vm_reserv.c revision 214564
1/*-
2 * Copyright (c) 2002-2006 Rice University
3 * Copyright (c) 2007-2008 Alan L. Cox <alc@cs.rice.edu>
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Alan L. Cox,
7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 *	Superpage reservation management module
34 */
35
36#include <sys/cdefs.h>
37__FBSDID("$FreeBSD: head/sys/vm/vm_reserv.c 214564 2010-10-30 18:00:53Z alc $");
38
39#include "opt_vm.h"
40
41#include <sys/param.h>
42#include <sys/kernel.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mutex.h>
46#include <sys/queue.h>
47#include <sys/sbuf.h>
48#include <sys/sysctl.h>
49#include <sys/systm.h>
50
51#include <vm/vm.h>
52#include <vm/vm_param.h>
53#include <vm/vm_object.h>
54#include <vm/vm_page.h>
55#include <vm/vm_phys.h>
56#include <vm/vm_reserv.h>
57
58/*
59 * The reservation system supports the speculative allocation of large physical
60 * pages ("superpages").  Speculative allocation enables the fully-automatic
61 * utilization of superpages by the virtual memory system.  In other words, no
62 * programmatic directives are required to use superpages.
63 */
64
65#if VM_NRESERVLEVEL > 0
66
67/*
68 * The number of small pages that are contained in a level 0 reservation
69 */
70#define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
71
72/*
73 * The number of bits by which a physical address is shifted to obtain the
74 * reservation number
75 */
76#define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
77
78/*
79 * The size of a level 0 reservation in bytes
80 */
81#define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
82
83/*
84 * Computes the index of the small page underlying the given (object, pindex)
85 * within the reservation's array of small pages.
86 */
87#define	VM_RESERV_INDEX(object, pindex)	\
88    (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
89
90/*
91 * The reservation structure
92 *
93 * A reservation structure is constructed whenever a large physical page is
94 * speculatively allocated to an object.  The reservation provides the small
95 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
96 * within that object.  The reservation's "popcnt" tracks the number of these
97 * small physical pages that are in use at any given time.  When and if the
98 * reservation is not fully utilized, it appears in the queue of partially-
99 * populated reservations.  The reservation always appears on the containing
100 * object's list of reservations.
101 *
102 * A partially-populated reservation can be broken and reclaimed at any time.
103 */
104struct vm_reserv {
105	TAILQ_ENTRY(vm_reserv) partpopq;
106	LIST_ENTRY(vm_reserv) objq;
107	vm_object_t	object;			/* containing object */
108	vm_pindex_t	pindex;			/* offset within object */
109	vm_page_t	pages;			/* first page of a superpage */
110	int		popcnt;			/* # of pages in use */
111	char		inpartpopq;
112};
113
114/*
115 * The reservation array
116 *
117 * This array is analoguous in function to vm_page_array.  It differs in the
118 * respect that it may contain a greater number of useful reservation
119 * structures than there are (physical) superpages.  These "invalid"
120 * reservation structures exist to trade-off space for time in the
121 * implementation of vm_reserv_from_page().  Invalid reservation structures are
122 * distinguishable from "valid" reservation structures by inspecting the
123 * reservation's "pages" field.  Invalid reservation structures have a NULL
124 * "pages" field.
125 *
126 * vm_reserv_from_page() maps a small (physical) page to an element of this
127 * array by computing a physical reservation number from the page's physical
128 * address.  The physical reservation number is used as the array index.
129 *
130 * An "active" reservation is a valid reservation structure that has a non-NULL
131 * "object" field and a non-zero "popcnt" field.  In other words, every active
132 * reservation belongs to a particular object.  Moreover, every active
133 * reservation has an entry in the containing object's list of reservations.
134 */
135static vm_reserv_t vm_reserv_array;
136
137/*
138 * The partially-populated reservation queue
139 *
140 * This queue enables the fast recovery of an unused cached or free small page
141 * from a partially-populated reservation.  The reservation at the head of
142 * this queue is the least-recently-changed, partially-populated reservation.
143 *
144 * Access to this queue is synchronized by the free page queue lock.
