lowercase.  This is just a convenience
4837     feature for ease of use and backwards compatibility.  */
4838  p = *str;
4839  if (strncasecmp (p, "SPSR", 4) == 0)
4840    psr_field = SPSR_BIT;
4841  else if (strncasecmp (p, "CPSR", 4) == 0)
4842    psr_field = 0;
4843  else
4844    {
4845      start = p;
4846      do
4847	p++;
4848      while (ISALNUM (*p) || *p == '_');
4849
4850      psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4851      if (!psr)
4852	return FAIL;
4853
4854      *str = p;
4855      return psr->field;
4856    }
4857
4858  p += 4;
4859  if (*p == '_')
4860    {
4861      /* A suffix follows.  */
4862      p++;
4863      start = p;
4864
4865      do
4866	p++;
4867      while (ISALNUM (*p) || *p == '_');
4868
4869      psr = hash_find_n (arm_psr_hsh, start, p - start);
4870      if (!psr)
4871	goto error;
4872
4873      psr_field |= psr->field;
4874    }
4875  else
4876    {
4877      if (ISALNUM (*p))
4878	goto error;    /* Garbage after "[CS]PSR".  */
4879
4880      psr_field |= (PSR_c | PSR_f);
4881    }
4882  *str = p;
4883  return psr_field;
4884
4885 error:
4886  inst.error = _("flag for {c}psr instruction expected");
4887  return FAIL;
4888}
4889
4890/* Parse the flags argument to CPSI[ED].  Returns FAIL on error, or a
4891   value suitable for splatting into the AIF field of the instruction.	*/
4892
4893static int
4894parse_cps_flags (char **str)
4895{
4896  int val = 0;
4897  int saw_a_flag = 0;
4898  char *s = *str;
4899
4900  for (;;)
4901    switch (*s++)
4902      {
4903      case '\0': case ',':
4904	goto done;
4905
4906      case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4907      case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4908      case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
4909
4910      default:
4911	inst.error = _("unrecognized CPS flag");
4912	return FAIL;
4913      }
4914
4915 done:
4916  if (saw_a_flag == 0)
4917    {
4918      inst.error = _("missing CPS flags");
4919      return FAIL;
4920    }
4921
4922  *str = s - 1;
4923  return val;
4924}
4925
4926/* Parse an endian specifier ("BE" or "LE", case insensitive);
4927   returns 0 for big-endian, 1 for little-endian, FAIL for an error.  */
4928
4929static int
4930parse_endian_specifier (char **str)
4931{
4932  int little_endian;
4933  char *s = *str;
4934
4935  if (strncasecmp (s, "BE", 2))
4936    little_endian = 0;
4937  else if (strncasecmp (s, "LE", 2))
4938    little_endian = 1;
4939  else
4940    {
4941      inst.error = _("valid endian specifiers are be or le");
4942      return FAIL;
4943    }
4944
4945  if (ISALNUM (s[2]) || s[2] == '_')
4946    {
4947      inst.error = _("valid endian specifiers are be or le");
4948      return FAIL;
4949    }
4950
4951  *str = s + 2;
4952  return little_endian;
4953}
4954
4955/* Parse a rotation specifier: ROR #0, #8, #16, #24.  *val receives a
4956   value suitable for poking into the rotate field of an sxt or sxta
4957   instruction, or FAIL on error.  */
4958
4959static int
4960parse_ror (char **str)
4961{
4962  int rot;
4963  char *s = *str;
4964
4965  if (strncasecmp (s, "ROR", 3) == 0)
4966    s += 3;
4967  else
4968    {
4969      inst.error = _("missing rotation field after comma");
4970      return FAIL;
4971    }
4972
4973  if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
4974    return FAIL;
4975
4976  switch (rot)
4977    {
4978    case  0: *str = s; return 0x0;
4979    case  8: *str = s; return 0x1;
4980    case 16: *str = s; return 0x2;
4981    case 24: *str = s; return 0x3;
4982
4983    default:
4984      inst.error = _("rotation can only be 0, 8, 16, or 24");
4985      return FAIL;
4986    }
4987}
4988
4989/* Parse a conditional code (from conds[] below).  The value returned is in the
4990   range 0 .. 14, or FAIL.  */
4991static int
4992parse_cond (char **str)
4993{
4994  char *p, *q;
4995  const struct asm_cond *c;
4996
4997  p = q = *str;
4998  while (ISALPHA (*q))
4999    q++;
5000
5001  c = hash_find_n (arm_cond_hsh, p, q - p);
5002  if (!c)
5003    {
5004      inst.error = _("condition required");
5005      return FAIL;
5006    }
5007
5008  *str = q;
5009  return c->value;
5010}
5011
5012/* Parse an option for a barrier instruction.  Returns the encoding for the
5013   option, or FAIL.  */
5014static int
5015parse_barrier (char **str)
5016{
5017  char *p, *q;
5018  const struct asm_barrier_opt *o;
5019
5020  p = q = *str;
5021  while (ISALPHA (*q))
5022    q++;
5023
5024  o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5025  if (!o)
5026    return FAIL;
5027
5028  *str = q;
5029  return o->value;
5030}
5031
5032/* Parse the operands of a table branch instruction.  Similar to a memory
5033   operand.  */
5034static int
5035parse_tb (char **str)
5036{
5037  char * p = *str;
5038  int reg;
5039
5040  if (skip_past_char (&p, '[') == FAIL)
5041    {
5042      inst.error = _("'[' expected");
5043      return FAIL;
5044    }
5045
5046  if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5047    {
5048      inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5049      return FAIL;
5050    }
5051  inst.operands[0].reg = reg;
5052
5053  if (skip_past_comma (&p) == FAIL)
5054    {
5055      inst.error = _("',' expected");
5056      return FAIL;
5057    }
5058
5059  if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5060    {
5061      inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5062      return FAIL;
5063    }
5064  inst.operands[0].imm = reg;
5065
5066  if (skip_past_comma (&p) == SUCCESS)
5067    {
5068      if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5069	return FAIL;
5070      if (inst.reloc.exp.X_add_number != 1)
5071	{
5072	  inst.error = _("invalid shift");
5073	  return FAIL;
5074	}
5075      inst.operands[0].shifted = 1;
5076    }
5077
5078  if (skip_past_char (&p, ']') == FAIL)
5079    {
5080      inst.error = _("']' expected");
5081      return FAIL;
5082    }
5083  *str = p;
5084  return SUCCESS;
5085}
5086
5087/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5088   information on the types the operands can take and how they are encoded.
5089   Up to four operands may be read; this function handles setting the
5090   ".present" field for each read operand itself.
5091   Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5092   else returns FAIL.  */
5093
5094static int
5095parse_neon_mov (char **str, int *which_operand)
5096{
5097  int i = *which_operand, val;
5098  enum arm_reg_type rtype;
5099  char *ptr = *str;
5100  struct neon_type_el optype;
5101
5102  if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5103    {
5104      /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>.  */
5105      inst.operands[i].reg = val;
5106      inst.operands[i].isscalar = 1;
5107      inst.operands[i].vectype = optype;
5108      inst.operands[i++].present = 1;
5109
5110      if (skip_past_comma (&ptr) == FAIL)
5111        goto wanted_comma;
5112
5113      if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5114        goto wanted_arm;
5115
5116      inst.operands[i].reg = val;
5117      inst.operands[i].isreg = 1;
5118      inst.operands[i].present = 1;
5119    }
5120  else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5121           != FAIL)
5122    {
5123      /* Cases 0, 1, 2, 3, 5 (D only).  */
5124      if (skip_past_comma (&ptr) == FAIL)
5125        goto wanted_comma;
5126
5127      inst.operands[i].reg = val;
5128      inst.operands[i].isreg = 1;
5129      inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5130      inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5131      inst.operands[i].isvec = 1;
5132      inst.operands[i].vectype = optype;
5133      inst.operands[i++].present = 1;
5134
5135      if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5136        {
5137          /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5138             Case 13: VMOV <Sd>, <Rm>  */
5139          inst.operands[i].reg = val;
5140          inst.operands[i].isreg = 1;
5141          inst.operands[i].present = 1;
5142
5143          if (rtype == REG_TYPE_NQ)
5144            {
5145              first_error (_("can't use Neon quad register here"));
5146              return FAIL;
5147            }
5148          else if (rtype != REG_TYPE_VFS)
5149            {
5150              i++;
5151              if (skip_past_comma (&ptr) == FAIL)
5152                goto wanted_comma;
5153              if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5154                goto wanted_arm;
5155              inst.operands[i].reg = val;
5156              inst.operands[i].isreg = 1;
5157              inst.operands[i].present = 1;
5158            }
5159        }
5160      else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5161          /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5162             Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5163             Case 10: VMOV.F32 <Sd>, #<imm>
5164             Case 11: VMOV.F64 <Dd>, #<imm>  */
5165        inst.operands[i].immisfloat = 1;
5166      else if (parse_big_immediate (&ptr, i) == SUCCESS)
5167          /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5168             Case 3: VMOV<c><q>.<dt> <Dd>, #<imm>  */
5169        ;
5170      else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5171                                           &optype)) != FAIL)
5172        {
5173          /* Case 0: VMOV<c><q> <Qd>, <Qm>
5174             Case 1: VMOV<c><q> <Dd>, <Dm>
5175             Case 8: VMOV.F32 <Sd>, <Sm>
5176             Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm>  */
5177
5178          inst.operands[i].reg = val;
5179          inst.operands[i].isreg = 1;
5180          inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5181          inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5182          inst.operands[i].isvec = 1;
5183          inst.operands[i].vectype = optype;
5184          inst.operands[i].present = 1;
5185
5186          if (skip_past_comma (&ptr) == SUCCESS)
5187            {
5188              /* Case 15.  */
5189              i++;
5190
5191              if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5192                goto wanted_arm;
5193
5194              inst.operands[i].reg = val;
5195              inst.operands[i].isreg = 1;
5196              inst.operands[i++].present = 1;
5197
5198              if (skip_past_comma (&ptr) == FAIL)
5199                goto wanted_comma;
5200
5201              if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5202                goto wanted_arm;
5203
5204              inst.operands[i].reg = val;
5205              inst.operands[i].isreg = 1;
5206              inst.operands[i++].present = 1;
5207            }
5208        }
5209      else
5210        {
5211          first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5212          return FAIL;
5213        }
5214    }
5215  else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5216    {
5217      /* Cases 6, 7.  */
5218      inst.operands[i].reg = val;
5219      inst.operands[i].isreg = 1;
5220      inst.operands[i++].present = 1;
5221
5222      if (skip_past_comma (&ptr) == FAIL)
5223        goto wanted_comma;
5224
5225      if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5226        {
5227          /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]>  */
5228          inst.operands[i].reg = val;
5229          inst.operands[i].isscalar = 1;
5230          inst.operands[i].present = 1;
5231          inst.operands[i].vectype = optype;
5232        }
5233      else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5234        {
5235          /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm>  */
5236          inst.operands[i].reg = val;
5237          inst.operands[i].isreg = 1;
5238          inst.operands[i++].present = 1;
5239
5240          if (skip_past_comma (&ptr) == FAIL)
5241            goto wanted_comma;
5242
5243          if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5244              == FAIL)
5245            {
5246              first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5247              return FAIL;
5248            }
5249
5250          inst.operands[i].reg = val;
5251          inst.operands[i].isreg = 1;
5252          inst.operands[i].isvec = 1;
5253          inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5254          inst.operands[i].vectype = optype;
5255          inst.operands[i].present = 1;
5256
5257          if (rtype == REG_TYPE_VFS)
5258            {
5259              /* Case 14.  */
5260              i++;
5261              if (skip_past_comma (&ptr) == FAIL)
5262                goto wanted_comma;
5263              if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5264                                              &optype)) == FAIL)
5265                {
5266                  first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5267                  return FAIL;
5268                }
5269              inst.operands[i].reg = val;
5270              inst.operands[i].isreg = 1;
5271              inst.operands[i].isvec = 1;
5272              inst.operands[i].issingle = 1;
5273              inst.operands[i].vectype = optype;
5274              inst.operands[i].present = 1;
5275            }
5276        }
5277      else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5278               != FAIL)
5279        {
5280          /* Case 13.  */
5281          inst.operands[i].reg = val;
5282          inst.operands[i].isreg = 1;
5283          inst.operands[i].isvec = 1;
5284          inst.operands[i].issingle = 1;
5285          inst.operands[i].vectype = optype;
5286          inst.operands[i++].present = 1;
5287        }
5288    }
5289  else
5290    {
5291      first_error (_("parse error"));
5292      return FAIL;
5293    }
5294
5295  /* Successfully parsed the operands. Update args.  */
5296  *which_operand = i;
5297  *str = ptr;
5298  return SUCCESS;
5299
5300  wanted_comma:
5301  first_error (_("expected comma"));
5302  return FAIL;
5303
5304  wanted_arm:
5305  first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5306  return FAIL;
5307}
5308
5309/* Matcher codes for parse_operands.  */
5310enum operand_parse_code
5311{
5312  OP_stop,	/* end of line */
5313
5314  OP_RR,	/* ARM register */
5315  OP_RRnpc,	/* ARM register, not r15 */
5316  OP_RRnpcb,	/* ARM register, not r15, in square brackets */
5317  OP_RRw,	/* ARM register, not r15, optional trailing ! */
5318  OP_RCP,	/* Coprocessor number */
5319  OP_RCN,	/* Coprocessor register */
5320  OP_RF,	/* FPA register */
5321  OP_RVS,	/* VFP single precision register */
5322  OP_RVD,	/* VFP double precision register (0..15) */
5323  OP_RND,       /* Neon double precision register (0..31) */
5324  OP_RNQ,	/* Neon quad precision register */
5325  OP_RVSD,	/* VFP single or double precision register */
5326  OP_RNDQ,      /* Neon double or quad precision register */
5327  OP_RNSDQ,	/* Neon single, double or quad precision register */
5328  OP_RNSC,      /* Neon scalar D[X] */
5329  OP_RVC,	/* VFP control register */
5330  OP_RMF,	/* Maverick F register */
5331  OP_RMD,	/* Maverick D register */
5332  OP_RMFX,	/* Maverick FX register */
5333  OP_RMDX,	/* Maverick DX register */
5334  OP_RMAX,	/* Maverick AX register */
5335  OP_RMDS,	/* Maverick DSPSC register */
5336  OP_RIWR,	/* iWMMXt wR register */
5337  OP_RIWC,	/* iWMMXt wC register */
5338  OP_RIWG,	/* iWMMXt wCG register */
5339  OP_RXA,	/* XScale accumulator register */
5340
5341  OP_REGLST,	/* ARM register list */
5342  OP_VRSLST,	/* VFP single-precision register list */
5343  OP_VRDLST,	/* VFP double-precision register list */
5344  OP_VRSDLST,   /* VFP single or double-precision register list (& quad) */
5345  OP_NRDLST,    /* Neon double-precision register list (d0-d31, qN aliases) */
5346  OP_NSTRLST,   /* Neon element/structure list */
5347
5348  OP_NILO,      /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...)  */
5349  OP_RNDQ_I0,   /* Neon D or Q reg, or immediate zero.  */
5350  OP_RVSD_I0,	/* VFP S or D reg, or immediate zero.  */
5351  OP_RR_RNSC,   /* ARM reg or Neon scalar.  */
5352  OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar.  */
5353  OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar.  */
5354  OP_RND_RNSC,  /* Neon D reg, or Neon scalar.  */
5355  OP_VMOV,      /* Neon VMOV operands.  */
5356  OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN.  */
5357  OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift.  */
5358  OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2.  */
5359
5360  OP_I0,        /* immediate zero */
5361  OP_I7,	/* immediate value 0 .. 7 */
5362  OP_I15,	/*		   0 .. 15 */
5363  OP_I16,	/*		   1 .. 16 */
5364  OP_I16z,      /*                 0 .. 16 */
5365  OP_I31,	/*		   0 .. 31 */
5366  OP_I31w,	/*		   0 .. 31, optional trailing ! */
5367  OP_I32,	/*		   1 .. 32 */
5368  OP_I32z,	/*		   0 .. 32 */
5369  OP_I63,	/*		   0 .. 63 */
5370  OP_I63s,	/*		 -64 .. 63 */
5371  OP_I64,	/*		   1 .. 64 */
5372  OP_I64z,	/*		   0 .. 64 */
5373  OP_I255,	/*		   0 .. 255 */
5374
5375  OP_I4b,	/* immediate, prefix optional, 1 .. 4 */
5376  OP_I7b,	/*			       0 .. 7 */
5377  OP_I15b,	/*			       0 .. 15 */
5378  OP_I31b,	/*			       0 .. 31 */
5379
5380  OP_SH,	/* shifter operand */
5381  OP_SHG,	/* shifter operand with possible group relocation */
5382  OP_ADDR,	/* Memory address expression (any mode) */
5383  OP_ADDRGLDR,	/* Mem addr expr (any mode) with possible LDR group reloc */
5384  OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5385  OP_ADDRGLDC,  /* Mem addr expr (any mode) with possible LDC group reloc */
5386  OP_EXP,	/* arbitrary expression */
5387  OP_EXPi,	/* same, with optional immediate prefix */
5388  OP_EXPr,	/* same, with optional relocation suffix */
5389  OP_HALF,	/* 0 .. 65535 or low/high reloc.  */
5390
5391  OP_CPSF,	/* CPS flags */
5392  OP_ENDI,	/* Endianness specifier */
5393  OP_PSR,	/* CPSR/SPSR mask for msr */
5394  OP_COND,	/* conditional code */
5395  OP_TB,	/* Table branch.  */
5396
5397  OP_RVC_PSR,	/* CPSR/SPSR mask for msr, or VFP control register.  */
5398  OP_APSR_RR,   /* ARM register or "APSR_nzcv".  */
5399
5400  OP_RRnpc_I0,	/* ARM register or literal 0 */
5401  OP_RR_EXr,	/* ARM register or expression with opt. reloc suff. */
5402  OP_RR_EXi,	/* ARM register or expression with imm prefix */
5403  OP_RF_IF,	/* FPA register or immediate */
5404  OP_RIWR_RIWC, /* iWMMXt R or C reg */
5405  OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5406
5407  /* Optional operands.	 */
5408  OP_oI7b,	 /* immediate, prefix optional, 0 .. 7 */
5409  OP_oI31b,	 /*				0 .. 31 */
5410  OP_oI32b,      /*                             1 .. 32 */
5411  OP_oIffffb,	 /*				0 .. 65535 */
5412  OP_oI255c,	 /*	  curly-brace enclosed, 0 .. 255 */
5413
5414  OP_oRR,	 /* ARM register */
5415  OP_oRRnpc,	 /* ARM register, not the PC */
5416  OP_oRRw,	 /* ARM register, not r15, optional trailing ! */
5417  OP_oRND,       /* Optional Neon double precision register */
5418  OP_oRNQ,       /* Optional Neon quad precision register */
5419  OP_oRNDQ,      /* Optional Neon double or quad precision register */
5420  OP_oRNSDQ,	 /* Optional single, double or quad precision vector register */
5421  OP_oSHll,	 /* LSL immediate */
5422  OP_oSHar,	 /* ASR immediate */
5423  OP_oSHllar,	 /* LSL or ASR immediate */
5424  OP_oROR,	 /* ROR 0/8/16/24 */
5425  OP_oBARRIER,	 /* Option argument for a barrier instruction.  */
5426
5427  OP_FIRST_OPTIONAL = OP_oI7b
5428};
5429
5430/* Generic instruction operand parser.	This does no encoding and no
5431   semantic validation; it merely squirrels values away in the inst
5432   structure.  Returns SUCCESS or FAIL depending on whether the
5433   specified grammar matched.  */
5434static int
5435parse_operands (char *str, const unsigned char *pattern)
5436{
5437  unsigned const char *upat = pattern;
5438  char *backtrack_pos = 0;
5439  const char *backtrack_error = 0;
5440  int i, val, backtrack_index = 0;
5441  enum arm_reg_type rtype;
5442  parse_operand_result result;
5443
5444#define po_char_or_fail(chr) do {		\
5445  if (skip_past_char (&str, chr) == FAIL)	\
5446    goto bad_args;				\
5447} while (0)
5448
5449#define po_reg_or_fail(regtype) do {				\
5450  val = arm_typed_reg_parse (&str, regtype, &rtype,		\
5451  			     &inst.operands[i].vectype);	\
5452  if (val == FAIL)						\
5453    {								\
5454      first_error (_(reg_expected_msgs[regtype]));		\
5455      goto failure;						\
5456    }								\
5457  inst.operands[i].reg = val;					\
5458  inst.operands[i].isreg = 1;					\
5459  inst.operands[i].isquad = (rtype == REG_TYPE_NQ);		\
5460  inst.operands[i].issingle = (rtype == REG_TYPE_VFS);		\
5461  inst.operands[i].isvec = (rtype == REG_TYPE_VFS		\
5462                            || rtype == REG_TYPE_VFD		\
5463                            || rtype == REG_TYPE_NQ);		\
5464} while (0)
5465
5466#define po_reg_or_goto(regtype, label) do {			\
5467  val = arm_typed_reg_parse (&str, regtype, &rtype,		\
5468                             &inst.operands[i].vectype);	\
5469  if (val == FAIL)						\
5470    goto label;							\
5471								\
5472  inst.operands[i].reg = val;					\
5473  inst.operands[i].isreg = 1;					\
5474  inst.operands[i].isquad = (rtype == REG_TYPE_NQ);		\
5475  inst.operands[i].issingle = (rtype == REG_TYPE_VFS);		\
5476  inst.operands[i].isvec = (rtype == REG_TYPE_VFS		\
5477                            || rtype == REG_TYPE_VFD		\
5478                            || rtype == REG_TYPE_NQ);		\
5479} while (0)
5480
5481#define po_imm_or_fail(min, max, popt) do {			\
5482  if (parse_immediate (&str, &val, min, max, popt) == FAIL)	\
5483    goto failure;						\
5484  inst.operands[i].imm = val;					\
5485} while (0)
5486
5487#define po_scalar_or_goto(elsz, label) do {			\
5488  val = parse_scalar (&str, elsz, &inst.operands[i].vectype);	\
5489  if (val == FAIL)						\
5490    goto label;							\
5491  inst.operands[i].reg = val;					\
5492  inst.operands[i].isscalar = 1;				\
5493} while (0)
5494
5495#define po_misc_or_fail(expr) do {		\
5496  if (expr)					\
5497    goto failure;				\
5498} while (0)
5499
5500#define po_misc_or_fail_no_backtrack(expr) do {	\
5501  result = expr;				\
5502  if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5503    backtrack_pos = 0;				\
5504  if (result != PARSE_OPERAND_SUCCESS)		\
5505    goto failure;				\
5506} while (0)
5507
5508  skip_whitespace (str);
5509
5510  for (i = 0; upat[i] != OP_stop; i++)
5511    {
5512      if (upat[i] >= OP_FIRST_OPTIONAL)
5513	{
5514	  /* Remember where we are in case we need to backtrack.  */
5515	  assert (!backtrack_pos);
5516	  backtrack_pos = str;
5517	  backtrack_error = inst.error;
5518	  backtrack_index = i;
5519	}
5520
5521      if (i > 0 && (i > 1 || inst.operands[0].present))
5522	po_char_or_fail (',');
5523
5524      switch (upat[i])
5525	{
5526	  /* Registers */
5527	case OP_oRRnpc:
5528	case OP_RRnpc:
5529	case OP_oRR:
5530	case OP_RR:    po_reg_or_fail (REG_TYPE_RN);	  break;
5531	case OP_RCP:   po_reg_or_fail (REG_TYPE_CP);	  break;
5532	case OP_RCN:   po_reg_or_fail (REG_TYPE_CN);	  break;
5533	case OP_RF:    po_reg_or_fail (REG_TYPE_FN);	  break;
5534	case OP_RVS:   po_reg_or_fail (REG_TYPE_VFS);	  break;
5535	case OP_RVD:   po_reg_or_fail (REG_TYPE_VFD);	  break;
5536        case OP_oRND:
5537	case OP_RND:   po_reg_or_fail (REG_TYPE_VFD);	  break;
5538	case OP_RVC:
5539	  po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5540	  break;
5541	  /* Also accept generic coprocessor regs for unknown registers.  */
5542	  coproc_reg:
5543	  po_reg_or_fail (REG_TYPE_CN);
5544	  break;
5545	case OP_RMF:   po_reg_or_fail (REG_TYPE_MVF);	  break;
5546	case OP_RMD:   po_reg_or_fail (REG_TYPE_MVD);	  break;
5547	case OP_RMFX:  po_reg_or_fail (REG_TYPE_MVFX);	  break;
5548	case OP_RMDX:  po_reg_or_fail (REG_TYPE_MVDX);	  break;
5549	case OP_RMAX:  po_reg_or_fail (REG_TYPE_MVAX);	  break;
5550	case OP_RMDS:  po_reg_or_fail (REG_TYPE_DSPSC);	  break;
5551	case OP_RIWR:  po_reg_or_fail (REG_TYPE_MMXWR);	  break;
5552	case OP_RIWC:  po_reg_or_fail (REG_TYPE_MMXWC);	  break;
5553	case OP_RIWG:  po_reg_or_fail (REG_TYPE_MMXWCG);  break;
5554	case OP_RXA:   po_reg_or_fail (REG_TYPE_XSCALE);  break;
5555        case OP_oRNQ:
5556	case OP_RNQ:   po_reg_or_fail (REG_TYPE_NQ);      break;
5557        case OP_oRNDQ:
5558	case OP_RNDQ:  po_reg_or_fail (REG_TYPE_NDQ);     break;
5559        case OP_RVSD:  po_reg_or_fail (REG_TYPE_VFSD);    break;
5560        case OP_oRNSDQ:
5561        case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ);    break;
5562
5563        /* Neon scalar. Using an element size of 8 means that some invalid
5564           scalars are accepted here, so deal with those in later code.  */
5565        case OP_RNSC:  po_scalar_or_goto (8, failure);    break;
5566
5567        /* WARNING: We can expand to two operands here. This has the potential
5568           to totally confuse the backtracking mechanism! It will be OK at
5569           least as long as we don't try to use optional args as well,
5570           though.  */
5571        case OP_NILO:
5572          {
5573            po_reg_or_goto (REG_TYPE_NDQ, try_imm);
5574	    inst.operands[i].present = 1;
5575            i++;
5576            skip_past_comma (&str);
5577            po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5578            break;
5579            one_reg_only:
5580            /* Optional register operand was omitted. Unfortunately, it's in
5581               operands[i-1] and we need it to be in inst.operands[i]. Fix that
5582               here (this is a bit grotty).  */
5583            inst.operands[i] = inst.operands[i-1];
5584            inst.operands[i-1].present = 0;
5585            break;
5586            try_imm:
5587	    /* There's a possibility of getting a 64-bit immediate here, so
5588	       we need special handling.  */
5589	    if (parse_big_immediate (&str, i) == FAIL)
5590	      {
5591		inst.error = _("immediate value is out of range");
5592		goto failure;
5593	      }
5594          }
5595          break;
5596
5597        case OP_RNDQ_I0:
5598          {
5599            po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5600            break;
5601            try_imm0:
5602            po_imm_or_fail (0, 0, TRUE);
5603          }
5604          break;
5605
5606        case OP_RVSD_I0:
5607          po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5608          break;
5609
5610        case OP_RR_RNSC:
5611          {
5612            po_scalar_or_goto (8, try_rr);
5613            break;
5614            try_rr:
5615            po_reg_or_fail (REG_TYPE_RN);
5616          }
5617          break;
5618
5619        case OP_RNSDQ_RNSC:
5620          {
5621            po_scalar_or_goto (8, try_nsdq);
5622            break;
5623            try_nsdq:
5624            po_reg_or_fail (REG_TYPE_NSDQ);
5625          }
5626          break;
5627
5628        case OP_RNDQ_RNSC:
5629          {
5630            po_scalar_or_goto (8, try_ndq);
5631            break;
5632            try_ndq:
5633            po_reg_or_fail (REG_TYPE_NDQ);
5634          }
5635          break;
5636
5637        case OP_RND_RNSC:
5638          {
5639            po_scalar_or_goto (8, try_vfd);
5640            break;
5641            try_vfd:
5642            po_reg_or_fail (REG_TYPE_VFD);
5643          }
5644          break;
5645
5646        case OP_VMOV:
5647          /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5648             not careful then bad things might happen.  */
5649          po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5650          break;
5651
5652        case OP_RNDQ_IMVNb:
5653          {
5654            po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5655            break;
5656            try_mvnimm:
5657            /* There's a possibility of getting a 64-bit immediate here, so
5658               we need special handling.  */
5659            if (parse_big_immediate (&str, i) == FAIL)
5660              {
5661                inst.error = _("immediate value is out of range");
5662                goto failure;
5663              }
5664          }
5665          break;
5666
5667        case OP_RNDQ_I63b:
5668          {
5669            po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5670            break;
5671            try_shimm:
5672            po_imm_or_fail (0, 63, TRUE);
5673          }
5674          break;
5675
5676	case OP_RRnpcb:
5677	  po_char_or_fail ('[');
5678	  po_reg_or_fail  (REG_TYPE_RN);
5679	  po_char_or_fail (']');
5680	  break;
5681
5682	case OP_RRw:
5683	case OP_oRRw:
5684	  po_reg_or_fail (REG_TYPE_RN);
5685	  if (skip_past_char (&str, '!') == SUCCESS)
5686	    inst.operands[i].writeback = 1;
5687	  break;
5688
5689	  /* Immediates */
5690	case OP_I7:	 po_imm_or_fail (  0,	   7, FALSE);	break;
5691	case OP_I15:	 po_imm_or_fail (  0,	  15, FALSE);	break;
5692	case OP_I16:	 po_imm_or_fail (  1,	  16, FALSE);	break;
5693        case OP_I16z:	 po_imm_or_fail (  0,     16, FALSE);   break;
5694	case OP_I31:	 po_imm_or_fail (  0,	  31, FALSE);	break;
5695	case OP_I32:	 po_imm_or_fail (  1,	  32, FALSE);	break;
5696        case OP_I32z:	 po_imm_or_fail (  0,     32, FALSE);   break;
5697	case OP_I63s:	 po_imm_or_fail (-64,	  63, FALSE);	break;
5698        case OP_I63:	 po_imm_or_fail (  0,     63, FALSE);   break;
5699        case OP_I64:	 po_imm_or_fail (  1,     64, FALSE);   break;
5700        case OP_I64z:	 po_imm_or_fail (  0,     64, FALSE);   break;
5701	case OP_I255:	 po_imm_or_fail (  0,	 255, FALSE);	break;
5702
5703	case OP_I4b:	 po_imm_or_fail (  1,	   4, TRUE);	break;
5704	case OP_oI7b:
5705	case OP_I7b:	 po_imm_or_fail (  0,	   7, TRUE);	break;
5706	case OP_I15b:	 po_imm_or_fail (  0,	  15, TRUE);	break;
5707	case OP_oI31b:
5708	case OP_I31b:	 po_imm_or_fail (  0,	  31, TRUE);	break;
5709        case OP_oI32b:   po_imm_or_fail (  1,     32, TRUE);    break;
5710	case OP_oIffffb: po_imm_or_fail (  0, 0xffff, TRUE);	break;
5711
5712	  /* Immediate variants */
5713	case OP_oI255c:
5714	  po_char_or_fail ('{');
5715	  po_imm_or_fail (0, 255, TRUE);
5716	  po_char_or_fail ('}');
5717	  break;
5718
5719	case OP_I31w:
5720	  /* The expression parser chokes on a trailing !, so we have
5721	     to find it first and zap it.  */
5722	  {
5723	    char *s = str;
5724	    while (*s && *s != ',')
5725	      s++;
5726	    if (s[-1] == '!')
5727	      {
5728		s[-1] = '\0';
5729		inst.operands[i].writeback = 1;
5730	      }
5731	    po_imm_or_fail (0, 31, TRUE);
5732	    if (str == s - 1)
5733	      str = s;
5734	  }
5735	  break;
5736
5737	  /* Expressions */
5738	case OP_EXPi:	EXPi:
5739	  po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5740					      GE_OPT_PREFIX));
5741	  break;
5742
5743	case OP_EXP:
5744	  po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5745					      GE_NO_PREFIX));
5746	  break;
5747
5748	case OP_EXPr:	EXPr:
5749	  po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5750					      GE_NO_PREFIX));
5751	  if (inst.reloc.exp.X_op == O_symbol)
5752	    {
5753	      val = parse_reloc (&str);
5754	      if (val == -1)
5755		{
5756		  inst.error = _("unrecognized relocation suffix");
5757		  goto failure;
5758		}
5759	      else if (val != BFD_RELOC_UNUSED)
5760		{
5761		  inst.operands[i].imm = val;
5762		  inst.operands[i].hasreloc = 1;
5763		}
5764	    }
5765	  break;
5766
5767	  /* Operand for MOVW or MOVT.  */
5768	case OP_HALF:
5769	  po_misc_or_fail (parse_half (&str));
5770	  break;
5771
5772	  /* Register or expression */
5773	case OP_RR_EXr:	  po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5774	case OP_RR_EXi:	  po_reg_or_goto (REG_TYPE_RN, EXPi); break;
5775
5776	  /* Register or immediate */
5777	case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0);   break;
5778	I0:		  po_imm_or_fail (0, 0, FALSE);	      break;
5779
5780	case OP_RF_IF:    po_reg_or_goto (REG_TYPE_FN, IF);   break;
5781	IF:
5782	  if (!is_immediate_prefix (*str))
5783	    goto bad_args;
5784	  str++;
5785	  val = parse_fpa_immediate (&str);
5786	  if (val == FAIL)
5787	    goto failure;
5788	  /* FPA immediates are encoded as registers 8-15.
5789	     parse_fpa_immediate has already applied the offset.  */
5790	  inst.operands[i].reg = val;
5791	  inst.operands[i].isreg = 1;
5792	  break;
5793
5794	case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
5795	I32z:		  po_imm_or_fail (0, 32, FALSE);	  break;
5796
5797	  /* Two kinds of register */
5798	case OP_RIWR_RIWC:
5799	  {
5800	    struct reg_entry *rege = arm_reg_parse_multi (&str);
5801	    if (!rege
5802		|| (rege->type != REG_TYPE_MMXWR
5803		    && rege->type != REG_TYPE_MMXWC
5804		    && rege->type != REG_TYPE_MMXWCG))
5805	      {
5806		inst.error = _("iWMMXt data or control register expected");
5807		goto failure;
5808	      }
5809	    inst.operands[i].reg = rege->number;
5810	    inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5811	  }
5812	  break;
5813
5814	case OP_RIWC_RIWG:
5815	  {
5816	    struct reg_entry *rege = arm_reg_parse_multi (&str);
5817	    if (!rege
5818		|| (rege->type != REG_TYPE_MMXWC
5819		    && rege->type != REG_TYPE_MMXWCG))
5820	      {
5821		inst.error = _("iWMMXt control register expected");
5822		goto failure;
5823	      }
5824	    inst.operands[i].reg = rege->number;
5825	    inst.operands[i].isreg = 1;
5826	  }
5827	  break;
5828
5829	  /* Misc */
5830	case OP_CPSF:	 val = parse_cps_flags (&str);		break;
5831	case OP_ENDI:	 val = parse_endian_specifier (&str);	break;
5832	case OP_oROR:	 val = parse_ror (&str);		break;
5833	case OP_PSR:	 val = parse_psr (&str);		break;
5834	case OP_COND:	 val = parse_cond (&str);		break;
5835	case OP_oBARRIER:val = parse_barrier (&str);		break;
5836
5837        case OP_RVC_PSR:
5838          po_reg_or_goto (REG_TYPE_VFC, try_psr);
5839          inst.operands[i].isvec = 1;  /* Mark VFP control reg as vector.  */
5840          break;
5841          try_psr:
5842          val = parse_psr (&str);
5843          break;
5844
5845        case OP_APSR_RR:
5846          po_reg_or_goto (REG_TYPE_RN, try_apsr);
5847          break;
5848          try_apsr:
5849          /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5850             instruction).  */
5851          if (strncasecmp (str, "APSR_", 5) == 0)
5852            {
5853              unsigned found = 0;
5854              str += 5;
5855              while (found < 15)
5856                switch (*str++)
5857                  {
5858                  case 'c': found = (found & 1) ? 16 : found | 1; break;
5859                  case 'n': found = (found & 2) ? 16 : found | 2; break;
5860                  case 'z': found = (found & 4) ? 16 : found | 4; break;
5861                  case 'v': found = (found & 8) ? 16 : found | 8; break;
5862                  default: found = 16;
5863                  }
5864              if (found != 15)
5865                goto failure;
5866              inst.operands[i].isvec = 1;
5867            }
5868          else
5869            goto failure;
5870          break;
5871
5872	case OP_TB:
5873	  po_misc_or_fail (parse_tb (&str));
5874	  break;
5875
5876	  /* Register lists */
5877	case OP_REGLST:
5878	  val = parse_reg_list (&str);
5879	  if (*str == '^')
5880	    {
5881	      inst.operands[1].writeback = 1;
5882	      str++;
5883	    }
5884	  break;
5885
5886	case OP_VRSLST:
5887	  val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
5888	  break;
5889
5890	case OP_VRDLST:
5891	  val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
5892	  break;
5893
5894        case OP_VRSDLST:
5895          /* Allow Q registers too.  */
5896          val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5897                                    REGLIST_NEON_D);
5898          if (val == FAIL)
5899            {
5900              inst.error = NULL;
5901              val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5902                                        REGLIST_VFP_S);
5903              inst.operands[i].issingle = 1;
5904            }
5905          break;
5906
5907        case OP_NRDLST:
5908          val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5909                                    REGLIST_NEON_D);
5910          break;
5911
5912	case OP_NSTRLST:
5913          val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5914                                           &inst.operands[i].vectype);
5915          break;
5916
5917	  /* Addressing modes */
5918	case OP_ADDR:
5919	  po_misc_or_fail (parse_address (&str, i));
5920	  break;
5921
5922	case OP_ADDRGLDR:
5923	  po_misc_or_fail_no_backtrack (
5924            parse_address_group_reloc (&str, i, GROUP_LDR));
5925	  break;
5926
5927	case OP_ADDRGLDRS:
5928	  po_misc_or_fail_no_backtrack (
5929            parse_address_group_reloc (&str, i, GROUP_LDRS));
5930	  break;
5931
5932	case OP_ADDRGLDC:
5933	  po_misc_or_fail_no_backtrack (
5934            parse_address_group_reloc (&str, i, GROUP_LDC));
5935	  break;
5936
5937	case OP_SH:
5938	  po_misc_or_fail (parse_shifter_operand (&str, i));
5939	  break;
5940
5941	case OP_SHG:
5942	  po_misc_or_fail_no_backtrack (
5943            parse_shifter_operand_group_reloc (&str, i));
5944	  break;
5945
5946	case OP_oSHll:
5947	  po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
5948	  break;
5949
5950	case OP_oSHar:
5951	  po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
5952	  break;
5953
5954	case OP_oSHllar:
5955	  po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
5956	  break;
5957
5958	default:
5959	  as_fatal ("unhandled operand code %d", upat[i]);
5960	}
5961
5962      /* Various value-based sanity checks and shared operations.  We
5963	 do not signal immediate failures for the register constraints;
5964	 this allows a syntax error to take precedence.	 */
5965      switch (upat[i])
5966	{
5967	case OP_oRRnpc:
5968	case OP_RRnpc:
5969	case OP_RRnpcb:
5970	case OP_RRw:
5971	case OP_oRRw:
5972	case OP_RRnpc_I0:
5973	  if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
5974	    inst.error = BAD_PC;
5975	  break;
5976
5977	case OP_CPSF:
5978	case OP_ENDI:
5979	case OP_oROR:
5980	case OP_PSR:
5981        case OP_RVC_PSR:
5982	case OP_COND:
5983	case OP_oBARRIER:
5984	case OP_REGLST:
5985	case OP_VRSLST:
5986	case OP_VRDLST:
5987        case OP_VRSDLST:
5988        case OP_NRDLST:
5989        case OP_NSTRLST:
5990	  if (val == FAIL)
5991	    goto failure;
5992	  inst.operands[i].imm = val;
5993	  break;
5994
5995	default:
5996	  break;
5997	}
5998
5999      /* If we get here, this operand was successfully parsed.	*/
6000      inst.operands[i].present = 1;
6001      continue;
6002
6003    bad_args:
6004      inst.error = BAD_ARGS;
6005
6006    failure:
6007      if (!backtrack_pos)
6008	{
6009	  /* The parse routine should already have set inst.error, but set a
6010	     defaut here just in case.  */
6011	  if (!inst.error)
6012	    inst.error = _("syntax error");
6013	  return FAIL;
6014	}
6015
6016      /* Do not backtrack over a trailing optional argument that
6017	 absorbed some text.  We will only fail again, with the
6018	 'garbage following instruction' error message, which is
6019	 probably less helpful than the current one.  */
6020      if (backtrack_index == i && backtrack_pos != str
6021	  && upat[i+1] == OP_stop)
6022	{
6023	  if (!inst.error)
6024	    inst.error = _("syntax error");
6025	  return FAIL;
6026	}
6027
6028      /* Try again, skipping the optional argument at backtrack_pos.  */
6029      str = backtrack_pos;
6030      inst.error = backtrack_error;
6031      inst.operands[backtrack_index].present = 0;
6032      i = backtrack_index;
6033      backtrack_pos = 0;
6034    }
6035
6036  /* Check that we have parsed all the arguments.  */
6037  if (*str != '\0' && !inst.error)
6038    inst.error = _("garbage following instruction");
6039
6040  return inst.error ? FAIL : SUCCESS;
6041}
6042
6043#undef po_char_or_fail
6044#undef po_reg_or_fail
6045#undef po_reg_or_goto
6046#undef po_imm_or_fail
6047#undef po_scalar_or_fail
6048
6049/* Shorthand macro for instruction encoding functions issuing errors.  */
6050#define constraint(expr, err) do {		\
6051  if (expr)					\
6052    {						\
6053      inst.error = err;				\
6054      return;					\
6055    }						\
6056} while (0)
6057
6058/* Functions for operand encoding.  ARM, then Thumb.  */
6059
6060#define rotate_left(v, n) (v << n | v >> (32 - n))
6061
6062/* If VAL can be encoded in the immediate field of an ARM instruction,
6063   return the encoded form.  Otherwise, return FAIL.  */
6064
6065static unsigned int
6066encode_arm_immediate (unsigned int val)
6067{
6068  unsigned int a, i;
6069
6070  for (i = 0; i < 32; i += 2)
6071    if ((a = rotate_left (val, i)) <= 0xff)
6072      return a | (i << 7); /* 12-bit pack: [shift-cnt,const].  */
6073
6074  return FAIL;
6075}
6076
6077/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6078   return the encoded form.  Otherwise, return FAIL.  */
6079static unsigned int
6080encode_thumb32_immediate (unsigned int val)
6081{
6082  unsigned int a, i;
6083
6084  if (val <= 0xff)
6085    return val;
6086
6087  for (i = 1; i <= 24; i++)
6088    {
6089      a = val >> i;
6090      if ((val & ~(0xff << i)) == 0)
6091	return ((val >> i) & 0x7f) | ((32 - i) << 7);
6092    }
6093
6094  a = val & 0xff;
6095  if (val == ((a << 16) | a))
6096    return 0x100 | a;
6097  if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6098    return 0x300 | a;
6099
6100  a = val & 0xff00;
6101  if (val == ((a << 16) | a))
6102    return 0x200 | (a >> 8);
6103
6104  return FAIL;
6105}
6106/* Encode a VFP SP or DP register number into inst.instruction.  */
6107
6108static void
6109encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6110{
6111  if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6112      && reg > 15)
6113    {
6114      if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
6115        {
6116          if (thumb_mode)
6117            ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6118                                    fpu_vfp_ext_v3);
6119          else
6120            ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6121                                    fpu_vfp_ext_v3);
6122        }
6123      else
6124        {
6125          first_error (_("D register out of range for selected VFP version"));
6126          return;
6127        }
6128    }
6129
6130  switch (pos)
6131    {
6132    case VFP_REG_Sd:
6133      inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6134      break;
6135
6136    case VFP_REG_Sn:
6137      inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6138      break;
6139
6140    case VFP_REG_Sm:
6141      inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6142      break;
6143
6144    case VFP_REG_Dd:
6145      inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6146      break;
6147
6148    case VFP_REG_Dn:
6149      inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6150      break;
6151
6152    case VFP_REG_Dm:
6153      inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6154      break;
6155
6156    default:
6157      abort ();
6158    }
6159}
6160
6161/* Encode a <shift> in an ARM-format instruction.  The immediate,
6162   if any, is handled by md_apply_fix.	 */
6163static void
6164encode_arm_shift (int i)
6165{
6166  if (inst.operands[i].shift_kind == SHIFT_RRX)
6167    inst.instruction |= SHIFT_ROR << 5;
6168  else
6169    {
6170      inst.instruction |= inst.operands[i].shift_kind << 5;
6171      if (inst.operands[i].immisreg)
6172	{
6173	  inst.instruction |= SHIFT_BY_REG;
6174	  inst.instruction |= inst.operands[i].imm << 8;
6175	}
6176      else
6177	inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6178    }
6179}
6180
6181static void
6182encode_arm_shifter_operand (int i)
6183{
6184  if (inst.operands[i].isreg)
6185    {
6186      inst.instruction |= inst.operands[i].reg;
6187      encode_arm_shift (i);
6188    }
6189  else
6190    inst.instruction |= INST_IMMEDIATE;
6191}
6192
6193/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3.  */
6194static void
6195encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6196{
6197  assert (inst.operands[i].isreg);
6198  inst.instruction |= inst.operands[i].reg << 16;
6199
6200  if (inst.operands[i].preind)
6201    {
6202      if (is_t)
6203	{
6204	  inst.error = _("instruction does not accept preindexed addressing");
6205	  return;
6206	}
6207      inst.instruction |= PRE_INDEX;
6208      if (inst.operands[i].writeback)
6209	inst.instruction |= WRITE_BACK;
6210
6211    }
6212  else if (inst.operands[i].postind)
6213    {
6214      assert (inst.operands[i].writeback);
6215      if (is_t)
6216	inst.instruction |= WRITE_BACK;
6217    }
6218  else /* unindexed - only for coprocessor */
6219    {
6220      inst.error = _("instruction does not accept unindexed addressing");
6221      return;
6222    }
6223
6224  if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6225      && (((inst.instruction & 0x000f0000) >> 16)
6226	  == ((inst.instruction & 0x0000f000) >> 12)))
6227    as_warn ((inst.instruction & LOAD_BIT)
6228	     ? _("destination register same as write-back base")
6229	     : _("source register same as write-back base"));
6230}
6231
6232/* inst.operands[i] was set up by parse_address.  Encode it into an
6233   ARM-format mode 2 load or store instruction.	 If is_t is true,
6234   reject forms that cannot be used with a T instruction (i.e. not
6235   post-indexed).  */
6236static void
6237encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6238{
6239  encode_arm_addr_mode_common (i, is_t);
6240
6241  if (inst.operands[i].immisreg)
6242    {
6243      inst.instruction |= INST_IMMEDIATE;  /* yes, this is backwards */
6244      inst.instruction |= inst.operands[i].imm;
6245      if (!inst.operands[i].negative)
6246	inst.instruction |= INDEX_UP;
6247      if (inst.operands[i].shifted)
6248	{
6249	  if (inst.operands[i].shift_kind == SHIFT_RRX)
6250	    inst.instruction |= SHIFT_ROR << 5;
6251	  else
6252	    {
6253	      inst.instruction |= inst.operands[i].shift_kind << 5;
6254	      inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6255	    }
6256	}
6257    }
6258  else /* immediate offset in inst.reloc */
6259    {
6260      if (inst.reloc.type == BFD_RELOC_UNUSED)
6261	inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6262    }
6263}
6264
6265/* inst.operands[i] was set up by parse_address.  Encode it into an
6266   ARM-format mode 3 load or store instruction.	 Reject forms that
6267   cannot be used with such instructions.  If is_t is true, reject
6268   forms that cannot be used with a T instruction (i.e. not
6269   post-indexed).  */
6270static void
6271encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6272{
6273  if (inst.operands[i].immisreg && inst.operands[i].shifted)
6274    {
6275      inst.error = _("instruction does not accept scaled register index");
6276      return;
6277    }
6278
6279  encode_arm_addr_mode_common (i, is_t);
6280
6281  if (inst.operands[i].immisreg)
6282    {
6283      inst.instruction |= inst.operands[i].imm;
6284      if (!inst.operands[i].negative)
6285	inst.instruction |= INDEX_UP;
6286    }
6287  else /* immediate offset in inst.reloc */
6288    {
6289      inst.instruction |= HWOFFSET_IMM;
6290      if (inst.reloc.type == BFD_RELOC_UNUSED)
6291	inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6292    }
6293}
6294
6295/* inst.operands[i] was set up by parse_address.  Encode it into an
6296   ARM-format instruction.  Reject all forms which cannot be encoded
6297   into a coprocessor load/store instruction.  If wb_ok is false,
6298   reject use of writeback; if unind_ok is false, reject use of
6299   unindexed addressing.  If reloc_override is not 0, use it instead
6300   of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6301   (in which case it is preserved).  */
6302
6303static int
6304encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6305{
6306  inst.instruction |= inst.operands[i].reg << 16;
6307
6308  assert (!(inst.operands[i].preind && inst.operands[i].postind));
6309
6310  if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6311    {
6312      assert (!inst.operands[i].writeback);
6313      if (!unind_ok)
6314	{
6315	  inst.error = _("instruction does not support unindexed addressing");
6316	  return FAIL;
6317	}
6318      inst.instruction |= inst.operands[i].imm;
6319      inst.instruction |= INDEX_UP;
6320      return SUCCESS;
6321    }
6322
6323  if (inst.operands[i].preind)
6324    inst.instruction |= PRE_INDEX;
6325
6326  if (inst.operands[i].writeback)
6327    {
6328      if (inst.operands[i].reg == REG_PC)
6329	{
6330	  inst.error = _("pc may not be used with write-back");
6331	  return FAIL;
6332	}
6333      if (!wb_ok)
6334	{
6335	  inst.error = _("instruction does not support writeback");
6336	  return FAIL;
6337	}
6338      inst.instruction |= WRITE_BACK;
6339    }
6340
6341  if (reloc_override)
6342    inst.reloc.type = reloc_override;
6343  else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6344            || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6345           && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6346    {
6347      if (thumb_mode)
6348        inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6349      else
6350        inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6351    }
6352
6353  return SUCCESS;
6354}
6355
6356/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6357   Determine whether it can be performed with a move instruction; if
6358   it can, convert inst.instruction to that move instruction and
6359   return 1; if it can't, convert inst.instruction to a literal-pool
6360   load and return 0.  If this is not a valid thing to do in the
6361   current context, set inst.error and return 1.
6362
6363   inst.operands[i] describes the destination register.	 */
6364
6365static int
6366move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6367{
6368  unsigned long tbit;
6369
6370  if (thumb_p)
6371    tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6372  else
6373    tbit = LOAD_BIT;
6374
6375  if ((inst.instruction & tbit) == 0)
6376    {
6377      inst.error = _("invalid pseudo operation");
6378      return 1;
6379    }
6380  if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6381    {
6382      inst.error = _("constant expression expected");
6383      return 1;
6384    }
6385  if (inst.reloc.exp.X_op == O_constant)
6386    {
6387      if (thumb_p)
6388	{
6389	  if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6390	    {
6391	      /* This can be done with a mov(1) instruction.  */
6392	      inst.instruction	= T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6393	      inst.instruction |= inst.reloc.exp.X_add_number;
6394	      return 1;
6395	    }
6396	}
6397      else
6398	{
6399	  int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6400	  if (value != FAIL)
6401	    {
6402	      /* This can be done with a mov instruction.  */
6403	      inst.instruction &= LITERAL_MASK;
6404	      inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6405	      inst.instruction |= value & 0xfff;
6406	      return 1;
6407	    }
6408
6409	  value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6410	  if (value != FAIL)
6411	    {
6412	      /* This can be done with a mvn instruction.  */
6413	      inst.instruction &= LITERAL_MASK;
6414	      inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6415	      inst.instruction |= value & 0xfff;
6416	      return 1;
6417	    }
6418	}
6419    }
6420
6421  if (add_to_lit_pool () == FAIL)
6422    {
6423      inst.error = _("literal pool insertion failed");
6424      return 1;
6425    }
6426  inst.operands[1].reg = REG_PC;
6427  inst.operands[1].isreg = 1;
6428  inst.operands[1].preind = 1;
6429  inst.reloc.pc_rel = 1;
6430  inst.reloc.type = (thumb_p
6431		     ? BFD_RELOC_ARM_THUMB_OFFSET
6432		     : (mode_3
6433			? BFD_RELOC_ARM_HWLITERAL
6434			: BFD_RELOC_ARM_LITERAL));
6435  return 0;
6436}
6437
6438/* Functions for instruction encoding, sorted by subarchitecture.
6439   First some generics; their names are taken from the conventional
6440   bit positions for register arguments in ARM format instructions.  */
6441
6442static void
6443do_noargs (void)
6444{
6445}
6446
6447static void
6448do_rd (void)
6449{
6450  inst.instruction |= inst.operands[0].reg << 12;
6451}
6452
6453static void
6454do_rd_rm (void)
6455{
6456  inst.instruction |= inst.operands[0].reg << 12;
6457  inst.instruction |= inst.operands[1].reg;
6458}
6459
6460static void
6461do_rd_rn (void)
6462{
6463  inst.instruction |= inst.operands[0].reg << 12;
6464  inst.instruction |= inst.operands[1].reg << 16;
6465}
6466
6467static void
6468do_rn_rd (void)
6469{
6470  inst.instruction |= inst.operands[0].reg << 16;
6471  inst.instruction |= inst.operands[1].reg << 12;
6472}
6473
6474static void
6475do_rd_rm_rn (void)
6476{
6477  unsigned Rn = inst.operands[2].reg;
6478  /* Enforce restrictions on SWP instruction.  */
6479  if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6480    constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6481		_("Rn must not overlap other operands"));
6482  inst.instruction |= inst.operands[0].reg << 12;
6483  inst.instruction |= inst.operands[1].reg;
6484  inst.instruction |= Rn << 16;
6485}
6486
6487static void
6488do_rd_rn_rm (void)
6489{
6490  inst.instruction |= inst.operands[0].reg << 12;
6491  inst.instruction |= inst.operands[1].reg << 16;
6492  inst.instruction |= inst.operands[2].reg;
6493}
6494
6495static void
6496do_rm_rd_rn (void)
6497{
6498  inst.instruction |= inst.operands[0].reg;
6499  inst.instruction |= inst.operands[1].reg << 12;
6500  inst.instruction |= inst.operands[2].reg << 16;
6501}
6502
6503static void
6504do_imm0 (void)
6505{
6506  inst.instruction |= inst.operands[0].imm;
6507}
6508
6509static void
6510do_rd_cpaddr (void)
6511{
6512  inst.instruction |= inst.operands[0].reg << 12;
6513  encode_arm_cp_address (1, TRUE, TRUE, 0);
6514}
6515
6516/* ARM instructions, in alphabetical order by function name (except
6517   that wrapper functions appear immediately after the function they
6518   wrap).  */
6519
6520/* This is a pseudo-op of the form "adr rd, label" to be converted
6521   into a relative address of the form "add rd, pc, #label-.-8".  */
6522
6523static void
6524do_adr (void)
6525{
6526  inst.instruction |= (inst.operands[0].reg << 12);  /* Rd */
6527
6528  /* Frag hacking will turn this into a sub instruction if the offset turns
6529     out to be negative.  */
6530  inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
6531  inst.reloc.pc_rel = 1;
6532  inst.reloc.exp.X_add_number -= 8;
6533}
6534
6535/* This is a pseudo-op of the form "adrl rd, label" to be converted
6536   into a relative address of the form:
6537   add rd, pc, #low(label-.-8)"
6538   add rd, rd, #high(label-.-8)"  */
6539
6540static void
6541do_adrl (void)
6542{
6543  inst.instruction |= (inst.operands[0].reg << 12);  /* Rd */
6544
6545  /* Frag hacking will turn this into a sub instruction if the offset turns
6546     out to be negative.  */
6547  inst.reloc.type	       = BFD_RELOC_ARM_ADRL_IMMEDIATE;
6548  inst.reloc.pc_rel	       = 1;
6549  inst.size		       = INSN_SIZE * 2;
6550  inst.reloc.exp.X_add_number -= 8;
6551}
6552
6553static void
6554do_arit (void)
6555{
6556  if (!inst.operands[1].present)
6557    inst.operands[1].reg = inst.operands[0].reg;
6558  inst.instruction |= inst.operands[0].reg << 12;
6559  inst.instruction |= inst.operands[1].reg << 16;
6560  encode_arm_shifter_operand (2);
6561}
6562
6563static void
6564do_barrier (void)
6565{
6566  if (inst.operands[0].present)
6567    {
6568      constraint ((inst.instruction & 0xf0) != 0x40
6569		  && inst.operands[0].imm != 0xf,
6570		  "bad barrier type");
6571      inst.instruction |= inst.operands[0].imm;
6572    }
6573  else
6574    inst.instruction |= 0xf;
6575}
6576
6577static void
6578do_bfc (void)
6579{
6580  unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6581  constraint (msb > 32, _("bit-field extends past end of register"));
6582  /* The instruction encoding stores the LSB and MSB,
6583     not the LSB and width.  */
6584  inst.instruction |= inst.operands[0].reg << 12;
6585  inst.instruction |= inst.operands[1].imm << 7;
6586  inst.instruction |= (msb - 1) << 16;
6587}
6588
6589static void
6590do_bfi (void)
6591{
6592  unsigned int msb;
6593
6594  /* #0 in second position is alternative syntax for bfc, which is
6595     the same instruction but with REG_PC in the Rm field.  */
6596  if (!inst.operands[1].isreg)
6597    inst.operands[1].reg = REG_PC;
6598
6599  msb = inst.operands[2].imm + inst.operands[3].imm;
6600  constraint (msb > 32, _("bit-field extends past end of register"));
6601  /* The instruction encoding stores the LSB and MSB,
6602     not the LSB and width.  */
6603  inst.instruction |= inst.operands[0].reg << 12;
6604  inst.instruction |= inst.operands[1].reg;
6605  inst.instruction |= inst.operands[2].imm << 7;
6606  inst.instruction |= (msb - 1) << 16;
6607}
6608
6609static void
6610do_bfx (void)
6611{
6612  constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6613	      _("bit-field extends past end of register"));
6614  inst.instruction |= inst.operands[0].reg << 12;
6615  inst.instruction |= inst.operands[1].reg;
6616  inst.instruction |= inst.operands[2].imm << 7;
6617  inst.instruction |= (inst.operands[3].imm - 1) << 16;
6618}
6619
6620/* ARM V5 breakpoint instruction (argument parse)
6621     BKPT <16 bit unsigned immediate>
6622     Instruction is not conditional.
6623	The bit pattern given in insns[] has the COND_ALWAYS condition,
6624	and it is an error if the caller tried to override that.  */
6625
6626static void
6627do_bkpt (void)
6628{
6629  /* Top 12 of 16 bits to bits 19:8.  */
6630  inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
6631
6632  /* Bottom 4 of 16 bits to bits 3:0.  */
6633  inst.instruction |= inst.operands[0].imm & 0xf;
6634}
6635
6636static void
6637encode_branch (int default_reloc)
6638{
6639  if (inst.operands[0].hasreloc)
6640    {
6641      constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6642		  _("the only suffix valid here is '(plt)'"));
6643      inst.reloc.type	= BFD_RELOC_ARM_PLT32;
6644    }
6645  else
6646    {
6647      inst.reloc.type = default_reloc;
6648    }
6649  inst.reloc.pc_rel = 1;
6650}
6651
6652static void
6653do_branch (void)
6654{
6655#ifdef OBJ_ELF
6656  if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6657    encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6658  else
6659#endif
6660    encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6661}
6662
6663static void
6664do_bl (void)
6665{
6666#ifdef OBJ_ELF
6667  if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6668    {
6669      if (inst.cond == COND_ALWAYS)
6670	encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6671      else
6672	encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6673    }
6674  else
6675#endif
6676    encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6677}
6678
6679/* ARM V5 branch-link-exchange instruction (argument parse)
6680     BLX <target_addr>		ie BLX(1)
6681     BLX{<condition>} <Rm>	ie BLX(2)
6682   Unfortunately, there are two different opcodes for this mnemonic.
6683   So, the insns[].value is not used, and the code here zaps values
6684	into inst.instruction.
6685   Also, the <target_addr> can be 25 bits, hence has its own reloc.  */
6686
6687static void
6688do_blx (void)
6689{
6690  if (inst.operands[0].isreg)
6691    {
6692      /* Arg is a register; the opcode provided by insns[] is correct.
6693	 It is not illegal to do "blx pc", just useless.  */
6694      if (inst.operands[0].reg == REG_PC)
6695	as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
6696
6697      inst.instruction |= inst.operands[0].reg;
6698    }
6699  else
6700    {
6701      /* Arg is an address; this instruction cannot be executed
6702	 conditionally, and the opcode must be adjusted.  */
6703      constraint (inst.cond != COND_ALWAYS, BAD_COND);
6704      inst.instruction = 0xfa000000;
6705#ifdef OBJ_ELF
6706      if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6707	encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6708      else
6709#endif
6710	encode_branch (BFD_RELOC_ARM_PCREL_BLX);
6711    }
6712}
6713
6714static void
6715do_bx (void)
6716{
6717  if (inst.operands[0].reg == REG_PC)
6718    as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
6719
6720  inst.instruction |= inst.operands[0].reg;
6721}
6722
6723
6724/* ARM v5TEJ.  Jump to Jazelle code.  */
6725
6726static void
6727do_bxj (void)
6728{
6729  if (inst.operands[0].reg == REG_PC)
6730    as_tsktsk (_("use of r15 in bxj is not really useful"));
6731
6732  inst.instruction |= inst.operands[0].reg;
6733}
6734
6735/* Co-processor data operation:
6736      CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6737      CDP2	<coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}	 */
6738static void
6739do_cdp (void)
6740{
6741  inst.instruction |= inst.operands[0].reg << 8;
6742  inst.instruction |= inst.operands[1].imm << 20;
6743  inst.instruction |= inst.operands[2].reg << 12;
6744  inst.instruction |= inst.operands[3].reg << 16;
6745  inst.instruction |= inst.operands[4].reg;
6746  inst.instruction |= inst.operands[5].imm << 5;
6747}
6748
6749static void
6750do_cmp (void)
6751{
6752  inst.instruction |= inst.operands[0].reg << 16;
6753  encode_arm_shifter_operand (1);
6754}
6755
6756/* Transfer between coprocessor and ARM registers.
6757   MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6758   MRC2
6759   MCR{cond}
6760   MCR2
6761
6762   No special properties.  */
6763
6764static void
6765do_co_reg (void)
6766{
6767  inst.instruction |= inst.operands[0].reg << 8;
6768  inst.instruction |= inst.operands[1].imm << 21;
6769  inst.instruction |= inst.operands[2].reg << 12;
6770  inst.instruction |= inst.operands[3].reg << 16;
6771  inst.instruction |= inst.operands[4].reg;
6772  inst.instruction |= inst.operands[5].imm << 5;
6773}
6774
6775/* Transfer between coprocessor register and pair of ARM registers.
6776   MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6777   MCRR2
6778   MRRC{cond}
6779   MRRC2
6780
6781   Two XScale instructions are special cases of these:
6782
6783     MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6784     MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
6785
6786   Result unpredicatable if Rd or Rn is R15.  */
6787
6788static void
6789do_co_reg2c (void)
6790{
6791  inst.instruction |= inst.operands[0].reg << 8;
6792  inst.instruction |= inst.operands[1].imm << 4;
6793  inst.instruction |= inst.operands[2].reg << 12;
6794  inst.instruction |= inst.operands[3].reg << 16;
6795  inst.instruction |= inst.operands[4].reg;
6796}
6797
6798static void
6799do_cpsi (void)
6800{
6801  inst.instruction |= inst.operands[0].imm << 6;
6802  if (inst.operands[1].present)
6803    {
6804      inst.instruction |= CPSI_MMOD;
6805      inst.instruction |= inst.operands[1].imm;
6806    }
6807}
6808
6809static void
6810do_dbg (void)
6811{
6812  inst.instruction |= inst.operands[0].imm;
6813}
6814
6815static void
6816do_it (void)
6817{
6818  /* There is no IT instruction in ARM mode.  We
6819     process it but do not generate code for it.  */
6820  inst.size = 0;
6821}
6822
6823static void
6824do_ldmstm (void)
6825{
6826  int base_reg = inst.operands[0].reg;
6827  int range = inst.operands[1].imm;
6828
6829  inst.instruction |= base_reg << 16;
6830  inst.instruction |= range;
6831
6832  if (inst.operands[1].writeback)
6833    inst.instruction |= LDM_TYPE_2_OR_3;
6834
6835  if (inst.operands[0].writeback)
6836    {
6837      inst.instruction |= WRITE_BACK;
6838      /* Check for unpredictable uses of writeback.  */
6839      if (inst.instruction & LOAD_BIT)
6840	{
6841	  /* Not allowed in LDM type 2.	 */
6842	  if ((inst.instruction & LDM_TYPE_2_OR_3)
6843	      && ((range & (1 << REG_PC)) == 0))
6844	    as_warn (_("writeback of base register is UNPREDICTABLE"));
6845	  /* Only allowed if base reg not in list for other types.  */
6846	  else if (range & (1 << base_reg))
6847	    as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6848	}
6849      else /* STM.  */
6850	{
6851	  /* Not allowed for type 2.  */
6852	  if (inst.instruction & LDM_TYPE_2_OR_3)
6853	    as_warn (_("writeback of base register is UNPREDICTABLE"));
6854	  /* Only allowed if base reg not in list, or first in list.  */
6855	  else if ((range & (1 << base_reg))
6856		   && (range & ((1 << base_reg) - 1)))
6857	    as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
6858	}
6859    }
6860}
6861
6862/* ARMv5TE load-consecutive (argument parse)
6863   Mode is like LDRH.
6864
6865     LDRccD R, mode
6866     STRccD R, mode.  */
6867
6868static void
6869do_ldrd (void)
6870{
6871  constraint (inst.operands[0].reg % 2 != 0,
6872	      _("first destination register must be even"));
6873  constraint (inst.operands[1].present
6874	      && inst.operands[1].reg != inst.operands[0].reg + 1,
6875	      _("can only load two consecutive registers"));
6876  constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6877  constraint (!inst.operands[2].isreg, _("'[' expected"));
6878
6879  if (!inst.operands[1].present)
6880    inst.operands[1].reg = inst.operands[0].reg + 1;
6881
6882  if (inst.instruction & LOAD_BIT)
6883    {
6884      /* encode_arm_addr_mode_3 will diagnose overlap between the base
6885	 register and the first register written; we have to diagnose
6886	 overlap between the base and the second register written here.	 */
6887
6888      if (inst.operands[2].reg == inst.operands[1].reg
6889	  && (inst.operands[2].writeback || inst.operands[2].postind))
6890	as_warn (_("base register written back, and overlaps "
6891		   "second destination register"));
6892
6893      /* For an index-register load, the index register must not overlap the
6894	 destination (even if not write-back).	*/
6895      else if (inst.operands[2].immisreg
6896	       && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
6897		   || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
6898	as_warn (_("index register overlaps destination register"));
6899    }
6900
6901  inst.instruction |= inst.operands[0].reg << 12;
6902  encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
6903}
6904
6905static void
6906do_ldrex (void)
6907{
6908  constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6909	      || inst.operands[1].postind || inst.operands[1].writeback
6910	      || inst.operands[1].immisreg || inst.operands[1].shifted
6911	      || inst.operands[1].negative
6912	      /* This can arise if the programmer has written
6913		   strex rN, rM, foo
6914		 or if they have mistakenly used a register name as the last
6915		 operand,  eg:
6916		   strex rN, rM, rX
6917		 It is very difficult to distinguish between these two cases
6918		 because "rX" might actually be a label. ie the register
6919		 name has been occluded by a symbol of the same name. So we
6920		 just generate a general 'bad addressing mode' type error
6921		 message and leave it up to the programmer to discover the
6922		 true cause and fix their mistake.  */
6923	      || (inst.operands[1].reg == REG_PC),
6924	      BAD_ADDR_MODE);
6925
6926  constraint (inst.reloc.exp.X_op != O_constant
6927	      || inst.reloc.exp.X_add_number != 0,
6928	      _("offset must be zero in ARM encoding"));
6929
6930  inst.instruction |= inst.operands[0].reg << 12;
6931  inst.instruction |= inst.operands[1].reg << 16;
6932  inst.reloc.type = BFD_RELOC_UNUSED;
6933}
6934
6935static void
6936do_ldrexd (void)
6937{
6938  constraint (inst.operands[0].reg % 2 != 0,
6939	      _("even register required"));
6940  constraint (inst.operands[1].present
6941	      && inst.operands[1].reg != inst.operands[0].reg + 1,
6942	      _("can only load two consecutive registers"));
6943  /* If op 1 were present and equal to PC, this function wouldn't
6944     have been called in the first place.  */
6945  constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6946
6947  inst.instruction |= inst.operands[0].reg << 12;
6948  inst.instruction |= inst.operands[2].reg << 16;
6949}
6950
6951static void
6952do_ldst (void)
6953{
6954  inst.instruction |= inst.operands[0].reg << 12;
6955  if (!inst.operands[1].isreg)
6956    if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
6957      return;
6958  encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
6959}
6960
6961static void
6962do_ldstt (void)
6963{
6964  /* ldrt/strt always use post-indexed addressing.  Turn [Rn] into [Rn]! and
6965     reject [Rn,...].  */
6966  if (inst.operands[1].preind)
6967    {
6968      constraint (inst.reloc.exp.X_op != O_constant ||
6969		  inst.reloc.exp.X_add_number != 0,
6970		  _("this instruction requires a post-indexed address"));
6971
6972      inst.operands[1].preind = 0;
6973      inst.operands[1].postind = 1;
6974      inst.operands[1].writeback = 1;
6975    }
6976  inst.instruction |= inst.operands[0].reg << 12;
6977  encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
6978}
6979
6980/* Halfword and signed-byte load/store operations.  */
6981
6982static void
6983do_ldstv4 (void)
6984{
6985  inst.instruction |= inst.operands[0].reg << 12;
6986  if (!inst.operands[1].isreg)
6987    if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
6988      return;
6989  encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
6990}
6991
6992static void
6993do_ldsttv4 (void)
6994{
6995  /* ldrt/strt always use post-indexed addressing.  Turn [Rn] into [Rn]! and
6996     reject [Rn,...].  */
6997  if (inst.operands[1].preind)
6998    {
6999      constraint (inst.reloc.exp.X_op != O_constant ||
7000		  inst.reloc.exp.X_add_number != 0,
7001		  _("this instruction requires a post-indexed address"));
7002
7003      inst.operands[1].preind = 0;
7004      inst.operands[1].postind = 1;
7005      inst.operands[1].writeback = 1;
7006    }
7007  inst.instruction |= inst.operands[0].reg << 12;
7008  encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7009}
7010
7011/* Co-processor register load/store.
