vm_reserv.c revision 217916
1/*-
2 * Copyright (c) 2002-2006 Rice University
3 * Copyright (c) 2007-2008 Alan L. Cox <alc@cs.rice.edu>
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Alan L. Cox,
7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 *	Superpage reservation management module
34 */
35
36#include <sys/cdefs.h>
37__FBSDID("$FreeBSD: head/sys/vm/vm_reserv.c 217916 2011-01-27 00:34:12Z mdf $");
38
39#include "opt_vm.h"
40
41#include <sys/param.h>
42#include <sys/kernel.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mutex.h>
46#include <sys/queue.h>
47#include <sys/sbuf.h>
48#include <sys/sysctl.h>
49#include <sys/systm.h>
50
51#include <vm/vm.h>
52#include <vm/vm_param.h>
53#include <vm/vm_object.h>
54#include <vm/vm_page.h>
55#include <vm/vm_phys.h>
56#include <vm/vm_reserv.h>
57
58/*
59 * The reservation system supports the speculative allocation of large physical
60 * pages ("superpages").  Speculative allocation enables the fully-automatic
61 * utilization of superpages by the virtual memory system.  In other words, no
62 * programmatic directives are required to use superpages.
63 */
64
65#if VM_NRESERVLEVEL > 0
66
67/*
68 * The number of small pages that are contained in a level 0 reservation
69 */
70#define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
71
72/*
73 * The number of bits by which a physical address is shifted to obtain the
74 * reservation number
75 */
76#define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
77
78/*
79 * The size of a level 0 reservation in bytes
80 */
81#define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
82
83/*
84 * Computes the index of the small page underlying the given (object, pindex)
85 * within the reservation's array of small pages.
86 */
87#define	VM_RESERV_INDEX(object, pindex)	\
88    (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
89
90/*
91 * The reservation structure
92 *
93 * A reservation structure is constructed whenever a large physical page is
94 * speculatively allocated to an object.  The reservation provides the small
95 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
96 * within that object.  The reservation's "popcnt" tracks the number of these
97 * small physical pages that are in use at any given time.  When and if the
98 * reservation is not fully utilized, it appears in the queue of partially-
99 * populated reservations.  The reservation always appears on the containing
100 * object's list of reservations.
101 *
102 * A partially-populated reservation can be broken and reclaimed at any time.
103 */
104struct vm_reserv {
105	TAILQ_ENTRY(vm_reserv) partpopq;
106	LIST_ENTRY(vm_reserv) objq;
107	vm_object_t	object;			/* containing object */
108	vm_pindex_t	pindex;			/* offset within object */
109	vm_page_t	pages;			/* first page of a superpage */
110	int		popcnt;			/* # of pages in use */
111	char		inpartpopq;
112};
113
114/*
115 * The reservation array
116 *
117 * This array is analoguous in function to vm_page_array.  It differs in the
118 * respect that it may contain a greater number of useful reservation
119 * structures than there are (physical) superpages.  These "invalid"
120 * reservation structures exist to trade-off space for time in the
121 * implementation of vm_reserv_from_page().  Invalid reservation structures are
122 * distinguishable from "valid" reservation structures by inspecting the
123 * reservation's "pages" field.  Invalid reservation structures have a NULL
124 * "pages" field.
125 *
126 * vm_reserv_from_page() maps a small (physical) page to an element of this
127 * array by computing a physical reservation number from the page's physical
128 * address.  The physical reservation number is used as the array index.
129 *
130 * An "active" reservation is a valid reservation structure that has a non-NULL
131 * "object" field and a non-zero "popcnt" field.  In other words, every active
132 * reservation belongs to a particular object.  Moreover, every active
133 * reservation has an entry in the containing object's list of reservations.
134 */
135static vm_reserv_t vm_reserv_array;
136
137/*
138 * The partially-populated reservation queue
139 *
140 * This queue enables the fast recovery of an unused cached or free small page
141 * from a partially-populated reservation.  The reservation at the head of
142 * this queue is the least-recently-changed, partially-populated reservation.
143 *
144 * Access to this queue is synchronized by the free page queue lock.
