vm_reserv.c revision 174982
1/*-
2 * Copyright (c) 2002-2006 Rice University
3 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Alan L. Cox,
7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 *	Superpage reservation management module
34 */
35
36#include <sys/cdefs.h>
37__FBSDID("$FreeBSD: head/sys/vm/vm_reserv.c 174982 2007-12-29 19:53:04Z alc $");
38
39#include "opt_vm.h"
40
41#include <sys/param.h>
42#include <sys/kernel.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mutex.h>
46#include <sys/queue.h>
47#include <sys/sbuf.h>
48#include <sys/sysctl.h>
49#include <sys/systm.h>
50
51#include <vm/vm.h>
52#include <vm/vm_param.h>
53#include <vm/vm_object.h>
54#include <vm/vm_page.h>
55#include <vm/vm_phys.h>
56#include <vm/vm_reserv.h>
57
58/*
59 * The reservation system supports the speculative allocation of large physical
60 * pages ("superpages").  Speculative allocation enables the fully-automatic
61 * utilization of superpages by the virtual memory system.  In other words, no
62 * programmatic directives are required to use superpages.
63 */
64
65#if VM_NRESERVLEVEL > 0
66
67/*
68 * The number of small pages that are contained in a level 0 reservation
69 */
70#define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
71
72/*
73 * The number of bits by which a physical address is shifted to obtain the
74 * reservation number
75 */
76#define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
77
78/*
79 * The size of a level 0 reservation in bytes
80 */
81#define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
82
83/*
84 * Computes the index of the small page underlying the given (object, pindex)
85 * within the reservation's array of small pages.
86 */
87#define	VM_RESERV_INDEX(object, pindex)	\
88    (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
89
90/*
91 * The reservation structure
92 *
93 * A reservation structure is constructed whenever a large physical page is
94 * speculatively allocated to an object.  The reservation provides the small
95 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
96 * within that object.  The reservation's "popcnt" tracks the number of these
97 * small physical pages that are in use at any given time.  When and if the
98 * reservation is not fully utilized, it appears in the queue of partially-
99 * populated reservations.  The reservation always appears on the containing
100 * object's list of reservations.
101 *
102 * A partially-populated reservation can be broken and reclaimed at any time.
103 */
104struct vm_reserv {
105	TAILQ_ENTRY(vm_reserv) partpopq;
106	LIST_ENTRY(vm_reserv) objq;
107	vm_object_t	object;			/* containing object */
108	vm_pindex_t	pindex;			/* offset within object */
109	vm_page_t	pages;			/* first page of a superpage */
110	int		popcnt;			/* # of pages in use */
111	char		inpartpopq;
112};
113
114/*
115 * The reservation array
116 *
117 * This array is analoguous in function to vm_page_array.  It differs in the
118 * respect that it may contain a greater number of useful reservation
119 * structures than there are (physical) superpages.  These "invalid"
120 * reservation structures exist to trade-off space for time in the
121 * implementation of vm_reserv_from_page().  Invalid reservation structures are
122 * distinguishable from "valid" reservation structures by inspecting the
123 * reservation's "pages" field.  Invalid reservation structures have a NULL
124 * "pages" field.
125 *
126 * vm_reserv_from_page() maps a small (physical) page to an element of this
127 * array by computing a physical reservation number from the page's physical
128 * address.  The physical reservation number is used as the array index.
129 *
130 * An "active" reservation is a valid reservation structure that has a non-NULL
131 * "object" field and a non-zero "popcnt" field.  In other words, every active
132 * reservation belongs to a particular object.  Moreover, every active
133 * reservation has an entry in the containing object's list of reservations.
134 */
135static vm_reserv_t vm_reserv_array;
136
137/*
138 * The partially-populated reservation queue
139 *
140 * This queue enables the fast recovery of an unused cached or free small page
141 * from a partially-populated reservation.  The head of this queue is either
142 * the least-recently-populated or most-recently-depopulated reservation.
