tables.c revision 76351
1/*-
2 * Copyright (c) 1992 Keith Muller.
3 * Copyright (c) 1992, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Keith Muller of the University of California, San Diego.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38#ifndef lint
39#if 0
40static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
41#endif
42static const char rcsid[] =
43  "$FreeBSD: head/bin/pax/tables.c 76351 2001-05-08 06:19:06Z kris $";
44#endif /* not lint */
45
46#include <sys/types.h>
47#include <sys/time.h>
48#include <sys/stat.h>
49#include <sys/fcntl.h>
50#include <errno.h>
51#include <stdio.h>
52#include <stdlib.h>
53#include <string.h>
54#include <unistd.h>
55#include "pax.h"
56#include "tables.h"
57#include "extern.h"
58
59/*
60 * Routines for controlling the contents of all the different databases pax
61 * keeps. Tables are dynamically created only when they are needed. The
62 * goal was speed and the ability to work with HUGE archives. The databases
63 * were kept simple, but do have complex rules for when the contents change.
64 * As of this writing, the POSIX library functions were more complex than
65 * needed for this application (pax databases have very short lifetimes and
66 * do not survive after pax is finished). Pax is required to handle very
67 * large archives. These database routines carefully combine memory usage and
68 * temporary file storage in ways which will not significantly impact runtime
69 * performance while allowing the largest possible archives to be handled.
70 * Trying to force the fit to the POSIX databases routines was not considered
71 * time well spent.
72 */
73
74static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
75static FTM **ftab = NULL;	/* file time table for updating arch */
76static NAMT **ntab = NULL;	/* interactive rename storage table */
77static DEVT **dtab = NULL;	/* device/inode mapping tables */
78static ATDIR **atab = NULL;	/* file tree directory time reset table */
79static int dirfd = -1;		/* storage for setting created dir time/mode */
80static u_long dircnt;		/* entries in dir time/mode storage */
81static int ffd = -1;		/* tmp file for file time table name storage */
82
83static DEVT *chk_dev __P((dev_t, int));
84
85/*
86 * hard link table routines
87 *
88 * The hard link table tries to detect hard links to files using the device and
89 * inode values. We do this when writing an archive, so we can tell the format
90 * write routine that this file is a hard link to another file. The format
91 * write routine then can store this file in whatever way it wants (as a hard
92 * link if the format supports that like tar, or ignore this info like cpio).
93 * (Actually a field in the format driver table tells us if the format wants
94 * hard link info. if not, we do not waste time looking for them). We also use
95 * the same table when reading an archive. In that situation, this table is
96 * used by the format read routine to detect hard links from stored dev and
97 * inode numbers (like cpio). This will allow pax to create a link when one
98 * can be detected by the archive format.
99 */
100
101/*
102 * lnk_start
103 *	Creates the hard link table.
104 * Return:
105 *	0 if created, -1 if failure
106 */
107
108#ifdef __STDC__
109int
110lnk_start(void)
111#else
112int
113lnk_start()
114#endif
115{
116	if (ltab != NULL)
117		return(0);
118 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
119		paxwarn(1, "Cannot allocate memory for hard link table");
120		return(-1);
121	}
122	return(0);
123}
124
125/*
126 * chk_lnk()
127 *	Looks up entry in hard link hash table. If found, it copies the name
128 *	of the file it is linked to (we already saw that file) into ln_name.
129 *	lnkcnt is decremented and if goes to 1 the node is deleted from the
130 *	database. (We have seen all the links to this file). If not found,
131 *	we add the file to the database if it has the potential for having
132 *	hard links to other files we may process (it has a link count > 1)
133 * Return:
134 *	if found returns 1; if not found returns 0; -1 on error
135 */
136
137#ifdef __STDC__
138int
139chk_lnk(register ARCHD *arcn)
140#else
141int
142chk_lnk(arcn)
143	register ARCHD *arcn;
144#endif
145{
146	register HRDLNK *pt;
147	register HRDLNK **ppt;
148	register u_int indx;
149
150	if (ltab == NULL)
151		return(-1);
152	/*
153	 * ignore those nodes that cannot have hard links
154	 */
155	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
156		return(0);
157
158	/*
159	 * hash inode number and look for this file
160	 */
161	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
162	if ((pt = ltab[indx]) != NULL) {
163		/*
164		 * it's hash chain in not empty, walk down looking for it
165		 */
166		ppt = &(ltab[indx]);
167		while (pt != NULL) {
168			if ((pt->ino == arcn->sb.st_ino) &&
169			    (pt->dev == arcn->sb.st_dev))
170				break;
171			ppt = &(pt->fow);
172			pt = pt->fow;
173		}
174
175		if (pt != NULL) {
176			/*
177			 * found a link. set the node type and copy in the
178			 * name of the file it is to link to. we need to
179			 * handle hardlinks to regular files differently than
180			 * other links.
