vm_map.c revision 267017
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory mapping module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: releng/10.0/sys/vm/vm_map.c 267017 2014-06-03 19:02:52Z delphij $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/mman.h>
77#include <sys/vnode.h>
78#include <sys/racct.h>
79#include <sys/resourcevar.h>
80#include <sys/rwlock.h>
81#include <sys/file.h>
82#include <sys/sysctl.h>
83#include <sys/sysent.h>
84#include <sys/shm.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_object.h>
92#include <vm/vm_pager.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vnode_pager.h>
96#include <vm/swap_pager.h>
97#include <vm/uma.h>
98
99/*
100 *	Virtual memory maps provide for the mapping, protection,
101 *	and sharing of virtual memory objects.  In addition,
102 *	this module provides for an efficient virtual copy of
103 *	memory from one map to another.
104 *
105 *	Synchronization is required prior to most operations.
106 *
107 *	Maps consist of an ordered doubly-linked list of simple
108 *	entries; a self-adjusting binary search tree of these
109 *	entries is used to speed up lookups.
110 *
111 *	Since portions of maps are specified by start/end addresses,
112 *	which may not align with existing map entries, all
113 *	routines merely "clip" entries to these start/end values.
114 *	[That is, an entry is split into two, bordering at a
115 *	start or end value.]  Note that these clippings may not
116 *	always be necessary (as the two resulting entries are then
117 *	not changed); however, the clipping is done for convenience.
118 *
119 *	As mentioned above, virtual copy operations are performed
120 *	by copying VM object references from one map to
121 *	another, and then marking both regions as copy-on-write.
122 */
123
124static struct mtx map_sleep_mtx;
125static uma_zone_t mapentzone;
126static uma_zone_t kmapentzone;
127static uma_zone_t mapzone;
128static uma_zone_t vmspace_zone;
129static int vmspace_zinit(void *mem, int size, int flags);
130static int vm_map_zinit(void *mem, int ize, int flags);
131static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132    vm_offset_t max);
133static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135#ifdef INVARIANTS
136static void vm_map_zdtor(void *mem, int size, void *arg);
137static void vmspace_zdtor(void *mem, int size, void *arg);
138#endif
139
140#define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
141    ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
142     !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
143
144/*
145 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
146 * stable.
147 */
148#define PROC_VMSPACE_LOCK(p) do { } while (0)
149#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
150
151/*
152 *	VM_MAP_RANGE_CHECK:	[ internal use only ]
153 *
154 *	Asserts that the starting and ending region
155 *	addresses fall within the valid range of the map.
156 */
157#define	VM_MAP_RANGE_CHECK(map, start, end)		\
158		{					\
159		if (start < vm_map_min(map))		\
160			start = vm_map_min(map);	\
161		if (end > vm_map_max(map))		\
162			end = vm_map_max(map);		\
163		if (start > end)			\
164			start = end;			\
165		}
166
167/*
168 *	vm_map_startup:
169 *
170 *	Initialize the vm_map module.  Must be called before
171 *	any other vm_map routines.
172 *
173 *	Map and entry structures are allocated from the general
174 *	purpose memory pool with some exceptions:
175 *
176 *	- The kernel map and kmem submap are allocated statically.
177 *	- Kernel map entries are allocated out of a static pool.
178 *
179 *	These restrictions are necessary since malloc() uses the
180 *	maps and requires map entries.
181 */
182
183void
184vm_map_startup(void)
185{
186	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
187	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
188#ifdef INVARIANTS
189	    vm_map_zdtor,
190#else
191	    NULL,
192#endif
193	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
194	uma_prealloc(mapzone, MAX_KMAP);
195	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
196	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
197	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
198	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
199	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
200	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
201#ifdef INVARIANTS
202	    vmspace_zdtor,
203#else
204	    NULL,
205#endif
206	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207}
208
209static int
210vmspace_zinit(void *mem, int size, int flags)
211{
212	struct vmspace *vm;
213
214	vm = (struct vmspace *)mem;
215
216	vm->vm_map.pmap = NULL;
217	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
218	PMAP_LOCK_INIT(vmspace_pmap(vm));
219	return (0);
220}
221
222static int
223vm_map_zinit(void *mem, int size, int flags)
224{
225	vm_map_t map;
226
227	map = (vm_map_t)mem;
228	memset(map, 0, sizeof(*map));
229	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
230	sx_init(&map->lock, "vm map (user)");
231	return (0);
232}
233
234#ifdef INVARIANTS
235static void
236vmspace_zdtor(void *mem, int size, void *arg)
237{
238	struct vmspace *vm;
239
240	vm = (struct vmspace *)mem;
241
242	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
243}
244static void
245vm_map_zdtor(void *mem, int size, void *arg)
246{
247	vm_map_t map;
248
249	map = (vm_map_t)mem;
250	KASSERT(map->nentries == 0,
251	    ("map %p nentries == %d on free.",
252	    map, map->nentries));
253	KASSERT(map->size == 0,
254	    ("map %p size == %lu on free.",
255	    map, (unsigned long)map->size));
256}
257#endif	/* INVARIANTS */
258
259/*
260 * Allocate a vmspace structure, including a vm_map and pmap,
261 * and initialize those structures.  The refcnt is set to 1.
262 *
263 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
264 */
265struct vmspace *
266vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
267{
268	struct vmspace *vm;
269
270	vm = uma_zalloc(vmspace_zone, M_WAITOK);
271
272	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
273
274	if (pinit == NULL)
275		pinit = &pmap_pinit;
276
277	if (!pinit(vmspace_pmap(vm))) {
278		uma_zfree(vmspace_zone, vm);
279		return (NULL);
280	}
281	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
282	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
283	vm->vm_refcnt = 1;
284	vm->vm_shm = NULL;
285	vm->vm_swrss = 0;
286	vm->vm_tsize = 0;
287	vm->vm_dsize = 0;
288	vm->vm_ssize = 0;
289	vm->vm_taddr = 0;
290	vm->vm_daddr = 0;
291	vm->vm_maxsaddr = 0;
292	return (vm);
293}
294
295static void
296vmspace_container_reset(struct proc *p)
297{
298
299#ifdef RACCT
300	PROC_LOCK(p);
301	racct_set(p, RACCT_DATA, 0);
302	racct_set(p, RACCT_STACK, 0);
303	racct_set(p, RACCT_RSS, 0);
304	racct_set(p, RACCT_MEMLOCK, 0);
305	racct_set(p, RACCT_VMEM, 0);
306	PROC_UNLOCK(p);
307#endif
308}
309
310static inline void
311vmspace_dofree(struct vmspace *vm)
312{
313
314	CTR1(KTR_VM, "vmspace_free: %p", vm);
315
316	/*
317	 * Make sure any SysV shm is freed, it might not have been in
318	 * exit1().
319	 */
320	shmexit(vm);
321
322	/*
323	 * Lock the map, to wait out all other references to it.
324	 * Delete all of the mappings and pages they hold, then call
325	 * the pmap module to reclaim anything left.
326	 */
327	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
328	    vm->vm_map.max_offset);
329
330	pmap_release(vmspace_pmap(vm));
331	vm->vm_map.pmap = NULL;
332	uma_zfree(vmspace_zone, vm);
333}
334
335void
336vmspace_free(struct vmspace *vm)
337{
338
339	if (vm->vm_refcnt == 0)
340		panic("vmspace_free: attempt to free already freed vmspace");
341
342	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
343		vmspace_dofree(vm);
344}
345
346void
347vmspace_exitfree(struct proc *p)
348{
349	struct vmspace *vm;
350
351	PROC_VMSPACE_LOCK(p);
352	vm = p->p_vmspace;
353	p->p_vmspace = NULL;
354	PROC_VMSPACE_UNLOCK(p);
355	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
356	vmspace_free(vm);
357}
358
359void
360vmspace_exit(struct thread *td)
361{
362	int refcnt;
363	struct vmspace *vm;
364	struct proc *p;
365
366	/*
367	 * Release user portion of address space.
368	 * This releases references to vnodes,
369	 * which could cause I/O if the file has been unlinked.
370	 * Need to do this early enough that we can still sleep.
371	 *
372	 * The last exiting process to reach this point releases as
373	 * much of the environment as it can. vmspace_dofree() is the
374	 * slower fallback in case another process had a temporary
375	 * reference to the vmspace.
376	 */
377
378	p = td->td_proc;
379	vm = p->p_vmspace;
380	atomic_add_int(&vmspace0.vm_refcnt, 1);
381	do {
382		refcnt = vm->vm_refcnt;
383		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
384			/* Switch now since other proc might free vmspace */
385			PROC_VMSPACE_LOCK(p);
386			p->p_vmspace = &vmspace0;
387			PROC_VMSPACE_UNLOCK(p);
388			pmap_activate(td);
389		}
390	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
391	if (refcnt == 1) {
392		if (p->p_vmspace != vm) {
393			/* vmspace not yet freed, switch back */
394			PROC_VMSPACE_LOCK(p);
395			p->p_vmspace = vm;
396			PROC_VMSPACE_UNLOCK(p);
397			pmap_activate(td);
398		}
399		pmap_remove_pages(vmspace_pmap(vm));
400		/* Switch now since this proc will free vmspace */
401		PROC_VMSPACE_LOCK(p);
402		p->p_vmspace = &vmspace0;
403		PROC_VMSPACE_UNLOCK(p);
404		pmap_activate(td);
405		vmspace_dofree(vm);
406	}
407	vmspace_container_reset(p);
408}
409
410/* Acquire reference to vmspace owned by another process. */
411
412struct vmspace *
413vmspace_acquire_ref(struct proc *p)
414{
415	struct vmspace *vm;
416	int refcnt;
417
418	PROC_VMSPACE_LOCK(p);
419	vm = p->p_vmspace;
420	if (vm == NULL) {
421		PROC_VMSPACE_UNLOCK(p);
422		return (NULL);
423	}
424	do {
425		refcnt = vm->vm_refcnt;
426		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
427			PROC_VMSPACE_UNLOCK(p);
428			return (NULL);
429		}
430	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
431	if (vm != p->p_vmspace) {
432		PROC_VMSPACE_UNLOCK(p);
433		vmspace_free(vm);
434		return (NULL);
435	}
436	PROC_VMSPACE_UNLOCK(p);
437	return (vm);
438}
439
440void
441_vm_map_lock(vm_map_t map, const char *file, int line)
442{
443
444	if (map->system_map)
445		mtx_lock_flags_(&map->system_mtx, 0, file, line);
446	else
447		sx_xlock_(&map->lock, file, line);
448	map->timestamp++;
449}
450
451static void
452vm_map_process_deferred(void)
453{
454	struct thread *td;
455	vm_map_entry_t entry, next;
456	vm_object_t object;
457
458	td = curthread;
459	entry = td->td_map_def_user;
460	td->td_map_def_user = NULL;
461	while (entry != NULL) {
462		next = entry->next;
463		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
464			/*
465			 * Decrement the object's writemappings and
466			 * possibly the vnode's v_writecount.
467			 */
468			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
469			    ("Submap with writecount"));
470			object = entry->object.vm_object;
471			KASSERT(object != NULL, ("No object for writecount"));
472			vnode_pager_release_writecount(object, entry->start,
473			    entry->end);
474		}
475		vm_map_entry_deallocate(entry, FALSE);
476		entry = next;
477	}
478}
479
480void
481_vm_map_unlock(vm_map_t map, const char *file, int line)
482{
483
484	if (map->system_map)
485		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
486	else {
487		sx_xunlock_(&map->lock, file, line);
488		vm_map_process_deferred();
489	}
490}
491
492void
493_vm_map_lock_read(vm_map_t map, const char *file, int line)
494{
495
496	if (map->system_map)
497		mtx_lock_flags_(&map->system_mtx, 0, file, line);
498	else
499		sx_slock_(&map->lock, file, line);
500}
501
502void
503_vm_map_unlock_read(vm_map_t map, const char *file, int line)
504{
505
506	if (map->system_map)
507		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
508	else {
509		sx_sunlock_(&map->lock, file, line);
510		vm_map_process_deferred();
511	}
512}
513
514int
515_vm_map_trylock(vm_map_t map, const char *file, int line)
516{
517	int error;
518
519	error = map->system_map ?
520	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
521	    !sx_try_xlock_(&map->lock, file, line);
522	if (error == 0)
523		map->timestamp++;
524	return (error == 0);
525}
526
527int
528_vm_map_trylock_read(vm_map_t map, const char *file, int line)
529{
530	int error;
531
532	error = map->system_map ?
533	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
534	    !sx_try_slock_(&map->lock, file, line);
535	return (error == 0);
536}
537
538/*
539 *	_vm_map_lock_upgrade:	[ internal use only ]
540 *
541 *	Tries to upgrade a read (shared) lock on the specified map to a write
542 *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
543 *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
544 *	returned without a read or write lock held.
545 *
546 *	Requires that the map be read locked.
547 */
548int
549_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
550{
551	unsigned int last_timestamp;
552
553	if (map->system_map) {
554		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
555	} else {
556		if (!sx_try_upgrade_(&map->lock, file, line)) {
557			last_timestamp = map->timestamp;
558			sx_sunlock_(&map->lock, file, line);
559			vm_map_process_deferred();
560			/*
561			 * If the map's timestamp does not change while the
562			 * map is unlocked, then the upgrade succeeds.
563			 */
564			sx_xlock_(&map->lock, file, line);
565			if (last_timestamp != map->timestamp) {
566				sx_xunlock_(&map->lock, file, line);
567				return (1);
568			}
569		}
570	}
571	map->timestamp++;
572	return (0);
573}
574
575void
576_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
577{
578
579	if (map->system_map) {
580		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
581	} else
582		sx_downgrade_(&map->lock, file, line);
583}
584
585/*
586 *	vm_map_locked:
587 *
588 *	Returns a non-zero value if the caller holds a write (exclusive) lock
589 *	on the specified map and the value "0" otherwise.
590 */
591int
592vm_map_locked(vm_map_t map)
593{
594
595	if (map->system_map)
596		return (mtx_owned(&map->system_mtx));
597	else
598		return (sx_xlocked(&map->lock));
599}
600
601#ifdef INVARIANTS
602static void
603_vm_map_assert_locked(vm_map_t map, const char *file, int line)
604{
605
606	if (map->system_map)
607		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
608	else
609		sx_assert_(&map->lock, SA_XLOCKED, file, line);
610}
611
612#define	VM_MAP_ASSERT_LOCKED(map) \
613    _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
614#else
615#define	VM_MAP_ASSERT_LOCKED(map)
616#endif
617
618/*
619 *	_vm_map_unlock_and_wait:
620 *
621 *	Atomically releases the lock on the specified map and puts the calling
622 *	thread to sleep.  The calling thread will remain asleep until either
623 *	vm_map_wakeup() is performed on the map or the specified timeout is
624 *	exceeded.
625 *
626 *	WARNING!  This function does not perform deferred deallocations of
627 *	objects and map	entries.  Therefore, the calling thread is expected to
628 *	reacquire the map lock after reawakening and later perform an ordinary
629 *	unlock operation, such as vm_map_unlock(), before completing its
630 *	operation on the map.
631 */
632int
633_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
634{
635
636	mtx_lock(&map_sleep_mtx);
637	if (map->system_map)
638		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
639	else
640		sx_xunlock_(&map->lock, file, line);
641	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
642	    timo));
643}
644
645/*
646 *	vm_map_wakeup:
647 *
648 *	Awaken any threads that have slept on the map using
649 *	vm_map_unlock_and_wait().
650 */
651void
652vm_map_wakeup(vm_map_t map)
653{
654
655	/*
656	 * Acquire and release map_sleep_mtx to prevent a wakeup()
657	 * from being performed (and lost) between the map unlock
658	 * and the msleep() in _vm_map_unlock_and_wait().
