audit_worker.c revision 241896
1/*-
2 * Copyright (c) 1999-2008 Apple Inc.
3 * Copyright (c) 2006-2008 Robert N. M. Watson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1.  Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 * 2.  Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
15 *     its contributors may be used to endorse or promote products derived
16 *     from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: head/sys/security/audit/audit_worker.c 241896 2012-10-22 17:50:54Z kib $");
33
34#include <sys/param.h>
35#include <sys/condvar.h>
36#include <sys/conf.h>
37#include <sys/file.h>
38#include <sys/filedesc.h>
39#include <sys/fcntl.h>
40#include <sys/ipc.h>
41#include <sys/kernel.h>
42#include <sys/kthread.h>
43#include <sys/malloc.h>
44#include <sys/mount.h>
45#include <sys/namei.h>
46#include <sys/proc.h>
47#include <sys/queue.h>
48#include <sys/socket.h>
49#include <sys/socketvar.h>
50#include <sys/protosw.h>
51#include <sys/domain.h>
52#include <sys/sx.h>
53#include <sys/sysproto.h>
54#include <sys/sysent.h>
55#include <sys/systm.h>
56#include <sys/ucred.h>
57#include <sys/uio.h>
58#include <sys/un.h>
59#include <sys/unistd.h>
60#include <sys/vnode.h>
61
62#include <bsm/audit.h>
63#include <bsm/audit_internal.h>
64#include <bsm/audit_kevents.h>
65
66#include <netinet/in.h>
67#include <netinet/in_pcb.h>
68
69#include <security/audit/audit.h>
70#include <security/audit/audit_private.h>
71
72#include <vm/uma.h>
73
74/*
75 * Worker thread that will schedule disk I/O, etc.
76 */
77static struct proc		*audit_thread;
78
79/*
80 * audit_cred and audit_vp are the stored credential and vnode to use for
81 * active audit trail.  They are protected by the audit worker lock, which
82 * will be held across all I/O and all rotation to prevent them from being
83 * replaced (rotated) while in use.  The audit_file_rotate_wait flag is set
84 * when the kernel has delivered a trigger to auditd to rotate the trail, and
85 * is cleared when the next rotation takes place.  It is also protected by
86 * the audit worker lock.
87 */
88static int		 audit_file_rotate_wait;
89static struct ucred	*audit_cred;
90static struct vnode	*audit_vp;
91static struct sx	 audit_worker_lock;
92
93#define	AUDIT_WORKER_LOCK_INIT()	sx_init(&audit_worker_lock, \
94					    "audit_worker_lock");
95#define	AUDIT_WORKER_LOCK_ASSERT()	sx_assert(&audit_worker_lock, \
96					    SA_XLOCKED)
97#define	AUDIT_WORKER_LOCK()		sx_xlock(&audit_worker_lock)
98#define	AUDIT_WORKER_UNLOCK()		sx_xunlock(&audit_worker_lock)
99
100/*
101 * Write an audit record to a file, performed as the last stage after both
102 * preselection and BSM conversion.  Both space management and write failures
103 * are handled in this function.
104 *
105 * No attempt is made to deal with possible failure to deliver a trigger to
106 * the audit daemon, since the message is asynchronous anyway.
107 */
108static void
109audit_record_write(struct vnode *vp, struct ucred *cred, void *data,
110    size_t len)
111{
112	static struct timeval last_lowspace_trigger;
113	static struct timeval last_fail;
114	static int cur_lowspace_trigger;
115	struct statfs *mnt_stat;
116	int error;
117	static int cur_fail;
118	struct vattr vattr;
119	long temp;
120
121	AUDIT_WORKER_LOCK_ASSERT();
122
123	if (vp == NULL)
124		return;
125
126	mnt_stat = &vp->v_mount->mnt_stat;
127
128	/*
129	 * First, gather statistics on the audit log file and file system so
130	 * that we know how we're doing on space.  Consider failure of these
131	 * operations to indicate a future inability to write to the file.