7012   Format: <LDC|STC>{cond}[L] CP#,CRd,<address>	 */
7013static void
7014do_lstc (void)
7015{
7016  inst.instruction |= inst.operands[0].reg << 8;
7017  inst.instruction |= inst.operands[1].reg << 12;
7018  encode_arm_cp_address (2, TRUE, TRUE, 0);
7019}
7020
7021static void
7022do_mlas (void)
7023{
7024  /* This restriction does not apply to mls (nor to mla in v6 or later).  */
7025  if (inst.operands[0].reg == inst.operands[1].reg
7026      && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7027      && !(inst.instruction & 0x00400000))
7028    as_tsktsk (_("Rd and Rm should be different in mla"));
7029
7030  inst.instruction |= inst.operands[0].reg << 16;
7031  inst.instruction |= inst.operands[1].reg;
7032  inst.instruction |= inst.operands[2].reg << 8;
7033  inst.instruction |= inst.operands[3].reg << 12;
7034}
7035
7036static void
7037do_mov (void)
7038{
7039  inst.instruction |= inst.operands[0].reg << 12;
7040  encode_arm_shifter_operand (1);
7041}
7042
7043/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>.	 */
7044static void
7045do_mov16 (void)
7046{
7047  bfd_vma imm;
7048  bfd_boolean top;
7049
7050  top = (inst.instruction & 0x00400000) != 0;
7051  constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7052	      _(":lower16: not allowed this instruction"));
7053  constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7054	      _(":upper16: not allowed instruction"));
7055  inst.instruction |= inst.operands[0].reg << 12;
7056  if (inst.reloc.type == BFD_RELOC_UNUSED)
7057    {
7058      imm = inst.reloc.exp.X_add_number;
7059      /* The value is in two pieces: 0:11, 16:19.  */
7060      inst.instruction |= (imm & 0x00000fff);
7061      inst.instruction |= (imm & 0x0000f000) << 4;
7062    }
7063}
7064
7065static void do_vfp_nsyn_opcode (const char *);
7066
7067static int
7068do_vfp_nsyn_mrs (void)
7069{
7070  if (inst.operands[0].isvec)
7071    {
7072      if (inst.operands[1].reg != 1)
7073        first_error (_("operand 1 must be FPSCR"));
7074      memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7075      memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7076      do_vfp_nsyn_opcode ("fmstat");
7077    }
7078  else if (inst.operands[1].isvec)
7079    do_vfp_nsyn_opcode ("fmrx");
7080  else
7081    return FAIL;
7082
7083  return SUCCESS;
7084}
7085
7086static int
7087do_vfp_nsyn_msr (void)
7088{
7089  if (inst.operands[0].isvec)
7090    do_vfp_nsyn_opcode ("fmxr");
7091  else
7092    return FAIL;
7093
7094  return SUCCESS;
7095}
7096
7097static void
7098do_mrs (void)
7099{
7100  if (do_vfp_nsyn_mrs () == SUCCESS)
7101    return;
7102
7103  /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all.  */
7104  constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7105	      != (PSR_c|PSR_f),
7106	      _("'CPSR' or 'SPSR' expected"));
7107  inst.instruction |= inst.operands[0].reg << 12;
7108  inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7109}
7110
7111/* Two possible forms:
7112      "{C|S}PSR_<field>, Rm",
7113      "{C|S}PSR_f, #expression".  */
7114
7115static void
7116do_msr (void)
7117{
7118  if (do_vfp_nsyn_msr () == SUCCESS)
7119    return;
7120
7121  inst.instruction |= inst.operands[0].imm;
7122  if (inst.operands[1].isreg)
7123    inst.instruction |= inst.operands[1].reg;
7124  else
7125    {
7126      inst.instruction |= INST_IMMEDIATE;
7127      inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7128      inst.reloc.pc_rel = 0;
7129    }
7130}
7131
7132static void
7133do_mul (void)
7134{
7135  if (!inst.operands[2].present)
7136    inst.operands[2].reg = inst.operands[0].reg;
7137  inst.instruction |= inst.operands[0].reg << 16;
7138  inst.instruction |= inst.operands[1].reg;
7139  inst.instruction |= inst.operands[2].reg << 8;
7140
7141  if (inst.operands[0].reg == inst.operands[1].reg
7142      && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7143    as_tsktsk (_("Rd and Rm should be different in mul"));
7144}
7145
7146/* Long Multiply Parser
7147   UMULL RdLo, RdHi, Rm, Rs
7148   SMULL RdLo, RdHi, Rm, Rs
7149   UMLAL RdLo, RdHi, Rm, Rs
7150   SMLAL RdLo, RdHi, Rm, Rs.  */
7151
7152static void
7153do_mull (void)
7154{
7155  inst.instruction |= inst.operands[0].reg << 12;
7156  inst.instruction |= inst.operands[1].reg << 16;
7157  inst.instruction |= inst.operands[2].reg;
7158  inst.instruction |= inst.operands[3].reg << 8;
7159
7160  /* rdhi, rdlo and rm must all be different.  */
7161  if (inst.operands[0].reg == inst.operands[1].reg
7162      || inst.operands[0].reg == inst.operands[2].reg
7163      || inst.operands[1].reg == inst.operands[2].reg)
7164    as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7165}
7166
7167static void
7168do_nop (void)
7169{
7170  if (inst.operands[0].present)
7171    {
7172      /* Architectural NOP hints are CPSR sets with no bits selected.  */
7173      inst.instruction &= 0xf0000000;
7174      inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7175    }
7176}
7177
7178/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7179   PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7180   Condition defaults to COND_ALWAYS.
7181   Error if Rd, Rn or Rm are R15.  */
7182
7183static void
7184do_pkhbt (void)
7185{
7186  inst.instruction |= inst.operands[0].reg << 12;
7187  inst.instruction |= inst.operands[1].reg << 16;
7188  inst.instruction |= inst.operands[2].reg;
7189  if (inst.operands[3].present)
7190    encode_arm_shift (3);
7191}
7192
7193/* ARM V6 PKHTB (Argument Parse).  */
7194
7195static void
7196do_pkhtb (void)
7197{
7198  if (!inst.operands[3].present)
7199    {
7200      /* If the shift specifier is omitted, turn the instruction
7201	 into pkhbt rd, rm, rn. */
7202      inst.instruction &= 0xfff00010;
7203      inst.instruction |= inst.operands[0].reg << 12;
7204      inst.instruction |= inst.operands[1].reg;
7205      inst.instruction |= inst.operands[2].reg << 16;
7206    }
7207  else
7208    {
7209      inst.instruction |= inst.operands[0].reg << 12;
7210      inst.instruction |= inst.operands[1].reg << 16;
7211      inst.instruction |= inst.operands[2].reg;
7212      encode_arm_shift (3);
7213    }
7214}
7215
7216/* ARMv5TE: Preload-Cache
7217
7218    PLD <addr_mode>
7219
7220  Syntactically, like LDR with B=1, W=0, L=1.  */
7221
7222static void
7223do_pld (void)
7224{
7225  constraint (!inst.operands[0].isreg,
7226	      _("'[' expected after PLD mnemonic"));
7227  constraint (inst.operands[0].postind,
7228	      _("post-indexed expression used in preload instruction"));
7229  constraint (inst.operands[0].writeback,
7230	      _("writeback used in preload instruction"));
7231  constraint (!inst.operands[0].preind,
7232	      _("unindexed addressing used in preload instruction"));
7233  encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7234}
7235
7236/* ARMv7: PLI <addr_mode>  */
7237static void
7238do_pli (void)
7239{
7240  constraint (!inst.operands[0].isreg,
7241	      _("'[' expected after PLI mnemonic"));
7242  constraint (inst.operands[0].postind,
7243	      _("post-indexed expression used in preload instruction"));
7244  constraint (inst.operands[0].writeback,
7245	      _("writeback used in preload instruction"));
7246  constraint (!inst.operands[0].preind,
7247	      _("unindexed addressing used in preload instruction"));
7248  encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7249  inst.instruction &= ~PRE_INDEX;
7250}
7251
7252static void
7253do_push_pop (void)
7254{
7255  inst.operands[1] = inst.operands[0];
7256  memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7257  inst.operands[0].isreg = 1;
7258  inst.operands[0].writeback = 1;
7259  inst.operands[0].reg = REG_SP;
7260  do_ldmstm ();
7261}
7262
7263/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7264   word at the specified address and the following word
7265   respectively.
7266   Unconditionally executed.
7267   Error if Rn is R15.	*/
7268
7269static void
7270do_rfe (void)
7271{
7272  inst.instruction |= inst.operands[0].reg << 16;
7273  if (inst.operands[0].writeback)
7274    inst.instruction |= WRITE_BACK;
7275}
7276
7277/* ARM V6 ssat (argument parse).  */
7278
7279static void
7280do_ssat (void)
7281{
7282  inst.instruction |= inst.operands[0].reg << 12;
7283  inst.instruction |= (inst.operands[1].imm - 1) << 16;
7284  inst.instruction |= inst.operands[2].reg;
7285
7286  if (inst.operands[3].present)
7287    encode_arm_shift (3);
7288}
7289
7290/* ARM V6 usat (argument parse).  */
7291
7292static void
7293do_usat (void)
7294{
7295  inst.instruction |= inst.operands[0].reg << 12;
7296  inst.instruction |= inst.operands[1].imm << 16;
7297  inst.instruction |= inst.operands[2].reg;
7298
7299  if (inst.operands[3].present)
7300    encode_arm_shift (3);
7301}
7302
7303/* ARM V6 ssat16 (argument parse).  */
7304
7305static void
7306do_ssat16 (void)
7307{
7308  inst.instruction |= inst.operands[0].reg << 12;
7309  inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7310  inst.instruction |= inst.operands[2].reg;
7311}
7312
7313static void
7314do_usat16 (void)
7315{
7316  inst.instruction |= inst.operands[0].reg << 12;
7317  inst.instruction |= inst.operands[1].imm << 16;
7318  inst.instruction |= inst.operands[2].reg;
7319}
7320
7321/* ARM V6 SETEND (argument parse).  Sets the E bit in the CPSR while
7322   preserving the other bits.
7323
7324   setend <endian_specifier>, where <endian_specifier> is either
7325   BE or LE.  */
7326
7327static void
7328do_setend (void)
7329{
7330  if (inst.operands[0].imm)
7331    inst.instruction |= 0x200;
7332}
7333
7334static void
7335do_shift (void)
7336{
7337  unsigned int Rm = (inst.operands[1].present
7338		     ? inst.operands[1].reg
7339		     : inst.operands[0].reg);
7340
7341  inst.instruction |= inst.operands[0].reg << 12;
7342  inst.instruction |= Rm;
7343  if (inst.operands[2].isreg)  /* Rd, {Rm,} Rs */
7344    {
7345      inst.instruction |= inst.operands[2].reg << 8;
7346      inst.instruction |= SHIFT_BY_REG;
7347    }
7348  else
7349    inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7350}
7351
7352static void
7353do_smc (void)
7354{
7355  inst.reloc.type = BFD_RELOC_ARM_SMC;
7356  inst.reloc.pc_rel = 0;
7357}
7358
7359static void
7360do_swi (void)
7361{
7362  inst.reloc.type = BFD_RELOC_ARM_SWI;
7363  inst.reloc.pc_rel = 0;
7364}
7365
7366/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7367   SMLAxy{cond} Rd,Rm,Rs,Rn
7368   SMLAWy{cond} Rd,Rm,Rs,Rn
7369   Error if any register is R15.  */
7370
7371static void
7372do_smla (void)
7373{
7374  inst.instruction |= inst.operands[0].reg << 16;
7375  inst.instruction |= inst.operands[1].reg;
7376  inst.instruction |= inst.operands[2].reg << 8;
7377  inst.instruction |= inst.operands[3].reg << 12;
7378}
7379
7380/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7381   SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7382   Error if any register is R15.
7383   Warning if Rdlo == Rdhi.  */
7384
7385static void
7386do_smlal (void)
7387{
7388  inst.instruction |= inst.operands[0].reg << 12;
7389  inst.instruction |= inst.operands[1].reg << 16;
7390  inst.instruction |= inst.operands[2].reg;
7391  inst.instruction |= inst.operands[3].reg << 8;
7392
7393  if (inst.operands[0].reg == inst.operands[1].reg)
7394    as_tsktsk (_("rdhi and rdlo must be different"));
7395}
7396
7397/* ARM V5E (El Segundo) signed-multiply (argument parse)
7398   SMULxy{cond} Rd,Rm,Rs
7399   Error if any register is R15.  */
7400
7401static void
7402do_smul (void)
7403{
7404  inst.instruction |= inst.operands[0].reg << 16;
7405  inst.instruction |= inst.operands[1].reg;
7406  inst.instruction |= inst.operands[2].reg << 8;
7407}
7408
7409/* ARM V6 srs (argument parse).  The variable fields in the encoding are
7410   the same for both ARM and Thumb-2.  */
7411
7412static void
7413do_srs (void)
7414{
7415  int reg;
7416
7417  if (inst.operands[0].present)
7418    {
7419      reg = inst.operands[0].reg;
7420      constraint (reg != 13, _("SRS base register must be r13"));
7421    }
7422  else
7423    reg = 13;
7424
7425  inst.instruction |= reg << 16;
7426  inst.instruction |= inst.operands[1].imm;
7427  if (inst.operands[0].writeback || inst.operands[1].writeback)
7428    inst.instruction |= WRITE_BACK;
7429}
7430
7431/* ARM V6 strex (argument parse).  */
7432
7433static void
7434do_strex (void)
7435{
7436  constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7437	      || inst.operands[2].postind || inst.operands[2].writeback
7438	      || inst.operands[2].immisreg || inst.operands[2].shifted
7439	      || inst.operands[2].negative
7440	      /* See comment in do_ldrex().  */
7441	      || (inst.operands[2].reg == REG_PC),
7442	      BAD_ADDR_MODE);
7443
7444  constraint (inst.operands[0].reg == inst.operands[1].reg
7445	      || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
7446
7447  constraint (inst.reloc.exp.X_op != O_constant
7448	      || inst.reloc.exp.X_add_number != 0,
7449	      _("offset must be zero in ARM encoding"));
7450
7451  inst.instruction |= inst.operands[0].reg << 12;
7452  inst.instruction |= inst.operands[1].reg;
7453  inst.instruction |= inst.operands[2].reg << 16;
7454  inst.reloc.type = BFD_RELOC_UNUSED;
7455}
7456
7457static void
7458do_strexd (void)
7459{
7460  constraint (inst.operands[1].reg % 2 != 0,
7461	      _("even register required"));
7462  constraint (inst.operands[2].present
7463	      && inst.operands[2].reg != inst.operands[1].reg + 1,
7464	      _("can only store two consecutive registers"));
7465  /* If op 2 were present and equal to PC, this function wouldn't
7466     have been called in the first place.  */
7467  constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
7468
7469  constraint (inst.operands[0].reg == inst.operands[1].reg
7470	      || inst.operands[0].reg == inst.operands[1].reg + 1
7471	      || inst.operands[0].reg == inst.operands[3].reg,
7472	      BAD_OVERLAP);
7473
7474  inst.instruction |= inst.operands[0].reg << 12;
7475  inst.instruction |= inst.operands[1].reg;
7476  inst.instruction |= inst.operands[3].reg << 16;
7477}
7478
7479/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7480   extends it to 32-bits, and adds the result to a value in another
7481   register.  You can specify a rotation by 0, 8, 16, or 24 bits
7482   before extracting the 16-bit value.
7483   SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7484   Condition defaults to COND_ALWAYS.
7485   Error if any register uses R15.  */
7486
7487static void
7488do_sxtah (void)
7489{
7490  inst.instruction |= inst.operands[0].reg << 12;
7491  inst.instruction |= inst.operands[1].reg << 16;
7492  inst.instruction |= inst.operands[2].reg;
7493  inst.instruction |= inst.operands[3].imm << 10;
7494}
7495
7496/* ARM V6 SXTH.
7497
7498   SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7499   Condition defaults to COND_ALWAYS.
7500   Error if any register uses R15.  */
7501
7502static void
7503do_sxth (void)
7504{
7505  inst.instruction |= inst.operands[0].reg << 12;
7506  inst.instruction |= inst.operands[1].reg;
7507  inst.instruction |= inst.operands[2].imm << 10;
7508}
7509
7510/* VFP instructions.  In a logical order: SP variant first, monad
7511   before dyad, arithmetic then move then load/store.  */
7512
7513static void
7514do_vfp_sp_monadic (void)
7515{
7516  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7517  encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7518}
7519
7520static void
7521do_vfp_sp_dyadic (void)
7522{
7523  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7524  encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7525  encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7526}
7527
7528static void
7529do_vfp_sp_compare_z (void)
7530{
7531  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7532}
7533
7534static void
7535do_vfp_dp_sp_cvt (void)
7536{
7537  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7538  encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7539}
7540
7541static void
7542do_vfp_sp_dp_cvt (void)
7543{
7544  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7545  encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7546}
7547
7548static void
7549do_vfp_reg_from_sp (void)
7550{
7551  inst.instruction |= inst.operands[0].reg << 12;
7552  encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7553}
7554
7555static void
7556do_vfp_reg2_from_sp2 (void)
7557{
7558  constraint (inst.operands[2].imm != 2,
7559	      _("only two consecutive VFP SP registers allowed here"));
7560  inst.instruction |= inst.operands[0].reg << 12;
7561  inst.instruction |= inst.operands[1].reg << 16;
7562  encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7563}
7564
7565static void
7566do_vfp_sp_from_reg (void)
7567{
7568  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
7569  inst.instruction |= inst.operands[1].reg << 12;
7570}
7571
7572static void
7573do_vfp_sp2_from_reg2 (void)
7574{
7575  constraint (inst.operands[0].imm != 2,
7576	      _("only two consecutive VFP SP registers allowed here"));
7577  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
7578  inst.instruction |= inst.operands[1].reg << 12;
7579  inst.instruction |= inst.operands[2].reg << 16;
7580}
7581
7582static void
7583do_vfp_sp_ldst (void)
7584{
7585  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7586  encode_arm_cp_address (1, FALSE, TRUE, 0);
7587}
7588
7589static void
7590do_vfp_dp_ldst (void)
7591{
7592  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7593  encode_arm_cp_address (1, FALSE, TRUE, 0);
7594}
7595
7596
7597static void
7598vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
7599{
7600  if (inst.operands[0].writeback)
7601    inst.instruction |= WRITE_BACK;
7602  else
7603    constraint (ldstm_type != VFP_LDSTMIA,
7604		_("this addressing mode requires base-register writeback"));
7605  inst.instruction |= inst.operands[0].reg << 16;
7606  encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
7607  inst.instruction |= inst.operands[1].imm;
7608}
7609
7610static void
7611vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
7612{
7613  int count;
7614
7615  if (inst.operands[0].writeback)
7616    inst.instruction |= WRITE_BACK;
7617  else
7618    constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7619		_("this addressing mode requires base-register writeback"));
7620
7621  inst.instruction |= inst.operands[0].reg << 16;
7622  encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7623
7624  count = inst.operands[1].imm << 1;
7625  if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7626    count += 1;
7627
7628  inst.instruction |= count;
7629}
7630
7631static void
7632do_vfp_sp_ldstmia (void)
7633{
7634  vfp_sp_ldstm (VFP_LDSTMIA);
7635}
7636
7637static void
7638do_vfp_sp_ldstmdb (void)
7639{
7640  vfp_sp_ldstm (VFP_LDSTMDB);
7641}
7642
7643static void
7644do_vfp_dp_ldstmia (void)
7645{
7646  vfp_dp_ldstm (VFP_LDSTMIA);
7647}
7648
7649static void
7650do_vfp_dp_ldstmdb (void)
7651{
7652  vfp_dp_ldstm (VFP_LDSTMDB);
7653}
7654
7655static void
7656do_vfp_xp_ldstmia (void)
7657{
7658  vfp_dp_ldstm (VFP_LDSTMIAX);
7659}
7660
7661static void
7662do_vfp_xp_ldstmdb (void)
7663{
7664  vfp_dp_ldstm (VFP_LDSTMDBX);
7665}
7666
7667static void
7668do_vfp_dp_rd_rm (void)
7669{
7670  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7671  encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7672}
7673
7674static void
7675do_vfp_dp_rn_rd (void)
7676{
7677  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7678  encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7679}
7680
7681static void
7682do_vfp_dp_rd_rn (void)
7683{
7684  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7685  encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7686}
7687
7688static void
7689do_vfp_dp_rd_rn_rm (void)
7690{
7691  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7692  encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7693  encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7694}
7695
7696static void
7697do_vfp_dp_rd (void)
7698{
7699  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7700}
7701
7702static void
7703do_vfp_dp_rm_rd_rn (void)
7704{
7705  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7706  encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7707  encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7708}
7709
7710/* VFPv3 instructions.  */
7711static void
7712do_vfp_sp_const (void)
7713{
7714  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7715  inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7716  inst.instruction |= (inst.operands[1].imm & 0x0f);
7717}
7718
7719static void
7720do_vfp_dp_const (void)
7721{
7722  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7723  inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7724  inst.instruction |= (inst.operands[1].imm & 0x0f);
7725}
7726
7727static void
7728vfp_conv (int srcsize)
7729{
7730  unsigned immbits = srcsize - inst.operands[1].imm;
7731  inst.instruction |= (immbits & 1) << 5;
7732  inst.instruction |= (immbits >> 1);
7733}
7734
7735static void
7736do_vfp_sp_conv_16 (void)
7737{
7738  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7739  vfp_conv (16);
7740}
7741
7742static void
7743do_vfp_dp_conv_16 (void)
7744{
7745  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7746  vfp_conv (16);
7747}
7748
7749static void
7750do_vfp_sp_conv_32 (void)
7751{
7752  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7753  vfp_conv (32);
7754}
7755
7756static void
7757do_vfp_dp_conv_32 (void)
7758{
7759  encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7760  vfp_conv (32);
7761}
7762
7763
7764/* FPA instructions.  Also in a logical order.	*/
7765
7766static void
7767do_fpa_cmp (void)
7768{
7769  inst.instruction |= inst.operands[0].reg << 16;
7770  inst.instruction |= inst.operands[1].reg;
7771}
7772
7773static void
7774do_fpa_ldmstm (void)
7775{
7776  inst.instruction |= inst.operands[0].reg << 12;
7777  switch (inst.operands[1].imm)
7778    {
7779    case 1: inst.instruction |= CP_T_X;		 break;
7780    case 2: inst.instruction |= CP_T_Y;		 break;
7781    case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7782    case 4:					 break;
7783    default: abort ();
7784    }
7785
7786  if (inst.instruction & (PRE_INDEX | INDEX_UP))
7787    {
7788      /* The instruction specified "ea" or "fd", so we can only accept
7789	 [Rn]{!}.  The instruction does not really support stacking or
7790	 unstacking, so we have to emulate these by setting appropriate
7791	 bits and offsets.  */
7792      constraint (inst.reloc.exp.X_op != O_constant
7793		  || inst.reloc.exp.X_add_number != 0,
7794		  _("this instruction does not support indexing"));
7795
7796      if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7797	inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
7798
7799      if (!(inst.instruction & INDEX_UP))
7800	inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
7801
7802      if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7803	{
7804	  inst.operands[2].preind = 0;
7805	  inst.operands[2].postind = 1;
7806	}
7807    }
7808
7809  encode_arm_cp_address (2, TRUE, TRUE, 0);
7810}
7811
7812
7813/* iWMMXt instructions: strictly in alphabetical order.	 */
7814
7815static void
7816do_iwmmxt_tandorc (void)
7817{
7818  constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7819}
7820
7821static void
7822do_iwmmxt_textrc (void)
7823{
7824  inst.instruction |= inst.operands[0].reg << 12;
7825  inst.instruction |= inst.operands[1].imm;
7826}
7827
7828static void
7829do_iwmmxt_textrm (void)
7830{
7831  inst.instruction |= inst.operands[0].reg << 12;
7832  inst.instruction |= inst.operands[1].reg << 16;
7833  inst.instruction |= inst.operands[2].imm;
7834}
7835
7836static void
7837do_iwmmxt_tinsr (void)
7838{
7839  inst.instruction |= inst.operands[0].reg << 16;
7840  inst.instruction |= inst.operands[1].reg << 12;
7841  inst.instruction |= inst.operands[2].imm;
7842}
7843
7844static void
7845do_iwmmxt_tmia (void)
7846{
7847  inst.instruction |= inst.operands[0].reg << 5;
7848  inst.instruction |= inst.operands[1].reg;
7849  inst.instruction |= inst.operands[2].reg << 12;
7850}
7851
7852static void
7853do_iwmmxt_waligni (void)
7854{
7855  inst.instruction |= inst.operands[0].reg << 12;
7856  inst.instruction |= inst.operands[1].reg << 16;
7857  inst.instruction |= inst.operands[2].reg;
7858  inst.instruction |= inst.operands[3].imm << 20;
7859}
7860
7861static void
7862do_iwmmxt_wmerge (void)
7863{
7864  inst.instruction |= inst.operands[0].reg << 12;
7865  inst.instruction |= inst.operands[1].reg << 16;
7866  inst.instruction |= inst.operands[2].reg;
7867  inst.instruction |= inst.operands[3].imm << 21;
7868}
7869
7870static void
7871do_iwmmxt_wmov (void)
7872{
7873  /* WMOV rD, rN is an alias for WOR rD, rN, rN.  */
7874  inst.instruction |= inst.operands[0].reg << 12;
7875  inst.instruction |= inst.operands[1].reg << 16;
7876  inst.instruction |= inst.operands[1].reg;
7877}
7878
7879static void
7880do_iwmmxt_wldstbh (void)
7881{
7882  int reloc;
7883  inst.instruction |= inst.operands[0].reg << 12;
7884  if (thumb_mode)
7885    reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
7886  else
7887    reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
7888  encode_arm_cp_address (1, TRUE, FALSE, reloc);
7889}
7890
7891static void
7892do_iwmmxt_wldstw (void)
7893{
7894  /* RIWR_RIWC clears .isreg for a control register.  */
7895  if (!inst.operands[0].isreg)
7896    {
7897      constraint (inst.cond != COND_ALWAYS, BAD_COND);
7898      inst.instruction |= 0xf0000000;
7899    }
7900
7901  inst.instruction |= inst.operands[0].reg << 12;
7902  encode_arm_cp_address (1, TRUE, TRUE, 0);
7903}
7904
7905static void
7906do_iwmmxt_wldstd (void)
7907{
7908  inst.instruction |= inst.operands[0].reg << 12;
7909  if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
7910      && inst.operands[1].immisreg)
7911    {
7912      inst.instruction &= ~0x1a000ff;
7913      inst.instruction |= (0xf << 28);
7914      if (inst.operands[1].preind)
7915	inst.instruction |= PRE_INDEX;
7916      if (!inst.operands[1].negative)
7917	inst.instruction |= INDEX_UP;
7918      if (inst.operands[1].writeback)
7919	inst.instruction |= WRITE_BACK;
7920      inst.instruction |= inst.operands[1].reg << 16;
7921      inst.instruction |= inst.reloc.exp.X_add_number << 4;
7922      inst.instruction |= inst.operands[1].imm;
7923    }
7924  else
7925    encode_arm_cp_address (1, TRUE, FALSE, 0);
7926}
7927
7928static void
7929do_iwmmxt_wshufh (void)
7930{
7931  inst.instruction |= inst.operands[0].reg << 12;
7932  inst.instruction |= inst.operands[1].reg << 16;
7933  inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
7934  inst.instruction |= (inst.operands[2].imm & 0x0f);
7935}
7936
7937static void
7938do_iwmmxt_wzero (void)
7939{
7940  /* WZERO reg is an alias for WANDN reg, reg, reg.  */
7941  inst.instruction |= inst.operands[0].reg;
7942  inst.instruction |= inst.operands[0].reg << 12;
7943  inst.instruction |= inst.operands[0].reg << 16;
7944}
7945
7946static void
7947do_iwmmxt_wrwrwr_or_imm5 (void)
7948{
7949  if (inst.operands[2].isreg)
7950    do_rd_rn_rm ();
7951  else {
7952    constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
7953		_("immediate operand requires iWMMXt2"));
7954    do_rd_rn ();
7955    if (inst.operands[2].imm == 0)
7956      {
7957	switch ((inst.instruction >> 20) & 0xf)
7958	  {
7959	  case 4:
7960	  case 5:
7961	  case 6:
7962	  case 7:
7963	    /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16.  */
7964	    inst.operands[2].imm = 16;
7965	    inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
7966	    break;
7967	  case 8:
7968	  case 9:
7969	  case 10:
7970	  case 11:
7971	    /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32.  */
7972	    inst.operands[2].imm = 32;
7973	    inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
7974	    break;
7975	  case 12:
7976	  case 13:
7977	  case 14:
7978	  case 15:
7979	    {
7980	      /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn.  */
7981	      unsigned long wrn;
7982	      wrn = (inst.instruction >> 16) & 0xf;
7983	      inst.instruction &= 0xff0fff0f;
7984	      inst.instruction |= wrn;
7985	      /* Bail out here; the instruction is now assembled.  */
7986	      return;
7987	    }
7988	  }
7989      }
7990    /* Map 32 -> 0, etc.  */
7991    inst.operands[2].imm &= 0x1f;
7992    inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
7993  }
7994}
7995
7996/* Cirrus Maverick instructions.  Simple 2-, 3-, and 4-register
7997   operations first, then control, shift, and load/store.  */
7998
7999/* Insns like "foo X,Y,Z".  */
8000
8001static void
8002do_mav_triple (void)
8003{
8004  inst.instruction |= inst.operands[0].reg << 16;
8005  inst.instruction |= inst.operands[1].reg;
8006  inst.instruction |= inst.operands[2].reg << 12;
8007}
8008
8009/* Insns like "foo W,X,Y,Z".
8010    where W=MVAX[0:3] and X,Y,Z=MVFX[0:15].  */
8011
8012static void
8013do_mav_quad (void)
8014{
8015  inst.instruction |= inst.operands[0].reg << 5;
8016  inst.instruction |= inst.operands[1].reg << 12;
8017  inst.instruction |= inst.operands[2].reg << 16;
8018  inst.instruction |= inst.operands[3].reg;
8019}
8020
8021/* cfmvsc32<cond> DSPSC,MVDX[15:0].  */
8022static void
8023do_mav_dspsc (void)
8024{
8025  inst.instruction |= inst.operands[1].reg << 12;
8026}
8027
8028/* Maverick shift immediate instructions.
8029   cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8030   cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0].  */
8031
8032static void
8033do_mav_shift (void)
8034{
8035  int imm = inst.operands[2].imm;
8036
8037  inst.instruction |= inst.operands[0].reg << 12;
8038  inst.instruction |= inst.operands[1].reg << 16;
8039
8040  /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8041     Bits 5-7 of the insn should have bits 4-6 of the immediate.
8042     Bit 4 should be 0.	 */
8043  imm = (imm & 0xf) | ((imm & 0x70) << 1);
8044
8045  inst.instruction |= imm;
8046}
8047
8048/* XScale instructions.	 Also sorted arithmetic before move.  */
8049
8050/* Xscale multiply-accumulate (argument parse)
8051     MIAcc   acc0,Rm,Rs
8052     MIAPHcc acc0,Rm,Rs
8053     MIAxycc acc0,Rm,Rs.  */
8054
8055static void
8056do_xsc_mia (void)
8057{
8058  inst.instruction |= inst.operands[1].reg;
8059  inst.instruction |= inst.operands[2].reg << 12;
8060}
8061
8062/* Xscale move-accumulator-register (argument parse)
8063
8064     MARcc   acc0,RdLo,RdHi.  */
8065
8066static void
8067do_xsc_mar (void)
8068{
8069  inst.instruction |= inst.operands[1].reg << 12;
8070  inst.instruction |= inst.operands[2].reg << 16;
8071}
8072
8073/* Xscale move-register-accumulator (argument parse)
8074
8075     MRAcc   RdLo,RdHi,acc0.  */
8076
8077static void
8078do_xsc_mra (void)
8079{
8080  constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8081  inst.instruction |= inst.operands[0].reg << 12;
8082  inst.instruction |= inst.operands[1].reg << 16;
8083}
8084
8085/* Encoding functions relevant only to Thumb.  */
8086
8087/* inst.operands[i] is a shifted-register operand; encode
8088   it into inst.instruction in the format used by Thumb32.  */
8089
8090static void
8091encode_thumb32_shifted_operand (int i)
8092{
8093  unsigned int value = inst.reloc.exp.X_add_number;
8094  unsigned int shift = inst.operands[i].shift_kind;
8095
8096  constraint (inst.operands[i].immisreg,
8097	      _("shift by register not allowed in thumb mode"));
8098  inst.instruction |= inst.operands[i].reg;
8099  if (shift == SHIFT_RRX)
8100    inst.instruction |= SHIFT_ROR << 4;
8101  else
8102    {
8103      constraint (inst.reloc.exp.X_op != O_constant,
8104		  _("expression too complex"));
8105
8106      constraint (value > 32
8107		  || (value == 32 && (shift == SHIFT_LSL
8108				      || shift == SHIFT_ROR)),
8109		  _("shift expression is too large"));
8110
8111      if (value == 0)
8112	shift = SHIFT_LSL;
8113      else if (value == 32)
8114	value = 0;
8115
8116      inst.instruction |= shift << 4;
8117      inst.instruction |= (value & 0x1c) << 10;
8118      inst.instruction |= (value & 0x03) << 6;
8119    }
8120}
8121
8122
8123/* inst.operands[i] was set up by parse_address.  Encode it into a
8124   Thumb32 format load or store instruction.  Reject forms that cannot
8125   be used with such instructions.  If is_t is true, reject forms that
8126   cannot be used with a T instruction; if is_d is true, reject forms
8127   that cannot be used with a D instruction.  */
8128
8129static void
8130encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8131{
8132  bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8133
8134  constraint (!inst.operands[i].isreg,
8135	      _("Instruction does not support =N addresses"));
8136
8137  inst.instruction |= inst.operands[i].reg << 16;
8138  if (inst.operands[i].immisreg)
8139    {
8140      constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8141      constraint (is_t || is_d, _("cannot use register index with this instruction"));
8142      constraint (inst.operands[i].negative,
8143		  _("Thumb does not support negative register indexing"));
8144      constraint (inst.operands[i].postind,
8145		  _("Thumb does not support register post-indexing"));
8146      constraint (inst.operands[i].writeback,
8147		  _("Thumb does not support register indexing with writeback"));
8148      constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8149		  _("Thumb supports only LSL in shifted register indexing"));
8150
8151      inst.instruction |= inst.operands[i].imm;
8152      if (inst.operands[i].shifted)
8153	{
8154	  constraint (inst.reloc.exp.X_op != O_constant,
8155		      _("expression too complex"));
8156	  constraint (inst.reloc.exp.X_add_number < 0
8157		      || inst.reloc.exp.X_add_number > 3,
8158		      _("shift out of range"));
8159	  inst.instruction |= inst.reloc.exp.X_add_number << 4;
8160	}
8161      inst.reloc.type = BFD_RELOC_UNUSED;
8162    }
8163  else if (inst.operands[i].preind)
8164    {
8165      constraint (is_pc && inst.operands[i].writeback,
8166		  _("cannot use writeback with PC-relative addressing"));
8167      constraint (is_t && inst.operands[i].writeback,
8168		  _("cannot use writeback with this instruction"));
8169
8170      if (is_d)
8171	{
8172	  inst.instruction |= 0x01000000;
8173	  if (inst.operands[i].writeback)
8174	    inst.instruction |= 0x00200000;
8175	}
8176      else
8177	{
8178	  inst.instruction |= 0x00000c00;
8179	  if (inst.operands[i].writeback)
8180	    inst.instruction |= 0x00000100;
8181	}
8182      inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8183    }
8184  else if (inst.operands[i].postind)
8185    {
8186      assert (inst.operands[i].writeback);
8187      constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8188      constraint (is_t, _("cannot use post-indexing with this instruction"));
8189
8190      if (is_d)
8191	inst.instruction |= 0x00200000;
8192      else
8193	inst.instruction |= 0x00000900;
8194      inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8195    }
8196  else /* unindexed - only for coprocessor */
8197    inst.error = _("instruction does not accept unindexed addressing");
8198}
8199
8200/* Table of Thumb instructions which exist in both 16- and 32-bit
8201   encodings (the latter only in post-V6T2 cores).  The index is the
8202   value used in the insns table below.  When there is more than one
8203   possible 16-bit encoding for the instruction, this table always
8204   holds variant (1).
8205   Also contains several pseudo-instructions used during relaxation.  */
8206#define T16_32_TAB				\
8207  X(adc,   4140, eb400000),			\
8208  X(adcs,  4140, eb500000),			\
8209  X(add,   1c00, eb000000),			\
8210  X(adds,  1c00, eb100000),			\
8211  X(addi,  0000, f1000000),			\
8212  X(addis, 0000, f1100000),			\
8213  X(add_pc,000f, f20f0000),			\
8214  X(add_sp,000d, f10d0000),			\
8215  X(adr,   000f, f20f0000),			\
8216  X(and,   4000, ea000000),			\
8217  X(ands,  4000, ea100000),			\
8218  X(asr,   1000, fa40f000),			\
8219  X(asrs,  1000, fa50f000),			\
8220  X(b,     e000, f000b000),			\
8221  X(bcond, d000, f0008000),			\
8222  X(bic,   4380, ea200000),			\
8223  X(bics,  4380, ea300000),			\
8224  X(cmn,   42c0, eb100f00),			\
8225  X(cmp,   2800, ebb00f00),			\
8226  X(cpsie, b660, f3af8400),			\
8227  X(cpsid, b670, f3af8600),			\
8228  X(cpy,   4600, ea4f0000),			\
8229  X(dec_sp,80dd, f1ad0d00),			\
8230  X(eor,   4040, ea800000),			\
8231  X(eors,  4040, ea900000),			\
8232  X(inc_sp,00dd, f10d0d00),			\
8233  X(ldmia, c800, e8900000),			\
8234  X(ldr,   6800, f8500000),			\
8235  X(ldrb,  7800, f8100000),			\
8236  X(ldrh,  8800, f8300000),			\
8237  X(ldrsb, 5600, f9100000),			\
8238  X(ldrsh, 5e00, f9300000),			\
8239  X(ldr_pc,4800, f85f0000),			\
8240  X(ldr_pc2,4800, f85f0000),			\
8241  X(ldr_sp,9800, f85d0000),			\
8242  X(lsl,   0000, fa00f000),			\
8243  X(lsls,  0000, fa10f000),			\
8244  X(lsr,   0800, fa20f000),			\
8245  X(lsrs,  0800, fa30f000),			\
8246  X(mov,   2000, ea4f0000),			\
8247  X(movs,  2000, ea5f0000),			\
8248  X(mul,   4340, fb00f000),                     \
8249  X(muls,  4340, ffffffff), /* no 32b muls */	\
8250  X(mvn,   43c0, ea6f0000),			\
8251  X(mvns,  43c0, ea7f0000),			\
8252  X(neg,   4240, f1c00000), /* rsb #0 */	\
8253  X(negs,  4240, f1d00000), /* rsbs #0 */	\
8254  X(orr,   4300, ea400000),			\
8255  X(orrs,  4300, ea500000),			\
8256  X(pop,   bc00, e8bd0000), /* ldmia sp!,... */	\
8257  X(push,  b400, e92d0000), /* stmdb sp!,... */	\
8258  X(rev,   ba00, fa90f080),			\
8259  X(rev16, ba40, fa90f090),			\
8260  X(revsh, bac0, fa90f0b0),			\
8261  X(ror,   41c0, fa60f000),			\
8262  X(rors,  41c0, fa70f000),			\
8263  X(sbc,   4180, eb600000),			\
8264  X(sbcs,  4180, eb700000),			\
8265  X(stmia, c000, e8800000),			\
8266  X(str,   6000, f8400000),			\
8267  X(strb,  7000, f8000000),			\
8268  X(strh,  8000, f8200000),			\
8269  X(str_sp,9000, f84d0000),			\
8270  X(sub,   1e00, eba00000),			\
8271  X(subs,  1e00, ebb00000),			\
8272  X(subi,  8000, f1a00000),			\
8273  X(subis, 8000, f1b00000),			\
8274  X(sxtb,  b240, fa4ff080),			\
8275  X(sxth,  b200, fa0ff080),			\
8276  X(tst,   4200, ea100f00),			\
8277  X(uxtb,  b2c0, fa5ff080),			\
8278  X(uxth,  b280, fa1ff080),			\
8279  X(nop,   bf00, f3af8000),			\
8280  X(yield, bf10, f3af8001),			\
8281  X(wfe,   bf20, f3af8002),			\
8282  X(wfi,   bf30, f3af8003),			\
8283  X(sev,   bf40, f3af9004), /* typo, 8004? */
8284
8285/* To catch errors in encoding functions, the codes are all offset by
8286   0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8287   as 16-bit instructions.  */
8288#define X(a,b,c) T_MNEM_##a
8289enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8290#undef X
8291
8292#define X(a,b,c) 0x##b
8293static const unsigned short thumb_op16[] = { T16_32_TAB };
8294#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8295#undef X
8296
8297#define X(a,b,c) 0x##c
8298static const unsigned int thumb_op32[] = { T16_32_TAB };
8299#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8300#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8301#undef X
8302#undef T16_32_TAB
8303
8304/* Thumb instruction encoders, in alphabetical order.  */
8305
8306/* ADDW or SUBW.  */
8307static void
8308do_t_add_sub_w (void)
8309{
8310  int Rd, Rn;
8311
8312  Rd = inst.operands[0].reg;
8313  Rn = inst.operands[1].reg;
8314
8315  constraint (Rd == 15, _("PC not allowed as destination"));
8316  inst.instruction |= (Rn << 16) | (Rd << 8);
8317  inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8318}
8319
8320/* Parse an add or subtract instruction.  We get here with inst.instruction
8321   equalling any of THUMB_OPCODE_add, adds, sub, or subs.  */
8322
8323static void
8324do_t_add_sub (void)
8325{
8326  int Rd, Rs, Rn;
8327
8328  Rd = inst.operands[0].reg;
8329  Rs = (inst.operands[1].present
8330	? inst.operands[1].reg    /* Rd, Rs, foo */
8331	: inst.operands[0].reg);  /* Rd, foo -> Rd, Rd, foo */
8332
8333  if (unified_syntax)
8334    {
8335      bfd_boolean flags;
8336      bfd_boolean narrow;
8337      int opcode;
8338
8339      flags = (inst.instruction == T_MNEM_adds
8340	       || inst.instruction == T_MNEM_subs);
8341      if (flags)
8342	narrow = (current_it_mask == 0);
8343      else
8344	narrow = (current_it_mask != 0);
8345      if (!inst.operands[2].isreg)
8346	{
8347	  int add;
8348
8349	  add = (inst.instruction == T_MNEM_add
8350		 || inst.instruction == T_MNEM_adds);
8351	  opcode = 0;
8352	  if (inst.size_req != 4)
8353	    {
8354	      /* Attempt to use a narrow opcode, with relaxation if
8355	         appropriate.  */
8356	      if (Rd == REG_SP && Rs == REG_SP && !flags)
8357		opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8358	      else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8359		opcode = T_MNEM_add_sp;
8360	      else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8361		opcode = T_MNEM_add_pc;
8362	      else if (Rd <= 7 && Rs <= 7 && narrow)
8363		{
8364		  if (flags)
8365		    opcode = add ? T_MNEM_addis : T_MNEM_subis;
8366		  else
8367		    opcode = add ? T_MNEM_addi : T_MNEM_subi;
8368		}
8369	      if (opcode)
8370		{
8371		  inst.instruction = THUMB_OP16(opcode);
8372		  inst.instruction |= (Rd << 4) | Rs;
8373		  inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8374		  if (inst.size_req != 2)
8375		    inst.relax = opcode;
8376		}
8377	      else
8378		constraint (inst.size_req == 2, BAD_HIREG);
8379	    }
8380	  if (inst.size_req == 4
8381	      || (inst.size_req != 2 && !opcode))
8382	    {
8383	      if (Rd == REG_PC)
8384		{
8385		  constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8386			     _("only SUBS PC, LR, #const allowed"));
8387		  constraint (inst.reloc.exp.X_op != O_constant,
8388			      _("expression too complex"));
8389		  constraint (inst.reloc.exp.X_add_number < 0
8390			      || inst.reloc.exp.X_add_number > 0xff,
8391			     _("immediate value out of range"));
8392		  inst.instruction = T2_SUBS_PC_LR
8393				     | inst.reloc.exp.X_add_number;
8394		  inst.reloc.type = BFD_RELOC_UNUSED;
8395		  return;
8396		}
8397	      else if (Rs == REG_PC)
8398		{
8399		  /* Always use addw/subw.  */
8400		  inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8401		  inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8402		}
8403	      else
8404		{
8405		  inst.instruction = THUMB_OP32 (inst.instruction);
8406		  inst.instruction = (inst.instruction & 0xe1ffffff)
8407				     | 0x10000000;
8408		  if (flags)
8409		    inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8410		  else
8411		    inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8412		}
8413	      inst.instruction |= Rd << 8;
8414	      inst.instruction |= Rs << 16;
8415	    }
8416	}
8417      else
8418	{
8419	  Rn = inst.operands[2].reg;
8420	  /* See if we can do this with a 16-bit instruction.  */
8421	  if (!inst.operands[2].shifted && inst.size_req != 4)
8422	    {
8423	      if (Rd > 7 || Rs > 7 || Rn > 7)
8424		narrow = FALSE;
8425
8426	      if (narrow)
8427		{
8428		  inst.instruction = ((inst.instruction == T_MNEM_adds
8429				       || inst.instruction == T_MNEM_add)
8430				      ? T_OPCODE_ADD_R3
8431				      : T_OPCODE_SUB_R3);
8432		  inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8433		  return;
8434		}
8435
8436	      if (inst.instruction == T_MNEM_add)
8437		{
8438		  if (Rd == Rs)
8439		    {
8440		      inst.instruction = T_OPCODE_ADD_HI;
8441		      inst.instruction |= (Rd & 8) << 4;
8442		      inst.instruction |= (Rd & 7);
8443		      inst.instruction |= Rn << 3;
8444		      return;
8445		    }
8446		  /* ... because addition is commutative! */
8447		  else if (Rd == Rn)
8448		    {
8449		      inst.instruction = T_OPCODE_ADD_HI;
8450		      inst.instruction |= (Rd & 8) << 4;
8451		      inst.instruction |= (Rd & 7);
8452		      inst.instruction |= Rs << 3;
8453		      return;
8454		    }
8455		}
8456	    }
8457	  /* If we get here, it can't be done in 16 bits.  */
8458	  constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8459		      _("shift must be constant"));
8460	  inst.instruction = THUMB_OP32 (inst.instruction);
8461	  inst.instruction |= Rd << 8;
8462	  inst.instruction |= Rs << 16;
8463	  encode_thumb32_shifted_operand (2);
8464	}
8465    }
8466  else
8467    {
8468      constraint (inst.instruction == T_MNEM_adds
8469		  || inst.instruction == T_MNEM_subs,
8470		  BAD_THUMB32);
8471
8472      if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
8473	{
8474	  constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8475		      || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8476		      BAD_HIREG);
8477
8478	  inst.instruction = (inst.instruction == T_MNEM_add
8479			      ? 0x0000 : 0x8000);
8480	  inst.instruction |= (Rd << 4) | Rs;
8481	  inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8482	  return;
8483	}
8484
8485      Rn = inst.operands[2].reg;
8486      constraint (inst.operands[2].shifted, _("unshifted register required"));
8487
8488      /* We now have Rd, Rs, and Rn set to registers.  */
8489      if (Rd > 7 || Rs > 7 || Rn > 7)
8490	{
8491	  /* Can't do this for SUB.	 */
8492	  constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8493	  inst.instruction = T_OPCODE_ADD_HI;
8494	  inst.instruction |= (Rd & 8) << 4;
8495	  inst.instruction |= (Rd & 7);
8496	  if (Rs == Rd)
8497	    inst.instruction |= Rn << 3;
8498	  else if (Rn == Rd)
8499	    inst.instruction |= Rs << 3;
8500	  else
8501	    constraint (1, _("dest must overlap one source register"));
8502	}
8503      else
8504	{
8505	  inst.instruction = (inst.instruction == T_MNEM_add
8506			      ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8507	  inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8508	}
8509    }
8510}
8511
8512static void
8513do_t_adr (void)
8514{
8515  if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
8516    {
8517      /* Defer to section relaxation.  */
8518      inst.relax = inst.instruction;
8519      inst.instruction = THUMB_OP16 (inst.instruction);
8520      inst.instruction |= inst.operands[0].reg << 4;
8521    }
8522  else if (unified_syntax && inst.size_req != 2)
8523    {
8524      /* Generate a 32-bit opcode.  */
8525      inst.instruction = THUMB_OP32 (inst.instruction);
8526      inst.instruction |= inst.operands[0].reg << 8;
8527      inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8528      inst.reloc.pc_rel = 1;
8529    }
8530  else
8531    {
8532      /* Generate a 16-bit opcode.  */
8533      inst.instruction = THUMB_OP16 (inst.instruction);
8534      inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8535      inst.reloc.exp.X_add_number -= 4; /* PC relative adjust.  */
8536      inst.reloc.pc_rel = 1;
8537
8538      inst.instruction |= inst.operands[0].reg << 4;
8539    }
8540}
8541
8542/* Arithmetic instructions for which there is just one 16-bit
8543   instruction encoding, and it allows only two low registers.
8544   For maximal compatibility with ARM syntax, we allow three register
8545   operands even when Thumb-32 instructions are not available, as long
8546   as the first two are identical.  For instance, both "sbc r0,r1" and
8547   "sbc r0,r0,r1" are allowed.  */
8548static void
8549do_t_arit3 (void)
8550{
8551  int Rd, Rs, Rn;
8552
8553  Rd = inst.operands[0].reg;
8554  Rs = (inst.operands[1].present
8555	? inst.operands[1].reg    /* Rd, Rs, foo */
8556	: inst.operands[0].reg);  /* Rd, foo -> Rd, Rd, foo */
8557  Rn = inst.operands[2].reg;
8558
8559  if (unified_syntax)
8560    {
8561      if (!inst.operands[2].isreg)
8562	{
8563	  /* For an immediate, we always generate a 32-bit opcode;
8564	     section relaxation will shrink it later if possible.  */
8565	  inst.instruction = THUMB_OP32 (inst.instruction);
8566	  inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8567	  inst.instruction |= Rd << 8;
8568	  inst.instruction |= Rs << 16;
8569	  inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8570	}
8571      else
8572	{
8573	  bfd_boolean narrow;
8574
8575	  /* See if we can do this with a 16-bit instruction.  */
8576	  if (THUMB_SETS_FLAGS (inst.instruction))
8577	    narrow = current_it_mask == 0;
8578	  else
8579	    narrow = current_it_mask != 0;
8580
8581	  if (Rd > 7 || Rn > 7 || Rs > 7)
8582	    narrow = FALSE;
8583	  if (inst.operands[2].shifted)
8584	    narrow = FALSE;
8585	  if (inst.size_req == 4)
8586	    narrow = FALSE;
8587
8588	  if (narrow
8589	      && Rd == Rs)
8590	    {
8591	      inst.instruction = THUMB_OP16 (inst.instruction);
8592	      inst.instruction |= Rd;
8593	      inst.instruction |= Rn << 3;
8594	      return;
8595	    }
8596
8597	  /* If we get here, it can't be done in 16 bits.  */
8598	  constraint (inst.operands[2].shifted
8599		      && inst.operands[2].immisreg,
8600		      _("shift must be constant"));
8601	  inst.instruction = THUMB_OP32 (inst.instruction);
8602	  inst.instruction |= Rd << 8;
8603	  inst.instruction |= Rs << 16;
8604	  encode_thumb32_shifted_operand (2);
8605	}
8606    }
8607  else
8608    {
8609      /* On its face this is a lie - the instruction does set the
8610	 flags.  However, the only supported mnemonic in this mode
8611	 says it doesn't.  */
8612      constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8613
8614      constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8615		  _("unshifted register required"));
8616      constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8617      constraint (Rd != Rs,
8618		  _("dest and source1 must be the same register"));
8619
8620      inst.instruction = THUMB_OP16 (inst.instruction);
8621      inst.instruction |= Rd;
8622      inst.instruction |= Rn << 3;
8623    }
8624}
8625
8626/* Similarly, but for instructions where the arithmetic operation is
8627   commutative, so we can allow either of them to be different from
8628   the destination operand in a 16-bit instruction.  For instance, all
8629   three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8630   accepted.  */
8631static void
8632do_t_arit3c (void)
8633{
8634  int Rd, Rs, Rn;
8635
8636  Rd = inst.operands[0].reg;
8637  Rs = (inst.operands[1].present
8638	? inst.operands[1].reg    /* Rd, Rs, foo */
8639	: inst.operands[0].reg);  /* Rd, foo -> Rd, Rd, foo */
8640  Rn = inst.operands[2].reg;
8641
8642  if (unified_syntax)
8643    {
8644      if (!inst.operands[2].isreg)
8645	{
8646	  /* For an immediate, we always generate a 32-bit opcode;
8647	     section relaxation will shrink it later if possible.  */
8648	  inst.instruction = THUMB_OP32 (inst.instruction);
8649	  inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8650	  inst.instruction |= Rd << 8;
8651	  inst.instruction |= Rs << 16;
8652	  inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8653	}
8654      else
8655	{
8656	  bfd_boolean narrow;
8657
8658	  /* See if we can do this with a 16-bit instruction.  */
8659	  if (THUMB_SETS_FLAGS (inst.instruction))
8660	    narrow = current_it_mask == 0;
8661	  else
8662	    narrow = current_it_mask != 0;
8663
8664	  if (Rd > 7 || Rn > 7 || Rs > 7)
8665	    narrow = FALSE;
8666	  if (inst.operands[2].shifted)
8667	    narrow = FALSE;
8668	  if (inst.size_req == 4)
8669	    narrow = FALSE;
8670
8671	  if (narrow)
8672	    {
8673	      if (Rd == Rs)
8674		{
8675		  inst.instruction = THUMB_OP16 (inst.instruction);
8676		  inst.instruction |= Rd;
8677		  inst.instruction |= Rn << 3;
8678		  return;
8679		}
8680	      if (Rd == Rn)
8681		{
8682		  inst.instruction = THUMB_OP16 (inst.instruction);
8683		  inst.instruction |= Rd;
8684		  inst.instruction |= Rs << 3;
8685		  return;
8686		}
8687	    }
8688
8689	  /* If we get here, it can't be done in 16 bits.  */
8690	  constraint (inst.operands[2].shifted
8691		      && inst.operands[2].immisreg,
8692		      _("shift must be constant"));
8693	  inst.instruction = THUMB_OP32 (inst.instruction);
8694	  inst.instruction |= Rd << 8;
8695	  inst.instruction |= Rs << 16;
8696	  encode_thumb32_shifted_operand (2);
8697	}
8698    }
8699  else
8700    {
8701      /* On its face this is a lie - the instruction does set the
8702	 flags.  However, the only supported mnemonic in this mode
8703	 says it doesn't.  */
8704      constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8705
8706      constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8707		  _("unshifted register required"));
8708      constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8709
8710      inst.instruction = THUMB_OP16 (inst.instruction);
8711      inst.instruction |= Rd;
8712
8713      if (Rd == Rs)
8714	inst.instruction |= Rn << 3;
8715      else if (Rd == Rn)
8716	inst.instruction |= Rs << 3;
8717      else
8718	constraint (1, _("dest must overlap one source register"));
8719    }
8720}
8721
8722static void
8723do_t_barrier (void)
8724{
8725  if (inst.operands[0].present)
8726    {
8727      constraint ((inst.instruction & 0xf0) != 0x40
8728		  && inst.operands[0].imm != 0xf,
8729		  "bad barrier type");
8730      inst.instruction |= inst.operands[0].imm;
8731    }
8732  else
8733    inst.instruction |= 0xf;
8734}
8735
8736static void
8737do_t_bfc (void)
8738{
8739  unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8740  constraint (msb > 32, _("bit-field extends past end of register"));
8741  /* The instruction encoding stores the LSB and MSB,
8742     not the LSB and width.  */
8743  inst.instruction |= inst.operands[0].reg << 8;
8744  inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8745  inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8746  inst.instruction |= msb - 1;
8747}
8748
8749static void
8750do_t_bfi (void)
8751{
8752  unsigned int msb;
8753
8754  /* #0 in second position is alternative syntax for bfc, which is
8755     the same instruction but with REG_PC in the Rm field.  */
8756  if (!inst.operands[1].isreg)
8757    inst.operands[1].reg = REG_PC;
8758
8759  msb = inst.operands[2].imm + inst.operands[3].imm;
8760  constraint (msb > 32, _("bit-field extends past end of register"));
8761  /* The instruction encoding stores the LSB and MSB,
8762     not the LSB and width.  */
8763  inst.instruction |= inst.operands[0].reg << 8;
8764  inst.instruction |= inst.operands[1].reg << 16;
8765  inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8766  inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8767  inst.instruction |= msb - 1;
8768}
8769
8770static void
8771do_t_bfx (void)
8772{
8773  constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8774	      _("bit-field extends past end of register"));
8775  inst.instruction |= inst.operands[0].reg << 8;
8776  inst.instruction |= inst.operands[1].reg << 16;
8777  inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8778  inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8779  inst.instruction |= inst.operands[3].imm - 1;
8780}
8781
8782/* ARM V5 Thumb BLX (argument parse)
8783	BLX <target_addr>	which is BLX(1)
8784	BLX <Rm>		which is BLX(2)
8785   Unfortunately, there are two different opcodes for this mnemonic.
8786   So, the insns[].value is not used, and the code here zaps values
8787	into inst.instruction.
8788
8789   ??? How to take advantage of the additional two bits of displacement
8790   available in Thumb32 mode?  Need new relocation?  */
8791
8792static void
8793do_t_blx (void)
8794{
8795  constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8796  if (inst.operands[0].isreg)
8797    /* We have a register, so this is BLX(2).  */
8798    inst.instruction |= inst.operands[0].reg << 3;
8799  else
8800    {
8801      /* No register.  This must be BLX(1).  */
8802      inst.instruction = 0xf000e800;
8803#ifdef OBJ_ELF
8804      if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8805	inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8806      else
8807#endif
8808	inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
8809      inst.reloc.pc_rel = 1;
8810    }
8811}
8812
8813static void
8814do_t_branch (void)
8815{
8816  int opcode;
8817  int cond;
8818
8819  if (current_it_mask)
8820    {
8821      /* Conditional branches inside IT blocks are encoded as unconditional
8822         branches.  */
8823      cond = COND_ALWAYS;
8824      /* A branch must be the last instruction in an IT block.  */
8825      constraint (current_it_mask != 0x10, BAD_BRANCH);
8826    }
8827  else
8828    cond = inst.cond;
8829
8830  if (cond != COND_ALWAYS)
8831    opcode = T_MNEM_bcond;
8832  else
8833    opcode = inst.instruction;
8834
8835  if (unified_syntax && inst.size_req == 4)
8836    {
8837      inst.instruction = THUMB_OP32(opcode);
8838      if (cond == COND_ALWAYS)
8839	inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
8840      else
8841	{
8842	  assert (cond != 0xF);
8843	  inst.instruction |= cond << 22;
8844	  inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
8845	}
8846    }
8847  else
8848    {
8849      inst.instruction = THUMB_OP16(opcode);
8850      if (cond == COND_ALWAYS)
8851	inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
8852      else
8853	{
8854	  inst.instruction |= cond << 8;
8855	  inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
8856	}
8857      /* Allow section relaxation.  */
8858      if (unified_syntax && inst.size_req != 2)
8859	inst.relax = opcode;
8860    }
8861
8862  inst.reloc.pc_rel = 1;
8863}
8864
8865static void
8866do_t_bkpt (void)
8867{
8868  constraint (inst.cond != COND_ALWAYS,
8869	      _("instruction is always unconditional"));
8870  if (inst.operands[0].present)
8871    {
8872      constraint (inst.operands[0].imm > 255,
8873		  _("immediate value out of range"));
8874      inst.instruction |= inst.operands[0].imm;
8875    }
8876}
8877
8878static void
8879do_t_branch23 (void)
8880{
8881  constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8882  inst.reloc.type   = BFD_RELOC_THUMB_PCREL_BRANCH23;
8883  inst.reloc.pc_rel = 1;
8884
8885  /* If the destination of the branch is a defined symbol which does not have
8886     the THUMB_FUNC attribute, then we must be calling a function which has
8887     the (interfacearm) attribute.  We look for the Thumb entry point to that
8888     function and change the branch to refer to that function instead.	*/
8889  if (	 inst.reloc.exp.X_op == O_symbol
8890      && inst.reloc.exp.X_add_symbol != NULL
8891      && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8892      && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8893    inst.reloc.exp.X_add_symbol =
8894      find_real_start (inst.reloc.exp.X_add_symbol);
8895}
8896
8897static void
8898do_t_bx (void)
8899{
8900  constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8901  inst.instruction |= inst.operands[0].reg << 3;
8902  /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC.	 The reloc
8903     should cause the alignment to be checked once it is known.	 This is
8904     because BX PC only works if the instruction is word aligned.  */
8905}
8906
8907static void
8908do_t_bxj (void)
8909{
8910  constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8911  if (inst.operands[0].reg == REG_PC)
8912    as_tsktsk (_("use of r15 in bxj is not really useful"));
8913
8914  inst.instruction |= inst.operands[0].reg << 16;
8915}
8916
8917static void
8918do_t_clz (void)
8919{
8920  inst.instruction |= inst.operands[0].reg << 8;
8921  inst.instruction |= inst.operands[1].reg << 16;
8922  inst.instruction |= inst.operands[1].reg;
8923}
8924
8925static void
8926do_t_cps (void)
8927{
8928  constraint (current_it_mask, BAD_NOT_IT);
8929  inst.instruction |= inst.operands[0].imm;
8930}
8931
8932static void
8933do_t_cpsi (void)
8934{
8935  constraint (current_it_mask, BAD_NOT_IT);
8936  if (unified_syntax
8937      && (inst.operands[1].present || inst.size_req == 4)
8938      && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
8939    {
8940      unsigned int imod = (inst.instruction & 0x0030) >> 4;
8941      inst.instruction = 0xf3af8000;
8942      inst.instruction |= imod << 9;
8943      inst.instruction |= inst.operands[0].imm << 5;
8944      if (inst.operands[1].present)
8945	inst.instruction |= 0x100 | inst.operands[1].imm;
8946    }
8947  else
8948    {
8949      constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
8950		  && (inst.operands[0].imm & 4),
8951		  _("selected processor does not support 'A' form "
8952		    "of this instruction"));
8953      constraint (inst.operands[1].present || inst.size_req == 4,
8954		  _("Thumb does not support the 2-argument "
8955		    "form of this instruction"));
8956      inst.instruction |= inst.operands[0].imm;
8957    }
8958}
8959
8960/* THUMB CPY instruction (argument parse).  */
8961
8962static void
8963do_t_cpy (void)
8964{
8965  if (inst.size_req == 4)
8966    {
8967      inst.instruction = THUMB_OP32 (T_MNEM_mov);
8968      inst.instruction |= inst.operands[0].reg << 8;
8969      inst.instruction |= inst.operands[1].reg;
8970    }
8971  else
8972    {
8973      inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
8974      inst.instruction |= (inst.operands[0].reg & 0x7);
8975      inst.instruction |= inst.operands[1].reg << 3;
8976    }
8977}
8978
8979static void
8980do_t_cbz (void)
8981{
8982  constraint (current_it_mask, BAD_NOT_IT);
8983  constraint (inst.operands[0].reg > 7, BAD_HIREG);
8984  inst.instruction |= inst.operands[0].reg;
8985  inst.reloc.pc_rel = 1;
8986  inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
8987}
8988
8989static void
8990do_t_dbg (void)
8991{
8992  inst.instruction |= inst.operands[0].imm;
8993}
8994
8995static void
8996do_t_div (void)
8997{
8998  if (!inst.operands[1].present)
8999    inst.operands[1].reg = inst.operands[0].reg;
9000  inst.instruction |= inst.operands[0].reg << 8;
9001  inst.instruction |= inst.operands[1].reg << 16;
9002  inst.instruction |= inst.operands[2].reg;
9003}
9004
9005static void
9006do_t_hint (void)
9007{
9008  if (unified_syntax && inst.size_req == 4)
9009    inst.instruction = THUMB_OP32 (inst.instruction);
9010  else
9011    inst.instruction = THUMB_OP16 (inst.instruction);
9012}
9013
9014static void
9015do_t_it (void)
9016{
9017  unsigned int cond = inst.operands[0].imm;
9018
9019  constraint (current_it_mask, BAD_NOT_IT);
9020  current_it_mask = (inst.instruction & 0xf) | 0x10;
9021  current_cc = cond;
9022
9023  /* If the condition is a negative condition, invert the mask.  */
9024  if ((cond & 0x1) == 0x0)
9025    {
9026      unsigned int mask = inst.instruction & 0x000f;
9027
9028      if ((mask & 0x7) == 0)
9029	/* no conversion needed */;
9030      else if ((mask & 0x3) == 0)
9031	mask ^= 0x8;
9032      else if ((mask & 0x1) == 0)
9033	mask ^= 0xC;
9034      else
9035	mask ^= 0xE;
9036
9037      inst.instruction &= 0xfff0;
9038      inst.instruction |= mask;
9039    }
9040
9041  inst.instruction |= cond << 4;
9042}
9043
9044/* Helper function used for both push/pop and ldm/stm.  */
9045static void
9046encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9047{
9048  bfd_boolean load;
9049
9050  load = (inst.instruction & (1 << 20)) != 0;
9051
9052  if (mask & (1 << 13))
9053    inst.error =  _("SP not allowed in register list");
9054  if (load)
9055    {
9056      if (mask & (1 << 14)
9057	  && mask & (1 << 15))
9058	inst.error = _("LR and PC should not both be in register list");
9059
9060      if ((mask & (1 << base)) != 0
9061	  && writeback)
9062	as_warn (_("base register should not be in register list "
9063		   "when written back"));
9064    }
9065  else
9066    {
9067      if (mask & (1 << 15))
9068	inst.error = _("PC not allowed in register list");
9069
9070      if (mask & (1 << base))
9071	as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9072    }
9073
9074  if ((mask & (mask - 1)) == 0)
9075    {
9076      /* Single register transfers implemented as str/ldr.  */
9077      if (writeback)
9078	{
9079	  if (inst.instruction & (1 << 23))
9080	    inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9081	  else
9082	    inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9083	}
9084      else
9085	{
9086	  if (inst.instruction & (1 << 23))
9087	    inst.instruction = 0x00800000; /* ia -> [base] */
9088	  else
9089	    inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9090	}
9091
9092      inst.instruction |= 0xf8400000;
9093      if (load)
9094	inst.instruction |= 0x00100000;
9095
9096      mask = ffs(mask) - 1;
9097      mask <<= 12;
9098    }
9099  else if (writeback)
9100    inst.instruction |= WRITE_BACK;
9101
9102  inst.instruction |= mask;
9103  inst.instruction |= base << 16;
9104}
9105
9106static void
9107do_t_ldmstm (void)
9108{
9109  /* This really doesn't seem worth it.  */
9110  constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9111	      _("expression too complex"));
9112  constraint (inst.operands[1].writeback,
9113	      _("Thumb load/store multiple does not support {reglist}^"));
9114
9115  if (unified_syntax)
9116    {
9117      bfd_boolean narrow;
9118      unsigned mask;
9119
9120      narrow = FALSE;
9121      /* See if we can use a 16-bit instruction.  */
9122      if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9123	  && inst.size_req != 4
9124	  && !(inst.operands[1].imm & ~0xff))
9125	{
9126	  mask = 1 << inst.operands[0].reg;
9127
9128	  if (inst.operands[0].reg <= 7
9129	      && (inst.instruction == T_MNEM_stmia
9130		  ? inst.operands[0].writeback
9131		  : (inst.operands[0].writeback
9132		     == !(inst.operands[1].imm & mask))))
9133	    {
9134	      if (inst.instruction == T_MNEM_stmia
9135		  && (inst.operands[1].imm & mask)
9136		  && (inst.operands[1].imm & (mask - 1)))
9137		as_warn (_("value stored for r%d is UNPREDICTABLE"),
9138			 inst.operands[0].reg);
9139
9140	      inst.instruction = THUMB_OP16 (inst.instruction);
9141	      inst.instruction |= inst.operands[0].reg << 8;
9142	      inst.instruction |= inst.operands[1].imm;
9143	      narrow = TRUE;
9144	    }
9145	  else if (inst.operands[0] .reg == REG_SP
9146		   && inst.operands[0].writeback)
9147	    {
9148	      inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9149					     ? T_MNEM_push : T_MNEM_pop);
9150	      inst.instruction |= inst.operands[1].imm;
9151	      narrow = TRUE;
9152	    }
9153	}
9154
9155      if (!narrow)
9156	{
9157	  if (inst.instruction < 0xffff)
9158	    inst.instruction = THUMB_OP32 (inst.instruction);
9159
9160	  encode_thumb2_ldmstm(inst.operands[0].reg, inst.operands[1].imm,
9161			       inst.operands[0].writeback);
9162	}
9163    }
9164  else
9165    {
9166      constraint (inst.operands[0].reg > 7
9167		  || (inst.operands[1].imm & ~0xff), BAD_HIREG);
9168      constraint (inst.instruction != T_MNEM_ldmia
9169		  && inst.instruction != T_MNEM_stmia,
9170		  _("Thumb-2 instruction only valid in unified syntax"));
9171      if (inst.instruction == T_MNEM_stmia)
9172	{
9173	  if (!inst.operands[0].writeback)
9174	    as_warn (_("this instruction will write back the base register"));
9175	  if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9176	      && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9177	    as_warn (_("value stored for r%d is UNPREDICTABLE"),
9178		     inst.operands[0].reg);
9179	}
9180      else
9181	{
9182	  if (!inst.operands[0].writeback
9183	      && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9184	    as_warn (_("this instruction will write back the base register"));
9185	  else if (inst.operands[0].writeback
9186		   && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9187	    as_warn (_("this instruction will not write back the base register"));
9188	}
9189
9190      inst.instruction = THUMB_OP16 (inst.instruction);
9191      inst.instruction |= inst.operands[0].reg << 8;
9192      inst.instruction |= inst.operands[1].imm;
9193    }
9194}
9195
9196static void
9197do_t_ldrex (void)
9198{
9199  constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9200	      || inst.operands[1].postind || inst.operands[1].writeback
9201	      || inst.operands[1].immisreg || inst.operands[1].shifted
9202	      || inst.operands[1].negative,
9203	      BAD_ADDR_MODE);
9204
9205  inst.instruction |= inst.operands[0].reg << 12;
9206  inst.instruction |= inst.operands[1].reg << 16;
9207  inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9208}
9209
9210static void
9211do_t_ldrexd (void)
9212{
9213  if (!inst.operands[1].present)
9214    {
9215      constraint (inst.operands[0].reg == REG_LR,
9216		  _("r14 not allowed as first register "
9217		    "when second register is omitted"));
9218      inst.operands[1].reg = inst.operands[0].reg + 1;
9219    }
9220  constraint (inst.operands[0].reg == inst.operands[1].reg,
9221	      BAD_OVERLAP);
9222
9223  inst.instruction |= inst.operands[0].reg << 12;
9224  inst.instruction |= inst.operands[1].reg << 8;
9225  inst.instruction |= inst.operands[2].reg << 16;
9226}
9227
9228static void
9229do_t_ldst (void)
9230{
9231  unsigned long opcode;
9232  int Rn;
9233
9234  opcode = inst.instruction;
9235  if (unified_syntax)
9236    {
9237      if (!inst.operands[1].isreg)
9238	{
9239	  if (opcode <= 0xffff)
9240	    inst.instruction = THUMB_OP32 (opcode);
9241	  if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9242	    return;
9243	}
9244      if (inst.operands[1].isreg
9245	  && !inst.operands[1].writeback
9246	  && !inst.operands[1].shifted && !inst.operands[1].postind
9247	  && !inst.operands[1].negative && inst.operands[0].reg <= 7
9248	  && opcode <= 0xffff
9249	  && inst.size_req != 4)
9250	{
9251	  /* Insn may have a 16-bit form.  */
9252	  Rn = inst.operands[1].reg;
9253	  if (inst.operands[1].immisreg)
9254	    {
9255	      inst.instruction = THUMB_OP16 (opcode);
9256	      /* [Rn, Ri] */
9257	      if (Rn <= 7 && inst.operands[1].imm <= 7)
9258		goto op16;
9259	    }
9260	  else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9261		    && opcode != T_MNEM_ldrsb)
9262		   || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9263		   || (Rn == REG_SP && opcode == T_MNEM_str))
9264	    {
9265	      /* [Rn, #const] */
9266	      if (Rn > 7)
9267		{
9268		  if (Rn == REG_PC)
9269		    {
9270		      if (inst.reloc.pc_rel)
9271			opcode = T_MNEM_ldr_pc2;
9272		      else
9273			opcode = T_MNEM_ldr_pc;
9274		    }
9275		  else
9276		    {
9277		      if (opcode == T_MNEM_ldr)
9278			opcode = T_MNEM_ldr_sp;
9279		      else
9280			opcode = T_MNEM_str_sp;
9281		    }
9282		  inst.instruction = inst.operands[0].reg << 8;
9283		}
9284	      else
9285		{
9286		  inst.instruction = inst.operands[0].reg;
9287		  inst.instruction |= inst.operands[1].reg << 3;
9288		}
9289	      inst.instruction |= THUMB_OP16 (opcode);
9290	      if (inst.size_req == 2)
9291		inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9292	      else
9293		inst.relax = opcode;
9294	      return;
9295	    }
9296	}
9297      /* Definitely a 32-bit variant.  */
9298      inst.instruction = THUMB_OP32 (opcode);
9299      inst.instruction |= inst.operands[0].reg << 12;
9300      encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
9301      return;
9302    }
9303
9304  constraint (inst.operands[0].reg > 7, BAD_HIREG);
9305
9306  if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
9307    {
9308      /* Only [Rn,Rm] is acceptable.  */
9309      constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9310      constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9311		  || inst.operands[1].postind || inst.operands[1].shifted
9312		  || inst.operands[1].negative,
9313		  _("Thumb does not support this addressing mode"));
9314      inst.instruction = THUMB_OP16 (inst.instruction);
9315      goto op16;
9316    }
9317
9318  inst.instruction = THUMB_OP16 (inst.instruction);
9319  if (!inst.operands[1].isreg)
9320    if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9321      return;
9322
9323  constraint (!inst.operands[1].preind
9324	      || inst.operands[1].shifted
9325	      || inst.operands[1].writeback,
9326	      _("Thumb does not support this addressing mode"));
9327  if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
9328    {
9329      constraint (inst.instruction & 0x0600,
9330		  _("byte or halfword not valid for base register"));
9331      constraint (inst.operands[1].reg == REG_PC
9332		  && !(inst.instruction & THUMB_LOAD_BIT),
9333		  _("r15 based store not allowed"));
9334      constraint (inst.operands[1].immisreg,
9335		  _("invalid base register for register offset"));
9336
9337      if (inst.operands[1].reg == REG_PC)
9338	inst.instruction = T_OPCODE_LDR_PC;
9339      else if (inst.instruction & THUMB_LOAD_BIT)
9340	inst.instruction = T_OPCODE_LDR_SP;
9341      else
9342	inst.instruction = T_OPCODE_STR_SP;
9343
9344      inst.instruction |= inst.operands[0].reg << 8;
9345      inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9346      return;
9347    }
9348
9349  constraint (inst.operands[1].reg > 7, BAD_HIREG);
9350  if (!inst.operands[1].immisreg)
9351    {
9352      /* Immediate offset.  */
9353      inst.instruction |= inst.operands[0].reg;
9354      inst.instruction |= inst.operands[1].reg << 3;
9355      inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9356      return;
9357    }
9358
9359  /* Register offset.  */
9360  constraint (inst.operands[1].imm > 7, BAD_HIREG);
9361  constraint (inst.operands[1].negative,
9362	      _("Thumb does not support this addressing mode"));
9363
9364 op16:
9365  switch (inst.instruction)
9366    {
9367    case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9368    case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9369    case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9370    case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9371    case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9372    case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9373    case 0x5600 /* ldrsb */:
9374    case 0x5e00 /* ldrsh */: break;
9375    default: abort ();
9376    }
9377
9378  inst.instruction |= inst.operands[0].reg;
9379  inst.instruction |= inst.operands[1].reg << 3;
9380  inst.instruction |= inst.operands[1].imm << 6;
9381}
9382
9383static void
9384do_t_ldstd (void)
9385{
9386  if (!inst.operands[1].present)
9387    {
9388      inst.operands[1].reg = inst.operands[0].reg + 1;
9389      constraint (inst.operands[0].reg == REG_LR,
9390		  _("r14 not allowed here"));
9391    }
9392  inst.instruction |= inst.operands[0].reg << 12;
9393  inst.instruction |= inst.operands[1].reg << 8;
9394  encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
9395
9396}
9397
9398static void
9399do_t_ldstt (void)
9400{
9401  inst.instruction |= inst.operands[0].reg << 12;
9402  encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9403}
9404
9405static void
9406do_t_mla (void)
9407{
9408  inst.instruction |= inst.operands[0].reg << 8;
9409  inst.instruction |= inst.operands[1].reg << 16;
9410  inst.instruction |= inst.operands[2].reg;
9411  inst.instruction |= inst.operands[3].reg << 12;
9412}
9413
9414static void
9415do_t_mlal (void)
9416{
9417  inst.instruction |= inst.operands[0].reg << 12;
9418  inst.instruction |= inst.operands[1].reg << 8;
9419  inst.instruction |= inst.operands[2].reg << 16;
9420  inst.instruction |= inst.operands[3].reg;
9421}
9422
9423static void
9424do_t_mov_cmp (void)
9425{
9426  if (unified_syntax)
9427    {
9428      int r0off = (inst.instruction == T_MNEM_mov
9429		   || inst.instruction == T_MNEM_movs) ? 8 : 16;
9430      unsigned long opcode;
9431      bfd_boolean narrow;
9432      bfd_boolean low_regs;
9433
9434      low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
9435      opcode = inst.instruction;
9436      if (current_it_mask)
9437	narrow = opcode != T_MNEM_movs;
9438      else
9439	narrow = opcode != T_MNEM_movs || low_regs;
9440      if (inst.size_req == 4
9441	  || inst.operands[1].shifted)
9442	narrow = FALSE;
9443
9444      /* MOVS PC, LR is encoded as SUBS PC, LR, #0.  */
9445      if (opcode == T_MNEM_movs && inst.operands[1].isreg
9446	  && !inst.operands[1].shifted
9447	  && inst.operands[0].reg == REG_PC
9448	  && inst.operands[1].reg == REG_LR)
9449	{
9450	  inst.instruction = T2_SUBS_PC_LR;
9451	  return;
9452	}
9453
9454      if (!inst.operands[1].isreg)
9455	{
9456	  /* Immediate operand.  */
9457	  if (current_it_mask == 0 && opcode == T_MNEM_mov)
9458	    narrow = 0;
9459	  if (low_regs && narrow)
9460	    {
9461	      inst.instruction = THUMB_OP16 (opcode);
9462	      inst.instruction |= inst.operands[0].reg << 8;
9463	      if (inst.size_req == 2)
9464		inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9465	      else
9466		inst.relax = opcode;
9467	    }
9468	  else
9469	    {
9470	      inst.instruction = THUMB_OP32 (inst.instruction);
9471	      inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9472	      inst.instruction |= inst.operands[0].reg << r0off;
9473	      inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9474	    }
9475	}
9476      else if (inst.operands[1].shifted && inst.operands[1].immisreg
9477	       && (inst.instruction == T_MNEM_mov
9478		   || inst.instruction == T_MNEM_movs))
9479	{
9480	  /* Register shifts are encoded as separate shift instructions.  */
9481	  bfd_boolean flags = (inst.instruction == T_MNEM_movs);
9482
9483	  if (current_it_mask)
9484	    narrow = !flags;
9485	  else
9486	    narrow = flags;
9487
9488	  if (inst.size_req == 4)
9489	    narrow = FALSE;
9490
9491	  if (!low_regs || inst.operands[1].imm > 7)
9492	    narrow = FALSE;
9493
9494	  if (inst.operands[0].reg != inst.operands[1].reg)
9495	    narrow = FALSE;
9496
9497	  switch (inst.operands[1].shift_kind)
9498	    {
9499	    case SHIFT_LSL:
9500	      opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
9501	      break;
9502	    case SHIFT_ASR:
9503	      opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
9504	      break;
9505	    case SHIFT_LSR:
9506	      opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
9507	      break;
9508	    case SHIFT_ROR:
9509	      opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
9510	      break;
9511	    default:
9512	      abort();
9513	    }
9514
9515	  inst.instruction = opcode;
9516	  if (narrow)
9517	    {
9518	      inst.instruction |= inst.operands[0].reg;
9519	      inst.instruction |= inst.operands[1].imm << 3;
9520	    }
9521	  else
9522	    {
9523	      if (flags)
9524		inst.instruction |= CONDS_BIT;
9525
9526	      inst.instruction |= inst.operands[0].reg << 8;
9527	      inst.instruction |= inst.operands[1].reg << 16;
9528	      inst.instruction |= inst.operands[1].imm;
9529	    }
9530	}
9531      else if (!narrow)
9532	{
9533	  /* Some mov with immediate shift have narrow variants.