181			 */
182			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
183				sizeof(arcn->ln_name) - 1);
184			arcn->ln_name[arcn->ln_nlen] = '\0';
185			if (arcn->type == PAX_REG)
186				arcn->type = PAX_HRG;
187			else
188				arcn->type = PAX_HLK;
189
190			/*
191			 * if we have found all the links to this file, remove
192			 * it from the database
193			 */
194			if (--pt->nlink <= 1) {
195				*ppt = pt->fow;
196				(void)free((char *)pt->name);
197				(void)free((char *)pt);
198			}
199			return(1);
200		}
201	}
202
203	/*
204	 * we never saw this file before. It has links so we add it to the
205	 * front of this hash chain
206	 */
207	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
208		if ((pt->name = strdup(arcn->name)) != NULL) {
209			pt->dev = arcn->sb.st_dev;
210			pt->ino = arcn->sb.st_ino;
211			pt->nlink = arcn->sb.st_nlink;
212			pt->fow = ltab[indx];
213			ltab[indx] = pt;
214			return(0);
215		}
216		(void)free((char *)pt);
217	}
218
219	paxwarn(1, "Hard link table out of memory");
220	return(-1);
221}
222
223/*
224 * purg_lnk
225 *	remove reference for a file that we may have added to the data base as
226 *	a potential source for hard links. We ended up not using the file, so
227 *	we do not want to accidently point another file at it later on.
228 */
229
230#ifdef __STDC__
231void
232purg_lnk(register ARCHD *arcn)
233#else
234void
235purg_lnk(arcn)
236	register ARCHD *arcn;
237#endif
238{
239	register HRDLNK *pt;
240	register HRDLNK **ppt;
241	register u_int indx;
242
243	if (ltab == NULL)
244		return;
245	/*
246	 * do not bother to look if it could not be in the database
247	 */
248	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
249	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
250		return;
251
252	/*
253	 * find the hash chain for this inode value, if empty return
254	 */
255	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
256	if ((pt = ltab[indx]) == NULL)
257		return;
258
259	/*
260	 * walk down the list looking for the inode/dev pair, unlink and
261	 * free if found
262	 */
263	ppt = &(ltab[indx]);
264	while (pt != NULL) {
265		if ((pt->ino == arcn->sb.st_ino) &&
266		    (pt->dev == arcn->sb.st_dev))
267			break;
268		ppt = &(pt->fow);
269		pt = pt->fow;
270	}
271	if (pt == NULL)
272		return;
273
274	/*
275	 * remove and free it
276	 */
277	*ppt = pt->fow;
278	(void)free((char *)pt->name);
279	(void)free((char *)pt);
280}
281
282/*
283 * lnk_end()
284 *	pull apart a existing link table so we can reuse it. We do this between
285 *	read and write phases of append with update. (The format may have
286 *	used the link table, and we need to start with a fresh table for the
287 *	write phase
288 */
289
290#ifdef __STDC__
291void
292lnk_end(void)
293#else
294void
295lnk_end()
296#endif
297{
298	register int i;
299	register HRDLNK *pt;
300	register HRDLNK *ppt;
301
302	if (ltab == NULL)
303		return;
304
305	for (i = 0; i < L_TAB_SZ; ++i) {
306		if (ltab[i] == NULL)
307			continue;
308		pt = ltab[i];
309		ltab[i] = NULL;
310
311		/*
312		 * free up each entry on this chain
313		 */
314		while (pt != NULL) {
315			ppt = pt;
316			pt = ppt->fow;
317			(void)free((char *)ppt->name);
318			(void)free((char *)ppt);
319		}
320	}
321	return;
322}
323
324/*
325 * modification time table routines
326 *
327 * The modification time table keeps track of last modification times for all
328 * files stored in an archive during a write phase when -u is set. We only
329 * add a file to the archive if it is newer than a file with the same name
330 * already stored on the archive (if there is no other file with the same
331 * name on the archive it is added). This applies to writes and appends.
332 * An append with an -u must read the archive and store the modification time
333 * for every file on that archive before starting the write phase. It is clear
334 * that this is one HUGE database. To save memory space, the actual file names
335 * are stored in a scatch file and indexed by an in memory hash table. The
336 * hash table is indexed by hashing the file path. The nodes in the table store
337 * the length of the filename and the lseek offset within the scratch file
338 * where the actual name is stored. Since there are never any deletions to this
339 * table, fragmentation of the scratch file is never a issue. Lookups seem to
340 * not exhibit any locality at all (files in the database are rarely
341 * looked up more than once...). So caching is just a waste of memory. The
342 * only limitation is the amount of scatch file space available to store the
343 * path names.
344 */
345
346/*
347 * ftime_start()
348 *	create the file time hash table and open for read/write the scratch
349 *	file. (after created it is unlinked, so when we exit we leave
350 *	no witnesses).
