tables.c revision 3044
1/*-
2 * Copyright (c) 1992 Keith Muller.
3 * Copyright (c) 1992, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Keith Muller of the University of California, San Diego.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	$Id$
38 */
39
40#ifndef lint
41static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
42#endif /* not lint */
43
44#include <sys/types.h>
45#include <sys/time.h>
46#include <sys/stat.h>
47#include <sys/param.h>
48#include <sys/fcntl.h>
49#include <stdio.h>
50#include <ctype.h>
51#include <string.h>
52#include <unistd.h>
53#include <errno.h>
54#include <stdlib.h>
55#include "pax.h"
56#include "tables.h"
57#include "extern.h"
58
59/*
60 * Routines for controlling the contents of all the different databases pax
61 * keeps. Tables are dynamically created only when they are needed. The
62 * goal was speed and the ability to work with HUGE archives. The databases
63 * were kept simple, but do have complex rules for when the contents change.
64 * As of this writing, the posix library functions were more complex than
65 * needed for this application (pax databases have very short lifetimes and
66 * do not survive after pax is finished). Pax is required to handle very
67 * large archives. These database routines carefully combine memory usage and
68 * temporary file storage in ways which will not significantly impact runtime
69 * performance while allowing the largest possible archives to be handled.
70 * Trying to force the fit to the posix databases routines was not considered
71 * time well spent.
72 */
73
74static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
75static FTM **ftab = NULL;	/* file time table for updating arch */
76static NAMT **ntab = NULL;	/* interactive rename storage table */
77static DEVT **dtab = NULL;	/* device/inode mapping tables */
78static ATDIR **atab = NULL;	/* file tree directory time reset table */
79static int dirfd = -1;		/* storage for setting created dir time/mode */
80static u_long dircnt;		/* entries in dir time/mode storage */
81static int ffd = -1;		/* tmp file for file time table name storage */
82
83static DEVT *chk_dev __P((dev_t, int));
84
85/*
86 * hard link table routines
87 *
88 * The hard link table tries to detect hard links to files using the device and
89 * inode values. We do this when writing an archive, so we can tell the format
90 * write routine that this file is a hard link to another file. The format
91 * write routine then can store this file in whatever way it wants (as a hard
92 * link if the format supports that like tar, or ignore this info like cpio).
93 * (Actually a field in the format driver table tells us if the format wants
94 * hard link info. if not, we do not waste time looking for them). We also use
95 * the same table when reading an archive. In that situation, this table is
96 * used by the format read routine to detect hard links from stored dev and
97 * inode numbers (like cpio). This will allow pax to create a link when one
98 * can be detected by the archive format.
99 */
100
101/*
102 * lnk_start
103 *	Creates the hard link table.
104 * Return:
105 *	0 if created, -1 if failure
106 */
107
108#if __STDC__
109int
110lnk_start(void)
111#else
112int
113lnk_start()
114#endif
115{
116	if (ltab != NULL)
117		return(0);
118 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
119                warn(1, "Cannot allocate memory for hard link table");
120                return(-1);
121        }
122	return(0);
123}
124
125/*
126 * chk_lnk()
127 *	Looks up entry in hard link hash table. If found, it copies the name
128 *	of the file it is linked to (we already saw that file) into ln_name.
129 *	lnkcnt is decremented and if goes to 1 the node is deleted from the
130 *	database. (We have seen all the links to this file). If not found,
131 *	we add the file to the database if it has the potential for having
132 *	hard links to other files we may process (it has a link count > 1)
133 * Return:
134 *	if found returns 1; if not found returns 0; -1 on error
135 */
136
137#if __STDC__
138int
139chk_lnk(register ARCHD *arcn)
140#else
141int
142chk_lnk(arcn)
143	register ARCHD *arcn;
144#endif
145{
146	register HRDLNK *pt;
147	register HRDLNK **ppt;
148	register u_int indx;
149
150	if (ltab == NULL)
151		return(-1);
152	/*
153	 * ignore those nodes that cannot have hard links
154	 */
155	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
156		return(0);
157
158	/*
159	 * hash inode number and look for this file
160	 */
161	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
162	if ((pt = ltab[indx]) != NULL) {
163		/*
164		 * it's hash chain in not empty, walk down looking for it
165		 */
166		ppt = &(ltab[indx]);
167		while (pt != NULL) {
168			if ((pt->ino == arcn->sb.st_ino) &&
169			    (pt->dev == arcn->sb.st_dev))
170				break;
171			ppt = &(pt->fow);
172			pt = pt->fow;
173		}
174
175		if (pt != NULL) {
176			/*
177			 * found a link. set the node type and copy in the
178			 * name of the file it is to link to. we need to
179			 * handle hardlinks to regular files differently than
180			 * other links.