145 */
146static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop =
147			    TAILQ_HEAD_INITIALIZER(vm_rvq_partpop);
148
149static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
150
151static long vm_reserv_broken;
152SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
153    &vm_reserv_broken, 0, "Cumulative number of broken reservations");
154
155static long vm_reserv_freed;
156SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
157    &vm_reserv_freed, 0, "Cumulative number of freed reservations");
158
159static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
160
161SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
162    sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues");
163
164static long vm_reserv_reclaimed;
165SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
166    &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations");
167
168static void		vm_reserv_depopulate(vm_reserv_t rv);
169static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
170static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
171			    vm_pindex_t pindex);
172static void		vm_reserv_populate(vm_reserv_t rv);
173static void		vm_reserv_reclaim(vm_reserv_t rv);
174
175/*
176 * Describes the current state of the partially-populated reservation queue.
177 */
178static int
179sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
180{
181	struct sbuf sbuf;
182	vm_reserv_t rv;
183	int counter, error, level, unused_pages;
184
185	error = sysctl_wire_old_buffer(req, 0);
186	if (error != 0)
187		return (error);
188	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
189	sbuf_printf(&sbuf, "\nLEVEL     SIZE  NUMBER\n\n");
190	for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
191		counter = 0;
192		unused_pages = 0;
193		mtx_lock(&vm_page_queue_free_mtx);
194		TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) {
195			counter++;
196			unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
197		}
198		mtx_unlock(&vm_page_queue_free_mtx);
199		sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level,
200		    unused_pages * ((int)PAGE_SIZE / 1024), counter);
201	}
202	error = sbuf_finish(&sbuf);
203	sbuf_delete(&sbuf);
204	return (error);
205}
206
207/*
208 * Reduces the given reservation's population count.  If the population count
209 * becomes zero, the reservation is destroyed.  Additionally, moves the
210 * reservation to the tail of the partially-populated reservations queue if the
211 * population count is non-zero.
212 *
213 * The free page queue lock must be held.
214 */
215static void
216vm_reserv_depopulate(vm_reserv_t rv)
217{
218
219	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
220	KASSERT(rv->object != NULL,
221	    ("vm_reserv_depopulate: reserv %p is free", rv));
222	KASSERT(rv->popcnt > 0,
223	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
224	if (rv->inpartpopq) {
225		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
226		rv->inpartpopq = FALSE;
227	}
228	rv->popcnt--;
229	if (rv->popcnt == 0) {
230		LIST_REMOVE(rv, objq);
231		rv->object = NULL;
232		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
233		vm_reserv_freed++;
234	} else {
235		rv->inpartpopq = TRUE;
236		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
237	}
238}
239
240/*
241 * Returns the reservation to which the given page might belong.
242 */
243static __inline vm_reserv_t
244vm_reserv_from_page(vm_page_t m)
245{
246
247	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
248}
249
250/*
251 * Returns TRUE if the given reservation contains the given page index and
252 * FALSE otherwise.
253 */
254static __inline boolean_t
255vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
256{
257
258	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
259}
260
261/*
262 * Increases the given reservation's population count.  Moves the reservation
263 * to the tail of the partially-populated reservation queue.
264 *
265 * The free page queue must be locked.
266 */
267static void
268vm_reserv_populate(vm_reserv_t rv)
269{
270
271	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
272	KASSERT(rv->object != NULL,
273	    ("vm_reserv_populate: reserv %p is free", rv));
274	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
275	    ("vm_reserv_populate: reserv %p is already full", rv));
276	if (rv->inpartpopq) {
277		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
278		rv->inpartpopq = FALSE;
279	}
280	rv->popcnt++;
281	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
282		rv->inpartpopq = TRUE;
283		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
284	}
285}
286
287/*
288 * Allocates a page from an existing or newly-created reservation.
289 *
290 * The object and free page queue must be locked.
291 */
292vm_page_t
293vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex)
294{
295	vm_page_t m, mpred, msucc;
296	vm_pindex_t first, leftcap, rightcap;
297	vm_reserv_t rv;
298
299	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
300
301	/*
302	 * Is a reservation fundamentally not possible?
303	 */
304	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
305	if (pindex < VM_RESERV_INDEX(object, pindex) ||
306	    pindex >= object->size)
307		return (NULL);
308
309	/*
310	 * Look for an existing reservation.