143 *
144 * Access to this queue is synchronized by the free page queue lock.
145 */
146static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop =
147			    TAILQ_HEAD_INITIALIZER(vm_rvq_partpop);
148
149static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
150
151static long vm_reserv_broken;
152SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
153    &vm_reserv_broken, 0, "Cumulative number of broken reservations");
154
155static long vm_reserv_freed;
156SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
157    &vm_reserv_freed, 0, "Cumulative number of freed reservations");
158
159static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
160
161SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
162    sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues");
163
164static long vm_reserv_reclaimed;
165SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
166    &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations");
167
168static void		vm_reserv_depopulate(vm_reserv_t rv);
169static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
170static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
171			    vm_pindex_t pindex);
172static void		vm_reserv_populate(vm_reserv_t rv);
173
174/*
175 * Describes the current state of the partially-populated reservation queue.
176 */
177static int
178sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
179{
180	struct sbuf sbuf;
181	vm_reserv_t rv;
182	char *cbuf;
183	const int cbufsize = (VM_NRESERVLEVEL + 1) * 81;
184	int counter, error, level, unused_pages;
185
186	cbuf = malloc(cbufsize, M_TEMP, M_WAITOK | M_ZERO);
187	sbuf_new(&sbuf, cbuf, cbufsize, SBUF_FIXEDLEN);
188	sbuf_printf(&sbuf, "\nLEVEL     SIZE  NUMBER\n\n");
189	for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
190		counter = 0;
191		unused_pages = 0;
192		mtx_lock(&vm_page_queue_free_mtx);
193		TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) {
194			counter++;
195			unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
196		}
197		mtx_unlock(&vm_page_queue_free_mtx);
198		sbuf_printf(&sbuf, "%5.5d: %6.6dK, %6.6d\n", level,
199		    unused_pages * (PAGE_SIZE / 1024), counter);
200	}
201	sbuf_finish(&sbuf);
202	error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
203	sbuf_delete(&sbuf);
204	free(cbuf, M_TEMP);
205	return (error);
206}
207
208/*
209 * Reduces the given reservation's population count.  If the population count
210 * becomes zero, the reservation is destroyed.  Additionally, moves the
211 * reservation to the head of the partially-populated reservations queue if the
212 * population count is non-zero.
213 *
214 * The free page queue lock must be held.
215 */
216static void
217vm_reserv_depopulate(vm_reserv_t rv)
218{
219
220	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
221	KASSERT(rv->object != NULL,
222	    ("vm_reserv_depopulate: reserv %p is free", rv));
223	KASSERT(rv->popcnt > 0,
224	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
225	if (rv->inpartpopq) {
226		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
227		rv->inpartpopq = FALSE;
228	}
229	rv->popcnt--;
230	if (rv->popcnt == 0) {
231		LIST_REMOVE(rv, objq);
232		rv->object = NULL;
233		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
234		vm_reserv_freed++;
235	} else {
236		rv->inpartpopq = TRUE;
237		TAILQ_INSERT_HEAD(&vm_rvq_partpop, rv, partpopq);
238	}
239}
240
241/*
242 * Returns the reservation to which the given page might belong.
243 */
244static __inline vm_reserv_t
245vm_reserv_from_page(vm_page_t m)
246{
247
248	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
249}
250
251/*
252 * Returns TRUE if the given reservation contains the given page index and
253 * FALSE otherwise.
254 */
255static __inline boolean_t
256vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
257{
258
259	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
260}
261
262/*
263 * Increases the given reservation's population count.  Moves the reservation
264 * to the tail of the partially-populated reservation queue.
265 *
266 * The free page queue must be locked.
267 */
268static void
269vm_reserv_populate(vm_reserv_t rv)
270{
271
272	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
273	KASSERT(rv->object != NULL,
274	    ("vm_reserv_populate: reserv %p is free", rv));
275	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
276	    ("vm_reserv_populate: reserv %p is already full", rv));
277	if (rv->inpartpopq) {
278		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
279		rv->inpartpopq = FALSE;
280	}
281	rv->popcnt++;
282	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
283		rv->inpartpopq = TRUE;
284		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
285	}
286}
287
288/*
289 * Allocates a page from an existing or newly-created reservation.