132	 */
133	error = VFS_STATFS(vp->v_mount, mnt_stat);
134	if (error)
135		goto fail;
136	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
137	error = VOP_GETATTR(vp, &vattr, cred);
138	VOP_UNLOCK(vp, 0);
139	if (error)
140		goto fail;
141	audit_fstat.af_currsz = vattr.va_size;
142
143	/*
144	 * We handle four different space-related limits:
145	 *
146	 * - A fixed (hard) limit on the minimum free blocks we require on
147	 *   the file system, and results in record loss, a trigger, and
148	 *   possible fail stop due to violating invariants.
149	 *
150	 * - An administrative (soft) limit, which when fallen below, results
151	 *   in the kernel notifying the audit daemon of low space.
152	 *
153	 * - An audit trail size limit, which when gone above, results in the
154	 *   kernel notifying the audit daemon that rotation is desired.
155	 *
156	 * - The total depth of the kernel audit record exceeding free space,
157	 *   which can lead to possible fail stop (with drain), in order to
158	 *   prevent violating invariants.  Failure here doesn't halt
159	 *   immediately, but prevents new records from being generated.
160	 *
161	 * Possibly, the last of these should be handled differently, always
162	 * allowing a full queue to be lost, rather than trying to prevent
163	 * loss.
164	 *
165	 * First, handle the hard limit, which generates a trigger and may
166	 * fail stop.  This is handled in the same manner as ENOSPC from
167	 * VOP_WRITE, and results in record loss.
168	 */
169	if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) {
170		error = ENOSPC;
171		goto fail_enospc;
172	}
173
174	/*
175	 * Second, handle falling below the soft limit, if defined; we send
176	 * the daemon a trigger and continue processing the record.  Triggers
177	 * are limited to 1/sec.
178	 */
179	if (audit_qctrl.aq_minfree != 0) {
180		temp = mnt_stat->f_blocks / (100 / audit_qctrl.aq_minfree);
181		if (mnt_stat->f_bfree < temp) {
182			if (ppsratecheck(&last_lowspace_trigger,
183			    &cur_lowspace_trigger, 1)) {
184				(void)audit_send_trigger(
185				    AUDIT_TRIGGER_LOW_SPACE);
186				printf("Warning: disk space low (< %d%% free) "
187				    "on audit log file-system\n",
188				    audit_qctrl.aq_minfree);
189			}
190		}
191	}
192
193	/*
194	 * If the current file is getting full, generate a rotation trigger
195	 * to the daemon.  This is only approximate, which is fine as more
196	 * records may be generated before the daemon rotates the file.
197	 */
198	if ((audit_fstat.af_filesz != 0) && (audit_file_rotate_wait == 0) &&
199	    (vattr.va_size >= audit_fstat.af_filesz)) {
200		AUDIT_WORKER_LOCK_ASSERT();
201
202		audit_file_rotate_wait = 1;
203		(void)audit_send_trigger(AUDIT_TRIGGER_ROTATE_KERNEL);
204	}
205
206	/*
207	 * If the estimated amount of audit data in the audit event queue
208	 * (plus records allocated but not yet queued) has reached the amount
209	 * of free space on the disk, then we need to go into an audit fail
210	 * stop state, in which we do not permit the allocation/committing of
211	 * any new audit records.  We continue to process records but don't
212	 * allow any activities that might generate new records.  In the
213	 * future, we might want to detect when space is available again and
214	 * allow operation to continue, but this behavior is sufficient to
215	 * meet fail stop requirements in CAPP.
216	 */
217	if (audit_fail_stop) {
218		if ((unsigned long)((audit_q_len + audit_pre_q_len + 1) *
219		    MAX_AUDIT_RECORD_SIZE) / mnt_stat->f_bsize >=
220		    (unsigned long)(mnt_stat->f_bfree)) {
221			if (ppsratecheck(&last_fail, &cur_fail, 1))
222				printf("audit_record_write: free space "
223				    "below size of audit queue, failing "
224				    "stop\n");
225			audit_in_failure = 1;
226		} else if (audit_in_failure) {
227			/*
228			 * Note: if we want to handle recovery, this is the
229			 * spot to do it: unset audit_in_failure, and issue a
230			 * wakeup on the cv.