351 * Return:
352 *	0 if the table and file was created ok, -1 otherwise
353 */
354
355#ifdef __STDC__
356int
357ftime_start(void)
358#else
359int
360ftime_start()
361#endif
362{
363
364	if (ftab != NULL)
365		return(0);
366 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
367		paxwarn(1, "Cannot allocate memory for file time table");
368		return(-1);
369	}
370
371	/*
372	 * get random name and create temporary scratch file, unlink name
373	 * so it will get removed on exit
374	 */
375	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
376	if ((ffd = mkstemp(tempfile)) < 0) {
377		syswarn(1, errno, "Unable to create temporary file: %s",
378		    tempfile);
379		return(-1);
380	}
381	(void)unlink(tempfile);
382
383	return(0);
384}
385
386/*
387 * chk_ftime()
388 *	looks up entry in file time hash table. If not found, the file is
389 *	added to the hash table and the file named stored in the scratch file.
390 *	If a file with the same name is found, the file times are compared and
391 *	the most recent file time is retained. If the new file was younger (or
392 *	was not in the database) the new file is selected for storage.
393 * Return:
394 *	0 if file should be added to the archive, 1 if it should be skipped,
395 *	-1 on error
396 */
397
398#ifdef __STDC__
399int
400chk_ftime(register ARCHD *arcn)
401#else
402int
403chk_ftime(arcn)
404	register ARCHD *arcn;
405#endif
406{
407	register FTM *pt;
408	register int namelen;
409	register u_int indx;
410	char ckname[PAXPATHLEN+1];
411
412	/*
413	 * no info, go ahead and add to archive
414	 */
415	if (ftab == NULL)
416		return(0);
417
418	/*
419	 * hash the pathname and look up in table
420	 */
421	namelen = arcn->nlen;
422	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
423	if ((pt = ftab[indx]) != NULL) {
424		/*
425		 * the hash chain is not empty, walk down looking for match
426		 * only read up the path names if the lengths match, speeds
427		 * up the search a lot
428		 */
429		while (pt != NULL) {
430			if (pt->namelen == namelen) {
431				/*
432				 * potential match, have to read the name
433				 * from the scratch file.
434				 */
435				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
436					syswarn(1, errno,
437					    "Failed ftime table seek");
438					return(-1);
439				}
440				if (read(ffd, ckname, namelen) != namelen) {
441					syswarn(1, errno,
442					    "Failed ftime table read");
443					return(-1);
444				}
445
446				/*
447				 * if the names match, we are done
448				 */
449				if (!strncmp(ckname, arcn->name, namelen))
450					break;
451			}
452
453			/*
454			 * try the next entry on the chain
455			 */
456			pt = pt->fow;
457		}
458
459		if (pt != NULL) {
460			/*
461			 * found the file, compare the times, save the newer
462			 */
463			if (arcn->sb.st_mtime > pt->mtime) {
464				/*
465				 * file is newer
466				 */
467				pt->mtime = arcn->sb.st_mtime;
468				return(0);
469			}
470			/*
471			 * file is older
472			 */
473			return(1);
474		}
475	}
476
477	/*
478	 * not in table, add it
479	 */
480	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
481		/*
482		 * add the name at the end of the scratch file, saving the
483		 * offset. add the file to the head of the hash chain
484		 */
485		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
486			if (write(ffd, arcn->name, namelen) == namelen) {
487				pt->mtime = arcn->sb.st_mtime;
488				pt->namelen = namelen;
489				pt->fow = ftab[indx];
490				ftab[indx] = pt;
491				return(0);
492			}
493			syswarn(1, errno, "Failed write to file time table");
494		} else
495			syswarn(1, errno, "Failed seek on file time table");
496	} else
497		paxwarn(1, "File time table ran out of memory");
498
499	if (pt != NULL)
500		(void)free((char *)pt);
501	return(-1);
502}
503
504/*
505 * Interactive rename table routines
506 *
507 * The interactive rename table keeps track of the new names that the user
508 * assigns to files from tty input. Since this map is unique for each file
509 * we must store it in case there is a reference to the file later in archive
510 * (a link). Otherwise we will be unable to find the file we know was
511 * extracted. The remapping of these files is stored in a memory based hash
512 * table (it is assumed since input must come from /dev/tty, it is unlikely to
513 * be a very large table).
514 */
515
516/*
517 * name_start()
518 *	create the interactive rename table
519 * Return:
520 *	0 if successful, -1 otherwise
521 */
522
523#ifdef __STDC__
524int
525name_start(void)
526#else
527int
528name_start()
529#endif
530{
531	if (ntab != NULL)
532		return(0);
533 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
534		paxwarn(1, "Cannot allocate memory for interactive rename table");
535		return(-1);
536	}
537	return(0);
538}
539
540/*
541 * add_name()
542 *	add the new name to old name mapping just created by the user.
543 *	If an old name mapping is found (there may be duplicate names on an
544 *	archive) only the most recent is kept.