9534	     Register shifts are handled above.  */
9535	  if (low_regs && inst.operands[1].shifted
9536	      && (inst.instruction == T_MNEM_mov
9537		  || inst.instruction == T_MNEM_movs))
9538	    {
9539	      if (current_it_mask)
9540		narrow = (inst.instruction == T_MNEM_mov);
9541	      else
9542		narrow = (inst.instruction == T_MNEM_movs);
9543	    }
9544
9545	  if (narrow)
9546	    {
9547	      switch (inst.operands[1].shift_kind)
9548		{
9549		case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9550		case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9551		case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9552		default: narrow = FALSE; break;
9553		}
9554	    }
9555
9556	  if (narrow)
9557	    {
9558	      inst.instruction |= inst.operands[0].reg;
9559	      inst.instruction |= inst.operands[1].reg << 3;
9560	      inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9561	    }
9562	  else
9563	    {
9564	      inst.instruction = THUMB_OP32 (inst.instruction);
9565	      inst.instruction |= inst.operands[0].reg << r0off;
9566	      encode_thumb32_shifted_operand (1);
9567	    }
9568	}
9569      else
9570	switch (inst.instruction)
9571	  {
9572	  case T_MNEM_mov:
9573	    inst.instruction = T_OPCODE_MOV_HR;
9574	    inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9575	    inst.instruction |= (inst.operands[0].reg & 0x7);
9576	    inst.instruction |= inst.operands[1].reg << 3;
9577	    break;
9578
9579	  case T_MNEM_movs:
9580	    /* We know we have low registers at this point.
9581	       Generate ADD Rd, Rs, #0.  */
9582	    inst.instruction = T_OPCODE_ADD_I3;
9583	    inst.instruction |= inst.operands[0].reg;
9584	    inst.instruction |= inst.operands[1].reg << 3;
9585	    break;
9586
9587	  case T_MNEM_cmp:
9588	    if (low_regs)
9589	      {
9590		inst.instruction = T_OPCODE_CMP_LR;
9591		inst.instruction |= inst.operands[0].reg;
9592		inst.instruction |= inst.operands[1].reg << 3;
9593	      }
9594	    else
9595	      {
9596		inst.instruction = T_OPCODE_CMP_HR;
9597		inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9598		inst.instruction |= (inst.operands[0].reg & 0x7);
9599		inst.instruction |= inst.operands[1].reg << 3;
9600	      }
9601	    break;
9602	  }
9603      return;
9604    }
9605
9606  inst.instruction = THUMB_OP16 (inst.instruction);
9607  if (inst.operands[1].isreg)
9608    {
9609      if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
9610	{
9611	  /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9612	     since a MOV instruction produces unpredictable results.  */
9613	  if (inst.instruction == T_OPCODE_MOV_I8)
9614	    inst.instruction = T_OPCODE_ADD_I3;
9615	  else
9616	    inst.instruction = T_OPCODE_CMP_LR;
9617
9618	  inst.instruction |= inst.operands[0].reg;
9619	  inst.instruction |= inst.operands[1].reg << 3;
9620	}
9621      else
9622	{
9623	  if (inst.instruction == T_OPCODE_MOV_I8)
9624	    inst.instruction = T_OPCODE_MOV_HR;
9625	  else
9626	    inst.instruction = T_OPCODE_CMP_HR;
9627	  do_t_cpy ();
9628	}
9629    }
9630  else
9631    {
9632      constraint (inst.operands[0].reg > 7,
9633		  _("only lo regs allowed with immediate"));
9634      inst.instruction |= inst.operands[0].reg << 8;
9635      inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9636    }
9637}
9638
9639static void
9640do_t_mov16 (void)
9641{
9642  bfd_vma imm;
9643  bfd_boolean top;
9644
9645  top = (inst.instruction & 0x00800000) != 0;
9646  if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9647    {
9648      constraint (top, _(":lower16: not allowed this instruction"));
9649      inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9650    }
9651  else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9652    {
9653      constraint (!top, _(":upper16: not allowed this instruction"));
9654      inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9655    }
9656
9657  inst.instruction |= inst.operands[0].reg << 8;
9658  if (inst.reloc.type == BFD_RELOC_UNUSED)
9659    {
9660      imm = inst.reloc.exp.X_add_number;
9661      inst.instruction |= (imm & 0xf000) << 4;
9662      inst.instruction |= (imm & 0x0800) << 15;
9663      inst.instruction |= (imm & 0x0700) << 4;
9664      inst.instruction |= (imm & 0x00ff);
9665    }
9666}
9667
9668static void
9669do_t_mvn_tst (void)
9670{
9671  if (unified_syntax)
9672    {
9673      int r0off = (inst.instruction == T_MNEM_mvn
9674		   || inst.instruction == T_MNEM_mvns) ? 8 : 16;
9675      bfd_boolean narrow;
9676
9677      if (inst.size_req == 4
9678	  || inst.instruction > 0xffff
9679	  || inst.operands[1].shifted
9680	  || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9681	narrow = FALSE;
9682      else if (inst.instruction == T_MNEM_cmn)
9683	narrow = TRUE;
9684      else if (THUMB_SETS_FLAGS (inst.instruction))
9685	narrow = (current_it_mask == 0);
9686      else
9687	narrow = (current_it_mask != 0);
9688
9689      if (!inst.operands[1].isreg)
9690	{
9691	  /* For an immediate, we always generate a 32-bit opcode;
9692	     section relaxation will shrink it later if possible.  */
9693	  if (inst.instruction < 0xffff)
9694	    inst.instruction = THUMB_OP32 (inst.instruction);
9695	  inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9696	  inst.instruction |= inst.operands[0].reg << r0off;
9697	  inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9698	}
9699      else
9700	{
9701	  /* See if we can do this with a 16-bit instruction.  */
9702	  if (narrow)
9703	    {
9704	      inst.instruction = THUMB_OP16 (inst.instruction);
9705	      inst.instruction |= inst.operands[0].reg;
9706	      inst.instruction |= inst.operands[1].reg << 3;
9707	    }
9708	  else
9709	    {
9710	      constraint (inst.operands[1].shifted
9711			  && inst.operands[1].immisreg,
9712			  _("shift must be constant"));
9713	      if (inst.instruction < 0xffff)
9714		inst.instruction = THUMB_OP32 (inst.instruction);
9715	      inst.instruction |= inst.operands[0].reg << r0off;
9716	      encode_thumb32_shifted_operand (1);
9717	    }
9718	}
9719    }
9720  else
9721    {
9722      constraint (inst.instruction > 0xffff
9723		  || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
9724      constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
9725		  _("unshifted register required"));
9726      constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9727		  BAD_HIREG);
9728
9729      inst.instruction = THUMB_OP16 (inst.instruction);
9730      inst.instruction |= inst.operands[0].reg;
9731      inst.instruction |= inst.operands[1].reg << 3;
9732    }
9733}
9734
9735static void
9736do_t_mrs (void)
9737{
9738  int flags;
9739
9740  if (do_vfp_nsyn_mrs () == SUCCESS)
9741    return;
9742
9743  flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
9744  if (flags == 0)
9745    {
9746      constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9747		  _("selected processor does not support "
9748		    "requested special purpose register"));
9749    }
9750  else
9751    {
9752      constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9753		  _("selected processor does not support "
9754		    "requested special purpose register %x"));
9755      /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all.  */
9756      constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
9757		  _("'CPSR' or 'SPSR' expected"));
9758    }
9759
9760  inst.instruction |= inst.operands[0].reg << 8;
9761  inst.instruction |= (flags & SPSR_BIT) >> 2;
9762  inst.instruction |= inst.operands[1].imm & 0xff;
9763}
9764
9765static void
9766do_t_msr (void)
9767{
9768  int flags;
9769
9770  if (do_vfp_nsyn_msr () == SUCCESS)
9771    return;
9772
9773  constraint (!inst.operands[1].isreg,
9774	      _("Thumb encoding does not support an immediate here"));
9775  flags = inst.operands[0].imm;
9776  if (flags & ~0xff)
9777    {
9778      constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9779		  _("selected processor does not support "
9780		    "requested special purpose register"));
9781    }
9782  else
9783    {
9784      constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9785		  _("selected processor does not support "
9786		    "requested special purpose register"));
9787      flags |= PSR_f;
9788    }
9789  inst.instruction |= (flags & SPSR_BIT) >> 2;
9790  inst.instruction |= (flags & ~SPSR_BIT) >> 8;
9791  inst.instruction |= (flags & 0xff);
9792  inst.instruction |= inst.operands[1].reg << 16;
9793}
9794
9795static void
9796do_t_mul (void)
9797{
9798  if (!inst.operands[2].present)
9799    inst.operands[2].reg = inst.operands[0].reg;
9800
9801  /* There is no 32-bit MULS and no 16-bit MUL. */
9802  if (unified_syntax && inst.instruction == T_MNEM_mul)
9803    {
9804      inst.instruction = THUMB_OP32 (inst.instruction);
9805      inst.instruction |= inst.operands[0].reg << 8;
9806      inst.instruction |= inst.operands[1].reg << 16;
9807      inst.instruction |= inst.operands[2].reg << 0;
9808    }
9809  else
9810    {
9811      constraint (!unified_syntax
9812		  && inst.instruction == T_MNEM_muls, BAD_THUMB32);
9813      constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9814		  BAD_HIREG);
9815
9816      inst.instruction = THUMB_OP16 (inst.instruction);
9817      inst.instruction |= inst.operands[0].reg;
9818
9819      if (inst.operands[0].reg == inst.operands[1].reg)
9820	inst.instruction |= inst.operands[2].reg << 3;
9821      else if (inst.operands[0].reg == inst.operands[2].reg)
9822	inst.instruction |= inst.operands[1].reg << 3;
9823      else
9824	constraint (1, _("dest must overlap one source register"));
9825    }
9826}
9827
9828static void
9829do_t_mull (void)
9830{
9831  inst.instruction |= inst.operands[0].reg << 12;
9832  inst.instruction |= inst.operands[1].reg << 8;
9833  inst.instruction |= inst.operands[2].reg << 16;
9834  inst.instruction |= inst.operands[3].reg;
9835
9836  if (inst.operands[0].reg == inst.operands[1].reg)
9837    as_tsktsk (_("rdhi and rdlo must be different"));
9838}
9839
9840static void
9841do_t_nop (void)
9842{
9843  if (unified_syntax)
9844    {
9845      if (inst.size_req == 4 || inst.operands[0].imm > 15)
9846	{
9847	  inst.instruction = THUMB_OP32 (inst.instruction);
9848	  inst.instruction |= inst.operands[0].imm;
9849	}
9850      else
9851	{
9852	  inst.instruction = THUMB_OP16 (inst.instruction);
9853	  inst.instruction |= inst.operands[0].imm << 4;
9854	}
9855    }
9856  else
9857    {
9858      constraint (inst.operands[0].present,
9859		  _("Thumb does not support NOP with hints"));
9860      inst.instruction = 0x46c0;
9861    }
9862}
9863
9864static void
9865do_t_neg (void)
9866{
9867  if (unified_syntax)
9868    {
9869      bfd_boolean narrow;
9870
9871      if (THUMB_SETS_FLAGS (inst.instruction))
9872	narrow = (current_it_mask == 0);
9873      else
9874	narrow = (current_it_mask != 0);
9875      if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9876	narrow = FALSE;
9877      if (inst.size_req == 4)
9878	narrow = FALSE;
9879
9880      if (!narrow)
9881	{
9882	  inst.instruction = THUMB_OP32 (inst.instruction);
9883	  inst.instruction |= inst.operands[0].reg << 8;
9884	  inst.instruction |= inst.operands[1].reg << 16;
9885	}
9886      else
9887	{
9888	  inst.instruction = THUMB_OP16 (inst.instruction);
9889	  inst.instruction |= inst.operands[0].reg;
9890	  inst.instruction |= inst.operands[1].reg << 3;
9891	}
9892    }
9893  else
9894    {
9895      constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9896		  BAD_HIREG);
9897      constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9898
9899      inst.instruction = THUMB_OP16 (inst.instruction);
9900      inst.instruction |= inst.operands[0].reg;
9901      inst.instruction |= inst.operands[1].reg << 3;
9902    }
9903}
9904
9905static void
9906do_t_pkhbt (void)
9907{
9908  inst.instruction |= inst.operands[0].reg << 8;
9909  inst.instruction |= inst.operands[1].reg << 16;
9910  inst.instruction |= inst.operands[2].reg;
9911  if (inst.operands[3].present)
9912    {
9913      unsigned int val = inst.reloc.exp.X_add_number;
9914      constraint (inst.reloc.exp.X_op != O_constant,
9915		  _("expression too complex"));
9916      inst.instruction |= (val & 0x1c) << 10;
9917      inst.instruction |= (val & 0x03) << 6;
9918    }
9919}
9920
9921static void
9922do_t_pkhtb (void)
9923{
9924  if (!inst.operands[3].present)
9925    inst.instruction &= ~0x00000020;
9926  do_t_pkhbt ();
9927}
9928
9929static void
9930do_t_pld (void)
9931{
9932  encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
9933}
9934
9935static void
9936do_t_push_pop (void)
9937{
9938  unsigned mask;
9939
9940  constraint (inst.operands[0].writeback,
9941	      _("push/pop do not support {reglist}^"));
9942  constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9943	      _("expression too complex"));
9944
9945  mask = inst.operands[0].imm;
9946  if ((mask & ~0xff) == 0)
9947    inst.instruction = THUMB_OP16 (inst.instruction) | mask;
9948  else if ((inst.instruction == T_MNEM_push
9949	    && (mask & ~0xff) == 1 << REG_LR)
9950	   || (inst.instruction == T_MNEM_pop
9951	       && (mask & ~0xff) == 1 << REG_PC))
9952    {
9953      inst.instruction = THUMB_OP16 (inst.instruction);
9954      inst.instruction |= THUMB_PP_PC_LR;
9955      inst.instruction |= mask & 0xff;
9956    }
9957  else if (unified_syntax)
9958    {
9959      inst.instruction = THUMB_OP32 (inst.instruction);
9960      encode_thumb2_ldmstm(13, mask, TRUE);
9961    }
9962  else
9963    {
9964      inst.error = _("invalid register list to push/pop instruction");
9965      return;
9966    }
9967}
9968
9969static void
9970do_t_rbit (void)
9971{
9972  inst.instruction |= inst.operands[0].reg << 8;
9973  inst.instruction |= inst.operands[1].reg << 16;
9974}
9975
9976static void
9977do_t_rev (void)
9978{
9979  if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
9980      && inst.size_req != 4)
9981    {
9982      inst.instruction = THUMB_OP16 (inst.instruction);
9983      inst.instruction |= inst.operands[0].reg;
9984      inst.instruction |= inst.operands[1].reg << 3;
9985    }
9986  else if (unified_syntax)
9987    {
9988      inst.instruction = THUMB_OP32 (inst.instruction);
9989      inst.instruction |= inst.operands[0].reg << 8;
9990      inst.instruction |= inst.operands[1].reg << 16;
9991      inst.instruction |= inst.operands[1].reg;
9992    }
9993  else
9994    inst.error = BAD_HIREG;
9995}
9996
9997static void
9998do_t_rsb (void)
9999{
10000  int Rd, Rs;
10001
10002  Rd = inst.operands[0].reg;
10003  Rs = (inst.operands[1].present
10004	? inst.operands[1].reg    /* Rd, Rs, foo */
10005	: inst.operands[0].reg);  /* Rd, foo -> Rd, Rd, foo */
10006
10007  inst.instruction |= Rd << 8;
10008  inst.instruction |= Rs << 16;
10009  if (!inst.operands[2].isreg)
10010    {
10011      bfd_boolean narrow;
10012
10013      if ((inst.instruction & 0x00100000) != 0)
10014	narrow = (current_it_mask == 0);
10015      else
10016	narrow = (current_it_mask != 0);
10017
10018      if (Rd > 7 || Rs > 7)
10019	narrow = FALSE;
10020
10021      if (inst.size_req == 4 || !unified_syntax)
10022	narrow = FALSE;
10023
10024      if (inst.reloc.exp.X_op != O_constant
10025	  || inst.reloc.exp.X_add_number != 0)
10026	narrow = FALSE;
10027
10028      /* Turn rsb #0 into 16-bit neg.  We should probably do this via
10029         relaxation, but it doesn't seem worth the hassle.  */
10030      if (narrow)
10031	{
10032	  inst.reloc.type = BFD_RELOC_UNUSED;
10033	  inst.instruction = THUMB_OP16 (T_MNEM_negs);
10034	  inst.instruction |= Rs << 3;
10035	  inst.instruction |= Rd;
10036	}
10037      else
10038	{
10039	  inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10040	  inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10041	}
10042    }
10043  else
10044    encode_thumb32_shifted_operand (2);
10045}
10046
10047static void
10048do_t_setend (void)
10049{
10050  constraint (current_it_mask, BAD_NOT_IT);
10051  if (inst.operands[0].imm)
10052    inst.instruction |= 0x8;
10053}
10054
10055static void
10056do_t_shift (void)
10057{
10058  if (!inst.operands[1].present)
10059    inst.operands[1].reg = inst.operands[0].reg;
10060
10061  if (unified_syntax)
10062    {
10063      bfd_boolean narrow;
10064      int shift_kind;
10065
10066      switch (inst.instruction)
10067	{
10068	case T_MNEM_asr:
10069	case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10070	case T_MNEM_lsl:
10071	case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10072	case T_MNEM_lsr:
10073	case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10074	case T_MNEM_ror:
10075	case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10076	default: abort ();
10077	}
10078
10079      if (THUMB_SETS_FLAGS (inst.instruction))
10080	narrow = (current_it_mask == 0);
10081      else
10082	narrow = (current_it_mask != 0);
10083      if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10084	narrow = FALSE;
10085      if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10086	narrow = FALSE;
10087      if (inst.operands[2].isreg
10088	  && (inst.operands[1].reg != inst.operands[0].reg
10089	      || inst.operands[2].reg > 7))
10090	narrow = FALSE;
10091      if (inst.size_req == 4)
10092	narrow = FALSE;
10093
10094      if (!narrow)
10095	{
10096	  if (inst.operands[2].isreg)
10097	    {
10098	      inst.instruction = THUMB_OP32 (inst.instruction);
10099	      inst.instruction |= inst.operands[0].reg << 8;
10100	      inst.instruction |= inst.operands[1].reg << 16;
10101	      inst.instruction |= inst.operands[2].reg;
10102	    }
10103	  else
10104	    {
10105	      inst.operands[1].shifted = 1;
10106	      inst.operands[1].shift_kind = shift_kind;
10107	      inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10108					     ? T_MNEM_movs : T_MNEM_mov);
10109	      inst.instruction |= inst.operands[0].reg << 8;
10110	      encode_thumb32_shifted_operand (1);
10111	      /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup.  */
10112	      inst.reloc.type = BFD_RELOC_UNUSED;
10113	    }
10114	}
10115      else
10116	{
10117	  if (inst.operands[2].isreg)
10118	    {
10119	      switch (shift_kind)
10120		{
10121		case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10122		case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10123		case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10124		case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
10125		default: abort ();
10126		}
10127
10128	      inst.instruction |= inst.operands[0].reg;
10129	      inst.instruction |= inst.operands[2].reg << 3;
10130	    }
10131	  else
10132	    {
10133	      switch (shift_kind)
10134		{
10135		case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10136		case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10137		case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10138		default: abort ();
10139		}
10140	      inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10141	      inst.instruction |= inst.operands[0].reg;
10142	      inst.instruction |= inst.operands[1].reg << 3;
10143	    }
10144	}
10145    }
10146  else
10147    {
10148      constraint (inst.operands[0].reg > 7
10149		  || inst.operands[1].reg > 7, BAD_HIREG);
10150      constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10151
10152      if (inst.operands[2].isreg)  /* Rd, {Rs,} Rn */
10153	{
10154	  constraint (inst.operands[2].reg > 7, BAD_HIREG);
10155	  constraint (inst.operands[0].reg != inst.operands[1].reg,
10156		      _("source1 and dest must be same register"));
10157
10158	  switch (inst.instruction)
10159	    {
10160	    case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
10161	    case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
10162	    case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
10163	    case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
10164	    default: abort ();
10165	    }
10166
10167	  inst.instruction |= inst.operands[0].reg;
10168	  inst.instruction |= inst.operands[2].reg << 3;
10169	}
10170      else
10171	{
10172	  switch (inst.instruction)
10173	    {
10174	    case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
10175	    case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
10176	    case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
10177	    case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
10178	    default: abort ();
10179	    }
10180	  inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10181	  inst.instruction |= inst.operands[0].reg;
10182	  inst.instruction |= inst.operands[1].reg << 3;
10183	}
10184    }
10185}
10186
10187static void
10188do_t_simd (void)
10189{
10190  inst.instruction |= inst.operands[0].reg << 8;
10191  inst.instruction |= inst.operands[1].reg << 16;
10192  inst.instruction |= inst.operands[2].reg;
10193}
10194
10195static void
10196do_t_smc (void)
10197{
10198  unsigned int value = inst.reloc.exp.X_add_number;
10199  constraint (inst.reloc.exp.X_op != O_constant,
10200	      _("expression too complex"));
10201  inst.reloc.type = BFD_RELOC_UNUSED;
10202  inst.instruction |= (value & 0xf000) >> 12;
10203  inst.instruction |= (value & 0x0ff0);
10204  inst.instruction |= (value & 0x000f) << 16;
10205}
10206
10207static void
10208do_t_ssat (void)
10209{
10210  inst.instruction |= inst.operands[0].reg << 8;
10211  inst.instruction |= inst.operands[1].imm - 1;
10212  inst.instruction |= inst.operands[2].reg << 16;
10213
10214  if (inst.operands[3].present)
10215    {
10216      constraint (inst.reloc.exp.X_op != O_constant,
10217		  _("expression too complex"));
10218
10219      if (inst.reloc.exp.X_add_number != 0)
10220	{
10221	  if (inst.operands[3].shift_kind == SHIFT_ASR)
10222	    inst.instruction |= 0x00200000;  /* sh bit */
10223	  inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10224	  inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10225	}
10226      inst.reloc.type = BFD_RELOC_UNUSED;
10227    }
10228}
10229
10230static void
10231do_t_ssat16 (void)
10232{
10233  inst.instruction |= inst.operands[0].reg << 8;
10234  inst.instruction |= inst.operands[1].imm - 1;
10235  inst.instruction |= inst.operands[2].reg << 16;
10236}
10237
10238static void
10239do_t_strex (void)
10240{
10241  constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10242	      || inst.operands[2].postind || inst.operands[2].writeback
10243	      || inst.operands[2].immisreg || inst.operands[2].shifted
10244	      || inst.operands[2].negative,
10245	      BAD_ADDR_MODE);
10246
10247  inst.instruction |= inst.operands[0].reg << 8;
10248  inst.instruction |= inst.operands[1].reg << 12;
10249  inst.instruction |= inst.operands[2].reg << 16;
10250  inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10251}
10252
10253static void
10254do_t_strexd (void)
10255{
10256  if (!inst.operands[2].present)
10257    inst.operands[2].reg = inst.operands[1].reg + 1;
10258
10259  constraint (inst.operands[0].reg == inst.operands[1].reg
10260	      || inst.operands[0].reg == inst.operands[2].reg
10261	      || inst.operands[0].reg == inst.operands[3].reg
10262	      || inst.operands[1].reg == inst.operands[2].reg,
10263	      BAD_OVERLAP);
10264
10265  inst.instruction |= inst.operands[0].reg;
10266  inst.instruction |= inst.operands[1].reg << 12;
10267  inst.instruction |= inst.operands[2].reg << 8;
10268  inst.instruction |= inst.operands[3].reg << 16;
10269}
10270
10271static void
10272do_t_sxtah (void)
10273{
10274  inst.instruction |= inst.operands[0].reg << 8;
10275  inst.instruction |= inst.operands[1].reg << 16;
10276  inst.instruction |= inst.operands[2].reg;
10277  inst.instruction |= inst.operands[3].imm << 4;
10278}
10279
10280static void
10281do_t_sxth (void)
10282{
10283  if (inst.instruction <= 0xffff && inst.size_req != 4
10284      && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10285      && (!inst.operands[2].present || inst.operands[2].imm == 0))
10286    {
10287      inst.instruction = THUMB_OP16 (inst.instruction);
10288      inst.instruction |= inst.operands[0].reg;
10289      inst.instruction |= inst.operands[1].reg << 3;
10290    }
10291  else if (unified_syntax)
10292    {
10293      if (inst.instruction <= 0xffff)
10294	inst.instruction = THUMB_OP32 (inst.instruction);
10295      inst.instruction |= inst.operands[0].reg << 8;
10296      inst.instruction |= inst.operands[1].reg;
10297      inst.instruction |= inst.operands[2].imm << 4;
10298    }
10299  else
10300    {
10301      constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10302		  _("Thumb encoding does not support rotation"));
10303      constraint (1, BAD_HIREG);
10304    }
10305}
10306
10307static void
10308do_t_swi (void)
10309{
10310  inst.reloc.type = BFD_RELOC_ARM_SWI;
10311}
10312
10313static void
10314do_t_tb (void)
10315{
10316  int half;
10317
10318  half = (inst.instruction & 0x10) != 0;
10319  constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10320  constraint (inst.operands[0].immisreg,
10321	      _("instruction requires register index"));
10322  constraint (inst.operands[0].imm == 15,
10323	      _("PC is not a valid index register"));
10324  constraint (!half && inst.operands[0].shifted,
10325	      _("instruction does not allow shifted index"));
10326  inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
10327}
10328
10329static void
10330do_t_usat (void)
10331{
10332  inst.instruction |= inst.operands[0].reg << 8;
10333  inst.instruction |= inst.operands[1].imm;
10334  inst.instruction |= inst.operands[2].reg << 16;
10335
10336  if (inst.operands[3].present)
10337    {
10338      constraint (inst.reloc.exp.X_op != O_constant,
10339		  _("expression too complex"));
10340      if (inst.reloc.exp.X_add_number != 0)
10341	{
10342	  if (inst.operands[3].shift_kind == SHIFT_ASR)
10343	    inst.instruction |= 0x00200000;  /* sh bit */
10344
10345	  inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10346	  inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10347	}
10348      inst.reloc.type = BFD_RELOC_UNUSED;
10349    }
10350}
10351
10352static void
10353do_t_usat16 (void)
10354{
10355  inst.instruction |= inst.operands[0].reg << 8;
10356  inst.instruction |= inst.operands[1].imm;
10357  inst.instruction |= inst.operands[2].reg << 16;
10358}
10359
10360/* Neon instruction encoder helpers.  */
10361
10362/* Encodings for the different types for various Neon opcodes.  */
10363
10364/* An "invalid" code for the following tables.  */
10365#define N_INV -1u
10366
10367struct neon_tab_entry
10368{
10369  unsigned integer;
10370  unsigned float_or_poly;
10371  unsigned scalar_or_imm;
10372};
10373
10374/* Map overloaded Neon opcodes to their respective encodings.  */
10375#define NEON_ENC_TAB					\
10376  X(vabd,	0x0000700, 0x1200d00, N_INV),		\
10377  X(vmax,	0x0000600, 0x0000f00, N_INV),		\
10378  X(vmin,	0x0000610, 0x0200f00, N_INV),		\
10379  X(vpadd,	0x0000b10, 0x1000d00, N_INV),		\
10380  X(vpmax,	0x0000a00, 0x1000f00, N_INV),		\
10381  X(vpmin,	0x0000a10, 0x1200f00, N_INV),		\
10382  X(vadd,	0x0000800, 0x0000d00, N_INV),		\
10383  X(vsub,	0x1000800, 0x0200d00, N_INV),		\
10384  X(vceq,	0x1000810, 0x0000e00, 0x1b10100),	\
10385  X(vcge,	0x0000310, 0x1000e00, 0x1b10080),	\
10386  X(vcgt,	0x0000300, 0x1200e00, 0x1b10000),	\
10387  /* Register variants of the following two instructions are encoded as
10388     vcge / vcgt with the operands reversed. */  	\
10389  X(vclt,	0x0000300, 0x1200e00, 0x1b10200),	\
10390  X(vcle,	0x0000310, 0x1000e00, 0x1b10180),	\
10391  X(vmla,	0x0000900, 0x0000d10, 0x0800040),	\
10392  X(vmls,	0x1000900, 0x0200d10, 0x0800440),	\
10393  X(vmul,	0x0000910, 0x1000d10, 0x0800840),	\
10394  X(vmull,	0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float.  */ \
10395  X(vmlal,	0x0800800, N_INV,     0x0800240),	\
10396  X(vmlsl,	0x0800a00, N_INV,     0x0800640),	\
10397  X(vqdmlal,	0x0800900, N_INV,     0x0800340),	\
10398  X(vqdmlsl,	0x0800b00, N_INV,     0x0800740),	\
10399  X(vqdmull,	0x0800d00, N_INV,     0x0800b40),	\
10400  X(vqdmulh,    0x0000b00, N_INV,     0x0800c40),	\
10401  X(vqrdmulh,   0x1000b00, N_INV,     0x0800d40),	\
10402  X(vshl,	0x0000400, N_INV,     0x0800510),	\
10403  X(vqshl,	0x0000410, N_INV,     0x0800710),	\
10404  X(vand,	0x0000110, N_INV,     0x0800030),	\
10405  X(vbic,	0x0100110, N_INV,     0x0800030),	\
10406  X(veor,	0x1000110, N_INV,     N_INV),		\
10407  X(vorn,	0x0300110, N_INV,     0x0800010),	\
10408  X(vorr,	0x0200110, N_INV,     0x0800010),	\
10409  X(vmvn,	0x1b00580, N_INV,     0x0800030),	\
10410  X(vshll,	0x1b20300, N_INV,     0x0800a10), /* max shift, immediate.  */ \
10411  X(vcvt,       0x1b30600, N_INV,     0x0800e10), /* integer, fixed-point.  */ \
10412  X(vdup,       0xe800b10, N_INV,     0x1b00c00), /* arm, scalar.  */ \
10413  X(vld1,       0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup.  */ \
10414  X(vst1,	0x0000000, 0x0800000, N_INV),		\
10415  X(vld2,	0x0200100, 0x0a00100, 0x0a00d00),	\
10416  X(vst2,	0x0000100, 0x0800100, N_INV),		\
10417  X(vld3,	0x0200200, 0x0a00200, 0x0a00e00),	\
10418  X(vst3,	0x0000200, 0x0800200, N_INV),		\
10419  X(vld4,	0x0200300, 0x0a00300, 0x0a00f00),	\
10420  X(vst4,	0x0000300, 0x0800300, N_INV),		\
10421  X(vmovn,	0x1b20200, N_INV,     N_INV),		\
10422  X(vtrn,	0x1b20080, N_INV,     N_INV),		\
10423  X(vqmovn,	0x1b20200, N_INV,     N_INV),		\
10424  X(vqmovun,	0x1b20240, N_INV,     N_INV),		\
10425  X(vnmul,      0xe200a40, 0xe200b40, N_INV),		\
10426  X(vnmla,      0xe000a40, 0xe000b40, N_INV),		\
10427  X(vnmls,      0xe100a40, 0xe100b40, N_INV),		\
10428  X(vcmp,	0xeb40a40, 0xeb40b40, N_INV),		\
10429  X(vcmpz,	0xeb50a40, 0xeb50b40, N_INV),		\
10430  X(vcmpe,	0xeb40ac0, 0xeb40bc0, N_INV),		\
10431  X(vcmpez,     0xeb50ac0, 0xeb50bc0, N_INV)
10432
10433enum neon_opc
10434{
10435#define X(OPC,I,F,S) N_MNEM_##OPC
10436NEON_ENC_TAB
10437#undef X
10438};
10439
10440static const struct neon_tab_entry neon_enc_tab[] =
10441{
10442#define X(OPC,I,F,S) { (I), (F), (S) }
10443NEON_ENC_TAB
10444#undef X
10445};
10446
10447#define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10448#define NEON_ENC_ARMREG(X)  (neon_enc_tab[(X) & 0x0fffffff].integer)
10449#define NEON_ENC_POLY(X)    (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10450#define NEON_ENC_FLOAT(X)   (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10451#define NEON_ENC_SCALAR(X)  (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10452#define NEON_ENC_IMMED(X)   (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10453#define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10454#define NEON_ENC_LANE(X)    (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10455#define NEON_ENC_DUP(X)     (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10456#define NEON_ENC_SINGLE(X) \
10457  ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10458#define NEON_ENC_DOUBLE(X) \
10459  ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
10460
10461/* Define shapes for instruction operands. The following mnemonic characters
10462   are used in this table:
10463
10464     F - VFP S<n> register
10465     D - Neon D<n> register
10466     Q - Neon Q<n> register
10467     I - Immediate
10468     S - Scalar
10469     R - ARM register
10470     L - D<n> register list
10471
10472   This table is used to generate various data:
10473     - enumerations of the form NS_DDR to be used as arguments to
10474       neon_select_shape.
10475     - a table classifying shapes into single, double, quad, mixed.
10476     - a table used to drive neon_select_shape.
10477*/
10478
10479#define NEON_SHAPE_DEF			\
10480  X(3, (D, D, D), DOUBLE),		\
10481  X(3, (Q, Q, Q), QUAD),		\
10482  X(3, (D, D, I), DOUBLE),		\
10483  X(3, (Q, Q, I), QUAD),		\
10484  X(3, (D, D, S), DOUBLE),		\
10485  X(3, (Q, Q, S), QUAD),		\
10486  X(2, (D, D), DOUBLE),			\
10487  X(2, (Q, Q), QUAD),			\
10488  X(2, (D, S), DOUBLE),			\
10489  X(2, (Q, S), QUAD),			\
10490  X(2, (D, R), DOUBLE),			\
10491  X(2, (Q, R), QUAD),			\
10492  X(2, (D, I), DOUBLE),			\
10493  X(2, (Q, I), QUAD),			\
10494  X(3, (D, L, D), DOUBLE),		\
10495  X(2, (D, Q), MIXED),			\
10496  X(2, (Q, D), MIXED),			\
10497  X(3, (D, Q, I), MIXED),		\
10498  X(3, (Q, D, I), MIXED),		\
10499  X(3, (Q, D, D), MIXED),		\
10500  X(3, (D, Q, Q), MIXED),		\
10501  X(3, (Q, Q, D), MIXED),		\
10502  X(3, (Q, D, S), MIXED),		\
10503  X(3, (D, Q, S), MIXED),		\
10504  X(4, (D, D, D, I), DOUBLE),		\
10505  X(4, (Q, Q, Q, I), QUAD),		\
10506  X(2, (F, F), SINGLE),			\
10507  X(3, (F, F, F), SINGLE),		\
10508  X(2, (F, I), SINGLE),			\
10509  X(2, (F, D), MIXED),			\
10510  X(2, (D, F), MIXED),			\
10511  X(3, (F, F, I), MIXED),		\
10512  X(4, (R, R, F, F), SINGLE),		\
10513  X(4, (F, F, R, R), SINGLE),		\
10514  X(3, (D, R, R), DOUBLE),		\
10515  X(3, (R, R, D), DOUBLE),		\
10516  X(2, (S, R), SINGLE),			\
10517  X(2, (R, S), SINGLE),			\
10518  X(2, (F, R), SINGLE),			\
10519  X(2, (R, F), SINGLE)
10520
10521#define S2(A,B)		NS_##A##B
10522#define S3(A,B,C)	NS_##A##B##C
10523#define S4(A,B,C,D)	NS_##A##B##C##D
10524
10525#define X(N, L, C) S##N L
10526
10527enum neon_shape
10528{
10529  NEON_SHAPE_DEF,
10530  NS_NULL
10531};
10532
10533#undef X
10534#undef S2
10535#undef S3
10536#undef S4
10537
10538enum neon_shape_class
10539{
10540  SC_SINGLE,
10541  SC_DOUBLE,
10542  SC_QUAD,
10543  SC_MIXED
10544};
10545
10546#define X(N, L, C) SC_##C
10547
10548static enum neon_shape_class neon_shape_class[] =
10549{
10550  NEON_SHAPE_DEF
10551};
10552
10553#undef X
10554
10555enum neon_shape_el
10556{
10557  SE_F,
10558  SE_D,
10559  SE_Q,
10560  SE_I,
10561  SE_S,
10562  SE_R,
10563  SE_L
10564};
10565
10566/* Register widths of above.  */
10567static unsigned neon_shape_el_size[] =
10568{
10569  32,
10570  64,
10571  128,
10572  0,
10573  32,
10574  32,
10575  0
10576};
10577
10578struct neon_shape_info
10579{
10580  unsigned els;
10581  enum neon_shape_el el[NEON_MAX_TYPE_ELS];
10582};
10583
10584#define S2(A,B)		{ SE_##A, SE_##B }
10585#define S3(A,B,C)	{ SE_##A, SE_##B, SE_##C }
10586#define S4(A,B,C,D)	{ SE_##A, SE_##B, SE_##C, SE_##D }
10587
10588#define X(N, L, C) { N, S##N L }
10589
10590static struct neon_shape_info neon_shape_tab[] =
10591{
10592  NEON_SHAPE_DEF
10593};
10594
10595#undef X
10596#undef S2
10597#undef S3
10598#undef S4
10599
10600/* Bit masks used in type checking given instructions.
10601  'N_EQK' means the type must be the same as (or based on in some way) the key
10602   type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10603   set, various other bits can be set as well in order to modify the meaning of
10604   the type constraint.  */
10605
10606enum neon_type_mask
10607{
10608  N_S8   = 0x000001,
10609  N_S16  = 0x000002,
10610  N_S32  = 0x000004,
10611  N_S64  = 0x000008,
10612  N_U8   = 0x000010,
10613  N_U16  = 0x000020,
10614  N_U32  = 0x000040,
10615  N_U64  = 0x000080,
10616  N_I8   = 0x000100,
10617  N_I16  = 0x000200,
10618  N_I32  = 0x000400,
10619  N_I64  = 0x000800,
10620  N_8    = 0x001000,
10621  N_16   = 0x002000,
10622  N_32   = 0x004000,
10623  N_64   = 0x008000,
10624  N_P8   = 0x010000,
10625  N_P16  = 0x020000,
10626  N_F32  = 0x040000,
10627  N_F64  = 0x080000,
10628  N_KEY  = 0x100000, /* key element (main type specifier).  */
10629  N_EQK  = 0x200000, /* given operand has the same type & size as the key.  */
10630  N_VFP  = 0x400000, /* VFP mode: operand size must match register width.  */
10631  N_DBL  = 0x000001, /* if N_EQK, this operand is twice the size.  */
10632  N_HLF  = 0x000002, /* if N_EQK, this operand is half the size.  */
10633  N_SGN  = 0x000004, /* if N_EQK, this operand is forced to be signed.  */
10634  N_UNS  = 0x000008, /* if N_EQK, this operand is forced to be unsigned.  */
10635  N_INT  = 0x000010, /* if N_EQK, this operand is forced to be integer.  */
10636  N_FLT  = 0x000020, /* if N_EQK, this operand is forced to be float.  */
10637  N_SIZ  = 0x000040, /* if N_EQK, this operand is forced to be size-only.  */
10638  N_UTYP = 0,
10639  N_MAX_NONSPECIAL = N_F64
10640};
10641
10642#define N_ALLMODS  (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10643
10644#define N_SU_ALL   (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10645#define N_SU_32    (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10646#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10647#define N_SUF_32   (N_SU_32 | N_F32)
10648#define N_I_ALL    (N_I8 | N_I16 | N_I32 | N_I64)
10649#define N_IF_32    (N_I8 | N_I16 | N_I32 | N_F32)
10650
10651/* Pass this as the first type argument to neon_check_type to ignore types
10652   altogether.  */
10653#define N_IGNORE_TYPE (N_KEY | N_EQK)
10654
10655/* Select a "shape" for the current instruction (describing register types or
10656   sizes) from a list of alternatives. Return NS_NULL if the current instruction
10657   doesn't fit. For non-polymorphic shapes, checking is usually done as a
10658   function of operand parsing, so this function doesn't need to be called.
10659   Shapes should be listed in order of decreasing length.  */
10660
10661static enum neon_shape
10662neon_select_shape (enum neon_shape shape, ...)
10663{
10664  va_list ap;
10665  enum neon_shape first_shape = shape;
10666
10667  /* Fix missing optional operands. FIXME: we don't know at this point how
10668     many arguments we should have, so this makes the assumption that we have
10669     > 1. This is true of all current Neon opcodes, I think, but may not be
10670     true in the future.  */
10671  if (!inst.operands[1].present)
10672    inst.operands[1] = inst.operands[0];
10673
10674  va_start (ap, shape);
10675
10676  for (; shape != NS_NULL; shape = va_arg (ap, int))
10677    {
10678      unsigned j;
10679      int matches = 1;
10680
10681      for (j = 0; j < neon_shape_tab[shape].els; j++)
10682        {
10683          if (!inst.operands[j].present)
10684            {
10685              matches = 0;
10686              break;
10687            }
10688
10689          switch (neon_shape_tab[shape].el[j])
10690            {
10691            case SE_F:
10692              if (!(inst.operands[j].isreg
10693                    && inst.operands[j].isvec
10694                    && inst.operands[j].issingle
10695                    && !inst.operands[j].isquad))
10696                matches = 0;
10697              break;
10698
10699            case SE_D:
10700              if (!(inst.operands[j].isreg
10701                    && inst.operands[j].isvec
10702                    && !inst.operands[j].isquad
10703                    && !inst.operands[j].issingle))
10704                matches = 0;
10705              break;
10706
10707            case SE_R:
10708              if (!(inst.operands[j].isreg
10709                    && !inst.operands[j].isvec))
10710                matches = 0;
10711              break;
10712
10713            case SE_Q:
10714              if (!(inst.operands[j].isreg
10715                    && inst.operands[j].isvec
10716                    && inst.operands[j].isquad
10717                    && !inst.operands[j].issingle))
10718                matches = 0;
10719              break;
10720
10721            case SE_I:
10722              if (!(!inst.operands[j].isreg
10723                    && !inst.operands[j].isscalar))
10724                matches = 0;
10725              break;
10726
10727            case SE_S:
10728              if (!(!inst.operands[j].isreg
10729                    && inst.operands[j].isscalar))
10730                matches = 0;
10731              break;
10732
10733            case SE_L:
10734              break;
10735            }
10736        }
10737      if (matches)
10738        break;
10739    }
10740
10741  va_end (ap);
10742
10743  if (shape == NS_NULL && first_shape != NS_NULL)
10744    first_error (_("invalid instruction shape"));
10745
10746  return shape;
10747}
10748
10749/* True if SHAPE is predominantly a quadword operation (most of the time, this
10750   means the Q bit should be set).  */
10751
10752static int
10753neon_quad (enum neon_shape shape)
10754{
10755  return neon_shape_class[shape] == SC_QUAD;
10756}
10757
10758static void
10759neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
10760                       unsigned *g_size)
10761{
10762  /* Allow modification to be made to types which are constrained to be
10763     based on the key element, based on bits set alongside N_EQK.  */
10764  if ((typebits & N_EQK) != 0)
10765    {
10766      if ((typebits & N_HLF) != 0)
10767	*g_size /= 2;
10768      else if ((typebits & N_DBL) != 0)
10769	*g_size *= 2;
10770      if ((typebits & N_SGN) != 0)
10771	*g_type = NT_signed;
10772      else if ((typebits & N_UNS) != 0)
10773        *g_type = NT_unsigned;
10774      else if ((typebits & N_INT) != 0)
10775        *g_type = NT_integer;
10776      else if ((typebits & N_FLT) != 0)
10777        *g_type = NT_float;
10778      else if ((typebits & N_SIZ) != 0)
10779        *g_type = NT_untyped;
10780    }
10781}
10782
10783/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10784   operand type, i.e. the single type specified in a Neon instruction when it
10785   is the only one given.  */
10786
10787static struct neon_type_el
10788neon_type_promote (struct neon_type_el *key, unsigned thisarg)
10789{
10790  struct neon_type_el dest = *key;
10791
10792  assert ((thisarg & N_EQK) != 0);
10793
10794  neon_modify_type_size (thisarg, &dest.type, &dest.size);
10795
10796  return dest;
10797}
10798
10799/* Convert Neon type and size into compact bitmask representation.  */
10800
10801static enum neon_type_mask
10802type_chk_of_el_type (enum neon_el_type type, unsigned size)
10803{
10804  switch (type)
10805    {
10806    case NT_untyped:
10807      switch (size)
10808        {
10809        case 8:  return N_8;
10810        case 16: return N_16;
10811        case 32: return N_32;
10812        case 64: return N_64;
10813        default: ;
10814        }
10815      break;
10816
10817    case NT_integer:
10818      switch (size)
10819        {
10820        case 8:  return N_I8;
10821        case 16: return N_I16;
10822        case 32: return N_I32;
10823        case 64: return N_I64;
10824        default: ;
10825        }
10826      break;
10827
10828    case NT_float:
10829      switch (size)
10830        {
10831        case 32: return N_F32;
10832        case 64: return N_F64;
10833        default: ;
10834        }
10835      break;
10836
10837    case NT_poly:
10838      switch (size)
10839        {
10840        case 8:  return N_P8;
10841        case 16: return N_P16;
10842        default: ;
10843        }
10844      break;
10845
10846    case NT_signed:
10847      switch (size)
10848        {
10849        case 8:  return N_S8;
10850        case 16: return N_S16;
10851        case 32: return N_S32;
10852        case 64: return N_S64;
10853        default: ;
10854        }
10855      break;
10856
10857    case NT_unsigned:
10858      switch (size)
10859        {
10860        case 8:  return N_U8;
10861        case 16: return N_U16;
10862        case 32: return N_U32;
10863        case 64: return N_U64;
10864        default: ;
10865        }
10866      break;
10867
10868    default: ;
10869    }
10870
10871  return N_UTYP;
10872}
10873
10874/* Convert compact Neon bitmask type representation to a type and size. Only
10875   handles the case where a single bit is set in the mask.  */
10876
10877static int
10878el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
10879                     enum neon_type_mask mask)
10880{
10881  if ((mask & N_EQK) != 0)
10882    return FAIL;
10883
10884  if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
10885    *size = 8;
10886  else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
10887    *size = 16;
10888  else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
10889    *size = 32;
10890  else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
10891    *size = 64;
10892  else
10893    return FAIL;
10894
10895  if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
10896    *type = NT_signed;
10897  else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
10898    *type = NT_unsigned;
10899  else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
10900    *type = NT_integer;
10901  else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
10902    *type = NT_untyped;
10903  else if ((mask & (N_P8 | N_P16)) != 0)
10904    *type = NT_poly;
10905  else if ((mask & (N_F32 | N_F64)) != 0)
10906    *type = NT_float;
10907  else
10908    return FAIL;
10909
10910  return SUCCESS;
10911}
10912
10913/* Modify a bitmask of allowed types. This is only needed for type
10914   relaxation.  */
10915
10916static unsigned
10917modify_types_allowed (unsigned allowed, unsigned mods)
10918{
10919  unsigned size;
10920  enum neon_el_type type;
10921  unsigned destmask;
10922  int i;
10923
10924  destmask = 0;
10925
10926  for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
10927    {
10928      if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
10929        {
10930          neon_modify_type_size (mods, &type, &size);
10931          destmask |= type_chk_of_el_type (type, size);
10932        }
10933    }
10934
10935  return destmask;
10936}
10937
10938/* Check type and return type classification.
10939   The manual states (paraphrase): If one datatype is given, it indicates the
10940   type given in:
10941    - the second operand, if there is one
10942    - the operand, if there is no second operand
10943    - the result, if there are no operands.
10944   This isn't quite good enough though, so we use a concept of a "key" datatype
10945   which is set on a per-instruction basis, which is the one which matters when
10946   only one data type is written.
10947   Note: this function has side-effects (e.g. filling in missing operands). All
10948   Neon instructions should call it before performing bit encoding.  */
10949
10950static struct neon_type_el
10951neon_check_type (unsigned els, enum neon_shape ns, ...)
10952{
10953  va_list ap;
10954  unsigned i, pass, key_el = 0;
10955  unsigned types[NEON_MAX_TYPE_ELS];
10956  enum neon_el_type k_type = NT_invtype;
10957  unsigned k_size = -1u;
10958  struct neon_type_el badtype = {NT_invtype, -1};
10959  unsigned key_allowed = 0;
10960
10961  /* Optional registers in Neon instructions are always (not) in operand 1.
10962     Fill in the missing operand here, if it was omitted.  */
10963  if (els > 1 && !inst.operands[1].present)
10964    inst.operands[1] = inst.operands[0];
10965
10966  /* Suck up all the varargs.  */
10967  va_start (ap, ns);
10968  for (i = 0; i < els; i++)
10969    {
10970      unsigned thisarg = va_arg (ap, unsigned);
10971      if (thisarg == N_IGNORE_TYPE)
10972        {
10973          va_end (ap);
10974          return badtype;
10975        }
10976      types[i] = thisarg;
10977      if ((thisarg & N_KEY) != 0)
10978        key_el = i;
10979    }
10980  va_end (ap);
10981
10982  if (inst.vectype.elems > 0)
10983    for (i = 0; i < els; i++)
10984      if (inst.operands[i].vectype.type != NT_invtype)
10985        {
10986          first_error (_("types specified in both the mnemonic and operands"));
10987          return badtype;
10988        }
10989
10990  /* Duplicate inst.vectype elements here as necessary.
10991     FIXME: No idea if this is exactly the same as the ARM assembler,
10992     particularly when an insn takes one register and one non-register
10993     operand. */
10994  if (inst.vectype.elems == 1 && els > 1)
10995    {
10996      unsigned j;
10997      inst.vectype.elems = els;
10998      inst.vectype.el[key_el] = inst.vectype.el[0];
10999      for (j = 0; j < els; j++)
11000        if (j != key_el)
11001          inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11002                                                  types[j]);
11003    }
11004  else if (inst.vectype.elems == 0 && els > 0)
11005    {
11006      unsigned j;
11007      /* No types were given after the mnemonic, so look for types specified
11008         after each operand. We allow some flexibility here; as long as the
11009         "key" operand has a type, we can infer the others.  */
11010      for (j = 0; j < els; j++)
11011        if (inst.operands[j].vectype.type != NT_invtype)
11012          inst.vectype.el[j] = inst.operands[j].vectype;
11013
11014      if (inst.operands[key_el].vectype.type != NT_invtype)
11015        {
11016          for (j = 0; j < els; j++)
11017            if (inst.operands[j].vectype.type == NT_invtype)
11018              inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11019                                                      types[j]);
11020        }
11021      else
11022        {
11023          first_error (_("operand types can't be inferred"));
11024          return badtype;
11025        }
11026    }
11027  else if (inst.vectype.elems != els)
11028    {
11029      first_error (_("type specifier has the wrong number of parts"));
11030      return badtype;
11031    }
11032
11033  for (pass = 0; pass < 2; pass++)
11034    {
11035      for (i = 0; i < els; i++)
11036        {
11037          unsigned thisarg = types[i];
11038          unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11039            ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11040          enum neon_el_type g_type = inst.vectype.el[i].type;
11041          unsigned g_size = inst.vectype.el[i].size;
11042
11043          /* Decay more-specific signed & unsigned types to sign-insensitive
11044	     integer types if sign-specific variants are unavailable.  */
11045          if ((g_type == NT_signed || g_type == NT_unsigned)
11046	      && (types_allowed & N_SU_ALL) == 0)
11047	    g_type = NT_integer;
11048
11049          /* If only untyped args are allowed, decay any more specific types to
11050	     them. Some instructions only care about signs for some element
11051	     sizes, so handle that properly.  */
11052          if ((g_size == 8 && (types_allowed & N_8) != 0)
11053	      || (g_size == 16 && (types_allowed & N_16) != 0)
11054	      || (g_size == 32 && (types_allowed & N_32) != 0)
11055	      || (g_size == 64 && (types_allowed & N_64) != 0))
11056	    g_type = NT_untyped;
11057
11058          if (pass == 0)
11059            {
11060              if ((thisarg & N_KEY) != 0)
11061                {
11062                  k_type = g_type;
11063                  k_size = g_size;
11064                  key_allowed = thisarg & ~N_KEY;
11065                }
11066            }
11067          else
11068            {
11069              if ((thisarg & N_VFP) != 0)
11070                {
11071                  enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
11072                  unsigned regwidth = neon_shape_el_size[regshape], match;
11073
11074                  /* In VFP mode, operands must match register widths. If we
11075                     have a key operand, use its width, else use the width of
11076                     the current operand.  */
11077                  if (k_size != -1u)
11078                    match = k_size;
11079                  else
11080                    match = g_size;
11081
11082                  if (regwidth != match)
11083                    {
11084                      first_error (_("operand size must match register width"));
11085                      return badtype;
11086                    }
11087                }
11088
11089              if ((thisarg & N_EQK) == 0)
11090                {
11091                  unsigned given_type = type_chk_of_el_type (g_type, g_size);
11092
11093                  if ((given_type & types_allowed) == 0)
11094                    {
11095	              first_error (_("bad type in Neon instruction"));
11096	              return badtype;
11097                    }
11098                }
11099              else
11100                {
11101                  enum neon_el_type mod_k_type = k_type;
11102                  unsigned mod_k_size = k_size;
11103                  neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
11104                  if (g_type != mod_k_type || g_size != mod_k_size)
11105                    {
11106                      first_error (_("inconsistent types in Neon instruction"));
11107                      return badtype;
11108                    }
11109                }
11110            }
11111        }
11112    }
11113
11114  return inst.vectype.el[key_el];
11115}
11116
11117/* Neon-style VFP instruction forwarding.  */
11118
11119/* Thumb VFP instructions have 0xE in the condition field.  */
11120
11121static void
11122do_vfp_cond_or_thumb (void)
11123{
11124  if (thumb_mode)
11125    inst.instruction |= 0xe0000000;
11126  else
11127    inst.instruction |= inst.cond << 28;
11128}
11129
11130/* Look up and encode a simple mnemonic, for use as a helper function for the
11131   Neon-style VFP syntax.  This avoids duplication of bits of the insns table,
11132   etc.  It is assumed that operand parsing has already been done, and that the
11133   operands are in the form expected by the given opcode (this isn't necessarily
11134   the same as the form in which they were parsed, hence some massaging must
11135   take place before this function is called).
11136   Checks current arch version against that in the looked-up opcode.  */
11137
11138static void
11139do_vfp_nsyn_opcode (const char *opname)
11140{
11141  const struct asm_opcode *opcode;
11142
11143  opcode = hash_find (arm_ops_hsh, opname);
11144
11145  if (!opcode)
11146    abort ();
11147
11148  constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
11149                thumb_mode ? *opcode->tvariant : *opcode->avariant),
11150              _(BAD_FPU));
11151
11152  if (thumb_mode)
11153    {
11154      inst.instruction = opcode->tvalue;
11155      opcode->tencode ();
11156    }
11157  else
11158    {
11159      inst.instruction = (inst.cond << 28) | opcode->avalue;
11160      opcode->aencode ();
11161    }
11162}
11163
11164static void
11165do_vfp_nsyn_add_sub (enum neon_shape rs)
11166{
11167  int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
11168
11169  if (rs == NS_FFF)
11170    {
11171      if (is_add)
11172        do_vfp_nsyn_opcode ("fadds");
11173      else
11174        do_vfp_nsyn_opcode ("fsubs");
11175    }
11176  else
11177    {
11178      if (is_add)
11179        do_vfp_nsyn_opcode ("faddd");
11180      else
11181        do_vfp_nsyn_opcode ("fsubd");
11182    }
11183}
11184
11185/* Check operand types to see if this is a VFP instruction, and if so call
11186   PFN ().  */
11187
11188static int
11189try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
11190{
11191  enum neon_shape rs;
11192  struct neon_type_el et;
11193
11194  switch (args)
11195    {
11196    case 2:
11197      rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11198      et = neon_check_type (2, rs,
11199        N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11200      break;
11201
11202    case 3:
11203      rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11204      et = neon_check_type (3, rs,
11205        N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11206      break;
11207
11208    default:
11209      abort ();
11210    }
11211
11212  if (et.type != NT_invtype)
11213    {
11214      pfn (rs);
11215      return SUCCESS;
11216    }
11217  else
11218    inst.error = NULL;
11219
11220  return FAIL;
11221}
11222
11223static void
11224do_vfp_nsyn_mla_mls (enum neon_shape rs)
11225{
11226  int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
11227
11228  if (rs == NS_FFF)
11229    {
11230      if (is_mla)
11231        do_vfp_nsyn_opcode ("fmacs");
11232      else
11233        do_vfp_nsyn_opcode ("fmscs");
11234    }
11235  else
11236    {
11237      if (is_mla)
11238        do_vfp_nsyn_opcode ("fmacd");
11239      else
11240        do_vfp_nsyn_opcode ("fmscd");
11241    }
11242}
11243
11244static void
11245do_vfp_nsyn_mul (enum neon_shape rs)
11246{
11247  if (rs == NS_FFF)
11248    do_vfp_nsyn_opcode ("fmuls");
11249  else
11250    do_vfp_nsyn_opcode ("fmuld");
11251}
11252
11253static void
11254do_vfp_nsyn_abs_neg (enum neon_shape rs)
11255{
11256  int is_neg = (inst.instruction & 0x80) != 0;
11257  neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
11258
11259  if (rs == NS_FF)
11260    {
11261      if (is_neg)
11262        do_vfp_nsyn_opcode ("fnegs");
11263      else
11264        do_vfp_nsyn_opcode ("fabss");
11265    }
11266  else
11267    {
11268      if (is_neg)
11269        do_vfp_nsyn_opcode ("fnegd");
11270      else
11271        do_vfp_nsyn_opcode ("fabsd");
11272    }
11273}
11274
11275/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
11276   insns belong to Neon, and are handled elsewhere.  */
11277
11278static void
11279do_vfp_nsyn_ldm_stm (int is_dbmode)
11280{
11281  int is_ldm = (inst.instruction & (1 << 20)) != 0;
11282  if (is_ldm)
11283    {
11284      if (is_dbmode)
11285        do_vfp_nsyn_opcode ("fldmdbs");
11286      else
11287        do_vfp_nsyn_opcode ("fldmias");
11288    }
11289  else
11290    {
11291      if (is_dbmode)
11292        do_vfp_nsyn_opcode ("fstmdbs");
11293      else
11294        do_vfp_nsyn_opcode ("fstmias");
11295    }
11296}
11297
11298static void
11299do_vfp_nsyn_sqrt (void)
11300{
11301  enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11302  neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11303
11304  if (rs == NS_FF)
11305    do_vfp_nsyn_opcode ("fsqrts");
11306  else
11307    do_vfp_nsyn_opcode ("fsqrtd");
11308}
11309
11310static void
11311do_vfp_nsyn_div (void)
11312{
11313  enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11314  neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11315    N_F32 | N_F64 | N_KEY | N_VFP);
11316
11317  if (rs == NS_FFF)
11318    do_vfp_nsyn_opcode ("fdivs");
11319  else
11320    do_vfp_nsyn_opcode ("fdivd");
11321}
11322
11323static void
11324do_vfp_nsyn_nmul (void)
11325{
11326  enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11327  neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11328    N_F32 | N_F64 | N_KEY | N_VFP);
11329
11330  if (rs == NS_FFF)
11331    {
11332      inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11333      do_vfp_sp_dyadic ();
11334    }
11335  else
11336    {
11337      inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11338      do_vfp_dp_rd_rn_rm ();
11339    }
11340  do_vfp_cond_or_thumb ();
11341}
11342
11343static void
11344do_vfp_nsyn_cmp (void)
11345{
11346  if (inst.operands[1].isreg)
11347    {
11348      enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11349      neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11350
11351      if (rs == NS_FF)
11352        {
11353          inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11354          do_vfp_sp_monadic ();
11355        }
11356      else
11357        {
11358          inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11359          do_vfp_dp_rd_rm ();
11360        }
11361    }
11362  else
11363    {
11364      enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11365      neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11366
11367      switch (inst.instruction & 0x0fffffff)
11368        {
11369        case N_MNEM_vcmp:
11370          inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11371          break;
11372        case N_MNEM_vcmpe:
11373          inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11374          break;
11375        default:
11376          abort ();
11377        }
11378
11379      if (rs == NS_FI)
11380        {
11381          inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11382          do_vfp_sp_compare_z ();
11383        }
11384      else
11385        {
11386          inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11387          do_vfp_dp_rd ();
11388        }
11389    }
11390  do_vfp_cond_or_thumb ();
11391}
11392
11393static void
11394nsyn_insert_sp (void)
11395{
11396  inst.operands[1] = inst.operands[0];
11397  memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11398  inst.operands[0].reg = 13;
11399  inst.operands[0].isreg = 1;
11400  inst.operands[0].writeback = 1;
11401  inst.operands[0].present = 1;
11402}
11403
11404static void
11405do_vfp_nsyn_push (void)
11406{
11407  nsyn_insert_sp ();
11408  if (inst.operands[1].issingle)
11409    do_vfp_nsyn_opcode ("fstmdbs");
11410  else
11411    do_vfp_nsyn_opcode ("fstmdbd");
11412}
11413
11414static void
11415do_vfp_nsyn_pop (void)
11416{
11417  nsyn_insert_sp ();
11418  if (inst.operands[1].issingle)
11419    do_vfp_nsyn_opcode ("fldmias");
11420  else
11421    do_vfp_nsyn_opcode ("fldmiad");
11422}
11423
11424/* Fix up Neon data-processing instructions, ORing in the correct bits for
11425   ARM mode or Thumb mode and moving the encoded bit 24 to bit 28.  */
11426
11427static unsigned
11428neon_dp_fixup (unsigned i)
11429{
11430  if (thumb_mode)
11431    {
11432      /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode.  */
11433      if (i & (1 << 24))
11434        i |= 1 << 28;
11435
11436      i &= ~(1 << 24);
11437
11438      i |= 0xef000000;
11439    }
11440  else
11441    i |= 0xf2000000;
11442
11443  return i;
11444}
11445
11446/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11447   (0, 1, 2, 3).  */
11448
11449static unsigned
11450neon_logbits (unsigned x)
11451{
11452  return ffs (x) - 4;
11453}
11454
11455#define LOW4(R) ((R) & 0xf)
11456#define HI1(R) (((R) >> 4) & 1)
11457
11458/* Encode insns with bit pattern:
11459
11460  |28/24|23|22 |21 20|19 16|15 12|11    8|7|6|5|4|3  0|
11461  |  U  |x |D  |size | Rn  | Rd  |x x x x|N|Q|M|x| Rm |
11462
11463  SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11464  different meaning for some instruction.  */
11465
11466static void
11467neon_three_same (int isquad, int ubit, int size)
11468{
11469  inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11470  inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11471  inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11472  inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11473  inst.instruction |= LOW4 (inst.operands[2].reg);
11474  inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11475  inst.instruction |= (isquad != 0) << 6;
11476  inst.instruction |= (ubit != 0) << 24;
11477  if (size != -1)
11478    inst.instruction |= neon_logbits (size) << 20;
11479
11480  inst.instruction = neon_dp_fixup (inst.instruction);
11481}
11482
11483/* Encode instructions of the form:
11484
11485  |28/24|23|22|21 20|19 18|17 16|15 12|11      7|6|5|4|3  0|
11486  |  U  |x |D |x  x |size |x  x | Rd  |x x x x x|Q|M|x| Rm |
11487
11488  Don't write size if SIZE == -1.  */
11489
11490static void
11491neon_two_same (int qbit, int ubit, int size)
11492{
11493  inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11494  inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11495  inst.instruction |= LOW4 (inst.operands[1].reg);
11496  inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11497  inst.instruction |= (qbit != 0) << 6;
11498  inst.instruction |= (ubit != 0) << 24;
11499
11500  if (size != -1)
11501    inst.instruction |= neon_logbits (size) << 18;
11502
11503  inst.instruction = neon_dp_fixup (inst.instruction);
11504}
11505
11506/* Neon instruction encoders, in approximate order of appearance.  */
11507
11508static void
11509do_neon_dyadic_i_su (void)
11510{
11511  enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11512  struct neon_type_el et = neon_check_type (3, rs,
11513    N_EQK, N_EQK, N_SU_32 | N_KEY);
11514  neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11515}
11516
11517static void
11518do_neon_dyadic_i64_su (void)
11519{
11520  enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11521  struct neon_type_el et = neon_check_type (3, rs,
11522    N_EQK, N_EQK, N_SU_ALL | N_KEY);
11523  neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11524}
11525
11526static void
11527neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
11528                unsigned immbits)
11529{
11530  unsigned size = et.size >> 3;
11531  inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11532  inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11533  inst.instruction |= LOW4 (inst.operands[1].reg);
11534  inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11535  inst.instruction |= (isquad != 0) << 6;
11536  inst.instruction |= immbits << 16;
11537  inst.instruction |= (size >> 3) << 7;
11538  inst.instruction |= (size & 0x7) << 19;
11539  if (write_ubit)
11540    inst.instruction |= (uval != 0) << 24;
11541
11542  inst.instruction = neon_dp_fixup (inst.instruction);
11543}
11544
11545static void
11546do_neon_shl_imm (void)
11547{
11548  if (!inst.operands[2].isreg)
11549    {
11550      enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11551      struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
11552      inst.instruction = NEON_ENC_IMMED (inst.instruction);
11553      neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
11554    }
11555  else
11556    {
11557      enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11558      struct neon_type_el et = neon_check_type (3, rs,
11559        N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11560      unsigned int tmp;
11561
11562      /* VSHL/VQSHL 3-register variants have syntax such as:
11563           vshl.xx Dd, Dm, Dn
11564         whereas other 3-register operations encoded by neon_three_same have
11565         syntax like:
11566           vadd.xx Dd, Dn, Dm
11567         (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
11568         here.  */
11569      tmp = inst.operands[2].reg;
11570      inst.operands[2].reg = inst.operands[1].reg;
11571      inst.operands[1].reg = tmp;
11572      inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11573      neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11574    }
11575}
11576
11577static void
11578do_neon_qshl_imm (void)
11579{
11580  if (!inst.operands[2].isreg)
11581    {
11582      enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11583      struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
11584
11585      inst.instruction = NEON_ENC_IMMED (inst.instruction);
11586      neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
11587                      inst.operands[2].imm);
11588    }
11589  else
11590    {
11591      enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11592      struct neon_type_el et = neon_check_type (3, rs,
11593        N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11594      unsigned int tmp;
11595
11596      /* See note in do_neon_shl_imm.  */
11597      tmp = inst.operands[2].reg;
11598      inst.operands[2].reg = inst.operands[1].reg;
11599      inst.operands[1].reg = tmp;
11600      inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11601      neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11602    }
11603}
11604
11605static void
11606do_neon_rshl (void)
11607{
11608  enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11609  struct neon_type_el et = neon_check_type (3, rs,
11610    N_EQK, N_EQK, N_SU_ALL | N_KEY);
11611  unsigned int tmp;
11612
11613  tmp = inst.operands[2].reg;
11614  inst.operands[2].reg = inst.operands[1].reg;
11615  inst.operands[1].reg = tmp;
11616  neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11617}
11618
11619static int
11620neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
11621{
11622  /* Handle .I8 pseudo-instructions.  */
11623  if (size == 8)
11624    {
11625      /* Unfortunately, this will make everything apart from zero out-of-range.