659	 */
660	mtx_lock(&map_sleep_mtx);
661	mtx_unlock(&map_sleep_mtx);
662	wakeup(&map->root);
663}
664
665void
666vm_map_busy(vm_map_t map)
667{
668
669	VM_MAP_ASSERT_LOCKED(map);
670	map->busy++;
671}
672
673void
674vm_map_unbusy(vm_map_t map)
675{
676
677	VM_MAP_ASSERT_LOCKED(map);
678	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
679	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
680		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
681		wakeup(&map->busy);
682	}
683}
684
685void
686vm_map_wait_busy(vm_map_t map)
687{
688
689	VM_MAP_ASSERT_LOCKED(map);
690	while (map->busy) {
691		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
692		if (map->system_map)
693			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
694		else
695			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
696	}
697	map->timestamp++;
698}
699
700long
701vmspace_resident_count(struct vmspace *vmspace)
702{
703	return pmap_resident_count(vmspace_pmap(vmspace));
704}
705
706/*
707 *	vm_map_create:
708 *
709 *	Creates and returns a new empty VM map with
710 *	the given physical map structure, and having
711 *	the given lower and upper address bounds.
712 */
713vm_map_t
714vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
715{
716	vm_map_t result;
717
718	result = uma_zalloc(mapzone, M_WAITOK);
719	CTR1(KTR_VM, "vm_map_create: %p", result);
720	_vm_map_init(result, pmap, min, max);
721	return (result);
722}
723
724/*
725 * Initialize an existing vm_map structure
726 * such as that in the vmspace structure.
727 */
728static void
729_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
730{
731
732	map->header.next = map->header.prev = &map->header;
733	map->needs_wakeup = FALSE;
734	map->system_map = 0;
735	map->pmap = pmap;
736	map->min_offset = min;
737	map->max_offset = max;
738	map->flags = 0;
739	map->root = NULL;
740	map->timestamp = 0;
741	map->busy = 0;
742}
743
744void
745vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
746{
747
748	_vm_map_init(map, pmap, min, max);
749	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
750	sx_init(&map->lock, "user map");
751}
752
753/*
754 *	vm_map_entry_dispose:	[ internal use only ]
755 *
756 *	Inverse of vm_map_entry_create.
757 */
758static void
759vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
760{
761	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
762}
763
764/*
765 *	vm_map_entry_create:	[ internal use only ]
766 *
767 *	Allocates a VM map entry for insertion.
768 *	No entry fields are filled in.
769 */
770static vm_map_entry_t
771vm_map_entry_create(vm_map_t map)
772{
773	vm_map_entry_t new_entry;
774
775	if (map->system_map)
776		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
777	else
778		new_entry = uma_zalloc(mapentzone, M_WAITOK);
779	if (new_entry == NULL)
780		panic("vm_map_entry_create: kernel resources exhausted");
781	return (new_entry);
782}
783
784/*
785 *	vm_map_entry_set_behavior:
786 *
787 *	Set the expected access behavior, either normal, random, or
788 *	sequential.
789 */
790static inline void
791vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
792{
793	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
794	    (behavior & MAP_ENTRY_BEHAV_MASK);
795}
796
797/*
798 *	vm_map_entry_set_max_free:
799 *
800 *	Set the max_free field in a vm_map_entry.
801 */
802static inline void
803vm_map_entry_set_max_free(vm_map_entry_t entry)
804{
805
806	entry->max_free = entry->adj_free;
807	if (entry->left != NULL && entry->left->max_free > entry->max_free)
808		entry->max_free = entry->left->max_free;
809	if (entry->right != NULL && entry->right->max_free > entry->max_free)
810		entry->max_free = entry->right->max_free;
811}
812
813/*
814 *	vm_map_entry_splay:
815 *
816 *	The Sleator and Tarjan top-down splay algorithm with the
817 *	following variation.  Max_free must be computed bottom-up, so
818 *	on the downward pass, maintain the left and right spines in
819 *	reverse order.  Then, make a second pass up each side to fix
820 *	the pointers and compute max_free.  The time bound is O(log n)
821 *	amortized.
822 *
823 *	The new root is the vm_map_entry containing "addr", or else an
824 *	adjacent entry (lower or higher) if addr is not in the tree.
825 *
826 *	The map must be locked, and leaves it so.
827 *
828 *	Returns: the new root.
829 */
830static vm_map_entry_t
831vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
832{
833	vm_map_entry_t llist, rlist;
834	vm_map_entry_t ltree, rtree;
835	vm_map_entry_t y;
836
837	/* Special case of empty tree. */
838	if (root == NULL)
839		return (root);
840
841	/*
842	 * Pass One: Splay down the tree until we find addr or a NULL
843	 * pointer where addr would go.  llist and rlist are the two
844	 * sides in reverse order (bottom-up), with llist linked by
845	 * the right pointer and rlist linked by the left pointer in
846	 * the vm_map_entry.  Wait until Pass Two to set max_free on
847	 * the two spines.
848	 */
849	llist = NULL;
850	rlist = NULL;
851	for (;;) {
852		/* root is never NULL in here. */
853		if (addr < root->start) {
854			y = root->left;
855			if (y == NULL)
856				break;
857			if (addr < y->start && y->left != NULL) {
858				/* Rotate right and put y on rlist. */
859				root->left = y->right;
860				y->right = root;
861				vm_map_entry_set_max_free(root);
862				root = y->left;
863				y->left = rlist;
864				rlist = y;
865			} else {
866				/* Put root on rlist. */
867				root->left = rlist;
868				rlist = root;
869				root = y;
870			}
871		} else if (addr >= root->end) {
872			y = root->right;
873			if (y == NULL)
874				break;
875			if (addr >= y->end && y->right != NULL) {
876				/* Rotate left and put y on llist. */
877				root->right = y->left;
878				y->left = root;
879				vm_map_entry_set_max_free(root);
880				root = y->right;
881				y->right = llist;
882				llist = y;
883			} else {
884				/* Put root on llist. */
885				root->right = llist;
886				llist = root;
887				root = y;
888			}
889		} else
890			break;
891	}
892
893	/*
894	 * Pass Two: Walk back up the two spines, flip the pointers
895	 * and set max_free.  The subtrees of the root go at the
896	 * bottom of llist and rlist.
897	 */
898	ltree = root->left;
899	while (llist != NULL) {
900		y = llist->right;
901		llist->right = ltree;
902		vm_map_entry_set_max_free(llist);
903		ltree = llist;
904		llist = y;
905	}
906	rtree = root->right;
907	while (rlist != NULL) {
908		y = rlist->left;
909		rlist->left = rtree;
910		vm_map_entry_set_max_free(rlist);
911		rtree = rlist;
912		rlist = y;
913	}
914
915	/*
916	 * Final assembly: add ltree and rtree as subtrees of root.
917	 */
918	root->left = ltree;
919	root->right = rtree;
920	vm_map_entry_set_max_free(root);
921
922	return (root);
923}
924
925/*
926 *	vm_map_entry_{un,}link:
927 *
928 *	Insert/remove entries from maps.
929 */
930static void
931vm_map_entry_link(vm_map_t map,
932		  vm_map_entry_t after_where,
933		  vm_map_entry_t entry)
934{
935
936	CTR4(KTR_VM,
937	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
938	    map->nentries, entry, after_where);
939	VM_MAP_ASSERT_LOCKED(map);
940	map->nentries++;
941	entry->prev = after_where;
942	entry->next = after_where->next;
943	entry->next->prev = entry;
944	after_where->next = entry;
945
946	if (after_where != &map->header) {
947		if (after_where != map->root)
948			vm_map_entry_splay(after_where->start, map->root);
949		entry->right = after_where->right;
950		entry->left = after_where;
951		after_where->right = NULL;
952		after_where->adj_free = entry->start - after_where->end;
953		vm_map_entry_set_max_free(after_where);
954	} else {
955		entry->right = map->root;
956		entry->left = NULL;
957	}
958	entry->adj_free = (entry->next == &map->header ? map->max_offset :
959	    entry->next->start) - entry->end;
960	vm_map_entry_set_max_free(entry);
961	map->root = entry;
962}
963
964static void
965vm_map_entry_unlink(vm_map_t map,
966		    vm_map_entry_t entry)
967{
968	vm_map_entry_t next, prev, root;
969
970	VM_MAP_ASSERT_LOCKED(map);
971	if (entry != map->root)
972		vm_map_entry_splay(entry->start, map->root);
973	if (entry->left == NULL)
974		root = entry->right;
975	else {
976		root = vm_map_entry_splay(entry->start, entry->left);
977		root->right = entry->right;
978		root->adj_free = (entry->next == &map->header ? map->max_offset :
979		    entry->next->start) - root->end;
980		vm_map_entry_set_max_free(root);
981	}
982	map->root = root;
983
984	prev = entry->prev;
985	next = entry->next;
986	next->prev = prev;
987	prev->next = next;
988	map->nentries--;
989	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
990	    map->nentries, entry);
991}
992
993/*
994 *	vm_map_entry_resize_free:
995 *
996 *	Recompute the amount of free space following a vm_map_entry
997 *	and propagate that value up the tree.  Call this function after
998 *	resizing a map entry in-place, that is, without a call to
999 *	vm_map_entry_link() or _unlink().
1000 *
1001 *	The map must be locked, and leaves it so.
1002 */
1003static void
1004vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1005{
1006
1007	/*
1008	 * Using splay trees without parent pointers, propagating
1009	 * max_free up the tree is done by moving the entry to the
1010	 * root and making the change there.
1011	 */
1012	if (entry != map->root)
1013		map->root = vm_map_entry_splay(entry->start, map->root);
1014
1015	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1016	    entry->next->start) - entry->end;
1017	vm_map_entry_set_max_free(entry);
1018}
1019
1020/*
1021 *	vm_map_lookup_entry:	[ internal use only ]
1022 *
1023 *	Finds the map entry containing (or
1024 *	immediately preceding) the specified address
1025 *	in the given map; the entry is returned
1026 *	in the "entry" parameter.  The boolean
1027 *	result indicates whether the address is
1028 *	actually contained in the map.
1029 */
1030boolean_t
1031vm_map_lookup_entry(
1032	vm_map_t map,
1033	vm_offset_t address,
1034	vm_map_entry_t *entry)	/* OUT */
1035{
1036	vm_map_entry_t cur;
1037	boolean_t locked;
1038
1039	/*
1040	 * If the map is empty, then the map entry immediately preceding
1041	 * "address" is the map's header.
1042	 */
1043	cur = map->root;
1044	if (cur == NULL)
1045		*entry = &map->header;
1046	else if (address >= cur->start && cur->end > address) {
1047		*entry = cur;
1048		return (TRUE);
1049	} else if ((locked = vm_map_locked(map)) ||
1050	    sx_try_upgrade(&map->lock)) {
1051		/*
1052		 * Splay requires a write lock on the map.  However, it only
1053		 * restructures the binary search tree; it does not otherwise
1054		 * change the map.  Thus, the map's timestamp need not change
1055		 * on a temporary upgrade.
1056		 */
1057		map->root = cur = vm_map_entry_splay(address, cur);
1058		if (!locked)
1059			sx_downgrade(&map->lock);
1060
1061		/*
1062		 * If "address" is contained within a map entry, the new root
1063		 * is that map entry.  Otherwise, the new root is a map entry
1064		 * immediately before or after "address".
1065		 */
1066		if (address >= cur->start) {
1067			*entry = cur;
1068			if (cur->end > address)
1069				return (TRUE);
1070		} else
1071			*entry = cur->prev;
1072	} else
1073		/*
1074		 * Since the map is only locked for read access, perform a
1075		 * standard binary search tree lookup for "address".
1076		 */
1077		for (;;) {
1078			if (address < cur->start) {
1079				if (cur->left == NULL) {
1080					*entry = cur->prev;
1081					break;
1082				}
1083				cur = cur->left;
1084			} else if (cur->end > address) {
1085				*entry = cur;
1086				return (TRUE);
1087			} else {
1088				if (cur->right == NULL) {
1089					*entry = cur;
1090					break;
1091				}
1092				cur = cur->right;
1093			}
1094		}
1095	return (FALSE);
1096}
1097
1098/*
1099 *	vm_map_insert:
1100 *
1101 *	Inserts the given whole VM object into the target
1102 *	map at the specified address range.  The object's
1103 *	size should match that of the address range.
1104 *
1105 *	Requires that the map be locked, and leaves it so.
1106 *
1107 *	If object is non-NULL, ref count must be bumped by caller
1108 *	prior to making call to account for the new entry.
1109 */
1110int
1111vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1112	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1113	      int cow)
1114{
1115	vm_map_entry_t new_entry;
1116	vm_map_entry_t prev_entry;
1117	vm_map_entry_t temp_entry;
1118	vm_eflags_t protoeflags;
1119	struct ucred *cred;
1120	vm_inherit_t inheritance;
1121	boolean_t charge_prev_obj;
1122
1123	VM_MAP_ASSERT_LOCKED(map);
1124
1125	/*
1126	 * Check that the start and end points are not bogus.
1127	 */
1128	if ((start < map->min_offset) || (end > map->max_offset) ||
1129	    (start >= end))
1130		return (KERN_INVALID_ADDRESS);
1131
1132	/*
1133	 * Find the entry prior to the proposed starting address; if it's part
1134	 * of an existing entry, this range is bogus.
1135	 */
1136	if (vm_map_lookup_entry(map, start, &temp_entry))
1137		return (KERN_NO_SPACE);
1138
1139	prev_entry = temp_entry;
1140
1141	/*
1142	 * Assert that the next entry doesn't overlap the end point.
1143	 */
1144	if ((prev_entry->next != &map->header) &&
1145	    (prev_entry->next->start < end))
1146		return (KERN_NO_SPACE);
1147
1148	protoeflags = 0;
1149	charge_prev_obj = FALSE;
1150
1151	if (cow & MAP_COPY_ON_WRITE)
1152		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1153
1154	if (cow & MAP_NOFAULT) {
1155		protoeflags |= MAP_ENTRY_NOFAULT;
1156
1157		KASSERT(object == NULL,
1158			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1159	}
1160	if (cow & MAP_DISABLE_SYNCER)
1161		protoeflags |= MAP_ENTRY_NOSYNC;
1162	if (cow & MAP_DISABLE_COREDUMP)
1163		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1164	if (cow & MAP_VN_WRITECOUNT)
1165		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1166	if (cow & MAP_INHERIT_SHARE)
1167		inheritance = VM_INHERIT_SHARE;
1168	else
1169		inheritance = VM_INHERIT_DEFAULT;
1170
1171	cred = NULL;
1172	KASSERT((object != kmem_object && object != kernel_object) ||
1173	    ((object == kmem_object || object == kernel_object) &&
1174		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1175	    ("kmem or kernel object and cow"));
1176	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1177		goto charged;
1178	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1179	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1180		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1181			return (KERN_RESOURCE_SHORTAGE);
1182		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1183		    object->cred == NULL,
1184		    ("OVERCOMMIT: vm_map_insert o %p", object));
1185		cred = curthread->td_ucred;
1186		crhold(cred);
1187		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1188			charge_prev_obj = TRUE;
1189	}
1190
1191charged:
1192	/* Expand the kernel pmap, if necessary. */
1193	if (map == kernel_map && end > kernel_vm_end)
1194		pmap_growkernel(end);
1195	if (object != NULL) {
1196		/*
1197		 * OBJ_ONEMAPPING must be cleared unless this mapping
1198		 * is trivially proven to be the only mapping for any
1199		 * of the object's pages.  (Object granularity
1200		 * reference counting is insufficient to recognize
1201		 * aliases with precision.)