181			 */
182			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
183				PAXPATHLEN+1);
184			if (arcn->type == PAX_REG)
185				arcn->type = PAX_HRG;
186			else
187				arcn->type = PAX_HLK;
188
189			/*
190			 * if we have found all the links to this file, remove
191			 * it from the database
192			 */
193			if (--pt->nlink <= 1) {
194				*ppt = pt->fow;
195				(void)free((char *)pt->name);
196				(void)free((char *)pt);
197			}
198			return(1);
199		}
200	}
201
202	/*
203	 * we never saw this file before. It has links so we add it to the
204	 * front of this hash chain
205	 */
206	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
207		if ((pt->name = strdup(arcn->name)) != NULL) {
208			pt->dev = arcn->sb.st_dev;
209			pt->ino = arcn->sb.st_ino;
210			pt->nlink = arcn->sb.st_nlink;
211			pt->fow = ltab[indx];
212			ltab[indx] = pt;
213			return(0);
214		}
215		(void)free((char *)pt);
216	}
217
218	warn(1, "Hard link table out of memory");
219	return(-1);
220}
221
222/*
223 * purg_lnk
224 *	remove reference for a file that we may have added to the data base as
225 *	a potential source for hard links. We ended up not using the file, so
226 *	we do not want to accidently point another file at it later on.
227 */
228
229#if __STDC__
230void
231purg_lnk(register ARCHD *arcn)
232#else
233void
234purg_lnk(arcn)
235	register ARCHD *arcn;
236#endif
237{
238	register HRDLNK *pt;
239	register HRDLNK **ppt;
240	register u_int indx;
241
242	if (ltab == NULL)
243		return;
244	/*
245	 * do not bother to look if it could not be in the database
246	 */
247	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
248	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
249		return;
250
251	/*
252	 * find the hash chain for this inode value, if empty return
253	 */
254	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
255	if ((pt = ltab[indx]) == NULL)
256		return;
257
258	/*
259	 * walk down the list looking for the inode/dev pair, unlink and
260	 * free if found
261	 */
262	ppt = &(ltab[indx]);
263	while (pt != NULL) {
264		if ((pt->ino == arcn->sb.st_ino) &&
265		    (pt->dev == arcn->sb.st_dev))
266			break;
267		ppt = &(pt->fow);
268		pt = pt->fow;
269	}
270	if (pt == NULL)
271		return;
272
273	/*
274	 * remove and free it
275	 */
276	*ppt = pt->fow;
277	(void)free((char *)pt->name);
278	(void)free((char *)pt);
279}
280
281/*
282 * lnk_end()
283 *	pull apart a existing link table so we can reuse it. We do this between
284 *	read and write phases of append with update. (The format may have
285 *	used the link table, and we need to start with a fresh table for the
286 *	write phase
287 */
288
289#if __STDC__
290void
291lnk_end(void)
292#else
293void
294lnk_end()
295#endif
296{
297	register int i;
298	register HRDLNK *pt;
299	register HRDLNK *ppt;
300
301	if (ltab == NULL)
302		return;
303
304	for (i = 0; i < L_TAB_SZ; ++i) {
305		if (ltab[i] == NULL)
306			continue;
307		pt = ltab[i];
308		ltab[i] = NULL;
309
310		/*
311		 * free up each entry on this chain
312		 */
313		while (pt != NULL) {
314			ppt = pt;
315			pt = ppt->fow;
316			(void)free((char *)ppt->name);
317			(void)free((char *)ppt);
318		}
319	}
320	return;
321}
322
323/*
324 * modification time table routines
325 *
326 * The modification time table keeps track of last modification times for all
327 * files stored in an archive during a write phase when -u is set. We only
328 * add a file to the archive if it is newer than a file with the same name
329 * already stored on the archive (if there is no other file with the same
330 * name on the archive it is added). This applies to writes and appends.
331 * An append with an -u must read the archive and store the modification time
332 * for every file on that archive before starting the write phase. It is clear
333 * that this is one HUGE database. To save memory space, the actual file names
334 * are stored in a scatch file and indexed by an in memory hash table. The
335 * hash table is indexed by hashing the file path. The nodes in the table store
336 * the length of the filename and the lseek offset within the scratch file
337 * where the actual name is stored. Since there are never any deletions to this
338 * table, fragmentation of the scratch file is never a issue. Lookups seem to
339 * not exhibit any locality at all (files in the database are rarely
340 * looked up more than once...). So caching is just a waste of memory. The
341 * only limitation is the amount of scatch file space available to store the
342 * path names.
343 */
344
345/*
346 * ftime_start()
347 *	create the file time hash table and open for read/write the scratch
348 *	file. (after created it is unlinked, so when we exit we leave
349 *	no witnesses).