11626         FIXME is this the intended semantics? There doesn't seem much point in
11627         accepting .I8 if so.  */
11628      immediate |= immediate << 8;
11629      size = 16;
11630    }
11631
11632  if (size >= 32)
11633    {
11634      if (immediate == (immediate & 0x000000ff))
11635	{
11636	  *immbits = immediate;
11637	  return 0x1;
11638	}
11639      else if (immediate == (immediate & 0x0000ff00))
11640	{
11641	  *immbits = immediate >> 8;
11642	  return 0x3;
11643	}
11644      else if (immediate == (immediate & 0x00ff0000))
11645	{
11646	  *immbits = immediate >> 16;
11647	  return 0x5;
11648	}
11649      else if (immediate == (immediate & 0xff000000))
11650	{
11651	  *immbits = immediate >> 24;
11652	  return 0x7;
11653	}
11654      if ((immediate & 0xffff) != (immediate >> 16))
11655	goto bad_immediate;
11656      immediate &= 0xffff;
11657    }
11658
11659  if (immediate == (immediate & 0x000000ff))
11660    {
11661      *immbits = immediate;
11662      return 0x9;
11663    }
11664  else if (immediate == (immediate & 0x0000ff00))
11665    {
11666      *immbits = immediate >> 8;
11667      return 0xb;
11668    }
11669
11670  bad_immediate:
11671  first_error (_("immediate value out of range"));
11672  return FAIL;
11673}
11674
11675/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11676   A, B, C, D.  */
11677
11678static int
11679neon_bits_same_in_bytes (unsigned imm)
11680{
11681  return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
11682         && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
11683         && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
11684         && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
11685}
11686
11687/* For immediate of above form, return 0bABCD.  */
11688
11689static unsigned
11690neon_squash_bits (unsigned imm)
11691{
11692  return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
11693         | ((imm & 0x01000000) >> 21);
11694}
11695
11696/* Compress quarter-float representation to 0b...000 abcdefgh.  */
11697
11698static unsigned
11699neon_qfloat_bits (unsigned imm)
11700{
11701  return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
11702}
11703
11704/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11705   the instruction. *OP is passed as the initial value of the op field, and
11706   may be set to a different value depending on the constant (i.e.
11707   "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
11708   MVN).  If the immediate looks like a repeated parttern then also
11709   try smaller element sizes.  */
11710
11711static int
11712neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
11713			 unsigned *immbits, int *op, int size,
11714			 enum neon_el_type type)
11715{
11716  /* Only permit float immediates (including 0.0/-0.0) if the operand type is
11717     float.  */
11718  if (type == NT_float && !float_p)
11719    return FAIL;
11720
11721  if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
11722    {
11723      if (size != 32 || *op == 1)
11724        return FAIL;
11725      *immbits = neon_qfloat_bits (immlo);
11726      return 0xf;
11727    }
11728
11729  if (size == 64)
11730    {
11731      if (neon_bits_same_in_bytes (immhi)
11732	  && neon_bits_same_in_bytes (immlo))
11733	{
11734	  if (*op == 1)
11735	    return FAIL;
11736	  *immbits = (neon_squash_bits (immhi) << 4)
11737		     | neon_squash_bits (immlo);
11738	  *op = 1;
11739	  return 0xe;
11740	}
11741
11742      if (immhi != immlo)
11743	return FAIL;
11744    }
11745
11746  if (size >= 32)
11747    {
11748      if (immlo == (immlo & 0x000000ff))
11749	{
11750	  *immbits = immlo;
11751	  return 0x0;
11752	}
11753      else if (immlo == (immlo & 0x0000ff00))
11754	{
11755	  *immbits = immlo >> 8;
11756	  return 0x2;
11757	}
11758      else if (immlo == (immlo & 0x00ff0000))
11759	{
11760	  *immbits = immlo >> 16;
11761	  return 0x4;
11762	}
11763      else if (immlo == (immlo & 0xff000000))
11764	{
11765	  *immbits = immlo >> 24;
11766	  return 0x6;
11767	}
11768      else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
11769	{
11770	  *immbits = (immlo >> 8) & 0xff;
11771	  return 0xc;
11772	}
11773      else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
11774	{
11775	  *immbits = (immlo >> 16) & 0xff;
11776	  return 0xd;
11777	}
11778
11779      if ((immlo & 0xffff) != (immlo >> 16))
11780	return FAIL;
11781      immlo &= 0xffff;
11782    }
11783
11784  if (size >= 16)
11785    {
11786      if (immlo == (immlo & 0x000000ff))
11787	{
11788	  *immbits = immlo;
11789	  return 0x8;
11790	}
11791      else if (immlo == (immlo & 0x0000ff00))
11792	{
11793	  *immbits = immlo >> 8;
11794	  return 0xa;
11795	}
11796
11797      if ((immlo & 0xff) != (immlo >> 8))
11798	return FAIL;
11799      immlo &= 0xff;
11800    }
11801
11802  if (immlo == (immlo & 0x000000ff))
11803    {
11804      /* Don't allow MVN with 8-bit immediate.  */
11805      if (*op == 1)
11806	return FAIL;
11807      *immbits = immlo;
11808      return 0xe;
11809    }
11810
11811  return FAIL;
11812}
11813
11814/* Write immediate bits [7:0] to the following locations:
11815
11816  |28/24|23     19|18 16|15                    4|3     0|
11817  |  a  |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11818
11819  This function is used by VMOV/VMVN/VORR/VBIC.  */
11820
11821static void
11822neon_write_immbits (unsigned immbits)
11823{
11824  inst.instruction |= immbits & 0xf;
11825  inst.instruction |= ((immbits >> 4) & 0x7) << 16;
11826  inst.instruction |= ((immbits >> 7) & 0x1) << 24;
11827}
11828
11829/* Invert low-order SIZE bits of XHI:XLO.  */
11830
11831static void
11832neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
11833{
11834  unsigned immlo = xlo ? *xlo : 0;
11835  unsigned immhi = xhi ? *xhi : 0;
11836
11837  switch (size)
11838    {
11839    case 8:
11840      immlo = (~immlo) & 0xff;
11841      break;
11842
11843    case 16:
11844      immlo = (~immlo) & 0xffff;
11845      break;
11846
11847    case 64:
11848      immhi = (~immhi) & 0xffffffff;
11849      /* fall through.  */
11850
11851    case 32:
11852      immlo = (~immlo) & 0xffffffff;
11853      break;
11854
11855    default:
11856      abort ();
11857    }
11858
11859  if (xlo)
11860    *xlo = immlo;
11861
11862  if (xhi)
11863    *xhi = immhi;
11864}
11865
11866static void
11867do_neon_logic (void)
11868{
11869  if (inst.operands[2].present && inst.operands[2].isreg)
11870    {
11871      enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11872      neon_check_type (3, rs, N_IGNORE_TYPE);
11873      /* U bit and size field were set as part of the bitmask.  */
11874      inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11875      neon_three_same (neon_quad (rs), 0, -1);
11876    }
11877  else
11878    {
11879      enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
11880      struct neon_type_el et = neon_check_type (2, rs,
11881        N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
11882      enum neon_opc opcode = inst.instruction & 0x0fffffff;
11883      unsigned immbits;
11884      int cmode;
11885
11886      if (et.type == NT_invtype)
11887        return;
11888
11889      inst.instruction = NEON_ENC_IMMED (inst.instruction);
11890
11891      immbits = inst.operands[1].imm;
11892      if (et.size == 64)
11893	{
11894	  /* .i64 is a pseudo-op, so the immediate must be a repeating
11895	     pattern.  */
11896	  if (immbits != (inst.operands[1].regisimm ?
11897			  inst.operands[1].reg : 0))
11898	    {
11899	      /* Set immbits to an invalid constant.  */
11900	      immbits = 0xdeadbeef;
11901	    }
11902	}
11903
11904      switch (opcode)
11905        {
11906        case N_MNEM_vbic:
11907          cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11908          break;
11909
11910        case N_MNEM_vorr:
11911          cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11912          break;
11913
11914        case N_MNEM_vand:
11915          /* Pseudo-instruction for VBIC.  */
11916          neon_invert_size (&immbits, 0, et.size);
11917          cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11918          break;
11919
11920        case N_MNEM_vorn:
11921          /* Pseudo-instruction for VORR.  */
11922          neon_invert_size (&immbits, 0, et.size);
11923          cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11924          break;
11925
11926        default:
11927          abort ();
11928        }
11929
11930      if (cmode == FAIL)
11931        return;
11932
11933      inst.instruction |= neon_quad (rs) << 6;
11934      inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11935      inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11936      inst.instruction |= cmode << 8;
11937      neon_write_immbits (immbits);
11938
11939      inst.instruction = neon_dp_fixup (inst.instruction);
11940    }
11941}
11942
11943static void
11944do_neon_bitfield (void)
11945{
11946  enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11947  neon_check_type (3, rs, N_IGNORE_TYPE);
11948  neon_three_same (neon_quad (rs), 0, -1);
11949}
11950
11951static void
11952neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
11953                  unsigned destbits)
11954{
11955  enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11956  struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
11957                                            types | N_KEY);
11958  if (et.type == NT_float)
11959    {
11960      inst.instruction = NEON_ENC_FLOAT (inst.instruction);
11961      neon_three_same (neon_quad (rs), 0, -1);
11962    }
11963  else
11964    {
11965      inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11966      neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
11967    }
11968}
11969
11970static void
11971do_neon_dyadic_if_su (void)
11972{
11973  neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
11974}
11975
11976static void
11977do_neon_dyadic_if_su_d (void)
11978{
11979  /* This version only allow D registers, but that constraint is enforced during
11980     operand parsing so we don't need to do anything extra here.  */
11981  neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
11982}
11983
11984static void
11985do_neon_dyadic_if_i_d (void)
11986{
11987  /* The "untyped" case can't happen. Do this to stop the "U" bit being
11988     affected if we specify unsigned args.  */
11989  neon_dyadic_misc (NT_untyped, N_IF_32, 0);
11990}
11991
11992enum vfp_or_neon_is_neon_bits
11993{
11994  NEON_CHECK_CC = 1,
11995  NEON_CHECK_ARCH = 2
11996};
11997
11998/* Call this function if an instruction which may have belonged to the VFP or
11999   Neon instruction sets, but turned out to be a Neon instruction (due to the
12000   operand types involved, etc.). We have to check and/or fix-up a couple of
12001   things:
12002
12003     - Make sure the user hasn't attempted to make a Neon instruction
12004       conditional.
12005     - Alter the value in the condition code field if necessary.
12006     - Make sure that the arch supports Neon instructions.
12007
12008   Which of these operations take place depends on bits from enum
12009   vfp_or_neon_is_neon_bits.
12010
12011   WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12012   current instruction's condition is COND_ALWAYS, the condition field is
12013   changed to inst.uncond_value. This is necessary because instructions shared
12014   between VFP and Neon may be conditional for the VFP variants only, and the
12015   unconditional Neon version must have, e.g., 0xF in the condition field.  */
12016
12017static int
12018vfp_or_neon_is_neon (unsigned check)
12019{
12020  /* Conditions are always legal in Thumb mode (IT blocks).  */
12021  if (!thumb_mode && (check & NEON_CHECK_CC))
12022    {
12023      if (inst.cond != COND_ALWAYS)
12024        {
12025          first_error (_(BAD_COND));
12026          return FAIL;
12027        }
12028      if (inst.uncond_value != -1)
12029        inst.instruction |= inst.uncond_value << 28;
12030    }
12031
12032  if ((check & NEON_CHECK_ARCH)
12033      && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
12034    {
12035      first_error (_(BAD_FPU));
12036      return FAIL;
12037    }
12038
12039  return SUCCESS;
12040}
12041
12042static void
12043do_neon_addsub_if_i (void)
12044{
12045  if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
12046    return;
12047
12048  if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12049    return;
12050
12051  /* The "untyped" case can't happen. Do this to stop the "U" bit being
12052     affected if we specify unsigned args.  */
12053  neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
12054}
12055
12056/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12057   result to be:
12058     V<op> A,B     (A is operand 0, B is operand 2)
12059   to mean:
12060     V<op> A,B,A
12061   not:
12062     V<op> A,B,B
12063   so handle that case specially.  */
12064
12065static void
12066neon_exchange_operands (void)
12067{
12068  void *scratch = alloca (sizeof (inst.operands[0]));
12069  if (inst.operands[1].present)
12070    {
12071      /* Swap operands[1] and operands[2].  */
12072      memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
12073      inst.operands[1] = inst.operands[2];
12074      memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
12075    }
12076  else
12077    {
12078      inst.operands[1] = inst.operands[2];
12079      inst.operands[2] = inst.operands[0];
12080    }
12081}
12082
12083static void
12084neon_compare (unsigned regtypes, unsigned immtypes, int invert)
12085{
12086  if (inst.operands[2].isreg)
12087    {
12088      if (invert)
12089        neon_exchange_operands ();
12090      neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
12091    }
12092  else
12093    {
12094      enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12095      struct neon_type_el et = neon_check_type (2, rs,
12096        N_EQK | N_SIZ, immtypes | N_KEY);
12097
12098      inst.instruction = NEON_ENC_IMMED (inst.instruction);
12099      inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12100      inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12101      inst.instruction |= LOW4 (inst.operands[1].reg);
12102      inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12103      inst.instruction |= neon_quad (rs) << 6;
12104      inst.instruction |= (et.type == NT_float) << 10;
12105      inst.instruction |= neon_logbits (et.size) << 18;
12106
12107      inst.instruction = neon_dp_fixup (inst.instruction);
12108    }
12109}
12110
12111static void
12112do_neon_cmp (void)
12113{
12114  neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
12115}
12116
12117static void
12118do_neon_cmp_inv (void)
12119{
12120  neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
12121}
12122
12123static void
12124do_neon_ceq (void)
12125{
12126  neon_compare (N_IF_32, N_IF_32, FALSE);
12127}
12128
12129/* For multiply instructions, we have the possibility of 16-bit or 32-bit
12130   scalars, which are encoded in 5 bits, M : Rm.
12131   For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12132   M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12133   index in M.  */
12134
12135static unsigned
12136neon_scalar_for_mul (unsigned scalar, unsigned elsize)
12137{
12138  unsigned regno = NEON_SCALAR_REG (scalar);
12139  unsigned elno = NEON_SCALAR_INDEX (scalar);
12140
12141  switch (elsize)
12142    {
12143    case 16:
12144      if (regno > 7 || elno > 3)
12145        goto bad_scalar;
12146      return regno | (elno << 3);
12147
12148    case 32:
12149      if (regno > 15 || elno > 1)
12150        goto bad_scalar;
12151      return regno | (elno << 4);
12152
12153    default:
12154    bad_scalar:
12155      first_error (_("scalar out of range for multiply instruction"));
12156    }
12157
12158  return 0;
12159}
12160
12161/* Encode multiply / multiply-accumulate scalar instructions.  */
12162
12163static void
12164neon_mul_mac (struct neon_type_el et, int ubit)
12165{
12166  unsigned scalar;
12167
12168  /* Give a more helpful error message if we have an invalid type.  */
12169  if (et.type == NT_invtype)
12170    return;
12171
12172  scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
12173  inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12174  inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12175  inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12176  inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12177  inst.instruction |= LOW4 (scalar);
12178  inst.instruction |= HI1 (scalar) << 5;
12179  inst.instruction |= (et.type == NT_float) << 8;
12180  inst.instruction |= neon_logbits (et.size) << 20;
12181  inst.instruction |= (ubit != 0) << 24;
12182
12183  inst.instruction = neon_dp_fixup (inst.instruction);
12184}
12185
12186static void
12187do_neon_mac_maybe_scalar (void)
12188{
12189  if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
12190    return;
12191
12192  if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12193    return;
12194
12195  if (inst.operands[2].isscalar)
12196    {
12197      enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
12198      struct neon_type_el et = neon_check_type (3, rs,
12199        N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
12200      inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12201      neon_mul_mac (et, neon_quad (rs));
12202    }
12203  else
12204    {
12205      /* The "untyped" case can't happen.  Do this to stop the "U" bit being
12206	 affected if we specify unsigned args.  */
12207      neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12208    }
12209}
12210
12211static void
12212do_neon_tst (void)
12213{
12214  enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12215  struct neon_type_el et = neon_check_type (3, rs,
12216    N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
12217  neon_three_same (neon_quad (rs), 0, et.size);
12218}
12219
12220/* VMUL with 3 registers allows the P8 type. The scalar version supports the
12221   same types as the MAC equivalents. The polynomial type for this instruction
12222   is encoded the same as the integer type.  */
12223
12224static void
12225do_neon_mul (void)
12226{
12227  if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
12228    return;
12229
12230  if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12231    return;
12232
12233  if (inst.operands[2].isscalar)
12234    do_neon_mac_maybe_scalar ();
12235  else
12236    neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
12237}
12238
12239static void
12240do_neon_qdmulh (void)
12241{
12242  if (inst.operands[2].isscalar)
12243    {
12244      enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
12245      struct neon_type_el et = neon_check_type (3, rs,
12246        N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12247      inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12248      neon_mul_mac (et, neon_quad (rs));
12249    }
12250  else
12251    {
12252      enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12253      struct neon_type_el et = neon_check_type (3, rs,
12254        N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12255      inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12256      /* The U bit (rounding) comes from bit mask.  */
12257      neon_three_same (neon_quad (rs), 0, et.size);
12258    }
12259}
12260
12261static void
12262do_neon_fcmp_absolute (void)
12263{
12264  enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12265  neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12266  /* Size field comes from bit mask.  */
12267  neon_three_same (neon_quad (rs), 1, -1);
12268}
12269
12270static void
12271do_neon_fcmp_absolute_inv (void)
12272{
12273  neon_exchange_operands ();
12274  do_neon_fcmp_absolute ();
12275}
12276
12277static void
12278do_neon_step (void)
12279{
12280  enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12281  neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12282  neon_three_same (neon_quad (rs), 0, -1);
12283}
12284
12285static void
12286do_neon_abs_neg (void)
12287{
12288  enum neon_shape rs;
12289  struct neon_type_el et;
12290
12291  if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
12292    return;
12293
12294  if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12295    return;
12296
12297  rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12298  et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
12299
12300  inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12301  inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12302  inst.instruction |= LOW4 (inst.operands[1].reg);
12303  inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12304  inst.instruction |= neon_quad (rs) << 6;
12305  inst.instruction |= (et.type == NT_float) << 10;
12306  inst.instruction |= neon_logbits (et.size) << 18;
12307
12308  inst.instruction = neon_dp_fixup (inst.instruction);
12309}
12310
12311static void
12312do_neon_sli (void)
12313{
12314  enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12315  struct neon_type_el et = neon_check_type (2, rs,
12316    N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12317  int imm = inst.operands[2].imm;
12318  constraint (imm < 0 || (unsigned)imm >= et.size,
12319              _("immediate out of range for insert"));
12320  neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
12321}
12322
12323static void
12324do_neon_sri (void)
12325{
12326  enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12327  struct neon_type_el et = neon_check_type (2, rs,
12328    N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12329  int imm = inst.operands[2].imm;
12330  constraint (imm < 1 || (unsigned)imm > et.size,
12331              _("immediate out of range for insert"));
12332  neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
12333}
12334
12335static void
12336do_neon_qshlu_imm (void)
12337{
12338  enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12339  struct neon_type_el et = neon_check_type (2, rs,
12340    N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
12341  int imm = inst.operands[2].imm;
12342  constraint (imm < 0 || (unsigned)imm >= et.size,
12343              _("immediate out of range for shift"));
12344  /* Only encodes the 'U present' variant of the instruction.
12345     In this case, signed types have OP (bit 8) set to 0.
12346     Unsigned types have OP set to 1.  */
12347  inst.instruction |= (et.type == NT_unsigned) << 8;
12348  /* The rest of the bits are the same as other immediate shifts.  */
12349  neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
12350}
12351
12352static void
12353do_neon_qmovn (void)
12354{
12355  struct neon_type_el et = neon_check_type (2, NS_DQ,
12356    N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12357  /* Saturating move where operands can be signed or unsigned, and the
12358     destination has the same signedness.  */
12359  inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12360  if (et.type == NT_unsigned)
12361    inst.instruction |= 0xc0;
12362  else
12363    inst.instruction |= 0x80;
12364  neon_two_same (0, 1, et.size / 2);
12365}
12366
12367static void
12368do_neon_qmovun (void)
12369{
12370  struct neon_type_el et = neon_check_type (2, NS_DQ,
12371    N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12372  /* Saturating move with unsigned results. Operands must be signed.  */
12373  inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12374  neon_two_same (0, 1, et.size / 2);
12375}
12376
12377static void
12378do_neon_rshift_sat_narrow (void)
12379{
12380  /* FIXME: Types for narrowing. If operands are signed, results can be signed
12381     or unsigned. If operands are unsigned, results must also be unsigned.  */
12382  struct neon_type_el et = neon_check_type (2, NS_DQI,
12383    N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12384  int imm = inst.operands[2].imm;
12385  /* This gets the bounds check, size encoding and immediate bits calculation
12386     right.  */
12387  et.size /= 2;
12388
12389  /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12390     VQMOVN.I<size> <Dd>, <Qm>.  */
12391  if (imm == 0)
12392    {
12393      inst.operands[2].present = 0;
12394      inst.instruction = N_MNEM_vqmovn;
12395      do_neon_qmovn ();
12396      return;
12397    }
12398
12399  constraint (imm < 1 || (unsigned)imm > et.size,
12400              _("immediate out of range"));
12401  neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12402}
12403
12404static void
12405do_neon_rshift_sat_narrow_u (void)
12406{
12407  /* FIXME: Types for narrowing. If operands are signed, results can be signed
12408     or unsigned. If operands are unsigned, results must also be unsigned.  */
12409  struct neon_type_el et = neon_check_type (2, NS_DQI,
12410    N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12411  int imm = inst.operands[2].imm;
12412  /* This gets the bounds check, size encoding and immediate bits calculation
12413     right.  */
12414  et.size /= 2;
12415
12416  /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12417     VQMOVUN.I<size> <Dd>, <Qm>.  */
12418  if (imm == 0)
12419    {
12420      inst.operands[2].present = 0;
12421      inst.instruction = N_MNEM_vqmovun;
12422      do_neon_qmovun ();
12423      return;
12424    }
12425
12426  constraint (imm < 1 || (unsigned)imm > et.size,
12427              _("immediate out of range"));
12428  /* FIXME: The manual is kind of unclear about what value U should have in
12429     VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12430     must be 1.  */
12431  neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12432}
12433
12434static void
12435do_neon_movn (void)
12436{
12437  struct neon_type_el et = neon_check_type (2, NS_DQ,
12438    N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12439  inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12440  neon_two_same (0, 1, et.size / 2);
12441}
12442
12443static void
12444do_neon_rshift_narrow (void)
12445{
12446  struct neon_type_el et = neon_check_type (2, NS_DQI,
12447    N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12448  int imm = inst.operands[2].imm;
12449  /* This gets the bounds check, size encoding and immediate bits calculation
12450     right.  */
12451  et.size /= 2;
12452
12453  /* If immediate is zero then we are a pseudo-instruction for
12454     VMOVN.I<size> <Dd>, <Qm>  */
12455  if (imm == 0)
12456    {
12457      inst.operands[2].present = 0;
12458      inst.instruction = N_MNEM_vmovn;
12459      do_neon_movn ();
12460      return;
12461    }
12462
12463  constraint (imm < 1 || (unsigned)imm > et.size,
12464              _("immediate out of range for narrowing operation"));
12465  neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12466}
12467
12468static void
12469do_neon_shll (void)
12470{
12471  /* FIXME: Type checking when lengthening.  */
12472  struct neon_type_el et = neon_check_type (2, NS_QDI,
12473    N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12474  unsigned imm = inst.operands[2].imm;
12475
12476  if (imm == et.size)
12477    {
12478      /* Maximum shift variant.  */
12479      inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12480      inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12481      inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12482      inst.instruction |= LOW4 (inst.operands[1].reg);
12483      inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12484      inst.instruction |= neon_logbits (et.size) << 18;
12485
12486      inst.instruction = neon_dp_fixup (inst.instruction);
12487    }
12488  else
12489    {
12490      /* A more-specific type check for non-max versions.  */
12491      et = neon_check_type (2, NS_QDI,
12492        N_EQK | N_DBL, N_SU_32 | N_KEY);
12493      inst.instruction = NEON_ENC_IMMED (inst.instruction);
12494      neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
12495    }
12496}
12497
12498/* Check the various types for the VCVT instruction, and return which version
12499   the current instruction is.  */
12500
12501static int
12502neon_cvt_flavour (enum neon_shape rs)
12503{
12504#define CVT_VAR(C,X,Y)							\
12505  et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y));	\
12506  if (et.type != NT_invtype)						\
12507    {									\
12508      inst.error = NULL;						\
12509      return (C);							\
12510    }
12511  struct neon_type_el et;
12512  unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
12513                        || rs == NS_FF) ? N_VFP : 0;
12514  /* The instruction versions which take an immediate take one register
12515     argument, which is extended to the width of the full register. Thus the
12516     "source" and "destination" registers must have the same width.  Hack that
12517     here by making the size equal to the key (wider, in this case) operand.  */
12518  unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
12519
12520  CVT_VAR (0, N_S32, N_F32);
12521  CVT_VAR (1, N_U32, N_F32);
12522  CVT_VAR (2, N_F32, N_S32);
12523  CVT_VAR (3, N_F32, N_U32);
12524
12525  whole_reg = N_VFP;
12526
12527  /* VFP instructions.  */
12528  CVT_VAR (4, N_F32, N_F64);
12529  CVT_VAR (5, N_F64, N_F32);
12530  CVT_VAR (6, N_S32, N_F64 | key);
12531  CVT_VAR (7, N_U32, N_F64 | key);
12532  CVT_VAR (8, N_F64 | key, N_S32);
12533  CVT_VAR (9, N_F64 | key, N_U32);
12534  /* VFP instructions with bitshift.  */
12535  CVT_VAR (10, N_F32 | key, N_S16);
12536  CVT_VAR (11, N_F32 | key, N_U16);
12537  CVT_VAR (12, N_F64 | key, N_S16);
12538  CVT_VAR (13, N_F64 | key, N_U16);
12539  CVT_VAR (14, N_S16, N_F32 | key);
12540  CVT_VAR (15, N_U16, N_F32 | key);
12541  CVT_VAR (16, N_S16, N_F64 | key);
12542  CVT_VAR (17, N_U16, N_F64 | key);
12543
12544  return -1;
12545#undef CVT_VAR
12546}
12547
12548/* Neon-syntax VFP conversions.  */
12549
12550static void
12551do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
12552{
12553  const char *opname = 0;
12554
12555  if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
12556    {
12557      /* Conversions with immediate bitshift.  */
12558      const char *enc[] =
12559        {
12560          "ftosls",
12561          "ftouls",
12562          "fsltos",
12563          "fultos",
12564          NULL,
12565          NULL,
12566          "ftosld",
12567          "ftould",
12568          "fsltod",
12569          "fultod",
12570          "fshtos",
12571          "fuhtos",
12572          "fshtod",
12573          "fuhtod",
12574          "ftoshs",
12575          "ftouhs",
12576          "ftoshd",
12577          "ftouhd"
12578        };
12579
12580      if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12581        {
12582          opname = enc[flavour];
12583          constraint (inst.operands[0].reg != inst.operands[1].reg,
12584                      _("operands 0 and 1 must be the same register"));
12585          inst.operands[1] = inst.operands[2];
12586          memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
12587        }
12588    }
12589  else
12590    {
12591      /* Conversions without bitshift.  */
12592      const char *enc[] =
12593        {
12594          "ftosis",
12595          "ftouis",
12596          "fsitos",
12597          "fuitos",
12598          "fcvtsd",
12599          "fcvtds",
12600          "ftosid",
12601          "ftouid",
12602          "fsitod",
12603          "fuitod"
12604        };
12605
12606      if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12607        opname = enc[flavour];
12608    }
12609
12610  if (opname)
12611    do_vfp_nsyn_opcode (opname);
12612}
12613
12614static void
12615do_vfp_nsyn_cvtz (void)
12616{
12617  enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
12618  int flavour = neon_cvt_flavour (rs);
12619  const char *enc[] =
12620    {
12621      "ftosizs",
12622      "ftouizs",
12623      NULL,
12624      NULL,
12625      NULL,
12626      NULL,
12627      "ftosizd",
12628      "ftouizd"
12629    };
12630
12631  if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
12632    do_vfp_nsyn_opcode (enc[flavour]);
12633}
12634
12635static void
12636do_neon_cvt (void)
12637{
12638  enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
12639    NS_FD, NS_DF, NS_FF, NS_NULL);
12640  int flavour = neon_cvt_flavour (rs);
12641
12642  /* VFP rather than Neon conversions.  */
12643  if (flavour >= 4)
12644    {
12645      do_vfp_nsyn_cvt (rs, flavour);
12646      return;
12647    }
12648
12649  switch (rs)
12650    {
12651    case NS_DDI:
12652    case NS_QQI:
12653      {
12654        if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12655          return;
12656
12657        /* Fixed-point conversion with #0 immediate is encoded as an
12658           integer conversion.  */
12659        if (inst.operands[2].present && inst.operands[2].imm == 0)
12660          goto int_encode;
12661        unsigned immbits = 32 - inst.operands[2].imm;
12662        unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12663        inst.instruction = NEON_ENC_IMMED (inst.instruction);
12664        if (flavour != -1)
12665          inst.instruction |= enctab[flavour];
12666        inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12667        inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12668        inst.instruction |= LOW4 (inst.operands[1].reg);
12669        inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12670        inst.instruction |= neon_quad (rs) << 6;
12671        inst.instruction |= 1 << 21;
12672        inst.instruction |= immbits << 16;
12673
12674        inst.instruction = neon_dp_fixup (inst.instruction);
12675      }
12676      break;
12677
12678    case NS_DD:
12679    case NS_QQ:
12680    int_encode:
12681      {
12682        unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
12683
12684        inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12685
12686        if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12687          return;
12688
12689        if (flavour != -1)
12690          inst.instruction |= enctab[flavour];
12691
12692        inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12693        inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12694        inst.instruction |= LOW4 (inst.operands[1].reg);
12695        inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12696        inst.instruction |= neon_quad (rs) << 6;
12697        inst.instruction |= 2 << 18;
12698
12699        inst.instruction = neon_dp_fixup (inst.instruction);
12700      }
12701    break;
12702
12703    default:
12704      /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32).  */
12705      do_vfp_nsyn_cvt (rs, flavour);
12706    }
12707}
12708
12709static void
12710neon_move_immediate (void)
12711{
12712  enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12713  struct neon_type_el et = neon_check_type (2, rs,
12714    N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12715  unsigned immlo, immhi = 0, immbits;
12716  int op, cmode, float_p;
12717
12718  constraint (et.type == NT_invtype,
12719              _("operand size must be specified for immediate VMOV"));
12720
12721  /* We start out as an MVN instruction if OP = 1, MOV otherwise.  */
12722  op = (inst.instruction & (1 << 5)) != 0;
12723
12724  immlo = inst.operands[1].imm;
12725  if (inst.operands[1].regisimm)
12726    immhi = inst.operands[1].reg;
12727
12728  constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
12729              _("immediate has bits set outside the operand size"));
12730
12731  float_p = inst.operands[1].immisfloat;
12732
12733  if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
12734                                        et.size, et.type)) == FAIL)
12735    {
12736      /* Invert relevant bits only.  */
12737      neon_invert_size (&immlo, &immhi, et.size);
12738      /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12739         with one or the other; those cases are caught by
12740         neon_cmode_for_move_imm.  */
12741      op = !op;
12742      if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
12743					    &op, et.size, et.type)) == FAIL)
12744        {
12745          first_error (_("immediate out of range"));
12746          return;
12747        }
12748    }
12749
12750  inst.instruction &= ~(1 << 5);
12751  inst.instruction |= op << 5;
12752
12753  inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12754  inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12755  inst.instruction |= neon_quad (rs) << 6;
12756  inst.instruction |= cmode << 8;
12757
12758  neon_write_immbits (immbits);
12759}
12760
12761static void
12762do_neon_mvn (void)
12763{
12764  if (inst.operands[1].isreg)
12765    {
12766      enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12767
12768      inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12769      inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12770      inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12771      inst.instruction |= LOW4 (inst.operands[1].reg);
12772      inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12773      inst.instruction |= neon_quad (rs) << 6;
12774    }
12775  else
12776    {
12777      inst.instruction = NEON_ENC_IMMED (inst.instruction);
12778      neon_move_immediate ();
12779    }
12780
12781  inst.instruction = neon_dp_fixup (inst.instruction);
12782}
12783
12784/* Encode instructions of form:
12785
12786  |28/24|23|22|21 20|19 16|15 12|11    8|7|6|5|4|3  0|
12787  |  U  |x |D |size | Rn  | Rd  |x x x x|N|x|M|x| Rm |
12788
12789*/
12790
12791static void
12792neon_mixed_length (struct neon_type_el et, unsigned size)
12793{
12794  inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12795  inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12796  inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12797  inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12798  inst.instruction |= LOW4 (inst.operands[2].reg);
12799  inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12800  inst.instruction |= (et.type == NT_unsigned) << 24;
12801  inst.instruction |= neon_logbits (size) << 20;
12802
12803  inst.instruction = neon_dp_fixup (inst.instruction);
12804}
12805
12806static void
12807do_neon_dyadic_long (void)
12808{
12809  /* FIXME: Type checking for lengthening op.  */
12810  struct neon_type_el et = neon_check_type (3, NS_QDD,
12811    N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
12812  neon_mixed_length (et, et.size);
12813}
12814
12815static void
12816do_neon_abal (void)
12817{
12818  struct neon_type_el et = neon_check_type (3, NS_QDD,
12819    N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
12820  neon_mixed_length (et, et.size);
12821}
12822
12823static void
12824neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
12825{
12826  if (inst.operands[2].isscalar)
12827    {
12828      struct neon_type_el et = neon_check_type (3, NS_QDS,
12829        N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
12830      inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12831      neon_mul_mac (et, et.type == NT_unsigned);
12832    }
12833  else
12834    {
12835      struct neon_type_el et = neon_check_type (3, NS_QDD,
12836        N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
12837      inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12838      neon_mixed_length (et, et.size);
12839    }
12840}
12841
12842static void
12843do_neon_mac_maybe_scalar_long (void)
12844{
12845  neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
12846}
12847
12848static void
12849do_neon_dyadic_wide (void)
12850{
12851  struct neon_type_el et = neon_check_type (3, NS_QQD,
12852    N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
12853  neon_mixed_length (et, et.size);
12854}
12855
12856static void
12857do_neon_dyadic_narrow (void)
12858{
12859  struct neon_type_el et = neon_check_type (3, NS_QDD,
12860    N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
12861  /* Operand sign is unimportant, and the U bit is part of the opcode,
12862     so force the operand type to integer.  */
12863  et.type = NT_integer;
12864  neon_mixed_length (et, et.size / 2);
12865}
12866
12867static void
12868do_neon_mul_sat_scalar_long (void)
12869{
12870  neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
12871}
12872
12873static void
12874do_neon_vmull (void)
12875{
12876  if (inst.operands[2].isscalar)
12877    do_neon_mac_maybe_scalar_long ();
12878  else
12879    {
12880      struct neon_type_el et = neon_check_type (3, NS_QDD,
12881        N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
12882      if (et.type == NT_poly)
12883        inst.instruction = NEON_ENC_POLY (inst.instruction);
12884      else
12885        inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12886      /* For polynomial encoding, size field must be 0b00 and the U bit must be
12887         zero. Should be OK as-is.  */
12888      neon_mixed_length (et, et.size);
12889    }
12890}
12891
12892static void
12893do_neon_ext (void)
12894{
12895  enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
12896  struct neon_type_el et = neon_check_type (3, rs,
12897    N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12898  unsigned imm = (inst.operands[3].imm * et.size) / 8;
12899  constraint (imm >= (neon_quad (rs) ? 16 : 8), _("shift out of range"));
12900  inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12901  inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12902  inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12903  inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12904  inst.instruction |= LOW4 (inst.operands[2].reg);
12905  inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12906  inst.instruction |= neon_quad (rs) << 6;
12907  inst.instruction |= imm << 8;
12908
12909  inst.instruction = neon_dp_fixup (inst.instruction);
12910}
12911
12912static void
12913do_neon_rev (void)
12914{
12915  enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12916  struct neon_type_el et = neon_check_type (2, rs,
12917    N_EQK, N_8 | N_16 | N_32 | N_KEY);
12918  unsigned op = (inst.instruction >> 7) & 3;
12919  /* N (width of reversed regions) is encoded as part of the bitmask. We
12920     extract it here to check the elements to be reversed are smaller.
12921     Otherwise we'd get a reserved instruction.  */
12922  unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
12923  assert (elsize != 0);
12924  constraint (et.size >= elsize,
12925              _("elements must be smaller than reversal region"));
12926  neon_two_same (neon_quad (rs), 1, et.size);
12927}
12928
12929static void
12930do_neon_dup (void)
12931{
12932  if (inst.operands[1].isscalar)
12933    {
12934      enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
12935      struct neon_type_el et = neon_check_type (2, rs,
12936        N_EQK, N_8 | N_16 | N_32 | N_KEY);
12937      unsigned sizebits = et.size >> 3;
12938      unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
12939      int logsize = neon_logbits (et.size);
12940      unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
12941
12942      if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
12943        return;
12944
12945      inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12946      inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12947      inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12948      inst.instruction |= LOW4 (dm);
12949      inst.instruction |= HI1 (dm) << 5;
12950      inst.instruction |= neon_quad (rs) << 6;
12951      inst.instruction |= x << 17;
12952      inst.instruction |= sizebits << 16;
12953
12954      inst.instruction = neon_dp_fixup (inst.instruction);
12955    }
12956  else
12957    {
12958      enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
12959      struct neon_type_el et = neon_check_type (2, rs,
12960        N_8 | N_16 | N_32 | N_KEY, N_EQK);
12961      /* Duplicate ARM register to lanes of vector.  */
12962      inst.instruction = NEON_ENC_ARMREG (inst.instruction);
12963      switch (et.size)
12964        {
12965        case 8:  inst.instruction |= 0x400000; break;
12966        case 16: inst.instruction |= 0x000020; break;
12967        case 32: inst.instruction |= 0x000000; break;
12968        default: break;
12969        }
12970      inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
12971      inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
12972      inst.instruction |= HI1 (inst.operands[0].reg) << 7;
12973      inst.instruction |= neon_quad (rs) << 21;
12974      /* The encoding for this instruction is identical for the ARM and Thumb
12975         variants, except for the condition field.  */
12976      do_vfp_cond_or_thumb ();
12977    }
12978}
12979
12980/* VMOV has particularly many variations. It can be one of:
12981     0. VMOV<c><q> <Qd>, <Qm>
12982     1. VMOV<c><q> <Dd>, <Dm>
12983   (Register operations, which are VORR with Rm = Rn.)
12984     2. VMOV<c><q>.<dt> <Qd>, #<imm>
12985     3. VMOV<c><q>.<dt> <Dd>, #<imm>
12986   (Immediate loads.)
12987     4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
12988   (ARM register to scalar.)
12989     5. VMOV<c><q> <Dm>, <Rd>, <Rn>
12990   (Two ARM registers to vector.)
12991     6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
12992   (Scalar to ARM register.)
12993     7. VMOV<c><q> <Rd>, <Rn>, <Dm>
12994   (Vector to two ARM registers.)
12995     8. VMOV.F32 <Sd>, <Sm>
12996     9. VMOV.F64 <Dd>, <Dm>
12997   (VFP register moves.)
12998    10. VMOV.F32 <Sd>, #imm
12999    11. VMOV.F64 <Dd>, #imm
13000   (VFP float immediate load.)
13001    12. VMOV <Rd>, <Sm>
13002   (VFP single to ARM reg.)
13003    13. VMOV <Sd>, <Rm>
13004   (ARM reg to VFP single.)
13005    14. VMOV <Rd>, <Re>, <Sn>, <Sm>
13006   (Two ARM regs to two VFP singles.)
13007    15. VMOV <Sd>, <Se>, <Rn>, <Rm>
13008   (Two VFP singles to two ARM regs.)
13009
13010   These cases can be disambiguated using neon_select_shape, except cases 1/9
13011   and 3/11 which depend on the operand type too.
13012
13013   All the encoded bits are hardcoded by this function.
13014
13015   Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
13016   Cases 5, 7 may be used with VFPv2 and above.
13017
13018   FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
13019   can specify a type where it doesn't make sense to, and is ignored).
13020*/
13021
13022static void
13023do_neon_mov (void)
13024{
13025  enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
13026    NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
13027    NS_NULL);
13028  struct neon_type_el et;
13029  const char *ldconst = 0;
13030
13031  switch (rs)
13032    {
13033    case NS_DD:  /* case 1/9.  */
13034      et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13035      /* It is not an error here if no type is given.  */
13036      inst.error = NULL;
13037      if (et.type == NT_float && et.size == 64)
13038        {
13039          do_vfp_nsyn_opcode ("fcpyd");
13040          break;
13041        }
13042      /* fall through.  */
13043
13044    case NS_QQ:  /* case 0/1.  */
13045      {
13046        if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13047          return;
13048        /* The architecture manual I have doesn't explicitly state which
13049           value the U bit should have for register->register moves, but
13050           the equivalent VORR instruction has U = 0, so do that.  */
13051        inst.instruction = 0x0200110;
13052        inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13053        inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13054        inst.instruction |= LOW4 (inst.operands[1].reg);
13055        inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13056        inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13057        inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13058        inst.instruction |= neon_quad (rs) << 6;
13059
13060        inst.instruction = neon_dp_fixup (inst.instruction);
13061      }
13062      break;
13063
13064    case NS_DI:  /* case 3/11.  */
13065      et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13066      inst.error = NULL;
13067      if (et.type == NT_float && et.size == 64)
13068        {
13069          /* case 11 (fconstd).  */
13070          ldconst = "fconstd";
13071          goto encode_fconstd;
13072        }
13073      /* fall through.  */
13074
13075    case NS_QI:  /* case 2/3.  */
13076      if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13077        return;
13078      inst.instruction = 0x0800010;
13079      neon_move_immediate ();
13080      inst.instruction = neon_dp_fixup (inst.instruction);
13081      break;
13082
13083    case NS_SR:  /* case 4.  */
13084      {
13085        unsigned bcdebits = 0;
13086        struct neon_type_el et = neon_check_type (2, NS_NULL,
13087          N_8 | N_16 | N_32 | N_KEY, N_EQK);
13088        int logsize = neon_logbits (et.size);
13089        unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
13090        unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
13091
13092        constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13093                    _(BAD_FPU));
13094        constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13095                    && et.size != 32, _(BAD_FPU));
13096        constraint (et.type == NT_invtype, _("bad type for scalar"));
13097        constraint (x >= 64 / et.size, _("scalar index out of range"));
13098
13099        switch (et.size)
13100          {
13101          case 8:  bcdebits = 0x8; break;
13102          case 16: bcdebits = 0x1; break;
13103          case 32: bcdebits = 0x0; break;
13104          default: ;
13105          }
13106
13107        bcdebits |= x << logsize;
13108
13109        inst.instruction = 0xe000b10;
13110        do_vfp_cond_or_thumb ();
13111        inst.instruction |= LOW4 (dn) << 16;
13112        inst.instruction |= HI1 (dn) << 7;
13113        inst.instruction |= inst.operands[1].reg << 12;
13114        inst.instruction |= (bcdebits & 3) << 5;
13115        inst.instruction |= (bcdebits >> 2) << 21;
13116      }
13117      break;
13118
13119    case NS_DRR:  /* case 5 (fmdrr).  */
13120      constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13121                  _(BAD_FPU));
13122
13123      inst.instruction = 0xc400b10;
13124      do_vfp_cond_or_thumb ();
13125      inst.instruction |= LOW4 (inst.operands[0].reg);
13126      inst.instruction |= HI1 (inst.operands[0].reg) << 5;
13127      inst.instruction |= inst.operands[1].reg << 12;
13128      inst.instruction |= inst.operands[2].reg << 16;
13129      break;
13130
13131    case NS_RS:  /* case 6.  */
13132      {
13133        struct neon_type_el et = neon_check_type (2, NS_NULL,
13134          N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
13135        unsigned logsize = neon_logbits (et.size);
13136        unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
13137        unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
13138        unsigned abcdebits = 0;
13139
13140        constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13141                    _(BAD_FPU));
13142        constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13143                    && et.size != 32, _(BAD_FPU));
13144        constraint (et.type == NT_invtype, _("bad type for scalar"));
13145        constraint (x >= 64 / et.size, _("scalar index out of range"));
13146
13147        switch (et.size)
13148          {
13149          case 8:  abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
13150          case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
13151          case 32: abcdebits = 0x00; break;
13152          default: ;
13153          }
13154
13155        abcdebits |= x << logsize;
13156        inst.instruction = 0xe100b10;
13157        do_vfp_cond_or_thumb ();
13158        inst.instruction |= LOW4 (dn) << 16;
13159        inst.instruction |= HI1 (dn) << 7;
13160        inst.instruction |= inst.operands[0].reg << 12;
13161        inst.instruction |= (abcdebits & 3) << 5;
13162        inst.instruction |= (abcdebits >> 2) << 21;
13163      }
13164      break;
13165
13166    case NS_RRD:  /* case 7 (fmrrd).  */
13167      constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13168                  _(BAD_FPU));
13169
13170      inst.instruction = 0xc500b10;
13171      do_vfp_cond_or_thumb ();
13172      inst.instruction |= inst.operands[0].reg << 12;
13173      inst.instruction |= inst.operands[1].reg << 16;
13174      inst.instruction |= LOW4 (inst.operands[2].reg);
13175      inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13176      break;
13177
13178    case NS_FF:  /* case 8 (fcpys).  */
13179      do_vfp_nsyn_opcode ("fcpys");
13180      break;
13181
13182    case NS_FI:  /* case 10 (fconsts).  */
13183      ldconst = "fconsts";
13184      encode_fconstd:
13185      if (is_quarter_float (inst.operands[1].imm))
13186        {
13187          inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
13188          do_vfp_nsyn_opcode (ldconst);
13189        }
13190      else
13191        first_error (_("immediate out of range"));
13192      break;
13193
13194    case NS_RF:  /* case 12 (fmrs).  */
13195      do_vfp_nsyn_opcode ("fmrs");
13196      break;
13197
13198    case NS_FR:  /* case 13 (fmsr).  */
13199      do_vfp_nsyn_opcode ("fmsr");
13200      break;
13201
13202    /* The encoders for the fmrrs and fmsrr instructions expect three operands
13203       (one of which is a list), but we have parsed four.  Do some fiddling to
13204       make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
13205       expect.  */
13206    case NS_RRFF:  /* case 14 (fmrrs).  */
13207      constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
13208                  _("VFP registers must be adjacent"));
13209      inst.operands[2].imm = 2;
13210      memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13211      do_vfp_nsyn_opcode ("fmrrs");
13212      break;
13213
13214    case NS_FFRR:  /* case 15 (fmsrr).  */
13215      constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
13216                  _("VFP registers must be adjacent"));
13217      inst.operands[1] = inst.operands[2];
13218      inst.operands[2] = inst.operands[3];
13219      inst.operands[0].imm = 2;
13220      memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13221      do_vfp_nsyn_opcode ("fmsrr");
13222      break;
13223
13224    default:
13225      abort ();
13226    }
13227}
13228
13229static void
13230do_neon_rshift_round_imm (void)
13231{
13232  enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13233  struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13234  int imm = inst.operands[2].imm;
13235
13236  /* imm == 0 case is encoded as VMOV for V{R}SHR.  */
13237  if (imm == 0)
13238    {
13239      inst.operands[2].present = 0;
13240      do_neon_mov ();
13241      return;
13242    }
13243
13244  constraint (imm < 1 || (unsigned)imm > et.size,
13245              _("immediate out of range for shift"));
13246  neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13247                  et.size - imm);
13248}
13249
13250static void
13251do_neon_movl (void)
13252{
13253  struct neon_type_el et = neon_check_type (2, NS_QD,
13254    N_EQK | N_DBL, N_SU_32 | N_KEY);
13255  unsigned sizebits = et.size >> 3;
13256  inst.instruction |= sizebits << 19;
13257  neon_two_same (0, et.type == NT_unsigned, -1);
13258}
13259
13260static void
13261do_neon_trn (void)
13262{
13263  enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13264  struct neon_type_el et = neon_check_type (2, rs,
13265    N_EQK, N_8 | N_16 | N_32 | N_KEY);
13266  inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13267  neon_two_same (neon_quad (rs), 1, et.size);
13268}
13269
13270static void
13271do_neon_zip_uzp (void)
13272{
13273  enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13274  struct neon_type_el et = neon_check_type (2, rs,
13275    N_EQK, N_8 | N_16 | N_32 | N_KEY);
13276  if (rs == NS_DD && et.size == 32)
13277    {
13278      /* Special case: encode as VTRN.32 <Dd>, <Dm>.  */
13279      inst.instruction = N_MNEM_vtrn;
13280      do_neon_trn ();
13281      return;
13282    }
13283  neon_two_same (neon_quad (rs), 1, et.size);
13284}
13285
13286static void
13287do_neon_sat_abs_neg (void)
13288{
13289  enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13290  struct neon_type_el et = neon_check_type (2, rs,
13291    N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
13292  neon_two_same (neon_quad (rs), 1, et.size);
13293}
13294
13295static void
13296do_neon_pair_long (void)
13297{
13298  enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13299  struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
13300  /* Unsigned is encoded in OP field (bit 7) for these instruction.  */
13301  inst.instruction |= (et.type == NT_unsigned) << 7;
13302  neon_two_same (neon_quad (rs), 1, et.size);
13303}
13304
13305static void
13306do_neon_recip_est (void)
13307{
13308  enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13309  struct neon_type_el et = neon_check_type (2, rs,
13310    N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
13311  inst.instruction |= (et.type == NT_float) << 8;
13312  neon_two_same (neon_quad (rs), 1, et.size);
13313}
13314
13315static void
13316do_neon_cls (void)
13317{
13318  enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13319  struct neon_type_el et = neon_check_type (2, rs,
13320    N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
13321  neon_two_same (neon_quad (rs), 1, et.size);
13322}
13323
13324static void
13325do_neon_clz (void)
13326{
13327  enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13328  struct neon_type_el et = neon_check_type (2, rs,
13329    N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
13330  neon_two_same (neon_quad (rs), 1, et.size);
13331}
13332
13333static void
13334do_neon_cnt (void)
13335{
13336  enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13337  struct neon_type_el et = neon_check_type (2, rs,
13338    N_EQK | N_INT, N_8 | N_KEY);
13339  neon_two_same (neon_quad (rs), 1, et.size);
13340}
13341
13342static void
13343do_neon_swp (void)
13344{
13345  enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13346  neon_two_same (neon_quad (rs), 1, -1);
13347}
13348
13349static void
13350do_neon_tbl_tbx (void)
13351{
13352  unsigned listlenbits;
13353  neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
13354
13355  if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
13356    {
13357      first_error (_("bad list length for table lookup"));
13358      return;
13359    }
13360
13361  listlenbits = inst.operands[1].imm - 1;
13362  inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13363  inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13364  inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13365  inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13366  inst.instruction |= LOW4 (inst.operands[2].reg);
13367  inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13368  inst.instruction |= listlenbits << 8;
13369
13370  inst.instruction = neon_dp_fixup (inst.instruction);
13371}
13372
13373static void
13374do_neon_ldm_stm (void)
13375{
13376  /* P, U and L bits are part of bitmask.  */
13377  int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13378  unsigned offsetbits = inst.operands[1].imm * 2;
13379
13380  if (inst.operands[1].issingle)
13381    {
13382      do_vfp_nsyn_ldm_stm (is_dbmode);
13383      return;
13384    }
13385
13386  constraint (is_dbmode && !inst.operands[0].writeback,
13387              _("writeback (!) must be used for VLDMDB and VSTMDB"));
13388
13389  constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13390              _("register list must contain at least 1 and at most 16 "
13391                "registers"));
13392
13393  inst.instruction |= inst.operands[0].reg << 16;
13394  inst.instruction |= inst.operands[0].writeback << 21;
13395  inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13396  inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13397
13398  inst.instruction |= offsetbits;
13399
13400  do_vfp_cond_or_thumb ();
13401}
13402
13403static void
13404do_neon_ldr_str (void)
13405{
13406  int is_ldr = (inst.instruction & (1 << 20)) != 0;
13407
13408  if (inst.operands[0].issingle)
13409    {
13410      if (is_ldr)
13411        do_vfp_nsyn_opcode ("flds");
13412      else
13413        do_vfp_nsyn_opcode ("fsts");
13414    }
13415  else
13416    {
13417      if (is_ldr)
13418        do_vfp_nsyn_opcode ("fldd");
13419      else
13420        do_vfp_nsyn_opcode ("fstd");
13421    }
13422}
13423
13424/* "interleave" version also handles non-interleaving register VLD1/VST1
13425   instructions.  */
13426
13427static void
13428do_neon_ld_st_interleave (void)
13429{
13430  struct neon_type_el et = neon_check_type (1, NS_NULL,
13431                                            N_8 | N_16 | N_32 | N_64);
13432  unsigned alignbits = 0;
13433  unsigned idx;
13434  /* The bits in this table go:
13435     0: register stride of one (0) or two (1)
13436     1,2: register list length, minus one (1, 2, 3, 4).
13437     3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13438     We use -1 for invalid entries.  */
13439  const int typetable[] =
13440    {
13441      0x7,  -1, 0xa,  -1, 0x6,  -1, 0x2,  -1, /* VLD1 / VST1.  */
13442       -1,  -1, 0x8, 0x9,  -1,  -1, 0x3,  -1, /* VLD2 / VST2.  */
13443       -1,  -1,  -1,  -1, 0x4, 0x5,  -1,  -1, /* VLD3 / VST3.  */
13444       -1,  -1,  -1,  -1,  -1,  -1, 0x0, 0x1  /* VLD4 / VST4.  */
13445    };
13446  int typebits;
13447
13448  if (et.type == NT_invtype)
13449    return;
13450
13451  if (inst.operands[1].immisalign)
13452    switch (inst.operands[1].imm >> 8)
13453      {
13454      case 64: alignbits = 1; break;
13455      case 128:
13456        if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13457          goto bad_alignment;
13458        alignbits = 2;
13459        break;
13460      case 256:
13461        if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13462          goto bad_alignment;
13463        alignbits = 3;
13464        break;
13465      default:
13466      bad_alignment:
13467        first_error (_("bad alignment"));
13468        return;
13469      }
13470
13471  inst.instruction |= alignbits << 4;
13472  inst.instruction |= neon_logbits (et.size) << 6;
13473
13474  /* Bits [4:6] of the immediate in a list specifier encode register stride
13475     (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13476     VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13477     up the right value for "type" in a table based on this value and the given
13478     list style, then stick it back.  */
13479  idx = ((inst.operands[0].imm >> 4) & 7)
13480        | (((inst.instruction >> 8) & 3) << 3);
13481
13482  typebits = typetable[idx];
13483
13484  constraint (typebits == -1, _("bad list type for instruction"));
13485
13486  inst.instruction &= ~0xf00;
13487  inst.instruction |= typebits << 8;
13488}
13489
13490/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13491   *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13492   otherwise. The variable arguments are a list of pairs of legal (size, align)
13493   values, terminated with -1.  */
13494
13495static int
13496neon_alignment_bit (int size, int align, int *do_align, ...)
13497{
13498  va_list ap;
13499  int result = FAIL, thissize, thisalign;
13500
13501  if (!inst.operands[1].immisalign)
13502    {
13503      *do_align = 0;
13504      return SUCCESS;
13505    }
13506
13507  va_start (ap, do_align);
13508
13509  do
13510    {
13511      thissize = va_arg (ap, int);
13512      if (thissize == -1)
13513        break;
13514      thisalign = va_arg (ap, int);
13515
13516      if (size == thissize && align == thisalign)
13517        result = SUCCESS;
13518    }
13519  while (result != SUCCESS);
13520
13521  va_end (ap);
13522
13523  if (result == SUCCESS)
13524    *do_align = 1;
13525  else
13526    first_error (_("unsupported alignment for instruction"));
13527
13528  return result;
13529}
13530
13531static void
13532do_neon_ld_st_lane (void)
13533{
13534  struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13535  int align_good, do_align = 0;
13536  int logsize = neon_logbits (et.size);
13537  int align = inst.operands[1].imm >> 8;
13538  int n = (inst.instruction >> 8) & 3;
13539  int max_el = 64 / et.size;
13540
13541  if (et.type == NT_invtype)
13542    return;
13543
13544  constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
13545              _("bad list length"));
13546  constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
13547              _("scalar index out of range"));
13548  constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
13549              && et.size == 8,
13550              _("stride of 2 unavailable when element size is 8"));
13551
13552  switch (n)
13553    {
13554    case 0:  /* VLD1 / VST1.  */
13555      align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
13556                                       32, 32, -1);
13557      if (align_good == FAIL)
13558        return;
13559      if (do_align)
13560        {
13561          unsigned alignbits = 0;
13562          switch (et.size)
13563            {
13564            case 16: alignbits = 0x1; break;
13565            case 32: alignbits = 0x3; break;
13566            default: ;
13567            }
13568          inst.instruction |= alignbits << 4;
13569        }
13570      break;
13571
13572    case 1:  /* VLD2 / VST2.  */
13573      align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
13574                                       32, 64, -1);
13575      if (align_good == FAIL)
13576        return;
13577      if (do_align)
13578        inst.instruction |= 1 << 4;
13579      break;
13580
13581    case 2:  /* VLD3 / VST3.  */
13582      constraint (inst.operands[1].immisalign,
13583                  _("can't use alignment with this instruction"));
13584      break;
13585
13586    case 3:  /* VLD4 / VST4.  */
13587      align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13588                                       16, 64, 32, 64, 32, 128, -1);
13589      if (align_good == FAIL)
13590        return;
13591      if (do_align)
13592        {
13593          unsigned alignbits = 0;
13594          switch (et.size)
13595            {
13596            case 8:  alignbits = 0x1; break;
13597            case 16: alignbits = 0x1; break;
13598            case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
13599            default: ;
13600            }
13601          inst.instruction |= alignbits << 4;
13602        }
13603      break;
13604
13605    default: ;
13606    }
13607
13608  /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32.  */
13609  if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13610    inst.instruction |= 1 << (4 + logsize);
13611
13612  inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
13613  inst.instruction |= logsize << 10;
13614}
13615
13616/* Encode single n-element structure to all lanes VLD<n> instructions.  */
13617
13618static void
13619do_neon_ld_dup (void)
13620{
13621  struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13622  int align_good, do_align = 0;
13623
13624  if (et.type == NT_invtype)
13625    return;
13626
13627  switch ((inst.instruction >> 8) & 3)
13628    {
13629    case 0:  /* VLD1.  */
13630      assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
13631      align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13632                                       &do_align, 16, 16, 32, 32, -1);
13633      if (align_good == FAIL)
13634        return;
13635      switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
13636        {
13637        case 1: break;
13638        case 2: inst.instruction |= 1 << 5; break;
13639        default: first_error (_("bad list length")); return;
13640        }
13641      inst.instruction |= neon_logbits (et.size) << 6;
13642      break;
13643
13644    case 1:  /* VLD2.  */
13645      align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13646                                       &do_align, 8, 16, 16, 32, 32, 64, -1);
13647      if (align_good == FAIL)
13648        return;
13649      constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
13650                  _("bad list length"));
13651      if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13652        inst.instruction |= 1 << 5;
13653      inst.instruction |= neon_logbits (et.size) << 6;
13654      break;
13655
13656    case 2:  /* VLD3.  */
13657      constraint (inst.operands[1].immisalign,
13658                  _("can't use alignment with this instruction"));
13659      constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
13660                  _("bad list length"));
13661      if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13662        inst.instruction |= 1 << 5;
13663      inst.instruction |= neon_logbits (et.size) << 6;
13664      break;
13665
13666    case 3:  /* VLD4.  */
13667      {
13668        int align = inst.operands[1].imm >> 8;
13669        align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13670                                         16, 64, 32, 64, 32, 128, -1);
13671        if (align_good == FAIL)
13672          return;
13673        constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
13674                    _("bad list length"));
13675        if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13676          inst.instruction |= 1 << 5;
13677        if (et.size == 32 && align == 128)
13678          inst.instruction |= 0x3 << 6;
13679        else
13680          inst.instruction |= neon_logbits (et.size) << 6;
13681      }
13682      break;
13683
13684    default: ;
13685    }
13686
13687  inst.instruction |= do_align << 4;
13688}
13689
13690/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13691   apart from bits [11:4].  */
13692
13693static void
13694do_neon_ldx_stx (void)
13695{
13696  switch (NEON_LANE (inst.operands[0].imm))
13697    {
13698    case NEON_INTERLEAVE_LANES:
13699      inst.instruction = NEON_ENC_INTERLV (inst.instruction);
13700      do_neon_ld_st_interleave ();
13701      break;
13702
13703    case NEON_ALL_LANES:
13704      inst.instruction = NEON_ENC_DUP (inst.instruction);
13705      do_neon_ld_dup ();
13706      break;
13707
13708    default:
13709      inst.instruction = NEON_ENC_LANE (inst.instruction);
13710      do_neon_ld_st_lane ();
13711    }
13712
13713  /* L bit comes from bit mask.  */
13714  inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13715  inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13716  inst.instruction |= inst.operands[1].reg << 16;
13717
13718  if (inst.operands[1].postind)
13719    {
13720      int postreg = inst.operands[1].imm & 0xf;
13721      constraint (!inst.operands[1].immisreg,
13722                  _("post-index must be a register"));
13723      constraint (postreg == 0xd || postreg == 0xf,
13724                  _("bad register for post-index"));
13725      inst.instruction |= postreg;
13726    }
13727  else if (inst.operands[1].writeback)
13728    {
13729      inst.instruction |= 0xd;
13730    }
13731  else
13732    inst.instruction |= 0xf;
13733
13734  if (thumb_mode)
13735    inst.instruction |= 0xf9000000;
13736  else
13737    inst.instruction |= 0xf4000000;
13738}
13739
13740
13741/* Overall per-instruction processing.	*/
13742
13743/* We need to be able to fix up arbitrary expressions in some statements.
13744   This is so that we can handle symbols that are an arbitrary distance from
13745   the pc.  The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13746   which returns part of an address in a form which will be valid for
13747   a data instruction.	We do this by pushing the expression into a symbol
13748   in the expr_section, and creating a fix for that.  */
13749
13750static void
13751fix_new_arm (fragS *	   frag,
13752	     int	   where,
13753	     short int	   size,
13754	     expressionS * exp,
13755	     int	   pc_rel,
13756	     int	   reloc)
13757{
13758  fixS *	   new_fix;
13759
13760  switch (exp->X_op)
13761    {
13762    case O_constant:
13763    case O_symbol:
13764    case O_add:
13765    case O_subtract:
13766      new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
13767      break;
13768
13769    default:
13770      new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
13771			 pc_rel, reloc);
13772      break;
13773    }
13774
13775  /* Mark whether the fix is to a THUMB instruction, or an ARM
13776     instruction.  */
13777  new_fix->tc_fix_data = thumb_mode;
13778}
13779
13780/* Create a frg for an instruction requiring relaxation.  */
13781static void
13782output_relax_insn (void)
13783{
13784  char * to;
13785  symbolS *sym;
13786  int offset;
13787
13788  /* The size of the instruction is unknown, so tie the debug info to the
13789     start of the instruction.  */
13790  dwarf2_emit_insn (0);
13791
13792  switch (inst.reloc.exp.X_op)
13793    {
13794    case O_symbol:
13795      sym = inst.reloc.exp.X_add_symbol;
13796      offset = inst.reloc.exp.X_add_number;
13797      break;
13798    case O_constant:
13799      sym = NULL;
13800      offset = inst.reloc.exp.X_add_number;
13801      break;
13802    default:
13803      sym = make_expr_symbol (&inst.reloc.exp);
13804      offset = 0;
13805      break;
13806  }
13807  to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
13808		 inst.relax, sym, offset, NULL/*offset, opcode*/);
13809  md_number_to_chars (to, inst.instruction, THUMB_SIZE);
13810}
13811
13812/* Write a 32-bit thumb instruction to buf.  */
13813static void
13814put_thumb32_insn (char * buf, unsigned long insn)
13815{
13816  md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
13817  md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
13818}
13819
13820static void
13821output_inst (const char * str)
13822{
13823  char * to = NULL;
13824
13825  if (inst.error)
13826    {
13827      as_bad ("%s -- `%s'", inst.error, str);
13828      return;
13829    }
13830  if (inst.relax) {
13831      output_relax_insn();
13832      return;
13833  }
13834  if (inst.size == 0)
13835    return;
13836
13837  to = frag_more (inst.size);
13838
13839  if (thumb_mode && (inst.size > THUMB_SIZE))
13840    {
13841      assert (inst.size == (2 * THUMB_SIZE));
13842      put_thumb32_insn (to, inst.instruction);
13843    }
13844  else if (inst.size > INSN_SIZE)
13845    {
13846      assert (inst.size == (2 * INSN_SIZE));
13847      md_number_to_chars (to, inst.instruction, INSN_SIZE);
13848      md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
13849    }
13850  else
13851    md_number_to_chars (to, inst.instruction, inst.size);
13852
13853  if (inst.reloc.type != BFD_RELOC_UNUSED)
13854    fix_new_arm (frag_now, to - frag_now->fr_literal,
13855		 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
13856		 inst.reloc.type);
13857
13858  dwarf2_emit_insn (inst.size);
13859}
13860
13861/* Tag values used in struct asm_opcode's tag field.  */
13862enum opcode_tag
13863{
13864  OT_unconditional,	/* Instruction cannot be conditionalized.
13865			   The ARM condition field is still 0xE.  */
13866  OT_unconditionalF,	/* Instruction cannot be conditionalized
13867			   and carries 0xF in its ARM condition field.  */
13868  OT_csuffix,		/* Instruction takes a conditional suffix.  */
13869  OT_csuffixF,		/* Some forms of the instruction take a conditional
13870                           suffix, others place 0xF where the condition field
13871                           would be.  */
13872  OT_cinfix3,		/* Instruction takes a conditional infix,
13873			   beginning at character index 3.  (In
13874			   unified mode, it becomes a suffix.)  */
13875  OT_cinfix3_deprecated, /* The same as OT_cinfix3.  This is used for
13876			    tsts, cmps, cmns, and teqs. */
13877  OT_cinfix3_legacy,	/* Legacy instruction takes a conditional infix at
13878			   character index 3, even in unified mode.  Used for
13879			   legacy instructions where suffix and infix forms
13880			   may be ambiguous.  */
13881  OT_csuf_or_in3,	/* Instruction takes either a conditional
13882			   suffix or an infix at character index 3.  */
13883  OT_odd_infix_unc,	/* This is the unconditional variant of an
13884			   instruction that takes a conditional infix
13885			   at an unusual position.  In unified mode,
13886			   this variant will accept a suffix.  */
13887  OT_odd_infix_0	/* Values greater than or equal to OT_odd_infix_0
13888			   are the conditional variants of instructions that
13889			   take conditional infixes in unusual positions.
13890			   The infix appears at character index
13891			   (tag - OT_odd_infix_0).  These are not accepted
13892			   in unified mode.  */
13893};
13894
13895/* Subroutine of md_assemble, responsible for looking up the primary
13896   opcode from the mnemonic the user wrote.  STR points to the
13897   beginning of the mnemonic.
13898
13899   This is not simply a hash table lookup, because of conditional
13900   variants.  Most instructions have conditional variants, which are
13901   expressed with a _conditional affix_ to the mnemonic.  If we were
13902   to encode each conditional variant as a literal string in the opcode
13903   table, it would have approximately 20,000 entries.
13904
13905   Most mnemonics take this affix as a suffix, and in unified syntax,
13906   'most' is upgraded to 'all'.  However, in the divided syntax, some
13907   instructions take the affix as an infix, notably the s-variants of
13908   the arithmetic instructions.  Of those instructions, all but six
13909   have the infix appear after the third character of the mnemonic.
13910
13911   Accordingly, the algorithm for looking up primary opcodes given
13912   an identifier is:
13913
13914   1. Look up the identifier in the opcode table.
13915      If we find a match, go to step U.
13916
13917   2. Look up the last two characters of the identifier in the
13918      conditions table.  If we find a match, look up the first N-2
13919      characters of the identifier in the opcode table.  If we
13920      find a match, go to step CE.
13921
13922   3. Look up the fourth and fifth characters of the identifier in
13923      the conditions table.  If we find a match, extract those
13924      characters from the identifier, and look up the remaining
13925      characters in the opcode table.  If we find a match, go
13926      to step CM.
13927
13928   4. Fail.
13929
13930   U. Examine the tag field of the opcode structure, in case this is
13931      one of the six instructions with its conditional infix in an
13932      unusual place.  If it is, the tag tells us where to find the
13933      infix; look it up in the conditions table and set inst.cond
13934      accordingly.  Otherwise, this is an unconditional instruction.
13935      Again set inst.cond accordingly.  Return the opcode structure.
13936
13937  CE. Examine the tag field to make sure this is an instruction that
13938      should receive a conditional suffix.  If it is not, fail.
13939      Otherwise, set inst.cond from the suffix we already looked up,
13940      and return the opcode structure.
13941
13942  CM. Examine the tag field to make sure this is an instruction that
13943      should receive a conditional infix after the third character.
13944      If it is not, fail.  Otherwise, undo the edits to the current
13945      line of input and proceed as for case CE.  */
13946
13947static const struct asm_opcode *
13948opcode_lookup (char **str)
13949{
13950  char *end, *base;
13951  char *affix;
13952  const struct asm_opcode *opcode;
13953  const struct asm_cond *cond;
13954  char save[2];
13955  bfd_boolean neon_supported;
13956
13957  neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
13958
13959  /* Scan up to the end of the mnemonic, which must end in white space,
13960     '.' (in unified mode, or for Neon instructions), or end of string.  */
13961  for (base = end = *str; *end != '\0'; end++)
13962    if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
13963      break;
13964
13965  if (end == base)
13966    return 0;
13967
13968  /* Handle a possible width suffix and/or Neon type suffix.  */
13969  if (end[0] == '.')
13970    {
13971      int offset = 2;
13972
13973      /* The .w and .n suffixes are only valid if the unified syntax is in
13974         use.  */
13975      if (unified_syntax && end[1] == 'w')
13976	inst.size_req = 4;
13977      else if (unified_syntax && end[1] == 'n')
13978	inst.size_req = 2;
13979      else
13980        offset = 0;
13981
13982      inst.vectype.elems = 0;
13983
13984      *str = end + offset;
13985
13986      if (end[offset] == '.')
13987	{
13988	  /* See if we have a Neon type suffix (possible in either unified or
13989             non-unified ARM syntax mode).  */
13990          if (parse_neon_type (&inst.vectype, str) == FAIL)
13991	    return 0;
13992        }
13993      else if (end[offset] != '\0' && end[offset] != ' ')
13994        return 0;
13995    }
13996  else
13997    *str = end;
13998
13999  /* Look for unaffixed or special-case affixed mnemonic.  */
14000  opcode = hash_find_n (arm_ops_hsh, base, end - base);
14001  if (opcode)
14002    {
14003      /* step U */
14004      if (opcode->tag < OT_odd_infix_0)
14005	{
14006	  inst.cond = COND_ALWAYS;
14007	  return opcode;
14008	}
14009
14010      if (unified_syntax)
14011	as_warn (_("conditional infixes are deprecated in unified syntax"));
14012      affix = base + (opcode->tag - OT_odd_infix_0);
14013      cond = hash_find_n (arm_cond_hsh, affix, 2);
14014      assert (cond);
14015
14016      inst.cond = cond->value;
14017      return opcode;
14018    }
14019
14020  /* Cannot have a conditional suffix on a mnemonic of less than two
14021     characters.  */
14022  if (end - base < 3)
14023    return 0;
14024
14025  /* Look for suffixed mnemonic.  */
14026  affix = end - 2;
14027  cond = hash_find_n (arm_cond_hsh, affix, 2);
14028  opcode = hash_find_n (arm_ops_hsh, base, affix - base);
14029  if (opcode && cond)
14030    {
14031      /* step CE */
14032      switch (opcode->tag)
14033	{
14034	case OT_cinfix3_legacy:
14035	  /* Ignore conditional suffixes matched on infix only mnemonics.  */
14036	  break;
14037
14038	case OT_cinfix3:
14039	case OT_cinfix3_deprecated:
14040	case OT_odd_infix_unc:
14041	  if (!unified_syntax)
14042	    return 0;
14043	  /* else fall through */
14044
14045	case OT_csuffix:
14046        case OT_csuffixF:
14047	case OT_csuf_or_in3:
14048	  inst.cond = cond->value;
14049	  return opcode;
14050
14051	case OT_unconditional:
14052	case OT_unconditionalF:
14053	  if (thumb_mode)
14054	    {
14055	      inst.cond = cond->value;
14056	    }
14057	  else
14058	    {
14059	      /* delayed diagnostic */
14060	      inst.error = BAD_COND;
14061	      inst.cond = COND_ALWAYS;
14062	    }
14063	  return opcode;
14064
14065	default:
14066	  return 0;
14067	}
14068    }
14069
14070  /* Cannot have a usual-position infix on a mnemonic of less than
14071     six characters (five would be a suffix).  */
14072  if (end - base < 6)
14073    return 0;
14074
14075  /* Look for infixed mnemonic in the usual position.  */
14076  affix = base + 3;
14077  cond = hash_find_n (arm_cond_hsh, affix, 2);
14078  if (!cond)
14079    return 0;
14080
14081  memcpy (save, affix, 2);
14082  memmove (affix, affix + 2, (end - affix) - 2);
14083  opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
14084  memmove (affix + 2, affix, (end - affix) - 2);
14085  memcpy (affix, save, 2);
14086
14087  if (opcode
14088      && (opcode->tag == OT_cinfix3
14089	  || opcode->tag == OT_cinfix3_deprecated
14090	  || opcode->tag == OT_csuf_or_in3
14091	  || opcode->tag == OT_cinfix3_legacy))
14092    {
14093      /* step CM */
14094      if (unified_syntax
14095	  && (opcode->tag == OT_cinfix3
14096	      || opcode->tag == OT_cinfix3_deprecated))
14097	as_warn (_("conditional infixes are deprecated in unified syntax"));
14098
14099      inst.cond = cond->value;
14100      return opcode;
14101    }
14102
14103  return 0;
14104}
14105
14106void
14107md_assemble (char *str)
14108{
14109  char *p = str;
14110  const struct asm_opcode * opcode;
14111
14112  /* Align the previous label if needed.  */
14113  if (last_label_seen != NULL)
14114    {
14115      symbol_set_frag (last_label_seen, frag_now);
14116      S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
14117      S_SET_SEGMENT (last_label_seen, now_seg);
14118    }
14119
14120  memset (&inst, '\0', sizeof (inst));
14121  inst.reloc.type = BFD_RELOC_UNUSED;
14122
14123  opcode = opcode_lookup (&p);
14124  if (!opcode)
14125    {
14126      /* It wasn't an instruction, but it might be a register alias of
14127	 the form alias .req reg, or a Neon .dn/.qn directive.  */
14128      if (!create_register_alias (str, p)
14129          && !create_neon_reg_alias (str, p))
14130	as_bad (_("bad instruction `%s'"), str);
14131
14132      return;
14133    }
14134
14135  if (opcode->tag == OT_cinfix3_deprecated)
14136    as_warn (_("s suffix on comparison instruction is deprecated"));
14137
14138  /* The value which unconditional instructions should have in place of the
14139     condition field.  */
14140  inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
14141
14142  if (thumb_mode)
14143    {
14144      arm_feature_set variant;
14145
14146      variant = cpu_variant;
14147      /* Only allow coprocessor instructions on Thumb-2 capable devices.  */
14148      if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
14149	ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
14150      /* Check that this instruction is supported for this CPU.  */
14151      if (!opcode->tvariant
14152	  || (thumb_mode == 1
14153	      && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
14154	{
14155	  as_bad (_("selected processor does not support `%s'"), str);
14156	  return;
14157	}
14158      if (inst.cond != COND_ALWAYS && !unified_syntax
14159	  && opcode->tencode != do_t_branch)
14160	{
14161	  as_bad (_("Thumb does not support conditional execution"));
14162	  return;
14163	}
14164
14165      if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2) && !inst.size_req)
14166	{
14167	  /* Implicit require narrow instructions on Thumb-1.  This avoids
14168	     relaxation accidentally introducing Thumb-2 instructions.  */
14169	  if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23)
14170	    inst.size_req = 2;
14171	}
14172
14173      /* Check conditional suffixes.  */
14174      if (current_it_mask)
14175	{
14176	  int cond;
14177	  cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
14178	  current_it_mask <<= 1;
14179	  current_it_mask &= 0x1f;
14180	  /* The BKPT instruction is unconditional even in an IT block.  */
14181	  if (!inst.error
14182	      && cond != inst.cond && opcode->tencode != do_t_bkpt)
14183	    {
14184	      as_bad (_("incorrect condition in IT block"));
14185	      return;
14186	    }
14187	}
14188      else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
14189	{
14190	  as_bad (_("thumb conditional instrunction not in IT block"));
14191	  return;
14192	}
14193
14194      mapping_state (MAP_THUMB);
14195      inst.instruction = opcode->tvalue;
14196
14197      if (!parse_operands (p, opcode->operands))
14198	opcode->tencode ();
14199
14200      /* Clear current_it_mask at the end of an IT block.  */
14201      if (current_it_mask == 0x10)
14202	current_it_mask = 0;
14203
14204      if (!(inst.error || inst.relax))
14205	{
14206	  assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
14207	  inst.size = (inst.instruction > 0xffff ? 4 : 2);
14208	  if (inst.size_req && inst.size_req != inst.size)
14209	    {
14210	      as_bad (_("cannot honor width suffix -- `%s'"), str);
14211	      return;
14212	    }
14213	}
14214
14215      /* Something has gone badly wrong if we try to relax a fixed size
14216         instruction.  */
14217      assert (inst.size_req == 0 || !inst.relax);
14218
14219      ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14220			      *opcode->tvariant);
14221      /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
14222	 set those bits when Thumb-2 32-bit instructions are seen.  ie.