1202		 */
1203		VM_OBJECT_WLOCK(object);
1204		if (object->ref_count > 1 || object->shadow_count != 0)
1205			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1206		VM_OBJECT_WUNLOCK(object);
1207	}
1208	else if ((prev_entry != &map->header) &&
1209		 (prev_entry->eflags == protoeflags) &&
1210		 (cow & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) == 0 &&
1211		 (prev_entry->end == start) &&
1212		 (prev_entry->wired_count == 0) &&
1213		 (prev_entry->cred == cred ||
1214		  (prev_entry->object.vm_object != NULL &&
1215		   (prev_entry->object.vm_object->cred == cred))) &&
1216		   vm_object_coalesce(prev_entry->object.vm_object,
1217		       prev_entry->offset,
1218		       (vm_size_t)(prev_entry->end - prev_entry->start),
1219		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1220		/*
1221		 * We were able to extend the object.  Determine if we
1222		 * can extend the previous map entry to include the
1223		 * new range as well.
1224		 */
1225		if ((prev_entry->inheritance == inheritance) &&
1226		    (prev_entry->protection == prot) &&
1227		    (prev_entry->max_protection == max)) {
1228			map->size += (end - prev_entry->end);
1229			prev_entry->end = end;
1230			vm_map_entry_resize_free(map, prev_entry);
1231			vm_map_simplify_entry(map, prev_entry);
1232			if (cred != NULL)
1233				crfree(cred);
1234			return (KERN_SUCCESS);
1235		}
1236
1237		/*
1238		 * If we can extend the object but cannot extend the
1239		 * map entry, we have to create a new map entry.  We
1240		 * must bump the ref count on the extended object to
1241		 * account for it.  object may be NULL.
1242		 */
1243		object = prev_entry->object.vm_object;
1244		offset = prev_entry->offset +
1245			(prev_entry->end - prev_entry->start);
1246		vm_object_reference(object);
1247		if (cred != NULL && object != NULL && object->cred != NULL &&
1248		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1249			/* Object already accounts for this uid. */
1250			crfree(cred);
1251			cred = NULL;
1252		}
1253	}
1254
1255	/*
1256	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1257	 * in things like the buffer map where we manage kva but do not manage
1258	 * backing objects.
1259	 */
1260
1261	/*
1262	 * Create a new entry
1263	 */
1264	new_entry = vm_map_entry_create(map);
1265	new_entry->start = start;
1266	new_entry->end = end;
1267	new_entry->cred = NULL;
1268
1269	new_entry->eflags = protoeflags;
1270	new_entry->object.vm_object = object;
1271	new_entry->offset = offset;
1272	new_entry->avail_ssize = 0;
1273
1274	new_entry->inheritance = inheritance;
1275	new_entry->protection = prot;
1276	new_entry->max_protection = max;
1277	new_entry->wired_count = 0;
1278	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1279	new_entry->next_read = OFF_TO_IDX(offset);
1280
1281	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1282	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1283	new_entry->cred = cred;
1284
1285	/*
1286	 * Insert the new entry into the list
1287	 */
1288	vm_map_entry_link(map, prev_entry, new_entry);
1289	map->size += new_entry->end - new_entry->start;
1290
1291	/*
1292	 * It may be possible to merge the new entry with the next and/or
1293	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1294	 * panic can result from merging such entries.
1295	 */
1296	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1297		vm_map_simplify_entry(map, new_entry);
1298
1299	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1300		vm_map_pmap_enter(map, start, prot,
1301				    object, OFF_TO_IDX(offset), end - start,
1302				    cow & MAP_PREFAULT_PARTIAL);
1303	}
1304
1305	return (KERN_SUCCESS);
1306}
1307
1308/*
1309 *	vm_map_findspace:
1310 *
1311 *	Find the first fit (lowest VM address) for "length" free bytes
1312 *	beginning at address >= start in the given map.
1313 *
1314 *	In a vm_map_entry, "adj_free" is the amount of free space
1315 *	adjacent (higher address) to this entry, and "max_free" is the
1316 *	maximum amount of contiguous free space in its subtree.  This
1317 *	allows finding a free region in one path down the tree, so
1318 *	O(log n) amortized with splay trees.
1319 *
1320 *	The map must be locked, and leaves it so.
1321 *
1322 *	Returns: 0 on success, and starting address in *addr,
1323 *		 1 if insufficient space.
1324 */
1325int
1326vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1327    vm_offset_t *addr)	/* OUT */
1328{
1329	vm_map_entry_t entry;
1330	vm_offset_t st;
1331
1332	/*
1333	 * Request must fit within min/max VM address and must avoid
1334	 * address wrap.
1335	 */
1336	if (start < map->min_offset)
1337		start = map->min_offset;
1338	if (start + length > map->max_offset || start + length < start)
1339		return (1);
1340
1341	/* Empty tree means wide open address space. */
1342	if (map->root == NULL) {
1343		*addr = start;
1344		return (0);
1345	}
1346
1347	/*
1348	 * After splay, if start comes before root node, then there
1349	 * must be a gap from start to the root.
1350	 */
1351	map->root = vm_map_entry_splay(start, map->root);
1352	if (start + length <= map->root->start) {
1353		*addr = start;
1354		return (0);
1355	}
1356
1357	/*
1358	 * Root is the last node that might begin its gap before
1359	 * start, and this is the last comparison where address
1360	 * wrap might be a problem.
1361	 */
1362	st = (start > map->root->end) ? start : map->root->end;
1363	if (length <= map->root->end + map->root->adj_free - st) {
1364		*addr = st;
1365		return (0);
1366	}
1367
1368	/* With max_free, can immediately tell if no solution. */
1369	entry = map->root->right;
1370	if (entry == NULL || length > entry->max_free)
1371		return (1);
1372
1373	/*
1374	 * Search the right subtree in the order: left subtree, root,
1375	 * right subtree (first fit).  The previous splay implies that
1376	 * all regions in the right subtree have addresses > start.
1377	 */
1378	while (entry != NULL) {
1379		if (entry->left != NULL && entry->left->max_free >= length)
1380			entry = entry->left;
1381		else if (entry->adj_free >= length) {
1382			*addr = entry->end;
1383			return (0);
1384		} else
1385			entry = entry->right;
1386	}
1387
1388	/* Can't get here, so panic if we do. */
1389	panic("vm_map_findspace: max_free corrupt");
1390}
1391
1392int
1393vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1394    vm_offset_t start, vm_size_t length, vm_prot_t prot,
1395    vm_prot_t max, int cow)
1396{
1397	vm_offset_t end;
1398	int result;
1399
1400	end = start + length;
1401	vm_map_lock(map);
1402	VM_MAP_RANGE_CHECK(map, start, end);
1403	(void) vm_map_delete(map, start, end);
1404	result = vm_map_insert(map, object, offset, start, end, prot,
1405	    max, cow);
1406	vm_map_unlock(map);
1407	return (result);
1408}
1409
1410/*
1411 *	vm_map_find finds an unallocated region in the target address
1412 *	map with the given length.  The search is defined to be
1413 *	first-fit from the specified address; the region found is
1414 *	returned in the same parameter.
1415 *
1416 *	If object is non-NULL, ref count must be bumped by caller
1417 *	prior to making call to account for the new entry.
1418 */
1419int
1420vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1421	    vm_offset_t *addr,	/* IN/OUT */
1422	    vm_size_t length, vm_offset_t max_addr, int find_space,
1423	    vm_prot_t prot, vm_prot_t max, int cow)
1424{
1425	vm_offset_t alignment, initial_addr, start;
1426	int result;
1427
1428	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1429	    (object->flags & OBJ_COLORED) == 0))
1430		find_space = VMFS_ANY_SPACE;
1431	if (find_space >> 8 != 0) {
1432		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1433		alignment = (vm_offset_t)1 << (find_space >> 8);
1434	} else
1435		alignment = 0;
1436	initial_addr = *addr;
1437again:
1438	start = initial_addr;
1439	vm_map_lock(map);
1440	do {
1441		if (find_space != VMFS_NO_SPACE) {
1442			if (vm_map_findspace(map, start, length, addr) ||
1443			    (max_addr != 0 && *addr + length > max_addr)) {
1444				vm_map_unlock(map);
1445				if (find_space == VMFS_OPTIMAL_SPACE) {
1446					find_space = VMFS_ANY_SPACE;
1447					goto again;
1448				}
1449				return (KERN_NO_SPACE);
1450			}
1451			switch (find_space) {
1452			case VMFS_SUPER_SPACE:
1453			case VMFS_OPTIMAL_SPACE:
1454				pmap_align_superpage(object, offset, addr,
1455				    length);
1456				break;
1457			case VMFS_ANY_SPACE:
1458				break;
1459			default:
1460				if ((*addr & (alignment - 1)) != 0) {
1461					*addr &= ~(alignment - 1);
1462					*addr += alignment;
1463				}
1464				break;
1465			}
1466
1467			start = *addr;
1468		}
1469		result = vm_map_insert(map, object, offset, start, start +
1470		    length, prot, max, cow);
1471	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1472	    find_space != VMFS_ANY_SPACE);
1473	vm_map_unlock(map);
1474	return (result);
1475}
1476
1477/*
1478 *	vm_map_simplify_entry:
1479 *
1480 *	Simplify the given map entry by merging with either neighbor.  This
1481 *	routine also has the ability to merge with both neighbors.
1482 *
1483 *	The map must be locked.
1484 *
1485 *	This routine guarentees that the passed entry remains valid (though
1486 *	possibly extended).  When merging, this routine may delete one or
1487 *	both neighbors.
1488 */
1489void
1490vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1491{
1492	vm_map_entry_t next, prev;
1493	vm_size_t prevsize, esize;
1494
1495	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1496		return;
1497
1498	prev = entry->prev;
1499	if (prev != &map->header) {
1500		prevsize = prev->end - prev->start;
1501		if ( (prev->end == entry->start) &&
1502		     (prev->object.vm_object == entry->object.vm_object) &&
1503		     (!prev->object.vm_object ||
1504			(prev->offset + prevsize == entry->offset)) &&
1505		     (prev->eflags == entry->eflags) &&
1506		     (prev->protection == entry->protection) &&
1507		     (prev->max_protection == entry->max_protection) &&
1508		     (prev->inheritance == entry->inheritance) &&
1509		     (prev->wired_count == entry->wired_count) &&
1510		     (prev->cred == entry->cred)) {
1511			vm_map_entry_unlink(map, prev);
1512			entry->start = prev->start;
1513			entry->offset = prev->offset;
1514			if (entry->prev != &map->header)
1515				vm_map_entry_resize_free(map, entry->prev);
1516
1517			/*
1518			 * If the backing object is a vnode object,
1519			 * vm_object_deallocate() calls vrele().
1520			 * However, vrele() does not lock the vnode
1521			 * because the vnode has additional
1522			 * references.  Thus, the map lock can be kept
1523			 * without causing a lock-order reversal with
1524			 * the vnode lock.
1525			 *
1526			 * Since we count the number of virtual page
1527			 * mappings in object->un_pager.vnp.writemappings,
1528			 * the writemappings value should not be adjusted
1529			 * when the entry is disposed of.
1530			 */
1531			if (prev->object.vm_object)
1532				vm_object_deallocate(prev->object.vm_object);
1533			if (prev->cred != NULL)
1534				crfree(prev->cred);
1535			vm_map_entry_dispose(map, prev);
1536		}
1537	}
1538
1539	next = entry->next;
1540	if (next != &map->header) {
1541		esize = entry->end - entry->start;
1542		if ((entry->end == next->start) &&
1543		    (next->object.vm_object == entry->object.vm_object) &&
1544		     (!entry->object.vm_object ||
1545			(entry->offset + esize == next->offset)) &&
1546		    (next->eflags == entry->eflags) &&
1547		    (next->protection == entry->protection) &&
1548		    (next->max_protection == entry->max_protection) &&
1549		    (next->inheritance == entry->inheritance) &&
1550		    (next->wired_count == entry->wired_count) &&
1551		    (next->cred == entry->cred)) {
1552			vm_map_entry_unlink(map, next);
1553			entry->end = next->end;
1554			vm_map_entry_resize_free(map, entry);
1555
1556			/*
1557			 * See comment above.
1558			 */
1559			if (next->object.vm_object)
1560				vm_object_deallocate(next->object.vm_object);
1561			if (next->cred != NULL)
1562				crfree(next->cred);
1563			vm_map_entry_dispose(map, next);
1564		}
1565	}
1566}
1567/*
1568 *	vm_map_clip_start:	[ internal use only ]
1569 *
1570 *	Asserts that the given entry begins at or after
1571 *	the specified address; if necessary,
1572 *	it splits the entry into two.
1573 */
1574#define vm_map_clip_start(map, entry, startaddr) \
1575{ \
1576	if (startaddr > entry->start) \
1577		_vm_map_clip_start(map, entry, startaddr); \
1578}
1579
1580/*
1581 *	This routine is called only when it is known that
1582 *	the entry must be split.
1583 */
1584static void
1585_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1586{
1587	vm_map_entry_t new_entry;
1588
1589	VM_MAP_ASSERT_LOCKED(map);
1590
1591	/*
1592	 * Split off the front portion -- note that we must insert the new
1593	 * entry BEFORE this one, so that this entry has the specified
1594	 * starting address.
1595	 */
1596	vm_map_simplify_entry(map, entry);
1597
1598	/*
1599	 * If there is no object backing this entry, we might as well create
1600	 * one now.  If we defer it, an object can get created after the map
1601	 * is clipped, and individual objects will be created for the split-up
1602	 * map.  This is a bit of a hack, but is also about the best place to
1603	 * put this improvement.
1604	 */
1605	if (entry->object.vm_object == NULL && !map->system_map) {
1606		vm_object_t object;
1607		object = vm_object_allocate(OBJT_DEFAULT,
1608				atop(entry->end - entry->start));
1609		entry->object.vm_object = object;
1610		entry->offset = 0;
1611		if (entry->cred != NULL) {
1612			object->cred = entry->cred;
1613			object->charge = entry->end - entry->start;
1614			entry->cred = NULL;
1615		}
1616	} else if (entry->object.vm_object != NULL &&
1617		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1618		   entry->cred != NULL) {
1619		VM_OBJECT_WLOCK(entry->object.vm_object);
1620		KASSERT(entry->object.vm_object->cred == NULL,
1621		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1622		entry->object.vm_object->cred = entry->cred;
1623		entry->object.vm_object->charge = entry->end - entry->start;
1624		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1625		entry->cred = NULL;
1626	}
1627
1628	new_entry = vm_map_entry_create(map);
1629	*new_entry = *entry;
1630
1631	new_entry->end = start;
1632	entry->offset += (start - entry->start);
1633	entry->start = start;
1634	if (new_entry->cred != NULL)
1635		crhold(entry->cred);
1636
1637	vm_map_entry_link(map, entry->prev, new_entry);
1638
1639	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1640		vm_object_reference(new_entry->object.vm_object);
1641		/*
1642		 * The object->un_pager.vnp.writemappings for the
1643		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1644		 * kept as is here.  The virtual pages are
1645		 * re-distributed among the clipped entries, so the sum is
1646		 * left the same.
1647		 */
1648	}
1649}
1650
1651/*
1652 *	vm_map_clip_end:	[ internal use only ]
1653 *
1654 *	Asserts that the given entry ends at or before
1655 *	the specified address; if necessary,
1656 *	it splits the entry into two.
1657 */
1658#define vm_map_clip_end(map, entry, endaddr) \
1659{ \
1660	if ((endaddr) < (entry->end)) \
1661		_vm_map_clip_end((map), (entry), (endaddr)); \
1662}
1663
1664/*
1665 *	This routine is called only when it is known that
1666 *	the entry must be split.
1667 */
1668static void
1669_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1670{
1671	vm_map_entry_t new_entry;
1672
1673	VM_MAP_ASSERT_LOCKED(map);
1674
1675	/*
1676	 * If there is no object backing this entry, we might as well create
1677	 * one now.  If we defer it, an object can get created after the map
1678	 * is clipped, and individual objects will be created for the split-up
1679	 * map.  This is a bit of a hack, but is also about the best place to
1680	 * put this improvement.