290 *
291 * The object and free page queue must be locked.
292 */
293vm_page_t
294vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex)
295{
296	vm_page_t m, mpred, msucc;
297	vm_pindex_t first, leftcap, rightcap;
298	vm_reserv_t rv;
299
300	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
301
302	/*
303	 * Is a reservation fundamentally not possible?
304	 */
305	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
306	if (pindex < VM_RESERV_INDEX(object, pindex) ||
307	    pindex >= object->size)
308		return (NULL);
309
310	/*
311	 * Look for an existing reservation.
312	 */
313	msucc = NULL;
314	mpred = object->root;
315	while (mpred != NULL) {
316		KASSERT(mpred->pindex != pindex,
317		    ("vm_reserv_alloc_page: pindex already allocated"));
318		rv = vm_reserv_from_page(mpred);
319		if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) {
320			m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
321			/* Handle vm_page_rename(m, new_object, ...). */
322			if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
323				return (NULL);
324			vm_reserv_populate(rv);
325			return (m);
326		} else if (mpred->pindex < pindex) {
327			if (msucc != NULL ||
328			    (msucc = TAILQ_NEXT(mpred, listq)) == NULL)
329				break;
330			KASSERT(msucc->pindex != pindex,
331			    ("vm_reserv_alloc_page: pindex already allocated"));
332			rv = vm_reserv_from_page(msucc);
333			if (rv->object == object &&
334			    vm_reserv_has_pindex(rv, pindex)) {
335				m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
336				/* Handle vm_page_rename(m, new_object, ...). */
337				if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
338					return (NULL);
339				vm_reserv_populate(rv);
340				return (m);
341			} else if (pindex < msucc->pindex)
342				break;
343		} else if (msucc == NULL) {
344			msucc = mpred;
345			mpred = TAILQ_PREV(msucc, pglist, listq);
346			continue;
347		}
348		msucc = NULL;
349		mpred = object->root = vm_page_splay(pindex, object->root);
350	}
351
352	/*
353	 * Determine the first index to the left that can be used.
354	 */
355	if (mpred == NULL)
356		leftcap = 0;
357	else if ((rv = vm_reserv_from_page(mpred))->object != object)
358		leftcap = mpred->pindex + 1;
359	else
360		leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
361
362	/*
363	 * Determine the first index to the right that cannot be used.
364	 */
365	if (msucc == NULL)
366		rightcap = pindex + VM_LEVEL_0_NPAGES;
367	else if ((rv = vm_reserv_from_page(msucc))->object != object)
368		rightcap = msucc->pindex;
369	else
370		rightcap = rv->pindex;
371
372	/*
373	 * Determine if a reservation fits between the first index to
374	 * the left that can be used and the first index to the right
375	 * that cannot be used.
376	 */
377	first = pindex - VM_RESERV_INDEX(object, pindex);
378	if (first < leftcap || first + VM_LEVEL_0_NPAGES > rightcap)
379		return (NULL);
380
381	/*
382	 * Would a new reservation extend past the end of the given object?
383	 */
384	if (object->size < first + VM_LEVEL_0_NPAGES) {
385		/*
386		 * Don't allocate a new reservation if the object is a vnode or
387		 * backed by another object that is a vnode.
388		 */
389		if (object->type == OBJT_VNODE ||
390		    (object->backing_object != NULL &&
391		    object->backing_object->type == OBJT_VNODE))
392			return (NULL);
393		/* Speculate that the object may grow. */
394	}
395
396	/*
397	 * Allocate a new reservation.