14223	 anything other than bl/blx.
14224	 This is overly pessimistic for relaxable instructions.  */
14225      if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
14226	  || inst.relax)
14227	ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14228				arm_ext_v6t2);
14229    }
14230  else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
14231    {
14232      /* Check that this instruction is supported for this CPU.  */
14233      if (!opcode->avariant ||
14234	  !ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
14235	{
14236	  as_bad (_("selected processor does not support `%s'"), str);
14237	  return;
14238	}
14239      if (inst.size_req)
14240	{
14241	  as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
14242	  return;
14243	}
14244
14245      mapping_state (MAP_ARM);
14246      inst.instruction = opcode->avalue;
14247      if (opcode->tag == OT_unconditionalF)
14248	inst.instruction |= 0xF << 28;
14249      else
14250	inst.instruction |= inst.cond << 28;
14251      inst.size = INSN_SIZE;
14252      if (!parse_operands (p, opcode->operands))
14253	opcode->aencode ();
14254      /* Arm mode bx is marked as both v4T and v5 because it's still required
14255         on a hypothetical non-thumb v5 core.  */
14256      if (ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v4t)
14257	  || ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v5))
14258	ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
14259      else
14260	ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
14261				*opcode->avariant);
14262    }
14263  else
14264    {
14265      as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
14266		"-- `%s'"), str);
14267      return;
14268    }
14269  output_inst (str);
14270}
14271
14272/* Various frobbings of labels and their addresses.  */
14273
14274void
14275arm_start_line_hook (void)
14276{
14277  last_label_seen = NULL;
14278}
14279
14280void
14281arm_frob_label (symbolS * sym)
14282{
14283  last_label_seen = sym;
14284
14285  ARM_SET_THUMB (sym, thumb_mode);
14286
14287#if defined OBJ_COFF || defined OBJ_ELF
14288  ARM_SET_INTERWORK (sym, support_interwork);
14289#endif
14290
14291  /* Note - do not allow local symbols (.Lxxx) to be labeled
14292     as Thumb functions.  This is because these labels, whilst
14293     they exist inside Thumb code, are not the entry points for
14294     possible ARM->Thumb calls.	 Also, these labels can be used
14295     as part of a computed goto or switch statement.  eg gcc
14296     can generate code that looks like this:
14297
14298		ldr  r2, [pc, .Laaa]
14299		lsl  r3, r3, #2
14300		ldr  r2, [r3, r2]
14301		mov  pc, r2
14302
14303       .Lbbb:  .word .Lxxx
14304       .Lccc:  .word .Lyyy
14305       ..etc...
14306       .Laaa:	.word Lbbb
14307
14308     The first instruction loads the address of the jump table.
14309     The second instruction converts a table index into a byte offset.
14310     The third instruction gets the jump address out of the table.
14311     The fourth instruction performs the jump.
14312
14313     If the address stored at .Laaa is that of a symbol which has the
14314     Thumb_Func bit set, then the linker will arrange for this address
14315     to have the bottom bit set, which in turn would mean that the
14316     address computation performed by the third instruction would end
14317     up with the bottom bit set.  Since the ARM is capable of unaligned
14318     word loads, the instruction would then load the incorrect address
14319     out of the jump table, and chaos would ensue.  */
14320  if (label_is_thumb_function_name
14321      && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
14322      && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
14323    {
14324      /* When the address of a Thumb function is taken the bottom
14325	 bit of that address should be set.  This will allow
14326	 interworking between Arm and Thumb functions to work
14327	 correctly.  */
14328
14329      THUMB_SET_FUNC (sym, 1);
14330
14331      label_is_thumb_function_name = FALSE;
14332    }
14333
14334  dwarf2_emit_label (sym);
14335}
14336
14337int
14338arm_data_in_code (void)
14339{
14340  if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
14341    {
14342      *input_line_pointer = '/';
14343      input_line_pointer += 5;
14344      *input_line_pointer = 0;
14345      return 1;
14346    }
14347
14348  return 0;
14349}
14350
14351char *
14352arm_canonicalize_symbol_name (char * name)
14353{
14354  int len;
14355
14356  if (thumb_mode && (len = strlen (name)) > 5
14357      && streq (name + len - 5, "/data"))
14358    *(name + len - 5) = 0;
14359
14360  return name;
14361}
14362
14363/* Table of all register names defined by default.  The user can
14364   define additional names with .req.  Note that all register names
14365   should appear in both upper and lowercase variants.	Some registers
14366   also have mixed-case names.	*/
14367
14368#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
14369#define REGNUM(p,n,t) REGDEF(p##n, n, t)
14370#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
14371#define REGSET(p,t) \
14372  REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
14373  REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
14374  REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
14375  REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
14376#define REGSETH(p,t) \
14377  REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14378  REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14379  REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14380  REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14381#define REGSET2(p,t) \
14382  REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14383  REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14384  REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14385  REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
14386
14387static const struct reg_entry reg_names[] =
14388{
14389  /* ARM integer registers.  */
14390  REGSET(r, RN), REGSET(R, RN),
14391
14392  /* ATPCS synonyms.  */
14393  REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14394  REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14395  REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
14396
14397  REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14398  REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14399  REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
14400
14401  /* Well-known aliases.  */
14402  REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14403  REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
14404
14405  REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
14406  REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
14407
14408  /* Coprocessor numbers.  */
14409  REGSET(p, CP), REGSET(P, CP),
14410
14411  /* Coprocessor register numbers.  The "cr" variants are for backward
14412     compatibility.  */
14413  REGSET(c,  CN), REGSET(C, CN),
14414  REGSET(cr, CN), REGSET(CR, CN),
14415
14416  /* FPA registers.  */
14417  REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
14418  REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
14419
14420  REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
14421  REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
14422
14423  /* VFP SP registers.	*/
14424  REGSET(s,VFS),  REGSET(S,VFS),
14425  REGSETH(s,VFS), REGSETH(S,VFS),
14426
14427  /* VFP DP Registers.	*/
14428  REGSET(d,VFD),  REGSET(D,VFD),
14429  /* Extra Neon DP registers.  */
14430  REGSETH(d,VFD), REGSETH(D,VFD),
14431
14432  /* Neon QP registers.  */
14433  REGSET2(q,NQ),  REGSET2(Q,NQ),
14434
14435  /* VFP control registers.  */
14436  REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
14437  REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
14438  REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
14439  REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
14440  REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
14441  REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
14442
14443  /* Maverick DSP coprocessor registers.  */
14444  REGSET(mvf,MVF),  REGSET(mvd,MVD),  REGSET(mvfx,MVFX),  REGSET(mvdx,MVDX),
14445  REGSET(MVF,MVF),  REGSET(MVD,MVD),  REGSET(MVFX,MVFX),  REGSET(MVDX,MVDX),
14446
14447  REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
14448  REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
14449  REGDEF(dspsc,0,DSPSC),
14450
14451  REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
14452  REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
14453  REGDEF(DSPSC,0,DSPSC),
14454
14455  /* iWMMXt data registers - p0, c0-15.	 */
14456  REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
14457
14458  /* iWMMXt control registers - p1, c0-3.  */
14459  REGDEF(wcid,	0,MMXWC),  REGDEF(wCID,	 0,MMXWC),  REGDEF(WCID,  0,MMXWC),
14460  REGDEF(wcon,	1,MMXWC),  REGDEF(wCon,	 1,MMXWC),  REGDEF(WCON,  1,MMXWC),
14461  REGDEF(wcssf, 2,MMXWC),  REGDEF(wCSSF, 2,MMXWC),  REGDEF(WCSSF, 2,MMXWC),
14462  REGDEF(wcasf, 3,MMXWC),  REGDEF(wCASF, 3,MMXWC),  REGDEF(WCASF, 3,MMXWC),
14463
14464  /* iWMMXt scalar (constant/offset) registers - p1, c8-11.  */
14465  REGDEF(wcgr0, 8,MMXWCG),  REGDEF(wCGR0, 8,MMXWCG),  REGDEF(WCGR0, 8,MMXWCG),
14466  REGDEF(wcgr1, 9,MMXWCG),  REGDEF(wCGR1, 9,MMXWCG),  REGDEF(WCGR1, 9,MMXWCG),
14467  REGDEF(wcgr2,10,MMXWCG),  REGDEF(wCGR2,10,MMXWCG),  REGDEF(WCGR2,10,MMXWCG),
14468  REGDEF(wcgr3,11,MMXWCG),  REGDEF(wCGR3,11,MMXWCG),  REGDEF(WCGR3,11,MMXWCG),
14469
14470  /* XScale accumulator registers.  */
14471  REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
14472};
14473#undef REGDEF
14474#undef REGNUM
14475#undef REGSET
14476
14477/* Table of all PSR suffixes.  Bare "CPSR" and "SPSR" are handled
14478   within psr_required_here.  */
14479static const struct asm_psr psrs[] =
14480{
14481  /* Backward compatibility notation.  Note that "all" is no longer
14482     truly all possible PSR bits.  */
14483  {"all",  PSR_c | PSR_f},
14484  {"flg",  PSR_f},
14485  {"ctl",  PSR_c},
14486
14487  /* Individual flags.	*/
14488  {"f",	   PSR_f},
14489  {"c",	   PSR_c},
14490  {"x",	   PSR_x},
14491  {"s",	   PSR_s},
14492  /* Combinations of flags.  */
14493  {"fs",   PSR_f | PSR_s},
14494  {"fx",   PSR_f | PSR_x},
14495  {"fc",   PSR_f | PSR_c},
14496  {"sf",   PSR_s | PSR_f},
14497  {"sx",   PSR_s | PSR_x},
14498  {"sc",   PSR_s | PSR_c},
14499  {"xf",   PSR_x | PSR_f},
14500  {"xs",   PSR_x | PSR_s},
14501  {"xc",   PSR_x | PSR_c},
14502  {"cf",   PSR_c | PSR_f},
14503  {"cs",   PSR_c | PSR_s},
14504  {"cx",   PSR_c | PSR_x},
14505  {"fsx",  PSR_f | PSR_s | PSR_x},
14506  {"fsc",  PSR_f | PSR_s | PSR_c},
14507  {"fxs",  PSR_f | PSR_x | PSR_s},
14508  {"fxc",  PSR_f | PSR_x | PSR_c},
14509  {"fcs",  PSR_f | PSR_c | PSR_s},
14510  {"fcx",  PSR_f | PSR_c | PSR_x},
14511  {"sfx",  PSR_s | PSR_f | PSR_x},
14512  {"sfc",  PSR_s | PSR_f | PSR_c},
14513  {"sxf",  PSR_s | PSR_x | PSR_f},
14514  {"sxc",  PSR_s | PSR_x | PSR_c},
14515  {"scf",  PSR_s | PSR_c | PSR_f},
14516  {"scx",  PSR_s | PSR_c | PSR_x},
14517  {"xfs",  PSR_x | PSR_f | PSR_s},
14518  {"xfc",  PSR_x | PSR_f | PSR_c},
14519  {"xsf",  PSR_x | PSR_s | PSR_f},
14520  {"xsc",  PSR_x | PSR_s | PSR_c},
14521  {"xcf",  PSR_x | PSR_c | PSR_f},
14522  {"xcs",  PSR_x | PSR_c | PSR_s},
14523  {"cfs",  PSR_c | PSR_f | PSR_s},
14524  {"cfx",  PSR_c | PSR_f | PSR_x},
14525  {"csf",  PSR_c | PSR_s | PSR_f},
14526  {"csx",  PSR_c | PSR_s | PSR_x},
14527  {"cxf",  PSR_c | PSR_x | PSR_f},
14528  {"cxs",  PSR_c | PSR_x | PSR_s},
14529  {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
14530  {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
14531  {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
14532  {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
14533  {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
14534  {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
14535  {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
14536  {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
14537  {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
14538  {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
14539  {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
14540  {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
14541  {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
14542  {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
14543  {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
14544  {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
14545  {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
14546  {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
14547  {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
14548  {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
14549  {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
14550  {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
14551  {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
14552  {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
14553};
14554
14555/* Table of V7M psr names.  */
14556static const struct asm_psr v7m_psrs[] =
14557{
14558  {"apsr",	  0 }, {"APSR",		0 },
14559  {"iapsr",	  1 }, {"IAPSR",	1 },
14560  {"eapsr",	  2 }, {"EAPSR",	2 },
14561  {"psr",	  3 }, {"PSR",		3 },
14562  {"xpsr",	  3 }, {"XPSR",		3 }, {"xPSR",	  3 },
14563  {"ipsr",	  5 }, {"IPSR",		5 },
14564  {"epsr",	  6 }, {"EPSR",		6 },
14565  {"iepsr",	  7 }, {"IEPSR",	7 },
14566  {"msp",	  8 }, {"MSP",		8 },
14567  {"psp",	  9 }, {"PSP",		9 },
14568  {"primask",	  16}, {"PRIMASK",	16},
14569  {"basepri",	  17}, {"BASEPRI",	17},
14570  {"basepri_max", 18}, {"BASEPRI_MAX",	18},
14571  {"faultmask",	  19}, {"FAULTMASK",	19},
14572  {"control",	  20}, {"CONTROL",	20}
14573};
14574
14575/* Table of all shift-in-operand names.	 */
14576static const struct asm_shift_name shift_names [] =
14577{
14578  { "asl", SHIFT_LSL },	 { "ASL", SHIFT_LSL },
14579  { "lsl", SHIFT_LSL },	 { "LSL", SHIFT_LSL },
14580  { "lsr", SHIFT_LSR },	 { "LSR", SHIFT_LSR },
14581  { "asr", SHIFT_ASR },	 { "ASR", SHIFT_ASR },
14582  { "ror", SHIFT_ROR },	 { "ROR", SHIFT_ROR },
14583  { "rrx", SHIFT_RRX },	 { "RRX", SHIFT_RRX }
14584};
14585
14586/* Table of all explicit relocation names.  */
14587#ifdef OBJ_ELF
14588static struct reloc_entry reloc_names[] =
14589{
14590  { "got",     BFD_RELOC_ARM_GOT32   },	 { "GOT",     BFD_RELOC_ARM_GOT32   },
14591  { "gotoff",  BFD_RELOC_ARM_GOTOFF  },	 { "GOTOFF",  BFD_RELOC_ARM_GOTOFF  },
14592  { "plt",     BFD_RELOC_ARM_PLT32   },	 { "PLT",     BFD_RELOC_ARM_PLT32   },
14593  { "target1", BFD_RELOC_ARM_TARGET1 },	 { "TARGET1", BFD_RELOC_ARM_TARGET1 },
14594  { "target2", BFD_RELOC_ARM_TARGET2 },	 { "TARGET2", BFD_RELOC_ARM_TARGET2 },
14595  { "sbrel",   BFD_RELOC_ARM_SBREL32 },	 { "SBREL",   BFD_RELOC_ARM_SBREL32 },
14596  { "tlsgd",   BFD_RELOC_ARM_TLS_GD32},  { "TLSGD",   BFD_RELOC_ARM_TLS_GD32},
14597  { "tlsldm",  BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM",  BFD_RELOC_ARM_TLS_LDM32},
14598  { "tlsldo",  BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO",  BFD_RELOC_ARM_TLS_LDO32},
14599  { "gottpoff",BFD_RELOC_ARM_TLS_IE32},  { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
14600  { "tpoff",   BFD_RELOC_ARM_TLS_LE32},  { "TPOFF",   BFD_RELOC_ARM_TLS_LE32}
14601};
14602#endif
14603
14604/* Table of all conditional affixes.  0xF is not defined as a condition code.  */
14605static const struct asm_cond conds[] =
14606{
14607  {"eq", 0x0},
14608  {"ne", 0x1},
14609  {"cs", 0x2}, {"hs", 0x2},
14610  {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14611  {"mi", 0x4},
14612  {"pl", 0x5},
14613  {"vs", 0x6},
14614  {"vc", 0x7},
14615  {"hi", 0x8},
14616  {"ls", 0x9},
14617  {"ge", 0xa},
14618  {"lt", 0xb},
14619  {"gt", 0xc},
14620  {"le", 0xd},
14621  {"al", 0xe}
14622};
14623
14624static struct asm_barrier_opt barrier_opt_names[] =
14625{
14626  { "sy",   0xf },
14627  { "un",   0x7 },
14628  { "st",   0xe },
14629  { "unst", 0x6 }
14630};
14631
14632/* Table of ARM-format instructions.	*/
14633
14634/* Macros for gluing together operand strings.  N.B. In all cases
14635   other than OPS0, the trailing OP_stop comes from default
14636   zero-initialization of the unspecified elements of the array.  */
14637#define OPS0()		  { OP_stop, }
14638#define OPS1(a)		  { OP_##a, }
14639#define OPS2(a,b)	  { OP_##a,OP_##b, }
14640#define OPS3(a,b,c)	  { OP_##a,OP_##b,OP_##c, }
14641#define OPS4(a,b,c,d)	  { OP_##a,OP_##b,OP_##c,OP_##d, }
14642#define OPS5(a,b,c,d,e)	  { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14643#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14644
14645/* These macros abstract out the exact format of the mnemonic table and
14646   save some repeated characters.  */
14647
14648/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix.  */
14649#define TxCE(mnem, op, top, nops, ops, ae, te) \
14650  { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
14651    THUMB_VARIANT, do_##ae, do_##te }
14652
14653/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14654   a T_MNEM_xyz enumerator.  */
14655#define TCE(mnem, aop, top, nops, ops, ae, te) \
14656       TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14657#define tCE(mnem, aop, top, nops, ops, ae, te) \
14658       TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14659
14660/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14661   infix after the third character.  */
14662#define TxC3(mnem, op, top, nops, ops, ae, te) \
14663  { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
14664    THUMB_VARIANT, do_##ae, do_##te }
14665#define TxC3w(mnem, op, top, nops, ops, ae, te) \
14666  { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14667    THUMB_VARIANT, do_##ae, do_##te }
14668#define TC3(mnem, aop, top, nops, ops, ae, te) \
14669       TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
14670#define TC3w(mnem, aop, top, nops, ops, ae, te) \
14671       TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
14672#define tC3(mnem, aop, top, nops, ops, ae, te) \
14673       TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14674#define tC3w(mnem, aop, top, nops, ops, ae, te) \
14675       TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14676
14677/* Mnemonic with a conditional infix in an unusual place.  Each and every variant has to
14678   appear in the condition table.  */
14679#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te)	\
14680  { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14681    0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
14682
14683#define TxCM(m1, m2, op, top, nops, ops, ae, te)	\
14684  TxCM_(m1,   , m2, op, top, nops, ops, ae, te),	\
14685  TxCM_(m1, eq, m2, op, top, nops, ops, ae, te),	\
14686  TxCM_(m1, ne, m2, op, top, nops, ops, ae, te),	\
14687  TxCM_(m1, cs, m2, op, top, nops, ops, ae, te),	\
14688  TxCM_(m1, hs, m2, op, top, nops, ops, ae, te),	\
14689  TxCM_(m1, cc, m2, op, top, nops, ops, ae, te),	\
14690  TxCM_(m1, ul, m2, op, top, nops, ops, ae, te),	\
14691  TxCM_(m1, lo, m2, op, top, nops, ops, ae, te),	\
14692  TxCM_(m1, mi, m2, op, top, nops, ops, ae, te),	\
14693  TxCM_(m1, pl, m2, op, top, nops, ops, ae, te),	\
14694  TxCM_(m1, vs, m2, op, top, nops, ops, ae, te),	\
14695  TxCM_(m1, vc, m2, op, top, nops, ops, ae, te),	\
14696  TxCM_(m1, hi, m2, op, top, nops, ops, ae, te),	\
14697  TxCM_(m1, ls, m2, op, top, nops, ops, ae, te),	\
14698  TxCM_(m1, ge, m2, op, top, nops, ops, ae, te),	\
14699  TxCM_(m1, lt, m2, op, top, nops, ops, ae, te),	\
14700  TxCM_(m1, gt, m2, op, top, nops, ops, ae, te),	\
14701  TxCM_(m1, le, m2, op, top, nops, ops, ae, te),	\
14702  TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14703
14704#define TCM(m1,m2, aop, top, nops, ops, ae, te)		\
14705       TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14706#define tCM(m1,m2, aop, top, nops, ops, ae, te)			\
14707       TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14708
14709/* Mnemonic that cannot be conditionalized.  The ARM condition-code
14710   field is still 0xE.  Many of the Thumb variants can be executed
14711   conditionally, so this is checked separately.  */
14712#define TUE(mnem, op, top, nops, ops, ae, te)				\
14713  { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
14714    THUMB_VARIANT, do_##ae, do_##te }
14715
14716/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14717   condition code field.  */
14718#define TUF(mnem, op, top, nops, ops, ae, te)				\
14719  { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
14720    THUMB_VARIANT, do_##ae, do_##te }
14721
14722/* ARM-only variants of all the above.  */
14723#define CE(mnem,  op, nops, ops, ae)	\
14724  { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14725
14726#define C3(mnem, op, nops, ops, ae)	\
14727  { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14728
14729/* Legacy mnemonics that always have conditional infix after the third
14730   character.  */
14731#define CL(mnem, op, nops, ops, ae)	\
14732  { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14733    0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14734
14735/* Coprocessor instructions.  Isomorphic between Arm and Thumb-2.  */
14736#define cCE(mnem,  op, nops, ops, ae)	\
14737  { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14738
14739/* Legacy coprocessor instructions where conditional infix and conditional
14740   suffix are ambiguous.  For consistency this includes all FPA instructions,
14741   not just the potentially ambiguous ones.  */
14742#define cCL(mnem, op, nops, ops, ae)	\
14743  { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14744    0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14745
14746/* Coprocessor, takes either a suffix or a position-3 infix
14747   (for an FPA corner case). */
14748#define C3E(mnem, op, nops, ops, ae) \
14749  { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14750    0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14751
14752#define xCM_(m1, m2, m3, op, nops, ops, ae)	\
14753  { #m1 #m2 #m3, OPS##nops ops, \
14754    sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14755    0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14756
14757#define CM(m1, m2, op, nops, ops, ae)	\
14758  xCM_(m1,   , m2, op, nops, ops, ae),	\
14759  xCM_(m1, eq, m2, op, nops, ops, ae),	\
14760  xCM_(m1, ne, m2, op, nops, ops, ae),	\
14761  xCM_(m1, cs, m2, op, nops, ops, ae),	\
14762  xCM_(m1, hs, m2, op, nops, ops, ae),	\
14763  xCM_(m1, cc, m2, op, nops, ops, ae),	\
14764  xCM_(m1, ul, m2, op, nops, ops, ae),	\
14765  xCM_(m1, lo, m2, op, nops, ops, ae),	\
14766  xCM_(m1, mi, m2, op, nops, ops, ae),	\
14767  xCM_(m1, pl, m2, op, nops, ops, ae),	\
14768  xCM_(m1, vs, m2, op, nops, ops, ae),	\
14769  xCM_(m1, vc, m2, op, nops, ops, ae),	\
14770  xCM_(m1, hi, m2, op, nops, ops, ae),	\
14771  xCM_(m1, ls, m2, op, nops, ops, ae),	\
14772  xCM_(m1, ge, m2, op, nops, ops, ae),	\
14773  xCM_(m1, lt, m2, op, nops, ops, ae),	\
14774  xCM_(m1, gt, m2, op, nops, ops, ae),	\
14775  xCM_(m1, le, m2, op, nops, ops, ae),	\
14776  xCM_(m1, al, m2, op, nops, ops, ae)
14777
14778#define UE(mnem, op, nops, ops, ae)	\
14779  { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14780
14781#define UF(mnem, op, nops, ops, ae)	\
14782  { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14783
14784/* Neon data-processing. ARM versions are unconditional with cond=0xf.
14785   The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14786   use the same encoding function for each.  */
14787#define NUF(mnem, op, nops, ops, enc)					\
14788  { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op,		\
14789    ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14790
14791/* Neon data processing, version which indirects through neon_enc_tab for
14792   the various overloaded versions of opcodes.  */
14793#define nUF(mnem, op, nops, ops, enc)					\
14794  { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op,	\
14795    ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14796
14797/* Neon insn with conditional suffix for the ARM version, non-overloaded
14798   version.  */
14799#define NCE_tag(mnem, op, nops, ops, enc, tag)				\
14800  { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT,		\
14801    THUMB_VARIANT, do_##enc, do_##enc }
14802
14803#define NCE(mnem, op, nops, ops, enc)					\
14804  NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14805
14806#define NCEF(mnem, op, nops, ops, enc)					\
14807  NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14808
14809/* Neon insn with conditional suffix for the ARM version, overloaded types.  */
14810#define nCE_tag(mnem, op, nops, ops, enc, tag)				\
14811  { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op,		\
14812    ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14813
14814#define nCE(mnem, op, nops, ops, enc)					\
14815  nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14816
14817#define nCEF(mnem, op, nops, ops, enc)					\
14818  nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14819
14820#define do_0 0
14821
14822/* Thumb-only, unconditional.  */
14823#define UT(mnem,  op, nops, ops, te) TUE(mnem,  0, op, nops, ops, 0, te)
14824
14825static const struct asm_opcode insns[] =
14826{
14827#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions.  */
14828#define THUMB_VARIANT &arm_ext_v4t
14829 tCE(and,	0000000, and,      3, (RR, oRR, SH), arit, t_arit3c),
14830 tC3(ands,	0100000, ands,	   3, (RR, oRR, SH), arit, t_arit3c),
14831 tCE(eor,	0200000, eor,	   3, (RR, oRR, SH), arit, t_arit3c),
14832 tC3(eors,	0300000, eors,	   3, (RR, oRR, SH), arit, t_arit3c),
14833 tCE(sub,	0400000, sub,	   3, (RR, oRR, SH), arit, t_add_sub),
14834 tC3(subs,	0500000, subs,	   3, (RR, oRR, SH), arit, t_add_sub),
14835 tCE(add,	0800000, add,	   3, (RR, oRR, SHG), arit, t_add_sub),
14836 tC3(adds,	0900000, adds,	   3, (RR, oRR, SHG), arit, t_add_sub),
14837 tCE(adc,	0a00000, adc,	   3, (RR, oRR, SH), arit, t_arit3c),
14838 tC3(adcs,	0b00000, adcs,	   3, (RR, oRR, SH), arit, t_arit3c),
14839 tCE(sbc,	0c00000, sbc,	   3, (RR, oRR, SH), arit, t_arit3),
14840 tC3(sbcs,	0d00000, sbcs,	   3, (RR, oRR, SH), arit, t_arit3),
14841 tCE(orr,	1800000, orr,	   3, (RR, oRR, SH), arit, t_arit3c),
14842 tC3(orrs,	1900000, orrs,	   3, (RR, oRR, SH), arit, t_arit3c),
14843 tCE(bic,	1c00000, bic,	   3, (RR, oRR, SH), arit, t_arit3),
14844 tC3(bics,	1d00000, bics,	   3, (RR, oRR, SH), arit, t_arit3),
14845
14846 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
14847    for setting PSR flag bits.  They are obsolete in V6 and do not
14848    have Thumb equivalents. */
14849 tCE(tst,	1100000, tst,	   2, (RR, SH),      cmp,  t_mvn_tst),
14850 tC3w(tsts,	1100000, tst,	   2, (RR, SH),      cmp,  t_mvn_tst),
14851  CL(tstp,	110f000,     	   2, (RR, SH),      cmp),
14852 tCE(cmp,	1500000, cmp,	   2, (RR, SH),      cmp,  t_mov_cmp),
14853 tC3w(cmps,	1500000, cmp,	   2, (RR, SH),      cmp,  t_mov_cmp),
14854  CL(cmpp,	150f000,     	   2, (RR, SH),      cmp),
14855 tCE(cmn,	1700000, cmn,	   2, (RR, SH),      cmp,  t_mvn_tst),
14856 tC3w(cmns,	1700000, cmn,	   2, (RR, SH),      cmp,  t_mvn_tst),
14857  CL(cmnp,	170f000,     	   2, (RR, SH),      cmp),
14858
14859 tCE(mov,	1a00000, mov,	   2, (RR, SH),      mov,  t_mov_cmp),
14860 tC3(movs,	1b00000, movs,	   2, (RR, SH),      mov,  t_mov_cmp),
14861 tCE(mvn,	1e00000, mvn,	   2, (RR, SH),      mov,  t_mvn_tst),
14862 tC3(mvns,	1f00000, mvns,	   2, (RR, SH),      mov,  t_mvn_tst),
14863
14864 tCE(ldr,	4100000, ldr,	   2, (RR, ADDRGLDR),ldst, t_ldst),
14865 tC3(ldrb,	4500000, ldrb,	   2, (RR, ADDRGLDR),ldst, t_ldst),
14866 tCE(str,	4000000, str,	   2, (RR, ADDRGLDR),ldst, t_ldst),
14867 tC3(strb,	4400000, strb,	   2, (RR, ADDRGLDR),ldst, t_ldst),
14868
14869 tCE(stm,	8800000, stmia,    2, (RRw, REGLST), ldmstm, t_ldmstm),
14870 tC3(stmia,	8800000, stmia,    2, (RRw, REGLST), ldmstm, t_ldmstm),
14871 tC3(stmea,	8800000, stmia,    2, (RRw, REGLST), ldmstm, t_ldmstm),
14872 tCE(ldm,	8900000, ldmia,    2, (RRw, REGLST), ldmstm, t_ldmstm),
14873 tC3(ldmia,	8900000, ldmia,    2, (RRw, REGLST), ldmstm, t_ldmstm),
14874 tC3(ldmfd,	8900000, ldmia,    2, (RRw, REGLST), ldmstm, t_ldmstm),
14875
14876 TCE(swi,	f000000, df00,     1, (EXPi),        swi, t_swi),
14877 TCE(svc,	f000000, df00,     1, (EXPi),        swi, t_swi),
14878 tCE(b,		a000000, b,	   1, (EXPr),	     branch, t_branch),
14879 TCE(bl,	b000000, f000f800, 1, (EXPr),	     bl, t_branch23),
14880
14881  /* Pseudo ops.  */
14882 tCE(adr,	28f0000, adr,	   2, (RR, EXP),     adr,  t_adr),
14883  C3(adrl,	28f0000,           2, (RR, EXP),     adrl),
14884 tCE(nop,	1a00000, nop,	   1, (oI255c),	     nop,  t_nop),
14885
14886  /* Thumb-compatibility pseudo ops.  */
14887 tCE(lsl,	1a00000, lsl,	   3, (RR, oRR, SH), shift, t_shift),
14888 tC3(lsls,	1b00000, lsls,	   3, (RR, oRR, SH), shift, t_shift),
14889 tCE(lsr,	1a00020, lsr,	   3, (RR, oRR, SH), shift, t_shift),
14890 tC3(lsrs,	1b00020, lsrs,	   3, (RR, oRR, SH), shift, t_shift),
14891 tCE(asr,	1a00040, asr,	   3, (RR, oRR, SH), shift, t_shift),
14892 tC3(asrs,      1b00040, asrs,     3, (RR, oRR, SH), shift, t_shift),
14893 tCE(ror,	1a00060, ror,	   3, (RR, oRR, SH), shift, t_shift),
14894 tC3(rors,	1b00060, rors,	   3, (RR, oRR, SH), shift, t_shift),
14895 tCE(neg,	2600000, neg,	   2, (RR, RR),      rd_rn, t_neg),
14896 tC3(negs,	2700000, negs,	   2, (RR, RR),      rd_rn, t_neg),
14897 tCE(push,	92d0000, push,     1, (REGLST),	     push_pop, t_push_pop),
14898 tCE(pop,	8bd0000, pop,	   1, (REGLST),	     push_pop, t_push_pop),
14899
14900 /* These may simplify to neg.  */
14901 TCE(rsb,	0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
14902 TC3(rsbs,	0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
14903
14904#undef THUMB_VARIANT
14905#define THUMB_VARIANT &arm_ext_v6
14906 TCE(cpy,       1a00000, 4600,     2, (RR, RR),      rd_rm, t_cpy),
14907
14908 /* V1 instructions with no Thumb analogue prior to V6T2.  */
14909#undef THUMB_VARIANT
14910#define THUMB_VARIANT &arm_ext_v6t2
14911 TCE(teq,	1300000, ea900f00, 2, (RR, SH),      cmp,  t_mvn_tst),
14912 TC3w(teqs,	1300000, ea900f00, 2, (RR, SH),      cmp,  t_mvn_tst),
14913  CL(teqp,	130f000,           2, (RR, SH),      cmp),
14914
14915 TC3(ldrt,	4300000, f8500e00, 2, (RR, ADDR),    ldstt, t_ldstt),
14916 TC3(ldrbt,	4700000, f8100e00, 2, (RR, ADDR),    ldstt, t_ldstt),
14917 TC3(strt,	4200000, f8400e00, 2, (RR, ADDR),    ldstt, t_ldstt),
14918 TC3(strbt,	4600000, f8000e00, 2, (RR, ADDR),    ldstt, t_ldstt),
14919
14920 TC3(stmdb,	9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14921 TC3(stmfd,     9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14922
14923 TC3(ldmdb,	9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14924 TC3(ldmea,	9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14925
14926 /* V1 instructions with no Thumb analogue at all.  */
14927  CE(rsc,	0e00000,	   3, (RR, oRR, SH), arit),
14928  C3(rscs,	0f00000,	   3, (RR, oRR, SH), arit),
14929
14930  C3(stmib,	9800000,	   2, (RRw, REGLST), ldmstm),
14931  C3(stmfa,	9800000,	   2, (RRw, REGLST), ldmstm),
14932  C3(stmda,	8000000,	   2, (RRw, REGLST), ldmstm),
14933  C3(stmed,	8000000,	   2, (RRw, REGLST), ldmstm),
14934  C3(ldmib,	9900000,	   2, (RRw, REGLST), ldmstm),
14935  C3(ldmed,	9900000,	   2, (RRw, REGLST), ldmstm),
14936  C3(ldmda,	8100000,	   2, (RRw, REGLST), ldmstm),
14937  C3(ldmfa,	8100000,	   2, (RRw, REGLST), ldmstm),
14938
14939#undef ARM_VARIANT
14940#define ARM_VARIANT &arm_ext_v2	/* ARM 2 - multiplies.	*/
14941#undef THUMB_VARIANT
14942#define THUMB_VARIANT &arm_ext_v4t
14943 tCE(mul,	0000090, mul,	   3, (RRnpc, RRnpc, oRR), mul, t_mul),
14944 tC3(muls,	0100090, muls,	   3, (RRnpc, RRnpc, oRR), mul, t_mul),
14945
14946#undef THUMB_VARIANT
14947#define THUMB_VARIANT &arm_ext_v6t2
14948 TCE(mla,	0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
14949  C3(mlas,	0300090,           4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
14950
14951  /* Generic coprocessor instructions.	*/
14952 TCE(cdp,	e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp,    cdp),
14953 TCE(ldc,	c100000, ec100000, 3, (RCP, RCN, ADDRGLDC),	        lstc,   lstc),
14954 TC3(ldcl,	c500000, ec500000, 3, (RCP, RCN, ADDRGLDC),	        lstc,   lstc),
14955 TCE(stc,	c000000, ec000000, 3, (RCP, RCN, ADDRGLDC),	        lstc,   lstc),
14956 TC3(stcl,	c400000, ec400000, 3, (RCP, RCN, ADDRGLDC),	        lstc,   lstc),
14957 TCE(mcr,	e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b),   co_reg, co_reg),
14958 TCE(mrc,	e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b),   co_reg, co_reg),
14959
14960#undef ARM_VARIANT
14961#define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions.  */
14962  CE(swp,	1000090,           3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
14963  C3(swpb,	1400090,           3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
14964
14965#undef ARM_VARIANT
14966#define ARM_VARIANT &arm_ext_v3	/* ARM 6 Status register instructions.	*/
14967 TCE(mrs,	10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
14968 TCE(msr,	120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
14969
14970#undef ARM_VARIANT
14971#define ARM_VARIANT &arm_ext_v3m	 /* ARM 7M long multiplies.  */
14972 TCE(smull,	0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14973  CM(smull,s,	0d00090,           4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14974 TCE(umull,	0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14975  CM(umull,s,	0900090,           4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14976 TCE(smlal,	0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14977  CM(smlal,s,	0f00090,           4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14978 TCE(umlal,	0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14979  CM(umlal,s,	0b00090,           4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14980
14981#undef ARM_VARIANT
14982#define ARM_VARIANT &arm_ext_v4	/* ARM Architecture 4.	*/
14983#undef THUMB_VARIANT
14984#define THUMB_VARIANT &arm_ext_v4t
14985 tC3(ldrh,	01000b0, ldrh,     2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14986 tC3(strh,	00000b0, strh,     2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14987 tC3(ldrsh,	01000f0, ldrsh,    2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14988 tC3(ldrsb,	01000d0, ldrsb,    2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14989 tCM(ld,sh,	01000f0, ldrsh,    2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14990 tCM(ld,sb,	01000d0, ldrsb,    2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14991
14992#undef ARM_VARIANT
14993#define ARM_VARIANT &arm_ext_v4t_5
14994  /* ARM Architecture 4T.  */
14995  /* Note: bx (and blx) are required on V5, even if the processor does
14996     not support Thumb.	 */
14997 TCE(bx,	12fff10, 4700, 1, (RR),	bx, t_bx),
14998
14999#undef ARM_VARIANT
15000#define ARM_VARIANT &arm_ext_v5 /*  ARM Architecture 5T.	 */
15001#undef THUMB_VARIANT
15002#define THUMB_VARIANT &arm_ext_v5t
15003  /* Note: blx has 2 variants; the .value coded here is for
15004     BLX(2).  Only this variant has conditional execution.  */
15005 TCE(blx,	12fff30, 4780, 1, (RR_EXr),			    blx,  t_blx),
15006 TUE(bkpt,	1200070, be00, 1, (oIffffb),			    bkpt, t_bkpt),
15007
15008#undef THUMB_VARIANT
15009#define THUMB_VARIANT &arm_ext_v6t2
15010 TCE(clz,	16f0f10, fab0f080, 2, (RRnpc, RRnpc),		        rd_rm,  t_clz),
15011 TUF(ldc2,	c100000, fc100000, 3, (RCP, RCN, ADDRGLDC),	        lstc,	lstc),
15012 TUF(ldc2l,	c500000, fc500000, 3, (RCP, RCN, ADDRGLDC),		        lstc,	lstc),
15013 TUF(stc2,	c000000, fc000000, 3, (RCP, RCN, ADDRGLDC),	        lstc,	lstc),
15014 TUF(stc2l,	c400000, fc400000, 3, (RCP, RCN, ADDRGLDC),		        lstc,	lstc),
15015 TUF(cdp2,	e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp,    cdp),
15016 TUF(mcr2,	e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b),   co_reg, co_reg),
15017 TUF(mrc2,	e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b),   co_reg, co_reg),
15018
15019#undef ARM_VARIANT
15020#define ARM_VARIANT &arm_ext_v5exp /*  ARM Architecture 5TExP.  */
15021 TCE(smlabb,	1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),   smla, t_mla),
15022 TCE(smlatb,	10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc),   smla, t_mla),
15023 TCE(smlabt,	10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),   smla, t_mla),
15024 TCE(smlatt,	10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc),   smla, t_mla),
15025
15026 TCE(smlawb,	1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),   smla, t_mla),
15027 TCE(smlawt,	12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),   smla, t_mla),
15028
15029 TCE(smlalbb,	1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc),   smlal, t_mlal),
15030 TCE(smlaltb,	14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),   smlal, t_mlal),
15031 TCE(smlalbt,	14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc),   smlal, t_mlal),
15032 TCE(smlaltt,	14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),   smlal, t_mlal),
15033
15034 TCE(smulbb,	1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc),	    smul, t_simd),
15035 TCE(smultb,	16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc),	    smul, t_simd),
15036 TCE(smulbt,	16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc),	    smul, t_simd),
15037 TCE(smultt,	16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc),	    smul, t_simd),
15038
15039 TCE(smulwb,	12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc),	    smul, t_simd),
15040 TCE(smulwt,	12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc),	    smul, t_simd),
15041
15042 TCE(qadd,	1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc),	    rd_rm_rn, rd_rm_rn),
15043 TCE(qdadd,	1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc),	    rd_rm_rn, rd_rm_rn),
15044 TCE(qsub,	1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc),	    rd_rm_rn, rd_rm_rn),
15045 TCE(qdsub,	1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc),	    rd_rm_rn, rd_rm_rn),
15046
15047#undef ARM_VARIANT
15048#define ARM_VARIANT &arm_ext_v5e /*  ARM Architecture 5TE.  */
15049 TUF(pld,	450f000, f810f000, 1, (ADDR),		     pld,  t_pld),
15050 TC3(ldrd,	00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15051 TC3(strd,	00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15052
15053 TCE(mcrr,	c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15054 TCE(mrrc,	c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15055
15056#undef ARM_VARIANT
15057#define ARM_VARIANT &arm_ext_v5j /*  ARM Architecture 5TEJ.  */
15058 TCE(bxj,	12fff20, f3c08f00, 1, (RR),			  bxj, t_bxj),
15059
15060#undef ARM_VARIANT
15061#define ARM_VARIANT &arm_ext_v6 /*  ARM V6.  */
15062#undef THUMB_VARIANT
15063#define THUMB_VARIANT &arm_ext_v6
15064 TUF(cpsie,     1080000, b660,     2, (CPSF, oI31b),              cpsi,   t_cpsi),
15065 TUF(cpsid,     10c0000, b670,     2, (CPSF, oI31b),              cpsi,   t_cpsi),
15066 tCE(rev,       6bf0f30, rev,      2, (RRnpc, RRnpc),             rd_rm,  t_rev),
15067 tCE(rev16,     6bf0fb0, rev16,    2, (RRnpc, RRnpc),             rd_rm,  t_rev),
15068 tCE(revsh,     6ff0fb0, revsh,    2, (RRnpc, RRnpc),             rd_rm,  t_rev),
15069 tCE(sxth,      6bf0070, sxth,     3, (RRnpc, RRnpc, oROR),       sxth,   t_sxth),
15070 tCE(uxth,      6ff0070, uxth,     3, (RRnpc, RRnpc, oROR),       sxth,   t_sxth),
15071 tCE(sxtb,      6af0070, sxtb,     3, (RRnpc, RRnpc, oROR),       sxth,   t_sxth),
15072 tCE(uxtb,      6ef0070, uxtb,     3, (RRnpc, RRnpc, oROR),       sxth,   t_sxth),
15073 TUF(setend,    1010000, b650,     1, (ENDI),                     setend, t_setend),
15074
15075#undef THUMB_VARIANT
15076#define THUMB_VARIANT &arm_ext_v6t2
15077 TCE(ldrex,	1900f9f, e8500f00, 2, (RRnpc, ADDR),		  ldrex, t_ldrex),
15078 TCE(strex,	1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR),	   strex,  t_strex),
15079 TUF(mcrr2,	c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15080 TUF(mrrc2,	c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15081
15082 TCE(ssat,	6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat,   t_ssat),
15083 TCE(usat,	6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat,   t_usat),
15084
15085/*  ARM V6 not included in V7M (eg. integer SIMD).  */
15086#undef THUMB_VARIANT
15087#define THUMB_VARIANT &arm_ext_v6_notm
15088 TUF(cps,	1020000, f3af8100, 1, (I31b),			  imm0, t_cps),
15089 TCE(pkhbt,	6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll),   pkhbt, t_pkhbt),
15090 TCE(pkhtb,	6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar),   pkhtb, t_pkhtb),
15091 TCE(qadd16,	6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15092 TCE(qadd8,	6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15093 TCE(qaddsubx,	6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15094 TCE(qsub16,	6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15095 TCE(qsub8,	6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15096 TCE(qsubaddx,	6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15097 TCE(sadd16,	6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15098 TCE(sadd8,	6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15099 TCE(saddsubx,	6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15100 TCE(shadd16,	6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15101 TCE(shadd8,	6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15102 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15103 TCE(shsub16,	6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15104 TCE(shsub8,	6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15105 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15106 TCE(ssub16,	6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15107 TCE(ssub8,	6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15108 TCE(ssubaddx,	6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15109 TCE(uadd16,	6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15110 TCE(uadd8,	6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15111 TCE(uaddsubx,	6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15112 TCE(uhadd16,	6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15113 TCE(uhadd8,	6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15114 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15115 TCE(uhsub16,	6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15116 TCE(uhsub8,	6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15117 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15118 TCE(uqadd16,	6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15119 TCE(uqadd8,	6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15120 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15121 TCE(uqsub16,	6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15122 TCE(uqsub8,	6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15123 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15124 TCE(usub16,	6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15125 TCE(usub8,	6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15126 TCE(usubaddx,	6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15127 TUF(rfeia,	8900a00, e990c000, 1, (RRw),			   rfe, rfe),
15128  UF(rfeib,	9900a00,           1, (RRw),			   rfe),
15129  UF(rfeda,	8100a00,           1, (RRw),			   rfe),
15130 TUF(rfedb,	9100a00, e810c000, 1, (RRw),			   rfe, rfe),
15131 TUF(rfefd,	8900a00, e990c000, 1, (RRw),			   rfe, rfe),
15132  UF(rfefa,	9900a00,           1, (RRw),			   rfe),
15133  UF(rfeea,	8100a00,           1, (RRw),			   rfe),
15134 TUF(rfeed,	9100a00, e810c000, 1, (RRw),			   rfe, rfe),
15135 TCE(sxtah,	6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15136 TCE(sxtab16,	6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15137 TCE(sxtab,	6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15138 TCE(sxtb16,	68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR),	   sxth,  t_sxth),
15139 TCE(uxtah,	6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15140 TCE(uxtab16,	6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15141 TCE(uxtab,	6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15142 TCE(uxtb16,	6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR),	   sxth,  t_sxth),
15143 TCE(sel,	6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc),	   rd_rn_rm, t_simd),
15144 TCE(smlad,	7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15145 TCE(smladx,	7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15146 TCE(smlald,	7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15147 TCE(smlaldx,	7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15148 TCE(smlsd,	7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15149 TCE(smlsdx,	7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15150 TCE(smlsld,	7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15151 TCE(smlsldx,	7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15152 TCE(smmla,	7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15153 TCE(smmlar,	7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15154 TCE(smmls,	75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15155 TCE(smmlsr,	75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15156 TCE(smmul,	750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc),	   smul, t_simd),
15157 TCE(smmulr,	750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc),	   smul, t_simd),
15158 TCE(smuad,	700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc),	   smul, t_simd),
15159 TCE(smuadx,	700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc),	   smul, t_simd),
15160 TCE(smusd,	700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc),	   smul, t_simd),
15161 TCE(smusdx,	700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc),	   smul, t_simd),
15162 TUF(srsia,	8c00500, e980c000, 2, (oRRw, I31w),		   srs,  srs),
15163  UF(srsib,	9c00500,           2, (oRRw, I31w),		   srs),
15164  UF(srsda,	8400500,	   2, (oRRw, I31w),		   srs),
15165 TUF(srsdb,	9400500, e800c000, 2, (oRRw, I31w),		   srs,  srs),
15166 TCE(ssat16,	6a00f30, f3200000, 3, (RRnpc, I16, RRnpc),	   ssat16, t_ssat16),
15167 TCE(umaal,	0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,  t_mlal),
15168 TCE(usad8,	780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc),	   smul,   t_simd),
15169 TCE(usada8,	7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla,   t_mla),
15170 TCE(usat16,	6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc),	   usat16, t_usat16),
15171
15172#undef ARM_VARIANT
15173#define ARM_VARIANT &arm_ext_v6k
15174#undef THUMB_VARIANT
15175#define THUMB_VARIANT &arm_ext_v6k
15176 tCE(yield,	320f001, yield,    0, (), noargs, t_hint),
15177 tCE(wfe,	320f002, wfe,      0, (), noargs, t_hint),
15178 tCE(wfi,	320f003, wfi,      0, (), noargs, t_hint),
15179 tCE(sev,	320f004, sev,      0, (), noargs, t_hint),
15180
15181#undef THUMB_VARIANT
15182#define THUMB_VARIANT &arm_ext_v6_notm
15183 TCE(ldrexd,	1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb),        ldrexd, t_ldrexd),
15184 TCE(strexd,	1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
15185
15186#undef THUMB_VARIANT
15187#define THUMB_VARIANT &arm_ext_v6t2
15188 TCE(ldrexb,	1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb),	              rd_rn,  rd_rn),
15189 TCE(ldrexh,	1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb),	              rd_rn,  rd_rn),
15190 TCE(strexb,	1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR),           strex,  rm_rd_rn),
15191 TCE(strexh,	1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR),           strex,  rm_rd_rn),
15192 TUF(clrex,	57ff01f, f3bf8f2f, 0, (),			      noargs, noargs),
15193
15194#undef ARM_VARIANT
15195#define ARM_VARIANT &arm_ext_v6z
15196 TCE(smc,	1600070, f7f08000, 1, (EXPi), smc, t_smc),
15197
15198#undef ARM_VARIANT
15199#define ARM_VARIANT &arm_ext_v6t2
15200 TCE(bfc,	7c0001f, f36f0000, 3, (RRnpc, I31, I32),	   bfc, t_bfc),
15201 TCE(bfi,	7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
15202 TCE(sbfx,	7a00050, f3400000, 4, (RR, RR, I31, I32),	   bfx, t_bfx),
15203 TCE(ubfx,	7e00050, f3c00000, 4, (RR, RR, I31, I32),	   bfx, t_bfx),
15204
15205 TCE(mls,	0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
15206 TCE(movw,	3000000, f2400000, 2, (RRnpc, HALF),		    mov16, t_mov16),
15207 TCE(movt,	3400000, f2c00000, 2, (RRnpc, HALF),		    mov16, t_mov16),
15208 TCE(rbit,	6ff0f30, fa90f0a0, 2, (RR, RR),			    rd_rm, t_rbit),
15209
15210 TC3(ldrht,	03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15211 TC3(ldrsht,	03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15212 TC3(ldrsbt,	03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15213 TC3(strht,	02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15214
15215  UT(cbnz,      b900,    2, (RR, EXP), t_cbz),
15216  UT(cbz,       b100,    2, (RR, EXP), t_cbz),
15217 /* ARM does not really have an IT instruction, so always allow it.  */
15218#undef ARM_VARIANT
15219#define ARM_VARIANT &arm_ext_v1
15220 TUE(it,        0, bf08, 1, (COND),    it, t_it),
15221 TUE(itt,       0, bf0c, 1, (COND),    it, t_it),
15222 TUE(ite,       0, bf04, 1, (COND),    it, t_it),
15223 TUE(ittt,      0, bf0e, 1, (COND),    it, t_it),
15224 TUE(itet,      0, bf06, 1, (COND),    it, t_it),
15225 TUE(itte,      0, bf0a, 1, (COND),    it, t_it),
15226 TUE(itee,      0, bf02, 1, (COND),    it, t_it),
15227 TUE(itttt,     0, bf0f, 1, (COND),    it, t_it),
15228 TUE(itett,     0, bf07, 1, (COND),    it, t_it),
15229 TUE(ittet,     0, bf0b, 1, (COND),    it, t_it),
15230 TUE(iteet,     0, bf03, 1, (COND),    it, t_it),
15231 TUE(ittte,     0, bf0d, 1, (COND),    it, t_it),
15232 TUE(itete,     0, bf05, 1, (COND),    it, t_it),
15233 TUE(ittee,     0, bf09, 1, (COND),    it, t_it),
15234 TUE(iteee,     0, bf01, 1, (COND),    it, t_it),
15235
15236 /* Thumb2 only instructions.  */
15237#undef ARM_VARIANT
15238#define ARM_VARIANT NULL
15239
15240 TCE(addw,	0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15241 TCE(subw,	0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15242 TCE(tbb,       0, e8d0f000, 1, (TB), 0, t_tb),
15243 TCE(tbh,       0, e8d0f010, 1, (TB), 0, t_tb),
15244
15245 /* Thumb-2 hardware division instructions (R and M profiles only).  */
15246#undef THUMB_VARIANT
15247#define THUMB_VARIANT &arm_ext_div
15248 TCE(sdiv,	0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
15249 TCE(udiv,	0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
15250
15251 /* ARM V7 instructions.  */
15252#undef ARM_VARIANT
15253#define ARM_VARIANT &arm_ext_v7
15254#undef THUMB_VARIANT
15255#define THUMB_VARIANT &arm_ext_v7
15256 TUF(pli,	450f000, f910f000, 1, (ADDR),	  pli,	    t_pld),
15257 TCE(dbg,	320f0f0, f3af80f0, 1, (I15),	  dbg,	    t_dbg),
15258 TUF(dmb,	57ff050, f3bf8f50, 1, (oBARRIER), barrier,  t_barrier),
15259 TUF(dsb,	57ff040, f3bf8f40, 1, (oBARRIER), barrier,  t_barrier),
15260 TUF(isb,	57ff060, f3bf8f60, 1, (oBARRIER), barrier,  t_barrier),
15261
15262#undef ARM_VARIANT
15263#define ARM_VARIANT &fpu_fpa_ext_v1  /* Core FPA instruction set (V1).  */
15264 cCE(wfs,	e200110, 1, (RR),	     rd),
15265 cCE(rfs,	e300110, 1, (RR),	     rd),
15266 cCE(wfc,	e400110, 1, (RR),	     rd),
15267 cCE(rfc,	e500110, 1, (RR),	     rd),
15268
15269 cCL(ldfs,	c100100, 2, (RF, ADDRGLDC),  rd_cpaddr),
15270 cCL(ldfd,	c108100, 2, (RF, ADDRGLDC),  rd_cpaddr),
15271 cCL(ldfe,	c500100, 2, (RF, ADDRGLDC),  rd_cpaddr),
15272 cCL(ldfp,	c508100, 2, (RF, ADDRGLDC),  rd_cpaddr),
15273
15274 cCL(stfs,	c000100, 2, (RF, ADDRGLDC),  rd_cpaddr),
15275 cCL(stfd,	c008100, 2, (RF, ADDRGLDC),  rd_cpaddr),
15276 cCL(stfe,	c400100, 2, (RF, ADDRGLDC),  rd_cpaddr),
15277 cCL(stfp,	c408100, 2, (RF, ADDRGLDC),  rd_cpaddr),
15278
15279 cCL(mvfs,	e008100, 2, (RF, RF_IF),     rd_rm),
15280 cCL(mvfsp,	e008120, 2, (RF, RF_IF),     rd_rm),
15281 cCL(mvfsm,	e008140, 2, (RF, RF_IF),     rd_rm),
15282 cCL(mvfsz,	e008160, 2, (RF, RF_IF),     rd_rm),
15283 cCL(mvfd,	e008180, 2, (RF, RF_IF),     rd_rm),
15284 cCL(mvfdp,	e0081a0, 2, (RF, RF_IF),     rd_rm),
15285 cCL(mvfdm,	e0081c0, 2, (RF, RF_IF),     rd_rm),
15286 cCL(mvfdz,	e0081e0, 2, (RF, RF_IF),     rd_rm),
15287 cCL(mvfe,	e088100, 2, (RF, RF_IF),     rd_rm),
15288 cCL(mvfep,	e088120, 2, (RF, RF_IF),     rd_rm),
15289 cCL(mvfem,	e088140, 2, (RF, RF_IF),     rd_rm),
15290 cCL(mvfez,	e088160, 2, (RF, RF_IF),     rd_rm),
15291
15292 cCL(mnfs,	e108100, 2, (RF, RF_IF),     rd_rm),
15293 cCL(mnfsp,	e108120, 2, (RF, RF_IF),     rd_rm),
15294 cCL(mnfsm,	e108140, 2, (RF, RF_IF),     rd_rm),
15295 cCL(mnfsz,	e108160, 2, (RF, RF_IF),     rd_rm),
15296 cCL(mnfd,	e108180, 2, (RF, RF_IF),     rd_rm),
15297 cCL(mnfdp,	e1081a0, 2, (RF, RF_IF),     rd_rm),
15298 cCL(mnfdm,	e1081c0, 2, (RF, RF_IF),     rd_rm),
15299 cCL(mnfdz,	e1081e0, 2, (RF, RF_IF),     rd_rm),
15300 cCL(mnfe,	e188100, 2, (RF, RF_IF),     rd_rm),
15301 cCL(mnfep,	e188120, 2, (RF, RF_IF),     rd_rm),
15302 cCL(mnfem,	e188140, 2, (RF, RF_IF),     rd_rm),
15303 cCL(mnfez,	e188160, 2, (RF, RF_IF),     rd_rm),
15304
15305 cCL(abss,	e208100, 2, (RF, RF_IF),     rd_rm),
15306 cCL(abssp,	e208120, 2, (RF, RF_IF),     rd_rm),
15307 cCL(abssm,	e208140, 2, (RF, RF_IF),     rd_rm),
15308 cCL(abssz,	e208160, 2, (RF, RF_IF),     rd_rm),
15309 cCL(absd,	e208180, 2, (RF, RF_IF),     rd_rm),
15310 cCL(absdp,	e2081a0, 2, (RF, RF_IF),     rd_rm),
15311 cCL(absdm,	e2081c0, 2, (RF, RF_IF),     rd_rm),
15312 cCL(absdz,	e2081e0, 2, (RF, RF_IF),     rd_rm),
15313 cCL(abse,	e288100, 2, (RF, RF_IF),     rd_rm),
15314 cCL(absep,	e288120, 2, (RF, RF_IF),     rd_rm),
15315 cCL(absem,	e288140, 2, (RF, RF_IF),     rd_rm),
15316 cCL(absez,	e288160, 2, (RF, RF_IF),     rd_rm),
15317
15318 cCL(rnds,	e308100, 2, (RF, RF_IF),     rd_rm),
15319 cCL(rndsp,	e308120, 2, (RF, RF_IF),     rd_rm),
15320 cCL(rndsm,	e308140, 2, (RF, RF_IF),     rd_rm),
15321 cCL(rndsz,	e308160, 2, (RF, RF_IF),     rd_rm),
15322 cCL(rndd,	e308180, 2, (RF, RF_IF),     rd_rm),
15323 cCL(rnddp,	e3081a0, 2, (RF, RF_IF),     rd_rm),
15324 cCL(rnddm,	e3081c0, 2, (RF, RF_IF),     rd_rm),
15325 cCL(rnddz,	e3081e0, 2, (RF, RF_IF),     rd_rm),
15326 cCL(rnde,	e388100, 2, (RF, RF_IF),     rd_rm),
15327 cCL(rndep,	e388120, 2, (RF, RF_IF),     rd_rm),
15328 cCL(rndem,	e388140, 2, (RF, RF_IF),     rd_rm),
15329 cCL(rndez,	e388160, 2, (RF, RF_IF),     rd_rm),
15330
15331 cCL(sqts,	e408100, 2, (RF, RF_IF),     rd_rm),
15332 cCL(sqtsp,	e408120, 2, (RF, RF_IF),     rd_rm),
15333 cCL(sqtsm,	e408140, 2, (RF, RF_IF),     rd_rm),
15334 cCL(sqtsz,	e408160, 2, (RF, RF_IF),     rd_rm),
15335 cCL(sqtd,	e408180, 2, (RF, RF_IF),     rd_rm),
15336 cCL(sqtdp,	e4081a0, 2, (RF, RF_IF),     rd_rm),
15337 cCL(sqtdm,	e4081c0, 2, (RF, RF_IF),     rd_rm),
15338 cCL(sqtdz,	e4081e0, 2, (RF, RF_IF),     rd_rm),
15339 cCL(sqte,	e488100, 2, (RF, RF_IF),     rd_rm),
15340 cCL(sqtep,	e488120, 2, (RF, RF_IF),     rd_rm),
15341 cCL(sqtem,	e488140, 2, (RF, RF_IF),     rd_rm),
15342 cCL(sqtez,	e488160, 2, (RF, RF_IF),     rd_rm),
15343
15344 cCL(logs,	e508100, 2, (RF, RF_IF),     rd_rm),
15345 cCL(logsp,	e508120, 2, (RF, RF_IF),     rd_rm),
15346 cCL(logsm,	e508140, 2, (RF, RF_IF),     rd_rm),
15347 cCL(logsz,	e508160, 2, (RF, RF_IF),     rd_rm),
15348 cCL(logd,	e508180, 2, (RF, RF_IF),     rd_rm),
15349 cCL(logdp,	e5081a0, 2, (RF, RF_IF),     rd_rm),
15350 cCL(logdm,	e5081c0, 2, (RF, RF_IF),     rd_rm),
15351 cCL(logdz,	e5081e0, 2, (RF, RF_IF),     rd_rm),
15352 cCL(loge,	e588100, 2, (RF, RF_IF),     rd_rm),
15353 cCL(logep,	e588120, 2, (RF, RF_IF),     rd_rm),
15354 cCL(logem,	e588140, 2, (RF, RF_IF),     rd_rm),
15355 cCL(logez,	e588160, 2, (RF, RF_IF),     rd_rm),
15356
15357 cCL(lgns,	e608100, 2, (RF, RF_IF),     rd_rm),
15358 cCL(lgnsp,	e608120, 2, (RF, RF_IF),     rd_rm),
15359 cCL(lgnsm,	e608140, 2, (RF, RF_IF),     rd_rm),
15360 cCL(lgnsz,	e608160, 2, (RF, RF_IF),     rd_rm),
15361 cCL(lgnd,	e608180, 2, (RF, RF_IF),     rd_rm),
15362 cCL(lgndp,	e6081a0, 2, (RF, RF_IF),     rd_rm),
15363 cCL(lgndm,	e6081c0, 2, (RF, RF_IF),     rd_rm),
15364 cCL(lgndz,	e6081e0, 2, (RF, RF_IF),     rd_rm),
15365 cCL(lgne,	e688100, 2, (RF, RF_IF),     rd_rm),
15366 cCL(lgnep,	e688120, 2, (RF, RF_IF),     rd_rm),
15367 cCL(lgnem,	e688140, 2, (RF, RF_IF),     rd_rm),
15368 cCL(lgnez,	e688160, 2, (RF, RF_IF),     rd_rm),
15369
15370 cCL(exps,	e708100, 2, (RF, RF_IF),     rd_rm),
15371 cCL(expsp,	e708120, 2, (RF, RF_IF),     rd_rm),
15372 cCL(expsm,	e708140, 2, (RF, RF_IF),     rd_rm),
15373 cCL(expsz,	e708160, 2, (RF, RF_IF),     rd_rm),
15374 cCL(expd,	e708180, 2, (RF, RF_IF),     rd_rm),
15375 cCL(expdp,	e7081a0, 2, (RF, RF_IF),     rd_rm),
15376 cCL(expdm,	e7081c0, 2, (RF, RF_IF),     rd_rm),
15377 cCL(expdz,	e7081e0, 2, (RF, RF_IF),     rd_rm),
15378 cCL(expe,	e788100, 2, (RF, RF_IF),     rd_rm),
15379 cCL(expep,	e788120, 2, (RF, RF_IF),     rd_rm),
15380 cCL(expem,	e788140, 2, (RF, RF_IF),     rd_rm),
15381 cCL(expdz,	e788160, 2, (RF, RF_IF),     rd_rm),
15382
15383 cCL(sins,	e808100, 2, (RF, RF_IF),     rd_rm),
15384 cCL(sinsp,	e808120, 2, (RF, RF_IF),     rd_rm),
15385 cCL(sinsm,	e808140, 2, (RF, RF_IF),     rd_rm),
15386 cCL(sinsz,	e808160, 2, (RF, RF_IF),     rd_rm),
15387 cCL(sind,	e808180, 2, (RF, RF_IF),     rd_rm),
15388 cCL(sindp,	e8081a0, 2, (RF, RF_IF),     rd_rm),
15389 cCL(sindm,	e8081c0, 2, (RF, RF_IF),     rd_rm),
15390 cCL(sindz,	e8081e0, 2, (RF, RF_IF),     rd_rm),
15391 cCL(sine,	e888100, 2, (RF, RF_IF),     rd_rm),
15392 cCL(sinep,	e888120, 2, (RF, RF_IF),     rd_rm),
15393 cCL(sinem,	e888140, 2, (RF, RF_IF),     rd_rm),
15394 cCL(sinez,	e888160, 2, (RF, RF_IF),     rd_rm),
15395
15396 cCL(coss,	e908100, 2, (RF, RF_IF),     rd_rm),
15397 cCL(cossp,	e908120, 2, (RF, RF_IF),     rd_rm),
15398 cCL(cossm,	e908140, 2, (RF, RF_IF),     rd_rm),
15399 cCL(cossz,	e908160, 2, (RF, RF_IF),     rd_rm),
15400 cCL(cosd,	e908180, 2, (RF, RF_IF),     rd_rm),
15401 cCL(cosdp,	e9081a0, 2, (RF, RF_IF),     rd_rm),
15402 cCL(cosdm,	e9081c0, 2, (RF, RF_IF),     rd_rm),
15403 cCL(cosdz,	e9081e0, 2, (RF, RF_IF),     rd_rm),
15404 cCL(cose,	e988100, 2, (RF, RF_IF),     rd_rm),
15405 cCL(cosep,	e988120, 2, (RF, RF_IF),     rd_rm),
15406 cCL(cosem,	e988140, 2, (RF, RF_IF),     rd_rm),
15407 cCL(cosez,	e988160, 2, (RF, RF_IF),     rd_rm),
15408
15409 cCL(tans,	ea08100, 2, (RF, RF_IF),     rd_rm),
15410 cCL(tansp,	ea08120, 2, (RF, RF_IF),     rd_rm),
15411 cCL(tansm,	ea08140, 2, (RF, RF_IF),     rd_rm),
15412 cCL(tansz,	ea08160, 2, (RF, RF_IF),     rd_rm),
15413 cCL(tand,	ea08180, 2, (RF, RF_IF),     rd_rm),
15414 cCL(tandp,	ea081a0, 2, (RF, RF_IF),     rd_rm),
15415 cCL(tandm,	ea081c0, 2, (RF, RF_IF),     rd_rm),
15416 cCL(tandz,	ea081e0, 2, (RF, RF_IF),     rd_rm),
15417 cCL(tane,	ea88100, 2, (RF, RF_IF),     rd_rm),
15418 cCL(tanep,	ea88120, 2, (RF, RF_IF),     rd_rm),
15419 cCL(tanem,	ea88140, 2, (RF, RF_IF),     rd_rm),
15420 cCL(tanez,	ea88160, 2, (RF, RF_IF),     rd_rm),
15421
15422 cCL(asns,	eb08100, 2, (RF, RF_IF),     rd_rm),
15423 cCL(asnsp,	eb08120, 2, (RF, RF_IF),     rd_rm),
15424 cCL(asnsm,	eb08140, 2, (RF, RF_IF),     rd_rm),
15425 cCL(asnsz,	eb08160, 2, (RF, RF_IF),     rd_rm),
15426 cCL(asnd,	eb08180, 2, (RF, RF_IF),     rd_rm),
15427 cCL(asndp,	eb081a0, 2, (RF, RF_IF),     rd_rm),
15428 cCL(asndm,	eb081c0, 2, (RF, RF_IF),     rd_rm),
15429 cCL(asndz,	eb081e0, 2, (RF, RF_IF),     rd_rm),
15430 cCL(asne,	eb88100, 2, (RF, RF_IF),     rd_rm),
15431 cCL(asnep,	eb88120, 2, (RF, RF_IF),     rd_rm),
15432 cCL(asnem,	eb88140, 2, (RF, RF_IF),     rd_rm),
15433 cCL(asnez,	eb88160, 2, (RF, RF_IF),     rd_rm),
15434
15435 cCL(acss,	ec08100, 2, (RF, RF_IF),     rd_rm),
15436 cCL(acssp,	ec08120, 2, (RF, RF_IF),     rd_rm),
15437 cCL(acssm,	ec08140, 2, (RF, RF_IF),     rd_rm),
15438 cCL(acssz,	ec08160, 2, (RF, RF_IF),     rd_rm),
15439 cCL(acsd,	ec08180, 2, (RF, RF_IF),     rd_rm),
15440 cCL(acsdp,	ec081a0, 2, (RF, RF_IF),     rd_rm),
15441 cCL(acsdm,	ec081c0, 2, (RF, RF_IF),     rd_rm),
15442 cCL(acsdz,	ec081e0, 2, (RF, RF_IF),     rd_rm),
15443 cCL(acse,	ec88100, 2, (RF, RF_IF),     rd_rm),
15444 cCL(acsep,	ec88120, 2, (RF, RF_IF),     rd_rm),
15445 cCL(acsem,	ec88140, 2, (RF, RF_IF),     rd_rm),
15446 cCL(acsez,	ec88160, 2, (RF, RF_IF),     rd_rm),
15447
15448 cCL(atns,	ed08100, 2, (RF, RF_IF),     rd_rm),
15449 cCL(atnsp,	ed08120, 2, (RF, RF_IF),     rd_rm),
15450 cCL(atnsm,	ed08140, 2, (RF, RF_IF),     rd_rm),
15451 cCL(atnsz,	ed08160, 2, (RF, RF_IF),     rd_rm),
15452 cCL(atnd,	ed08180, 2, (RF, RF_IF),     rd_rm),
15453 cCL(atndp,	ed081a0, 2, (RF, RF_IF),     rd_rm),
15454 cCL(atndm,	ed081c0, 2, (RF, RF_IF),     rd_rm),
15455 cCL(atndz,	ed081e0, 2, (RF, RF_IF),     rd_rm),
15456 cCL(atne,	ed88100, 2, (RF, RF_IF),     rd_rm),
15457 cCL(atnep,	ed88120, 2, (RF, RF_IF),     rd_rm),
15458 cCL(atnem,	ed88140, 2, (RF, RF_IF),     rd_rm),
15459 cCL(atnez,	ed88160, 2, (RF, RF_IF),     rd_rm),
15460
15461 cCL(urds,	ee08100, 2, (RF, RF_IF),     rd_rm),
15462 cCL(urdsp,	ee08120, 2, (RF, RF_IF),     rd_rm),
15463 cCL(urdsm,	ee08140, 2, (RF, RF_IF),     rd_rm),
15464 cCL(urdsz,	ee08160, 2, (RF, RF_IF),     rd_rm),
15465 cCL(urdd,	ee08180, 2, (RF, RF_IF),     rd_rm),
15466 cCL(urddp,	ee081a0, 2, (RF, RF_IF),     rd_rm),
15467 cCL(urddm,	ee081c0, 2, (RF, RF_IF),     rd_rm),
15468 cCL(urddz,	ee081e0, 2, (RF, RF_IF),     rd_rm),
15469 cCL(urde,	ee88100, 2, (RF, RF_IF),     rd_rm),
15470 cCL(urdep,	ee88120, 2, (RF, RF_IF),     rd_rm),
15471 cCL(urdem,	ee88140, 2, (RF, RF_IF),     rd_rm),
15472 cCL(urdez,	ee88160, 2, (RF, RF_IF),     rd_rm),
15473
15474 cCL(nrms,	ef08100, 2, (RF, RF_IF),     rd_rm),
15475 cCL(nrmsp,	ef08120, 2, (RF, RF_IF),     rd_rm),
15476 cCL(nrmsm,	ef08140, 2, (RF, RF_IF),     rd_rm),
15477 cCL(nrmsz,	ef08160, 2, (RF, RF_IF),     rd_rm),
15478 cCL(nrmd,	ef08180, 2, (RF, RF_IF),     rd_rm),
15479 cCL(nrmdp,	ef081a0, 2, (RF, RF_IF),     rd_rm),
15480 cCL(nrmdm,	ef081c0, 2, (RF, RF_IF),     rd_rm),
15481 cCL(nrmdz,	ef081e0, 2, (RF, RF_IF),     rd_rm),
15482 cCL(nrme,	ef88100, 2, (RF, RF_IF),     rd_rm),
15483 cCL(nrmep,	ef88120, 2, (RF, RF_IF),     rd_rm),
15484 cCL(nrmem,	ef88140, 2, (RF, RF_IF),     rd_rm),
15485 cCL(nrmez,	ef88160, 2, (RF, RF_IF),     rd_rm),
15486
15487 cCL(adfs,	e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
15488 cCL(adfsp,	e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
15489 cCL(adfsm,	e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
15490 cCL(adfsz,	e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
15491 cCL(adfd,	e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
15492 cCL(adfdp,	e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15493 cCL(adfdm,	e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15494 cCL(adfdz,	e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15495 cCL(adfe,	e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
15496 cCL(adfep,	e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
15497 cCL(adfem,	e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
15498 cCL(adfez,	e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
15499
15500 cCL(sufs,	e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
15501 cCL(sufsp,	e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
15502 cCL(sufsm,	e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
15503 cCL(sufsz,	e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
15504 cCL(sufd,	e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
15505 cCL(sufdp,	e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15506 cCL(sufdm,	e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15507 cCL(sufdz,	e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15508 cCL(sufe,	e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
15509 cCL(sufep,	e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
15510 cCL(sufem,	e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
15511 cCL(sufez,	e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
15512
15513 cCL(rsfs,	e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
15514 cCL(rsfsp,	e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
15515 cCL(rsfsm,	e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
15516 cCL(rsfsz,	e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
15517 cCL(rsfd,	e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
15518 cCL(rsfdp,	e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15519 cCL(rsfdm,	e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15520 cCL(rsfdz,	e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15521 cCL(rsfe,	e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
15522 cCL(rsfep,	e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
15523 cCL(rsfem,	e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
15524 cCL(rsfez,	e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
15525
15526 cCL(mufs,	e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
15527 cCL(mufsp,	e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
15528 cCL(mufsm,	e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
15529 cCL(mufsz,	e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
15530 cCL(mufd,	e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
15531 cCL(mufdp,	e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15532 cCL(mufdm,	e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15533 cCL(mufdz,	e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15534 cCL(mufe,	e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
15535 cCL(mufep,	e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
15536 cCL(mufem,	e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
15537 cCL(mufez,	e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
15538
15539 cCL(dvfs,	e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
15540 cCL(dvfsp,	e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
15541 cCL(dvfsm,	e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
15542 cCL(dvfsz,	e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
15543 cCL(dvfd,	e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
15544 cCL(dvfdp,	e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15545 cCL(dvfdm,	e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15546 cCL(dvfdz,	e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15547 cCL(dvfe,	e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
15548 cCL(dvfep,	e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
15549 cCL(dvfem,	e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
15550 cCL(dvfez,	e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
15551
15552 cCL(rdfs,	e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
15553 cCL(rdfsp,	e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
15554 cCL(rdfsm,	e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
15555 cCL(rdfsz,	e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
15556 cCL(rdfd,	e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
15557 cCL(rdfdp,	e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15558 cCL(rdfdm,	e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15559 cCL(rdfdz,	e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15560 cCL(rdfe,	e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
15561 cCL(rdfep,	e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
15562 cCL(rdfem,	e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
15563 cCL(rdfez,	e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
15564
15565 cCL(pows,	e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
15566 cCL(powsp,	e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
15567 cCL(powsm,	e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
15568 cCL(powsz,	e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
15569 cCL(powd,	e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
15570 cCL(powdp,	e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15571 cCL(powdm,	e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15572 cCL(powdz,	e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15573 cCL(powe,	e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
15574 cCL(powep,	e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
15575 cCL(powem,	e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
15576 cCL(powez,	e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
15577
15578 cCL(rpws,	e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
15579 cCL(rpwsp,	e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
15580 cCL(rpwsm,	e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
15581 cCL(rpwsz,	e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
15582 cCL(rpwd,	e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
15583 cCL(rpwdp,	e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15584 cCL(rpwdm,	e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15585 cCL(rpwdz,	e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15586 cCL(rpwe,	e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
15587 cCL(rpwep,	e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
15588 cCL(rpwem,	e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
15589 cCL(rpwez,	e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
15590
15591 cCL(rmfs,	e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
15592 cCL(rmfsp,	e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
15593 cCL(rmfsm,	e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
15594 cCL(rmfsz,	e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
15595 cCL(rmfd,	e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
15596 cCL(rmfdp,	e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15597 cCL(rmfdm,	e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15598 cCL(rmfdz,	e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15599 cCL(rmfe,	e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
15600 cCL(rmfep,	e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
15601 cCL(rmfem,	e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
15602 cCL(rmfez,	e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
15603
15604 cCL(fmls,	e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
15605 cCL(fmlsp,	e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
15606 cCL(fmlsm,	e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
15607 cCL(fmlsz,	e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
15608 cCL(fmld,	e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
15609 cCL(fmldp,	e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15610 cCL(fmldm,	e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15611 cCL(fmldz,	e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15612 cCL(fmle,	e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
15613 cCL(fmlep,	e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
15614 cCL(fmlem,	e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
15615 cCL(fmlez,	e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
15616
15617 cCL(fdvs,	ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15618 cCL(fdvsp,	ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15619 cCL(fdvsm,	ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15620 cCL(fdvsz,	ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15621 cCL(fdvd,	ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15622 cCL(fdvdp,	ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15623 cCL(fdvdm,	ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15624 cCL(fdvdz,	ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15625 cCL(fdve,	ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15626 cCL(fdvep,	ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15627 cCL(fdvem,	ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15628 cCL(fdvez,	ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15629
15630 cCL(frds,	eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15631 cCL(frdsp,	eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15632 cCL(frdsm,	eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15633 cCL(frdsz,	eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15634 cCL(frdd,	eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15635 cCL(frddp,	eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15636 cCL(frddm,	eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15637 cCL(frddz,	eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15638 cCL(frde,	eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15639 cCL(frdep,	eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15640 cCL(frdem,	eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15641 cCL(frdez,	eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15642
15643 cCL(pols,	ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15644 cCL(polsp,	ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15645 cCL(polsm,	ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15646 cCL(polsz,	ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15647 cCL(pold,	ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15648 cCL(poldp,	ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15649 cCL(poldm,	ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15650 cCL(poldz,	ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15651 cCL(pole,	ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15652 cCL(polep,	ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15653 cCL(polem,	ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15654 cCL(polez,	ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15655
15656 cCE(cmf,	e90f110, 2, (RF, RF_IF),     fpa_cmp),
15657 C3E(cmfe,	ed0f110, 2, (RF, RF_IF),     fpa_cmp),
15658 cCE(cnf,	eb0f110, 2, (RF, RF_IF),     fpa_cmp),
15659 C3E(cnfe,	ef0f110, 2, (RF, RF_IF),     fpa_cmp),
15660
15661 cCL(flts,	e000110, 2, (RF, RR),	     rn_rd),
15662 cCL(fltsp,	e000130, 2, (RF, RR),	     rn_rd),
15663 cCL(fltsm,	e000150, 2, (RF, RR),	     rn_rd),
15664 cCL(fltsz,	e000170, 2, (RF, RR),	     rn_rd),
15665 cCL(fltd,	e000190, 2, (RF, RR),	     rn_rd),
15666 cCL(fltdp,	e0001b0, 2, (RF, RR),	     rn_rd),
15667 cCL(fltdm,	e0001d0, 2, (RF, RR),	     rn_rd),
15668 cCL(fltdz,	e0001f0, 2, (RF, RR),	     rn_rd),
15669 cCL(flte,	e080110, 2, (RF, RR),	     rn_rd),
15670 cCL(fltep,	e080130, 2, (RF, RR),	     rn_rd),
15671 cCL(fltem,	e080150, 2, (RF, RR),	     rn_rd),
15672 cCL(fltez,	e080170, 2, (RF, RR),	     rn_rd),
15673
15674  /* The implementation of the FIX instruction is broken on some
15675     assemblers, in that it accepts a precision specifier as well as a
15676     rounding specifier, despite the fact that this is meaningless.