1681	 */
1682	if (entry->object.vm_object == NULL && !map->system_map) {
1683		vm_object_t object;
1684		object = vm_object_allocate(OBJT_DEFAULT,
1685				atop(entry->end - entry->start));
1686		entry->object.vm_object = object;
1687		entry->offset = 0;
1688		if (entry->cred != NULL) {
1689			object->cred = entry->cred;
1690			object->charge = entry->end - entry->start;
1691			entry->cred = NULL;
1692		}
1693	} else if (entry->object.vm_object != NULL &&
1694		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1695		   entry->cred != NULL) {
1696		VM_OBJECT_WLOCK(entry->object.vm_object);
1697		KASSERT(entry->object.vm_object->cred == NULL,
1698		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1699		entry->object.vm_object->cred = entry->cred;
1700		entry->object.vm_object->charge = entry->end - entry->start;
1701		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1702		entry->cred = NULL;
1703	}
1704
1705	/*
1706	 * Create a new entry and insert it AFTER the specified entry
1707	 */
1708	new_entry = vm_map_entry_create(map);
1709	*new_entry = *entry;
1710
1711	new_entry->start = entry->end = end;
1712	new_entry->offset += (end - entry->start);
1713	if (new_entry->cred != NULL)
1714		crhold(entry->cred);
1715
1716	vm_map_entry_link(map, entry, new_entry);
1717
1718	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1719		vm_object_reference(new_entry->object.vm_object);
1720	}
1721}
1722
1723/*
1724 *	vm_map_submap:		[ kernel use only ]
1725 *
1726 *	Mark the given range as handled by a subordinate map.
1727 *
1728 *	This range must have been created with vm_map_find,
1729 *	and no other operations may have been performed on this
1730 *	range prior to calling vm_map_submap.
1731 *
1732 *	Only a limited number of operations can be performed
1733 *	within this rage after calling vm_map_submap:
1734 *		vm_fault
1735 *	[Don't try vm_map_copy!]
1736 *
1737 *	To remove a submapping, one must first remove the
1738 *	range from the superior map, and then destroy the
1739 *	submap (if desired).  [Better yet, don't try it.]
1740 */
1741int
1742vm_map_submap(
1743	vm_map_t map,
1744	vm_offset_t start,
1745	vm_offset_t end,
1746	vm_map_t submap)
1747{
1748	vm_map_entry_t entry;
1749	int result = KERN_INVALID_ARGUMENT;
1750
1751	vm_map_lock(map);
1752
1753	VM_MAP_RANGE_CHECK(map, start, end);
1754
1755	if (vm_map_lookup_entry(map, start, &entry)) {
1756		vm_map_clip_start(map, entry, start);
1757	} else
1758		entry = entry->next;
1759
1760	vm_map_clip_end(map, entry, end);
1761
1762	if ((entry->start == start) && (entry->end == end) &&
1763	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1764	    (entry->object.vm_object == NULL)) {
1765		entry->object.sub_map = submap;
1766		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1767		result = KERN_SUCCESS;
1768	}
1769	vm_map_unlock(map);
1770
1771	return (result);
1772}
1773
1774/*
1775 * The maximum number of pages to map
1776 */
1777#define	MAX_INIT_PT	96
1778
1779/*
1780 *	vm_map_pmap_enter:
1781 *
1782 *	Preload read-only mappings for the specified object's resident pages
1783 *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1784 *	the resident pages within the address range [addr, addr + ulmin(size,
1785 *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1786 *	the specified address range are mapped.  This eliminates many soft
1787 *	faults on process startup and immediately after an mmap(2).  Because
1788 *	these are speculative mappings, cached pages are not reactivated and
1789 *	mapped.
1790 */
1791void
1792vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1793    vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1794{
1795	vm_offset_t start;
1796	vm_page_t p, p_start;
1797	vm_pindex_t psize, tmpidx;
1798
1799	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1800		return;
1801	VM_OBJECT_RLOCK(object);
1802	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1803		VM_OBJECT_RUNLOCK(object);
1804		VM_OBJECT_WLOCK(object);
1805		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1806			pmap_object_init_pt(map->pmap, addr, object, pindex,
1807			    size);
1808			VM_OBJECT_WUNLOCK(object);
1809			return;
1810		}
1811		VM_OBJECT_LOCK_DOWNGRADE(object);
1812	}
1813
1814	psize = atop(size);
1815	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1816		psize = MAX_INIT_PT;
1817	if (psize + pindex > object->size) {
1818		if (object->size < pindex) {
1819			VM_OBJECT_RUNLOCK(object);
1820			return;
1821		}
1822		psize = object->size - pindex;
1823	}
1824
1825	start = 0;
1826	p_start = NULL;
1827
1828	p = vm_page_find_least(object, pindex);
1829	/*
1830	 * Assert: the variable p is either (1) the page with the
1831	 * least pindex greater than or equal to the parameter pindex
1832	 * or (2) NULL.
1833	 */
1834	for (;
1835	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1836	     p = TAILQ_NEXT(p, listq)) {
1837		/*
1838		 * don't allow an madvise to blow away our really
1839		 * free pages allocating pv entries.
1840		 */
1841		if ((flags & MAP_PREFAULT_MADVISE) &&
1842		    cnt.v_free_count < cnt.v_free_reserved) {
1843			psize = tmpidx;
1844			break;
1845		}
1846		if (p->valid == VM_PAGE_BITS_ALL) {
1847			if (p_start == NULL) {
1848				start = addr + ptoa(tmpidx);
1849				p_start = p;
1850			}
1851		} else if (p_start != NULL) {
1852			pmap_enter_object(map->pmap, start, addr +
1853			    ptoa(tmpidx), p_start, prot);
1854			p_start = NULL;
1855		}
1856	}
1857	if (p_start != NULL)
1858		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1859		    p_start, prot);
1860	VM_OBJECT_RUNLOCK(object);
1861}
1862
1863/*
1864 *	vm_map_protect:
1865 *
1866 *	Sets the protection of the specified address
1867 *	region in the target map.  If "set_max" is
1868 *	specified, the maximum protection is to be set;
1869 *	otherwise, only the current protection is affected.
1870 */
1871int
1872vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1873	       vm_prot_t new_prot, boolean_t set_max)
1874{
1875	vm_map_entry_t current, entry;
1876	vm_object_t obj;
1877	struct ucred *cred;
1878	vm_prot_t old_prot;
1879
1880	vm_map_lock(map);
1881
1882	VM_MAP_RANGE_CHECK(map, start, end);
1883
1884	if (vm_map_lookup_entry(map, start, &entry)) {
1885		vm_map_clip_start(map, entry, start);
1886	} else {
1887		entry = entry->next;
1888	}
1889
1890	/*
1891	 * Make a first pass to check for protection violations.
1892	 */
1893	current = entry;
1894	while ((current != &map->header) && (current->start < end)) {
1895		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1896			vm_map_unlock(map);
1897			return (KERN_INVALID_ARGUMENT);
1898		}
1899		if ((new_prot & current->max_protection) != new_prot) {
1900			vm_map_unlock(map);
1901			return (KERN_PROTECTION_FAILURE);
1902		}
1903		current = current->next;
1904	}
1905
1906
1907	/*
1908	 * Do an accounting pass for private read-only mappings that
1909	 * now will do cow due to allowed write (e.g. debugger sets
1910	 * breakpoint on text segment)
1911	 */
1912	for (current = entry; (current != &map->header) &&
1913	     (current->start < end); current = current->next) {
1914
1915		vm_map_clip_end(map, current, end);
1916
1917		if (set_max ||
1918		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1919		    ENTRY_CHARGED(current)) {
1920			continue;
1921		}
1922
1923		cred = curthread->td_ucred;
1924		obj = current->object.vm_object;
1925
1926		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1927			if (!swap_reserve(current->end - current->start)) {
1928				vm_map_unlock(map);
1929				return (KERN_RESOURCE_SHORTAGE);
1930			}
1931			crhold(cred);
1932			current->cred = cred;
1933			continue;
1934		}
1935
1936		VM_OBJECT_WLOCK(obj);
1937		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1938			VM_OBJECT_WUNLOCK(obj);
1939			continue;
1940		}
1941
1942		/*
1943		 * Charge for the whole object allocation now, since
1944		 * we cannot distinguish between non-charged and
1945		 * charged clipped mapping of the same object later.
1946		 */
1947		KASSERT(obj->charge == 0,
1948		    ("vm_map_protect: object %p overcharged\n", obj));
1949		if (!swap_reserve(ptoa(obj->size))) {
1950			VM_OBJECT_WUNLOCK(obj);
1951			vm_map_unlock(map);
1952			return (KERN_RESOURCE_SHORTAGE);
1953		}
1954
1955		crhold(cred);
1956		obj->cred = cred;
1957		obj->charge = ptoa(obj->size);
1958		VM_OBJECT_WUNLOCK(obj);
1959	}
1960
1961	/*
1962	 * Go back and fix up protections. [Note that clipping is not
1963	 * necessary the second time.]
1964	 */
1965	current = entry;
1966	while ((current != &map->header) && (current->start < end)) {
1967		old_prot = current->protection;
1968
1969		if (set_max)
1970			current->protection =
1971			    (current->max_protection = new_prot) &
1972			    old_prot;
1973		else
1974			current->protection = new_prot;
1975
1976		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1977		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1978		    (current->protection & VM_PROT_WRITE) != 0 &&
1979		    (old_prot & VM_PROT_WRITE) == 0) {
1980			vm_fault_copy_entry(map, map, current, current, NULL);
1981		}
1982
1983		/*
1984		 * When restricting access, update the physical map.  Worry
1985		 * about copy-on-write here.
1986		 */
1987		if ((old_prot & ~current->protection) != 0) {
1988#define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1989							VM_PROT_ALL)
1990			pmap_protect(map->pmap, current->start,
1991			    current->end,
1992			    current->protection & MASK(current));
1993#undef	MASK
1994		}
1995		vm_map_simplify_entry(map, current);
1996		current = current->next;
1997	}
1998	vm_map_unlock(map);
1999	return (KERN_SUCCESS);
2000}
2001
2002/*
2003 *	vm_map_madvise:
2004 *
2005 *	This routine traverses a processes map handling the madvise
2006 *	system call.  Advisories are classified as either those effecting
2007 *	the vm_map_entry structure, or those effecting the underlying
2008 *	objects.
2009 */
2010int
2011vm_map_madvise(
2012	vm_map_t map,
2013	vm_offset_t start,
2014	vm_offset_t end,
2015	int behav)
2016{
2017	vm_map_entry_t current, entry;
2018	int modify_map = 0;
2019
2020	/*
2021	 * Some madvise calls directly modify the vm_map_entry, in which case
2022	 * we need to use an exclusive lock on the map and we need to perform
2023	 * various clipping operations.  Otherwise we only need a read-lock
2024	 * on the map.
2025	 */
2026	switch(behav) {
2027	case MADV_NORMAL:
2028	case MADV_SEQUENTIAL:
2029	case MADV_RANDOM:
2030	case MADV_NOSYNC:
2031	case MADV_AUTOSYNC:
2032	case MADV_NOCORE:
2033	case MADV_CORE:
2034		modify_map = 1;
2035		vm_map_lock(map);
2036		break;
2037	case MADV_WILLNEED:
2038	case MADV_DONTNEED:
2039	case MADV_FREE:
2040		vm_map_lock_read(map);
2041		break;
2042	default:
2043		return (KERN_INVALID_ARGUMENT);
2044	}
2045
2046	/*
2047	 * Locate starting entry and clip if necessary.
2048	 */
2049	VM_MAP_RANGE_CHECK(map, start, end);
2050
2051	if (vm_map_lookup_entry(map, start, &entry)) {
2052		if (modify_map)
2053			vm_map_clip_start(map, entry, start);
2054	} else {
2055		entry = entry->next;
2056	}
2057
2058	if (modify_map) {
2059		/*
2060		 * madvise behaviors that are implemented in the vm_map_entry.
2061		 *
2062		 * We clip the vm_map_entry so that behavioral changes are
2063		 * limited to the specified address range.
2064		 */
2065		for (current = entry;
2066		     (current != &map->header) && (current->start < end);
2067		     current = current->next
2068		) {
2069			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2070				continue;
2071
2072			vm_map_clip_end(map, current, end);
2073
2074			switch (behav) {
2075			case MADV_NORMAL:
2076				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2077				break;
2078			case MADV_SEQUENTIAL:
2079				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2080				break;
2081			case MADV_RANDOM:
2082				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2083				break;
2084			case MADV_NOSYNC:
2085				current->eflags |= MAP_ENTRY_NOSYNC;
2086				break;
2087			case MADV_AUTOSYNC:
2088				current->eflags &= ~MAP_ENTRY_NOSYNC;
2089				break;
2090			case MADV_NOCORE:
2091				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2092				break;
2093			case MADV_CORE:
2094				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2095				break;
2096			default:
2097				break;
2098			}
2099			vm_map_simplify_entry(map, current);
2100		}
2101		vm_map_unlock(map);
2102	} else {
2103		vm_pindex_t pstart, pend;
2104
2105		/*
2106		 * madvise behaviors that are implemented in the underlying
2107		 * vm_object.
2108		 *
2109		 * Since we don't clip the vm_map_entry, we have to clip
2110		 * the vm_object pindex and count.
2111		 */
2112		for (current = entry;
2113		     (current != &map->header) && (current->start < end);
2114		     current = current->next
2115		) {
2116			vm_offset_t useEnd, useStart;
2117
2118			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2119				continue;
2120
2121			pstart = OFF_TO_IDX(current->offset);
2122			pend = pstart + atop(current->end - current->start);
2123			useStart = current->start;
2124			useEnd = current->end;
2125
2126			if (current->start < start) {
2127				pstart += atop(start - current->start);
2128				useStart = start;
2129			}
2130			if (current->end > end) {
2131				pend -= atop(current->end - end);
2132				useEnd = end;
2133			}
2134
2135			if (pstart >= pend)
2136				continue;
2137
2138			/*
2139			 * Perform the pmap_advise() before clearing
2140			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2141			 * concurrent pmap operation, such as pmap_remove(),
2142			 * could clear a reference in the pmap and set
2143			 * PGA_REFERENCED on the page before the pmap_advise()
2144			 * had completed.  Consequently, the page would appear
2145			 * referenced based upon an old reference that
2146			 * occurred before this pmap_advise() ran.
2147			 */
2148			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2149				pmap_advise(map->pmap, useStart, useEnd,
2150				    behav);
2151
2152			vm_object_madvise(current->object.vm_object, pstart,
2153			    pend, behav);
2154			if (behav == MADV_WILLNEED) {
2155				vm_map_pmap_enter(map,
2156				    useStart,
2157				    current->protection,
2158				    current->object.vm_object,
2159				    pstart,
2160				    ptoa(pend - pstart),
2161				    MAP_PREFAULT_MADVISE
2162				);
2163			}
2164		}
2165		vm_map_unlock_read(map);
2166	}
2167	return (0);
2168}
2169
2170
2171/*
2172 *	vm_map_inherit:
2173 *
2174 *	Sets the inheritance of the specified address
2175 *	range in the target map.  Inheritance
2176 *	affects how the map will be shared with
2177 *	child maps at the time of vmspace_fork.