145 */
146static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop =
147			    TAILQ_HEAD_INITIALIZER(vm_rvq_partpop);
148
149static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
150
151static long vm_reserv_broken;
152SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
153    &vm_reserv_broken, 0, "Cumulative number of broken reservations");
154
155static long vm_reserv_freed;
156SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
157    &vm_reserv_freed, 0, "Cumulative number of freed reservations");
158
159static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
160
161SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
162    sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues");
163
164static long vm_reserv_reclaimed;
165SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
166    &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations");
167
168static void		vm_reserv_depopulate(vm_reserv_t rv);
169static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
170static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
171			    vm_pindex_t pindex);
172static void		vm_reserv_populate(vm_reserv_t rv);
173static void		vm_reserv_reclaim(vm_reserv_t rv);
174
175/*
176 * Describes the current state of the partially-populated reservation queue.
177 */
178static int
179sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
180{
181	struct sbuf sbuf;
182	vm_reserv_t rv;
183	int counter, error, level, unused_pages;
184
185	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
186	sbuf_printf(&sbuf, "\nLEVEL     SIZE  NUMBER\n\n");
187	for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
188		counter = 0;
189		unused_pages = 0;
190		mtx_lock(&vm_page_queue_free_mtx);
191		TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) {
192			counter++;
193			unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
194		}
195		mtx_unlock(&vm_page_queue_free_mtx);
196		sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level,
197		    unused_pages * (PAGE_SIZE / 1024), counter);
198	}
199	error = sbuf_finish(&sbuf);
200	sbuf_delete(&sbuf);
201	return (error);
202}
203
204/*
205 * Reduces the given reservation's population count.  If the population count
206 * becomes zero, the reservation is destroyed.  Additionally, moves the
207 * reservation to the tail of the partially-populated reservations queue if the
208 * population count is non-zero.
209 *
210 * The free page queue lock must be held.
211 */
212static void
213vm_reserv_depopulate(vm_reserv_t rv)
214{
215
216	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
217	KASSERT(rv->object != NULL,
218	    ("vm_reserv_depopulate: reserv %p is free", rv));
219	KASSERT(rv->popcnt > 0,
220	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
221	if (rv->inpartpopq) {
222		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
223		rv->inpartpopq = FALSE;
224	}
225	rv->popcnt--;
226	if (rv->popcnt == 0) {
227		LIST_REMOVE(rv, objq);
228		rv->object = NULL;
229		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
230		vm_reserv_freed++;
231	} else {
232		rv->inpartpopq = TRUE;
233		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
234	}
235}
236
237/*
238 * Returns the reservation to which the given page might belong.
239 */
240static __inline vm_reserv_t
241vm_reserv_from_page(vm_page_t m)
242{
243
244	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
245}
246
247/*
248 * Returns TRUE if the given reservation contains the given page index and
249 * FALSE otherwise.
250 */
251static __inline boolean_t
252vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
253{
254
255	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
256}
257
258/*
259 * Increases the given reservation's population count.  Moves the reservation
260 * to the tail of the partially-populated reservation queue.
261 *
262 * The free page queue must be locked.
263 */
264static void
265vm_reserv_populate(vm_reserv_t rv)
266{
267
268	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
269	KASSERT(rv->object != NULL,
270	    ("vm_reserv_populate: reserv %p is free", rv));
271	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
272	    ("vm_reserv_populate: reserv %p is already full", rv));
273	if (rv->inpartpopq) {
274		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
275		rv->inpartpopq = FALSE;
276	}
277	rv->popcnt++;
278	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
279		rv->inpartpopq = TRUE;
280		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
281	}
282}
283
284/*
285 * Allocates a page from an existing or newly-created reservation.
286 *
287 * The object and free page queue must be locked.
288 */
289vm_page_t
290vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex)
291{
292	vm_page_t m, mpred, msucc;
293	vm_pindex_t first, leftcap, rightcap;
294	vm_reserv_t rv;
295
296	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
297
298	/*
299	 * Is a reservation fundamentally not possible?
300	 */
301	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
302	if (pindex < VM_RESERV_INDEX(object, pindex) ||
303	    pindex >= object->size)
304		return (NULL);
305
306	/*
307	 * Look for an existing reservation.