15677     To be more compatible, we accept it as well, though of course it
15678     does not set any bits.  */
15679 cCE(fix,	e100110, 2, (RR, RF),	     rd_rm),
15680 cCL(fixp,	e100130, 2, (RR, RF),	     rd_rm),
15681 cCL(fixm,	e100150, 2, (RR, RF),	     rd_rm),
15682 cCL(fixz,	e100170, 2, (RR, RF),	     rd_rm),
15683 cCL(fixsp,	e100130, 2, (RR, RF),	     rd_rm),
15684 cCL(fixsm,	e100150, 2, (RR, RF),	     rd_rm),
15685 cCL(fixsz,	e100170, 2, (RR, RF),	     rd_rm),
15686 cCL(fixdp,	e100130, 2, (RR, RF),	     rd_rm),
15687 cCL(fixdm,	e100150, 2, (RR, RF),	     rd_rm),
15688 cCL(fixdz,	e100170, 2, (RR, RF),	     rd_rm),
15689 cCL(fixep,	e100130, 2, (RR, RF),	     rd_rm),
15690 cCL(fixem,	e100150, 2, (RR, RF),	     rd_rm),
15691 cCL(fixez,	e100170, 2, (RR, RF),	     rd_rm),
15692
15693  /* Instructions that were new with the real FPA, call them V2.  */
15694#undef ARM_VARIANT
15695#define ARM_VARIANT &fpu_fpa_ext_v2
15696 cCE(lfm,	c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15697 cCL(lfmfd,	c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15698 cCL(lfmea,	d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15699 cCE(sfm,	c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15700 cCL(sfmfd,	d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15701 cCL(sfmea,	c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15702
15703#undef ARM_VARIANT
15704#define ARM_VARIANT &fpu_vfp_ext_v1xd  /* VFP V1xD (single precision).  */
15705  /* Moves and type conversions.  */
15706 cCE(fcpys,	eb00a40, 2, (RVS, RVS),	      vfp_sp_monadic),
15707 cCE(fmrs,	e100a10, 2, (RR, RVS),	      vfp_reg_from_sp),
15708 cCE(fmsr,	e000a10, 2, (RVS, RR),	      vfp_sp_from_reg),
15709 cCE(fmstat,	ef1fa10, 0, (),		      noargs),
15710 cCE(fsitos,	eb80ac0, 2, (RVS, RVS),	      vfp_sp_monadic),
15711 cCE(fuitos,	eb80a40, 2, (RVS, RVS),	      vfp_sp_monadic),
15712 cCE(ftosis,	ebd0a40, 2, (RVS, RVS),	      vfp_sp_monadic),
15713 cCE(ftosizs,	ebd0ac0, 2, (RVS, RVS),	      vfp_sp_monadic),
15714 cCE(ftouis,	ebc0a40, 2, (RVS, RVS),	      vfp_sp_monadic),
15715 cCE(ftouizs,	ebc0ac0, 2, (RVS, RVS),	      vfp_sp_monadic),
15716 cCE(fmrx,	ef00a10, 2, (RR, RVC),	      rd_rn),
15717 cCE(fmxr,	ee00a10, 2, (RVC, RR),	      rn_rd),
15718
15719  /* Memory operations.	 */
15720 cCE(flds,	d100a00, 2, (RVS, ADDRGLDC),  vfp_sp_ldst),
15721 cCE(fsts,	d000a00, 2, (RVS, ADDRGLDC),  vfp_sp_ldst),
15722 cCE(fldmias,	c900a00, 2, (RRw, VRSLST),    vfp_sp_ldstmia),
15723 cCE(fldmfds,	c900a00, 2, (RRw, VRSLST),    vfp_sp_ldstmia),
15724 cCE(fldmdbs,	d300a00, 2, (RRw, VRSLST),    vfp_sp_ldstmdb),
15725 cCE(fldmeas,	d300a00, 2, (RRw, VRSLST),    vfp_sp_ldstmdb),
15726 cCE(fldmiax,	c900b00, 2, (RRw, VRDLST),    vfp_xp_ldstmia),
15727 cCE(fldmfdx,	c900b00, 2, (RRw, VRDLST),    vfp_xp_ldstmia),
15728 cCE(fldmdbx,	d300b00, 2, (RRw, VRDLST),    vfp_xp_ldstmdb),
15729 cCE(fldmeax,	d300b00, 2, (RRw, VRDLST),    vfp_xp_ldstmdb),
15730 cCE(fstmias,	c800a00, 2, (RRw, VRSLST),    vfp_sp_ldstmia),
15731 cCE(fstmeas,	c800a00, 2, (RRw, VRSLST),    vfp_sp_ldstmia),
15732 cCE(fstmdbs,	d200a00, 2, (RRw, VRSLST),    vfp_sp_ldstmdb),
15733 cCE(fstmfds,	d200a00, 2, (RRw, VRSLST),    vfp_sp_ldstmdb),
15734 cCE(fstmiax,	c800b00, 2, (RRw, VRDLST),    vfp_xp_ldstmia),
15735 cCE(fstmeax,	c800b00, 2, (RRw, VRDLST),    vfp_xp_ldstmia),
15736 cCE(fstmdbx,	d200b00, 2, (RRw, VRDLST),    vfp_xp_ldstmdb),
15737 cCE(fstmfdx,	d200b00, 2, (RRw, VRDLST),    vfp_xp_ldstmdb),
15738
15739  /* Monadic operations.  */
15740 cCE(fabss,	eb00ac0, 2, (RVS, RVS),	      vfp_sp_monadic),
15741 cCE(fnegs,	eb10a40, 2, (RVS, RVS),	      vfp_sp_monadic),
15742 cCE(fsqrts,	eb10ac0, 2, (RVS, RVS),	      vfp_sp_monadic),
15743
15744  /* Dyadic operations.	 */
15745 cCE(fadds,	e300a00, 3, (RVS, RVS, RVS),  vfp_sp_dyadic),
15746 cCE(fsubs,	e300a40, 3, (RVS, RVS, RVS),  vfp_sp_dyadic),
15747 cCE(fmuls,	e200a00, 3, (RVS, RVS, RVS),  vfp_sp_dyadic),
15748 cCE(fdivs,	e800a00, 3, (RVS, RVS, RVS),  vfp_sp_dyadic),
15749 cCE(fmacs,	e000a00, 3, (RVS, RVS, RVS),  vfp_sp_dyadic),
15750 cCE(fmscs,	e100a00, 3, (RVS, RVS, RVS),  vfp_sp_dyadic),
15751 cCE(fnmuls,	e200a40, 3, (RVS, RVS, RVS),  vfp_sp_dyadic),
15752 cCE(fnmacs,	e000a40, 3, (RVS, RVS, RVS),  vfp_sp_dyadic),
15753 cCE(fnmscs,	e100a40, 3, (RVS, RVS, RVS),  vfp_sp_dyadic),
15754
15755  /* Comparisons.  */
15756 cCE(fcmps,	eb40a40, 2, (RVS, RVS),	      vfp_sp_monadic),
15757 cCE(fcmpzs,	eb50a40, 1, (RVS),	      vfp_sp_compare_z),
15758 cCE(fcmpes,	eb40ac0, 2, (RVS, RVS),	      vfp_sp_monadic),
15759 cCE(fcmpezs,	eb50ac0, 1, (RVS),	      vfp_sp_compare_z),
15760
15761#undef ARM_VARIANT
15762#define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision).  */
15763  /* Moves and type conversions.  */
15764 cCE(fcpyd,	eb00b40, 2, (RVD, RVD),	      vfp_dp_rd_rm),
15765 cCE(fcvtds,	eb70ac0, 2, (RVD, RVS),	      vfp_dp_sp_cvt),
15766 cCE(fcvtsd,	eb70bc0, 2, (RVS, RVD),	      vfp_sp_dp_cvt),
15767 cCE(fmdhr,	e200b10, 2, (RVD, RR),	      vfp_dp_rn_rd),
15768 cCE(fmdlr,	e000b10, 2, (RVD, RR),	      vfp_dp_rn_rd),
15769 cCE(fmrdh,	e300b10, 2, (RR, RVD),	      vfp_dp_rd_rn),
15770 cCE(fmrdl,	e100b10, 2, (RR, RVD),	      vfp_dp_rd_rn),
15771 cCE(fsitod,	eb80bc0, 2, (RVD, RVS),	      vfp_dp_sp_cvt),
15772 cCE(fuitod,	eb80b40, 2, (RVD, RVS),	      vfp_dp_sp_cvt),
15773 cCE(ftosid,	ebd0b40, 2, (RVS, RVD),	      vfp_sp_dp_cvt),
15774 cCE(ftosizd,	ebd0bc0, 2, (RVS, RVD),	      vfp_sp_dp_cvt),
15775 cCE(ftouid,	ebc0b40, 2, (RVS, RVD),	      vfp_sp_dp_cvt),
15776 cCE(ftouizd,	ebc0bc0, 2, (RVS, RVD),	      vfp_sp_dp_cvt),
15777
15778  /* Memory operations.	 */
15779 cCE(fldd,	d100b00, 2, (RVD, ADDRGLDC),  vfp_dp_ldst),
15780 cCE(fstd,	d000b00, 2, (RVD, ADDRGLDC),  vfp_dp_ldst),
15781 cCE(fldmiad,	c900b00, 2, (RRw, VRDLST),    vfp_dp_ldstmia),
15782 cCE(fldmfdd,	c900b00, 2, (RRw, VRDLST),    vfp_dp_ldstmia),
15783 cCE(fldmdbd,	d300b00, 2, (RRw, VRDLST),    vfp_dp_ldstmdb),
15784 cCE(fldmead,	d300b00, 2, (RRw, VRDLST),    vfp_dp_ldstmdb),
15785 cCE(fstmiad,	c800b00, 2, (RRw, VRDLST),    vfp_dp_ldstmia),
15786 cCE(fstmead,	c800b00, 2, (RRw, VRDLST),    vfp_dp_ldstmia),
15787 cCE(fstmdbd,	d200b00, 2, (RRw, VRDLST),    vfp_dp_ldstmdb),
15788 cCE(fstmfdd,	d200b00, 2, (RRw, VRDLST),    vfp_dp_ldstmdb),
15789
15790  /* Monadic operations.  */
15791 cCE(fabsd,	eb00bc0, 2, (RVD, RVD),	      vfp_dp_rd_rm),
15792 cCE(fnegd,	eb10b40, 2, (RVD, RVD),	      vfp_dp_rd_rm),
15793 cCE(fsqrtd,	eb10bc0, 2, (RVD, RVD),	      vfp_dp_rd_rm),
15794
15795  /* Dyadic operations.	 */
15796 cCE(faddd,	e300b00, 3, (RVD, RVD, RVD),  vfp_dp_rd_rn_rm),
15797 cCE(fsubd,	e300b40, 3, (RVD, RVD, RVD),  vfp_dp_rd_rn_rm),
15798 cCE(fmuld,	e200b00, 3, (RVD, RVD, RVD),  vfp_dp_rd_rn_rm),
15799 cCE(fdivd,	e800b00, 3, (RVD, RVD, RVD),  vfp_dp_rd_rn_rm),
15800 cCE(fmacd,	e000b00, 3, (RVD, RVD, RVD),  vfp_dp_rd_rn_rm),
15801 cCE(fmscd,	e100b00, 3, (RVD, RVD, RVD),  vfp_dp_rd_rn_rm),
15802 cCE(fnmuld,	e200b40, 3, (RVD, RVD, RVD),  vfp_dp_rd_rn_rm),
15803 cCE(fnmacd,	e000b40, 3, (RVD, RVD, RVD),  vfp_dp_rd_rn_rm),
15804 cCE(fnmscd,	e100b40, 3, (RVD, RVD, RVD),  vfp_dp_rd_rn_rm),
15805
15806  /* Comparisons.  */
15807 cCE(fcmpd,	eb40b40, 2, (RVD, RVD),	      vfp_dp_rd_rm),
15808 cCE(fcmpzd,	eb50b40, 1, (RVD),	      vfp_dp_rd),
15809 cCE(fcmped,	eb40bc0, 2, (RVD, RVD),	      vfp_dp_rd_rm),
15810 cCE(fcmpezd,	eb50bc0, 1, (RVD),	      vfp_dp_rd),
15811
15812#undef ARM_VARIANT
15813#define ARM_VARIANT &fpu_vfp_ext_v2
15814 cCE(fmsrr,	c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
15815 cCE(fmrrs,	c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
15816 cCE(fmdrr,	c400b10, 3, (RVD, RR, RR),    vfp_dp_rm_rd_rn),
15817 cCE(fmrrd,	c500b10, 3, (RR, RR, RVD),    vfp_dp_rd_rn_rm),
15818
15819/* Instructions which may belong to either the Neon or VFP instruction sets.
15820   Individual encoder functions perform additional architecture checks.  */
15821#undef ARM_VARIANT
15822#define ARM_VARIANT &fpu_vfp_ext_v1xd
15823#undef THUMB_VARIANT
15824#define THUMB_VARIANT &fpu_vfp_ext_v1xd
15825  /* These mnemonics are unique to VFP.  */
15826 NCE(vsqrt,     0,       2, (RVSD, RVSD),       vfp_nsyn_sqrt),
15827 NCE(vdiv,      0,       3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
15828 nCE(vnmul,     vnmul,   3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15829 nCE(vnmla,     vnmla,   3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15830 nCE(vnmls,     vnmls,   3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15831 nCE(vcmp,      vcmp,    2, (RVSD, RVSD_I0),    vfp_nsyn_cmp),
15832 nCE(vcmpe,     vcmpe,   2, (RVSD, RVSD_I0),    vfp_nsyn_cmp),
15833 NCE(vpush,     0,       1, (VRSDLST),          vfp_nsyn_push),
15834 NCE(vpop,      0,       1, (VRSDLST),          vfp_nsyn_pop),
15835 NCE(vcvtz,     0,       2, (RVSD, RVSD),       vfp_nsyn_cvtz),
15836
15837  /* Mnemonics shared by Neon and VFP.  */
15838 nCEF(vmul,     vmul,    3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
15839 nCEF(vmla,     vmla,    3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15840 nCEF(vmls,     vmls,    3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15841
15842 nCEF(vadd,     vadd,    3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15843 nCEF(vsub,     vsub,    3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15844
15845 NCEF(vabs,     1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15846 NCEF(vneg,     1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15847
15848 NCE(vldm,      c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15849 NCE(vldmia,    c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15850 NCE(vldmdb,    d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15851 NCE(vstm,      c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15852 NCE(vstmia,    c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15853 NCE(vstmdb,    d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15854 NCE(vldr,      d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15855 NCE(vstr,      d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15856
15857 nCEF(vcvt,     vcvt,    3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
15858
15859  /* NOTE: All VMOV encoding is special-cased!  */
15860 NCE(vmov,      0,       1, (VMOV), neon_mov),
15861 NCE(vmovq,     0,       1, (VMOV), neon_mov),
15862
15863#undef THUMB_VARIANT
15864#define THUMB_VARIANT &fpu_neon_ext_v1
15865#undef ARM_VARIANT
15866#define ARM_VARIANT &fpu_neon_ext_v1
15867  /* Data processing with three registers of the same length.  */
15868  /* integer ops, valid types S8 S16 S32 U8 U16 U32.  */
15869 NUF(vaba,      0000710, 3, (RNDQ, RNDQ,  RNDQ), neon_dyadic_i_su),
15870 NUF(vabaq,     0000710, 3, (RNQ,  RNQ,   RNQ),  neon_dyadic_i_su),
15871 NUF(vhadd,     0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15872 NUF(vhaddq,    0000000, 3, (RNQ,  oRNQ,  RNQ),  neon_dyadic_i_su),
15873 NUF(vrhadd,    0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15874 NUF(vrhaddq,   0000100, 3, (RNQ,  oRNQ,  RNQ),  neon_dyadic_i_su),
15875 NUF(vhsub,     0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15876 NUF(vhsubq,    0000200, 3, (RNQ,  oRNQ,  RNQ),  neon_dyadic_i_su),
15877  /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64.  */
15878 NUF(vqadd,     0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15879 NUF(vqaddq,    0000010, 3, (RNQ,  oRNQ,  RNQ),  neon_dyadic_i64_su),
15880 NUF(vqsub,     0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15881 NUF(vqsubq,    0000210, 3, (RNQ,  oRNQ,  RNQ),  neon_dyadic_i64_su),
15882 NUF(vrshl,     0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15883 NUF(vrshlq,    0000500, 3, (RNQ,  oRNQ,  RNQ),  neon_rshl),
15884 NUF(vqrshl,    0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15885 NUF(vqrshlq,   0000510, 3, (RNQ,  oRNQ,  RNQ),  neon_rshl),
15886  /* If not immediate, fall back to neon_dyadic_i64_su.
15887     shl_imm should accept I8 I16 I32 I64,
15888     qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64.  */
15889 nUF(vshl,      vshl,    3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
15890 nUF(vshlq,     vshl,    3, (RNQ,  oRNQ,  RNDQ_I63b), neon_shl_imm),
15891 nUF(vqshl,     vqshl,   3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
15892 nUF(vqshlq,    vqshl,   3, (RNQ,  oRNQ,  RNDQ_I63b), neon_qshl_imm),
15893  /* Logic ops, types optional & ignored.  */
15894 nUF(vand,      vand,    2, (RNDQ, NILO),        neon_logic),
15895 nUF(vandq,     vand,    2, (RNQ,  NILO),        neon_logic),
15896 nUF(vbic,      vbic,    2, (RNDQ, NILO),        neon_logic),
15897 nUF(vbicq,     vbic,    2, (RNQ,  NILO),        neon_logic),
15898 nUF(vorr,      vorr,    2, (RNDQ, NILO),        neon_logic),
15899 nUF(vorrq,     vorr,    2, (RNQ,  NILO),        neon_logic),
15900 nUF(vorn,      vorn,    2, (RNDQ, NILO),        neon_logic),
15901 nUF(vornq,     vorn,    2, (RNQ,  NILO),        neon_logic),
15902 nUF(veor,      veor,    3, (RNDQ, oRNDQ, RNDQ), neon_logic),
15903 nUF(veorq,     veor,    3, (RNQ,  oRNQ,  RNQ),  neon_logic),
15904  /* Bitfield ops, untyped.  */
15905 NUF(vbsl,      1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15906 NUF(vbslq,     1100110, 3, (RNQ,  RNQ,  RNQ),  neon_bitfield),
15907 NUF(vbit,      1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15908 NUF(vbitq,     1200110, 3, (RNQ,  RNQ,  RNQ),  neon_bitfield),
15909 NUF(vbif,      1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15910 NUF(vbifq,     1300110, 3, (RNQ,  RNQ,  RNQ),  neon_bitfield),
15911  /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32.  */
15912 nUF(vabd,      vabd,    3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15913 nUF(vabdq,     vabd,    3, (RNQ,  oRNQ,  RNQ),  neon_dyadic_if_su),
15914 nUF(vmax,      vmax,    3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15915 nUF(vmaxq,     vmax,    3, (RNQ,  oRNQ,  RNQ),  neon_dyadic_if_su),
15916 nUF(vmin,      vmin,    3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15917 nUF(vminq,     vmin,    3, (RNQ,  oRNQ,  RNQ),  neon_dyadic_if_su),
15918  /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
15919     back to neon_dyadic_if_su.  */
15920 nUF(vcge,      vcge,    3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15921 nUF(vcgeq,     vcge,    3, (RNQ,  oRNQ,  RNDQ_I0), neon_cmp),
15922 nUF(vcgt,      vcgt,    3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15923 nUF(vcgtq,     vcgt,    3, (RNQ,  oRNQ,  RNDQ_I0), neon_cmp),
15924 nUF(vclt,      vclt,    3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15925 nUF(vcltq,     vclt,    3, (RNQ,  oRNQ,  RNDQ_I0), neon_cmp_inv),
15926 nUF(vcle,      vcle,    3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15927 nUF(vcleq,     vcle,    3, (RNQ,  oRNQ,  RNDQ_I0), neon_cmp_inv),
15928  /* Comparison. Type I8 I16 I32 F32.  */
15929 nUF(vceq,      vceq,    3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
15930 nUF(vceqq,     vceq,    3, (RNQ,  oRNQ,  RNDQ_I0), neon_ceq),
15931  /* As above, D registers only.  */
15932 nUF(vpmax,     vpmax,   3, (RND, oRND, RND), neon_dyadic_if_su_d),
15933 nUF(vpmin,     vpmin,   3, (RND, oRND, RND), neon_dyadic_if_su_d),
15934  /* Int and float variants, signedness unimportant.  */
15935 nUF(vmlaq,     vmla,    3, (RNQ,  oRNQ,  RNDQ_RNSC), neon_mac_maybe_scalar),
15936 nUF(vmlsq,     vmls,    3, (RNQ,  oRNQ,  RNDQ_RNSC), neon_mac_maybe_scalar),
15937 nUF(vpadd,     vpadd,   3, (RND,  oRND,  RND),       neon_dyadic_if_i_d),
15938  /* Add/sub take types I8 I16 I32 I64 F32.  */
15939 nUF(vaddq,     vadd,    3, (RNQ,  oRNQ,  RNQ),  neon_addsub_if_i),
15940 nUF(vsubq,     vsub,    3, (RNQ,  oRNQ,  RNQ),  neon_addsub_if_i),
15941  /* vtst takes sizes 8, 16, 32.  */
15942 NUF(vtst,      0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
15943 NUF(vtstq,     0000810, 3, (RNQ,  oRNQ,  RNQ),  neon_tst),
15944  /* VMUL takes I8 I16 I32 F32 P8.  */
15945 nUF(vmulq,     vmul,     3, (RNQ,  oRNQ,  RNDQ_RNSC), neon_mul),
15946  /* VQD{R}MULH takes S16 S32.  */
15947 nUF(vqdmulh,   vqdmulh,  3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15948 nUF(vqdmulhq,  vqdmulh,  3, (RNQ,  oRNQ,  RNDQ_RNSC), neon_qdmulh),
15949 nUF(vqrdmulh,  vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15950 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ,  oRNQ,  RNDQ_RNSC), neon_qdmulh),
15951 NUF(vacge,     0000e10,  3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15952 NUF(vacgeq,    0000e10,  3, (RNQ,  oRNQ,  RNQ),  neon_fcmp_absolute),
15953 NUF(vacgt,     0200e10,  3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15954 NUF(vacgtq,    0200e10,  3, (RNQ,  oRNQ,  RNQ),  neon_fcmp_absolute),
15955 NUF(vaclt,     0200e10,  3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
15956 NUF(vacltq,    0200e10,  3, (RNQ,  oRNQ,  RNQ),  neon_fcmp_absolute_inv),
15957 NUF(vacle,     0000e10,  3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
15958 NUF(vacleq,    0000e10,  3, (RNQ,  oRNQ,  RNQ),  neon_fcmp_absolute_inv),
15959 NUF(vrecps,    0000f10,  3, (RNDQ, oRNDQ, RNDQ), neon_step),
15960 NUF(vrecpsq,   0000f10,  3, (RNQ,  oRNQ,  RNQ),  neon_step),
15961 NUF(vrsqrts,   0200f10,  3, (RNDQ, oRNDQ, RNDQ), neon_step),
15962 NUF(vrsqrtsq,  0200f10,  3, (RNQ,  oRNQ,  RNQ),  neon_step),
15963
15964  /* Two address, int/float. Types S8 S16 S32 F32.  */
15965 NUF(vabsq,     1b10300, 2, (RNQ,  RNQ),      neon_abs_neg),
15966 NUF(vnegq,     1b10380, 2, (RNQ,  RNQ),      neon_abs_neg),
15967
15968  /* Data processing with two registers and a shift amount.  */
15969  /* Right shifts, and variants with rounding.
15970     Types accepted S8 S16 S32 S64 U8 U16 U32 U64.  */
15971 NUF(vshr,      0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
15972 NUF(vshrq,     0800010, 3, (RNQ,  oRNQ,  I64z), neon_rshift_round_imm),
15973 NUF(vrshr,     0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
15974 NUF(vrshrq,    0800210, 3, (RNQ,  oRNQ,  I64z), neon_rshift_round_imm),
15975 NUF(vsra,      0800110, 3, (RNDQ, oRNDQ, I64),  neon_rshift_round_imm),
15976 NUF(vsraq,     0800110, 3, (RNQ,  oRNQ,  I64),  neon_rshift_round_imm),
15977 NUF(vrsra,     0800310, 3, (RNDQ, oRNDQ, I64),  neon_rshift_round_imm),
15978 NUF(vrsraq,    0800310, 3, (RNQ,  oRNQ,  I64),  neon_rshift_round_imm),
15979  /* Shift and insert. Sizes accepted 8 16 32 64.  */
15980 NUF(vsli,      1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
15981 NUF(vsliq,     1800510, 3, (RNQ,  oRNQ,  I63), neon_sli),
15982 NUF(vsri,      1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
15983 NUF(vsriq,     1800410, 3, (RNQ,  oRNQ,  I64), neon_sri),
15984  /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64.  */
15985 NUF(vqshlu,    1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
15986 NUF(vqshluq,   1800610, 3, (RNQ,  oRNQ,  I63), neon_qshlu_imm),
15987  /* Right shift immediate, saturating & narrowing, with rounding variants.
15988     Types accepted S16 S32 S64 U16 U32 U64.  */
15989 NUF(vqshrn,    0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
15990 NUF(vqrshrn,   0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
15991  /* As above, unsigned. Types accepted S16 S32 S64.  */
15992 NUF(vqshrun,   0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
15993 NUF(vqrshrun,  0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
15994  /* Right shift narrowing. Types accepted I16 I32 I64.  */
15995 NUF(vshrn,     0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
15996 NUF(vrshrn,    0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
15997  /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant.  */
15998 nUF(vshll,     vshll,   3, (RNQ, RND, I32),  neon_shll),
15999  /* CVT with optional immediate for fixed-point variant.  */
16000 nUF(vcvtq,     vcvt,    3, (RNQ, RNQ, oI32b), neon_cvt),
16001
16002 nUF(vmvn,      vmvn,    2, (RNDQ, RNDQ_IMVNb), neon_mvn),
16003 nUF(vmvnq,     vmvn,    2, (RNQ,  RNDQ_IMVNb), neon_mvn),
16004
16005  /* Data processing, three registers of different lengths.  */
16006  /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32.  */
16007 NUF(vabal,     0800500, 3, (RNQ, RND, RND),  neon_abal),
16008 NUF(vabdl,     0800700, 3, (RNQ, RND, RND),  neon_dyadic_long),
16009 NUF(vaddl,     0800000, 3, (RNQ, RND, RND),  neon_dyadic_long),
16010 NUF(vsubl,     0800200, 3, (RNQ, RND, RND),  neon_dyadic_long),
16011  /* If not scalar, fall back to neon_dyadic_long.
16012     Vector types as above, scalar types S16 S32 U16 U32.  */
16013 nUF(vmlal,     vmlal,   3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16014 nUF(vmlsl,     vmlsl,   3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16015  /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32.  */
16016 NUF(vaddw,     0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16017 NUF(vsubw,     0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16018  /* Dyadic, narrowing insns. Types I16 I32 I64.  */
16019 NUF(vaddhn,    0800400, 3, (RND, RNQ, RNQ),  neon_dyadic_narrow),
16020 NUF(vraddhn,   1800400, 3, (RND, RNQ, RNQ),  neon_dyadic_narrow),
16021 NUF(vsubhn,    0800600, 3, (RND, RNQ, RNQ),  neon_dyadic_narrow),
16022 NUF(vrsubhn,   1800600, 3, (RND, RNQ, RNQ),  neon_dyadic_narrow),
16023  /* Saturating doubling multiplies. Types S16 S32.  */
16024 nUF(vqdmlal,   vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16025 nUF(vqdmlsl,   vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16026 nUF(vqdmull,   vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16027  /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
16028     S16 S32 U16 U32.  */
16029 nUF(vmull,     vmull,   3, (RNQ, RND, RND_RNSC), neon_vmull),
16030
16031  /* Extract. Size 8.  */
16032 NUF(vext,      0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
16033 NUF(vextq,     0b00000, 4, (RNQ,  oRNQ,  RNQ,  I15), neon_ext),
16034
16035  /* Two registers, miscellaneous.  */
16036  /* Reverse. Sizes 8 16 32 (must be < size in opcode).  */
16037 NUF(vrev64,    1b00000, 2, (RNDQ, RNDQ),     neon_rev),
16038 NUF(vrev64q,   1b00000, 2, (RNQ,  RNQ),      neon_rev),
16039 NUF(vrev32,    1b00080, 2, (RNDQ, RNDQ),     neon_rev),
16040 NUF(vrev32q,   1b00080, 2, (RNQ,  RNQ),      neon_rev),
16041 NUF(vrev16,    1b00100, 2, (RNDQ, RNDQ),     neon_rev),
16042 NUF(vrev16q,   1b00100, 2, (RNQ,  RNQ),      neon_rev),
16043  /* Vector replicate. Sizes 8 16 32.  */
16044 nCE(vdup,      vdup,    2, (RNDQ, RR_RNSC),  neon_dup),
16045 nCE(vdupq,     vdup,    2, (RNQ,  RR_RNSC),  neon_dup),
16046  /* VMOVL. Types S8 S16 S32 U8 U16 U32.  */
16047 NUF(vmovl,     0800a10, 2, (RNQ, RND),       neon_movl),
16048  /* VMOVN. Types I16 I32 I64.  */
16049 nUF(vmovn,     vmovn,   2, (RND, RNQ),       neon_movn),
16050  /* VQMOVN. Types S16 S32 S64 U16 U32 U64.  */
16051 nUF(vqmovn,    vqmovn,  2, (RND, RNQ),       neon_qmovn),
16052  /* VQMOVUN. Types S16 S32 S64.  */
16053 nUF(vqmovun,   vqmovun, 2, (RND, RNQ),       neon_qmovun),
16054  /* VZIP / VUZP. Sizes 8 16 32.  */
16055 NUF(vzip,      1b20180, 2, (RNDQ, RNDQ),     neon_zip_uzp),
16056 NUF(vzipq,     1b20180, 2, (RNQ,  RNQ),      neon_zip_uzp),
16057 NUF(vuzp,      1b20100, 2, (RNDQ, RNDQ),     neon_zip_uzp),
16058 NUF(vuzpq,     1b20100, 2, (RNQ,  RNQ),      neon_zip_uzp),
16059  /* VQABS / VQNEG. Types S8 S16 S32.  */
16060 NUF(vqabs,     1b00700, 2, (RNDQ, RNDQ),     neon_sat_abs_neg),
16061 NUF(vqabsq,    1b00700, 2, (RNQ,  RNQ),      neon_sat_abs_neg),
16062 NUF(vqneg,     1b00780, 2, (RNDQ, RNDQ),     neon_sat_abs_neg),
16063 NUF(vqnegq,    1b00780, 2, (RNQ,  RNQ),      neon_sat_abs_neg),
16064  /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32.  */
16065 NUF(vpadal,    1b00600, 2, (RNDQ, RNDQ),     neon_pair_long),
16066 NUF(vpadalq,   1b00600, 2, (RNQ,  RNQ),      neon_pair_long),
16067 NUF(vpaddl,    1b00200, 2, (RNDQ, RNDQ),     neon_pair_long),
16068 NUF(vpaddlq,   1b00200, 2, (RNQ,  RNQ),      neon_pair_long),
16069  /* Reciprocal estimates. Types U32 F32.  */
16070 NUF(vrecpe,    1b30400, 2, (RNDQ, RNDQ),     neon_recip_est),
16071 NUF(vrecpeq,   1b30400, 2, (RNQ,  RNQ),      neon_recip_est),
16072 NUF(vrsqrte,   1b30480, 2, (RNDQ, RNDQ),     neon_recip_est),
16073 NUF(vrsqrteq,  1b30480, 2, (RNQ,  RNQ),      neon_recip_est),
16074  /* VCLS. Types S8 S16 S32.  */
16075 NUF(vcls,      1b00400, 2, (RNDQ, RNDQ),     neon_cls),
16076 NUF(vclsq,     1b00400, 2, (RNQ,  RNQ),      neon_cls),
16077  /* VCLZ. Types I8 I16 I32.  */
16078 NUF(vclz,      1b00480, 2, (RNDQ, RNDQ),     neon_clz),
16079 NUF(vclzq,     1b00480, 2, (RNQ,  RNQ),      neon_clz),
16080  /* VCNT. Size 8.  */
16081 NUF(vcnt,      1b00500, 2, (RNDQ, RNDQ),     neon_cnt),
16082 NUF(vcntq,     1b00500, 2, (RNQ,  RNQ),      neon_cnt),
16083  /* Two address, untyped.  */
16084 NUF(vswp,      1b20000, 2, (RNDQ, RNDQ),     neon_swp),
16085 NUF(vswpq,     1b20000, 2, (RNQ,  RNQ),      neon_swp),
16086  /* VTRN. Sizes 8 16 32.  */
16087 nUF(vtrn,      vtrn,    2, (RNDQ, RNDQ),     neon_trn),
16088 nUF(vtrnq,     vtrn,    2, (RNQ,  RNQ),      neon_trn),
16089
16090  /* Table lookup. Size 8.  */
16091 NUF(vtbl,      1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16092 NUF(vtbx,      1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16093
16094#undef THUMB_VARIANT
16095#define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
16096#undef ARM_VARIANT
16097#define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
16098  /* Neon element/structure load/store.  */
16099 nUF(vld1,      vld1,    2, (NSTRLST, ADDR),  neon_ldx_stx),
16100 nUF(vst1,      vst1,    2, (NSTRLST, ADDR),  neon_ldx_stx),
16101 nUF(vld2,      vld2,    2, (NSTRLST, ADDR),  neon_ldx_stx),
16102 nUF(vst2,      vst2,    2, (NSTRLST, ADDR),  neon_ldx_stx),
16103 nUF(vld3,      vld3,    2, (NSTRLST, ADDR),  neon_ldx_stx),
16104 nUF(vst3,      vst3,    2, (NSTRLST, ADDR),  neon_ldx_stx),
16105 nUF(vld4,      vld4,    2, (NSTRLST, ADDR),  neon_ldx_stx),
16106 nUF(vst4,      vst4,    2, (NSTRLST, ADDR),  neon_ldx_stx),
16107
16108#undef THUMB_VARIANT
16109#define THUMB_VARIANT &fpu_vfp_ext_v3
16110#undef ARM_VARIANT
16111#define ARM_VARIANT &fpu_vfp_ext_v3
16112 cCE(fconsts,   eb00a00, 2, (RVS, I255),      vfp_sp_const),
16113 cCE(fconstd,   eb00b00, 2, (RVD, I255),      vfp_dp_const),
16114 cCE(fshtos,    eba0a40, 2, (RVS, I16z),      vfp_sp_conv_16),
16115 cCE(fshtod,    eba0b40, 2, (RVD, I16z),      vfp_dp_conv_16),
16116 cCE(fsltos,    eba0ac0, 2, (RVS, I32),       vfp_sp_conv_32),
16117 cCE(fsltod,    eba0bc0, 2, (RVD, I32),       vfp_dp_conv_32),
16118 cCE(fuhtos,    ebb0a40, 2, (RVS, I16z),      vfp_sp_conv_16),
16119 cCE(fuhtod,    ebb0b40, 2, (RVD, I16z),      vfp_dp_conv_16),
16120 cCE(fultos,    ebb0ac0, 2, (RVS, I32),       vfp_sp_conv_32),
16121 cCE(fultod,    ebb0bc0, 2, (RVD, I32),       vfp_dp_conv_32),
16122 cCE(ftoshs,    ebe0a40, 2, (RVS, I16z),      vfp_sp_conv_16),
16123 cCE(ftoshd,    ebe0b40, 2, (RVD, I16z),      vfp_dp_conv_16),
16124 cCE(ftosls,    ebe0ac0, 2, (RVS, I32),       vfp_sp_conv_32),
16125 cCE(ftosld,    ebe0bc0, 2, (RVD, I32),       vfp_dp_conv_32),
16126 cCE(ftouhs,    ebf0a40, 2, (RVS, I16z),      vfp_sp_conv_16),
16127 cCE(ftouhd,    ebf0b40, 2, (RVD, I16z),      vfp_dp_conv_16),
16128 cCE(ftouls,    ebf0ac0, 2, (RVS, I32),       vfp_sp_conv_32),
16129 cCE(ftould,    ebf0bc0, 2, (RVD, I32),       vfp_dp_conv_32),
16130
16131#undef THUMB_VARIANT
16132#undef ARM_VARIANT
16133#define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions.	 */
16134 cCE(mia,	e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16135 cCE(miaph,	e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16136 cCE(miabb,	e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16137 cCE(miabt,	e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16138 cCE(miatb,	e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16139 cCE(miatt,	e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16140 cCE(mar,	c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
16141 cCE(mra,	c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
16142
16143#undef ARM_VARIANT
16144#define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology.  */
16145 cCE(tandcb,	e13f130, 1, (RR),		    iwmmxt_tandorc),
16146 cCE(tandch,	e53f130, 1, (RR),		    iwmmxt_tandorc),
16147 cCE(tandcw,	e93f130, 1, (RR),		    iwmmxt_tandorc),
16148 cCE(tbcstb,	e400010, 2, (RIWR, RR),		    rn_rd),
16149 cCE(tbcsth,	e400050, 2, (RIWR, RR),		    rn_rd),
16150 cCE(tbcstw,	e400090, 2, (RIWR, RR),		    rn_rd),
16151 cCE(textrcb,	e130170, 2, (RR, I7),		    iwmmxt_textrc),
16152 cCE(textrch,	e530170, 2, (RR, I7),		    iwmmxt_textrc),
16153 cCE(textrcw,	e930170, 2, (RR, I7),		    iwmmxt_textrc),
16154 cCE(textrmub,	e100070, 3, (RR, RIWR, I7),	    iwmmxt_textrm),
16155 cCE(textrmuh,	e500070, 3, (RR, RIWR, I7),	    iwmmxt_textrm),
16156 cCE(textrmuw,	e900070, 3, (RR, RIWR, I7),	    iwmmxt_textrm),
16157 cCE(textrmsb,	e100078, 3, (RR, RIWR, I7),	    iwmmxt_textrm),
16158 cCE(textrmsh,	e500078, 3, (RR, RIWR, I7),	    iwmmxt_textrm),
16159 cCE(textrmsw,	e900078, 3, (RR, RIWR, I7),	    iwmmxt_textrm),
16160 cCE(tinsrb,	e600010, 3, (RIWR, RR, I7),	    iwmmxt_tinsr),
16161 cCE(tinsrh,	e600050, 3, (RIWR, RR, I7),	    iwmmxt_tinsr),
16162 cCE(tinsrw,	e600090, 3, (RIWR, RR, I7),	    iwmmxt_tinsr),
16163 cCE(tmcr,	e000110, 2, (RIWC_RIWG, RR),	    rn_rd),
16164 cCE(tmcrr,	c400000, 3, (RIWR, RR, RR),	    rm_rd_rn),
16165 cCE(tmia,	e200010, 3, (RIWR, RR, RR),	    iwmmxt_tmia),
16166 cCE(tmiaph,	e280010, 3, (RIWR, RR, RR),	    iwmmxt_tmia),
16167 cCE(tmiabb,	e2c0010, 3, (RIWR, RR, RR),	    iwmmxt_tmia),
16168 cCE(tmiabt,	e2d0010, 3, (RIWR, RR, RR),	    iwmmxt_tmia),
16169 cCE(tmiatb,	e2e0010, 3, (RIWR, RR, RR),	    iwmmxt_tmia),
16170 cCE(tmiatt,	e2f0010, 3, (RIWR, RR, RR),	    iwmmxt_tmia),
16171 cCE(tmovmskb,	e100030, 2, (RR, RIWR),		    rd_rn),
16172 cCE(tmovmskh,	e500030, 2, (RR, RIWR),		    rd_rn),
16173 cCE(tmovmskw,	e900030, 2, (RR, RIWR),		    rd_rn),
16174 cCE(tmrc,	e100110, 2, (RR, RIWC_RIWG),	    rd_rn),
16175 cCE(tmrrc,	c500000, 3, (RR, RR, RIWR),	    rd_rn_rm),
16176 cCE(torcb,	e13f150, 1, (RR),		    iwmmxt_tandorc),
16177 cCE(torch,	e53f150, 1, (RR),		    iwmmxt_tandorc),
16178 cCE(torcw,	e93f150, 1, (RR),		    iwmmxt_tandorc),
16179 cCE(waccb,	e0001c0, 2, (RIWR, RIWR),	    rd_rn),
16180 cCE(wacch,	e4001c0, 2, (RIWR, RIWR),	    rd_rn),
16181 cCE(waccw,	e8001c0, 2, (RIWR, RIWR),	    rd_rn),
16182 cCE(waddbss,	e300180, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16183 cCE(waddb,	e000180, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16184 cCE(waddbus,	e100180, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16185 cCE(waddhss,	e700180, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16186 cCE(waddh,	e400180, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16187 cCE(waddhus,	e500180, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16188 cCE(waddwss,	eb00180, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16189 cCE(waddw,	e800180, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16190 cCE(waddwus,	e900180, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16191 cCE(waligni,	e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
16192 cCE(walignr0,	e800020, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16193 cCE(walignr1,	e900020, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16194 cCE(walignr2,	ea00020, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16195 cCE(walignr3,	eb00020, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16196 cCE(wand,	e200000, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16197 cCE(wandn,	e300000, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16198 cCE(wavg2b,	e800000, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16199 cCE(wavg2br,	e900000, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16200 cCE(wavg2h,	ec00000, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16201 cCE(wavg2hr,	ed00000, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16202 cCE(wcmpeqb,	e000060, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16203 cCE(wcmpeqh,	e400060, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16204 cCE(wcmpeqw,	e800060, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16205 cCE(wcmpgtub,	e100060, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16206 cCE(wcmpgtuh,	e500060, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16207 cCE(wcmpgtuw,	e900060, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16208 cCE(wcmpgtsb,	e300060, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16209 cCE(wcmpgtsh,	e700060, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16210 cCE(wcmpgtsw,	eb00060, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16211 cCE(wldrb,	c100000, 2, (RIWR, ADDR),	    iwmmxt_wldstbh),
16212 cCE(wldrh,	c500000, 2, (RIWR, ADDR),	    iwmmxt_wldstbh),
16213 cCE(wldrw,	c100100, 2, (RIWR_RIWC, ADDR),	    iwmmxt_wldstw),
16214 cCE(wldrd,	c500100, 2, (RIWR, ADDR),	    iwmmxt_wldstd),
16215 cCE(wmacs,	e600100, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16216 cCE(wmacsz,	e700100, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16217 cCE(wmacu,	e400100, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16218 cCE(wmacuz,	e500100, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16219 cCE(wmadds,	ea00100, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16220 cCE(wmaddu,	e800100, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16221 cCE(wmaxsb,	e200160, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16222 cCE(wmaxsh,	e600160, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16223 cCE(wmaxsw,	ea00160, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16224 cCE(wmaxub,	e000160, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16225 cCE(wmaxuh,	e400160, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16226 cCE(wmaxuw,	e800160, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16227 cCE(wminsb,	e300160, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16228 cCE(wminsh,	e700160, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16229 cCE(wminsw,	eb00160, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16230 cCE(wminub,	e100160, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16231 cCE(wminuh,	e500160, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16232 cCE(wminuw,	e900160, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16233 cCE(wmov,	e000000, 2, (RIWR, RIWR),	    iwmmxt_wmov),
16234 cCE(wmulsm,	e300100, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16235 cCE(wmulsl,	e200100, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16236 cCE(wmulum,	e100100, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16237 cCE(wmulul,	e000100, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16238 cCE(wor,	e000000, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16239 cCE(wpackhss,	e700080, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16240 cCE(wpackhus,	e500080, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16241 cCE(wpackwss,	eb00080, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16242 cCE(wpackwus,	e900080, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16243 cCE(wpackdss,	ef00080, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16244 cCE(wpackdus,	ed00080, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16245 cCE(wrorh,	e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16246 cCE(wrorhg,	e700148, 3, (RIWR, RIWR, RIWG),	    rd_rn_rm),
16247 cCE(wrorw,	eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16248 cCE(wrorwg,	eb00148, 3, (RIWR, RIWR, RIWG),	    rd_rn_rm),
16249 cCE(wrord,	ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16250 cCE(wrordg,	ef00148, 3, (RIWR, RIWR, RIWG),	    rd_rn_rm),
16251 cCE(wsadb,	e000120, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16252 cCE(wsadbz,	e100120, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16253 cCE(wsadh,	e400120, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16254 cCE(wsadhz,	e500120, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16255 cCE(wshufh,	e0001e0, 3, (RIWR, RIWR, I255),	    iwmmxt_wshufh),
16256 cCE(wsllh,	e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16257 cCE(wsllhg,	e500148, 3, (RIWR, RIWR, RIWG),	    rd_rn_rm),
16258 cCE(wsllw,	e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16259 cCE(wsllwg,	e900148, 3, (RIWR, RIWR, RIWG),	    rd_rn_rm),
16260 cCE(wslld,	ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16261 cCE(wslldg,	ed00148, 3, (RIWR, RIWR, RIWG),	    rd_rn_rm),
16262 cCE(wsrah,	e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16263 cCE(wsrahg,	e400148, 3, (RIWR, RIWR, RIWG),	    rd_rn_rm),
16264 cCE(wsraw,	e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16265 cCE(wsrawg,	e800148, 3, (RIWR, RIWR, RIWG),	    rd_rn_rm),
16266 cCE(wsrad,	ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16267 cCE(wsradg,	ec00148, 3, (RIWR, RIWR, RIWG),	    rd_rn_rm),
16268 cCE(wsrlh,	e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16269 cCE(wsrlhg,	e600148, 3, (RIWR, RIWR, RIWG),	    rd_rn_rm),
16270 cCE(wsrlw,	ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16271 cCE(wsrlwg,	ea00148, 3, (RIWR, RIWR, RIWG),	    rd_rn_rm),
16272 cCE(wsrld,	ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16273 cCE(wsrldg,	ee00148, 3, (RIWR, RIWR, RIWG),	    rd_rn_rm),
16274 cCE(wstrb,	c000000, 2, (RIWR, ADDR),	    iwmmxt_wldstbh),
16275 cCE(wstrh,	c400000, 2, (RIWR, ADDR),	    iwmmxt_wldstbh),
16276 cCE(wstrw,	c000100, 2, (RIWR_RIWC, ADDR),	    iwmmxt_wldstw),
16277 cCE(wstrd,	c400100, 2, (RIWR, ADDR),	    iwmmxt_wldstd),
16278 cCE(wsubbss,	e3001a0, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16279 cCE(wsubb,	e0001a0, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16280 cCE(wsubbus,	e1001a0, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16281 cCE(wsubhss,	e7001a0, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16282 cCE(wsubh,	e4001a0, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16283 cCE(wsubhus,	e5001a0, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16284 cCE(wsubwss,	eb001a0, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16285 cCE(wsubw,	e8001a0, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16286 cCE(wsubwus,	e9001a0, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16287 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR),	    rd_rn),
16288 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR),	    rd_rn),
16289 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR),	    rd_rn),
16290 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR),	    rd_rn),
16291 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR),	    rd_rn),
16292 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR),	    rd_rn),
16293 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16294 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16295 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16296 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR),	    rd_rn),
16297 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR),	    rd_rn),
16298 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR),	    rd_rn),
16299 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR),	    rd_rn),
16300 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR),	    rd_rn),
16301 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR),	    rd_rn),
16302 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16303 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16304 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16305 cCE(wxor,	e100000, 3, (RIWR, RIWR, RIWR),	    rd_rn_rm),
16306 cCE(wzero,	e300000, 1, (RIWR),		    iwmmxt_wzero),
16307
16308#undef ARM_VARIANT
16309#define ARM_VARIANT &arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2.  */
16310 cCE(torvscb,   e13f190, 1, (RR),		    iwmmxt_tandorc),
16311 cCE(torvsch,   e53f190, 1, (RR),		    iwmmxt_tandorc),
16312 cCE(torvscw,   e93f190, 1, (RR),		    iwmmxt_tandorc),
16313 cCE(wabsb,     e2001c0, 2, (RIWR, RIWR),           rd_rn),
16314 cCE(wabsh,     e6001c0, 2, (RIWR, RIWR),           rd_rn),
16315 cCE(wabsw,     ea001c0, 2, (RIWR, RIWR),           rd_rn),
16316 cCE(wabsdiffb, e1001c0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16317 cCE(wabsdiffh, e5001c0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16318 cCE(wabsdiffw, e9001c0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16319 cCE(waddbhusl, e2001a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16320 cCE(waddbhusm, e6001a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16321 cCE(waddhc,    e600180, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16322 cCE(waddwc,    ea00180, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16323 cCE(waddsubhx, ea001a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16324 cCE(wavg4,	e400000, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16325 cCE(wavg4r,    e500000, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16326 cCE(wmaddsn,   ee00100, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16327 cCE(wmaddsx,   eb00100, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16328 cCE(wmaddun,   ec00100, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16329 cCE(wmaddux,   e900100, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16330 cCE(wmerge,    e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
16331 cCE(wmiabb,    e0000a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16332 cCE(wmiabt,    e1000a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16333 cCE(wmiatb,    e2000a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16334 cCE(wmiatt,    e3000a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16335 cCE(wmiabbn,   e4000a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16336 cCE(wmiabtn,   e5000a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16337 cCE(wmiatbn,   e6000a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16338 cCE(wmiattn,   e7000a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16339 cCE(wmiawbb,   e800120, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16340 cCE(wmiawbt,   e900120, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16341 cCE(wmiawtb,   ea00120, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16342 cCE(wmiawtt,   eb00120, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16343 cCE(wmiawbbn,  ec00120, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16344 cCE(wmiawbtn,  ed00120, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16345 cCE(wmiawtbn,  ee00120, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16346 cCE(wmiawttn,  ef00120, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16347 cCE(wmulsmr,   ef00100, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16348 cCE(wmulumr,   ed00100, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16349 cCE(wmulwumr,  ec000c0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16350 cCE(wmulwsmr,  ee000c0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16351 cCE(wmulwum,   ed000c0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16352 cCE(wmulwsm,   ef000c0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16353 cCE(wmulwl,    eb000c0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16354 cCE(wqmiabb,   e8000a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16355 cCE(wqmiabt,   e9000a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16356 cCE(wqmiatb,   ea000a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16357 cCE(wqmiatt,   eb000a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16358 cCE(wqmiabbn,  ec000a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16359 cCE(wqmiabtn,  ed000a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16360 cCE(wqmiatbn,  ee000a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16361 cCE(wqmiattn,  ef000a0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16362 cCE(wqmulm,    e100080, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16363 cCE(wqmulmr,   e300080, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16364 cCE(wqmulwm,   ec000e0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16365 cCE(wqmulwmr,  ee000e0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16366 cCE(wsubaddhx, ed001c0, 3, (RIWR, RIWR, RIWR),     rd_rn_rm),
16367
16368#undef ARM_VARIANT
16369#define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions.	*/
16370 cCE(cfldrs,	c100400, 2, (RMF, ADDRGLDC),	      rd_cpaddr),
16371 cCE(cfldrd,	c500400, 2, (RMD, ADDRGLDC),	      rd_cpaddr),
16372 cCE(cfldr32,	c100500, 2, (RMFX, ADDRGLDC),	      rd_cpaddr),
16373 cCE(cfldr64,	c500500, 2, (RMDX, ADDRGLDC),	      rd_cpaddr),
16374 cCE(cfstrs,	c000400, 2, (RMF, ADDRGLDC),	      rd_cpaddr),
16375 cCE(cfstrd,	c400400, 2, (RMD, ADDRGLDC),	      rd_cpaddr),
16376 cCE(cfstr32,	c000500, 2, (RMFX, ADDRGLDC),	      rd_cpaddr),
16377 cCE(cfstr64,	c400500, 2, (RMDX, ADDRGLDC),	      rd_cpaddr),
16378 cCE(cfmvsr,	e000450, 2, (RMF, RR),		      rn_rd),
16379 cCE(cfmvrs,	e100450, 2, (RR, RMF),		      rd_rn),
16380 cCE(cfmvdlr,	e000410, 2, (RMD, RR),		      rn_rd),
16381 cCE(cfmvrdl,	e100410, 2, (RR, RMD),		      rd_rn),
16382 cCE(cfmvdhr,	e000430, 2, (RMD, RR),		      rn_rd),
16383 cCE(cfmvrdh,	e100430, 2, (RR, RMD),		      rd_rn),
16384 cCE(cfmv64lr,	e000510, 2, (RMDX, RR),		      rn_rd),
16385 cCE(cfmvr64l,	e100510, 2, (RR, RMDX),		      rd_rn),
16386 cCE(cfmv64hr,	e000530, 2, (RMDX, RR),		      rn_rd),
16387 cCE(cfmvr64h,	e100530, 2, (RR, RMDX),		      rd_rn),
16388 cCE(cfmval32,	e200440, 2, (RMAX, RMFX),	      rd_rn),
16389 cCE(cfmv32al,	e100440, 2, (RMFX, RMAX),	      rd_rn),
16390 cCE(cfmvam32,	e200460, 2, (RMAX, RMFX),	      rd_rn),
16391 cCE(cfmv32am,	e100460, 2, (RMFX, RMAX),	      rd_rn),
16392 cCE(cfmvah32,	e200480, 2, (RMAX, RMFX),	      rd_rn),
16393 cCE(cfmv32ah,	e100480, 2, (RMFX, RMAX),	      rd_rn),
16394 cCE(cfmva32,	e2004a0, 2, (RMAX, RMFX),	      rd_rn),
16395 cCE(cfmv32a,	e1004a0, 2, (RMFX, RMAX),	      rd_rn),
16396 cCE(cfmva64,	e2004c0, 2, (RMAX, RMDX),	      rd_rn),
16397 cCE(cfmv64a,	e1004c0, 2, (RMDX, RMAX),	      rd_rn),
16398 cCE(cfmvsc32,	e2004e0, 2, (RMDS, RMDX),	      mav_dspsc),
16399 cCE(cfmv32sc,	e1004e0, 2, (RMDX, RMDS),	      rd),
16400 cCE(cfcpys,	e000400, 2, (RMF, RMF),		      rd_rn),
16401 cCE(cfcpyd,	e000420, 2, (RMD, RMD),		      rd_rn),
16402 cCE(cfcvtsd,	e000460, 2, (RMD, RMF),		      rd_rn),
16403 cCE(cfcvtds,	e000440, 2, (RMF, RMD),		      rd_rn),
16404 cCE(cfcvt32s,	e000480, 2, (RMF, RMFX),	      rd_rn),
16405 cCE(cfcvt32d,	e0004a0, 2, (RMD, RMFX),	      rd_rn),
16406 cCE(cfcvt64s,	e0004c0, 2, (RMF, RMDX),	      rd_rn),
16407 cCE(cfcvt64d,	e0004e0, 2, (RMD, RMDX),	      rd_rn),
16408 cCE(cfcvts32,	e100580, 2, (RMFX, RMF),	      rd_rn),
16409 cCE(cfcvtd32,	e1005a0, 2, (RMFX, RMD),	      rd_rn),
16410 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF),	      rd_rn),
16411 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD),	      rd_rn),
16412 cCE(cfrshl32,	e000550, 3, (RMFX, RMFX, RR),	      mav_triple),
16413 cCE(cfrshl64,	e000570, 3, (RMDX, RMDX, RR),	      mav_triple),
16414 cCE(cfsh32,	e000500, 3, (RMFX, RMFX, I63s),	      mav_shift),
16415 cCE(cfsh64,	e200500, 3, (RMDX, RMDX, I63s),	      mav_shift),
16416 cCE(cfcmps,	e100490, 3, (RR, RMF, RMF),	      rd_rn_rm),
16417 cCE(cfcmpd,	e1004b0, 3, (RR, RMD, RMD),	      rd_rn_rm),
16418 cCE(cfcmp32,	e100590, 3, (RR, RMFX, RMFX),	      rd_rn_rm),
16419 cCE(cfcmp64,	e1005b0, 3, (RR, RMDX, RMDX),	      rd_rn_rm),
16420 cCE(cfabss,	e300400, 2, (RMF, RMF),		      rd_rn),
16421 cCE(cfabsd,	e300420, 2, (RMD, RMD),		      rd_rn),
16422 cCE(cfnegs,	e300440, 2, (RMF, RMF),		      rd_rn),
16423 cCE(cfnegd,	e300460, 2, (RMD, RMD),		      rd_rn),
16424 cCE(cfadds,	e300480, 3, (RMF, RMF, RMF),	      rd_rn_rm),
16425 cCE(cfaddd,	e3004a0, 3, (RMD, RMD, RMD),	      rd_rn_rm),
16426 cCE(cfsubs,	e3004c0, 3, (RMF, RMF, RMF),	      rd_rn_rm),
16427 cCE(cfsubd,	e3004e0, 3, (RMD, RMD, RMD),	      rd_rn_rm),
16428 cCE(cfmuls,	e100400, 3, (RMF, RMF, RMF),	      rd_rn_rm),
16429 cCE(cfmuld,	e100420, 3, (RMD, RMD, RMD),	      rd_rn_rm),
16430 cCE(cfabs32,	e300500, 2, (RMFX, RMFX),	      rd_rn),
16431 cCE(cfabs64,	e300520, 2, (RMDX, RMDX),	      rd_rn),
16432 cCE(cfneg32,	e300540, 2, (RMFX, RMFX),	      rd_rn),
16433 cCE(cfneg64,	e300560, 2, (RMDX, RMDX),	      rd_rn),
16434 cCE(cfadd32,	e300580, 3, (RMFX, RMFX, RMFX),	      rd_rn_rm),
16435 cCE(cfadd64,	e3005a0, 3, (RMDX, RMDX, RMDX),	      rd_rn_rm),
16436 cCE(cfsub32,	e3005c0, 3, (RMFX, RMFX, RMFX),	      rd_rn_rm),
16437 cCE(cfsub64,	e3005e0, 3, (RMDX, RMDX, RMDX),	      rd_rn_rm),
16438 cCE(cfmul32,	e100500, 3, (RMFX, RMFX, RMFX),	      rd_rn_rm),
16439 cCE(cfmul64,	e100520, 3, (RMDX, RMDX, RMDX),	      rd_rn_rm),
16440 cCE(cfmac32,	e100540, 3, (RMFX, RMFX, RMFX),	      rd_rn_rm),
16441 cCE(cfmsc32,	e100560, 3, (RMFX, RMFX, RMFX),	      rd_rn_rm),
16442 cCE(cfmadd32,	e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16443 cCE(cfmsub32,	e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16444 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16445 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16446};
16447#undef ARM_VARIANT
16448#undef THUMB_VARIANT
16449#undef TCE
16450#undef TCM
16451#undef TUE
16452#undef TUF
16453#undef TCC
16454#undef cCE
16455#undef cCL
16456#undef C3E
16457#undef CE
16458#undef CM
16459#undef UE
16460#undef UF
16461#undef UT
16462#undef NUF
16463#undef nUF
16464#undef NCE
16465#undef nCE
16466#undef OPS0
16467#undef OPS1
16468#undef OPS2
16469#undef OPS3
16470#undef OPS4
16471#undef OPS5
16472#undef OPS6
16473#undef do_0
16474
16475/* MD interface: bits in the object file.  */
16476
16477/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
16478   for use in the a.out file, and stores them in the array pointed to by buf.
16479   This knows about the endian-ness of the target machine and does
16480   THE RIGHT THING, whatever it is.  Possible values for n are 1 (byte)
16481   2 (short) and 4 (long)  Floating numbers are put out as a series of
16482   LITTLENUMS (shorts, here at least).	*/
16483
16484void
16485md_number_to_chars (char * buf, valueT val, int n)
16486{
16487  if (target_big_endian)
16488    number_to_chars_bigendian (buf, val, n);
16489  else
16490    number_to_chars_littleendian (buf, val, n);
16491}
16492
16493static valueT
16494md_chars_to_number (char * buf, int n)
16495{
16496  valueT result = 0;
16497  unsigned char * where = (unsigned char *) buf;
16498
16499  if (target_big_endian)
16500    {
16501      while (n--)
16502	{
16503	  result <<= 8;
16504	  result |= (*where++ & 255);
16505	}
16506    }
16507  else
16508    {
16509      while (n--)
16510	{
16511	  result <<= 8;
16512	  result |= (where[n] & 255);
16513	}
16514    }
16515
16516  return result;
16517}
16518
16519/* MD interface: Sections.  */
16520
16521/* Estimate the size of a frag before relaxing.  Assume everything fits in
16522   2 bytes.  */
16523
16524int
16525md_estimate_size_before_relax (fragS * fragp,
16526			       segT    segtype ATTRIBUTE_UNUSED)
16527{
16528  fragp->fr_var = 2;
16529  return 2;
16530}
16531
16532/* Convert a machine dependent frag.  */
16533
16534void
16535md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
16536{
16537  unsigned long insn;
16538  unsigned long old_op;
16539  char *buf;
16540  expressionS exp;
16541  fixS *fixp;
16542  int reloc_type;
16543  int pc_rel;
16544  int opcode;
16545
16546  buf = fragp->fr_literal + fragp->fr_fix;
16547
16548  old_op = bfd_get_16(abfd, buf);
16549  if (fragp->fr_symbol) {
16550      exp.X_op = O_symbol;
16551      exp.X_add_symbol = fragp->fr_symbol;
16552  } else {
16553      exp.X_op = O_constant;
16554  }
16555  exp.X_add_number = fragp->fr_offset;
16556  opcode = fragp->fr_subtype;
16557  switch (opcode)
16558    {
16559    case T_MNEM_ldr_pc:
16560    case T_MNEM_ldr_pc2:
16561    case T_MNEM_ldr_sp:
16562    case T_MNEM_str_sp:
16563    case T_MNEM_ldr:
16564    case T_MNEM_ldrb:
16565    case T_MNEM_ldrh:
16566    case T_MNEM_str:
16567    case T_MNEM_strb:
16568    case T_MNEM_strh:
16569      if (fragp->fr_var == 4)
16570	{
16571	  insn = THUMB_OP32(opcode);
16572	  if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
16573	    {
16574	      insn |= (old_op & 0x700) << 4;
16575	    }
16576	  else
16577	    {
16578	      insn |= (old_op & 7) << 12;
16579	      insn |= (old_op & 0x38) << 13;
16580	    }
16581	  insn |= 0x00000c00;
16582	  put_thumb32_insn (buf, insn);
16583	  reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
16584	}
16585      else
16586	{
16587	  reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
16588	}
16589      pc_rel = (opcode == T_MNEM_ldr_pc2);
16590      break;
16591    case T_MNEM_adr:
16592      if (fragp->fr_var == 4)
16593	{
16594	  insn = THUMB_OP32 (opcode);
16595	  insn |= (old_op & 0xf0) << 4;
16596	  put_thumb32_insn (buf, insn);
16597	  reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
16598	}
16599      else
16600	{
16601	  reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16602	  exp.X_add_number -= 4;
16603	}
16604      pc_rel = 1;
16605      break;
16606    case T_MNEM_mov:
16607    case T_MNEM_movs:
16608    case T_MNEM_cmp:
16609    case T_MNEM_cmn:
16610      if (fragp->fr_var == 4)
16611	{
16612	  int r0off = (opcode == T_MNEM_mov
16613		       || opcode == T_MNEM_movs) ? 0 : 8;
16614	  insn = THUMB_OP32 (opcode);
16615	  insn = (insn & 0xe1ffffff) | 0x10000000;
16616	  insn |= (old_op & 0x700) << r0off;
16617	  put_thumb32_insn (buf, insn);
16618	  reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16619	}
16620      else
16621	{
16622	  reloc_type = BFD_RELOC_ARM_THUMB_IMM;
16623	}
16624      pc_rel = 0;
16625      break;
16626    case T_MNEM_b:
16627      if (fragp->fr_var == 4)
16628	{
16629	  insn = THUMB_OP32(opcode);
16630	  put_thumb32_insn (buf, insn);
16631	  reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
16632	}
16633      else
16634	reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
16635      pc_rel = 1;
16636      break;
16637    case T_MNEM_bcond:
16638      if (fragp->fr_var == 4)
16639	{
16640	  insn = THUMB_OP32(opcode);
16641	  insn |= (old_op & 0xf00) << 14;
16642	  put_thumb32_insn (buf, insn);
16643	  reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
16644	}
16645      else
16646	reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
16647      pc_rel = 1;
16648      break;
16649    case T_MNEM_add_sp:
16650    case T_MNEM_add_pc:
16651    case T_MNEM_inc_sp:
16652    case T_MNEM_dec_sp:
16653      if (fragp->fr_var == 4)
16654	{
16655	  /* ??? Choose between add and addw.  */
16656	  insn = THUMB_OP32 (opcode);
16657	  insn |= (old_op & 0xf0) << 4;
16658	  put_thumb32_insn (buf, insn);
16659	  if (opcode == T_MNEM_add_pc)
16660	    reloc_type = BFD_RELOC_ARM_T32_IMM12;
16661	  else
16662	    reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16663	}
16664      else
16665	reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16666      pc_rel = 0;
16667      break;
16668
16669    case T_MNEM_addi:
16670    case T_MNEM_addis:
16671    case T_MNEM_subi:
16672    case T_MNEM_subis:
16673      if (fragp->fr_var == 4)
16674	{
16675	  insn = THUMB_OP32 (opcode);
16676	  insn |= (old_op & 0xf0) << 4;
16677	  insn |= (old_op & 0xf) << 16;
16678	  put_thumb32_insn (buf, insn);
16679	  if (insn & (1 << 20))
16680	    reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16681	  else
16682	    reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16683	}
16684      else
16685	reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16686      pc_rel = 0;
16687      break;
16688    default:
16689      abort();
16690    }
16691  fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
16692		      reloc_type);
16693  fixp->fx_file = fragp->fr_file;
16694  fixp->fx_line = fragp->fr_line;
16695  fragp->fr_fix += fragp->fr_var;
16696}
16697
16698/* Return the size of a relaxable immediate operand instruction.