350 * Return:
351 *	0 if the table and file was created ok, -1 otherwise
352 */
353
354#if __STDC__
355int
356ftime_start(void)
357#else
358int
359ftime_start()
360#endif
361{
362	char *pt;
363
364	if (ftab != NULL)
365		return(0);
366 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
367                warn(1, "Cannot allocate memory for file time table");
368                return(-1);
369        }
370
371	/*
372	 * get random name and create temporary scratch file, unlink name
373	 * so it will get removed on exit
374	 */
375	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
376		return(-1);
377	(void)unlink(pt);
378
379	if ((ffd = open(pt, O_RDWR | O_CREAT,  S_IRWXU)) < 0) {
380		syswarn(1, errno, "Unable to open temporary file: %s", pt);
381		return(-1);
382	}
383
384	(void)unlink(pt);
385	return(0);
386}
387
388/*
389 * chk_ftime()
390 *	looks up entry in file time hash table. If not found, the file is
391 *	added to the hash table and the file named stored in the scratch file.
392 *	If a file with the same name is found, the file times are compared and
393 *	the most recent file time is retained. If the new file was younger (or
394 *	was not in the database) the new file is selected for storage.
395 * Return:
396 *	0 if file should be added to the archive, 1 if it should be skipped,
397 *	-1 on error
398 */
399
400#if __STDC__
401int
402chk_ftime(register ARCHD *arcn)
403#else
404int
405chk_ftime(arcn)
406	register ARCHD *arcn;
407#endif
408{
409	register FTM *pt;
410	register int namelen;
411	register u_int indx;
412	char ckname[PAXPATHLEN+1];
413
414	/*
415	 * no info, go ahead and add to archive
416	 */
417	if (ftab == NULL)
418		return(0);
419
420	/*
421	 * hash the pathname and look up in table
422	 */
423	namelen = arcn->nlen;
424	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
425	if ((pt = ftab[indx]) != NULL) {
426		/*
427		 * the hash chain is not empty, walk down looking for match
428		 * only read up the path names if the lengths match, speeds
429		 * up the search a lot
430		 */
431		while (pt != NULL) {
432			if (pt->namelen == namelen) {
433				/*
434				 * potential match, have to read the name
435				 * from the scratch file.
436				 */
437				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
438					syswarn(1, errno,
439					    "Failed ftime table seek");
440					return(-1);
441				}
442				if (read(ffd, ckname, namelen) != namelen) {
443					syswarn(1, errno,
444					    "Failed ftime table read");
445					return(-1);
446				}
447
448				/*
449				 * if the names match, we are done
450				 */
451				if (!strncmp(ckname, arcn->name, namelen))
452					break;
453			}
454
455			/*
456			 * try the next entry on the chain
457			 */
458			pt = pt->fow;
459		}
460
461		if (pt != NULL) {
462			/*
463			 * found the file, compare the times, save the newer
464			 */
465			if (arcn->sb.st_mtime > pt->mtime) {
466				/*
467				 * file is newer
468				 */
469				pt->mtime = arcn->sb.st_mtime;
470				return(0);
471			}
472			/*
473			 * file is older
474			 */
475			return(1);
476		}
477	}
478
479	/*
480	 * not in table, add it
481	 */
482	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
483		/*
484		 * add the name at the end of the scratch file, saving the
485		 * offset. add the file to the head of the hash chain
486		 */
487		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
488			if (write(ffd, arcn->name, namelen) == namelen) {
489				pt->mtime = arcn->sb.st_mtime;
490				pt->namelen = namelen;
491				pt->fow = ftab[indx];
492				ftab[indx] = pt;
493				return(0);
494			}
495			syswarn(1, errno, "Failed write to file time table");
496		} else
497			syswarn(1, errno, "Failed seek on file time table");
498	} else
499		warn(1, "File time table ran out of memory");
500
501	if (pt != NULL)
502		(void)free((char *)pt);
503	return(-1);
504}
505
506/*
507 * Interactive rename table routines
508 *
509 * The interactive rename table keeps track of the new names that the user
510 * assignes to files from tty input. Since this map is unique for each file
511 * we must store it in case there is a reference to the file later in archive
512 * (a link). Otherwise we will be unable to find the file we know was
513 * extracted. The remapping of these files is stored in a memory based hash
514 * table (it is assumed since input must come from /dev/tty, it is unlikely to
515 * be a very large table).
516 */
517
518/*
519 * name_start()
520 *	create the interactive rename table
521 * Return:
522 *	0 if successful, -1 otherwise
523 */
524
525#if __STDC__
526int
527name_start(void)
528#else
529int
530name_start()
531#endif
532{
533	if (ntab != NULL)
534		return(0);
535 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
536                warn(1, "Cannot allocate memory for interactive rename table");
537                return(-1);
538        }
539	return(0);
540}
541
542/*
543 * add_name()
544 *	add the new name to old name mapping just created by the user.
545 *	If an old name mapping is found (there may be duplicate names on an
546 *	archive) only the most recent is kept.