2178 */
2179int
2180vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2181	       vm_inherit_t new_inheritance)
2182{
2183	vm_map_entry_t entry;
2184	vm_map_entry_t temp_entry;
2185
2186	switch (new_inheritance) {
2187	case VM_INHERIT_NONE:
2188	case VM_INHERIT_COPY:
2189	case VM_INHERIT_SHARE:
2190		break;
2191	default:
2192		return (KERN_INVALID_ARGUMENT);
2193	}
2194	vm_map_lock(map);
2195	VM_MAP_RANGE_CHECK(map, start, end);
2196	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2197		entry = temp_entry;
2198		vm_map_clip_start(map, entry, start);
2199	} else
2200		entry = temp_entry->next;
2201	while ((entry != &map->header) && (entry->start < end)) {
2202		vm_map_clip_end(map, entry, end);
2203		entry->inheritance = new_inheritance;
2204		vm_map_simplify_entry(map, entry);
2205		entry = entry->next;
2206	}
2207	vm_map_unlock(map);
2208	return (KERN_SUCCESS);
2209}
2210
2211/*
2212 *	vm_map_unwire:
2213 *
2214 *	Implements both kernel and user unwiring.
2215 */
2216int
2217vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2218    int flags)
2219{
2220	vm_map_entry_t entry, first_entry, tmp_entry;
2221	vm_offset_t saved_start;
2222	unsigned int last_timestamp;
2223	int rv;
2224	boolean_t need_wakeup, result, user_unwire;
2225
2226	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2227	vm_map_lock(map);
2228	VM_MAP_RANGE_CHECK(map, start, end);
2229	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2230		if (flags & VM_MAP_WIRE_HOLESOK)
2231			first_entry = first_entry->next;
2232		else {
2233			vm_map_unlock(map);
2234			return (KERN_INVALID_ADDRESS);
2235		}
2236	}
2237	last_timestamp = map->timestamp;
2238	entry = first_entry;
2239	while (entry != &map->header && entry->start < end) {
2240		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2241			/*
2242			 * We have not yet clipped the entry.
2243			 */
2244			saved_start = (start >= entry->start) ? start :
2245			    entry->start;
2246			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2247			if (vm_map_unlock_and_wait(map, 0)) {
2248				/*
2249				 * Allow interruption of user unwiring?
2250				 */
2251			}
2252			vm_map_lock(map);
2253			if (last_timestamp+1 != map->timestamp) {
2254				/*
2255				 * Look again for the entry because the map was
2256				 * modified while it was unlocked.
2257				 * Specifically, the entry may have been
2258				 * clipped, merged, or deleted.
2259				 */
2260				if (!vm_map_lookup_entry(map, saved_start,
2261				    &tmp_entry)) {
2262					if (flags & VM_MAP_WIRE_HOLESOK)
2263						tmp_entry = tmp_entry->next;
2264					else {
2265						if (saved_start == start) {
2266							/*
2267							 * First_entry has been deleted.
2268							 */
2269							vm_map_unlock(map);
2270							return (KERN_INVALID_ADDRESS);
2271						}
2272						end = saved_start;
2273						rv = KERN_INVALID_ADDRESS;
2274						goto done;
2275					}
2276				}
2277				if (entry == first_entry)
2278					first_entry = tmp_entry;
2279				else
2280					first_entry = NULL;
2281				entry = tmp_entry;
2282			}
2283			last_timestamp = map->timestamp;
2284			continue;
2285		}
2286		vm_map_clip_start(map, entry, start);
2287		vm_map_clip_end(map, entry, end);
2288		/*
2289		 * Mark the entry in case the map lock is released.  (See
2290		 * above.)
2291		 */
2292		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2293		entry->wiring_thread = curthread;
2294		/*
2295		 * Check the map for holes in the specified region.
2296		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2297		 */
2298		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2299		    (entry->end < end && (entry->next == &map->header ||
2300		    entry->next->start > entry->end))) {
2301			end = entry->end;
2302			rv = KERN_INVALID_ADDRESS;
2303			goto done;
2304		}
2305		/*
2306		 * If system unwiring, require that the entry is system wired.
2307		 */
2308		if (!user_unwire &&
2309		    vm_map_entry_system_wired_count(entry) == 0) {
2310			end = entry->end;
2311			rv = KERN_INVALID_ARGUMENT;
2312			goto done;
2313		}
2314		entry = entry->next;
2315	}
2316	rv = KERN_SUCCESS;
2317done:
2318	need_wakeup = FALSE;
2319	if (first_entry == NULL) {
2320		result = vm_map_lookup_entry(map, start, &first_entry);
2321		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2322			first_entry = first_entry->next;
2323		else
2324			KASSERT(result, ("vm_map_unwire: lookup failed"));
2325	}
2326	for (entry = first_entry; entry != &map->header && entry->start < end;
2327	    entry = entry->next) {
2328		/*
2329		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2330		 * space in the unwired region could have been mapped
2331		 * while the map lock was dropped for draining
2332		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2333		 * could be simultaneously wiring this new mapping
2334		 * entry.  Detect these cases and skip any entries
2335		 * marked as in transition by us.
2336		 */
2337		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2338		    entry->wiring_thread != curthread) {
2339			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2340			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2341			continue;
2342		}
2343
2344		if (rv == KERN_SUCCESS && (!user_unwire ||
2345		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2346			if (user_unwire)
2347				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2348			entry->wired_count--;
2349			if (entry->wired_count == 0) {
2350				/*
2351				 * Retain the map lock.
2352				 */
2353				vm_fault_unwire(map, entry->start, entry->end,
2354				    entry->object.vm_object != NULL &&
2355				    (entry->object.vm_object->flags &
2356				    OBJ_FICTITIOUS) != 0);
2357			}
2358		}
2359		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2360		    ("vm_map_unwire: in-transition flag missing"));
2361		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2362		entry->wiring_thread = NULL;
2363		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2364			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2365			need_wakeup = TRUE;
2366		}
2367		vm_map_simplify_entry(map, entry);
2368	}
2369	vm_map_unlock(map);
2370	if (need_wakeup)
2371		vm_map_wakeup(map);
2372	return (rv);
2373}
2374
2375/*
2376 *	vm_map_wire:
2377 *
2378 *	Implements both kernel and user wiring.
2379 */
2380int
2381vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2382    int flags)
2383{
2384	vm_map_entry_t entry, first_entry, tmp_entry;
2385	vm_offset_t saved_end, saved_start;
2386	unsigned int last_timestamp;
2387	int rv;
2388	boolean_t fictitious, need_wakeup, result, user_wire;
2389	vm_prot_t prot;
2390
2391	prot = 0;
2392	if (flags & VM_MAP_WIRE_WRITE)
2393		prot |= VM_PROT_WRITE;
2394	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2395	vm_map_lock(map);
2396	VM_MAP_RANGE_CHECK(map, start, end);
2397	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2398		if (flags & VM_MAP_WIRE_HOLESOK)
2399			first_entry = first_entry->next;
2400		else {
2401			vm_map_unlock(map);
2402			return (KERN_INVALID_ADDRESS);
2403		}
2404	}
2405	last_timestamp = map->timestamp;
2406	entry = first_entry;
2407	while (entry != &map->header && entry->start < end) {
2408		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2409			/*
2410			 * We have not yet clipped the entry.
2411			 */
2412			saved_start = (start >= entry->start) ? start :
2413			    entry->start;
2414			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2415			if (vm_map_unlock_and_wait(map, 0)) {
2416				/*
2417				 * Allow interruption of user wiring?
2418				 */
2419			}
2420			vm_map_lock(map);
2421			if (last_timestamp + 1 != map->timestamp) {
2422				/*
2423				 * Look again for the entry because the map was
2424				 * modified while it was unlocked.
2425				 * Specifically, the entry may have been
2426				 * clipped, merged, or deleted.
2427				 */
2428				if (!vm_map_lookup_entry(map, saved_start,
2429				    &tmp_entry)) {
2430					if (flags & VM_MAP_WIRE_HOLESOK)
2431						tmp_entry = tmp_entry->next;
2432					else {
2433						if (saved_start == start) {
2434							/*
2435							 * first_entry has been deleted.
2436							 */
2437							vm_map_unlock(map);
2438							return (KERN_INVALID_ADDRESS);
2439						}
2440						end = saved_start;
2441						rv = KERN_INVALID_ADDRESS;
2442						goto done;
2443					}
2444				}
2445				if (entry == first_entry)
2446					first_entry = tmp_entry;
2447				else
2448					first_entry = NULL;
2449				entry = tmp_entry;
2450			}
2451			last_timestamp = map->timestamp;
2452			continue;
2453		}
2454		vm_map_clip_start(map, entry, start);
2455		vm_map_clip_end(map, entry, end);
2456		/*
2457		 * Mark the entry in case the map lock is released.  (See
2458		 * above.)
2459		 */
2460		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2461		entry->wiring_thread = curthread;
2462		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2463		    || (entry->protection & prot) != prot) {
2464			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2465			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2466				end = entry->end;
2467				rv = KERN_INVALID_ADDRESS;
2468				goto done;
2469			}
2470			goto next_entry;
2471		}
2472		if (entry->wired_count == 0) {
2473			entry->wired_count++;
2474			saved_start = entry->start;
2475			saved_end = entry->end;
2476			fictitious = entry->object.vm_object != NULL &&
2477			    (entry->object.vm_object->flags &
2478			    OBJ_FICTITIOUS) != 0;
2479			/*
2480			 * Release the map lock, relying on the in-transition
2481			 * mark.  Mark the map busy for fork.
2482			 */
2483			vm_map_busy(map);
2484			vm_map_unlock(map);
2485			rv = vm_fault_wire(map, saved_start, saved_end,
2486			    fictitious);
2487			vm_map_lock(map);
2488			vm_map_unbusy(map);
2489			if (last_timestamp + 1 != map->timestamp) {
2490				/*
2491				 * Look again for the entry because the map was
2492				 * modified while it was unlocked.  The entry
2493				 * may have been clipped, but NOT merged or
2494				 * deleted.
2495				 */
2496				result = vm_map_lookup_entry(map, saved_start,
2497				    &tmp_entry);
2498				KASSERT(result, ("vm_map_wire: lookup failed"));
2499				if (entry == first_entry)
2500					first_entry = tmp_entry;
2501				else
2502					first_entry = NULL;
2503				entry = tmp_entry;
2504				while (entry->end < saved_end) {
2505					if (rv != KERN_SUCCESS) {
2506						KASSERT(entry->wired_count == 1,
2507						    ("vm_map_wire: bad count"));
2508						entry->wired_count = -1;
2509					}
2510					entry = entry->next;
2511				}
2512			}
2513			last_timestamp = map->timestamp;
2514			if (rv != KERN_SUCCESS) {
2515				KASSERT(entry->wired_count == 1,
2516				    ("vm_map_wire: bad count"));
2517				/*
2518				 * Assign an out-of-range value to represent
2519				 * the failure to wire this entry.
2520				 */
2521				entry->wired_count = -1;
2522				end = entry->end;
2523				goto done;
2524			}
2525		} else if (!user_wire ||
2526			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2527			entry->wired_count++;
2528		}
2529		/*
2530		 * Check the map for holes in the specified region.
2531		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2532		 */
2533	next_entry:
2534		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2535		    (entry->end < end && (entry->next == &map->header ||
2536		    entry->next->start > entry->end))) {
2537			end = entry->end;
2538			rv = KERN_INVALID_ADDRESS;
2539			goto done;
2540		}
2541		entry = entry->next;
2542	}
2543	rv = KERN_SUCCESS;
2544done:
2545	need_wakeup = FALSE;
2546	if (first_entry == NULL) {
2547		result = vm_map_lookup_entry(map, start, &first_entry);
2548		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2549			first_entry = first_entry->next;
2550		else
2551			KASSERT(result, ("vm_map_wire: lookup failed"));
2552	}
2553	for (entry = first_entry; entry != &map->header && entry->start < end;
2554	    entry = entry->next) {
2555		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2556			goto next_entry_done;
2557
2558		/*
2559		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2560		 * space in the unwired region could have been mapped
2561		 * while the map lock was dropped for faulting in the
2562		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2563		 * Moreover, another thread could be simultaneously
2564		 * wiring this new mapping entry.  Detect these cases
2565		 * and skip any entries marked as in transition by us.
2566		 */
2567		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2568		    entry->wiring_thread != curthread) {
2569			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2570			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2571			continue;
2572		}
2573
2574		if (rv == KERN_SUCCESS) {
2575			if (user_wire)
2576				entry->eflags |= MAP_ENTRY_USER_WIRED;
2577		} else if (entry->wired_count == -1) {
2578			/*
2579			 * Wiring failed on this entry.  Thus, unwiring is
2580			 * unnecessary.
2581			 */
2582			entry->wired_count = 0;
2583		} else {
2584			if (!user_wire ||
2585			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2586				entry->wired_count--;
2587			if (entry->wired_count == 0) {
2588				/*
2589				 * Retain the map lock.
2590				 */
2591				vm_fault_unwire(map, entry->start, entry->end,
2592				    entry->object.vm_object != NULL &&
2593				    (entry->object.vm_object->flags &
2594				    OBJ_FICTITIOUS) != 0);
2595			}
2596		}
2597	next_entry_done:
2598		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2599		    ("vm_map_wire: in-transition flag missing %p", entry));
2600		KASSERT(entry->wiring_thread == curthread,
2601		    ("vm_map_wire: alien wire %p", entry));
2602		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2603		    MAP_ENTRY_WIRE_SKIPPED);
2604		entry->wiring_thread = NULL;
2605		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2606			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2607			need_wakeup = TRUE;
2608		}
2609		vm_map_simplify_entry(map, entry);
2610	}
2611	vm_map_unlock(map);
2612	if (need_wakeup)
2613		vm_map_wakeup(map);
2614	return (rv);
2615}
2616
2617/*
2618 * vm_map_sync
2619 *
2620 * Push any dirty cached pages in the address range to their pager.
2621 * If syncio is TRUE, dirty pages are written synchronously.
2622 * If invalidate is TRUE, any cached pages are freed as well.
2623 *
2624 * If the size of the region from start to end is zero, we are
2625 * supposed to flush all modified pages within the region containing
2626 * start.  Unfortunately, a region can be split or coalesced with
2627 * neighboring regions, making it difficult to determine what the
2628 * original region was.  Therefore, we approximate this requirement by
2629 * flushing the current region containing start.
2630 *
2631 * Returns an error if any part of the specified range is not mapped.
2632 */
2633int
2634vm_map_sync(
2635	vm_map_t map,
2636	vm_offset_t start,
2637	vm_offset_t end,
2638	boolean_t syncio,
2639	boolean_t invalidate)
2640{
2641	vm_map_entry_t current;
2642	vm_map_entry_t entry;
2643	vm_size_t size;
2644	vm_object_t object;
2645	vm_ooffset_t offset;
2646	unsigned int last_timestamp;
2647	boolean_t failed;
2648
2649	vm_map_lock_read(map);
2650	VM_MAP_RANGE_CHECK(map, start, end);
2651	if (!vm_map_lookup_entry(map, start, &entry)) {
2652		vm_map_unlock_read(map);
2653		return (KERN_INVALID_ADDRESS);
2654	} else if (start == end) {
2655		start = entry->start;
2656		end = entry->end;
2657	}
2658	/*
2659	 * Make a first pass to check for user-wired memory and holes.
2660	 */
2661	for (current = entry; current != &map->header && current->start < end;
2662	    current = current->next) {
2663		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2664			vm_map_unlock_read(map);
2665			return (KERN_INVALID_ARGUMENT);
2666		}
2667		if (end > current->end &&
2668		    (current->next == &map->header ||
2669			current->end != current->next->start)) {
2670			vm_map_unlock_read(map);
2671			return (KERN_INVALID_ADDRESS);
2672		}
2673	}
2674
2675	if (invalidate)
2676		pmap_remove(map->pmap, start, end);
2677	failed = FALSE;
2678
2679	/*
2680	 * Make a second pass, cleaning/uncaching pages from the indicated
2681	 * objects as we go.