16699   SHIFT and SIZE specify the form of the allowable immediate.  */
16700static int
16701relax_immediate (fragS *fragp, int size, int shift)
16702{
16703  offsetT offset;
16704  offsetT mask;
16705  offsetT low;
16706
16707  /* ??? Should be able to do better than this.  */
16708  if (fragp->fr_symbol)
16709    return 4;
16710
16711  low = (1 << shift) - 1;
16712  mask = (1 << (shift + size)) - (1 << shift);
16713  offset = fragp->fr_offset;
16714  /* Force misaligned offsets to 32-bit variant.  */
16715  if (offset & low)
16716    return 4;
16717  if (offset & ~mask)
16718    return 4;
16719  return 2;
16720}
16721
16722/* Get the address of a symbol during relaxation.  */
16723static addressT
16724relaxed_symbol_addr(fragS *fragp, long stretch)
16725{
16726  fragS *sym_frag;
16727  addressT addr;
16728  symbolS *sym;
16729
16730  sym = fragp->fr_symbol;
16731  sym_frag = symbol_get_frag (sym);
16732  know (S_GET_SEGMENT (sym) != absolute_section
16733	|| sym_frag == &zero_address_frag);
16734  addr = S_GET_VALUE (sym) + fragp->fr_offset;
16735
16736  /* If frag has yet to be reached on this pass, assume it will
16737     move by STRETCH just as we did.  If this is not so, it will
16738     be because some frag between grows, and that will force
16739     another pass.  */
16740
16741  if (stretch != 0
16742      && sym_frag->relax_marker != fragp->relax_marker)
16743    addr += stretch;
16744
16745  return addr;
16746}
16747
16748/* Return the size of a relaxable adr pseudo-instruction or PC-relative
16749   load.  */
16750static int
16751relax_adr (fragS *fragp, asection *sec, long stretch)
16752{
16753  addressT addr;
16754  offsetT val;
16755
16756  /* Assume worst case for symbols not known to be in the same section.  */
16757  if (!S_IS_DEFINED(fragp->fr_symbol)
16758      || sec != S_GET_SEGMENT (fragp->fr_symbol))
16759    return 4;
16760
16761  val = relaxed_symbol_addr(fragp, stretch);
16762  addr = fragp->fr_address + fragp->fr_fix;
16763  addr = (addr + 4) & ~3;
16764  /* Force misaligned targets to 32-bit variant.  */
16765  if (val & 3)
16766    return 4;
16767  val -= addr;
16768  if (val < 0 || val > 1020)
16769    return 4;
16770  return 2;
16771}
16772
16773/* Return the size of a relaxable add/sub immediate instruction.  */
16774static int
16775relax_addsub (fragS *fragp, asection *sec)
16776{
16777  char *buf;
16778  int op;
16779
16780  buf = fragp->fr_literal + fragp->fr_fix;
16781  op = bfd_get_16(sec->owner, buf);
16782  if ((op & 0xf) == ((op >> 4) & 0xf))
16783    return relax_immediate (fragp, 8, 0);
16784  else
16785    return relax_immediate (fragp, 3, 0);
16786}
16787
16788
16789/* Return the size of a relaxable branch instruction.  BITS is the
16790   size of the offset field in the narrow instruction.  */
16791
16792static int
16793relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
16794{
16795  addressT addr;
16796  offsetT val;
16797  offsetT limit;
16798
16799  /* Assume worst case for symbols not known to be in the same section.  */
16800  if (!S_IS_DEFINED(fragp->fr_symbol)
16801      || sec != S_GET_SEGMENT (fragp->fr_symbol))
16802    return 4;
16803
16804  val = relaxed_symbol_addr(fragp, stretch);
16805  addr = fragp->fr_address + fragp->fr_fix + 4;
16806  val -= addr;
16807
16808  /* Offset is a signed value *2 */
16809  limit = 1 << bits;
16810  if (val >= limit || val < -limit)
16811    return 4;
16812  return 2;
16813}
16814
16815
16816/* Relax a machine dependent frag.  This returns the amount by which
16817   the current size of the frag should change.  */
16818
16819int
16820arm_relax_frag (asection *sec, fragS *fragp, long stretch)
16821{
16822  int oldsize;
16823  int newsize;
16824
16825  oldsize = fragp->fr_var;
16826  switch (fragp->fr_subtype)
16827    {
16828    case T_MNEM_ldr_pc2:
16829      newsize = relax_adr(fragp, sec, stretch);
16830      break;
16831    case T_MNEM_ldr_pc:
16832    case T_MNEM_ldr_sp:
16833    case T_MNEM_str_sp:
16834      newsize = relax_immediate(fragp, 8, 2);
16835      break;
16836    case T_MNEM_ldr:
16837    case T_MNEM_str:
16838      newsize = relax_immediate(fragp, 5, 2);
16839      break;
16840    case T_MNEM_ldrh:
16841    case T_MNEM_strh:
16842      newsize = relax_immediate(fragp, 5, 1);
16843      break;
16844    case T_MNEM_ldrb:
16845    case T_MNEM_strb:
16846      newsize = relax_immediate(fragp, 5, 0);
16847      break;
16848    case T_MNEM_adr:
16849      newsize = relax_adr(fragp, sec, stretch);
16850      break;
16851    case T_MNEM_mov:
16852    case T_MNEM_movs:
16853    case T_MNEM_cmp:
16854    case T_MNEM_cmn:
16855      newsize = relax_immediate(fragp, 8, 0);
16856      break;
16857    case T_MNEM_b:
16858      newsize = relax_branch(fragp, sec, 11, stretch);
16859      break;
16860    case T_MNEM_bcond:
16861      newsize = relax_branch(fragp, sec, 8, stretch);
16862      break;
16863    case T_MNEM_add_sp:
16864    case T_MNEM_add_pc:
16865      newsize = relax_immediate (fragp, 8, 2);
16866      break;
16867    case T_MNEM_inc_sp:
16868    case T_MNEM_dec_sp:
16869      newsize = relax_immediate (fragp, 7, 2);
16870      break;
16871    case T_MNEM_addi:
16872    case T_MNEM_addis:
16873    case T_MNEM_subi:
16874    case T_MNEM_subis:
16875      newsize = relax_addsub (fragp, sec);
16876      break;
16877    default:
16878      abort();
16879    }
16880
16881  fragp->fr_var = newsize;
16882  /* Freeze wide instructions that are at or before the same location as
16883     in the previous pass.  This avoids infinite loops.
16884     Don't freeze them unconditionally because targets may be artificialy
16885     misaligned by the expansion of preceeding frags.  */
16886  if (stretch <= 0 && newsize > 2)
16887    {
16888      md_convert_frag (sec->owner, sec, fragp);
16889      frag_wane(fragp);
16890    }
16891
16892  return newsize - oldsize;
16893}
16894
16895/* Round up a section size to the appropriate boundary.	 */
16896
16897valueT
16898md_section_align (segT	 segment ATTRIBUTE_UNUSED,
16899		  valueT size)
16900{
16901#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
16902  if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
16903    {
16904      /* For a.out, force the section size to be aligned.  If we don't do
16905	 this, BFD will align it for us, but it will not write out the
16906	 final bytes of the section.  This may be a bug in BFD, but it is
16907	 easier to fix it here since that is how the other a.out targets
16908	 work.  */
16909      int align;
16910
16911      align = bfd_get_section_alignment (stdoutput, segment);
16912      size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
16913    }
16914#endif
16915
16916  return size;
16917}
16918
16919/* This is called from HANDLE_ALIGN in write.c.	 Fill in the contents
16920   of an rs_align_code fragment.  */
16921
16922void
16923arm_handle_align (fragS * fragP)
16924{
16925  static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
16926  static char const thumb_noop[2] = { 0xc0, 0x46 };
16927  static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
16928  static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
16929
16930  int bytes, fix, noop_size;
16931  char * p;
16932  const char * noop;
16933
16934  if (fragP->fr_type != rs_align_code)
16935    return;
16936
16937  bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
16938  p = fragP->fr_literal + fragP->fr_fix;
16939  fix = 0;
16940
16941  if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
16942    bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
16943
16944  if (fragP->tc_frag_data)
16945    {
16946      if (target_big_endian)
16947	noop = thumb_bigend_noop;
16948      else
16949	noop = thumb_noop;
16950      noop_size = sizeof (thumb_noop);
16951    }
16952  else
16953    {
16954      if (target_big_endian)
16955	noop = arm_bigend_noop;
16956      else
16957	noop = arm_noop;
16958      noop_size = sizeof (arm_noop);
16959    }
16960
16961  if (bytes & (noop_size - 1))
16962    {
16963      fix = bytes & (noop_size - 1);
16964      memset (p, 0, fix);
16965      p += fix;
16966      bytes -= fix;
16967    }
16968
16969  while (bytes >= noop_size)
16970    {
16971      memcpy (p, noop, noop_size);
16972      p += noop_size;
16973      bytes -= noop_size;
16974      fix += noop_size;
16975    }
16976
16977  fragP->fr_fix += fix;
16978  fragP->fr_var = noop_size;
16979}
16980
16981/* Called from md_do_align.  Used to create an alignment
16982   frag in a code section.  */
16983
16984void
16985arm_frag_align_code (int n, int max)
16986{
16987  char * p;
16988
16989  /* We assume that there will never be a requirement
16990     to support alignments greater than 32 bytes.  */
16991  if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
16992    as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
16993
16994  p = frag_var (rs_align_code,
16995		MAX_MEM_FOR_RS_ALIGN_CODE,
16996		1,
16997		(relax_substateT) max,
16998		(symbolS *) NULL,
16999		(offsetT) n,
17000		(char *) NULL);
17001  *p = 0;
17002}
17003
17004/* Perform target specific initialisation of a frag.  */
17005
17006void
17007arm_init_frag (fragS * fragP)
17008{
17009  /* Record whether this frag is in an ARM or a THUMB area.  */
17010  fragP->tc_frag_data = thumb_mode;
17011}
17012
17013#ifdef OBJ_ELF
17014/* When we change sections we need to issue a new mapping symbol.  */
17015
17016void
17017arm_elf_change_section (void)
17018{
17019  flagword flags;
17020  segment_info_type *seginfo;
17021
17022  /* Link an unlinked unwind index table section to the .text section.	*/
17023  if (elf_section_type (now_seg) == SHT_ARM_EXIDX
17024      && elf_linked_to_section (now_seg) == NULL)
17025    elf_linked_to_section (now_seg) = text_section;
17026
17027  if (!SEG_NORMAL (now_seg))
17028    return;
17029
17030  flags = bfd_get_section_flags (stdoutput, now_seg);
17031
17032  /* We can ignore sections that only contain debug info.  */
17033  if ((flags & SEC_ALLOC) == 0)
17034    return;
17035
17036  seginfo = seg_info (now_seg);
17037  mapstate = seginfo->tc_segment_info_data.mapstate;
17038  marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
17039}
17040
17041int
17042arm_elf_section_type (const char * str, size_t len)
17043{
17044  if (len == 5 && strncmp (str, "exidx", 5) == 0)
17045    return SHT_ARM_EXIDX;
17046
17047  return -1;
17048}
17049
17050/* Code to deal with unwinding tables.	*/
17051
17052static void add_unwind_adjustsp (offsetT);
17053
17054/* Cenerate and deferred unwind frame offset.  */
17055
17056static void
17057flush_pending_unwind (void)
17058{
17059  offsetT offset;
17060
17061  offset = unwind.pending_offset;
17062  unwind.pending_offset = 0;
17063  if (offset != 0)
17064    add_unwind_adjustsp (offset);
17065}
17066
17067/* Add an opcode to this list for this function.  Two-byte opcodes should
17068   be passed as op[0] << 8 | op[1].  The list of opcodes is built in reverse
17069   order.  */
17070
17071static void
17072add_unwind_opcode (valueT op, int length)
17073{
17074  /* Add any deferred stack adjustment.	 */
17075  if (unwind.pending_offset)
17076    flush_pending_unwind ();
17077
17078  unwind.sp_restored = 0;
17079
17080  if (unwind.opcode_count + length > unwind.opcode_alloc)
17081    {
17082      unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
17083      if (unwind.opcodes)
17084	unwind.opcodes = xrealloc (unwind.opcodes,
17085				   unwind.opcode_alloc);
17086      else
17087	unwind.opcodes = xmalloc (unwind.opcode_alloc);
17088    }
17089  while (length > 0)
17090    {
17091      length--;
17092      unwind.opcodes[unwind.opcode_count] = op & 0xff;
17093      op >>= 8;
17094      unwind.opcode_count++;
17095    }
17096}
17097
17098/* Add unwind opcodes to adjust the stack pointer.  */
17099
17100static void
17101add_unwind_adjustsp (offsetT offset)
17102{
17103  valueT op;
17104
17105  if (offset > 0x200)
17106    {
17107      /* We need at most 5 bytes to hold a 32-bit value in a uleb128.  */
17108      char bytes[5];
17109      int n;
17110      valueT o;
17111
17112      /* Long form: 0xb2, uleb128.  */
17113      /* This might not fit in a word so add the individual bytes,
17114	 remembering the list is built in reverse order.  */
17115      o = (valueT) ((offset - 0x204) >> 2);
17116      if (o == 0)
17117	add_unwind_opcode (0, 1);
17118
17119      /* Calculate the uleb128 encoding of the offset.	*/
17120      n = 0;
17121      while (o)
17122	{
17123	  bytes[n] = o & 0x7f;
17124	  o >>= 7;
17125	  if (o)
17126	    bytes[n] |= 0x80;
17127	  n++;
17128	}
17129      /* Add the insn.	*/
17130      for (; n; n--)
17131	add_unwind_opcode (bytes[n - 1], 1);
17132      add_unwind_opcode (0xb2, 1);
17133    }
17134  else if (offset > 0x100)
17135    {
17136      /* Two short opcodes.  */
17137      add_unwind_opcode (0x3f, 1);
17138      op = (offset - 0x104) >> 2;
17139      add_unwind_opcode (op, 1);
17140    }
17141  else if (offset > 0)
17142    {
17143      /* Short opcode.	*/
17144      op = (offset - 4) >> 2;
17145      add_unwind_opcode (op, 1);
17146    }
17147  else if (offset < 0)
17148    {
17149      offset = -offset;
17150      while (offset > 0x100)
17151	{
17152	  add_unwind_opcode (0x7f, 1);
17153	  offset -= 0x100;
17154	}
17155      op = ((offset - 4) >> 2) | 0x40;
17156      add_unwind_opcode (op, 1);
17157    }
17158}
17159
17160/* Finish the list of unwind opcodes for this function.	 */
17161static void
17162finish_unwind_opcodes (void)
17163{
17164  valueT op;
17165
17166  if (unwind.fp_used)
17167    {
17168      /* Adjust sp as necessary.  */
17169      unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
17170      flush_pending_unwind ();
17171
17172      /* After restoring sp from the frame pointer.  */
17173      op = 0x90 | unwind.fp_reg;
17174      add_unwind_opcode (op, 1);
17175    }
17176  else
17177    flush_pending_unwind ();
17178}
17179
17180
17181/* Start an exception table entry.  If idx is nonzero this is an index table
17182   entry.  */
17183
17184static void
17185start_unwind_section (const segT text_seg, int idx)
17186{
17187  const char * text_name;
17188  const char * prefix;
17189  const char * prefix_once;
17190  const char * group_name;
17191  size_t prefix_len;
17192  size_t text_len;
17193  char * sec_name;
17194  size_t sec_name_len;
17195  int type;
17196  int flags;
17197  int linkonce;
17198
17199  if (idx)
17200    {
17201      prefix = ELF_STRING_ARM_unwind;
17202      prefix_once = ELF_STRING_ARM_unwind_once;
17203      type = SHT_ARM_EXIDX;
17204    }
17205  else
17206    {
17207      prefix = ELF_STRING_ARM_unwind_info;
17208      prefix_once = ELF_STRING_ARM_unwind_info_once;
17209      type = SHT_PROGBITS;
17210    }
17211
17212  text_name = segment_name (text_seg);
17213  if (streq (text_name, ".text"))
17214    text_name = "";
17215
17216  if (strncmp (text_name, ".gnu.linkonce.t.",
17217	       strlen (".gnu.linkonce.t.")) == 0)
17218    {
17219      prefix = prefix_once;
17220      text_name += strlen (".gnu.linkonce.t.");
17221    }
17222
17223  prefix_len = strlen (prefix);
17224  text_len = strlen (text_name);
17225  sec_name_len = prefix_len + text_len;
17226  sec_name = xmalloc (sec_name_len + 1);
17227  memcpy (sec_name, prefix, prefix_len);
17228  memcpy (sec_name + prefix_len, text_name, text_len);
17229  sec_name[prefix_len + text_len] = '\0';
17230
17231  flags = SHF_ALLOC;
17232  linkonce = 0;
17233  group_name = 0;
17234
17235  /* Handle COMDAT group.  */
17236  if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
17237    {
17238      group_name = elf_group_name (text_seg);
17239      if (group_name == NULL)
17240	{
17241	  as_bad ("Group section `%s' has no group signature",
17242		  segment_name (text_seg));
17243	  ignore_rest_of_line ();
17244	  return;
17245	}
17246      flags |= SHF_GROUP;
17247      linkonce = 1;
17248    }
17249
17250  obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
17251
17252  /* Set the setion link for index tables.  */
17253  if (idx)
17254    elf_linked_to_section (now_seg) = text_seg;
17255}
17256
17257
17258/* Start an unwind table entry.	 HAVE_DATA is nonzero if we have additional
17259   personality routine data.  Returns zero, or the index table value for
17260   and inline entry.  */
17261
17262static valueT
17263create_unwind_entry (int have_data)
17264{
17265  int size;
17266  addressT where;
17267  char *ptr;
17268  /* The current word of data.	*/
17269  valueT data;
17270  /* The number of bytes left in this word.  */
17271  int n;
17272
17273  finish_unwind_opcodes ();
17274
17275  /* Remember the current text section.	 */
17276  unwind.saved_seg = now_seg;
17277  unwind.saved_subseg = now_subseg;
17278
17279  start_unwind_section (now_seg, 0);
17280
17281  if (unwind.personality_routine == NULL)
17282    {
17283      if (unwind.personality_index == -2)
17284	{
17285	  if (have_data)
17286	    as_bad (_("handerdata in cantunwind frame"));
17287	  return 1; /* EXIDX_CANTUNWIND.  */
17288	}
17289
17290      /* Use a default personality routine if none is specified.  */
17291      if (unwind.personality_index == -1)
17292	{
17293	  if (unwind.opcode_count > 3)
17294	    unwind.personality_index = 1;
17295	  else
17296	    unwind.personality_index = 0;
17297	}
17298
17299      /* Space for the personality routine entry.  */
17300      if (unwind.personality_index == 0)
17301	{
17302	  if (unwind.opcode_count > 3)
17303	    as_bad (_("too many unwind opcodes for personality routine 0"));
17304
17305	  if (!have_data)
17306	    {
17307	      /* All the data is inline in the index table.  */
17308	      data = 0x80;
17309	      n = 3;
17310	      while (unwind.opcode_count > 0)
17311		{
17312		  unwind.opcode_count--;
17313		  data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17314		  n--;
17315		}
17316
17317	      /* Pad with "finish" opcodes.  */
17318	      while (n--)
17319		data = (data << 8) | 0xb0;
17320
17321	      return data;
17322	    }
17323	  size = 0;
17324	}
17325      else
17326	/* We get two opcodes "free" in the first word.	 */
17327	size = unwind.opcode_count - 2;
17328    }
17329  else
17330    /* An extra byte is required for the opcode count.	*/
17331    size = unwind.opcode_count + 1;
17332
17333  size = (size + 3) >> 2;
17334  if (size > 0xff)
17335    as_bad (_("too many unwind opcodes"));
17336
17337  frag_align (2, 0, 0);
17338  record_alignment (now_seg, 2);
17339  unwind.table_entry = expr_build_dot ();
17340
17341  /* Allocate the table entry.	*/
17342  ptr = frag_more ((size << 2) + 4);
17343  where = frag_now_fix () - ((size << 2) + 4);
17344
17345  switch (unwind.personality_index)
17346    {
17347    case -1:
17348      /* ??? Should this be a PLT generating relocation?  */
17349      /* Custom personality routine.  */
17350      fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
17351	       BFD_RELOC_ARM_PREL31);
17352
17353      where += 4;
17354      ptr += 4;
17355
17356      /* Set the first byte to the number of additional words.	*/
17357      data = size - 1;
17358      n = 3;
17359      break;
17360
17361    /* ABI defined personality routines.  */
17362    case 0:
17363      /* Three opcodes bytes are packed into the first word.  */
17364      data = 0x80;
17365      n = 3;
17366      break;
17367
17368    case 1:
17369    case 2:
17370      /* The size and first two opcode bytes go in the first word.  */
17371      data = ((0x80 + unwind.personality_index) << 8) | size;
17372      n = 2;
17373      break;
17374
17375    default:
17376      /* Should never happen.  */
17377      abort ();
17378    }
17379
17380  /* Pack the opcodes into words (MSB first), reversing the list at the same
17381     time.  */
17382  while (unwind.opcode_count > 0)
17383    {
17384      if (n == 0)
17385	{
17386	  md_number_to_chars (ptr, data, 4);
17387	  ptr += 4;
17388	  n = 4;
17389	  data = 0;
17390	}
17391      unwind.opcode_count--;
17392      n--;
17393      data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17394    }
17395
17396  /* Finish off the last word.	*/
17397  if (n < 4)
17398    {
17399      /* Pad with "finish" opcodes.  */
17400      while (n--)
17401	data = (data << 8) | 0xb0;
17402
17403      md_number_to_chars (ptr, data, 4);
17404    }
17405
17406  if (!have_data)
17407    {
17408      /* Add an empty descriptor if there is no user-specified data.   */
17409      ptr = frag_more (4);
17410      md_number_to_chars (ptr, 0, 4);
17411    }
17412
17413  return 0;
17414}
17415
17416
17417/* Initialize the DWARF-2 unwind information for this procedure.  */
17418
17419void
17420tc_arm_frame_initial_instructions (void)
17421{
17422  cfi_add_CFA_def_cfa (REG_SP, 0);
17423}
17424#endif /* OBJ_ELF */
17425
17426/* Convert REGNAME to a DWARF-2 register number.  */
17427
17428int
17429tc_arm_regname_to_dw2regnum (char *regname)
17430{
17431  int reg = arm_reg_parse (&regname, REG_TYPE_RN);
17432
17433  if (reg == FAIL)
17434    return -1;
17435
17436  return reg;
17437}
17438
17439#ifdef TE_PE
17440void
17441tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
17442{
17443  expressionS expr;
17444
17445  expr.X_op = O_secrel;
17446  expr.X_add_symbol = symbol;
17447  expr.X_add_number = 0;
17448  emit_expr (&expr, size);
17449}
17450#endif
17451
17452/* MD interface: Symbol and relocation handling.  */
17453
17454/* Return the address within the segment that a PC-relative fixup is
17455   relative to.  For ARM, PC-relative fixups applied to instructions
17456   are generally relative to the location of the fixup plus 8 bytes.
17457   Thumb branches are offset by 4, and Thumb loads relative to PC
17458   require special handling.  */
17459
17460long
17461md_pcrel_from_section (fixS * fixP, segT seg)
17462{
17463  offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
17464
17465  /* If this is pc-relative and we are going to emit a relocation
17466     then we just want to put out any pipeline compensation that the linker
17467     will need.  Otherwise we want to use the calculated base.
17468     For WinCE we skip the bias for externals as well, since this
17469     is how the MS ARM-CE assembler behaves and we want to be compatible.  */
17470  if (fixP->fx_pcrel
17471      && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
17472	  || (arm_force_relocation (fixP)
17473#ifdef TE_WINCE
17474	      && !S_IS_EXTERNAL (fixP->fx_addsy)
17475#endif
17476	      )))
17477    base = 0;
17478
17479  switch (fixP->fx_r_type)
17480    {
17481      /* PC relative addressing on the Thumb is slightly odd as the
17482	 bottom two bits of the PC are forced to zero for the
17483	 calculation.  This happens *after* application of the
17484	 pipeline offset.  However, Thumb adrl already adjusts for
17485	 this, so we need not do it again.  */
17486    case BFD_RELOC_ARM_THUMB_ADD:
17487      return base & ~3;
17488
17489    case BFD_RELOC_ARM_THUMB_OFFSET:
17490    case BFD_RELOC_ARM_T32_OFFSET_IMM:
17491    case BFD_RELOC_ARM_T32_ADD_PC12:
17492    case BFD_RELOC_ARM_T32_CP_OFF_IMM:
17493      return (base + 4) & ~3;
17494
17495      /* Thumb branches are simply offset by +4.  */
17496    case BFD_RELOC_THUMB_PCREL_BRANCH7:
17497    case BFD_RELOC_THUMB_PCREL_BRANCH9:
17498    case BFD_RELOC_THUMB_PCREL_BRANCH12:
17499    case BFD_RELOC_THUMB_PCREL_BRANCH20:
17500    case BFD_RELOC_THUMB_PCREL_BRANCH23:
17501    case BFD_RELOC_THUMB_PCREL_BRANCH25:
17502    case BFD_RELOC_THUMB_PCREL_BLX:
17503      return base + 4;
17504
17505      /* ARM mode branches are offset by +8.  However, the Windows CE
17506	 loader expects the relocation not to take this into account.  */
17507    case BFD_RELOC_ARM_PCREL_BRANCH:
17508    case BFD_RELOC_ARM_PCREL_CALL:
17509    case BFD_RELOC_ARM_PCREL_JUMP:
17510    case BFD_RELOC_ARM_PCREL_BLX:
17511    case BFD_RELOC_ARM_PLT32:
17512#ifdef TE_WINCE
17513      /* When handling fixups immediately, because we have already
17514         discovered the value of a symbol, or the address of the frag involved
17515	 we must account for the offset by +8, as the OS loader will never see the reloc.
17516         see fixup_segment() in write.c
17517         The S_IS_EXTERNAL test handles the case of global symbols.
17518         Those need the calculated base, not just the pipe compensation the linker will need.  */
17519      if (fixP->fx_pcrel
17520	  && fixP->fx_addsy != NULL
17521	  && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
17522	  && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
17523	return base + 8;
17524      return base;
17525#else
17526      return base + 8;
17527#endif
17528
17529      /* ARM mode loads relative to PC are also offset by +8.  Unlike
17530	 branches, the Windows CE loader *does* expect the relocation
17531	 to take this into account.  */
17532    case BFD_RELOC_ARM_OFFSET_IMM:
17533    case BFD_RELOC_ARM_OFFSET_IMM8:
17534    case BFD_RELOC_ARM_HWLITERAL:
17535    case BFD_RELOC_ARM_LITERAL:
17536    case BFD_RELOC_ARM_CP_OFF_IMM:
17537      return base + 8;
17538
17539
17540      /* Other PC-relative relocations are un-offset.  */
17541    default:
17542      return base;
17543    }
17544}
17545
17546/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
17547   Otherwise we have no need to default values of symbols.  */
17548
17549symbolS *
17550md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
17551{
17552#ifdef OBJ_ELF
17553  if (name[0] == '_' && name[1] == 'G'
17554      && streq (name, GLOBAL_OFFSET_TABLE_NAME))
17555    {
17556      if (!GOT_symbol)
17557	{
17558	  if (symbol_find (name))
17559	    as_bad ("GOT already in the symbol table");
17560
17561	  GOT_symbol = symbol_new (name, undefined_section,
17562				   (valueT) 0, & zero_address_frag);
17563	}
17564
17565      return GOT_symbol;
17566    }
17567#endif
17568
17569  return 0;
17570}
17571
17572/* Subroutine of md_apply_fix.	 Check to see if an immediate can be
17573   computed as two separate immediate values, added together.  We
17574   already know that this value cannot be computed by just one ARM
17575   instruction.	 */
17576
17577static unsigned int
17578validate_immediate_twopart (unsigned int   val,
17579			    unsigned int * highpart)
17580{
17581  unsigned int a;
17582  unsigned int i;
17583
17584  for (i = 0; i < 32; i += 2)
17585    if (((a = rotate_left (val, i)) & 0xff) != 0)
17586      {
17587	if (a & 0xff00)
17588	  {
17589	    if (a & ~ 0xffff)
17590	      continue;
17591	    * highpart = (a  >> 8) | ((i + 24) << 7);
17592	  }
17593	else if (a & 0xff0000)
17594	  {
17595	    if (a & 0xff000000)
17596	      continue;
17597	    * highpart = (a >> 16) | ((i + 16) << 7);
17598	  }
17599	else
17600	  {
17601	    assert (a & 0xff000000);
17602	    * highpart = (a >> 24) | ((i + 8) << 7);
17603	  }
17604
17605	return (a & 0xff) | (i << 7);
17606      }
17607
17608  return FAIL;
17609}
17610
17611static int
17612validate_offset_imm (unsigned int val, int hwse)
17613{
17614  if ((hwse && val > 255) || val > 4095)
17615    return FAIL;
17616  return val;
17617}
17618
17619/* Subroutine of md_apply_fix.	 Do those data_ops which can take a
17620   negative immediate constant by altering the instruction.  A bit of
17621   a hack really.
17622	MOV <-> MVN
17623	AND <-> BIC
17624	ADC <-> SBC
17625	by inverting the second operand, and
17626	ADD <-> SUB
17627	CMP <-> CMN
17628	by negating the second operand.	 */
17629
17630static int
17631negate_data_op (unsigned long * instruction,
17632		unsigned long	value)
17633{
17634  int op, new_inst;
17635  unsigned long negated, inverted;
17636
17637  negated = encode_arm_immediate (-value);
17638  inverted = encode_arm_immediate (~value);
17639
17640  op = (*instruction >> DATA_OP_SHIFT) & 0xf;
17641  switch (op)
17642    {
17643      /* First negates.	 */
17644    case OPCODE_SUB:		 /* ADD <-> SUB	 */
17645      new_inst = OPCODE_ADD;
17646      value = negated;
17647      break;
17648
17649    case OPCODE_ADD:
17650      new_inst = OPCODE_SUB;
17651      value = negated;
17652      break;
17653
17654    case OPCODE_CMP:		 /* CMP <-> CMN	 */
17655      new_inst = OPCODE_CMN;
17656      value = negated;
17657      break;
17658
17659    case OPCODE_CMN:
17660      new_inst = OPCODE_CMP;
17661      value = negated;
17662      break;
17663
17664      /* Now Inverted ops.  */
17665    case OPCODE_MOV:		 /* MOV <-> MVN	 */
17666      new_inst = OPCODE_MVN;
17667      value = inverted;
17668      break;
17669
17670    case OPCODE_MVN:
17671      new_inst = OPCODE_MOV;
17672      value = inverted;
17673      break;
17674
17675    case OPCODE_AND:		 /* AND <-> BIC	 */
17676      new_inst = OPCODE_BIC;
17677      value = inverted;
17678      break;
17679
17680    case OPCODE_BIC:
17681      new_inst = OPCODE_AND;
17682      value = inverted;
17683      break;
17684
17685    case OPCODE_ADC:		  /* ADC <-> SBC  */
17686      new_inst = OPCODE_SBC;
17687      value = inverted;
17688      break;
17689
17690    case OPCODE_SBC:
17691      new_inst = OPCODE_ADC;
17692      value = inverted;
17693      break;
17694
17695      /* We cannot do anything.	 */
17696    default:
17697      return FAIL;
17698    }
17699
17700  if (value == (unsigned) FAIL)
17701    return FAIL;
17702
17703  *instruction &= OPCODE_MASK;
17704  *instruction |= new_inst << DATA_OP_SHIFT;
17705  return value;
17706}
17707
17708/* Like negate_data_op, but for Thumb-2.   */
17709
17710static unsigned int
17711thumb32_negate_data_op (offsetT *instruction, unsigned int value)
17712{
17713  int op, new_inst;
17714  int rd;
17715  unsigned int negated, inverted;
17716
17717  negated = encode_thumb32_immediate (-value);
17718  inverted = encode_thumb32_immediate (~value);
17719
17720  rd = (*instruction >> 8) & 0xf;
17721  op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
17722  switch (op)
17723    {
17724      /* ADD <-> SUB.  Includes CMP <-> CMN.  */
17725    case T2_OPCODE_SUB:
17726      new_inst = T2_OPCODE_ADD;
17727      value = negated;
17728      break;
17729
17730    case T2_OPCODE_ADD:
17731      new_inst = T2_OPCODE_SUB;
17732      value = negated;
17733      break;
17734
17735      /* ORR <-> ORN.  Includes MOV <-> MVN.  */
17736    case T2_OPCODE_ORR:
17737      new_inst = T2_OPCODE_ORN;
17738      value = inverted;
17739      break;
17740
17741    case T2_OPCODE_ORN:
17742      new_inst = T2_OPCODE_ORR;
17743      value = inverted;
17744      break;
17745
17746      /* AND <-> BIC.  TST has no inverted equivalent.  */
17747    case T2_OPCODE_AND:
17748      new_inst = T2_OPCODE_BIC;
17749      if (rd == 15)
17750	value = FAIL;
17751      else
17752	value = inverted;
17753      break;
17754
17755    case T2_OPCODE_BIC:
17756      new_inst = T2_OPCODE_AND;
17757      value = inverted;
17758      break;
17759
17760      /* ADC <-> SBC  */
17761    case T2_OPCODE_ADC:
17762      new_inst = T2_OPCODE_SBC;
17763      value = inverted;
17764      break;
17765
17766    case T2_OPCODE_SBC:
17767      new_inst = T2_OPCODE_ADC;
17768      value = inverted;
17769      break;
17770
17771      /* We cannot do anything.	 */
17772    default:
17773      return FAIL;
17774    }
17775
17776  if (value == (unsigned int)FAIL)
17777    return FAIL;
17778
17779  *instruction &= T2_OPCODE_MASK;
17780  *instruction |= new_inst << T2_DATA_OP_SHIFT;
17781  return value;
17782}
17783
17784/* Read a 32-bit thumb instruction from buf.  */
17785static unsigned long
17786get_thumb32_insn (char * buf)
17787{
17788  unsigned long insn;
17789  insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
17790  insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17791
17792  return insn;
17793}
17794
17795
17796/* We usually want to set the low bit on the address of thumb function
17797   symbols.  In particular .word foo - . should have the low bit set.
17798   Generic code tries to fold the difference of two symbols to
17799   a constant.  Prevent this and force a relocation when the first symbols
17800   is a thumb function.  */
17801int
17802arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
17803{
17804  if (op == O_subtract
17805      && l->X_op == O_symbol
17806      && r->X_op == O_symbol
17807      && THUMB_IS_FUNC (l->X_add_symbol))
17808    {
17809      l->X_op = O_subtract;
17810      l->X_op_symbol = r->X_add_symbol;
17811      l->X_add_number -= r->X_add_number;
17812      return 1;
17813    }
17814  /* Process as normal.  */
17815  return 0;
17816}
17817
17818void
17819md_apply_fix (fixS *	fixP,
17820	       valueT * valP,
17821	       segT	seg)
17822{
17823  offsetT	 value = * valP;
17824  offsetT	 newval;
17825  unsigned int	 newimm;
17826  unsigned long	 temp;
17827  int		 sign;
17828  char *	 buf = fixP->fx_where + fixP->fx_frag->fr_literal;
17829
17830  assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
17831
17832  /* Note whether this will delete the relocation.  */
17833
17834  if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
17835    fixP->fx_done = 1;
17836
17837  /* On a 64-bit host, silently truncate 'value' to 32 bits for
17838     consistency with the behavior on 32-bit hosts.  Remember value
17839     for emit_reloc.  */
17840  value &= 0xffffffff;
17841  value ^= 0x80000000;
17842  value -= 0x80000000;
17843
17844  *valP = value;
17845  fixP->fx_addnumber = value;
17846
17847  /* Same treatment for fixP->fx_offset.  */
17848  fixP->fx_offset &= 0xffffffff;
17849  fixP->fx_offset ^= 0x80000000;
17850  fixP->fx_offset -= 0x80000000;
17851
17852  switch (fixP->fx_r_type)
17853    {
17854    case BFD_RELOC_NONE:
17855      /* This will need to go in the object file.  */
17856      fixP->fx_done = 0;
17857      break;
17858
17859    case BFD_RELOC_ARM_IMMEDIATE:
17860      /* We claim that this fixup has been processed here,
17861	 even if in fact we generate an error because we do
17862	 not have a reloc for it, so tc_gen_reloc will reject it.  */
17863      fixP->fx_done = 1;
17864
17865      if (fixP->fx_addsy
17866	  && ! S_IS_DEFINED (fixP->fx_addsy))
17867	{
17868	  as_bad_where (fixP->fx_file, fixP->fx_line,
17869			_("undefined symbol %s used as an immediate value"),
17870			S_GET_NAME (fixP->fx_addsy));
17871	  break;
17872	}
17873
17874      newimm = encode_arm_immediate (value);
17875      temp = md_chars_to_number (buf, INSN_SIZE);
17876
17877      /* If the instruction will fail, see if we can fix things up by
17878	 changing the opcode.  */
17879      if (newimm == (unsigned int) FAIL
17880	  && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
17881	{
17882	  as_bad_where (fixP->fx_file, fixP->fx_line,
17883			_("invalid constant (%lx) after fixup"),
17884			(unsigned long) value);
17885	  break;
17886	}
17887
17888      newimm |= (temp & 0xfffff000);
17889      md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
17890      break;
17891
17892    case BFD_RELOC_ARM_ADRL_IMMEDIATE:
17893      {
17894	unsigned int highpart = 0;
17895	unsigned int newinsn  = 0xe1a00000; /* nop.  */
17896
17897	newimm = encode_arm_immediate (value);
17898	temp = md_chars_to_number (buf, INSN_SIZE);
17899
17900	/* If the instruction will fail, see if we can fix things up by
17901	   changing the opcode.	 */
17902	if (newimm == (unsigned int) FAIL
17903	    && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
17904	  {
17905	    /* No ?  OK - try using two ADD instructions to generate
17906	       the value.  */
17907	    newimm = validate_immediate_twopart (value, & highpart);
17908
17909	    /* Yes - then make sure that the second instruction is
17910	       also an add.  */
17911	    if (newimm != (unsigned int) FAIL)
17912	      newinsn = temp;
17913	    /* Still No ?  Try using a negated value.  */
17914	    else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
17915	      temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
17916	    /* Otherwise - give up.  */
17917	    else
17918	      {
17919		as_bad_where (fixP->fx_file, fixP->fx_line,
17920			      _("unable to compute ADRL instructions for PC offset of 0x%lx"),
17921			      (long) value);
17922		break;
17923	      }
17924
17925	    /* Replace the first operand in the 2nd instruction (which
17926	       is the PC) with the destination register.  We have
17927	       already added in the PC in the first instruction and we
17928	       do not want to do it again.  */
17929	    newinsn &= ~ 0xf0000;
17930	    newinsn |= ((newinsn & 0x0f000) << 4);
17931	  }
17932
17933	newimm |= (temp & 0xfffff000);
17934	md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
17935
17936	highpart |= (newinsn & 0xfffff000);
17937	md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
17938      }
17939      break;
17940
17941    case BFD_RELOC_ARM_OFFSET_IMM:
17942      if (!fixP->fx_done && seg->use_rela_p)
17943	value = 0;
17944
17945    case BFD_RELOC_ARM_LITERAL:
17946      sign = value >= 0;
17947
17948      if (value < 0)
17949	value = - value;
17950
17951      if (validate_offset_imm (value, 0) == FAIL)
17952	{
17953	  if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
17954	    as_bad_where (fixP->fx_file, fixP->fx_line,
17955			  _("invalid literal constant: pool needs to be closer"));
17956	  else
17957	    as_bad_where (fixP->fx_file, fixP->fx_line,
17958			  _("bad immediate value for offset (%ld)"),
17959			  (long) value);
17960	  break;
17961	}
17962
17963      newval = md_chars_to_number (buf, INSN_SIZE);
17964      newval &= 0xff7ff000;
17965      newval |= value | (sign ? INDEX_UP : 0);
17966      md_number_to_chars (buf, newval, INSN_SIZE);
17967      break;
17968
17969    case BFD_RELOC_ARM_OFFSET_IMM8:
17970    case BFD_RELOC_ARM_HWLITERAL:
17971      sign = value >= 0;
17972
17973      if (value < 0)
17974	value = - value;
17975
17976      if (validate_offset_imm (value, 1) == FAIL)
17977	{
17978	  if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
17979	    as_bad_where (fixP->fx_file, fixP->fx_line,
17980			  _("invalid literal constant: pool needs to be closer"));
17981	  else
17982	    as_bad (_("bad immediate value for 8-bit offset (%ld)"),
17983		    (long) value);
17984	  break;
17985	}
17986
17987      newval = md_chars_to_number (buf, INSN_SIZE);
17988      newval &= 0xff7ff0f0;
17989      newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
17990      md_number_to_chars (buf, newval, INSN_SIZE);
17991      break;
17992
17993    case BFD_RELOC_ARM_T32_OFFSET_U8:
17994      if (value < 0 || value > 1020 || value % 4 != 0)
17995	as_bad_where (fixP->fx_file, fixP->fx_line,
17996		      _("bad immediate value for offset (%ld)"), (long) value);
17997      value /= 4;
17998
17999      newval = md_chars_to_number (buf+2, THUMB_SIZE);
18000      newval |= value;
18001      md_number_to_chars (buf+2, newval, THUMB_SIZE);
18002      break;
18003
18004    case BFD_RELOC_ARM_T32_OFFSET_IMM:
18005      /* This is a complicated relocation used for all varieties of Thumb32
18006	 load/store instruction with immediate offset:
18007
18008	 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
18009	                                           *4, optional writeback(W)
18010						   (doubleword load/store)
18011
18012	 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
18013	 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
18014	 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
18015	 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
18016	 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
18017
18018	 Uppercase letters indicate bits that are already encoded at
18019	 this point.  Lowercase letters are our problem.  For the
18020	 second block of instructions, the secondary opcode nybble
18021	 (bits 8..11) is present, and bit 23 is zero, even if this is
18022	 a PC-relative operation.  */
18023      newval = md_chars_to_number (buf, THUMB_SIZE);
18024      newval <<= 16;
18025      newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
18026
18027      if ((newval & 0xf0000000) == 0xe0000000)
18028	{
18029	  /* Doubleword load/store: 8-bit offset, scaled by 4.  */
18030	  if (value >= 0)
18031	    newval |= (1 << 23);
18032	  else
18033	    value = -value;
18034	  if (value % 4 != 0)
18035	    {
18036	      as_bad_where (fixP->fx_file, fixP->fx_line,
18037			    _("offset not a multiple of 4"));
18038	      break;
18039	    }
18040	  value /= 4;
18041	  if (value > 0xff)
18042	    {
18043	      as_bad_where (fixP->fx_file, fixP->fx_line,
18044			    _("offset out of range"));
18045	      break;
18046	    }
18047	  newval &= ~0xff;
18048	}
18049      else if ((newval & 0x000f0000) == 0x000f0000)
18050	{
18051	  /* PC-relative, 12-bit offset.  */
18052	  if (value >= 0)
18053	    newval |= (1 << 23);
18054	  else
18055	    value = -value;
18056	  if (value > 0xfff)
18057	    {
18058	      as_bad_where (fixP->fx_file, fixP->fx_line,
18059			    _("offset out of range"));
18060	      break;
18061	    }
18062	  newval &= ~0xfff;
18063	}
18064      else if ((newval & 0x00000100) == 0x00000100)
18065	{
18066	  /* Writeback: 8-bit, +/- offset.  */
18067	  if (value >= 0)
18068	    newval |= (1 << 9);
18069	  else
18070	    value = -value;
18071	  if (value > 0xff)
18072	    {
18073	      as_bad_where (fixP->fx_file, fixP->fx_line,
18074			    _("offset out of range"));
18075	      break;
18076	    }
18077	  newval &= ~0xff;
18078	}
18079      else if ((newval & 0x00000f00) == 0x00000e00)
18080	{
18081	  /* T-instruction: positive 8-bit offset.  */
18082	  if (value < 0 || value > 0xff)
18083	    {
18084	      as_bad_where (fixP->fx_file, fixP->fx_line,
18085			    _("offset out of range"));
18086	      break;
18087	    }
18088	  newval &= ~0xff;
18089	  newval |= value;
18090	}
18091      else
18092	{
18093	  /* Positive 12-bit or negative 8-bit offset.  */
18094	  int limit;
18095	  if (value >= 0)
18096	    {
18097	      newval |= (1 << 23);
18098	      limit = 0xfff;
18099	    }
18100	  else
18101	    {
18102	      value = -value;
18103	      limit = 0xff;
18104	    }
18105	  if (value > limit)
18106	    {
18107	      as_bad_where (fixP->fx_file, fixP->fx_line,
18108			    _("offset out of range"));
18109	      break;
18110	    }
18111	  newval &= ~limit;
18112	}
18113
18114      newval |= value;
18115      md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
18116      md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
18117      break;
18118
18119    case BFD_RELOC_ARM_SHIFT_IMM:
18120      newval = md_chars_to_number (buf, INSN_SIZE);
18121      if (((unsigned long) value) > 32
18122	  || (value == 32
18123	      && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
18124	{
18125	  as_bad_where (fixP->fx_file, fixP->fx_line,
18126			_("shift expression is too large"));
18127	  break;
18128	}
18129
18130      if (value == 0)
18131	/* Shifts of zero must be done as lsl.	*/
18132	newval &= ~0x60;
18133      else if (value == 32)
18134	value = 0;
18135      newval &= 0xfffff07f;
18136      newval |= (value & 0x1f) << 7;
18137      md_number_to_chars (buf, newval, INSN_SIZE);
18138      break;
18139
18140    case BFD_RELOC_ARM_T32_IMMEDIATE:
18141    case BFD_RELOC_ARM_T32_ADD_IMM:
18142    case BFD_RELOC_ARM_T32_IMM12:
18143    case BFD_RELOC_ARM_T32_ADD_PC12:
18144      /* We claim that this fixup has been processed here,
18145	 even if in fact we generate an error because we do
18146	 not have a reloc for it, so tc_gen_reloc will reject it.  */
18147      fixP->fx_done = 1;
18148
18149      if (fixP->fx_addsy
18150	  && ! S_IS_DEFINED (fixP->fx_addsy))
18151	{
18152	  as_bad_where (fixP->fx_file, fixP->fx_line,
18153			_("undefined symbol %s used as an immediate value"),
18154			S_GET_NAME (fixP->fx_addsy));
18155	  break;
18156	}
18157
18158      newval = md_chars_to_number (buf, THUMB_SIZE);
18159      newval <<= 16;
18160      newval |= md_chars_to_number (buf+2, THUMB_SIZE);
18161
18162      newimm = FAIL;
18163      if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18164	  || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18165	{
18166	  newimm = encode_thumb32_immediate (value);
18167	  if (newimm == (unsigned int) FAIL)
18168	    newimm = thumb32_negate_data_op (&newval, value);
18169	}
18170      if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
18171	  && newimm == (unsigned int) FAIL)
18172	{
18173	  /* Turn add/sum into addw/subw.  */
18174	  if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18175	    newval = (newval & 0xfeffffff) | 0x02000000;
18176
18177	  /* 12 bit immediate for addw/subw.  */
18178	  if (value < 0)
18179	    {
18180	      value = -value;
18181	      newval ^= 0x00a00000;
18182	    }
18183	  if (value > 0xfff)
18184	    newimm = (unsigned int) FAIL;
18185	  else
18186	    newimm = value;
18187	}
18188
18189      if (newimm == (unsigned int)FAIL)
18190	{
18191	  as_bad_where (fixP->fx_file, fixP->fx_line,
18192			_("invalid constant (%lx) after fixup"),
18193			(unsigned long) value);
18194	  break;
18195	}
18196
18197      newval |= (newimm & 0x800) << 15;
18198      newval |= (newimm & 0x700) << 4;
18199      newval |= (newimm & 0x0ff);
18200
18201      md_number_to_chars (buf,   (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
18202      md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
18203      break;
18204
18205    case BFD_RELOC_ARM_SMC:
18206      if (((unsigned long) value) > 0xffff)
18207	as_bad_where (fixP->fx_file, fixP->fx_line,
18208		      _("invalid smc expression"));
18209      newval = md_chars_to_number (buf, INSN_SIZE);
18210      newval |= (value & 0xf) | ((value & 0xfff0) << 4);
18211      md_number_to_chars (buf, newval, INSN_SIZE);
18212      break;
18213
18214    case BFD_RELOC_ARM_SWI:
18215      if (fixP->tc_fix_data != 0)
18216	{
18217	  if (((unsigned long) value) > 0xff)
18218	    as_bad_where (fixP->fx_file, fixP->fx_line,
18219			  _("invalid swi expression"));
18220	  newval = md_chars_to_number (buf, THUMB_SIZE);
18221	  newval |= value;
18222	  md_number_to_chars (buf, newval, THUMB_SIZE);
18223	}
18224      else
18225	{
18226	  if (((unsigned long) value) > 0x00ffffff)
18227	    as_bad_where (fixP->fx_file, fixP->fx_line,
18228			  _("invalid swi expression"));
18229	  newval = md_chars_to_number (buf, INSN_SIZE);
18230	  newval |= value;
18231	  md_number_to_chars (buf, newval, INSN_SIZE);
18232	}
18233      break;
18234
18235    case BFD_RELOC_ARM_MULTI:
18236      if (((unsigned long) value) > 0xffff)
18237	as_bad_where (fixP->fx_file, fixP->fx_line,
18238		      _("invalid expression in load/store multiple"));
18239      newval = value | md_chars_to_number (buf, INSN_SIZE);
18240      md_number_to_chars (buf, newval, INSN_SIZE);
18241      break;
18242
18243#ifdef OBJ_ELF
18244    case BFD_RELOC_ARM_PCREL_CALL:
18245      newval = md_chars_to_number (buf, INSN_SIZE);
18246      if ((newval & 0xf0000000) == 0xf0000000)
18247	temp = 1;
18248      else
18249	temp = 3;
18250      goto arm_branch_common;
18251
18252    case BFD_RELOC_ARM_PCREL_JUMP:
18253    case BFD_RELOC_ARM_PLT32:
18254#endif
18255    case BFD_RELOC_ARM_PCREL_BRANCH:
18256      temp = 3;
18257      goto arm_branch_common;
18258
18259    case BFD_RELOC_ARM_PCREL_BLX:
18260      temp = 1;
18261    arm_branch_common:
18262      /* We are going to store value (shifted right by two) in the
18263	 instruction, in a 24 bit, signed field.  Bits 26 through 32 either
18264	 all clear or all set and bit 0 must be clear.  For B/BL bit 1 must
18265	 also be be clear.  */
18266      if (value & temp)
18267	as_bad_where (fixP->fx_file, fixP->fx_line,
18268		      _("misaligned branch destination"));
18269      if ((value & (offsetT)0xfe000000) != (offsetT)0
18270	  && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
18271	as_bad_where (fixP->fx_file, fixP->fx_line,
18272		      _("branch out of range"));
18273
18274      if (fixP->fx_done || !seg->use_rela_p)
18275	{
18276	  newval = md_chars_to_number (buf, INSN_SIZE);
18277	  newval |= (value >> 2) & 0x00ffffff;
18278	  /* Set the H bit on BLX instructions.  */
18279	  if (temp == 1)
18280	    {
18281	      if (value & 2)
18282		newval |= 0x01000000;
18283	      else
18284		newval &= ~0x01000000;
18285	    }
18286	  md_number_to_chars (buf, newval, INSN_SIZE);
18287	}
18288      break;
18289
18290    case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
18291      /* CBZ can only branch forward.  */
18292
18293      /* Attempts to use CBZ to branch to the next instruction
18294         (which, strictly speaking, are prohibited) will be turned into
18295         no-ops.
18296
18297	 FIXME: It may be better to remove the instruction completely and
18298	 perform relaxation.  */
18299      if (value == -2)
18300	{
18301	  newval = md_chars_to_number (buf, THUMB_SIZE);
18302	  newval = 0xbf00; /* NOP encoding T1 */
18303	  md_number_to_chars (buf, newval, THUMB_SIZE);
18304	}
18305      else
18306	{
18307	  if (value & ~0x7e)
18308	    as_bad_where (fixP->fx_file, fixP->fx_line,
18309		          _("branch out of range"));
18310
18311          if (fixP->fx_done || !seg->use_rela_p)
18312	    {
18313	      newval = md_chars_to_number (buf, THUMB_SIZE);
18314	      newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
18315	      md_number_to_chars (buf, newval, THUMB_SIZE);
18316	    }
18317	}
18318      break;
18319
18320    case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch.	*/
18321      if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
18322	as_bad_where (fixP->fx_file, fixP->fx_line,
18323		      _("branch out of range"));
18324
18325      if (fixP->fx_done || !seg->use_rela_p)
18326	{
18327	  newval = md_chars_to_number (buf, THUMB_SIZE);
18328	  newval |= (value & 0x1ff) >> 1;
18329	  md_number_to_chars (buf, newval, THUMB_SIZE);
18330	}
18331      break;
18332
18333    case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch.  */
18334      if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
18335	as_bad_where (fixP->fx_file, fixP->fx_line,
18336		      _("branch out of range"));
18337
18338      if (fixP->fx_done || !seg->use_rela_p)
18339	{
18340	  newval = md_chars_to_number (buf, THUMB_SIZE);
18341	  newval |= (value & 0xfff) >> 1;
18342	  md_number_to_chars (buf, newval, THUMB_SIZE);
18343	}
18344      break;
18345
18346    case BFD_RELOC_THUMB_PCREL_BRANCH20:
18347      if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
18348	as_bad_where (fixP->fx_file, fixP->fx_line,
18349		      _("conditional branch out of range"));
18350
18351      if (fixP->fx_done || !seg->use_rela_p)
18352	{
18353	  offsetT newval2;
18354	  addressT S, J1, J2, lo, hi;
18355
18356	  S  = (value & 0x00100000) >> 20;
18357	  J2 = (value & 0x00080000) >> 19;
18358	  J1 = (value & 0x00040000) >> 18;
18359	  hi = (value & 0x0003f000) >> 12;
18360	  lo = (value & 0x00000ffe) >> 1;
18361
18362	  newval   = md_chars_to_number (buf, THUMB_SIZE);
18363	  newval2  = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18364	  newval  |= (S << 10) | hi;
18365	  newval2 |= (J1 << 13) | (J2 << 11) | lo;
18366	  md_number_to_chars (buf, newval, THUMB_SIZE);
18367	  md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18368	}
18369      break;
18370
18371    case BFD_RELOC_THUMB_PCREL_BLX:
18372    case BFD_RELOC_THUMB_PCREL_BRANCH23:
18373      if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
18374	as_bad_where (fixP->fx_file, fixP->fx_line,
18375		      _("branch out of range"));
18376
18377      if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
18378	/* For a BLX instruction, make sure that the relocation is rounded up
18379	   to a word boundary.  This follows the semantics of the instruction
18380	   which specifies that bit 1 of the target address will come from bit
18381	   1 of the base address.  */
18382	value = (value + 1) & ~ 1;
18383
18384      if (fixP->fx_done || !seg->use_rela_p)
18385	{
18386	  offsetT newval2;
18387
18388	  newval   = md_chars_to_number (buf, THUMB_SIZE);
18389	  newval2  = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18390	  newval  |= (value & 0x7fffff) >> 12;
18391	  newval2 |= (value & 0xfff) >> 1;
18392	  md_number_to_chars (buf, newval, THUMB_SIZE);
18393	  md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18394	}
18395      break;
18396
18397    case BFD_RELOC_THUMB_PCREL_BRANCH25:
18398      if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
18399	as_bad_where (fixP->fx_file, fixP->fx_line,
18400		      _("branch out of range"));
18401
18402      if (fixP->fx_done || !seg->use_rela_p)
18403	{
18404	  offsetT newval2;
18405	  addressT S, I1, I2, lo, hi;
18406
18407	  S  = (value & 0x01000000) >> 24;
18408	  I1 = (value & 0x00800000) >> 23;
18409	  I2 = (value & 0x00400000) >> 22;
18410	  hi = (value & 0x003ff000) >> 12;
18411	  lo = (value & 0x00000ffe) >> 1;
18412
18413	  I1 = !(I1 ^ S);
18414	  I2 = !(I2 ^ S);
18415
18416	  newval   = md_chars_to_number (buf, THUMB_SIZE);
18417	  newval2  = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18418	  newval  |= (S << 10) | hi;
18419	  newval2 |= (I1 << 13) | (I2 << 11) | lo;
18420	  md_number_to_chars (buf, newval, THUMB_SIZE);
18421	  md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18422	}
18423      break;
18424
18425    case BFD_RELOC_8:
18426      if (fixP->fx_done || !seg->use_rela_p)
18427	md_number_to_chars (buf, value, 1);
18428      break;
18429
18430    case BFD_RELOC_16:
18431      if (fixP->fx_done || !seg->use_rela_p)
18432	md_number_to_chars (buf, value, 2);
18433      break;
18434
18435#ifdef OBJ_ELF
18436    case BFD_RELOC_ARM_TLS_GD32:
18437    case BFD_RELOC_ARM_TLS_LE32:
18438    case BFD_RELOC_ARM_TLS_IE32:
18439    case BFD_RELOC_ARM_TLS_LDM32:
18440    case BFD_RELOC_ARM_TLS_LDO32:
18441      S_SET_THREAD_LOCAL (fixP->fx_addsy);
18442      /* fall through */
18443
18444    case BFD_RELOC_ARM_GOT32:
18445    case BFD_RELOC_ARM_GOTOFF:
18446    case BFD_RELOC_ARM_TARGET2:
18447      if (fixP->fx_done || !seg->use_rela_p)
18448	md_number_to_chars (buf, 0, 4);
18449      break;
18450#endif
18451
18452    case BFD_RELOC_RVA:
18453    case BFD_RELOC_32:
18454    case BFD_RELOC_ARM_TARGET1:
18455    case BFD_RELOC_ARM_ROSEGREL32:
18456    case BFD_RELOC_ARM_SBREL32:
18457    case BFD_RELOC_32_PCREL:
18458#ifdef TE_PE
18459    case BFD_RELOC_32_SECREL:
18460#endif
18461      if (fixP->fx_done || !seg->use_rela_p)
18462#ifdef TE_WINCE
18463	/* For WinCE we only do this for pcrel fixups.  */
18464	if (fixP->fx_done || fixP->fx_pcrel)
18465#endif
18466	  md_number_to_chars (buf, value, 4);
18467      break;
18468
18469#ifdef OBJ_ELF
18470    case BFD_RELOC_ARM_PREL31:
18471      if (fixP->fx_done || !seg->use_rela_p)
18472	{
18473	  newval = md_chars_to_number (buf, 4) & 0x80000000;
18474	  if ((value ^ (value >> 1)) & 0x40000000)
18475	    {
18476	      as_bad_where (fixP->fx_file, fixP->fx_line,
18477			    _("rel31 relocation overflow"));
18478	    }
18479	  newval |= value & 0x7fffffff;
18480	  md_number_to_chars (buf, newval, 4);
18481	}
18482      break;
18483#endif
18484
18485    case BFD_RELOC_ARM_CP_OFF_IMM:
18486    case BFD_RELOC_ARM_T32_CP_OFF_IMM:
18487      if (value < -1023 || value > 1023 || (value & 3))
18488	as_bad_where (fixP->fx_file, fixP->fx_line,
18489		      _("co-processor offset out of range"));
18490    cp_off_common:
18491      sign = value >= 0;
18492      if (value < 0)
18493	value = -value;
18494      if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18495	  || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18496	newval = md_chars_to_number (buf, INSN_SIZE);
18497      else
18498	newval = get_thumb32_insn (buf);
18499      newval &= 0xff7fff00;
18500      newval |= (value >> 2) | (sign ? INDEX_UP : 0);
18501      if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18502	  || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18503	md_number_to_chars (buf, newval, INSN_SIZE);
18504      else
18505	put_thumb32_insn (buf, newval);
18506      break;
18507
18508    case BFD_RELOC_ARM_CP_OFF_IMM_S2:
18509    case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
18510      if (value < -255 || value > 255)
18511	as_bad_where (fixP->fx_file, fixP->fx_line,
18512		      _("co-processor offset out of range"));
18513      value *= 4;
18514      goto cp_off_common;
18515
18516    case BFD_RELOC_ARM_THUMB_OFFSET:
18517      newval = md_chars_to_number (buf, THUMB_SIZE);
18518      /* Exactly what ranges, and where the offset is inserted depends
18519	 on the type of instruction, we can establish this from the
18520	 top 4 bits.  */
18521      switch (newval >> 12)
18522	{
18523	case 4: /* PC load.  */
18524	  /* Thumb PC loads are somewhat odd, bit 1 of the PC is
18525	     forced to zero for these loads; md_pcrel_from has already
18526	     compensated for this.  */
18527	  if (value & 3)
18528	    as_bad_where (fixP->fx_file, fixP->fx_line,
18529			  _("invalid offset, target not word aligned (0x%08lX)"),
18530			  (((unsigned long) fixP->fx_frag->fr_address
18531			    + (unsigned long) fixP->fx_where) & ~3)
18532			  + (unsigned long) value);
18533
18534	  if (value & ~0x3fc)
18535	    as_bad_where (fixP->fx_file, fixP->fx_line,
18536			  _("invalid offset, value too big (0x%08lX)"),
18537			  (long) value);
18538
18539	  newval |= value >> 2;
18540	  break;
18541
18542	case 9: /* SP load/store.  */
18543	  if (value & ~0x3fc)
18544	    as_bad_where (fixP->fx_file, fixP->fx_line,
18545			  _("invalid offset, value too big (0x%08lX)"),
18546			  (long) value);
18547	  newval |= value >> 2;
18548	  break;
18549
18550	case 6: /* Word load/store.  */
18551	  if (value & ~0x7c)
18552	    as_bad_where (fixP->fx_file, fixP->fx_line,
18553			  _("invalid offset, value too big (0x%08lX)"),
18554			  (long) value);
18555	  newval |= value << 4; /* 6 - 2.  */
18556	  break;
18557
18558	case 7: /* Byte load/store.  */
18559	  if (value & ~0x1f)
18560	    as_bad_where (fixP->fx_file, fixP->fx_line,
18561			  _("invalid offset, value too big (0x%08lX)"),
18562			  (long) value);
18563	  newval |= value << 6;
18564	  break;
18565
18566	case 8: /* Halfword load/store.	 */
18567	  if (value & ~0x3e)
18568	    as_bad_where (fixP->fx_file, fixP->fx_line,
18569			  _("invalid offset, value too big (0x%08lX)"),
18570			  (long) value);
18571	  newval |= value << 5; /* 6 - 1.  */
18572	  break;
18573
18574	default:
18575	  as_bad_where (fixP->fx_file, fixP->fx_line,
18576			"Unable to process relocation for thumb opcode: %lx",
18577			(unsigned long) newval);
18578	  break;
18579	}
18580      md_number_to_chars (buf, newval, THUMB_SIZE);
18581      break;
18582
18583    case BFD_RELOC_ARM_THUMB_ADD:
18584      /* This is a complicated relocation, since we use it for all of
18585	 the following immediate relocations:
18586
18587	    3bit ADD/SUB
18588	    8bit ADD/SUB
18589	    9bit ADD/SUB SP word-aligned
18590	   10bit ADD PC/SP word-aligned
18591
18592	 The type of instruction being processed is encoded in the
18593	 instruction field:
18594
18595	   0x8000  SUB
18596	   0x00F0  Rd
18597	   0x000F  Rs
18598      */
18599      newval = md_chars_to_number (buf, THUMB_SIZE);
18600      {
18601	int rd = (newval >> 4) & 0xf;
18602	int rs = newval & 0xf;
18603	int subtract = !!(newval & 0x8000);
18604
18605	/* Check for HI regs, only very restricted cases allowed:
18606	   Adjusting SP, and using PC or SP to get an address.	*/
18607	if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
18608	    || (rs > 7 && rs != REG_SP && rs != REG_PC))
18609	  as_bad_where (fixP->fx_file, fixP->fx_line,
18610			_("invalid Hi register with immediate"));
18611
18612	/* If value is negative, choose the opposite instruction.  */
18613	if (value < 0)
18614	  {
18615	    value = -value;
18616	    subtract = !subtract;
18617	    if (value < 0)
18618	      as_bad_where (fixP->fx_file, fixP->fx_line,
18619			    _("immediate value out of range"));
18620	  }
18621
18622	if (rd == REG_SP)
18623	  {
18624	    if (value & ~0x1fc)
18625	      as_bad_where (fixP->fx_file, fixP->fx_line,
18626			    _("invalid immediate for stack address calculation"));
18627	    newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
18628	    newval |= value >> 2;
18629	  }
18630	else if (rs == REG_PC || rs == REG_SP)
18631	  {
18632	    if (subtract || value & ~0x3fc)
18633	      as_bad_where (fixP->fx_file, fixP->fx_line,
18634			    _("invalid immediate for address calculation (value = 0x%08lX)"),
18635			    (unsigned long) value);
18636	    newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
18637	    newval |= rd << 8;
18638	    newval |= value >> 2;
18639	  }
18640	else if (rs == rd)
18641	  {
18642	    if (value & ~0xff)
18643	      as_bad_where (fixP->fx_file, fixP->fx_line,
18644			    _("immediate value out of range"));
18645	    newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
18646	    newval |= (rd << 8) | value;
18647	  }
18648	else
18649	  {
18650	    if (value & ~0x7)
18651	      as_bad_where (fixP->fx_file, fixP->fx_line,
18652			    _("immediate value out of range"));
18653	    newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
18654	    newval |= rd | (rs << 3) | (value << 6);
18655	  }
18656      }
18657      md_number_to_chars (buf, newval, THUMB_SIZE);
18658      break;
18659
18660    case BFD_RELOC_ARM_THUMB_IMM:
18661      newval = md_chars_to_number (buf, THUMB_SIZE);
18662      if (value < 0 || value > 255)
18663	as_bad_where (fixP->fx_file, fixP->fx_line,
18664		      _("invalid immediate: %ld is too large"),
18665		      (long) value);
18666      newval |= value;
18667      md_number_to_chars (buf, newval, THUMB_SIZE);
18668      break;
18669
18670    case BFD_RELOC_ARM_THUMB_SHIFT:
18671      /* 5bit shift value (0..32).  LSL cannot take 32.	 */
18672      newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
18673      temp = newval & 0xf800;
18674      if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
18675	as_bad_where (fixP->fx_file, fixP->fx_line,
18676		      _("invalid shift value: %ld"), (long) value);
18677      /* Shifts of zero must be encoded as LSL.	 */
18678      if (value == 0)
18679	newval = (newval & 0x003f) | T_OPCODE_LSL_I;
18680      /* Shifts of 32 are encoded as zero.  */
18681      else if (value == 32)
18682	value = 0;
18683      newval |= value << 6;
18684      md_number_to_chars (buf, newval, THUMB_SIZE);
18685      break;
18686
18687    case BFD_RELOC_VTABLE_INHERIT:
18688    case BFD_RELOC_VTABLE_ENTRY:
18689      fixP->fx_done = 0;
18690      return;
18691
18692    case BFD_RELOC_ARM_MOVW:
18693    case BFD_RELOC_ARM_MOVT:
18694    case BFD_RELOC_ARM_THUMB_MOVW:
18695    case BFD_RELOC_ARM_THUMB_MOVT:
18696      if (fixP->fx_done || !seg->use_rela_p)
18697	{
18698	  /* REL format relocations are limited to a 16-bit addend.  */
18699	  if (!fixP->fx_done)
18700	    {
18701	      if (value < -0x1000 || value > 0xffff)
18702		  as_bad_where (fixP->fx_file, fixP->fx_line,
18703				_("offset too big"));
18704	    }
18705	  else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
18706		   || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18707	    {
18708	      value >>= 16;
18709	    }
18710
18711	  if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
18712	      || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18713	    {
18714	      newval = get_thumb32_insn (buf);
18715	      newval &= 0xfbf08f00;
18716	      newval |= (value & 0xf000) << 4;
18717	      newval |= (value & 0x0800) << 15;
18718	      newval |= (value & 0x0700) << 4;
18719	      newval |= (value & 0x00ff);
18720	      put_thumb32_insn (buf, newval);
18721	    }
18722	  else
18723	    {
18724	      newval = md_chars_to_number (buf, 4);
18725	      newval &= 0xfff0f000;
18726	      newval |= value & 0x0fff;
18727	      newval |= (value & 0xf000) << 4;
18728	      md_number_to_chars (buf, newval, 4);
18729	    }
18730	}
18731      return;
18732
18733   case BFD_RELOC_ARM_ALU_PC_G0_NC:
18734   case BFD_RELOC_ARM_ALU_PC_G0:
18735   case BFD_RELOC_ARM_ALU_PC_G1_NC:
18736   case BFD_RELOC_ARM_ALU_PC_G1:
18737   case BFD_RELOC_ARM_ALU_PC_G2:
18738   case BFD_RELOC_ARM_ALU_SB_G0_NC:
18739   case BFD_RELOC_ARM_ALU_SB_G0:
18740   case BFD_RELOC_ARM_ALU_SB_G1_NC:
18741   case BFD_RELOC_ARM_ALU_SB_G1:
18742   case BFD_RELOC_ARM_ALU_SB_G2:
18743     assert (!fixP->fx_done);
18744     if (!seg->use_rela_p)
18745       {
18746         bfd_vma insn;
18747         bfd_vma encoded_addend;
18748         bfd_vma addend_abs = abs (value);
18749
18750         /* Check that the absolute value of the addend can be
18751            expressed as an 8-bit constant plus a rotation.  */
18752         encoded_addend = encode_arm_immediate (addend_abs);
18753         if (encoded_addend == (unsigned int) FAIL)
18754	   as_bad_where (fixP->fx_file, fixP->fx_line,
18755	                 _("the offset 0x%08lX is not representable"),
18756                         (unsigned long) addend_abs);
18757
18758         /* Extract the instruction.  */
18759         insn = md_chars_to_number (buf, INSN_SIZE);
18760
18761         /* If the addend is positive, use an ADD instruction.
18762            Otherwise use a SUB.  Take care not to destroy the S bit.  */
18763         insn &= 0xff1fffff;
18764         if (value < 0)
18765           insn |= 1 << 22;
18766         else
18767           insn |= 1 << 23;
18768
18769         /* Place the encoded addend into the first 12 bits of the
18770            instruction.  */
18771         insn &= 0xfffff000;
18772         insn |= encoded_addend;
18773
18774         /* Update the instruction.  */
18775         md_number_to_chars (buf, insn, INSN_SIZE);
18776       }
18777     break;
18778
18779    case BFD_RELOC_ARM_LDR_PC_G0:
18780    case BFD_RELOC_ARM_LDR_PC_G1:
18781    case BFD_RELOC_ARM_LDR_PC_G2:
18782    case BFD_RELOC_ARM_LDR_SB_G0:
18783    case BFD_RELOC_ARM_LDR_SB_G1:
18784    case BFD_RELOC_ARM_LDR_SB_G2:
18785      assert (!fixP->fx_done);
18786      if (!seg->use_rela_p)
18787        {
18788          bfd_vma insn;
18789          bfd_vma addend_abs = abs (value);
18790
18791          /* Check that the absolute value of the addend can be
18792             encoded in 12 bits.  */
18793          if (addend_abs >= 0x1000)
18794	    as_bad_where (fixP->fx_file, fixP->fx_line,
18795	  	          _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
18796                          (unsigned long) addend_abs);
18797
18798          /* Extract the instruction.  */
18799          insn = md_chars_to_number (buf, INSN_SIZE);
18800
18801          /* If the addend is negative, clear bit 23 of the instruction.