231			 */
232		}
233	}
234
235	error = vn_rdwr(UIO_WRITE, vp, data, len, (off_t)0, UIO_SYSSPACE,
236	    IO_APPEND|IO_UNIT, cred, NULL, NULL, curthread);
237	if (error == ENOSPC)
238		goto fail_enospc;
239	else if (error)
240		goto fail;
241
242	/*
243	 * Catch completion of a queue drain here; if we're draining and the
244	 * queue is now empty, fail stop.  That audit_fail_stop is implicitly
245	 * true, since audit_in_failure can only be set of audit_fail_stop is
246	 * set.
247	 *
248	 * Note: if we handle recovery from audit_in_failure, then we need to
249	 * make panic here conditional.
250	 */
251	if (audit_in_failure) {
252		if (audit_q_len == 0 && audit_pre_q_len == 0) {
253			VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
254			(void)VOP_FSYNC(vp, MNT_WAIT, curthread);
255			VOP_UNLOCK(vp, 0);
256			panic("Audit store overflow; record queue drained.");
257		}
258	}
259
260	return;
261
262fail_enospc:
263	/*
264	 * ENOSPC is considered a special case with respect to failures, as
265	 * this can reflect either our preemptive detection of insufficient
266	 * space, or ENOSPC returned by the vnode write call.
267	 */
268	if (audit_fail_stop) {
269		VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
270		(void)VOP_FSYNC(vp, MNT_WAIT, curthread);
271		VOP_UNLOCK(vp, 0);
272		panic("Audit log space exhausted and fail-stop set.");
273	}
274	(void)audit_send_trigger(AUDIT_TRIGGER_NO_SPACE);
275	audit_suspended = 1;
276
277	/* FALLTHROUGH */
278fail:
279	/*
280	 * We have failed to write to the file, so the current record is
281	 * lost, which may require an immediate system halt.
282	 */
283	if (audit_panic_on_write_fail) {
284		VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
285		(void)VOP_FSYNC(vp, MNT_WAIT, curthread);
286		VOP_UNLOCK(vp, 0);
287		panic("audit_worker: write error %d\n", error);
288	} else if (ppsratecheck(&last_fail, &cur_fail, 1))
289		printf("audit_worker: write error %d\n", error);
290}
291
292/*
293 * Given a kernel audit record, process as required.  Kernel audit records
294 * are converted to one, or possibly two, BSM records, depending on whether
295 * there is a user audit record present also.  Kernel records need be
296 * converted to BSM before they can be written out.  Both types will be
297 * written to disk, and audit pipes.
298 */
299static void
300audit_worker_process_record(struct kaudit_record *ar)
301{
302	struct au_record *bsm;
303	au_class_t class;
304	au_event_t event;
305	au_id_t auid;
306	int error, sorf;
307	int locked;
308
309	/*
310	 * We hold the audit worker lock over both writes, if there are two,
311	 * so that the two records won't be split across a rotation and end
312	 * up in two different trail files.
313	 */
314	if (((ar->k_ar_commit & AR_COMMIT_USER) &&
315	    (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) ||
316	    (ar->k_ar_commit & AR_PRESELECT_TRAIL)) {
317		AUDIT_WORKER_LOCK();
318		locked = 1;
319	} else
320		locked = 0;
321
322	/*
323	 * First, handle the user record, if any: commit to the system trail
324	 * and audit pipes as selected.