547 * Return:
548 *	0 if added, -1 otherwise
549 */
550
551#if __STDC__
552int
553add_name(register char *oname, int onamelen, char *nname)
554#else
555int
556add_name(oname, onamelen, nname)
557	register char *oname;
558	int onamelen;
559	char *nname;
560#endif
561{
562	register NAMT *pt;
563	register u_int indx;
564
565	if (ntab == NULL) {
566		/*
567		 * should never happen
568		 */
569		warn(0, "No interactive rename table, links may fail\n");
570		return(0);
571	}
572
573	/*
574	 * look to see if we have already mapped this file, if so we
575	 * will update it
576	 */
577	indx = st_hash(oname, onamelen, N_TAB_SZ);
578	if ((pt = ntab[indx]) != NULL) {
579		/*
580		 * look down the has chain for the file
581		 */
582		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
583			pt = pt->fow;
584
585		if (pt != NULL) {
586			/*
587			 * found an old mapping, replace it with the new one
588			 * the user just input (if it is different)
589			 */
590			if (strcmp(nname, pt->nname) == 0)
591				return(0);
592
593			(void)free((char *)pt->nname);
594			if ((pt->nname = strdup(nname)) == NULL) {
595				warn(1, "Cannot update rename table");
596				return(-1);
597			}
598			return(0);
599		}
600	}
601
602	/*
603	 * this is a new mapping, add it to the table
604	 */
605	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
606		if ((pt->oname = strdup(oname)) != NULL) {
607			if ((pt->nname = strdup(nname)) != NULL) {
608				pt->fow = ntab[indx];
609				ntab[indx] = pt;
610				return(0);
611			}
612			(void)free((char *)pt->oname);
613		}
614		(void)free((char *)pt);
615	}
616	warn(1, "Interactive rename table out of memory");
617	return(-1);
618}
619
620/*
621 * sub_name()
622 *	look up a link name to see if it points at a file that has been
623 *	remapped by the user. If found, the link is adjusted to contain the
624 *	new name (oname is the link to name)
625 */
626
627#if __STDC__
628void
629sub_name(register char *oname, int *onamelen)
630#else
631void
632sub_name(oname, onamelen)
633	register char *oname;
634	int *onamelen;
635#endif
636{
637	register NAMT *pt;
638	register u_int indx;
639
640	if (ntab == NULL)
641		return;
642	/*
643	 * look the name up in the hash table
644	 */
645	indx = st_hash(oname, *onamelen, N_TAB_SZ);
646	if ((pt = ntab[indx]) == NULL)
647		return;
648
649	while (pt != NULL) {
650		/*
651		 * walk down the hash cahin looking for a match
652		 */
653		if (strcmp(oname, pt->oname) == 0) {
654			/*
655			 * found it, replace it with the new name
656			 * and return (we know that oname has enough space)
657			 */
658			*onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1);
659			return;
660		}
661		pt = pt->fow;
662	}
663
664	/*
665	 * no match, just return
666	 */
667	return;
668}
669
670/*
671 * device/inode mapping table routines
672 * (used with formats that store device and inodes fields)
673 *
674 * device/inode mapping tables remap the device field in a archive header. The
675 * device/inode fields are used to determine when files are hard links to each
676 * other. However these values have very little meaning outside of that. This
677 * database is used to solve one of two different problems.
678 *
679 * 1) when files are appended to an archive, while the new files may have hard
680 * links to each other, you cannot determine if they have hard links to any
681 * file already stored on the archive from a prior run of pax. We must assume
682 * that these inode/device pairs are unique only within a SINGLE run of pax
683 * (which adds a set of files to an archive). So we have to make sure the
684 * inode/dev pairs we add each time are always unique. We do this by observing
685 * while the inode field is very dense, the use of the dev field is fairly
686 * sparse. Within each run of pax, we remap any device number of a new archive
687 * member that has a device number used in a prior run and already stored in a
688 * file on the archive. During the read phase of the append, we store the
689 * device numbers used and mark them to not be used by any file during the
690 * write phase. If during write we go to use one of those old device numbers,
691 * we remap it to a new value.
692 *
693 * 2) Often the fields in the archive header used to store these values are
694 * too small to store the entire value. The result is an inode or device value
695 * which can be truncated. This really can foul up an archive. With truncation
696 * we end up creating links between files that are really not links (after
697 * truncation the inodes are the same value). We address that by detecting
698 * truncation and forcing a remap of the device field to split truncated
699 * inodes away from each other. Each truncation creates a pattern of bits that
700 * are removed. We use this pattern of truncated bits to partition the inodes
701 * on a single device to many different devices (each one represented by the
702 * truncated bit pattern). All inodes on the same device that have the same
703 * truncation pattern are mapped to the same new device. Two inodes that
704 * truncate to the same value clearly will always have different truncation
705 * bit patterns, so they will be split from away each other. When we spot
706 * device truncation we remap the device number to a non truncated value.
707 * (for more info see table.h for the data structures involved).
708 */
709
710/*
711 * dev_start()
712 *	create the device mapping table
713 * Return:
714 *	0 if successful, -1 otherwise
715 */
716
717#if __STDC__
718int
719dev_start(void)
720#else
721int
722dev_start()
723#endif
724{
725	if (dtab != NULL)
726		return(0);
727 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
728                warn(1, "Cannot allocate memory for device mapping table");
729                return(-1);
730        }
731	return(0);
732}
733
734/*
735 * add_dev()
736 *	add a device number to the table. this will force the device to be
737 *	remapped to a new value if it be used during a write phase. This
738 *	function is called during the read phase of an append to prohibit the
739 *	use of any device number already in the archive.