308	 */
309	msucc = NULL;
310	mpred = object->root;
311	while (mpred != NULL) {
312		KASSERT(mpred->pindex != pindex,
313		    ("vm_reserv_alloc_page: pindex already allocated"));
314		rv = vm_reserv_from_page(mpred);
315		if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) {
316			m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
317			/* Handle vm_page_rename(m, new_object, ...). */
318			if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
319				return (NULL);
320			vm_reserv_populate(rv);
321			return (m);
322		} else if (mpred->pindex < pindex) {
323			if (msucc != NULL ||
324			    (msucc = TAILQ_NEXT(mpred, listq)) == NULL)
325				break;
326			KASSERT(msucc->pindex != pindex,
327			    ("vm_reserv_alloc_page: pindex already allocated"));
328			rv = vm_reserv_from_page(msucc);
329			if (rv->object == object &&
330			    vm_reserv_has_pindex(rv, pindex)) {
331				m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
332				/* Handle vm_page_rename(m, new_object, ...). */
333				if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
334					return (NULL);
335				vm_reserv_populate(rv);
336				return (m);
337			} else if (pindex < msucc->pindex)
338				break;
339		} else if (msucc == NULL) {
340			msucc = mpred;
341			mpred = TAILQ_PREV(msucc, pglist, listq);
342			continue;
343		}
344		msucc = NULL;
345		mpred = object->root = vm_page_splay(pindex, object->root);
346	}
347
348	/*
349	 * Determine the first index to the left that can be used.
350	 */
351	if (mpred == NULL)
352		leftcap = 0;
353	else if ((rv = vm_reserv_from_page(mpred))->object != object)
354		leftcap = mpred->pindex + 1;
355	else
356		leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
357
358	/*
359	 * Determine the first index to the right that cannot be used.
360	 */
361	if (msucc == NULL)
362		rightcap = pindex + VM_LEVEL_0_NPAGES;
363	else if ((rv = vm_reserv_from_page(msucc))->object != object)
364		rightcap = msucc->pindex;
365	else
366		rightcap = rv->pindex;
367
368	/*
369	 * Determine if a reservation fits between the first index to
370	 * the left that can be used and the first index to the right
371	 * that cannot be used.
372	 */
373	first = pindex - VM_RESERV_INDEX(object, pindex);
374	if (first < leftcap || first + VM_LEVEL_0_NPAGES > rightcap)
375		return (NULL);
376
377	/*
378	 * Would a new reservation extend past the end of the given object?
379	 */
380	if (object->size < first + VM_LEVEL_0_NPAGES) {
381		/*
382		 * Don't allocate a new reservation if the object is a vnode or
383		 * backed by another object that is a vnode.
384		 */
385		if (object->type == OBJT_VNODE ||
386		    (object->backing_object != NULL &&
387		    object->backing_object->type == OBJT_VNODE))
388			return (NULL);
389		/* Speculate that the object may grow. */
390	}
391
392	/*
393	 * Allocate a new reservation.
394	 */
395	m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER);
396	if (m != NULL) {
397		rv = vm_reserv_from_page(m);
398		KASSERT(rv->pages == m,
399		    ("vm_reserv_alloc_page: reserv %p's pages is corrupted",
400		    rv));
401		KASSERT(rv->object == NULL,
402		    ("vm_reserv_alloc_page: reserv %p isn't free", rv));
403		LIST_INSERT_HEAD(&object->rvq, rv, objq);
404		rv->object = object;
405		rv->pindex = first;
406		KASSERT(rv->popcnt == 0,
407		    ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted",
408		    rv));
409		KASSERT(!rv->inpartpopq,
410		    ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE",
411		    rv));
412		vm_reserv_populate(rv);
413		m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
414	}
415	return (m);
416}
417
418/*
419 * Breaks all reservations belonging to the given object.
420 */
421void
422vm_reserv_break_all(vm_object_t object)
423{
424	vm_reserv_t rv;
425	int i;
426
427	mtx_lock(&vm_page_queue_free_mtx);
428	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
429		KASSERT(rv->object == object,
430		    ("vm_reserv_break_all: reserv %p is corrupted", rv));
431		if (rv->inpartpopq) {
432			TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
433			rv->inpartpopq = FALSE;
434		}
435		LIST_REMOVE(rv, objq);
436		rv->object = NULL;
437		for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
438			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
439				vm_phys_free_pages(&rv->pages[i], 0);
440			else
441				rv->popcnt--;
442		}
443		KASSERT(rv->popcnt == 0,
444		    ("vm_reserv_break_all: reserv %p's popcnt is corrupted",
445		    rv));
446		vm_reserv_broken++;
447	}
448	mtx_unlock(&vm_page_queue_free_mtx);
449}
450
451/*
452 * Frees the given page if it belongs to a reservation.  Returns TRUE if the
453 * page is freed and FALSE otherwise.