545 * Return:
546 *	0 if added, -1 otherwise
547 */
548
549#ifdef __STDC__
550int
551add_name(register char *oname, int onamelen, char *nname)
552#else
553int
554add_name(oname, onamelen, nname)
555	register char *oname;
556	int onamelen;
557	char *nname;
558#endif
559{
560	register NAMT *pt;
561	register u_int indx;
562
563	if (ntab == NULL) {
564		/*
565		 * should never happen
566		 */
567		paxwarn(0, "No interactive rename table, links may fail\n");
568		return(0);
569	}
570
571	/*
572	 * look to see if we have already mapped this file, if so we
573	 * will update it
574	 */
575	indx = st_hash(oname, onamelen, N_TAB_SZ);
576	if ((pt = ntab[indx]) != NULL) {
577		/*
578		 * look down the has chain for the file
579		 */
580		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
581			pt = pt->fow;
582
583		if (pt != NULL) {
584			/*
585			 * found an old mapping, replace it with the new one
586			 * the user just input (if it is different)
587			 */
588			if (strcmp(nname, pt->nname) == 0)
589				return(0);
590
591			(void)free((char *)pt->nname);
592			if ((pt->nname = strdup(nname)) == NULL) {
593				paxwarn(1, "Cannot update rename table");
594				return(-1);
595			}
596			return(0);
597		}
598	}
599
600	/*
601	 * this is a new mapping, add it to the table
602	 */
603	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
604		if ((pt->oname = strdup(oname)) != NULL) {
605			if ((pt->nname = strdup(nname)) != NULL) {
606				pt->fow = ntab[indx];
607				ntab[indx] = pt;
608				return(0);
609			}
610			(void)free((char *)pt->oname);
611		}
612		(void)free((char *)pt);
613	}
614	paxwarn(1, "Interactive rename table out of memory");
615	return(-1);
616}
617
618/*
619 * sub_name()
620 *	look up a link name to see if it points at a file that has been
621 *	remapped by the user. If found, the link is adjusted to contain the
622 *	new name (oname is the link to name)
623 */
624
625#ifdef __STDC__
626void
627sub_name(register char *oname, int *onamelen, size_t onamesize)
628#else
629void
630sub_name(oname, onamelen, onamesize)
631	register char *oname;
632	int *onamelen;
633	size_t onamesize;
634#endif
635{
636	register NAMT *pt;
637	register u_int indx;
638
639	if (ntab == NULL)
640		return;
641	/*
642	 * look the name up in the hash table
643	 */
644	indx = st_hash(oname, *onamelen, N_TAB_SZ);
645	if ((pt = ntab[indx]) == NULL)
646		return;
647
648	while (pt != NULL) {
649		/*
650		 * walk down the hash chain looking for a match
651		 */
652		if (strcmp(oname, pt->oname) == 0) {
653			/*
654			 * found it, replace it with the new name
655			 * and return (we know that oname has enough space)
656			 */
657			*onamelen = l_strncpy(oname, pt->nname, onamesize - 1);
658			oname[*onamelen] = '\0';
659			return;
660		}
661		pt = pt->fow;
662	}
663
664	/*
665	 * no match, just return
666	 */
667	return;
668}
669
670/*
671 * device/inode mapping table routines
672 * (used with formats that store device and inodes fields)
673 *
674 * device/inode mapping tables remap the device field in a archive header. The
675 * device/inode fields are used to determine when files are hard links to each
676 * other. However these values have very little meaning outside of that. This
677 * database is used to solve one of two different problems.
678 *
679 * 1) when files are appended to an archive, while the new files may have hard
680 * links to each other, you cannot determine if they have hard links to any
681 * file already stored on the archive from a prior run of pax. We must assume
682 * that these inode/device pairs are unique only within a SINGLE run of pax
683 * (which adds a set of files to an archive). So we have to make sure the
684 * inode/dev pairs we add each time are always unique. We do this by observing
685 * while the inode field is very dense, the use of the dev field is fairly
686 * sparse. Within each run of pax, we remap any device number of a new archive
687 * member that has a device number used in a prior run and already stored in a
688 * file on the archive. During the read phase of the append, we store the
689 * device numbers used and mark them to not be used by any file during the
690 * write phase. If during write we go to use one of those old device numbers,
691 * we remap it to a new value.
692 *
693 * 2) Often the fields in the archive header used to store these values are
694 * too small to store the entire value. The result is an inode or device value
695 * which can be truncated. This really can foul up an archive. With truncation
696 * we end up creating links between files that are really not links (after
697 * truncation the inodes are the same value). We address that by detecting
698 * truncation and forcing a remap of the device field to split truncated
699 * inodes away from each other. Each truncation creates a pattern of bits that
700 * are removed. We use this pattern of truncated bits to partition the inodes
701 * on a single device to many different devices (each one represented by the
702 * truncated bit pattern). All inodes on the same device that have the same
703 * truncation pattern are mapped to the same new device. Two inodes that
704 * truncate to the same value clearly will always have different truncation
705 * bit patterns, so they will be split from away each other. When we spot
706 * device truncation we remap the device number to a non truncated value.
707 * (for more info see table.h for the data structures involved).
708 */
709
710/*
711 * dev_start()
712 *	create the device mapping table
713 * Return:
714 *	0 if successful, -1 otherwise
715 */
716
717#ifdef __STDC__
718int
719dev_start(void)
720#else
721int
722dev_start()
723#endif
724{
725	if (dtab != NULL)
726		return(0);
727 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
728		paxwarn(1, "Cannot allocate memory for device mapping table");
729		return(-1);
730	}
731	return(0);
732}
733
734/*
735 * add_dev()
736 *	add a device number to the table. this will force the device to be
737 *	remapped to a new value if it be used during a write phase. This
738 *	function is called during the read phase of an append to prohibit the
739 *	use of any device number already in the archive.