740 * Return:
741 *	0 if added ok, -1 otherwise
742 */
743
744#if __STDC__
745int
746add_dev(register ARCHD *arcn)
747#else
748int
749add_dev(arcn)
750	register ARCHD *arcn;
751#endif
752{
753	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
754		return(-1);
755	return(0);
756}
757
758/*
759 * chk_dev()
760 *	check for a device value in the device table. If not found and the add
761 *	flag is set, it is added. This does NOT assign any mapping values, just
762 *	adds the device number as one that need to be remapped. If this device
763 *	is alread mapped, just return with a pointer to that entry.
764 * Return:
765 *	pointer to the entry for this device in the device map table. Null
766 *	if the add flag is not set and the device is not in the table (it is
767 *	not been seen yet). If add is set and the device cannot be added, null
768 *	is returned (indicates an error).
769 */
770
771#if __STDC__
772static DEVT *
773chk_dev(dev_t dev, int add)
774#else
775static DEVT *
776chk_dev(dev, add)
777	dev_t dev;
778	int add;
779#endif
780{
781	register DEVT *pt;
782	register u_int indx;
783
784	if (dtab == NULL)
785		return(NULL);
786	/*
787	 * look to see if this device is already in the table
788	 */
789	indx = ((unsigned)dev) % D_TAB_SZ;
790	if ((pt = dtab[indx]) != NULL) {
791		while ((pt != NULL) && (pt->dev != dev))
792			pt = pt->fow;
793
794		/*
795		 * found it, return a pointer to it
796		 */
797		if (pt != NULL)
798			return(pt);
799	}
800
801	/*
802	 * not in table, we add it only if told to as this may just be a check
803	 * to see if a device number is being used.
804	 */
805	if (add == 0)
806		return(NULL);
807
808	/*
809	 * allocate a node for this device and add it to the front of the hash
810	 * chain. Note we do not assign remaps values here, so the pt->list
811	 * list must be NULL.
812	 */
813	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
814		warn(1, "Device map table out of memory");
815		return(NULL);
816	}
817	pt->dev = dev;
818	pt->list = NULL;
819	pt->fow = dtab[indx];
820	dtab[indx] = pt;
821	return(pt);
822}
823/*
824 * map_dev()
825 *	given an inode and device storage mask (the mask has a 1 for each bit
826 *	the archive format is able to store in a header), we check for inode
827 *	and device truncation and remap the device as required. Device mapping
828 *	can also occur when during the read phase of append a device number was
829 *	seen (and was marked as do not use during the write phase). WE ASSUME
830 *	that unsigned longs are the same size or bigger than the fields used
831 *	for ino_t and dev_t. If not the types will have to be changed.
832 * Return:
833 *	0 if all ok, -1 otherwise.
834 */
835
836#if __STDC__
837int
838map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask)
839#else
840int
841map_dev(arcn, dev_mask, ino_mask)
842	register ARCHD *arcn;
843	u_long dev_mask;
844	u_long ino_mask;
845#endif
846{
847	register DEVT *pt;
848	register DLIST *dpt;
849	static dev_t lastdev = 0;	/* next device number to try */
850	int trc_ino = 0;
851	int trc_dev = 0;
852	ino_t trunc_bits = 0;
853	ino_t nino;
854
855	if (dtab == NULL)
856		return(0);
857	/*
858	 * check for device and inode truncation, and extract the truncated
859	 * bit pattern.
860	 */
861	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
862		++trc_dev;
863	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
864		++trc_ino;
865		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
866	}
867
868	/*
869	 * see if this device is already being mapped, look up the device
870	 * then find the truncation bit pattern which applies
871	 */
872	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
873		/*
874		 * this device is already marked to be remapped
875		 */
876		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
877			if (dpt->trunc_bits == trunc_bits)
878				break;
879
880		if (dpt != NULL) {
881			/*
882			 * we are being remapped for this device and pattern
883			 * change the device number to be stored and return
884			 */
885			arcn->sb.st_dev = dpt->dev;
886			arcn->sb.st_ino = nino;
887			return(0);
888		}
889	} else {
890		/*
891		 * this device is not being remapped YET. if we do not have any
892		 * form of truncation, we do not need a remap
893		 */
894		if (!trc_ino && !trc_dev)
895			return(0);
896
897		/*
898		 * we have truncation, have to add this as a device to remap
899		 */
900		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
901			goto bad;
902
903		/*
904		 * if we just have a truncated inode, we have to make sure that
905		 * all future inodes that do not truncate (they have the
906		 * truncation pattern of all 0's) continue to map to the same
907		 * device number. We probably have already written inodes with
908		 * this device number to the archive with the truncation
909		 * pattern of all 0's. So we add the mapping for all 0's to the
910		 * same device number.