311	 */
312	msucc = NULL;
313	mpred = object->root;
314	while (mpred != NULL) {
315		KASSERT(mpred->pindex != pindex,
316		    ("vm_reserv_alloc_page: pindex already allocated"));
317		rv = vm_reserv_from_page(mpred);
318		if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) {
319			m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
320			/* Handle vm_page_rename(m, new_object, ...). */
321			if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
322				return (NULL);
323			vm_reserv_populate(rv);
324			return (m);
325		} else if (mpred->pindex < pindex) {
326			if (msucc != NULL ||
327			    (msucc = TAILQ_NEXT(mpred, listq)) == NULL)
328				break;
329			KASSERT(msucc->pindex != pindex,
330			    ("vm_reserv_alloc_page: pindex already allocated"));
331			rv = vm_reserv_from_page(msucc);
332			if (rv->object == object &&
333			    vm_reserv_has_pindex(rv, pindex)) {
334				m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
335				/* Handle vm_page_rename(m, new_object, ...). */
336				if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
337					return (NULL);
338				vm_reserv_populate(rv);
339				return (m);
340			} else if (pindex < msucc->pindex)
341				break;
342		} else if (msucc == NULL) {
343			msucc = mpred;
344			mpred = TAILQ_PREV(msucc, pglist, listq);
345			continue;
346		}
347		msucc = NULL;
348		mpred = object->root = vm_page_splay(pindex, object->root);
349	}
350
351	/*
352	 * Determine the first index to the left that can be used.
353	 */
354	if (mpred == NULL)
355		leftcap = 0;
356	else if ((rv = vm_reserv_from_page(mpred))->object != object)
357		leftcap = mpred->pindex + 1;
358	else
359		leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
360
361	/*
362	 * Determine the first index to the right that cannot be used.
363	 */
364	if (msucc == NULL)
365		rightcap = pindex + VM_LEVEL_0_NPAGES;
366	else if ((rv = vm_reserv_from_page(msucc))->object != object)
367		rightcap = msucc->pindex;
368	else
369		rightcap = rv->pindex;
370
371	/*
372	 * Determine if a reservation fits between the first index to
373	 * the left that can be used and the first index to the right
374	 * that cannot be used.
375	 */
376	first = pindex - VM_RESERV_INDEX(object, pindex);
377	if (first < leftcap || first + VM_LEVEL_0_NPAGES > rightcap)
378		return (NULL);
379
380	/*
381	 * Would a new reservation extend past the end of the given object?
382	 */
383	if (object->size < first + VM_LEVEL_0_NPAGES) {
384		/*
385		 * Don't allocate a new reservation if the object is a vnode or
386		 * backed by another object that is a vnode.
387		 */
388		if (object->type == OBJT_VNODE ||
389		    (object->backing_object != NULL &&
390		    object->backing_object->type == OBJT_VNODE))
391			return (NULL);
392		/* Speculate that the object may grow. */
393	}
394
395	/*
396	 * Allocate a new reservation.
397	 */
398	m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER);
399	if (m != NULL) {
400		rv = vm_reserv_from_page(m);
401		KASSERT(rv->pages == m,
402		    ("vm_reserv_alloc_page: reserv %p's pages is corrupted",
403		    rv));
404		KASSERT(rv->object == NULL,
405		    ("vm_reserv_alloc_page: reserv %p isn't free", rv));
406		LIST_INSERT_HEAD(&object->rvq, rv, objq);
407		rv->object = object;
408		rv->pindex = first;
409		KASSERT(rv->popcnt == 0,
410		    ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted",
411		    rv));
412		KASSERT(!rv->inpartpopq,
413		    ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE",
414		    rv));
415		vm_reserv_populate(rv);
416		m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
417	}
418	return (m);
419}
420
421/*
422 * Breaks all reservations belonging to the given object.
423 */
424void
425vm_reserv_break_all(vm_object_t object)
426{
427	vm_reserv_t rv;
428	int i;
429
430	mtx_lock(&vm_page_queue_free_mtx);
431	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
432		KASSERT(rv->object == object,
433		    ("vm_reserv_break_all: reserv %p is corrupted", rv));
434		if (rv->inpartpopq) {
435			TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
436			rv->inpartpopq = FALSE;
437		}
438		LIST_REMOVE(rv, objq);
439		rv->object = NULL;
440		for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
441			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
442				vm_phys_free_pages(&rv->pages[i], 0);
443			else
444				rv->popcnt--;
445		}
446		KASSERT(rv->popcnt == 0,
447		    ("vm_reserv_break_all: reserv %p's popcnt is corrupted",
448		    rv));
449		vm_reserv_broken++;
450	}
451	mtx_unlock(&vm_page_queue_free_mtx);
452}
453
454/*
455 * Frees the given page if it belongs to a reservation.  Returns TRUE if the
456 * page is freed and FALSE otherwise.