18802             Otherwise set it.  */
18803          if (value < 0)
18804            insn &= ~(1 << 23);
18805          else
18806            insn |= 1 << 23;
18807
18808          /* Place the absolute value of the addend into the first 12 bits
18809             of the instruction.  */
18810          insn &= 0xfffff000;
18811          insn |= addend_abs;
18812
18813          /* Update the instruction.  */
18814          md_number_to_chars (buf, insn, INSN_SIZE);
18815        }
18816      break;
18817
18818    case BFD_RELOC_ARM_LDRS_PC_G0:
18819    case BFD_RELOC_ARM_LDRS_PC_G1:
18820    case BFD_RELOC_ARM_LDRS_PC_G2:
18821    case BFD_RELOC_ARM_LDRS_SB_G0:
18822    case BFD_RELOC_ARM_LDRS_SB_G1:
18823    case BFD_RELOC_ARM_LDRS_SB_G2:
18824      assert (!fixP->fx_done);
18825      if (!seg->use_rela_p)
18826        {
18827          bfd_vma insn;
18828          bfd_vma addend_abs = abs (value);
18829
18830          /* Check that the absolute value of the addend can be
18831             encoded in 8 bits.  */
18832          if (addend_abs >= 0x100)
18833	    as_bad_where (fixP->fx_file, fixP->fx_line,
18834	  	          _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
18835                          (unsigned long) addend_abs);
18836
18837          /* Extract the instruction.  */
18838          insn = md_chars_to_number (buf, INSN_SIZE);
18839
18840          /* If the addend is negative, clear bit 23 of the instruction.
18841             Otherwise set it.  */
18842          if (value < 0)
18843            insn &= ~(1 << 23);
18844          else
18845            insn |= 1 << 23;
18846
18847          /* Place the first four bits of the absolute value of the addend
18848             into the first 4 bits of the instruction, and the remaining
18849             four into bits 8 .. 11.  */
18850          insn &= 0xfffff0f0;
18851          insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
18852
18853          /* Update the instruction.  */
18854          md_number_to_chars (buf, insn, INSN_SIZE);
18855        }
18856      break;
18857
18858    case BFD_RELOC_ARM_LDC_PC_G0:
18859    case BFD_RELOC_ARM_LDC_PC_G1:
18860    case BFD_RELOC_ARM_LDC_PC_G2:
18861    case BFD_RELOC_ARM_LDC_SB_G0:
18862    case BFD_RELOC_ARM_LDC_SB_G1:
18863    case BFD_RELOC_ARM_LDC_SB_G2:
18864      assert (!fixP->fx_done);
18865      if (!seg->use_rela_p)
18866        {
18867          bfd_vma insn;
18868          bfd_vma addend_abs = abs (value);
18869
18870          /* Check that the absolute value of the addend is a multiple of
18871             four and, when divided by four, fits in 8 bits.  */
18872          if (addend_abs & 0x3)
18873	    as_bad_where (fixP->fx_file, fixP->fx_line,
18874	  	          _("bad offset 0x%08lX (must be word-aligned)"),
18875                          (unsigned long) addend_abs);
18876
18877          if ((addend_abs >> 2) > 0xff)
18878	    as_bad_where (fixP->fx_file, fixP->fx_line,
18879	  	          _("bad offset 0x%08lX (must be an 8-bit number of words)"),
18880                          (unsigned long) addend_abs);
18881
18882          /* Extract the instruction.  */
18883          insn = md_chars_to_number (buf, INSN_SIZE);
18884
18885          /* If the addend is negative, clear bit 23 of the instruction.
18886             Otherwise set it.  */
18887          if (value < 0)
18888            insn &= ~(1 << 23);
18889          else
18890            insn |= 1 << 23;
18891
18892          /* Place the addend (divided by four) into the first eight
18893             bits of the instruction.  */
18894          insn &= 0xfffffff0;
18895          insn |= addend_abs >> 2;
18896
18897          /* Update the instruction.  */
18898          md_number_to_chars (buf, insn, INSN_SIZE);
18899        }
18900      break;
18901
18902    case BFD_RELOC_UNUSED:
18903    default:
18904      as_bad_where (fixP->fx_file, fixP->fx_line,
18905		    _("bad relocation fixup type (%d)"), fixP->fx_r_type);
18906    }
18907}
18908
18909/* Translate internal representation of relocation info to BFD target
18910   format.  */
18911
18912arelent *
18913tc_gen_reloc (asection *section, fixS *fixp)
18914{
18915  arelent * reloc;
18916  bfd_reloc_code_real_type code;
18917
18918  reloc = xmalloc (sizeof (arelent));
18919
18920  reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
18921  *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18922  reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18923
18924  if (fixp->fx_pcrel)
18925    {
18926      if (section->use_rela_p)
18927	fixp->fx_offset -= md_pcrel_from_section (fixp, section);
18928      else
18929	fixp->fx_offset = reloc->address;
18930    }
18931  reloc->addend = fixp->fx_offset;
18932
18933  switch (fixp->fx_r_type)
18934    {
18935    case BFD_RELOC_8:
18936      if (fixp->fx_pcrel)
18937	{
18938	  code = BFD_RELOC_8_PCREL;
18939	  break;
18940	}
18941
18942    case BFD_RELOC_16:
18943      if (fixp->fx_pcrel)
18944	{
18945	  code = BFD_RELOC_16_PCREL;
18946	  break;
18947	}
18948
18949    case BFD_RELOC_32:
18950      if (fixp->fx_pcrel)
18951	{
18952	  code = BFD_RELOC_32_PCREL;
18953	  break;
18954	}
18955
18956    case BFD_RELOC_ARM_MOVW:
18957      if (fixp->fx_pcrel)
18958	{
18959	  code = BFD_RELOC_ARM_MOVW_PCREL;
18960	  break;
18961	}
18962
18963    case BFD_RELOC_ARM_MOVT:
18964      if (fixp->fx_pcrel)
18965	{
18966	  code = BFD_RELOC_ARM_MOVT_PCREL;
18967	  break;
18968	}
18969
18970    case BFD_RELOC_ARM_THUMB_MOVW:
18971      if (fixp->fx_pcrel)
18972	{
18973	  code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
18974	  break;
18975	}
18976
18977    case BFD_RELOC_ARM_THUMB_MOVT:
18978      if (fixp->fx_pcrel)
18979	{
18980	  code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
18981	  break;
18982	}
18983
18984    case BFD_RELOC_NONE:
18985    case BFD_RELOC_ARM_PCREL_BRANCH:
18986    case BFD_RELOC_ARM_PCREL_BLX:
18987    case BFD_RELOC_RVA:
18988    case BFD_RELOC_THUMB_PCREL_BRANCH7:
18989    case BFD_RELOC_THUMB_PCREL_BRANCH9:
18990    case BFD_RELOC_THUMB_PCREL_BRANCH12:
18991    case BFD_RELOC_THUMB_PCREL_BRANCH20:
18992    case BFD_RELOC_THUMB_PCREL_BRANCH23:
18993    case BFD_RELOC_THUMB_PCREL_BRANCH25:
18994    case BFD_RELOC_THUMB_PCREL_BLX:
18995    case BFD_RELOC_VTABLE_ENTRY:
18996    case BFD_RELOC_VTABLE_INHERIT:
18997#ifdef TE_PE
18998    case BFD_RELOC_32_SECREL:
18999#endif
19000      code = fixp->fx_r_type;
19001      break;
19002
19003    case BFD_RELOC_ARM_LITERAL:
19004    case BFD_RELOC_ARM_HWLITERAL:
19005      /* If this is called then the a literal has
19006	 been referenced across a section boundary.  */
19007      as_bad_where (fixp->fx_file, fixp->fx_line,
19008		    _("literal referenced across section boundary"));
19009      return NULL;
19010
19011#ifdef OBJ_ELF
19012    case BFD_RELOC_ARM_GOT32:
19013    case BFD_RELOC_ARM_GOTOFF:
19014    case BFD_RELOC_ARM_PLT32:
19015    case BFD_RELOC_ARM_TARGET1:
19016    case BFD_RELOC_ARM_ROSEGREL32:
19017    case BFD_RELOC_ARM_SBREL32:
19018    case BFD_RELOC_ARM_PREL31:
19019    case BFD_RELOC_ARM_TARGET2:
19020    case BFD_RELOC_ARM_TLS_LE32:
19021    case BFD_RELOC_ARM_TLS_LDO32:
19022    case BFD_RELOC_ARM_PCREL_CALL:
19023    case BFD_RELOC_ARM_PCREL_JUMP:
19024    case BFD_RELOC_ARM_ALU_PC_G0_NC:
19025    case BFD_RELOC_ARM_ALU_PC_G0:
19026    case BFD_RELOC_ARM_ALU_PC_G1_NC:
19027    case BFD_RELOC_ARM_ALU_PC_G1:
19028    case BFD_RELOC_ARM_ALU_PC_G2:
19029    case BFD_RELOC_ARM_LDR_PC_G0:
19030    case BFD_RELOC_ARM_LDR_PC_G1:
19031    case BFD_RELOC_ARM_LDR_PC_G2:
19032    case BFD_RELOC_ARM_LDRS_PC_G0:
19033    case BFD_RELOC_ARM_LDRS_PC_G1:
19034    case BFD_RELOC_ARM_LDRS_PC_G2:
19035    case BFD_RELOC_ARM_LDC_PC_G0:
19036    case BFD_RELOC_ARM_LDC_PC_G1:
19037    case BFD_RELOC_ARM_LDC_PC_G2:
19038    case BFD_RELOC_ARM_ALU_SB_G0_NC:
19039    case BFD_RELOC_ARM_ALU_SB_G0:
19040    case BFD_RELOC_ARM_ALU_SB_G1_NC:
19041    case BFD_RELOC_ARM_ALU_SB_G1:
19042    case BFD_RELOC_ARM_ALU_SB_G2:
19043    case BFD_RELOC_ARM_LDR_SB_G0:
19044    case BFD_RELOC_ARM_LDR_SB_G1:
19045    case BFD_RELOC_ARM_LDR_SB_G2:
19046    case BFD_RELOC_ARM_LDRS_SB_G0:
19047    case BFD_RELOC_ARM_LDRS_SB_G1:
19048    case BFD_RELOC_ARM_LDRS_SB_G2:
19049    case BFD_RELOC_ARM_LDC_SB_G0:
19050    case BFD_RELOC_ARM_LDC_SB_G1:
19051    case BFD_RELOC_ARM_LDC_SB_G2:
19052      code = fixp->fx_r_type;
19053      break;
19054
19055    case BFD_RELOC_ARM_TLS_GD32:
19056    case BFD_RELOC_ARM_TLS_IE32:
19057    case BFD_RELOC_ARM_TLS_LDM32:
19058      /* BFD will include the symbol's address in the addend.
19059	 But we don't want that, so subtract it out again here.  */
19060      if (!S_IS_COMMON (fixp->fx_addsy))
19061	reloc->addend -= (*reloc->sym_ptr_ptr)->value;
19062      code = fixp->fx_r_type;
19063      break;
19064#endif
19065
19066    case BFD_RELOC_ARM_IMMEDIATE:
19067      as_bad_where (fixp->fx_file, fixp->fx_line,
19068		    _("internal relocation (type: IMMEDIATE) not fixed up"));
19069      return NULL;
19070
19071    case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19072      as_bad_where (fixp->fx_file, fixp->fx_line,
19073		    _("ADRL used for a symbol not defined in the same file"));
19074      return NULL;
19075
19076    case BFD_RELOC_ARM_OFFSET_IMM:
19077      if (section->use_rela_p)
19078	{
19079	  code = fixp->fx_r_type;
19080	  break;
19081	}
19082
19083      if (fixp->fx_addsy != NULL
19084	  && !S_IS_DEFINED (fixp->fx_addsy)
19085	  && S_IS_LOCAL (fixp->fx_addsy))
19086	{
19087	  as_bad_where (fixp->fx_file, fixp->fx_line,
19088			_("undefined local label `%s'"),
19089			S_GET_NAME (fixp->fx_addsy));
19090	  return NULL;
19091	}
19092
19093      as_bad_where (fixp->fx_file, fixp->fx_line,
19094		    _("internal_relocation (type: OFFSET_IMM) not fixed up"));
19095      return NULL;
19096
19097    default:
19098      {
19099	char * type;
19100
19101	switch (fixp->fx_r_type)
19102	  {
19103	  case BFD_RELOC_NONE:		   type = "NONE";	  break;
19104	  case BFD_RELOC_ARM_OFFSET_IMM8:  type = "OFFSET_IMM8";  break;
19105	  case BFD_RELOC_ARM_SHIFT_IMM:	   type = "SHIFT_IMM";	  break;
19106	  case BFD_RELOC_ARM_SMC:	   type = "SMC";	  break;
19107	  case BFD_RELOC_ARM_SWI:	   type = "SWI";	  break;
19108	  case BFD_RELOC_ARM_MULTI:	   type = "MULTI";	  break;
19109	  case BFD_RELOC_ARM_CP_OFF_IMM:   type = "CP_OFF_IMM";	  break;
19110	  case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
19111	  case BFD_RELOC_ARM_THUMB_ADD:	   type = "THUMB_ADD";	  break;
19112	  case BFD_RELOC_ARM_THUMB_SHIFT:  type = "THUMB_SHIFT";  break;
19113	  case BFD_RELOC_ARM_THUMB_IMM:	   type = "THUMB_IMM";	  break;
19114	  case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
19115	  default:			   type = _("<unknown>"); break;
19116	  }
19117	as_bad_where (fixp->fx_file, fixp->fx_line,
19118		      _("cannot represent %s relocation in this object file format"),
19119		      type);
19120	return NULL;
19121      }
19122    }
19123
19124#ifdef OBJ_ELF
19125  if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
19126      && GOT_symbol
19127      && fixp->fx_addsy == GOT_symbol)
19128    {
19129      code = BFD_RELOC_ARM_GOTPC;
19130      reloc->addend = fixp->fx_offset = reloc->address;
19131    }
19132#endif
19133
19134  reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
19135
19136  if (reloc->howto == NULL)
19137    {
19138      as_bad_where (fixp->fx_file, fixp->fx_line,
19139		    _("cannot represent %s relocation in this object file format"),
19140		    bfd_get_reloc_code_name (code));
19141      return NULL;
19142    }
19143
19144  /* HACK: Since arm ELF uses Rel instead of Rela, encode the
19145     vtable entry to be used in the relocation's section offset.  */
19146  if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19147    reloc->address = fixp->fx_offset;
19148
19149  return reloc;
19150}
19151
19152/* This fix_new is called by cons via TC_CONS_FIX_NEW.	*/
19153
19154void
19155cons_fix_new_arm (fragS *	frag,
19156		  int		where,
19157		  int		size,
19158		  expressionS * exp)
19159{
19160  bfd_reloc_code_real_type type;
19161  int pcrel = 0;
19162
19163  /* Pick a reloc.
19164     FIXME: @@ Should look at CPU word size.  */
19165  switch (size)
19166    {
19167    case 1:
19168      type = BFD_RELOC_8;
19169      break;
19170    case 2:
19171      type = BFD_RELOC_16;
19172      break;
19173    case 4:
19174    default:
19175      type = BFD_RELOC_32;
19176      break;
19177    case 8:
19178      type = BFD_RELOC_64;
19179      break;
19180    }
19181
19182#ifdef TE_PE
19183  if (exp->X_op == O_secrel)
19184  {
19185    exp->X_op = O_symbol;
19186    type = BFD_RELOC_32_SECREL;
19187  }
19188#endif
19189
19190  fix_new_exp (frag, where, (int) size, exp, pcrel, type);
19191}
19192
19193#if defined OBJ_COFF || defined OBJ_ELF
19194void
19195arm_validate_fix (fixS * fixP)
19196{
19197  /* If the destination of the branch is a defined symbol which does not have
19198     the THUMB_FUNC attribute, then we must be calling a function which has
19199     the (interfacearm) attribute.  We look for the Thumb entry point to that
19200     function and change the branch to refer to that function instead.	*/
19201  if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
19202      && fixP->fx_addsy != NULL
19203      && S_IS_DEFINED (fixP->fx_addsy)
19204      && ! THUMB_IS_FUNC (fixP->fx_addsy))
19205    {
19206      fixP->fx_addsy = find_real_start (fixP->fx_addsy);
19207    }
19208}
19209#endif
19210
19211int
19212arm_force_relocation (struct fix * fixp)
19213{
19214#if defined (OBJ_COFF) && defined (TE_PE)
19215  if (fixp->fx_r_type == BFD_RELOC_RVA)
19216    return 1;
19217#endif
19218
19219  /* Resolve these relocations even if the symbol is extern or weak.  */
19220  if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
19221      || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
19222      || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
19223      || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
19224      || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19225      || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
19226      || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
19227    return 0;
19228
19229  /* Always leave these relocations for the linker.  */
19230  if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19231       && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19232      || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19233    return 1;
19234
19235  /* Always generate relocations against function symbols.  */
19236  if (fixp->fx_r_type == BFD_RELOC_32
19237      && fixp->fx_addsy
19238      && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
19239    return 1;
19240
19241  return generic_force_reloc (fixp);
19242}
19243
19244#if defined (OBJ_ELF) || defined (OBJ_COFF)
19245/* Relocations against function names must be left unadjusted,
19246   so that the linker can use this information to generate interworking
19247   stubs.  The MIPS version of this function
19248   also prevents relocations that are mips-16 specific, but I do not
19249   know why it does this.
19250
19251   FIXME:
19252   There is one other problem that ought to be addressed here, but
19253   which currently is not:  Taking the address of a label (rather
19254   than a function) and then later jumping to that address.  Such
19255   addresses also ought to have their bottom bit set (assuming that
19256   they reside in Thumb code), but at the moment they will not.	 */
19257
19258bfd_boolean
19259arm_fix_adjustable (fixS * fixP)
19260{
19261  if (fixP->fx_addsy == NULL)
19262    return 1;
19263
19264  /* Preserve relocations against symbols with function type.  */
19265  if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
19266    return 0;
19267
19268  if (THUMB_IS_FUNC (fixP->fx_addsy)
19269      && fixP->fx_subsy == NULL)
19270    return 0;
19271
19272  /* We need the symbol name for the VTABLE entries.  */
19273  if (	 fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
19274      || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19275    return 0;
19276
19277  /* Don't allow symbols to be discarded on GOT related relocs.	 */
19278  if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
19279      || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
19280      || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
19281      || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
19282      || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
19283      || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
19284      || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
19285      || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
19286      || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
19287    return 0;
19288
19289  /* Similarly for group relocations.  */
19290  if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19291       && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19292      || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19293    return 0;
19294
19295  return 1;
19296}
19297#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
19298
19299#ifdef OBJ_ELF
19300
19301const char *
19302elf32_arm_target_format (void)
19303{
19304#ifdef TE_SYMBIAN
19305  return (target_big_endian
19306	  ? "elf32-bigarm-symbian"
19307	  : "elf32-littlearm-symbian");
19308#elif defined (TE_VXWORKS)
19309  return (target_big_endian
19310	  ? "elf32-bigarm-vxworks"
19311	  : "elf32-littlearm-vxworks");
19312#else
19313  if (target_big_endian)
19314    return "elf32-bigarm";
19315  else
19316    return "elf32-littlearm";
19317#endif
19318}
19319
19320void
19321armelf_frob_symbol (symbolS * symp,
19322		    int *     puntp)
19323{
19324  elf_frob_symbol (symp, puntp);
19325}
19326#endif
19327
19328/* MD interface: Finalization.	*/
19329
19330/* A good place to do this, although this was probably not intended
19331   for this kind of use.  We need to dump the literal pool before
19332   references are made to a null symbol pointer.  */
19333
19334void
19335arm_cleanup (void)
19336{
19337  literal_pool * pool;
19338
19339  for (pool = list_of_pools; pool; pool = pool->next)
19340    {
19341      /* Put it at the end of the relevent section.  */
19342      subseg_set (pool->section, pool->sub_section);
19343#ifdef OBJ_ELF
19344      arm_elf_change_section ();
19345#endif
19346      s_ltorg (0);
19347    }
19348}
19349
19350/* Adjust the symbol table.  This marks Thumb symbols as distinct from
19351   ARM ones.  */
19352
19353void
19354arm_adjust_symtab (void)
19355{
19356#ifdef OBJ_COFF
19357  symbolS * sym;
19358
19359  for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19360    {
19361      if (ARM_IS_THUMB (sym))
19362	{
19363	  if (THUMB_IS_FUNC (sym))
19364	    {
19365	      /* Mark the symbol as a Thumb function.  */
19366	      if (   S_GET_STORAGE_CLASS (sym) == C_STAT
19367		  || S_GET_STORAGE_CLASS (sym) == C_LABEL)  /* This can happen!	 */
19368		S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
19369
19370	      else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
19371		S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
19372	      else
19373		as_bad (_("%s: unexpected function type: %d"),
19374			S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
19375	    }
19376	  else switch (S_GET_STORAGE_CLASS (sym))
19377	    {
19378	    case C_EXT:
19379	      S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
19380	      break;
19381	    case C_STAT:
19382	      S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
19383	      break;
19384	    case C_LABEL:
19385	      S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
19386	      break;
19387	    default:
19388	      /* Do nothing.  */
19389	      break;
19390	    }
19391	}
19392
19393      if (ARM_IS_INTERWORK (sym))
19394	coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
19395    }
19396#endif
19397#ifdef OBJ_ELF
19398  symbolS * sym;
19399  char	    bind;
19400
19401  for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19402    {
19403      if (ARM_IS_THUMB (sym))
19404	{
19405	  elf_symbol_type * elf_sym;
19406
19407	  elf_sym = elf_symbol (symbol_get_bfdsym (sym));
19408	  bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
19409
19410	  if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
19411		BFD_ARM_SPECIAL_SYM_TYPE_ANY))
19412	    {
19413	      /* If it's a .thumb_func, declare it as so,
19414		 otherwise tag label as .code 16.  */
19415	      if (THUMB_IS_FUNC (sym))
19416		elf_sym->internal_elf_sym.st_info =
19417		  ELF_ST_INFO (bind, STT_ARM_TFUNC);
19418	      else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
19419		elf_sym->internal_elf_sym.st_info =
19420		  ELF_ST_INFO (bind, STT_ARM_16BIT);
19421	    }
19422	}
19423    }
19424#endif
19425}
19426
19427/* MD interface: Initialization.  */
19428
19429static void
19430set_constant_flonums (void)
19431{
19432  int i;
19433
19434  for (i = 0; i < NUM_FLOAT_VALS; i++)
19435    if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
19436      abort ();
19437}
19438
19439/* Auto-select Thumb mode if it's the only available instruction set for the
19440   given architecture.  */
19441
19442static void
19443autoselect_thumb_from_cpu_variant (void)
19444{
19445  if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
19446    opcode_select (16);
19447}
19448
19449void
19450md_begin (void)
19451{
19452  unsigned mach;
19453  unsigned int i;
19454
19455  if (	 (arm_ops_hsh = hash_new ()) == NULL
19456      || (arm_cond_hsh = hash_new ()) == NULL
19457      || (arm_shift_hsh = hash_new ()) == NULL
19458      || (arm_psr_hsh = hash_new ()) == NULL
19459      || (arm_v7m_psr_hsh = hash_new ()) == NULL
19460      || (arm_reg_hsh = hash_new ()) == NULL
19461      || (arm_reloc_hsh = hash_new ()) == NULL
19462      || (arm_barrier_opt_hsh = hash_new ()) == NULL)
19463    as_fatal (_("virtual memory exhausted"));
19464
19465  for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
19466    hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
19467  for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
19468    hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
19469  for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
19470    hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
19471  for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
19472    hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
19473  for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
19474    hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (PTR) (v7m_psrs + i));
19475  for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
19476    hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
19477  for (i = 0;
19478       i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
19479       i++)
19480    hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
19481		 (PTR) (barrier_opt_names + i));
19482#ifdef OBJ_ELF
19483  for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
19484    hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
19485#endif
19486
19487  set_constant_flonums ();
19488
19489  /* Set the cpu variant based on the command-line options.  We prefer
19490     -mcpu= over -march= if both are set (as for GCC); and we prefer
19491     -mfpu= over any other way of setting the floating point unit.
19492     Use of legacy options with new options are faulted.  */
19493  if (legacy_cpu)
19494    {
19495      if (mcpu_cpu_opt || march_cpu_opt)
19496	as_bad (_("use of old and new-style options to set CPU type"));
19497
19498      mcpu_cpu_opt = legacy_cpu;
19499    }
19500  else if (!mcpu_cpu_opt)
19501    mcpu_cpu_opt = march_cpu_opt;
19502
19503  if (legacy_fpu)
19504    {
19505      if (mfpu_opt)
19506	as_bad (_("use of old and new-style options to set FPU type"));
19507
19508      mfpu_opt = legacy_fpu;
19509    }
19510  else if (!mfpu_opt)
19511    {
19512#if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
19513      /* Some environments specify a default FPU.  If they don't, infer it
19514	 from the processor.  */
19515      if (mcpu_fpu_opt)
19516	mfpu_opt = mcpu_fpu_opt;
19517      else
19518	mfpu_opt = march_fpu_opt;
19519#else
19520      mfpu_opt = &fpu_default;
19521#endif
19522    }
19523
19524  if (!mfpu_opt)
19525    {
19526      if (mcpu_cpu_opt != NULL)
19527	mfpu_opt = &fpu_default;
19528      else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
19529	mfpu_opt = &fpu_arch_vfp_v2;
19530      else
19531	mfpu_opt = &fpu_arch_fpa;
19532    }
19533
19534#ifdef CPU_DEFAULT
19535  if (!mcpu_cpu_opt)
19536    {
19537      mcpu_cpu_opt = &cpu_default;
19538      selected_cpu = cpu_default;
19539    }
19540#else
19541  if (mcpu_cpu_opt)
19542    selected_cpu = *mcpu_cpu_opt;
19543  else
19544    mcpu_cpu_opt = &arm_arch_any;
19545#endif
19546
19547  ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
19548
19549  autoselect_thumb_from_cpu_variant ();
19550
19551  arm_arch_used = thumb_arch_used = arm_arch_none;
19552
19553#if defined OBJ_COFF || defined OBJ_ELF
19554  {
19555    unsigned int flags = 0;
19556
19557#if defined OBJ_ELF
19558    flags = meabi_flags;
19559
19560    switch (meabi_flags)
19561      {
19562      case EF_ARM_EABI_UNKNOWN:
19563#endif
19564	/* Set the flags in the private structure.  */
19565	if (uses_apcs_26)      flags |= F_APCS26;
19566	if (support_interwork) flags |= F_INTERWORK;
19567	if (uses_apcs_float)   flags |= F_APCS_FLOAT;
19568	if (pic_code)	       flags |= F_PIC;
19569	if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
19570	  flags |= F_SOFT_FLOAT;
19571
19572	switch (mfloat_abi_opt)
19573	  {
19574	  case ARM_FLOAT_ABI_SOFT:
19575	  case ARM_FLOAT_ABI_SOFTFP:
19576	    flags |= F_SOFT_FLOAT;
19577	    break;
19578
19579	  case ARM_FLOAT_ABI_HARD:
19580	    if (flags & F_SOFT_FLOAT)
19581	      as_bad (_("hard-float conflicts with specified fpu"));
19582	    break;
19583	  }
19584
19585	/* Using pure-endian doubles (even if soft-float).	*/
19586	if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
19587	  flags |= F_VFP_FLOAT;
19588
19589#if defined OBJ_ELF
19590	if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
19591	    flags |= EF_ARM_MAVERICK_FLOAT;
19592	break;
19593
19594      case EF_ARM_EABI_VER4:
19595      case EF_ARM_EABI_VER5:
19596	/* No additional flags to set.	*/
19597	break;
19598
19599      default:
19600	abort ();
19601      }
19602#endif
19603    bfd_set_private_flags (stdoutput, flags);
19604
19605    /* We have run out flags in the COFF header to encode the
19606       status of ATPCS support, so instead we create a dummy,
19607       empty, debug section called .arm.atpcs.	*/
19608    if (atpcs)
19609      {
19610	asection * sec;
19611
19612	sec = bfd_make_section (stdoutput, ".arm.atpcs");
19613
19614	if (sec != NULL)
19615	  {
19616	    bfd_set_section_flags
19617	      (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
19618	    bfd_set_section_size (stdoutput, sec, 0);
19619	    bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
19620	  }
19621      }
19622  }
19623#endif
19624
19625  /* Record the CPU type as well.  */
19626  if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
19627    mach = bfd_mach_arm_iWMMXt2;
19628  else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
19629    mach = bfd_mach_arm_iWMMXt;
19630  else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
19631    mach = bfd_mach_arm_XScale;
19632  else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
19633    mach = bfd_mach_arm_ep9312;
19634  else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
19635    mach = bfd_mach_arm_5TE;
19636  else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
19637    {
19638      if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19639	mach = bfd_mach_arm_5T;
19640      else
19641	mach = bfd_mach_arm_5;
19642    }
19643  else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
19644    {
19645      if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19646	mach = bfd_mach_arm_4T;
19647      else
19648	mach = bfd_mach_arm_4;
19649    }
19650  else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
19651    mach = bfd_mach_arm_3M;
19652  else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
19653    mach = bfd_mach_arm_3;
19654  else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
19655    mach = bfd_mach_arm_2a;
19656  else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
19657    mach = bfd_mach_arm_2;
19658  else
19659    mach = bfd_mach_arm_unknown;
19660
19661  bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
19662}
19663
19664/* Command line processing.  */
19665
19666/* md_parse_option
19667      Invocation line includes a switch not recognized by the base assembler.
19668      See if it's a processor-specific option.
19669
19670      This routine is somewhat complicated by the need for backwards
19671      compatibility (since older releases of gcc can't be changed).
19672      The new options try to make the interface as compatible as
19673      possible with GCC.
19674
19675      New options (supported) are:
19676
19677	      -mcpu=<cpu name>		 Assemble for selected processor
19678	      -march=<architecture name> Assemble for selected architecture
19679	      -mfpu=<fpu architecture>	 Assemble for selected FPU.
19680	      -EB/-mbig-endian		 Big-endian
19681	      -EL/-mlittle-endian	 Little-endian
19682	      -k			 Generate PIC code
19683	      -mthumb			 Start in Thumb mode
19684	      -mthumb-interwork		 Code supports ARM/Thumb interworking
19685
19686      For now we will also provide support for:
19687
19688	      -mapcs-32			 32-bit Program counter
19689	      -mapcs-26			 26-bit Program counter
19690	      -macps-float		 Floats passed in FP registers
19691	      -mapcs-reentrant		 Reentrant code
19692	      -matpcs
19693      (sometime these will probably be replaced with -mapcs=<list of options>
19694      and -matpcs=<list of options>)
19695
19696      The remaining options are only supported for back-wards compatibility.
19697      Cpu variants, the arm part is optional:
19698	      -m[arm]1		      Currently not supported.
19699	      -m[arm]2, -m[arm]250    Arm 2 and Arm 250 processor
19700	      -m[arm]3		      Arm 3 processor
19701	      -m[arm]6[xx],	      Arm 6 processors
19702	      -m[arm]7[xx][t][[d]m]   Arm 7 processors
19703	      -m[arm]8[10]	      Arm 8 processors
19704	      -m[arm]9[20][tdmi]      Arm 9 processors
19705	      -mstrongarm[110[0]]     StrongARM processors
19706	      -mxscale		      XScale processors
19707	      -m[arm]v[2345[t[e]]]    Arm architectures
19708	      -mall		      All (except the ARM1)
19709      FP variants:
19710	      -mfpa10, -mfpa11	      FPA10 and 11 co-processor instructions
19711	      -mfpe-old		      (No float load/store multiples)
19712	      -mvfpxd		      VFP Single precision
19713	      -mvfp		      All VFP
19714	      -mno-fpu		      Disable all floating point instructions
19715
19716      The following CPU names are recognized:
19717	      arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19718	      arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19719	      arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19720	      arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19721	      arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19722	      arm10t arm10e, arm1020t, arm1020e, arm10200e,
19723	      strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
19724
19725      */
19726
19727const char * md_shortopts = "m:k";
19728
19729#ifdef ARM_BI_ENDIAN
19730#define OPTION_EB (OPTION_MD_BASE + 0)
19731#define OPTION_EL (OPTION_MD_BASE + 1)
19732#else
19733#if TARGET_BYTES_BIG_ENDIAN
19734#define OPTION_EB (OPTION_MD_BASE + 0)
19735#else
19736#define OPTION_EL (OPTION_MD_BASE + 1)
19737#endif
19738#endif
19739
19740struct option md_longopts[] =
19741{
19742#ifdef OPTION_EB
19743  {"EB", no_argument, NULL, OPTION_EB},
19744#endif
19745#ifdef OPTION_EL
19746  {"EL", no_argument, NULL, OPTION_EL},
19747#endif
19748  {NULL, no_argument, NULL, 0}
19749};
19750
19751size_t md_longopts_size = sizeof (md_longopts);
19752
19753struct arm_option_table
19754{
19755  char *option;		/* Option name to match.  */
19756  char *help;		/* Help information.  */
19757  int  *var;		/* Variable to change.	*/
19758  int	value;		/* What to change it to.  */
19759  char *deprecated;	/* If non-null, print this message.  */
19760};
19761
19762struct arm_option_table arm_opts[] =
19763{
19764  {"k",	     N_("generate PIC code"),	   &pic_code,	 1, NULL},
19765  {"mthumb", N_("assemble Thumb code"),	   &thumb_mode,	 1, NULL},
19766  {"mthumb-interwork", N_("support ARM/Thumb interworking"),
19767   &support_interwork, 1, NULL},
19768  {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
19769  {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
19770  {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
19771   1, NULL},
19772  {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
19773  {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
19774  {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
19775  {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
19776   NULL},
19777
19778  /* These are recognized by the assembler, but have no affect on code.	 */
19779  {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
19780  {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
19781  {NULL, NULL, NULL, 0, NULL}
19782};
19783
19784struct arm_legacy_option_table
19785{
19786  char *option;				/* Option name to match.  */
19787  const arm_feature_set	**var;		/* Variable to change.	*/
19788  const arm_feature_set	value;		/* What to change it to.  */
19789  char *deprecated;			/* If non-null, print this message.  */
19790};
19791
19792const struct arm_legacy_option_table arm_legacy_opts[] =
19793{
19794  /* DON'T add any new processors to this list -- we want the whole list
19795     to go away...  Add them to the processors table instead.  */
19796  {"marm1",	 &legacy_cpu, ARM_ARCH_V1,  N_("use -mcpu=arm1")},
19797  {"m1",	 &legacy_cpu, ARM_ARCH_V1,  N_("use -mcpu=arm1")},
19798  {"marm2",	 &legacy_cpu, ARM_ARCH_V2,  N_("use -mcpu=arm2")},
19799  {"m2",	 &legacy_cpu, ARM_ARCH_V2,  N_("use -mcpu=arm2")},
19800  {"marm250",	 &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19801  {"m250",	 &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19802  {"marm3",	 &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19803  {"m3",	 &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19804  {"marm6",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm6")},
19805  {"m6",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm6")},
19806  {"marm600",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm600")},
19807  {"m600",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm600")},
19808  {"marm610",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm610")},
19809  {"m610",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm610")},
19810  {"marm620",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm620")},
19811  {"m620",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm620")},
19812  {"marm7",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm7")},
19813  {"m7",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm7")},
19814  {"marm70",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm70")},
19815  {"m70",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm70")},
19816  {"marm700",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm700")},
19817  {"m700",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm700")},
19818  {"marm700i",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm700i")},
19819  {"m700i",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm700i")},
19820  {"marm710",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm710")},
19821  {"m710",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm710")},
19822  {"marm710c",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm710c")},
19823  {"m710c",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm710c")},
19824  {"marm720",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm720")},
19825  {"m720",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm720")},
19826  {"marm7d",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm7d")},
19827  {"m7d",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm7d")},
19828  {"marm7di",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm7di")},
19829  {"m7di",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm7di")},
19830  {"marm7m",	 &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19831  {"m7m",	 &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19832  {"marm7dm",	 &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19833  {"m7dm",	 &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19834  {"marm7dmi",	 &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19835  {"m7dmi",	 &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19836  {"marm7100",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm7100")},
19837  {"m7100",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm7100")},
19838  {"marm7500",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm7500")},
19839  {"m7500",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm7500")},
19840  {"marm7500fe", &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm7500fe")},
19841  {"m7500fe",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -mcpu=arm7500fe")},
19842  {"marm7t",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19843  {"m7t",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19844  {"marm7tdmi",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19845  {"m7tdmi",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19846  {"marm710t",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19847  {"m710t",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19848  {"marm720t",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19849  {"m720t",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19850  {"marm740t",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19851  {"m740t",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19852  {"marm8",	 &legacy_cpu, ARM_ARCH_V4,  N_("use -mcpu=arm8")},
19853  {"m8",	 &legacy_cpu, ARM_ARCH_V4,  N_("use -mcpu=arm8")},
19854  {"marm810",	 &legacy_cpu, ARM_ARCH_V4,  N_("use -mcpu=arm810")},
19855  {"m810",	 &legacy_cpu, ARM_ARCH_V4,  N_("use -mcpu=arm810")},
19856  {"marm9",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19857  {"m9",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19858  {"marm9tdmi",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19859  {"m9tdmi",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19860  {"marm920",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19861  {"m920",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19862  {"marm940",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19863  {"m940",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19864  {"mstrongarm", &legacy_cpu, ARM_ARCH_V4,  N_("use -mcpu=strongarm")},
19865  {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
19866   N_("use -mcpu=strongarm110")},
19867  {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
19868   N_("use -mcpu=strongarm1100")},
19869  {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
19870   N_("use -mcpu=strongarm1110")},
19871  {"mxscale",	 &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
19872  {"miwmmxt",	 &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
19873  {"mall",	 &legacy_cpu, ARM_ANY,	       N_("use -mcpu=all")},
19874
19875  /* Architecture variants -- don't add any more to this list either.  */
19876  {"mv2",	 &legacy_cpu, ARM_ARCH_V2,  N_("use -march=armv2")},
19877  {"marmv2",	 &legacy_cpu, ARM_ARCH_V2,  N_("use -march=armv2")},
19878  {"mv2a",	 &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19879  {"marmv2a",	 &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19880  {"mv3",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -march=armv3")},
19881  {"marmv3",	 &legacy_cpu, ARM_ARCH_V3,  N_("use -march=armv3")},
19882  {"mv3m",	 &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19883  {"marmv3m",	 &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19884  {"mv4",	 &legacy_cpu, ARM_ARCH_V4,  N_("use -march=armv4")},
19885  {"marmv4",	 &legacy_cpu, ARM_ARCH_V4,  N_("use -march=armv4")},
19886  {"mv4t",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19887  {"marmv4t",	 &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19888  {"mv5",	 &legacy_cpu, ARM_ARCH_V5,  N_("use -march=armv5")},
19889  {"marmv5",	 &legacy_cpu, ARM_ARCH_V5,  N_("use -march=armv5")},
19890  {"mv5t",	 &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19891  {"marmv5t",	 &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19892  {"mv5e",	 &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19893  {"marmv5e",	 &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19894
19895  /* Floating point variants -- don't add any more to this list either.	 */
19896  {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
19897  {"mfpa10",   &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
19898  {"mfpa11",   &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
19899  {"mno-fpu",  &legacy_fpu, ARM_ARCH_NONE,
19900   N_("use either -mfpu=softfpa or -mfpu=softvfp")},
19901
19902  {NULL, NULL, ARM_ARCH_NONE, NULL}
19903};
19904
19905struct arm_cpu_option_table
19906{
19907  char *name;
19908  const arm_feature_set	value;
19909  /* For some CPUs we assume an FPU unless the user explicitly sets
19910     -mfpu=...	*/
19911  const arm_feature_set	default_fpu;
19912  /* The canonical name of the CPU, or NULL to use NAME converted to upper
19913     case.  */
19914  const char *canonical_name;
19915};
19916
19917/* This list should, at a minimum, contain all the cpu names
19918   recognized by GCC.  */
19919static const struct arm_cpu_option_table arm_cpus[] =
19920{
19921  {"all",		ARM_ANY,	 FPU_ARCH_FPA,    NULL},
19922  {"arm1",		ARM_ARCH_V1,	 FPU_ARCH_FPA,    NULL},
19923  {"arm2",		ARM_ARCH_V2,	 FPU_ARCH_FPA,    NULL},
19924  {"arm250",		ARM_ARCH_V2S,	 FPU_ARCH_FPA,    NULL},
19925  {"arm3",		ARM_ARCH_V2S,	 FPU_ARCH_FPA,    NULL},
19926  {"arm6",		ARM_ARCH_V3,	 FPU_ARCH_FPA,    NULL},
19927  {"arm60",		ARM_ARCH_V3,	 FPU_ARCH_FPA,    NULL},
19928  {"arm600",		ARM_ARCH_V3,	 FPU_ARCH_FPA,    NULL},
19929  {"arm610",		ARM_ARCH_V3,	 FPU_ARCH_FPA,    NULL},
19930  {"arm620",		ARM_ARCH_V3,	 FPU_ARCH_FPA,    NULL},
19931  {"arm7",		ARM_ARCH_V3,	 FPU_ARCH_FPA,    NULL},
19932  {"arm7m",		ARM_ARCH_V3M,	 FPU_ARCH_FPA,    NULL},
19933  {"arm7d",		ARM_ARCH_V3,	 FPU_ARCH_FPA,    NULL},
19934  {"arm7dm",		ARM_ARCH_V3M,	 FPU_ARCH_FPA,    NULL},
19935  {"arm7di",		ARM_ARCH_V3,	 FPU_ARCH_FPA,    NULL},
19936  {"arm7dmi",		ARM_ARCH_V3M,	 FPU_ARCH_FPA,    NULL},
19937  {"arm70",		ARM_ARCH_V3,	 FPU_ARCH_FPA,    NULL},
19938  {"arm700",		ARM_ARCH_V3,	 FPU_ARCH_FPA,    NULL},
19939  {"arm700i",		ARM_ARCH_V3,	 FPU_ARCH_FPA,    NULL},
19940  {"arm710",		ARM_ARCH_V3,	 FPU_ARCH_FPA,    NULL},
19941  {"arm710t",		ARM_ARCH_V4T,	 FPU_ARCH_FPA,    NULL},
19942  {"arm720",		ARM_ARCH_V3,	 FPU_ARCH_FPA,    NULL},
19943  {"arm720t",		ARM_ARCH_V4T,	 FPU_ARCH_FPA,    NULL},
19944  {"arm740t",		ARM_ARCH_V4T,	 FPU_ARCH_FPA,    NULL},
19945  {"arm710c",		ARM_ARCH_V3,	 FPU_ARCH_FPA,    NULL},
19946  {"arm7100",		ARM_ARCH_V3,	 FPU_ARCH_FPA,    NULL},
19947  {"arm7500",		ARM_ARCH_V3,	 FPU_ARCH_FPA,    NULL},
19948  {"arm7500fe",		ARM_ARCH_V3,	 FPU_ARCH_FPA,    NULL},
19949  {"arm7t",		ARM_ARCH_V4T,	 FPU_ARCH_FPA,    NULL},
19950  {"arm7tdmi",		ARM_ARCH_V4T,	 FPU_ARCH_FPA,    NULL},
19951  {"arm7tdmi-s",	ARM_ARCH_V4T,	 FPU_ARCH_FPA,    NULL},
19952  {"arm8",		ARM_ARCH_V4,	 FPU_ARCH_FPA,    NULL},
19953  {"arm810",		ARM_ARCH_V4,	 FPU_ARCH_FPA,    NULL},
19954  {"strongarm",		ARM_ARCH_V4,	 FPU_ARCH_FPA,    NULL},
19955  {"strongarm1",	ARM_ARCH_V4,	 FPU_ARCH_FPA,    NULL},
19956  {"strongarm110",	ARM_ARCH_V4,	 FPU_ARCH_FPA,    NULL},
19957  {"strongarm1100",	ARM_ARCH_V4,	 FPU_ARCH_FPA,    NULL},
19958  {"strongarm1110",	ARM_ARCH_V4,	 FPU_ARCH_FPA,    NULL},
19959  {"arm9",		ARM_ARCH_V4T,	 FPU_ARCH_FPA,    NULL},
19960  {"arm920",		ARM_ARCH_V4T,	 FPU_ARCH_FPA,    "ARM920T"},
19961  {"arm920t",		ARM_ARCH_V4T,	 FPU_ARCH_FPA,    NULL},
19962  {"arm922t",		ARM_ARCH_V4T,	 FPU_ARCH_FPA,    NULL},
19963  {"arm940t",		ARM_ARCH_V4T,	 FPU_ARCH_FPA,    NULL},
19964  {"arm9tdmi",		ARM_ARCH_V4T,	 FPU_ARCH_FPA,	  NULL},
19965  /* For V5 or later processors we default to using VFP; but the user
19966     should really set the FPU type explicitly.	 */
19967  {"arm9e-r0",		ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19968  {"arm9e",		ARM_ARCH_V5TE,	 FPU_ARCH_VFP_V2, NULL},
19969  {"arm926ej",		ARM_ARCH_V5TEJ,	 FPU_ARCH_VFP_V2, "ARM926EJ-S"},
19970  {"arm926ejs",		ARM_ARCH_V5TEJ,	 FPU_ARCH_VFP_V2, "ARM926EJ-S"},
19971  {"arm926ej-s",	ARM_ARCH_V5TEJ,	 FPU_ARCH_VFP_V2, NULL},
19972  {"arm946e-r0",	ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19973  {"arm946e",		ARM_ARCH_V5TE,	 FPU_ARCH_VFP_V2, "ARM946E-S"},
19974  {"arm946e-s",		ARM_ARCH_V5TE,	 FPU_ARCH_VFP_V2, NULL},
19975  {"arm966e-r0",	ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19976  {"arm966e",		ARM_ARCH_V5TE,	 FPU_ARCH_VFP_V2, "ARM966E-S"},
19977  {"arm966e-s",		ARM_ARCH_V5TE,	 FPU_ARCH_VFP_V2, NULL},
19978  {"arm968e-s",		ARM_ARCH_V5TE,	 FPU_ARCH_VFP_V2, NULL},
19979  {"arm10t",		ARM_ARCH_V5T,	 FPU_ARCH_VFP_V1, NULL},
19980  {"arm10tdmi",		ARM_ARCH_V5T,	 FPU_ARCH_VFP_V1, NULL},
19981  {"arm10e",		ARM_ARCH_V5TE,	 FPU_ARCH_VFP_V2, NULL},
19982  {"arm1020",		ARM_ARCH_V5TE,	 FPU_ARCH_VFP_V2, "ARM1020E"},
19983  {"arm1020t",		ARM_ARCH_V5T,	 FPU_ARCH_VFP_V1, NULL},
19984  {"arm1020e",		ARM_ARCH_V5TE,	 FPU_ARCH_VFP_V2, NULL},
19985  {"arm1022e",		ARM_ARCH_V5TE,	 FPU_ARCH_VFP_V2, NULL},
19986  {"arm1026ejs",	ARM_ARCH_V5TEJ,	 FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
19987  {"arm1026ej-s",	ARM_ARCH_V5TEJ,	 FPU_ARCH_VFP_V2, NULL},
19988  {"arm1136js",		ARM_ARCH_V6,	 FPU_NONE,	  "ARM1136J-S"},
19989  {"arm1136j-s",	ARM_ARCH_V6,	 FPU_NONE,	  NULL},
19990  {"arm1136jfs",	ARM_ARCH_V6,	 FPU_ARCH_VFP_V2, "ARM1136JF-S"},
19991  {"arm1136jf-s",	ARM_ARCH_V6,	 FPU_ARCH_VFP_V2, NULL},
19992  {"mpcore",		ARM_ARCH_V6K,	 FPU_ARCH_VFP_V2, NULL},
19993  {"mpcorenovfp",	ARM_ARCH_V6K,	 FPU_NONE,	  NULL},
19994  {"arm1156t2-s",	ARM_ARCH_V6T2,	 FPU_NONE,	  NULL},
19995  {"arm1156t2f-s",	ARM_ARCH_V6T2,	 FPU_ARCH_VFP_V2, NULL},
19996  {"arm1176jz-s",	ARM_ARCH_V6ZK,	 FPU_NONE,	  NULL},
19997  {"arm1176jzf-s",	ARM_ARCH_V6ZK,	 FPU_ARCH_VFP_V2, NULL},
19998  {"cortex-a8",		ARM_ARCH_V7A,	 ARM_FEATURE(0, FPU_VFP_V3
19999                                                        | FPU_NEON_EXT_V1),
20000                                                          NULL},
20001  {"cortex-r4",		ARM_ARCH_V7R,	 FPU_NONE,	  NULL},
20002  {"cortex-m3",		ARM_ARCH_V7M,	 FPU_NONE,	  NULL},
20003  /* ??? XSCALE is really an architecture.  */
20004  {"xscale",		ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
20005  /* ??? iwmmxt is not a processor.  */
20006  {"iwmmxt",		ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
20007  {"iwmmxt2",		ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
20008  {"i80200",		ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
20009  /* Maverick */
20010  {"ep9312",	ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
20011  {NULL,		ARM_ARCH_NONE,	 ARM_ARCH_NONE, NULL}
20012};
20013
20014struct arm_arch_option_table
20015{
20016  char *name;
20017  const arm_feature_set	value;
20018  const arm_feature_set	default_fpu;
20019};
20020
20021/* This list should, at a minimum, contain all the architecture names
20022   recognized by GCC.  */
20023static const struct arm_arch_option_table arm_archs[] =
20024{
20025  {"all",		ARM_ANY,	 FPU_ARCH_FPA},
20026  {"armv1",		ARM_ARCH_V1,	 FPU_ARCH_FPA},
20027  {"armv2",		ARM_ARCH_V2,	 FPU_ARCH_FPA},
20028  {"armv2a",		ARM_ARCH_V2S,	 FPU_ARCH_FPA},
20029  {"armv2s",		ARM_ARCH_V2S,	 FPU_ARCH_FPA},
20030  {"armv3",		ARM_ARCH_V3,	 FPU_ARCH_FPA},
20031  {"armv3m",		ARM_ARCH_V3M,	 FPU_ARCH_FPA},
20032  {"armv4",		ARM_ARCH_V4,	 FPU_ARCH_FPA},
20033  {"armv4xm",		ARM_ARCH_V4xM,	 FPU_ARCH_FPA},
20034  {"armv4t",		ARM_ARCH_V4T,	 FPU_ARCH_FPA},
20035  {"armv4txm",		ARM_ARCH_V4TxM,	 FPU_ARCH_FPA},
20036  {"armv5",		ARM_ARCH_V5,	 FPU_ARCH_VFP},
20037  {"armv5t",		ARM_ARCH_V5T,	 FPU_ARCH_VFP},
20038  {"armv5txm",		ARM_ARCH_V5TxM,	 FPU_ARCH_VFP},
20039  {"armv5te",		ARM_ARCH_V5TE,	 FPU_ARCH_VFP},
20040  {"armv5texp",		ARM_ARCH_V5TExP, FPU_ARCH_VFP},
20041  {"armv5tej",		ARM_ARCH_V5TEJ,	 FPU_ARCH_VFP},
20042  {"armv6",		ARM_ARCH_V6,	 FPU_ARCH_VFP},
20043  {"armv6j",		ARM_ARCH_V6,	 FPU_ARCH_VFP},
20044  {"armv6k",		ARM_ARCH_V6K,	 FPU_ARCH_VFP},
20045  {"armv6z",		ARM_ARCH_V6Z,	 FPU_ARCH_VFP},
20046  {"armv6zk",		ARM_ARCH_V6ZK,	 FPU_ARCH_VFP},
20047  {"armv6t2",		ARM_ARCH_V6T2,	 FPU_ARCH_VFP},
20048  {"armv6kt2",		ARM_ARCH_V6KT2,	 FPU_ARCH_VFP},
20049  {"armv6zt2",		ARM_ARCH_V6ZT2,	 FPU_ARCH_VFP},
20050  {"armv6zkt2",		ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
20051  {"armv7",		ARM_ARCH_V7,	 FPU_ARCH_VFP},
20052  /* The official spelling of the ARMv7 profile variants is the dashed form.
20053     Accept the non-dashed form for compatibility with old toolchains.  */
20054  {"armv7a",		ARM_ARCH_V7A,	 FPU_ARCH_VFP},
20055  {"armv7r",		ARM_ARCH_V7R,	 FPU_ARCH_VFP},
20056  {"armv7m",		ARM_ARCH_V7M,	 FPU_ARCH_VFP},
20057  {"armv7-a",		ARM_ARCH_V7A,	 FPU_ARCH_VFP},
20058  {"armv7-r",		ARM_ARCH_V7R,	 FPU_ARCH_VFP},
20059  {"armv7-m",		ARM_ARCH_V7M,	 FPU_ARCH_VFP},
20060  {"xscale",		ARM_ARCH_XSCALE, FPU_ARCH_VFP},
20061  {"iwmmxt",		ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
20062  {"iwmmxt2",		ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
20063  {NULL,		ARM_ARCH_NONE,	 ARM_ARCH_NONE}
20064};
20065
20066/* ISA extensions in the co-processor space.  */
20067struct arm_option_cpu_value_table
20068{
20069  char *name;
20070  const arm_feature_set value;
20071};
20072
20073static const struct arm_option_cpu_value_table arm_extensions[] =
20074{
20075  {"maverick",		ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
20076  {"xscale",		ARM_FEATURE (0, ARM_CEXT_XSCALE)},
20077  {"iwmmxt",		ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
20078  {"iwmmxt2",		ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
20079  {NULL,		ARM_ARCH_NONE}
20080};
20081
20082/* This list should, at a minimum, contain all the fpu names
20083   recognized by GCC.  */
20084static const struct arm_option_cpu_value_table arm_fpus[] =
20085{
20086  {"softfpa",		FPU_NONE},
20087  {"fpe",		FPU_ARCH_FPE},
20088  {"fpe2",		FPU_ARCH_FPE},
20089  {"fpe3",		FPU_ARCH_FPA},	/* Third release supports LFM/SFM.  */
20090  {"fpa",		FPU_ARCH_FPA},
20091  {"fpa10",		FPU_ARCH_FPA},
20092  {"fpa11",		FPU_ARCH_FPA},
20093  {"arm7500fe",		FPU_ARCH_FPA},
20094  {"softvfp",		FPU_ARCH_VFP},
20095  {"softvfp+vfp",	FPU_ARCH_VFP_V2},
20096  {"vfp",		FPU_ARCH_VFP_V2},
20097  {"vfp9",		FPU_ARCH_VFP_V2},
20098  {"vfp3",              FPU_ARCH_VFP_V3},
20099  {"vfp10",		FPU_ARCH_VFP_V2},
20100  {"vfp10-r0",		FPU_ARCH_VFP_V1},
20101  {"vfpxd",		FPU_ARCH_VFP_V1xD},
20102  {"arm1020t",		FPU_ARCH_VFP_V1},
20103  {"arm1020e",		FPU_ARCH_VFP_V2},
20104  {"arm1136jfs",	FPU_ARCH_VFP_V2},
20105  {"arm1136jf-s",	FPU_ARCH_VFP_V2},
20106  {"maverick",		FPU_ARCH_MAVERICK},
20107  {"neon",              FPU_ARCH_VFP_V3_PLUS_NEON_V1},
20108  {NULL,		ARM_ARCH_NONE}
20109};
20110
20111struct arm_option_value_table
20112{
20113  char *name;
20114  long value;
20115};
20116
20117static const struct arm_option_value_table arm_float_abis[] =
20118{
20119  {"hard",	ARM_FLOAT_ABI_HARD},
20120  {"softfp",	ARM_FLOAT_ABI_SOFTFP},
20121  {"soft",	ARM_FLOAT_ABI_SOFT},
20122  {NULL,	0}
20123};
20124
20125#ifdef OBJ_ELF
20126/* We only know how to output GNU and ver 4/5 (AAELF) formats.  */
20127static const struct arm_option_value_table arm_eabis[] =
20128{
20129  {"gnu",	EF_ARM_EABI_UNKNOWN},
20130  {"4",		EF_ARM_EABI_VER4},
20131  {"5",		EF_ARM_EABI_VER5},
20132  {NULL,	0}
20133};
20134#endif
20135
20136struct arm_long_option_table
20137{
20138  char * option;		/* Substring to match.	*/
20139  char * help;			/* Help information.  */
20140  int (* func) (char * subopt);	/* Function to decode sub-option.  */
20141  char * deprecated;		/* If non-null, print this message.  */
20142};
20143
20144static int
20145arm_parse_extension (char * str, const arm_feature_set **opt_p)
20146{
20147  arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
20148
20149  /* Copy the feature set, so that we can modify it.  */
20150  *ext_set = **opt_p;
20151  *opt_p = ext_set;
20152
20153  while (str != NULL && *str != 0)
20154    {
20155      const struct arm_option_cpu_value_table * opt;
20156      char * ext;
20157      int optlen;
20158
20159      if (*str != '+')
20160	{
20161	  as_bad (_("invalid architectural extension"));
20162	  return 0;
20163	}
20164
20165      str++;
20166      ext = strchr (str, '+');
20167
20168      if (ext != NULL)
20169	optlen = ext - str;
20170      else
20171	optlen = strlen (str);
20172
20173      if (optlen == 0)
20174	{
20175	  as_bad (_("missing architectural extension"));
20176	  return 0;
20177	}
20178
20179      for (opt = arm_extensions; opt->name != NULL; opt++)
20180	if (strncmp (opt->name, str, optlen) == 0)
20181	  {
20182	    ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
20183	    break;
20184	  }
20185
20186      if (opt->name == NULL)
20187	{
20188	  as_bad (_("unknown architectural extnsion `%s'"), str);
20189	  return 0;
20190	}
20191
20192      str = ext;
20193    };
20194
20195  return 1;
20196}
20197
20198static int
20199arm_parse_cpu (char * str)
20200{
20201  const struct arm_cpu_option_table * opt;
20202  char * ext = strchr (str, '+');
20203  int optlen;
20204
20205  if (ext != NULL)
20206    optlen = ext - str;
20207  else
20208    optlen = strlen (str);
20209
20210  if (optlen == 0)
20211    {
20212      as_bad (_("missing cpu name `%s'"), str);
20213      return 0;
20214    }
20215
20216  for (opt = arm_cpus; opt->name != NULL; opt++)
20217    if (strncmp (opt->name, str, optlen) == 0)
20218      {
20219	mcpu_cpu_opt = &opt->value;
20220	mcpu_fpu_opt = &opt->default_fpu;
20221	if (opt->canonical_name)
20222	  strcpy(selected_cpu_name, opt->canonical_name);
20223	else
20224	  {
20225	    int i;
20226	    for (i = 0; i < optlen; i++)
20227	      selected_cpu_name[i] = TOUPPER (opt->name[i]);
20228	    selected_cpu_name[i] = 0;
20229	  }
20230
20231	if (ext != NULL)
20232	  return arm_parse_extension (ext, &mcpu_cpu_opt);
20233
20234	return 1;
20235      }
20236
20237  as_bad (_("unknown cpu `%s'"), str);
20238  return 0;
20239}
20240
20241static int
20242arm_parse_arch (char * str)
20243{
20244  const struct arm_arch_option_table *opt;
20245  char *ext = strchr (str, '+');
20246  int optlen;
20247
20248  if (ext != NULL)
20249    optlen = ext - str;
20250  else
20251    optlen = strlen (str);
20252
20253  if (optlen == 0)
20254    {
20255      as_bad (_("missing architecture name `%s'"), str);
20256      return 0;
20257    }
20258
20259  for (opt = arm_archs; opt->name != NULL; opt++)
20260    if (streq (opt->name, str))
20261      {
20262	march_cpu_opt = &opt->value;
20263	march_fpu_opt = &opt->default_fpu;
20264	strcpy(selected_cpu_name, opt->name);
20265
20266	if (ext != NULL)
20267	  return arm_parse_extension (ext, &march_cpu_opt);
20268
20269	return 1;
20270      }
20271
20272  as_bad (_("unknown architecture `%s'\n"), str);
20273  return 0;
20274}
20275
20276static int
20277arm_parse_fpu (char * str)
20278{
20279  const struct arm_option_cpu_value_table * opt;
20280
20281  for (opt = arm_fpus; opt->name != NULL; opt++)
20282    if (streq (opt->name, str))
20283      {
20284	mfpu_opt = &opt->value;
20285	return 1;
20286      }
20287
20288  as_bad (_("unknown floating point format `%s'\n"), str);
20289  return 0;
20290}
20291
20292static int
20293arm_parse_float_abi (char * str)
20294{
20295  const struct arm_option_value_table * opt;
20296
20297  for (opt = arm_float_abis; opt->name != NULL; opt++)
20298    if (streq (opt->name, str))
20299      {
20300	mfloat_abi_opt = opt->value;
20301	return 1;
20302      }
20303
20304  as_bad (_("unknown floating point abi `%s'\n"), str);
20305  return 0;
20306}
20307
20308#ifdef OBJ_ELF
20309static int
20310arm_parse_eabi (char * str)
20311{
20312  const struct arm_option_value_table *opt;
20313
20314  for (opt = arm_eabis; opt->name != NULL; opt++)
20315    if (streq (opt->name, str))
20316      {
20317	meabi_flags = opt->value;
20318	return 1;
20319      }
20320  as_bad (_("unknown EABI `%s'\n"), str);
20321  return 0;
20322}
20323#endif
20324
20325struct arm_long_option_table arm_long_opts[] =
20326{
20327  {"mcpu=", N_("<cpu name>\t  assemble for CPU <cpu name>"),
20328   arm_parse_cpu, NULL},
20329  {"march=", N_("<arch name>\t  assemble for architecture <arch name>"),
20330   arm_parse_arch, NULL},
20331  {"mfpu=", N_("<fpu name>\t  assemble for FPU architecture <fpu name>"),
20332   arm_parse_fpu, NULL},
20333  {"mfloat-abi=", N_("<abi>\t  assemble for floating point ABI <abi>"),
20334   arm_parse_float_abi, NULL},
20335#ifdef OBJ_ELF
20336  {"meabi=", N_("<ver>\t  assemble for eabi version <ver>"),
20337   arm_parse_eabi, NULL},
20338#endif
20339  {NULL, NULL, 0, NULL}
20340};
20341
20342int
20343md_parse_option (int c, char * arg)
20344{
20345  struct arm_option_table *opt;
20346  const struct arm_legacy_option_table *fopt;
20347  struct arm_long_option_table *lopt;
20348
20349  switch (c)
20350    {
20351#ifdef OPTION_EB
20352    case OPTION_EB:
20353      target_big_endian = 1;
20354      break;
20355#endif
20356
20357#ifdef OPTION_EL
20358    case OPTION_EL:
20359      target_big_endian = 0;
20360      break;
20361#endif
20362
20363    case 'a':
20364      /* Listing option.  Just ignore these, we don't support additional
20365	 ones.	*/
20366      return 0;
20367
20368    default:
20369      for (opt = arm_opts; opt->option != NULL; opt++)
20370	{
20371	  if (c == opt->option[0]
20372	      && ((arg == NULL && opt->option[1] == 0)
20373		  || streq (arg, opt->option + 1)))
20374	    {
20375#if WARN_DEPRECATED
20376	      /* If the option is deprecated, tell the user.  */
20377	      if (opt->deprecated != NULL)
20378		as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20379			   arg ? arg : "", _(opt->deprecated));
20380#endif
20381
20382	      if (opt->var != NULL)
20383		*opt->var = opt->value;
20384
20385	      return 1;
20386	    }
20387	}
20388
20389      for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
20390	{
20391	  if (c == fopt->option[0]
20392	      && ((arg == NULL && fopt->option[1] == 0)
20393		  || streq (arg, fopt->option + 1)))
20394	    {
20395#if WARN_DEPRECATED
20396	      /* If the option is deprecated, tell the user.  */
20397	      if (fopt->deprecated != NULL)
20398		as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20399			   arg ? arg : "", _(fopt->deprecated));
20400#endif
20401
20402	      if (fopt->var != NULL)
20403		*fopt->var = &fopt->value;
20404
20405	      return 1;
20406	    }
20407	}
20408
20409      for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20410	{
20411	  /* These options are expected to have an argument.  */
20412	  if (c == lopt->option[0]
20413	      && arg != NULL
20414	      && strncmp (arg, lopt->option + 1,
20415			  strlen (lopt->option + 1)) == 0)
20416	    {
20417#if WARN_DEPRECATED
20418	      /* If the option is deprecated, tell the user.  */
20419	      if (lopt->deprecated != NULL)
20420		as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
20421			   _(lopt->deprecated));
20422#endif
20423
20424	      /* Call the sup-option parser.  */
20425	      return lopt->func (arg + strlen (lopt->option) - 1);
20426	    }
20427	}
20428
20429      return 0;
20430    }
20431
20432  return 1;
20433}
20434
20435void
20436md_show_usage (FILE * fp)
20437{
20438  struct arm_option_table *opt;
20439  struct arm_long_option_table *lopt;
20440
20441  fprintf (fp, _(" ARM-specific assembler options:\n"));
20442
20443  for (opt = arm_opts; opt->option != NULL; opt++)
20444    if (opt->help != NULL)
20445      fprintf (fp, "  -%-23s%s\n", opt->option, _(opt->help));
20446
20447  for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20448    if (lopt->help != NULL)
20449      fprintf (fp, "  -%s%s\n", lopt->option, _(lopt->help));
20450
20451#ifdef OPTION_EB
20452  fprintf (fp, _("\
20453  -EB                     assemble code for a big-endian cpu\n"));
20454#endif
20455
20456#ifdef OPTION_EL
20457  fprintf (fp, _("\
20458  -EL                     assemble code for a little-endian cpu\n"));
20459#endif
20460}
20461
20462
20463#ifdef OBJ_ELF
20464typedef struct
20465{
20466  int val;
20467  arm_feature_set flags;
20468} cpu_arch_ver_table;
20469
20470/* Mapping from CPU features to EABI CPU arch values.  Table must be sorted
20471   least features first.  */
20472static const cpu_arch_ver_table cpu_arch_ver[] =
20473{
20474    {1, ARM_ARCH_V4},
20475    {2, ARM_ARCH_V4T},
20476    {3, ARM_ARCH_V5},
20477    {4, ARM_ARCH_V5TE},
20478    {5, ARM_ARCH_V5TEJ},
20479    {6, ARM_ARCH_V6},
20480    {7, ARM_ARCH_V6Z},
20481    {8, ARM_ARCH_V6K},
20482    {9, ARM_ARCH_V6T2},
20483    {10, ARM_ARCH_V7A},
20484    {10, ARM_ARCH_V7R},
20485    {10, ARM_ARCH_V7M},
20486    {0, ARM_ARCH_NONE}
20487};
20488
20489/* Set the public EABI object attributes.  */
20490static void
20491aeabi_set_public_attributes (void)
20492{
20493  int arch;
20494  arm_feature_set flags;
20495  arm_feature_set tmp;
20496  const cpu_arch_ver_table *p;
20497
20498  /* Choose the architecture based on the capabilities of the requested cpu
20499     (if any) and/or the instructions actually used.  */
20500  ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
20501  ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
20502  ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
20503  /*Allow the user to override the reported architecture.  */
20504  if (object_arch)
20505    {
20506      ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
20507      ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
20508    }
20509
20510  tmp = flags;
20511  arch = 0;
20512  for (p = cpu_arch_ver; p->val; p++)
20513    {
20514      if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
20515	{
20516	  arch = p->val;
20517	  ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
20518	}
20519    }
20520
20521  /* Tag_CPU_name.  */
20522  if (selected_cpu_name[0])
20523    {
20524      char *p;
20525
20526      p = selected_cpu_name;
20527      if (strncmp(p, "armv", 4) == 0)
20528	{
20529	  int i;
20530
20531	  p += 4;
20532	  for (i = 0; p[i]; i++)
20533	    p[i] = TOUPPER (p[i]);
20534	}
20535      bfd_elf_add_proc_attr_string (stdoutput, 5, p);
20536    }
20537  /* Tag_CPU_arch.  */
20538  bfd_elf_add_proc_attr_int (stdoutput, 6, arch);
20539  /* Tag_CPU_arch_profile.  */
20540  if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
20541    bfd_elf_add_proc_attr_int (stdoutput, 7, 'A');
20542  else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
20543    bfd_elf_add_proc_attr_int (stdoutput, 7, 'R');
20544  else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m))
20545    bfd_elf_add_proc_attr_int (stdoutput, 7, 'M');
20546  /* Tag_ARM_ISA_use.  */
20547  if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_full))
20548    bfd_elf_add_proc_attr_int (stdoutput, 8, 1);
20549  /* Tag_THUMB_ISA_use.  */
20550  if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_full))
20551    bfd_elf_add_proc_attr_int (stdoutput, 9,
20552	ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2) ? 2 : 1);
20553  /* Tag_VFP_arch.  */
20554  if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v3)
20555      || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v3))
20556    bfd_elf_add_proc_attr_int (stdoutput, 10, 3);
20557  else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v2)
20558           || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v2))
20559    bfd_elf_add_proc_attr_int (stdoutput, 10, 2);
20560  else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1)
20561           || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1)
20562           || ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1xd)
20563           || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1xd))
20564    bfd_elf_add_proc_attr_int (stdoutput, 10, 1);
20565  /* Tag_WMMX_arch.  */
20566  if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_cext_iwmmxt)
20567      || ARM_CPU_HAS_FEATURE (arm_arch_used, arm_cext_iwmmxt))
20568    bfd_elf_add_proc_attr_int (stdoutput, 11, 1);
20569  /* Tag_NEON_arch.  */
20570  if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_neon_ext_v1)
20571      || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_neon_ext_v1))
20572    bfd_elf_add_proc_attr_int (stdoutput, 12, 1);
20573}
20574
20575/* Add the default contents for the .ARM.attributes section.  */
20576void
20577arm_md_end (void)
20578{
20579  if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
20580    return;
20581
20582  aeabi_set_public_attributes ();
20583}
20584#endif /* OBJ_ELF */
20585
20586
20587/* Parse a .cpu directive.  */
20588
20589static void
20590s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
20591{
20592  const struct arm_cpu_option_table *opt;
20593  char *name;
20594  char saved_char;
20595
20596  name = input_line_pointer;
20597  while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20598    input_line_pointer++;
20599  saved_char = *input_line_pointer;
20600  *input_line_pointer = 0;
20601
20602  /* Skip the first "all" entry.  */
20603  for (opt = arm_cpus + 1; opt->name != NULL; opt++)
20604    if (streq (opt->name, name))
20605      {
20606	mcpu_cpu_opt = &opt->value;
20607	selected_cpu = opt->value;
20608	if (opt->canonical_name)
20609	  strcpy(selected_cpu_name, opt->canonical_name);
20610	else
20611	  {
20612	    int i;
20613	    for (i = 0; opt->name[i]; i++)
20614	      selected_cpu_name[i] = TOUPPER (opt->name[i]);
20615	    selected_cpu_name[i] = 0;
20616	  }
20617	ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20618	*input_line_pointer = saved_char;
20619	demand_empty_rest_of_line ();
20620	return;
20621      }
20622  as_bad (_("unknown cpu `%s'"), name);
20623  *input_line_pointer = saved_char;
20624  ignore_rest_of_line ();
20625}
20626
20627
20628/* Parse a .arch directive.  */
20629
20630static void
20631s_arm_arch (int ignored ATTRIBUTE_UNUSED)
20632{
20633  const struct arm_arch_option_table *opt;
20634  char saved_char;
20635  char *name;
20636
20637  name = input_line_pointer;
20638  while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20639    input_line_pointer++;
20640  saved_char = *input_line_pointer;
20641  *input_line_pointer = 0;
20642
20643  /* Skip the first "all" entry.  */
20644  for (opt = arm_archs + 1; opt->name != NULL; opt++)
20645    if (streq (opt->name, name))
20646      {
20647	mcpu_cpu_opt = &opt->value;
20648	selected_cpu = opt->value;
20649	strcpy(selected_cpu_name, opt->name);
20650	ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20651	*input_line_pointer = saved_char;
20652	demand_empty_rest_of_line ();
20653	return;
20654      }
20655
20656  as_bad (_("unknown architecture `%s'\n"), name);
20657  *input_line_pointer = saved_char;
20658  ignore_rest_of_line ();
20659}
20660
20661
20662/* Parse a .object_arch directive.  */
20663
20664static void
20665s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
20666{
20667  const struct arm_arch_option_table *opt;
20668  char saved_char;
20669  char *name;
20670
20671  name = input_line_pointer;
20672  while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20673    input_line_pointer++;
20674  saved_char = *input_line_pointer;
20675  *input_line_pointer = 0;
20676
20677  /* Skip the first "all" entry.  */
20678  for (opt = arm_archs + 1; opt->name != NULL; opt++)
20679    if (streq (opt->name, name))
20680      {
20681	object_arch = &opt->value;
20682	*input_line_pointer = saved_char;
20683	demand_empty_rest_of_line ();
20684	return;
20685      }
20686
20687  as_bad (_("unknown architecture `%s'\n"), name);
20688  *input_line_pointer = saved_char;
20689  ignore_rest_of_line ();
20690}
20691
20692
20693/* Parse a .fpu directive.  */
20694
20695static void
20696s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
20697{
20698  const struct arm_option_cpu_value_table *opt;
20699  char saved_char;
20700  char *name;
20701
20702  name = input_line_pointer;
20703  while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20704    input_line_pointer++;
20705  saved_char = *input_line_pointer;
20706  *input_line_pointer = 0;
20707
20708  for (opt = arm_fpus; opt->name != NULL; opt++)
20709    if (streq (opt->name, name))
20710      {
20711	mfpu_opt = &opt->value;
20712	ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20713	*input_line_pointer = saved_char;
20714	demand_empty_rest_of_line ();
20715	return;
20716      }
20717
20718  as_bad (_("unknown floating point format `%s'\n"), name);
20719  *input_line_pointer = saved_char;
20720  ignore_rest_of_line ();
20721}
20722
20723/* Copy symbol information.  */
20724void
20725arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
20726{
20727  ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
20728}
20729