911		 */
912		if (!trc_dev && (trunc_bits != 0)) {
913			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
914				goto bad;
915			dpt->trunc_bits = 0;
916			dpt->dev = arcn->sb.st_dev;
917			dpt->fow = pt->list;
918			pt->list = dpt;
919		}
920	}
921
922	/*
923	 * look for a device number not being used. We must watch for wrap
924	 * around on lastdev (so we do not get stuck looking forever!)
925	 */
926	while (++lastdev > 0) {
927		if (chk_dev(lastdev, 0) != NULL)
928			continue;
929		/*
930		 * found an unused value. If we have reached truncation point
931		 * for this format we are hosed, so we give up. Otherwise we
932		 * mark it as being used.
933		 */
934		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
935		    (chk_dev(lastdev, 1) == NULL))
936			goto bad;
937		break;
938	}
939
940	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
941		goto bad;
942
943	/*
944	 * got a new device number, store it under this truncation pattern.
945	 * change the device number this file is being stored with.
946	 */
947	dpt->trunc_bits = trunc_bits;
948	dpt->dev = lastdev;
949	dpt->fow = pt->list;
950	pt->list = dpt;
951	arcn->sb.st_dev = lastdev;
952	arcn->sb.st_ino = nino;
953	return(0);
954
955    bad:
956	warn(1, "Unable to fix truncated inode/device field when storing %s",
957	    arcn->name);
958	warn(0, "Archive may create improper hard links when extracted");
959	return(0);
960}
961
962/*
963 * directory access/mod time reset table routines (for directories READ by pax)
964 *
965 * The pax -t flag requires that access times of archive files to be the same
966 * before being read by pax. For regular files, access time is restored after
967 * the file has been copied. This database provides the same functionality for
968 * directories read during file tree traversal. Restoring directory access time
969 * is more complex than files since directories may be read several times until
970 * all the descendants in their subtree are visited by fts. Directory access
971 * and modification times are stored during the fts pre-order visit (done
972 * before any descendants in the subtree is visited) and restored after the
973 * fts post-order visit (after all the descendants have been visited). In the
974 * case of premature exit from a subtree (like from the effects of -n), any
975 * directory entries left in this database are reset during final cleanup
976 * operations of pax. Entries are hashed by inode number for fast lookup.
977 */
978
979/*
980 * atdir_start()
981 *	create the directory access time database for directories READ by pax.
982 * Return:
983 *	0 is created ok, -1 otherwise.
984 */
985
986#if __STDC__
987int
988atdir_start(void)
989#else
990int
991atdir_start()
992#endif
993{
994	if (atab != NULL)
995		return(0);
996 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
997                warn(1,"Cannot allocate space for directory access time table");
998                return(-1);
999        }
1000	return(0);
1001}
1002
1003
1004/*
1005 * atdir_end()
1006 *	walk through the directory access time table and reset the access time
1007 *	of any directory who still has an entry left in the database. These
1008 *	entries are for directories READ by pax
1009 */
1010
1011#if __STDC__
1012void
1013atdir_end(void)
1014#else
1015void
1016atdir_end()
1017#endif
1018{
1019	register ATDIR *pt;
1020	register int i;
1021
1022	if (atab == NULL)
1023		return;
1024	/*
1025	 * for each non-empty hash table entry reset all the directories
1026	 * chained there.
1027	 */
1028	for (i = 0; i < A_TAB_SZ; ++i) {
1029		if ((pt = atab[i]) == NULL)
1030			continue;
1031		/*
1032		 * remember to force the times, set_ftime() looks at pmtime
1033		 * and patime, which only applies to things CREATED by pax,
1034		 * not read by pax. Read time reset is controlled by -t.
1035		 */
1036		for (; pt != NULL; pt = pt->fow)
1037			set_ftime(pt->name, pt->mtime, pt->atime, 1);
1038	}
1039}
1040
1041/*
1042 * add_atdir()
1043 *	add a directory to the directory access time table. Table is hashed
1044 *	and chained by inode number. This is for directories READ by pax
1045 */
1046
1047#if __STDC__
1048void
1049add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
1050#else
1051void
1052add_atdir(fname, dev, ino, mtime, atime)
1053	char *fname;
1054	dev_t dev;
1055	ino_t ino;
1056	time_t mtime;
1057	time_t atime;
1058#endif
1059{
1060	register ATDIR *pt;
1061	register u_int indx;
1062
1063	if (atab == NULL)
1064		return;
1065
1066	/*
1067	 * make sure this directory is not already in the table, if so just
1068	 * return (the older entry always has the correct time). The only
1069	 * way this will happen is when the same subtree can be traversed by
1070	 * different args to pax and the -n option is aborting fts out of a
1071	 * subtree before all the post-order visits have been made).
1072	 */
1073	indx = ((unsigned)ino) % A_TAB_SZ;
1074	if ((pt = atab[indx]) != NULL) {
1075		while (pt != NULL) {
1076			if ((pt->ino == ino) && (pt->dev == dev))
1077				break;
1078			pt = pt->fow;
1079		}
1080
1081		/*
1082		 * oops, already there. Leave it alone.