457 *
458 * The free page queue lock must be held.
459 */
460boolean_t
461vm_reserv_free_page(vm_page_t m)
462{
463	vm_reserv_t rv;
464
465	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
466	rv = vm_reserv_from_page(m);
467	if (rv->object != NULL) {
468		vm_reserv_depopulate(rv);
469		return (TRUE);
470	}
471	return (FALSE);
472}
473
474/*
475 * Initializes the reservation management system.  Specifically, initializes
476 * the reservation array.
477 *
478 * Requires that vm_page_array and first_page are initialized!
479 */
480void
481vm_reserv_init(void)
482{
483	vm_paddr_t paddr;
484	int i;
485
486	/*
487	 * Initialize the reservation array.  Specifically, initialize the
488	 * "pages" field for every element that has an underlying superpage.
489	 */
490	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
491		paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE);
492		while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) {
493			vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages =
494			    PHYS_TO_VM_PAGE(paddr);
495			paddr += VM_LEVEL_0_SIZE;
496		}
497	}
498}
499
500/*
501 * Returns a reservation level if the given page belongs to a fully-populated
502 * reservation and -1 otherwise.
503 */
504int
505vm_reserv_level_iffullpop(vm_page_t m)
506{
507	vm_reserv_t rv;
508
509	rv = vm_reserv_from_page(m);
510	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
511}
512
513/*
514 * Prepare for the reactivation of a cached page.
515 *
516 * First, suppose that the given page "m" was allocated individually, i.e., not
517 * as part of a reservation, and cached.  Then, suppose a reservation
518 * containing "m" is allocated by the same object.  Although "m" and the
519 * reservation belong to the same object, "m"'s pindex may not match the
520 * reservation's.
521 *
522 * The free page queue must be locked.
523 */
524boolean_t
525vm_reserv_reactivate_page(vm_page_t m)
526{
527	vm_reserv_t rv;
528	int i, m_index;
529
530	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
531	rv = vm_reserv_from_page(m);
532	if (rv->object == NULL)
533		return (FALSE);
534	KASSERT((m->flags & PG_CACHED) != 0,
535	    ("vm_reserv_uncache_page: page %p is not cached", m));
536	if (m->object == rv->object &&
537	    m->pindex - rv->pindex == VM_RESERV_INDEX(m->object, m->pindex))
538		vm_reserv_populate(rv);
539	else {
540		KASSERT(rv->inpartpopq,
541		    ("vm_reserv_uncache_page: reserv %p's inpartpopq is FALSE",
542		    rv));
543		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
544		rv->inpartpopq = FALSE;
545		LIST_REMOVE(rv, objq);
546		rv->object = NULL;
547		/* Don't vm_phys_free_pages(m, 0). */
548		m_index = m - rv->pages;
549		for (i = 0; i < m_index; i++) {
550			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
551				vm_phys_free_pages(&rv->pages[i], 0);
552			else
553				rv->popcnt--;
554		}
555		for (i++; i < VM_LEVEL_0_NPAGES; i++) {
556			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
557				vm_phys_free_pages(&rv->pages[i], 0);
558			else
559				rv->popcnt--;
560		}
561		KASSERT(rv->popcnt == 0,
562		    ("vm_reserv_uncache_page: reserv %p's popcnt is corrupted",
563		    rv));
564		vm_reserv_broken++;
565	}
566	return (TRUE);
567}
568
569/*
570 * Breaks the given partially-populated reservation, releasing its cached and
571 * free pages to the physical memory allocator.
572 *
573 * The free page queue lock must be held.