454 *
455 * The free page queue lock must be held.
456 */
457boolean_t
458vm_reserv_free_page(vm_page_t m)
459{
460	vm_reserv_t rv;
461
462	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
463	rv = vm_reserv_from_page(m);
464	if (rv->object != NULL) {
465		vm_reserv_depopulate(rv);
466		return (TRUE);
467	}
468	return (FALSE);
469}
470
471/*
472 * Initializes the reservation management system.  Specifically, initializes
473 * the reservation array.
474 *
475 * Requires that vm_page_array and first_page are initialized!
476 */
477void
478vm_reserv_init(void)
479{
480	vm_paddr_t paddr;
481	int i;
482
483	/*
484	 * Initialize the reservation array.  Specifically, initialize the
485	 * "pages" field for every element that has an underlying superpage.
486	 */
487	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
488		paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE);
489		while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) {
490			vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages =
491			    PHYS_TO_VM_PAGE(paddr);
492			paddr += VM_LEVEL_0_SIZE;
493		}
494	}
495}
496
497/*
498 * Returns a reservation level if the given page belongs to a fully-populated
499 * reservation and -1 otherwise.
500 */
501int
502vm_reserv_level_iffullpop(vm_page_t m)
503{
504	vm_reserv_t rv;
505
506	rv = vm_reserv_from_page(m);
507	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
508}
509
510/*
511 * Prepare for the reactivation of a cached page.
512 *
513 * First, suppose that the given page "m" was allocated individually, i.e., not
514 * as part of a reservation, and cached.  Then, suppose a reservation
515 * containing "m" is allocated by the same object.  Although "m" and the
516 * reservation belong to the same object, "m"'s pindex may not match the
517 * reservation's.
518 *
519 * The free page queue must be locked.
520 */
521boolean_t
522vm_reserv_reactivate_page(vm_page_t m)
523{
524	vm_reserv_t rv;
525	int i, m_index;
526
527	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
528	rv = vm_reserv_from_page(m);
529	if (rv->object == NULL)
530		return (FALSE);
531	KASSERT((m->flags & PG_CACHED) != 0,
532	    ("vm_reserv_uncache_page: page %p is not cached", m));
533	if (m->object == rv->object &&
534	    m->pindex - rv->pindex == VM_RESERV_INDEX(m->object, m->pindex))
535		vm_reserv_populate(rv);
536	else {
537		KASSERT(rv->inpartpopq,
538		    ("vm_reserv_uncache_page: reserv %p's inpartpopq is FALSE",
539		    rv));
540		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
541		rv->inpartpopq = FALSE;
542		LIST_REMOVE(rv, objq);
543		rv->object = NULL;
544		/* Don't vm_phys_free_pages(m, 0). */
545		m_index = m - rv->pages;
546		for (i = 0; i < m_index; i++) {
547			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
548				vm_phys_free_pages(&rv->pages[i], 0);
549			else
550				rv->popcnt--;
551		}
552		for (i++; i < VM_LEVEL_0_NPAGES; i++) {
553			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
554				vm_phys_free_pages(&rv->pages[i], 0);
555			else
556				rv->popcnt--;
557		}
558		KASSERT(rv->popcnt == 0,
559		    ("vm_reserv_uncache_page: reserv %p's popcnt is corrupted",
560		    rv));
561		vm_reserv_broken++;
562	}
563	return (TRUE);
564}
565
566/*
567 * Breaks the given partially-populated reservation, releasing its cached and
568 * free pages to the physical memory allocator.
569 *
570 * The free page queue lock must be held.