1083		 */
1084		if (pt != NULL)
1085			return;
1086	}
1087
1088	/*
1089	 * add it to the front of the hash chain
1090	 */
1091	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
1092		if ((pt->name = strdup(fname)) != NULL) {
1093			pt->dev = dev;
1094			pt->ino = ino;
1095			pt->mtime = mtime;
1096			pt->atime = atime;
1097			pt->fow = atab[indx];
1098			atab[indx] = pt;
1099			return;
1100		}
1101		(void)free((char *)pt);
1102	}
1103
1104	warn(1, "Directory access time reset table ran out of memory");
1105	return;
1106}
1107
1108/*
1109 * get_atdir()
1110 *	look up a directory by inode and device number to obtain the access
1111 *	and modification time you want to set to. If found, the modification
1112 *	and access time parameters are set and the entry is removed from the
1113 *	table (as it is no longer needed). These are for directories READ by
1114 *	pax
1115 * Return:
1116 *	0 if found, -1 if not found.
1117 */
1118
1119#if __STDC__
1120int
1121get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1122#else
1123int
1124get_atdir(dev, ino, mtime, atime)
1125	dev_t dev;
1126	ino_t ino;
1127	time_t *mtime;
1128	time_t *atime;
1129#endif
1130{
1131	register ATDIR *pt;
1132	register ATDIR **ppt;
1133	register u_int indx;
1134
1135	if (atab == NULL)
1136		return(-1);
1137	/*
1138	 * hash by inode and search the chain for an inode and device match
1139	 */
1140	indx = ((unsigned)ino) % A_TAB_SZ;
1141	if ((pt = atab[indx]) == NULL)
1142		return(-1);
1143
1144	ppt = &(atab[indx]);
1145	while (pt != NULL) {
1146		if ((pt->ino == ino) && (pt->dev == dev))
1147			break;
1148		/*
1149		 * no match, go to next one
1150		 */
1151		ppt = &(pt->fow);
1152		pt = pt->fow;
1153	}
1154
1155	/*
1156	 * return if we did not find it.
1157	 */
1158	if (pt == NULL)
1159		return(-1);
1160
1161	/*
1162	 * found it. return the times and remove the entry from the table.
1163	 */
1164	*ppt = pt->fow;
1165	*mtime = pt->mtime;
1166	*atime = pt->atime;
1167	(void)free((char *)pt->name);
1168	(void)free((char *)pt);
1169	return(0);
1170}
1171
1172/*
1173 * directory access mode and time storage routines (for directories CREATED
1174 * by pax).
1175 *
1176 * Pax requires that extracted directories, by default, have their access/mod
1177 * times and permissions set to the values specified in the archive. During the
1178 * actions of extracting (and creating the destination subtree during -rw copy)
1179 * directories extracted may be modified after being created. Even worse is
1180 * that these directories may have been created with file permissions which
1181 * prohibits any descendants of these directories from being extracted. When
1182 * directories are created by pax, access rights may be added to permit the
1183 * creation of files in their subtree. Every time pax creates a directory, the
1184 * times and file permissions specified by the archive are stored. After all
1185 * files have been extracted (or copied), these directories have their times
1186 * and file modes reset to the stored values. The directory info is restored in
1187 * reverse order as entries were added to the data file from root to leaf. To
1188 * restore atime properly, we must go backwards. The data file consists of
1189 * records with two parts, the file name followed by a DIRDATA trailer. The
1190 * fixed sized trailer contains the size of the name plus the off_t location in
1191 * the file. To restore we work backwards through the file reading the trailer
1192 * then the file name.
1193 */
1194
1195/*
1196 * dir_start()
1197 *	set up the directory time and file mode storage for directories CREATED
1198 *	by pax.