574 */
575static void
576vm_reserv_reclaim(vm_reserv_t rv)
577{
578	int i;
579
580	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
581	KASSERT(rv->inpartpopq,
582	    ("vm_reserv_reclaim: reserv %p's inpartpopq is corrupted", rv));
583	TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
584	rv->inpartpopq = FALSE;
585	KASSERT(rv->object != NULL,
586	    ("vm_reserv_reclaim: reserv %p is free", rv));
587	LIST_REMOVE(rv, objq);
588	rv->object = NULL;
589	for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
590		if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
591			vm_phys_free_pages(&rv->pages[i], 0);
592		else
593			rv->popcnt--;
594	}
595	KASSERT(rv->popcnt == 0,
596	    ("vm_reserv_reclaim: reserv %p's popcnt is corrupted", rv));
597	vm_reserv_reclaimed++;
598}
599
600/*
601 * Breaks the reservation at the head of the partially-populated reservation
602 * queue, releasing its cached and free pages to the physical memory
603 * allocator.  Returns TRUE if a reservation is broken and FALSE otherwise.
604 *
605 * The free page queue lock must be held.
606 */
607boolean_t
608vm_reserv_reclaim_inactive(void)
609{
610	vm_reserv_t rv;
611
612	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
613	if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) {
614		vm_reserv_reclaim(rv);
615		return (TRUE);
616	}
617	return (FALSE);
618}
619
620/*
621 * Searches the partially-populated reservation queue for the least recently
622 * active reservation with unused pages, i.e., cached or free, that satisfy the
623 * given request for contiguous physical memory.  If a satisfactory reservation
624 * is found, it is broken.  Returns TRUE if a reservation is broken and FALSE
625 * otherwise.
626 *
627 * The free page queue lock must be held.
628 */
629boolean_t
630vm_reserv_reclaim_contig(vm_paddr_t size, vm_paddr_t low, vm_paddr_t high,
631    unsigned long alignment, unsigned long boundary)
632{
633	vm_paddr_t pa, pa_length;
634	vm_reserv_t rv;
635	int i;
636
637	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
638	if (size > VM_LEVEL_0_SIZE - PAGE_SIZE)
639		return (FALSE);
640	TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) {
641		pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
642		if (pa + PAGE_SIZE - size < low) {
643			/* this entire reservation is too low; go to next */
644			continue;
645		}
646		pa_length = 0;
647		for (i = 0; i < VM_LEVEL_0_NPAGES; i++)
648			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) {
649				pa_length += PAGE_SIZE;
650				if (pa_length == PAGE_SIZE) {
651					pa = VM_PAGE_TO_PHYS(&rv->pages[i]);
652					if (pa + size > high) {
653						/* skip to next reservation */
654						break;
655					} else if (pa < low ||
656					    (pa & (alignment - 1)) != 0 ||
657					    ((pa ^ (pa + size - 1)) &
658					    ~(boundary - 1)) != 0)
659						pa_length = 0;
660				}
661				if (pa_length >= size) {
662					vm_reserv_reclaim(rv);
663					return (TRUE);
664				}
665			} else
666				pa_length = 0;
667	}
668	return (FALSE);
669}
670
671/*
672 * Transfers the reservation underlying the given page to a new object.
673 *
674 * The object must be locked.
675 */
676void
677vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
678    vm_pindex_t old_object_offset)
679{
680	vm_reserv_t rv;
681
682	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
683	rv = vm_reserv_from_page(m);
684	if (rv->object == old_object) {
685		mtx_lock(&vm_page_queue_free_mtx);
686		if (rv->object == old_object) {
687			LIST_REMOVE(rv, objq);
688			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
689			rv->object = new_object;
690			rv->pindex -= old_object_offset;
691		}
692		mtx_unlock(&vm_page_queue_free_mtx);
693	}
694}
695
696/*
697 * Allocates the virtual and physical memory required by the reservation
698 * management system's data structures, in particular, the reservation array.
699 */
700vm_paddr_t
701vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
702{
703	vm_paddr_t new_end;
704	size_t size;
705
706	/*
707	 * Calculate the size (in bytes) of the reservation array.  Round up
708	 * from "high_water" because every small page is mapped to an element
709	 * in the reservation array based on its physical address.  Thus, the
710	 * number of elements in the reservation array can be greater than the
711	 * number of superpages.
712	 */
713	size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
714
715	/*
716	 * Allocate and map the physical memory for the reservation array.  The
717	 * next available virtual address is returned by reference.
718	 */
719	new_end = end - round_page(size);
720	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
721	    VM_PROT_READ | VM_PROT_WRITE);
722	bzero(vm_reserv_array, size);
723
724	/*
725	 * Return the next available physical address.
726	 */
727	return (new_end);
728}
729
730#endif	/* VM_NRESERVLEVEL > 0 */
731