2682	 */
2683	for (current = entry; current != &map->header && current->start < end;) {
2684		offset = current->offset + (start - current->start);
2685		size = (end <= current->end ? end : current->end) - start;
2686		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2687			vm_map_t smap;
2688			vm_map_entry_t tentry;
2689			vm_size_t tsize;
2690
2691			smap = current->object.sub_map;
2692			vm_map_lock_read(smap);
2693			(void) vm_map_lookup_entry(smap, offset, &tentry);
2694			tsize = tentry->end - offset;
2695			if (tsize < size)
2696				size = tsize;
2697			object = tentry->object.vm_object;
2698			offset = tentry->offset + (offset - tentry->start);
2699			vm_map_unlock_read(smap);
2700		} else {
2701			object = current->object.vm_object;
2702		}
2703		vm_object_reference(object);
2704		last_timestamp = map->timestamp;
2705		vm_map_unlock_read(map);
2706		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2707			failed = TRUE;
2708		start += size;
2709		vm_object_deallocate(object);
2710		vm_map_lock_read(map);
2711		if (last_timestamp == map->timestamp ||
2712		    !vm_map_lookup_entry(map, start, &current))
2713			current = current->next;
2714	}
2715
2716	vm_map_unlock_read(map);
2717	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2718}
2719
2720/*
2721 *	vm_map_entry_unwire:	[ internal use only ]
2722 *
2723 *	Make the region specified by this entry pageable.
2724 *
2725 *	The map in question should be locked.
2726 *	[This is the reason for this routine's existence.]
2727 */
2728static void
2729vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2730{
2731	vm_fault_unwire(map, entry->start, entry->end,
2732	    entry->object.vm_object != NULL &&
2733	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2734	entry->wired_count = 0;
2735}
2736
2737static void
2738vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2739{
2740
2741	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2742		vm_object_deallocate(entry->object.vm_object);
2743	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2744}
2745
2746/*
2747 *	vm_map_entry_delete:	[ internal use only ]
2748 *
2749 *	Deallocate the given entry from the target map.
2750 */
2751static void
2752vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2753{
2754	vm_object_t object;
2755	vm_pindex_t offidxstart, offidxend, count, size1;
2756	vm_ooffset_t size;
2757
2758	vm_map_entry_unlink(map, entry);
2759	object = entry->object.vm_object;
2760	size = entry->end - entry->start;
2761	map->size -= size;
2762
2763	if (entry->cred != NULL) {
2764		swap_release_by_cred(size, entry->cred);
2765		crfree(entry->cred);
2766	}
2767
2768	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2769	    (object != NULL)) {
2770		KASSERT(entry->cred == NULL || object->cred == NULL ||
2771		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2772		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2773		count = OFF_TO_IDX(size);
2774		offidxstart = OFF_TO_IDX(entry->offset);
2775		offidxend = offidxstart + count;
2776		VM_OBJECT_WLOCK(object);
2777		if (object->ref_count != 1 &&
2778		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2779		    object == kernel_object || object == kmem_object)) {
2780			vm_object_collapse(object);
2781
2782			/*
2783			 * The option OBJPR_NOTMAPPED can be passed here
2784			 * because vm_map_delete() already performed
2785			 * pmap_remove() on the only mapping to this range
2786			 * of pages.
2787			 */
2788			vm_object_page_remove(object, offidxstart, offidxend,
2789			    OBJPR_NOTMAPPED);
2790			if (object->type == OBJT_SWAP)
2791				swap_pager_freespace(object, offidxstart, count);
2792			if (offidxend >= object->size &&
2793			    offidxstart < object->size) {
2794				size1 = object->size;
2795				object->size = offidxstart;
2796				if (object->cred != NULL) {
2797					size1 -= object->size;
2798					KASSERT(object->charge >= ptoa(size1),
2799					    ("vm_map_entry_delete: object->charge < 0"));
2800					swap_release_by_cred(ptoa(size1), object->cred);
2801					object->charge -= ptoa(size1);
2802				}
2803			}
2804		}
2805		VM_OBJECT_WUNLOCK(object);
2806	} else
2807		entry->object.vm_object = NULL;
2808	if (map->system_map)
2809		vm_map_entry_deallocate(entry, TRUE);
2810	else {
2811		entry->next = curthread->td_map_def_user;
2812		curthread->td_map_def_user = entry;
2813	}
2814}
2815
2816/*
2817 *	vm_map_delete:	[ internal use only ]
2818 *
2819 *	Deallocates the given address range from the target
2820 *	map.
2821 */
2822int
2823vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2824{
2825	vm_map_entry_t entry;
2826	vm_map_entry_t first_entry;
2827
2828	VM_MAP_ASSERT_LOCKED(map);
2829
2830	/*
2831	 * Find the start of the region, and clip it
2832	 */
2833	if (!vm_map_lookup_entry(map, start, &first_entry))
2834		entry = first_entry->next;
2835	else {
2836		entry = first_entry;
2837		vm_map_clip_start(map, entry, start);
2838	}
2839
2840	/*
2841	 * Step through all entries in this region
2842	 */
2843	while ((entry != &map->header) && (entry->start < end)) {
2844		vm_map_entry_t next;
2845
2846		/*
2847		 * Wait for wiring or unwiring of an entry to complete.
2848		 * Also wait for any system wirings to disappear on
2849		 * user maps.
2850		 */
2851		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2852		    (vm_map_pmap(map) != kernel_pmap &&
2853		    vm_map_entry_system_wired_count(entry) != 0)) {
2854			unsigned int last_timestamp;
2855			vm_offset_t saved_start;
2856			vm_map_entry_t tmp_entry;
2857
2858			saved_start = entry->start;
2859			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2860			last_timestamp = map->timestamp;
2861			(void) vm_map_unlock_and_wait(map, 0);
2862			vm_map_lock(map);
2863			if (last_timestamp + 1 != map->timestamp) {
2864				/*
2865				 * Look again for the entry because the map was
2866				 * modified while it was unlocked.
2867				 * Specifically, the entry may have been
2868				 * clipped, merged, or deleted.
2869				 */
2870				if (!vm_map_lookup_entry(map, saved_start,
2871							 &tmp_entry))
2872					entry = tmp_entry->next;
2873				else {
2874					entry = tmp_entry;
2875					vm_map_clip_start(map, entry,
2876							  saved_start);
2877				}
2878			}
2879			continue;
2880		}
2881		vm_map_clip_end(map, entry, end);
2882
2883		next = entry->next;
2884
2885		/*
2886		 * Unwire before removing addresses from the pmap; otherwise,
2887		 * unwiring will put the entries back in the pmap.
2888		 */
2889		if (entry->wired_count != 0) {
2890			vm_map_entry_unwire(map, entry);
2891		}
2892
2893		pmap_remove(map->pmap, entry->start, entry->end);
2894
2895		/*
2896		 * Delete the entry only after removing all pmap
2897		 * entries pointing to its pages.  (Otherwise, its
2898		 * page frames may be reallocated, and any modify bits
2899		 * will be set in the wrong object!)
2900		 */
2901		vm_map_entry_delete(map, entry);
2902		entry = next;
2903	}
2904	return (KERN_SUCCESS);
2905}
2906
2907/*
2908 *	vm_map_remove:
2909 *
2910 *	Remove the given address range from the target map.
2911 *	This is the exported form of vm_map_delete.
2912 */
2913int
2914vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2915{
2916	int result;
2917
2918	vm_map_lock(map);
2919	VM_MAP_RANGE_CHECK(map, start, end);
2920	result = vm_map_delete(map, start, end);
2921	vm_map_unlock(map);
2922	return (result);
2923}
2924
2925/*
2926 *	vm_map_check_protection:
2927 *
2928 *	Assert that the target map allows the specified privilege on the
2929 *	entire address region given.  The entire region must be allocated.
2930 *
2931 *	WARNING!  This code does not and should not check whether the
2932 *	contents of the region is accessible.  For example a smaller file
2933 *	might be mapped into a larger address space.
2934 *
2935 *	NOTE!  This code is also called by munmap().
2936 *
2937 *	The map must be locked.  A read lock is sufficient.
2938 */
2939boolean_t
2940vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2941			vm_prot_t protection)
2942{
2943	vm_map_entry_t entry;
2944	vm_map_entry_t tmp_entry;
2945
2946	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2947		return (FALSE);
2948	entry = tmp_entry;
2949
2950	while (start < end) {
2951		if (entry == &map->header)
2952			return (FALSE);
2953		/*
2954		 * No holes allowed!
2955		 */
2956		if (start < entry->start)
2957			return (FALSE);
2958		/*
2959		 * Check protection associated with entry.
2960		 */
2961		if ((entry->protection & protection) != protection)
2962			return (FALSE);
2963		/* go to next entry */
2964		start = entry->end;
2965		entry = entry->next;
2966	}
2967	return (TRUE);
2968}
2969
2970/*
2971 *	vm_map_copy_entry:
2972 *
2973 *	Copies the contents of the source entry to the destination
2974 *	entry.  The entries *must* be aligned properly.
2975 */
2976static void
2977vm_map_copy_entry(
2978	vm_map_t src_map,
2979	vm_map_t dst_map,
2980	vm_map_entry_t src_entry,
2981	vm_map_entry_t dst_entry,
2982	vm_ooffset_t *fork_charge)
2983{
2984	vm_object_t src_object;
2985	vm_map_entry_t fake_entry;
2986	vm_offset_t size;
2987	struct ucred *cred;
2988	int charged;
2989
2990	VM_MAP_ASSERT_LOCKED(dst_map);
2991
2992	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2993		return;
2994
2995	if (src_entry->wired_count == 0) {
2996
2997		/*
2998		 * If the source entry is marked needs_copy, it is already
2999		 * write-protected.
3000		 */
3001		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3002			pmap_protect(src_map->pmap,
3003			    src_entry->start,
3004			    src_entry->end,
3005			    src_entry->protection & ~VM_PROT_WRITE);
3006		}
3007
3008		/*
3009		 * Make a copy of the object.
3010		 */
3011		size = src_entry->end - src_entry->start;
3012		if ((src_object = src_entry->object.vm_object) != NULL) {
3013			VM_OBJECT_WLOCK(src_object);
3014			charged = ENTRY_CHARGED(src_entry);
3015			if ((src_object->handle == NULL) &&
3016				(src_object->type == OBJT_DEFAULT ||
3017				 src_object->type == OBJT_SWAP)) {
3018				vm_object_collapse(src_object);
3019				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3020					vm_object_split(src_entry);
3021					src_object = src_entry->object.vm_object;
3022				}
3023			}
3024			vm_object_reference_locked(src_object);
3025			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3026			if (src_entry->cred != NULL &&
3027			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3028				KASSERT(src_object->cred == NULL,
3029				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3030				     src_object));
3031				src_object->cred = src_entry->cred;
3032				src_object->charge = size;
3033			}
3034			VM_OBJECT_WUNLOCK(src_object);
3035			dst_entry->object.vm_object = src_object;
3036			if (charged) {
3037				cred = curthread->td_ucred;
3038				crhold(cred);
3039				dst_entry->cred = cred;
3040				*fork_charge += size;
3041				if (!(src_entry->eflags &
3042				      MAP_ENTRY_NEEDS_COPY)) {
3043					crhold(cred);
3044					src_entry->cred = cred;
3045					*fork_charge += size;
3046				}
3047			}
3048			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3049			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3050			dst_entry->offset = src_entry->offset;
3051			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3052				/*
3053				 * MAP_ENTRY_VN_WRITECNT cannot
3054				 * indicate write reference from
3055				 * src_entry, since the entry is
3056				 * marked as needs copy.  Allocate a
3057				 * fake entry that is used to
3058				 * decrement object->un_pager.vnp.writecount
3059				 * at the appropriate time.  Attach
3060				 * fake_entry to the deferred list.
3061				 */
3062				fake_entry = vm_map_entry_create(dst_map);
3063				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3064				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3065				vm_object_reference(src_object);
3066				fake_entry->object.vm_object = src_object;
3067				fake_entry->start = src_entry->start;
3068				fake_entry->end = src_entry->end;
3069				fake_entry->next = curthread->td_map_def_user;
3070				curthread->td_map_def_user = fake_entry;
3071			}
3072		} else {
3073			dst_entry->object.vm_object = NULL;
3074			dst_entry->offset = 0;
3075			if (src_entry->cred != NULL) {
3076				dst_entry->cred = curthread->td_ucred;
3077				crhold(dst_entry->cred);
3078				*fork_charge += size;
3079			}
3080		}
3081
3082		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3083		    dst_entry->end - dst_entry->start, src_entry->start);
3084	} else {
3085		/*
3086		 * Of course, wired down pages can't be set copy-on-write.
3087		 * Cause wired pages to be copied into the new map by
3088		 * simulating faults (the new pages are pageable)
3089		 */
3090		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3091		    fork_charge);
3092	}
3093}
3094
3095/*
3096 * vmspace_map_entry_forked:
3097 * Update the newly-forked vmspace each time a map entry is inherited
3098 * or copied.  The values for vm_dsize and vm_tsize are approximate
3099 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3100 */
3101static void
3102vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3103    vm_map_entry_t entry)
3104{
3105	vm_size_t entrysize;
3106	vm_offset_t newend;
3107
3108	entrysize = entry->end - entry->start;
3109	vm2->vm_map.size += entrysize;
3110	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3111		vm2->vm_ssize += btoc(entrysize);
3112	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3113	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3114		newend = MIN(entry->end,
3115		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3116		vm2->vm_dsize += btoc(newend - entry->start);
3117	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3118	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3119		newend = MIN(entry->end,
3120		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3121		vm2->vm_tsize += btoc(newend - entry->start);
3122	}
3123}
3124
3125/*
3126 * vmspace_fork:
3127 * Create a new process vmspace structure and vm_map
3128 * based on those of an existing process.  The new map
3129 * is based on the old map, according to the inheritance
3130 * values on the regions in that map.
3131 *
3132 * XXX It might be worth coalescing the entries added to the new vmspace.
3133 *
3134 * The source map must not be locked.
3135 */
3136struct vmspace *
3137vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3138{
3139	struct vmspace *vm2;
3140	vm_map_t new_map, old_map;
3141	vm_map_entry_t new_entry, old_entry;
3142	vm_object_t object;
3143	int locked;
3144
3145	old_map = &vm1->vm_map;
3146	/* Copy immutable fields of vm1 to vm2. */
3147	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3148	if (vm2 == NULL)
3149		return (NULL);
3150	vm2->vm_taddr = vm1->vm_taddr;
3151	vm2->vm_daddr = vm1->vm_daddr;
3152	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3153	vm_map_lock(old_map);
3154	if (old_map->busy)
3155		vm_map_wait_busy(old_map);
3156	new_map = &vm2->vm_map;
3157	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3158	KASSERT(locked, ("vmspace_fork: lock failed"));
3159
3160	old_entry = old_map->header.next;
3161
3162	while (old_entry != &old_map->header) {
3163		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3164			panic("vm_map_fork: encountered a submap");
3165
3166		switch (old_entry->inheritance) {
3167		case VM_INHERIT_NONE:
3168			break;
3169
3170		case VM_INHERIT_SHARE:
3171			/*
3172			 * Clone the entry, creating the shared object if necessary.
3173			 */
3174			object = old_entry->object.vm_object;
3175			if (object == NULL) {
3176				object = vm_object_allocate(OBJT_DEFAULT,
3177					atop(old_entry->end - old_entry->start));
3178				old_entry->object.vm_object = object;
3179				old_entry->offset = 0;
3180				if (old_entry->cred != NULL) {
3181					object->cred = old_entry->cred;
3182					object->charge = old_entry->end -
3183					    old_entry->start;
3184					old_entry->cred = NULL;
3185				}
3186			}
3187
3188			/*
3189			 * Add the reference before calling vm_object_shadow
3190			 * to insure that a shadow object is created.