398	 */
399	m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER);
400	if (m != NULL) {
401		rv = vm_reserv_from_page(m);
402		KASSERT(rv->pages == m,
403		    ("vm_reserv_alloc_page: reserv %p's pages is corrupted",
404		    rv));
405		KASSERT(rv->object == NULL,
406		    ("vm_reserv_alloc_page: reserv %p isn't free", rv));
407		LIST_INSERT_HEAD(&object->rvq, rv, objq);
408		rv->object = object;
409		rv->pindex = first;
410		KASSERT(rv->popcnt == 0,
411		    ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted",
412		    rv));
413		KASSERT(!rv->inpartpopq,
414		    ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE",
415		    rv));
416		vm_reserv_populate(rv);
417		m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
418	}
419	return (m);
420}
421
422/*
423 * Breaks all reservations belonging to the given object.
424 */
425void
426vm_reserv_break_all(vm_object_t object)
427{
428	vm_reserv_t rv;
429	int i;
430
431	mtx_lock(&vm_page_queue_free_mtx);
432	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
433		KASSERT(rv->object == object,
434		    ("vm_reserv_break_all: reserv %p is corrupted", rv));
435		if (rv->inpartpopq) {
436			TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
437			rv->inpartpopq = FALSE;
438		}
439		LIST_REMOVE(rv, objq);
440		rv->object = NULL;
441		for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
442			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
443				vm_phys_free_pages(&rv->pages[i], 0);
444			else
445				rv->popcnt--;
446		}
447		KASSERT(rv->popcnt == 0,
448		    ("vm_reserv_break_all: reserv %p's popcnt is corrupted",
449		    rv));
450		vm_reserv_broken++;
451	}
452	mtx_unlock(&vm_page_queue_free_mtx);
453}
454
455/*
456 * Frees the given page if it belongs to a reservation.  Returns TRUE if the
457 * page is freed and FALSE otherwise.
458 *
459 * The free page queue lock must be held.
460 */
461boolean_t
462vm_reserv_free_page(vm_page_t m)
463{
464	vm_reserv_t rv;
465
466	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
467	rv = vm_reserv_from_page(m);
468	if (rv->object != NULL) {
469		vm_reserv_depopulate(rv);
470		return (TRUE);
471	}
472	return (FALSE);
473}
474
475/*
476 * Initializes the reservation management system.  Specifically, initializes
477 * the reservation array.
478 *
479 * Requires that vm_page_array and first_page are initialized!
480 */
481void
482vm_reserv_init(void)
483{
484	vm_paddr_t paddr;
485	int i;
486
487	/*
488	 * Initialize the reservation array.  Specifically, initialize the
489	 * "pages" field for every element that has an underlying superpage.
490	 */
491	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
492		paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE);
493		while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) {
494			vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages =
495			    PHYS_TO_VM_PAGE(paddr);
496			paddr += VM_LEVEL_0_SIZE;
497		}
498	}
499}
500
501/*
502 * Returns a reservation level if the given page belongs to a fully-populated
503 * reservation and -1 otherwise.
504 */
505int
506vm_reserv_level_iffullpop(vm_page_t m)
507{
508	vm_reserv_t rv;
509
510	rv = vm_reserv_from_page(m);
511	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
512}
513
514/*
515 * Prepare for the reactivation of a cached page.
516 *
517 * First, suppose that the given page "m" was allocated individually, i.e., not
518 * as part of a reservation, and cached.  Then, suppose a reservation
519 * containing "m" is allocated by the same object.  Although "m" and the
520 * reservation belong to the same object, "m"'s pindex may not match the
521 * reservation's.
522 *
523 * The free page queue must be locked.