571 */
572static void
573vm_reserv_reclaim(vm_reserv_t rv)
574{
575	int i;
576
577	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
578	KASSERT(rv->inpartpopq,
579	    ("vm_reserv_reclaim: reserv %p's inpartpopq is corrupted", rv));
580	TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
581	rv->inpartpopq = FALSE;
582	KASSERT(rv->object != NULL,
583	    ("vm_reserv_reclaim: reserv %p is free", rv));
584	LIST_REMOVE(rv, objq);
585	rv->object = NULL;
586	for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
587		if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
588			vm_phys_free_pages(&rv->pages[i], 0);
589		else
590			rv->popcnt--;
591	}
592	KASSERT(rv->popcnt == 0,
593	    ("vm_reserv_reclaim: reserv %p's popcnt is corrupted", rv));
594	vm_reserv_reclaimed++;
595}
596
597/*
598 * Breaks the reservation at the head of the partially-populated reservation
599 * queue, releasing its cached and free pages to the physical memory
600 * allocator.  Returns TRUE if a reservation is broken and FALSE otherwise.
601 *
602 * The free page queue lock must be held.
603 */
604boolean_t
605vm_reserv_reclaim_inactive(void)
606{
607	vm_reserv_t rv;
608
609	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
610	if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) {
611		vm_reserv_reclaim(rv);
612		return (TRUE);
613	}
614	return (FALSE);
615}
616
617/*
618 * Searches the partially-populated reservation queue for the least recently
619 * active reservation with unused pages, i.e., cached or free, that satisfy the
620 * given request for contiguous physical memory.  If a satisfactory reservation
621 * is found, it is broken.  Returns TRUE if a reservation is broken and FALSE
622 * otherwise.
623 *
624 * The free page queue lock must be held.
625 */
626boolean_t
627vm_reserv_reclaim_contig(vm_paddr_t size, vm_paddr_t low, vm_paddr_t high,
628    unsigned long alignment, unsigned long boundary)
629{
630	vm_paddr_t pa, pa_length;
631	vm_reserv_t rv;
632	int i;
633
634	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
635	if (size > VM_LEVEL_0_SIZE - PAGE_SIZE)
636		return (FALSE);
637	TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) {
638		pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
639		if (pa + PAGE_SIZE - size < low) {
640			/* this entire reservation is too low; go to next */
641			continue;
642		}
643		pa_length = 0;
644		for (i = 0; i < VM_LEVEL_0_NPAGES; i++)
645			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) {
646				pa_length += PAGE_SIZE;
647				if (pa_length == PAGE_SIZE) {
648					pa = VM_PAGE_TO_PHYS(&rv->pages[i]);
649					if (pa + size > high) {
650						/* skip to next reservation */
651						break;
652					} else if (pa < low ||
653					    (pa & (alignment - 1)) != 0 ||
654					    ((pa ^ (pa + size - 1)) &
655					    ~(boundary - 1)) != 0)
656						pa_length = 0;
657				} else if (pa_length >= size) {
658					vm_reserv_reclaim(rv);
659					return (TRUE);
660				}
661			} else
662				pa_length = 0;
663	}
664	return (FALSE);
665}
666
667/*
668 * Transfers the reservation underlying the given page to a new object.
669 *
670 * The object must be locked.
671 */
672void
673vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
674    vm_pindex_t old_object_offset)
675{
676	vm_reserv_t rv;
677
678	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
679	rv = vm_reserv_from_page(m);
680	if (rv->object == old_object) {
681		mtx_lock(&vm_page_queue_free_mtx);
682		if (rv->object == old_object) {
683			LIST_REMOVE(rv, objq);
684			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
685			rv->object = new_object;
686			rv->pindex -= old_object_offset;
687		}
688		mtx_unlock(&vm_page_queue_free_mtx);
689	}
690}
691
692/*
693 * Allocates the virtual and physical memory required by the reservation
694 * management system's data structures, in particular, the reservation array.
695 */
696vm_paddr_t
697vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
698{
699	vm_paddr_t new_end;
700	size_t size;
701
702	/*
703	 * Calculate the size (in bytes) of the reservation array.  Round up
704	 * from "high_water" because every small page is mapped to an element
705	 * in the reservation array based on its physical address.  Thus, the
706	 * number of elements in the reservation array can be greater than the
707	 * number of superpages.
708	 */
709	size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
710
711	/*
712	 * Allocate and map the physical memory for the reservation array.  The
713	 * next available virtual address is returned by reference.
714	 */
715	new_end = end - round_page(size);
716	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
717	    VM_PROT_READ | VM_PROT_WRITE);
718	bzero(vm_reserv_array, size);
719
720	/*
721	 * Return the next available physical address.
722	 */
723	return (new_end);
724}
725
726#endif	/* VM_NRESERVLEVEL > 0 */
727