3191			 */
3192			vm_object_reference(object);
3193			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3194				vm_object_shadow(&old_entry->object.vm_object,
3195				    &old_entry->offset,
3196				    old_entry->end - old_entry->start);
3197				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3198				/* Transfer the second reference too. */
3199				vm_object_reference(
3200				    old_entry->object.vm_object);
3201
3202				/*
3203				 * As in vm_map_simplify_entry(), the
3204				 * vnode lock will not be acquired in
3205				 * this call to vm_object_deallocate().
3206				 */
3207				vm_object_deallocate(object);
3208				object = old_entry->object.vm_object;
3209			}
3210			VM_OBJECT_WLOCK(object);
3211			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3212			if (old_entry->cred != NULL) {
3213				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3214				object->cred = old_entry->cred;
3215				object->charge = old_entry->end - old_entry->start;
3216				old_entry->cred = NULL;
3217			}
3218
3219			/*
3220			 * Assert the correct state of the vnode
3221			 * v_writecount while the object is locked, to
3222			 * not relock it later for the assertion
3223			 * correctness.
3224			 */
3225			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3226			    object->type == OBJT_VNODE) {
3227				KASSERT(((struct vnode *)object->handle)->
3228				    v_writecount > 0,
3229				    ("vmspace_fork: v_writecount %p", object));
3230				KASSERT(object->un_pager.vnp.writemappings > 0,
3231				    ("vmspace_fork: vnp.writecount %p",
3232				    object));
3233			}
3234			VM_OBJECT_WUNLOCK(object);
3235
3236			/*
3237			 * Clone the entry, referencing the shared object.
3238			 */
3239			new_entry = vm_map_entry_create(new_map);
3240			*new_entry = *old_entry;
3241			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3242			    MAP_ENTRY_IN_TRANSITION);
3243			new_entry->wiring_thread = NULL;
3244			new_entry->wired_count = 0;
3245			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3246				vnode_pager_update_writecount(object,
3247				    new_entry->start, new_entry->end);
3248			}
3249
3250			/*
3251			 * Insert the entry into the new map -- we know we're
3252			 * inserting at the end of the new map.
3253			 */
3254			vm_map_entry_link(new_map, new_map->header.prev,
3255			    new_entry);
3256			vmspace_map_entry_forked(vm1, vm2, new_entry);
3257
3258			/*
3259			 * Update the physical map
3260			 */
3261			pmap_copy(new_map->pmap, old_map->pmap,
3262			    new_entry->start,
3263			    (old_entry->end - old_entry->start),
3264			    old_entry->start);
3265			break;
3266
3267		case VM_INHERIT_COPY:
3268			/*
3269			 * Clone the entry and link into the map.
3270			 */
3271			new_entry = vm_map_entry_create(new_map);
3272			*new_entry = *old_entry;
3273			/*
3274			 * Copied entry is COW over the old object.
3275			 */
3276			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3277			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3278			new_entry->wiring_thread = NULL;
3279			new_entry->wired_count = 0;
3280			new_entry->object.vm_object = NULL;
3281			new_entry->cred = NULL;
3282			vm_map_entry_link(new_map, new_map->header.prev,
3283			    new_entry);
3284			vmspace_map_entry_forked(vm1, vm2, new_entry);
3285			vm_map_copy_entry(old_map, new_map, old_entry,
3286			    new_entry, fork_charge);
3287			break;
3288		}
3289		old_entry = old_entry->next;
3290	}
3291	/*
3292	 * Use inlined vm_map_unlock() to postpone handling the deferred
3293	 * map entries, which cannot be done until both old_map and
3294	 * new_map locks are released.
3295	 */
3296	sx_xunlock(&old_map->lock);
3297	sx_xunlock(&new_map->lock);
3298	vm_map_process_deferred();
3299
3300	return (vm2);
3301}
3302
3303int
3304vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3305    vm_prot_t prot, vm_prot_t max, int cow)
3306{
3307	vm_map_entry_t new_entry, prev_entry;
3308	vm_offset_t bot, top;
3309	vm_size_t growsize, init_ssize;
3310	int orient, rv;
3311	rlim_t lmemlim, vmemlim;
3312
3313	/*
3314	 * The stack orientation is piggybacked with the cow argument.
3315	 * Extract it into orient and mask the cow argument so that we
3316	 * don't pass it around further.
3317	 * NOTE: We explicitly allow bi-directional stacks.
3318	 */
3319	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3320	KASSERT(orient != 0, ("No stack grow direction"));
3321
3322	if (addrbos < vm_map_min(map) ||
3323	    addrbos > vm_map_max(map) ||
3324	    addrbos + max_ssize < addrbos)
3325		return (KERN_NO_SPACE);
3326
3327	growsize = sgrowsiz;
3328	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3329
3330	PROC_LOCK(curproc);
3331	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3332	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3333	PROC_UNLOCK(curproc);
3334
3335	vm_map_lock(map);
3336
3337	/* If addr is already mapped, no go */
3338	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3339		vm_map_unlock(map);
3340		return (KERN_NO_SPACE);
3341	}
3342
3343	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3344		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3345			vm_map_unlock(map);
3346			return (KERN_NO_SPACE);
3347		}
3348	}
3349
3350	/* If we would blow our VMEM resource limit, no go */
3351	if (map->size + init_ssize > vmemlim) {
3352		vm_map_unlock(map);
3353		return (KERN_NO_SPACE);
3354	}
3355
3356	/*
3357	 * If we can't accomodate max_ssize in the current mapping, no go.
3358	 * However, we need to be aware that subsequent user mappings might
3359	 * map into the space we have reserved for stack, and currently this
3360	 * space is not protected.
3361	 *
3362	 * Hopefully we will at least detect this condition when we try to
3363	 * grow the stack.
3364	 */
3365	if ((prev_entry->next != &map->header) &&
3366	    (prev_entry->next->start < addrbos + max_ssize)) {
3367		vm_map_unlock(map);
3368		return (KERN_NO_SPACE);
3369	}
3370
3371	/*
3372	 * We initially map a stack of only init_ssize.  We will grow as
3373	 * needed later.  Depending on the orientation of the stack (i.e.
3374	 * the grow direction) we either map at the top of the range, the
3375	 * bottom of the range or in the middle.
3376	 *
3377	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3378	 * and cow to be 0.  Possibly we should eliminate these as input
3379	 * parameters, and just pass these values here in the insert call.
3380	 */
3381	if (orient == MAP_STACK_GROWS_DOWN)
3382		bot = addrbos + max_ssize - init_ssize;
3383	else if (orient == MAP_STACK_GROWS_UP)
3384		bot = addrbos;
3385	else
3386		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3387	top = bot + init_ssize;
3388	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3389
3390	/* Now set the avail_ssize amount. */
3391	if (rv == KERN_SUCCESS) {
3392		if (prev_entry != &map->header)
3393			vm_map_clip_end(map, prev_entry, bot);
3394		new_entry = prev_entry->next;
3395		if (new_entry->end != top || new_entry->start != bot)
3396			panic("Bad entry start/end for new stack entry");
3397
3398		new_entry->avail_ssize = max_ssize - init_ssize;
3399		if (orient & MAP_STACK_GROWS_DOWN)
3400			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3401		if (orient & MAP_STACK_GROWS_UP)
3402			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3403	}
3404
3405	vm_map_unlock(map);
3406	return (rv);
3407}
3408
3409static int stack_guard_page = 0;
3410TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3411SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3412    &stack_guard_page, 0,
3413    "Insert stack guard page ahead of the growable segments.");
3414
3415/* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3416 * desired address is already mapped, or if we successfully grow
3417 * the stack.  Also returns KERN_SUCCESS if addr is outside the
3418 * stack range (this is strange, but preserves compatibility with
3419 * the grow function in vm_machdep.c).
3420 */
3421int
3422vm_map_growstack(struct proc *p, vm_offset_t addr)
3423{
3424	vm_map_entry_t next_entry, prev_entry;
3425	vm_map_entry_t new_entry, stack_entry;
3426	struct vmspace *vm = p->p_vmspace;
3427	vm_map_t map = &vm->vm_map;
3428	vm_offset_t end;
3429	vm_size_t growsize;
3430	size_t grow_amount, max_grow;
3431	rlim_t lmemlim, stacklim, vmemlim;
3432	int is_procstack, rv;
3433	struct ucred *cred;
3434#ifdef notyet
3435	uint64_t limit;
3436#endif
3437#ifdef RACCT
3438	int error;
3439#endif
3440
3441Retry:
3442	PROC_LOCK(p);
3443	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3444	stacklim = lim_cur(p, RLIMIT_STACK);
3445	vmemlim = lim_cur(p, RLIMIT_VMEM);
3446	PROC_UNLOCK(p);
3447
3448	vm_map_lock_read(map);
3449
3450	/* If addr is already in the entry range, no need to grow.*/
3451	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3452		vm_map_unlock_read(map);
3453		return (KERN_SUCCESS);
3454	}
3455
3456	next_entry = prev_entry->next;
3457	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3458		/*
3459		 * This entry does not grow upwards. Since the address lies
3460		 * beyond this entry, the next entry (if one exists) has to
3461		 * be a downward growable entry. The entry list header is
3462		 * never a growable entry, so it suffices to check the flags.
3463		 */
3464		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3465			vm_map_unlock_read(map);
3466			return (KERN_SUCCESS);
3467		}
3468		stack_entry = next_entry;
3469	} else {
3470		/*
3471		 * This entry grows upward. If the next entry does not at
3472		 * least grow downwards, this is the entry we need to grow.
3473		 * otherwise we have two possible choices and we have to
3474		 * select one.
3475		 */
3476		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3477			/*
3478			 * We have two choices; grow the entry closest to
3479			 * the address to minimize the amount of growth.
3480			 */
3481			if (addr - prev_entry->end <= next_entry->start - addr)
3482				stack_entry = prev_entry;
3483			else
3484				stack_entry = next_entry;
3485		} else
3486			stack_entry = prev_entry;
3487	}
3488
3489	if (stack_entry == next_entry) {
3490		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3491		KASSERT(addr < stack_entry->start, ("foo"));
3492		end = (prev_entry != &map->header) ? prev_entry->end :
3493		    stack_entry->start - stack_entry->avail_ssize;
3494		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3495		max_grow = stack_entry->start - end;
3496	} else {
3497		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3498		KASSERT(addr >= stack_entry->end, ("foo"));
3499		end = (next_entry != &map->header) ? next_entry->start :
3500		    stack_entry->end + stack_entry->avail_ssize;
3501		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3502		max_grow = end - stack_entry->end;
3503	}
3504
3505	if (grow_amount > stack_entry->avail_ssize) {
3506		vm_map_unlock_read(map);
3507		return (KERN_NO_SPACE);
3508	}
3509
3510	/*
3511	 * If there is no longer enough space between the entries nogo, and
3512	 * adjust the available space.  Note: this  should only happen if the
3513	 * user has mapped into the stack area after the stack was created,
3514	 * and is probably an error.
3515	 *
3516	 * This also effectively destroys any guard page the user might have
3517	 * intended by limiting the stack size.
3518	 */
3519	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3520		if (vm_map_lock_upgrade(map))
3521			goto Retry;
3522
3523		stack_entry->avail_ssize = max_grow;
3524
3525		vm_map_unlock(map);
3526		return (KERN_NO_SPACE);
3527	}
3528
3529	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3530
3531	/*
3532	 * If this is the main process stack, see if we're over the stack
3533	 * limit.
3534	 */
3535	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3536		vm_map_unlock_read(map);
3537		return (KERN_NO_SPACE);
3538	}
3539#ifdef RACCT
3540	PROC_LOCK(p);
3541	if (is_procstack &&
3542	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3543		PROC_UNLOCK(p);
3544		vm_map_unlock_read(map);
3545		return (KERN_NO_SPACE);
3546	}
3547	PROC_UNLOCK(p);
3548#endif
3549
3550	/* Round up the grow amount modulo sgrowsiz */
3551	growsize = sgrowsiz;
3552	grow_amount = roundup(grow_amount, growsize);
3553	if (grow_amount > stack_entry->avail_ssize)
3554		grow_amount = stack_entry->avail_ssize;
3555	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3556		grow_amount = trunc_page((vm_size_t)stacklim) -
3557		    ctob(vm->vm_ssize);
3558	}
3559#ifdef notyet
3560	PROC_LOCK(p);
3561	limit = racct_get_available(p, RACCT_STACK);
3562	PROC_UNLOCK(p);
3563	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3564		grow_amount = limit - ctob(vm->vm_ssize);
3565#endif
3566	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3567		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3568			vm_map_unlock_read(map);
3569			rv = KERN_NO_SPACE;
3570			goto out;
3571		}
3572#ifdef RACCT
3573		PROC_LOCK(p);
3574		if (racct_set(p, RACCT_MEMLOCK,
3575		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3576			PROC_UNLOCK(p);
3577			vm_map_unlock_read(map);
3578			rv = KERN_NO_SPACE;
3579			goto out;
3580		}
3581		PROC_UNLOCK(p);
3582#endif
3583	}
3584	/* If we would blow our VMEM resource limit, no go */
3585	if (map->size + grow_amount > vmemlim) {
3586		vm_map_unlock_read(map);
3587		rv = KERN_NO_SPACE;
3588		goto out;
3589	}
3590#ifdef RACCT
3591	PROC_LOCK(p);
3592	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3593		PROC_UNLOCK(p);
3594		vm_map_unlock_read(map);
3595		rv = KERN_NO_SPACE;
3596		goto out;
3597	}
3598	PROC_UNLOCK(p);
3599#endif
3600
3601	if (vm_map_lock_upgrade(map))
3602		goto Retry;
3603
3604	if (stack_entry == next_entry) {
3605		/*
3606		 * Growing downward.
3607		 */
3608		/* Get the preliminary new entry start value */
3609		addr = stack_entry->start - grow_amount;
3610
3611		/*
3612		 * If this puts us into the previous entry, cut back our
3613		 * growth to the available space. Also, see the note above.
3614		 */
3615		if (addr < end) {
3616			stack_entry->avail_ssize = max_grow;
3617			addr = end;
3618			if (stack_guard_page)
3619				addr += PAGE_SIZE;
3620		}
3621
3622		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3623		    next_entry->protection, next_entry->max_protection, 0);
3624
3625		/* Adjust the available stack space by the amount we grew. */
3626		if (rv == KERN_SUCCESS) {
3627			if (prev_entry != &map->header)
3628				vm_map_clip_end(map, prev_entry, addr);
3629			new_entry = prev_entry->next;
3630			KASSERT(new_entry == stack_entry->prev, ("foo"));
3631			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3632			KASSERT(new_entry->start == addr, ("foo"));
3633			grow_amount = new_entry->end - new_entry->start;
3634			new_entry->avail_ssize = stack_entry->avail_ssize -
3635			    grow_amount;
3636			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3637			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3638		}
3639	} else {
3640		/*
3641		 * Growing upward.
3642		 */
3643		addr = stack_entry->end + grow_amount;
3644
3645		/*
3646		 * If this puts us into the next entry, cut back our growth
3647		 * to the available space. Also, see the note above.