740 * Return:
741 *	0 if added ok, -1 otherwise
742 */
743
744#ifdef __STDC__
745int
746add_dev(register ARCHD *arcn)
747#else
748int
749add_dev(arcn)
750	register ARCHD *arcn;
751#endif
752{
753	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
754		return(-1);
755	return(0);
756}
757
758/*
759 * chk_dev()
760 *	check for a device value in the device table. If not found and the add
761 *	flag is set, it is added. This does NOT assign any mapping values, just
762 *	adds the device number as one that need to be remapped. If this device
763 *	is already mapped, just return with a pointer to that entry.
764 * Return:
765 *	pointer to the entry for this device in the device map table. Null
766 *	if the add flag is not set and the device is not in the table (it is
767 *	not been seen yet). If add is set and the device cannot be added, null
768 *	is returned (indicates an error).
769 */
770
771#ifdef __STDC__
772static DEVT *
773chk_dev(dev_t dev, int add)
774#else
775static DEVT *
776chk_dev(dev, add)
777	dev_t dev;
778	int add;
779#endif
780{
781	register DEVT *pt;
782	register u_int indx;
783
784	if (dtab == NULL)
785		return(NULL);
786	/*
787	 * look to see if this device is already in the table
788	 */
789	indx = ((unsigned)dev) % D_TAB_SZ;
790	if ((pt = dtab[indx]) != NULL) {
791		while ((pt != NULL) && (pt->dev != dev))
792			pt = pt->fow;
793
794		/*
795		 * found it, return a pointer to it
796		 */
797		if (pt != NULL)
798			return(pt);
799	}
800
801	/*
802	 * not in table, we add it only if told to as this may just be a check
803	 * to see if a device number is being used.
804	 */
805	if (add == 0)
806		return(NULL);
807
808	/*
809	 * allocate a node for this device and add it to the front of the hash
810	 * chain. Note we do not assign remaps values here, so the pt->list
811	 * list must be NULL.
812	 */
813	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
814		paxwarn(1, "Device map table out of memory");
815		return(NULL);
816	}
817	pt->dev = dev;
818	pt->list = NULL;
819	pt->fow = dtab[indx];
820	dtab[indx] = pt;
821	return(pt);
822}
823/*
824 * map_dev()
825 *	given an inode and device storage mask (the mask has a 1 for each bit
826 *	the archive format is able to store in a header), we check for inode
827 *	and device truncation and remap the device as required. Device mapping
828 *	can also occur when during the read phase of append a device number was
829 *	seen (and was marked as do not use during the write phase). WE ASSUME
830 *	that unsigned longs are the same size or bigger than the fields used
831 *	for ino_t and dev_t. If not the types will have to be changed.
832 * Return:
833 *	0 if all ok, -1 otherwise.
834 */
835
836#ifdef __STDC__
837int
838map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask)
839#else
840int
841map_dev(arcn, dev_mask, ino_mask)
842	register ARCHD *arcn;
843	u_long dev_mask;
844	u_long ino_mask;
845#endif
846{
847	register DEVT *pt;
848	register DLIST *dpt;
849	static dev_t lastdev = 0;	/* next device number to try */
850	int trc_ino = 0;
851	int trc_dev = 0;
852	ino_t trunc_bits = 0;
853	ino_t nino;
854
855	if (dtab == NULL)
856		return(0);
857	/*
858	 * check for device and inode truncation, and extract the truncated
859	 * bit pattern.
860	 */
861	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
862		++trc_dev;
863	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
864		++trc_ino;
865		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
866	}
867
868	/*
869	 * see if this device is already being mapped, look up the device
870	 * then find the truncation bit pattern which applies
871	 */
872	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
873		/*
874		 * this device is already marked to be remapped
875		 */
876		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
877			if (dpt->trunc_bits == trunc_bits)
878				break;
879
880		if (dpt != NULL) {
881			/*
882			 * we are being remapped for this device and pattern
883			 * change the device number to be stored and return
884			 */
885			arcn->sb.st_dev = dpt->dev;
886			arcn->sb.st_ino = nino;
887			return(0);
888		}
889	} else {
890		/*
891		 * this device is not being remapped YET. if we do not have any
892		 * form of truncation, we do not need a remap
893		 */
894		if (!trc_ino && !trc_dev)
895			return(0);
896
897		/*
898		 * we have truncation, have to add this as a device to remap
899		 */
900		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
901			goto bad;
902
903		/*
904		 * if we just have a truncated inode, we have to make sure that
905		 * all future inodes that do not truncate (they have the
906		 * truncation pattern of all 0's) continue to map to the same
907		 * device number. We probably have already written inodes with
908		 * this device number to the archive with the truncation
909		 * pattern of all 0's. So we add the mapping for all 0's to the
910		 * same device number.