1199 * Return:
1200 *	0 if ok, -1 otherwise
1201 */
1202
1203#if __STDC__
1204int
1205dir_start(void)
1206#else
1207int
1208dir_start()
1209#endif
1210{
1211	char *pt;
1212
1213	if (dirfd != -1)
1214		return(0);
1215	if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL)
1216		return(-1);
1217
1218	/*
1219	 * unlink the file so it goes away at termination by itself
1220	 */
1221	(void)unlink(pt);
1222	if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) {
1223		(void)unlink(pt);
1224		return(0);
1225	}
1226	warn(1, "Unable to create temporary file for directory times: %s", pt);
1227	return(-1);
1228}
1229
1230/*
1231 * add_dir()
1232 *	add the mode and times for a newly CREATED directory
1233 *	name is name of the directory, psb the stat buffer with the data in it,
1234 *	frc_mode is a flag that says whether to force the setting of the mode
1235 *	(ignoring the user set values for preserving file mode). Frc_mode is
1236 *	for the case where we created a file and found that the resulting
1237 *	directory was not writeable and the user asked for file modes to NOT
1238 *	be preserved. (we have to preserve what was created by default, so we
1239 *	have to force the setting at the end. this is stated explicitly in the
1240 *	pax spec)
1241 */
1242
1243#if __STDC__
1244void
1245add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1246#else
1247void
1248add_dir(name, nlen, psb, frc_mode)
1249	char *name;
1250	int nlen;
1251	struct stat *psb;
1252	int frc_mode;
1253#endif
1254{
1255	DIRDATA dblk;
1256
1257	if (dirfd < 0)
1258		return;
1259
1260	/*
1261	 * get current position (where file name will start) so we can store it
1262	 * in the trailer
1263	 */
1264	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1265		warn(1,"Unable to store mode and times for directory: %s",name);
1266		return;
1267	}
1268
1269	/*
1270	 * write the file name followed by the trailer
1271	 */
1272	dblk.nlen = nlen + 1;
1273	dblk.mode = psb->st_mode & 0xffff;
1274	dblk.mtime = psb->st_mtime;
1275	dblk.atime = psb->st_atime;
1276	dblk.frc_mode = frc_mode;
1277	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1278	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1279		++dircnt;
1280		return;
1281	}
1282
1283	warn(1,"Unable to store mode and times for created directory: %s",name);
1284	return;
1285}
1286
1287/*
1288 * proc_dir()
1289 *	process all file modes and times stored for directories CREATED
1290 *	by pax
1291 */
1292
1293#if __STDC__
1294void
1295proc_dir(void)
1296#else
1297void
1298proc_dir()
1299#endif
1300{
1301	char name[PAXPATHLEN+1];
1302	DIRDATA dblk;
1303	u_long cnt;
1304
1305	if (dirfd < 0)
1306		return;
1307	/*
1308	 * read backwards through the file and process each directory
1309	 */
1310	for (cnt = 0; cnt < dircnt; ++cnt) {
1311		/*
1312		 * read the trailer, then the file name, if this fails
1313		 * just give up.
1314		 */
1315		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1316			break;
1317		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1318			break;
1319		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1320			break;
1321		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1322			break;
1323		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1324			break;
1325
1326		/*
1327		 * frc_mode set, make sure we set the file modes even if
1328		 * the user didn't ask for it (see file_subs.c for more info)
1329		 */
1330		if (pmode || dblk.frc_mode)
1331			set_pmode(name, dblk.mode);
1332		if (patime || pmtime)
1333			set_ftime(name, dblk.mtime, dblk.atime, 0);
1334	}
1335
1336	(void)close(dirfd);
1337	dirfd = -1;
1338	if (cnt != dircnt)
1339		warn(1,"Unable to set mode and times for created directories");
1340	return;
1341}
1342
1343/*
1344 * database independent routines
1345 */
1346
1347/*
1348 * st_hash()
1349 *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1350 *	end of file, as this provides far better distribution than any other
1351 *	part of the name. For performance reasons we only care about the last
1352 *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1353 *	name). Was tested on 500,000 name file tree traversal from the root
1354 *	and gave almost a perfectly uniform distribution of keys when used with
1355 *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1356 *	chars at a time and pads with 0 for last addition.
1357 * Return:
1358 *	the hash value of the string MOD (%) the table size.
1359 */
1360
1361#if __STDC__
1362u_int
1363st_hash(char *name, int len, int tabsz)
1364#else
1365u_int
1366st_hash(name, len, tabsz)
1367	char *name;
1368	int len;
1369	int tabsz;
1370#endif
1371{
1372	register char *pt;
1373	register char *dest;
1374	register char *end;
1375	register int i;
1376	register u_int key = 0;
1377	register int steps;
1378	register int res;
1379	u_int val;
1380
1381	/*
1382	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1383	 * time here (remember these are pathnames, the tail is what will
1384	 * spread out the keys)
1385	 */
1386	if (len > MAXKEYLEN) {
1387                pt = &(name[len - MAXKEYLEN]);
1388		len = MAXKEYLEN;
1389	} else
1390		pt = name;
1391
1392	/*
1393	 * calculate the number of u_int size steps in the string and if
1394	 * there is a runt to deal with
1395	 */
1396	steps = len/sizeof(u_int);
1397	res = len % sizeof(u_int);
1398
1399	/*
1400	 * add up the value of the string in unsigned integer sized pieces
1401	 * too bad we cannot have unsigned int aligned strings, then we
1402	 * could avoid the expensive copy.
1403	 */
1404	for (i = 0; i < steps; ++i) {
1405		end = pt + sizeof(u_int);
1406		dest = (char *)&val;
1407		while (pt < end)
1408			*dest++ = *pt++;
1409		key += val;
1410	}
1411
1412	/*
1413	 * add in the runt padded with zero to the right
1414	 */
1415	if (res) {
1416		val = 0;
1417		end = pt + res;
1418		dest = (char *)&val;
1419		while (pt < end)
1420			*dest++ = *pt++;
1421		key += val;
1422	}
1423
1424	/*
1425	 * return the result mod the table size
1426	 */
1427	return(key % tabsz);
1428}
1429