524 */
525boolean_t
526vm_reserv_reactivate_page(vm_page_t m)
527{
528	vm_reserv_t rv;
529	int i, m_index;
530
531	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
532	rv = vm_reserv_from_page(m);
533	if (rv->object == NULL)
534		return (FALSE);
535	KASSERT((m->flags & PG_CACHED) != 0,
536	    ("vm_reserv_uncache_page: page %p is not cached", m));
537	if (m->object == rv->object &&
538	    m->pindex - rv->pindex == VM_RESERV_INDEX(m->object, m->pindex))
539		vm_reserv_populate(rv);
540	else {
541		KASSERT(rv->inpartpopq,
542		    ("vm_reserv_uncache_page: reserv %p's inpartpopq is FALSE",
543		    rv));
544		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
545		rv->inpartpopq = FALSE;
546		LIST_REMOVE(rv, objq);
547		rv->object = NULL;
548		/* Don't vm_phys_free_pages(m, 0). */
549		m_index = m - rv->pages;
550		for (i = 0; i < m_index; i++) {
551			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
552				vm_phys_free_pages(&rv->pages[i], 0);
553			else
554				rv->popcnt--;
555		}
556		for (i++; i < VM_LEVEL_0_NPAGES; i++) {
557			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
558				vm_phys_free_pages(&rv->pages[i], 0);
559			else
560				rv->popcnt--;
561		}
562		KASSERT(rv->popcnt == 0,
563		    ("vm_reserv_uncache_page: reserv %p's popcnt is corrupted",
564		    rv));
565		vm_reserv_broken++;
566	}
567	return (TRUE);
568}
569
570/*
571 * Breaks the reservation at the head of the partially-populated reservation
572 * queue, releasing its cached and free pages to the physical memory
573 * allocator.  Returns TRUE if a reservation is broken and FALSE otherwise.
574 *
575 * The free page queue lock must be held.
576 */
577boolean_t
578vm_reserv_reclaim(void)
579{
580	vm_reserv_t rv;
581	int i;
582
583	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
584	if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) {
585		KASSERT(rv->inpartpopq,
586		    ("vm_reserv_reclaim: reserv %p's inpartpopq is corrupted",
587		    rv));
588		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
589		rv->inpartpopq = FALSE;
590		KASSERT(rv->object != NULL,
591		    ("vm_reserv_reclaim: reserv %p is free", rv));
592		LIST_REMOVE(rv, objq);
593		rv->object = NULL;
594		for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
595			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
596				vm_phys_free_pages(&rv->pages[i], 0);
597			else
598				rv->popcnt--;
599		}
600		KASSERT(rv->popcnt == 0,
601		    ("vm_reserv_reclaim: reserv %p's popcnt is corrupted",
602		    rv));
603		vm_reserv_reclaimed++;
604		return (TRUE);
605	}
606	return (FALSE);
607}
608
609/*
610 * Transfers the reservation underlying the given page to a new object.
611 *
612 * The object must be locked.
613 */
614void
615vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
616    vm_pindex_t old_object_offset)
617{
618	vm_reserv_t rv;
619
620	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
621	rv = vm_reserv_from_page(m);
622	if (rv->object == old_object) {
623		mtx_lock(&vm_page_queue_free_mtx);
624		if (rv->object == old_object) {
625			LIST_REMOVE(rv, objq);
626			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
627			rv->object = new_object;
628			rv->pindex -= old_object_offset;
629		}
630		mtx_unlock(&vm_page_queue_free_mtx);
631	}
632}
633
634/*
635 * Allocates the virtual and physical memory required by the reservation
636 * management system's data structures, in particular, the reservation array.
637 */
638vm_paddr_t
639vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
640{
641	vm_paddr_t new_end;
642	size_t size;
643
644	/*
645	 * Calculate the size (in bytes) of the reservation array.  Round up
646	 * from "high_water" because every small page is mapped to an element
647	 * in the reservation array based on its physical address.  Thus, the
648	 * number of elements in the reservation array can be greater than the
649	 * number of superpages.
650	 */
651	size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
652
653	/*
654	 * Allocate and map the physical memory for the reservation array.  The
655	 * next available virtual address is returned by reference.
656	 */
657	new_end = end - round_page(size);
658	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
659	    VM_PROT_READ | VM_PROT_WRITE);
660	bzero(vm_reserv_array, size);
661
662	/*
663	 * Return the next available physical address.
664	 */
665	return (new_end);
666}
667
668#endif	/* VM_NRESERVLEVEL > 0 */
669