911		 */
912		if (!trc_dev && (trunc_bits != 0)) {
913			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
914				goto bad;
915			dpt->trunc_bits = 0;
916			dpt->dev = arcn->sb.st_dev;
917			dpt->fow = pt->list;
918			pt->list = dpt;
919		}
920	}
921
922	/*
923	 * look for a device number not being used. We must watch for wrap
924	 * around on lastdev (so we do not get stuck looking forever!)
925	 */
926	while (++lastdev > 0) {
927		if (chk_dev(lastdev, 0) != NULL)
928			continue;
929		/*
930		 * found an unused value. If we have reached truncation point
931		 * for this format we are hosed, so we give up. Otherwise we
932		 * mark it as being used.
933		 */
934		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
935		    (chk_dev(lastdev, 1) == NULL))
936			goto bad;
937		break;
938	}
939
940	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
941		goto bad;
942
943	/*
944	 * got a new device number, store it under this truncation pattern.
945	 * change the device number this file is being stored with.
946	 */
947	dpt->trunc_bits = trunc_bits;
948	dpt->dev = lastdev;
949	dpt->fow = pt->list;
950	pt->list = dpt;
951	arcn->sb.st_dev = lastdev;
952	arcn->sb.st_ino = nino;
953	return(0);
954
955    bad:
956	paxwarn(1, "Unable to fix truncated inode/device field when storing %s",
957	    arcn->name);
958	paxwarn(0, "Archive may create improper hard links when extracted");
959	return(0);
960}
961
962/*
963 * directory access/mod time reset table routines (for directories READ by pax)
964 *
965 * The pax -t flag requires that access times of archive files to be the same
966 * before being read by pax. For regular files, access time is restored after
967 * the file has been copied. This database provides the same functionality for
968 * directories read during file tree traversal. Restoring directory access time
969 * is more complex than files since directories may be read several times until
970 * all the descendants in their subtree are visited by fts. Directory access
971 * and modification times are stored during the fts pre-order visit (done
972 * before any descendants in the subtree is visited) and restored after the
973 * fts post-order visit (after all the descendants have been visited). In the
974 * case of premature exit from a subtree (like from the effects of -n), any
975 * directory entries left in this database are reset during final cleanup
976 * operations of pax. Entries are hashed by inode number for fast lookup.
977 */
978
979/*
980 * atdir_start()
981 *	create the directory access time database for directories READ by pax.
982 * Return:
983 *	0 is created ok, -1 otherwise.
984 */
985
986#ifdef __STDC__
987int
988atdir_start(void)
989#else
990int
991atdir_start()
992#endif
993{
994	if (atab != NULL)
995		return(0);
996 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
997		paxwarn(1,"Cannot allocate space for directory access time table");
998		return(-1);
999	}
1000	return(0);
1001}
1002
1003
1004/*
1005 * atdir_end()
1006 *	walk through the directory access time table and reset the access time
1007 *	of any directory who still has an entry left in the database. These
1008 *	entries are for directories READ by pax
1009 */
1010
1011#ifdef __STDC__
1012void
1013atdir_end(void)
1014#else
1015void
1016atdir_end()
1017#endif
1018{
1019	register ATDIR *pt;
1020	register int i;
1021
1022	if (atab == NULL)
1023		return;
1024	/*
1025	 * for each non-empty hash table entry reset all the directories
1026	 * chained there.
1027	 */
1028	for (i = 0; i < A_TAB_SZ; ++i) {
1029		if ((pt = atab[i]) == NULL)
1030			continue;
1031		/*
1032		 * remember to force the times, set_ftime() looks at pmtime
1033		 * and patime, which only applies to things CREATED by pax,
1034		 * not read by pax. Read time reset is controlled by -t.
1035		 */
1036		for (; pt != NULL; pt = pt->fow)
1037			set_ftime(pt->name, pt->mtime, pt->atime, 1);
1038	}
1039}
1040
1041/*
1042 * add_atdir()
1043 *	add a directory to the directory access time table. Table is hashed
1044 *	and chained by inode number. This is for directories READ by pax
1045 */
1046
1047#ifdef __STDC__
1048void
1049add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1050#else
1051void
1052add_atdir(fname, dev, ino, mtime, atime)
1053	char *fname;
1054	dev_t dev;
1055	ino_t ino;
1056	time_t mtime;
1057	time_t atime;
1058#endif
1059{
1060	register ATDIR *pt;
1061	register u_int indx;
1062
1063	if (atab == NULL)
1064		return;
1065
1066	/*
1067	 * make sure this directory is not already in the table, if so just
1068	 * return (the older entry always has the correct time). The only
1069	 * way this will happen is when the same subtree can be traversed by
1070	 * different args to pax and the -n option is aborting fts out of a
1071	 * subtree before all the post-order visits have been made).
1072	 */
1073	indx = ((unsigned)ino) % A_TAB_SZ;
1074	if ((pt = atab[indx]) != NULL) {
1075		while (pt != NULL) {
1076			if ((pt->ino == ino) && (pt->dev == dev))
1077				break;
1078			pt = pt->fow;
1079		}
1080
1081		/*
1082		 * oops, already there. Leave it alone.