3648		 */
3649		if (addr > end) {
3650			stack_entry->avail_ssize = end - stack_entry->end;
3651			addr = end;
3652			if (stack_guard_page)
3653				addr -= PAGE_SIZE;
3654		}
3655
3656		grow_amount = addr - stack_entry->end;
3657		cred = stack_entry->cred;
3658		if (cred == NULL && stack_entry->object.vm_object != NULL)
3659			cred = stack_entry->object.vm_object->cred;
3660		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3661			rv = KERN_NO_SPACE;
3662		/* Grow the underlying object if applicable. */
3663		else if (stack_entry->object.vm_object == NULL ||
3664			 vm_object_coalesce(stack_entry->object.vm_object,
3665			 stack_entry->offset,
3666			 (vm_size_t)(stack_entry->end - stack_entry->start),
3667			 (vm_size_t)grow_amount, cred != NULL)) {
3668			map->size += (addr - stack_entry->end);
3669			/* Update the current entry. */
3670			stack_entry->end = addr;
3671			stack_entry->avail_ssize -= grow_amount;
3672			vm_map_entry_resize_free(map, stack_entry);
3673			rv = KERN_SUCCESS;
3674
3675			if (next_entry != &map->header)
3676				vm_map_clip_start(map, next_entry, addr);
3677		} else
3678			rv = KERN_FAILURE;
3679	}
3680
3681	if (rv == KERN_SUCCESS && is_procstack)
3682		vm->vm_ssize += btoc(grow_amount);
3683
3684	vm_map_unlock(map);
3685
3686	/*
3687	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3688	 */
3689	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3690		vm_map_wire(map,
3691		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3692		    (stack_entry == next_entry) ? stack_entry->start : addr,
3693		    (p->p_flag & P_SYSTEM)
3694		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3695		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3696	}
3697
3698out:
3699#ifdef RACCT
3700	if (rv != KERN_SUCCESS) {
3701		PROC_LOCK(p);
3702		error = racct_set(p, RACCT_VMEM, map->size);
3703		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3704		if (!old_mlock) {
3705			error = racct_set(p, RACCT_MEMLOCK,
3706			    ptoa(pmap_wired_count(map->pmap)));
3707			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3708		}
3709	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3710		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3711		PROC_UNLOCK(p);
3712	}
3713#endif
3714
3715	return (rv);
3716}
3717
3718/*
3719 * Unshare the specified VM space for exec.  If other processes are
3720 * mapped to it, then create a new one.  The new vmspace is null.
3721 */
3722int
3723vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3724{
3725	struct vmspace *oldvmspace = p->p_vmspace;
3726	struct vmspace *newvmspace;
3727
3728	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3729	    ("vmspace_exec recursed"));
3730	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3731	if (newvmspace == NULL)
3732		return (ENOMEM);
3733	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3734	/*
3735	 * This code is written like this for prototype purposes.  The
3736	 * goal is to avoid running down the vmspace here, but let the
3737	 * other process's that are still using the vmspace to finally
3738	 * run it down.  Even though there is little or no chance of blocking
3739	 * here, it is a good idea to keep this form for future mods.
3740	 */
3741	PROC_VMSPACE_LOCK(p);
3742	p->p_vmspace = newvmspace;
3743	PROC_VMSPACE_UNLOCK(p);
3744	if (p == curthread->td_proc)
3745		pmap_activate(curthread);
3746	curthread->td_pflags |= TDP_EXECVMSPC;
3747	return (0);
3748}
3749
3750/*
3751 * Unshare the specified VM space for forcing COW.  This
3752 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3753 */
3754int
3755vmspace_unshare(struct proc *p)
3756{
3757	struct vmspace *oldvmspace = p->p_vmspace;
3758	struct vmspace *newvmspace;
3759	vm_ooffset_t fork_charge;
3760
3761	if (oldvmspace->vm_refcnt == 1)
3762		return (0);
3763	fork_charge = 0;
3764	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3765	if (newvmspace == NULL)
3766		return (ENOMEM);
3767	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3768		vmspace_free(newvmspace);
3769		return (ENOMEM);
3770	}
3771	PROC_VMSPACE_LOCK(p);
3772	p->p_vmspace = newvmspace;
3773	PROC_VMSPACE_UNLOCK(p);
3774	if (p == curthread->td_proc)
3775		pmap_activate(curthread);
3776	vmspace_free(oldvmspace);
3777	return (0);
3778}
3779
3780/*
3781 *	vm_map_lookup:
3782 *
3783 *	Finds the VM object, offset, and
3784 *	protection for a given virtual address in the
3785 *	specified map, assuming a page fault of the
3786 *	type specified.
3787 *
3788 *	Leaves the map in question locked for read; return
3789 *	values are guaranteed until a vm_map_lookup_done
3790 *	call is performed.  Note that the map argument
3791 *	is in/out; the returned map must be used in
3792 *	the call to vm_map_lookup_done.
3793 *
3794 *	A handle (out_entry) is returned for use in
3795 *	vm_map_lookup_done, to make that fast.
3796 *
3797 *	If a lookup is requested with "write protection"
3798 *	specified, the map may be changed to perform virtual
3799 *	copying operations, although the data referenced will
3800 *	remain the same.
3801 */
3802int
3803vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3804	      vm_offset_t vaddr,
3805	      vm_prot_t fault_typea,
3806	      vm_map_entry_t *out_entry,	/* OUT */
3807	      vm_object_t *object,		/* OUT */
3808	      vm_pindex_t *pindex,		/* OUT */
3809	      vm_prot_t *out_prot,		/* OUT */
3810	      boolean_t *wired)			/* OUT */
3811{
3812	vm_map_entry_t entry;
3813	vm_map_t map = *var_map;
3814	vm_prot_t prot;
3815	vm_prot_t fault_type = fault_typea;
3816	vm_object_t eobject;
3817	vm_size_t size;
3818	struct ucred *cred;
3819
3820RetryLookup:;
3821
3822	vm_map_lock_read(map);
3823
3824	/*
3825	 * Lookup the faulting address.
3826	 */
3827	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3828		vm_map_unlock_read(map);
3829		return (KERN_INVALID_ADDRESS);
3830	}
3831
3832	entry = *out_entry;
3833
3834	/*
3835	 * Handle submaps.
3836	 */
3837	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3838		vm_map_t old_map = map;
3839
3840		*var_map = map = entry->object.sub_map;
3841		vm_map_unlock_read(old_map);
3842		goto RetryLookup;
3843	}
3844
3845	/*
3846	 * Check whether this task is allowed to have this page.
3847	 */
3848	prot = entry->protection;
3849	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3850	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3851		vm_map_unlock_read(map);
3852		return (KERN_PROTECTION_FAILURE);
3853	}
3854	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3855	    (entry->eflags & MAP_ENTRY_COW) &&
3856	    (fault_type & VM_PROT_WRITE)) {
3857		vm_map_unlock_read(map);
3858		return (KERN_PROTECTION_FAILURE);
3859	}
3860	if ((fault_typea & VM_PROT_COPY) != 0 &&
3861	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3862	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3863		vm_map_unlock_read(map);
3864		return (KERN_PROTECTION_FAILURE);
3865	}
3866
3867	/*
3868	 * If this page is not pageable, we have to get it for all possible
3869	 * accesses.
3870	 */
3871	*wired = (entry->wired_count != 0);
3872	if (*wired)
3873		fault_type = entry->protection;
3874	size = entry->end - entry->start;
3875	/*
3876	 * If the entry was copy-on-write, we either ...
3877	 */
3878	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3879		/*
3880		 * If we want to write the page, we may as well handle that
3881		 * now since we've got the map locked.
3882		 *
3883		 * If we don't need to write the page, we just demote the
3884		 * permissions allowed.
3885		 */
3886		if ((fault_type & VM_PROT_WRITE) != 0 ||
3887		    (fault_typea & VM_PROT_COPY) != 0) {
3888			/*
3889			 * Make a new object, and place it in the object
3890			 * chain.  Note that no new references have appeared
3891			 * -- one just moved from the map to the new
3892			 * object.
3893			 */
3894			if (vm_map_lock_upgrade(map))
3895				goto RetryLookup;
3896
3897			if (entry->cred == NULL) {
3898				/*
3899				 * The debugger owner is charged for
3900				 * the memory.
3901				 */
3902				cred = curthread->td_ucred;
3903				crhold(cred);
3904				if (!swap_reserve_by_cred(size, cred)) {
3905					crfree(cred);
3906					vm_map_unlock(map);
3907					return (KERN_RESOURCE_SHORTAGE);
3908				}
3909				entry->cred = cred;
3910			}
3911			vm_object_shadow(&entry->object.vm_object,
3912			    &entry->offset, size);
3913			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3914			eobject = entry->object.vm_object;
3915			if (eobject->cred != NULL) {
3916				/*
3917				 * The object was not shadowed.
3918				 */
3919				swap_release_by_cred(size, entry->cred);
3920				crfree(entry->cred);
3921				entry->cred = NULL;
3922			} else if (entry->cred != NULL) {
3923				VM_OBJECT_WLOCK(eobject);
3924				eobject->cred = entry->cred;
3925				eobject->charge = size;
3926				VM_OBJECT_WUNLOCK(eobject);
3927				entry->cred = NULL;
3928			}
3929
3930			vm_map_lock_downgrade(map);
3931		} else {
3932			/*
3933			 * We're attempting to read a copy-on-write page --
3934			 * don't allow writes.
3935			 */
3936			prot &= ~VM_PROT_WRITE;
3937		}
3938	}
3939
3940	/*
3941	 * Create an object if necessary.
3942	 */
3943	if (entry->object.vm_object == NULL &&
3944	    !map->system_map) {
3945		if (vm_map_lock_upgrade(map))
3946			goto RetryLookup;
3947		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3948		    atop(size));
3949		entry->offset = 0;
3950		if (entry->cred != NULL) {
3951			VM_OBJECT_WLOCK(entry->object.vm_object);
3952			entry->object.vm_object->cred = entry->cred;
3953			entry->object.vm_object->charge = size;
3954			VM_OBJECT_WUNLOCK(entry->object.vm_object);
3955			entry->cred = NULL;
3956		}
3957		vm_map_lock_downgrade(map);
3958	}
3959
3960	/*
3961	 * Return the object/offset from this entry.  If the entry was
3962	 * copy-on-write or empty, it has been fixed up.
3963	 */
3964	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3965	*object = entry->object.vm_object;
3966
3967	*out_prot = prot;
3968	return (KERN_SUCCESS);
3969}
3970
3971/*
3972 *	vm_map_lookup_locked:
3973 *
3974 *	Lookup the faulting address.  A version of vm_map_lookup that returns
3975 *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3976 */
3977int
3978vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3979		     vm_offset_t vaddr,
3980		     vm_prot_t fault_typea,
3981		     vm_map_entry_t *out_entry,	/* OUT */
3982		     vm_object_t *object,	/* OUT */
3983		     vm_pindex_t *pindex,	/* OUT */
3984		     vm_prot_t *out_prot,	/* OUT */
3985		     boolean_t *wired)		/* OUT */
3986{
3987	vm_map_entry_t entry;
3988	vm_map_t map = *var_map;
3989	vm_prot_t prot;
3990	vm_prot_t fault_type = fault_typea;
3991
3992	/*
3993	 * Lookup the faulting address.
3994	 */
3995	if (!vm_map_lookup_entry(map, vaddr, out_entry))
3996		return (KERN_INVALID_ADDRESS);
3997
3998	entry = *out_entry;
3999
4000	/*
4001	 * Fail if the entry refers to a submap.
4002	 */
4003	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4004		return (KERN_FAILURE);
4005
4006	/*
4007	 * Check whether this task is allowed to have this page.
4008	 */
4009	prot = entry->protection;
4010	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4011	if ((fault_type & prot) != fault_type)
4012		return (KERN_PROTECTION_FAILURE);
4013	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4014	    (entry->eflags & MAP_ENTRY_COW) &&
4015	    (fault_type & VM_PROT_WRITE))
4016		return (KERN_PROTECTION_FAILURE);
4017
4018	/*
4019	 * If this page is not pageable, we have to get it for all possible
4020	 * accesses.
4021	 */
4022	*wired = (entry->wired_count != 0);
4023	if (*wired)
4024		fault_type = entry->protection;
4025
4026	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4027		/*
4028		 * Fail if the entry was copy-on-write for a write fault.
4029		 */
4030		if (fault_type & VM_PROT_WRITE)
4031			return (KERN_FAILURE);
4032		/*
4033		 * We're attempting to read a copy-on-write page --
4034		 * don't allow writes.
4035		 */
4036		prot &= ~VM_PROT_WRITE;
4037	}
4038
4039	/*
4040	 * Fail if an object should be created.
4041	 */
4042	if (entry->object.vm_object == NULL && !map->system_map)
4043		return (KERN_FAILURE);
4044
4045	/*
4046	 * Return the object/offset from this entry.  If the entry was
4047	 * copy-on-write or empty, it has been fixed up.
4048	 */
4049	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4050	*object = entry->object.vm_object;
4051
4052	*out_prot = prot;
4053	return (KERN_SUCCESS);
4054}
4055
4056/*
4057 *	vm_map_lookup_done:
4058 *
4059 *	Releases locks acquired by a vm_map_lookup
4060 *	(according to the handle returned by that lookup).
4061 */
4062void
4063vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4064{
4065	/*
4066	 * Unlock the main-level map
4067	 */
4068	vm_map_unlock_read(map);
4069}
4070
4071#include "opt_ddb.h"
4072#ifdef DDB
4073#include <sys/kernel.h>
4074
4075#include <ddb/ddb.h>
4076
4077static void
4078vm_map_print(vm_map_t map)
4079{
4080	vm_map_entry_t entry;
4081
4082	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4083	    (void *)map,
4084	    (void *)map->pmap, map->nentries, map->timestamp);
4085
4086	db_indent += 2;
4087	for (entry = map->header.next; entry != &map->header;
4088	    entry = entry->next) {
4089		db_iprintf("map entry %p: start=%p, end=%p\n",
4090		    (void *)entry, (void *)entry->start, (void *)entry->end);
4091		{
4092			static char *inheritance_name[4] =
4093			{"share", "copy", "none", "donate_copy"};
4094
4095			db_iprintf(" prot=%x/%x/%s",
4096			    entry->protection,
4097			    entry->max_protection,
4098			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4099			if (entry->wired_count != 0)
4100				db_printf(", wired");
4101		}
4102		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4103			db_printf(", share=%p, offset=0x%jx\n",
4104			    (void *)entry->object.sub_map,
4105			    (uintmax_t)entry->offset);
4106			if ((entry->prev == &map->header) ||
4107			    (entry->prev->object.sub_map !=
4108				entry->object.sub_map)) {
4109				db_indent += 2;
4110				vm_map_print((vm_map_t)entry->object.sub_map);
4111				db_indent -= 2;
4112			}
4113		} else {
4114			if (entry->cred != NULL)
4115				db_printf(", ruid %d", entry->cred->cr_ruid);
4116			db_printf(", object=%p, offset=0x%jx",
4117			    (void *)entry->object.vm_object,
4118			    (uintmax_t)entry->offset);
4119			if (entry->object.vm_object && entry->object.vm_object->cred)
4120				db_printf(", obj ruid %d charge %jx",
4121				    entry->object.vm_object->cred->cr_ruid,
4122				    (uintmax_t)entry->object.vm_object->charge);
4123			if (entry->eflags & MAP_ENTRY_COW)
4124				db_printf(", copy (%s)",
4125				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4126			db_printf("\n");
4127
4128			if ((entry->prev == &map->header) ||
4129			    (entry->prev->object.vm_object !=
4130				entry->object.vm_object)) {
4131				db_indent += 2;
4132				vm_object_print((db_expr_t)(intptr_t)
4133						entry->object.vm_object,
4134						1, 0, (char *)0);
4135				db_indent -= 2;
4136			}
4137		}
4138	}
4139	db_indent -= 2;
4140}
4141
4142DB_SHOW_COMMAND(map, map)
4143{
4144
4145	if (!have_addr) {
4146		db_printf("usage: show map <addr>\n");
4147		return;
4148	}
4149	vm_map_print((vm_map_t)addr);
4150}
4151
4152DB_SHOW_COMMAND(procvm, procvm)
4153{
4154	struct proc *p;
4155
4156	if (have_addr) {
4157		p = (struct proc *) addr;
4158	} else {
4159		p = curproc;
4160	}
4161
4162	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4163	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4164	    (void *)vmspace_pmap(p->p_vmspace));
4165
4166	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4167}
4168
4169#endif /* DDB */
4170