1083		 */
1084		if (pt != NULL)
1085			return;
1086	}
1087
1088	/*
1089	 * add it to the front of the hash chain
1090	 */
1091	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1092		if ((pt->name = strdup(fname)) != NULL) {
1093			pt->dev = dev;
1094			pt->ino = ino;
1095			pt->mtime = mtime;
1096			pt->atime = atime;
1097			pt->fow = atab[indx];
1098			atab[indx] = pt;
1099			return;
1100		}
1101		(void)free((char *)pt);
1102	}
1103
1104	paxwarn(1, "Directory access time reset table ran out of memory");
1105	return;
1106}
1107
1108/*
1109 * get_atdir()
1110 *	look up a directory by inode and device number to obtain the access
1111 *	and modification time you want to set to. If found, the modification
1112 *	and access time parameters are set and the entry is removed from the
1113 *	table (as it is no longer needed). These are for directories READ by
1114 *	pax
1115 * Return:
1116 *	0 if found, -1 if not found.
1117 */
1118
1119#ifdef __STDC__
1120int
1121get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1122#else
1123int
1124get_atdir(dev, ino, mtime, atime)
1125	dev_t dev;
1126	ino_t ino;
1127	time_t *mtime;
1128	time_t *atime;
1129#endif
1130{
1131	register ATDIR *pt;
1132	register ATDIR **ppt;
1133	register u_int indx;
1134
1135	if (atab == NULL)
1136		return(-1);
1137	/*
1138	 * hash by inode and search the chain for an inode and device match
1139	 */
1140	indx = ((unsigned)ino) % A_TAB_SZ;
1141	if ((pt = atab[indx]) == NULL)
1142		return(-1);
1143
1144	ppt = &(atab[indx]);
1145	while (pt != NULL) {
1146		if ((pt->ino == ino) && (pt->dev == dev))
1147			break;
1148		/*
1149		 * no match, go to next one
1150		 */
1151		ppt = &(pt->fow);
1152		pt = pt->fow;
1153	}
1154
1155	/*
1156	 * return if we did not find it.
1157	 */
1158	if (pt == NULL)
1159		return(-1);
1160
1161	/*
1162	 * found it. return the times and remove the entry from the table.
1163	 */
1164	*ppt = pt->fow;
1165	*mtime = pt->mtime;
1166	*atime = pt->atime;
1167	(void)free((char *)pt->name);
1168	(void)free((char *)pt);
1169	return(0);
1170}
1171
1172/*
1173 * directory access mode and time storage routines (for directories CREATED
1174 * by pax).
1175 *
1176 * Pax requires that extracted directories, by default, have their access/mod
1177 * times and permissions set to the values specified in the archive. During the
1178 * actions of extracting (and creating the destination subtree during -rw copy)
1179 * directories extracted may be modified after being created. Even worse is
1180 * that these directories may have been created with file permissions which
1181 * prohibits any descendants of these directories from being extracted. When
1182 * directories are created by pax, access rights may be added to permit the
1183 * creation of files in their subtree. Every time pax creates a directory, the
1184 * times and file permissions specified by the archive are stored. After all
1185 * files have been extracted (or copied), these directories have their times
1186 * and file modes reset to the stored values. The directory info is restored in
1187 * reverse order as entries were added to the data file from root to leaf. To
1188 * restore atime properly, we must go backwards. The data file consists of
1189 * records with two parts, the file name followed by a DIRDATA trailer. The
1190 * fixed sized trailer contains the size of the name plus the off_t location in
1191 * the file. To restore we work backwards through the file reading the trailer
1192 * then the file name.
1193 */
1194
1195/*
1196 * dir_start()
1197 *	set up the directory time and file mode storage for directories CREATED
1198 *	by pax.
1199 * Return:
1200 *	0 if ok, -1 otherwise
1201 */
1202
1203#ifdef __STDC__
1204int
1205dir_start(void)
1206#else
1207int
1208dir_start()
1209#endif
1210{
1211
1212	if (dirfd != -1)
1213		return(0);
1214
1215	/*
1216	 * unlink the file so it goes away at termination by itself
1217	 */
1218	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
1219	if ((dirfd = mkstemp(tempfile)) >= 0) {
1220		(void)unlink(tempfile);
1221		return(0);
1222	}
1223	paxwarn(1, "Unable to create temporary file for directory times: %s",
1224	    tempfile);
1225	return(-1);
1226}
1227
1228/*
1229 * add_dir()
1230 *	add the mode and times for a newly CREATED directory
1231 *	name is name of the directory, psb the stat buffer with the data in it,
1232 *	frc_mode is a flag that says whether to force the setting of the mode
1233 *	(ignoring the user set values for preserving file mode). Frc_mode is
1234 *	for the case where we created a file and found that the resulting
1235 *	directory was not writeable and the user asked for file modes to NOT
1236 *	be preserved. (we have to preserve what was created by default, so we
1237 *	have to force the setting at the end. this is stated explicitly in the
1238 *	pax spec)
1239 */
1240
1241#ifdef __STDC__
1242void
1243add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1244#else
1245void
1246add_dir(name, nlen, psb, frc_mode)
1247	char *name;
1248	int nlen;
1249	struct stat *psb;
1250	int frc_mode;
1251#endif
1252{
1253	DIRDATA dblk;
1254
1255	if (dirfd < 0)
1256		return;
1257
1258	/*
1259	 * get current position (where file name will start) so we can store it
1260	 * in the trailer
1261	 */
1262	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1263		paxwarn(1,"Unable to store mode and times for directory: %s",name);
1264		return;
1265	}
1266
1267	/*
1268	 * write the file name followed by the trailer
1269	 */
1270	dblk.nlen = nlen + 1;
1271	dblk.mode = psb->st_mode & 0xffff;
1272	dblk.mtime = psb->st_mtime;
1273	dblk.atime = psb->st_atime;
1274	dblk.frc_mode = frc_mode;
1275	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1276	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1277		++dircnt;
1278		return;
1279	}
1280
1281	paxwarn(1,"Unable to store mode and times for created directory: %s",name);
1282	return;
1283}
1284
1285/*
1286 * proc_dir()
1287 *	process all file modes and times stored for directories CREATED
1288 *	by pax
1289 */
1290
1291#ifdef __STDC__
1292void
1293proc_dir(void)
1294#else
1295void
1296proc_dir()
1297#endif
1298{
1299	char name[PAXPATHLEN+1];
1300	DIRDATA dblk;
1301	u_long cnt;
1302
1303	if (dirfd < 0)
1304		return;
1305	/*
1306	 * read backwards through the file and process each directory
1307	 */
1308	for (cnt = 0; cnt < dircnt; ++cnt) {
1309		/*
1310		 * read the trailer, then the file name, if this fails
1311		 * just give up.
1312		 */
1313		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1314			break;
1315		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1316			break;
1317		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1318			break;
1319		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1320			break;
1321		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1322			break;
1323
1324		/*
1325		 * frc_mode set, make sure we set the file modes even if
1326		 * the user didn't ask for it (see file_subs.c for more info)
1327		 */
1328		if (pmode || dblk.frc_mode)
1329			set_pmode(name, dblk.mode);
1330		if (patime || pmtime)
1331			set_ftime(name, dblk.mtime, dblk.atime, 0);
1332	}
1333
1334	(void)close(dirfd);
1335	dirfd = -1;
1336	if (cnt != dircnt)
1337		paxwarn(1,"Unable to set mode and times for created directories");
1338	return;
1339}
1340
1341/*
1342 * database independent routines
1343 */
1344
1345/*
1346 * st_hash()
1347 *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1348 *	end of file, as this provides far better distribution than any other
1349 *	part of the name. For performance reasons we only care about the last
1350 *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1351 *	name). Was tested on 500,000 name file tree traversal from the root
1352 *	and gave almost a perfectly uniform distribution of keys when used with
1353 *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1354 *	chars at a time and pads with 0 for last addition.
1355 * Return:
1356 *	the hash value of the string MOD (%) the table size.
1357 */
1358
1359#ifdef __STDC__
1360u_int
1361st_hash(char *name, int len, int tabsz)
1362#else
1363u_int
1364st_hash(name, len, tabsz)
1365	char *name;
1366	int len;
1367	int tabsz;
1368#endif
1369{
1370	register char *pt;
1371	register char *dest;
1372	register char *end;
1373	register int i;
1374	register u_int key = 0;
1375	register int steps;
1376	register int res;
1377	u_int val;
1378
1379	/*
1380	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1381	 * time here (remember these are pathnames, the tail is what will
1382	 * spread out the keys)
1383	 */
1384	if (len > MAXKEYLEN) {
1385		pt = &(name[len - MAXKEYLEN]);
1386		len = MAXKEYLEN;
1387	} else
1388		pt = name;
1389
1390	/*
1391	 * calculate the number of u_int size steps in the string and if
1392	 * there is a runt to deal with
1393	 */
1394	steps = len/sizeof(u_int);
1395	res = len % sizeof(u_int);
1396
1397	/*
1398	 * add up the value of the string in unsigned integer sized pieces
1399	 * too bad we cannot have unsigned int aligned strings, then we
1400	 * could avoid the expensive copy.
1401	 */
1402	for (i = 0; i < steps; ++i) {
1403		end = pt + sizeof(u_int);
1404		dest = (char *)&val;
1405		while (pt < end)
1406			*dest++ = *pt++;
1407		key += val;
1408	}
1409
1410	/*
1411	 * add in the runt padded with zero to the right
1412	 */
1413	if (res) {
1414		val = 0;
1415		end = pt + res;
1416		dest = (char *)&val;
1417		while (pt < end)
1418			*dest++ = *pt++;
1419		key += val;
1420	}
1421
1422	/*
1423	 * return the result mod the table size
1424	 */
1425	return(key % tabsz);
1426}
1427