325	 */
326	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
327	    (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) {
328		AUDIT_WORKER_LOCK_ASSERT();
329		audit_record_write(audit_vp, audit_cred, ar->k_udata,
330		    ar->k_ulen);
331	}
332
333	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
334	    (ar->k_ar_commit & AR_PRESELECT_USER_PIPE))
335		audit_pipe_submit_user(ar->k_udata, ar->k_ulen);
336
337	if (!(ar->k_ar_commit & AR_COMMIT_KERNEL) ||
338	    ((ar->k_ar_commit & AR_PRESELECT_PIPE) == 0 &&
339	    (ar->k_ar_commit & AR_PRESELECT_TRAIL) == 0))
340		goto out;
341
342	auid = ar->k_ar.ar_subj_auid;
343	event = ar->k_ar.ar_event;
344	class = au_event_class(event);
345	if (ar->k_ar.ar_errno == 0)
346		sorf = AU_PRS_SUCCESS;
347	else
348		sorf = AU_PRS_FAILURE;
349
350	error = kaudit_to_bsm(ar, &bsm);
351	switch (error) {
352	case BSM_NOAUDIT:
353		goto out;
354
355	case BSM_FAILURE:
356		printf("audit_worker_process_record: BSM_FAILURE\n");
357		goto out;
358
359	case BSM_SUCCESS:
360		break;
361
362	default:
363		panic("kaudit_to_bsm returned %d", error);
364	}
365
366	if (ar->k_ar_commit & AR_PRESELECT_TRAIL) {
367		AUDIT_WORKER_LOCK_ASSERT();
368		audit_record_write(audit_vp, audit_cred, bsm->data, bsm->len);
369	}
370
371	if (ar->k_ar_commit & AR_PRESELECT_PIPE)
372		audit_pipe_submit(auid, event, class, sorf,
373		    ar->k_ar_commit & AR_PRESELECT_TRAIL, bsm->data,
374		    bsm->len);
375
376	kau_free(bsm);
377out:
378	if (locked)
379		AUDIT_WORKER_UNLOCK();
380}
381
382/*
383 * The audit_worker thread is responsible for watching the event queue,
384 * dequeueing records, converting them to BSM format, and committing them to
385 * disk.  In order to minimize lock thrashing, records are dequeued in sets
386 * to a thread-local work queue.
387 *
388 * Note: this means that the effect bound on the size of the pending record
389 * queue is 2x the length of the global queue.
390 */
391static void
392audit_worker(void *arg)
393{
394	struct kaudit_queue ar_worklist;
395	struct kaudit_record *ar;
396	int lowater_signal;
397
398	TAILQ_INIT(&ar_worklist);
399	mtx_lock(&audit_mtx);
400	while (1) {
401		mtx_assert(&audit_mtx, MA_OWNED);
402
403		/*
404		 * Wait for a record.
405		 */
406		while (TAILQ_EMPTY(&audit_q))
407			cv_wait(&audit_worker_cv, &audit_mtx);
408
409		/*
410		 * If there are records in the global audit record queue,
411		 * transfer them to a thread-local queue and process them
412		 * one by one.  If we cross the low watermark threshold,
413		 * signal any waiting processes that they may wake up and
414		 * continue generating records.
415		 */
416		lowater_signal = 0;
417		while ((ar = TAILQ_FIRST(&audit_q))) {
418			TAILQ_REMOVE(&audit_q, ar, k_q);
419			audit_q_len--;
420			if (audit_q_len == audit_qctrl.aq_lowater)
421				lowater_signal++;
422			TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q);
423		}
424		if (lowater_signal)
425			cv_broadcast(&audit_watermark_cv);
426
427		mtx_unlock(&audit_mtx);
428		while ((ar = TAILQ_FIRST(&ar_worklist))) {
429			TAILQ_REMOVE(&ar_worklist, ar, k_q);
430			audit_worker_process_record(ar);
431			audit_free(ar);
432		}
433		mtx_lock(&audit_mtx);
434	}
435}
436
437/*
438 * audit_rotate_vnode() is called by a user or kernel thread to configure or
439 * de-configure auditing on a vnode.  The arguments are the replacement
440 * credential (referenced) and vnode (referenced and opened) to substitute
441 * for the current credential and vnode, if any.  If either is set to NULL,
442 * both should be NULL, and this is used to indicate that audit is being
443 * disabled.  Any previous cred/vnode will be closed and freed.  We re-enable
444 * generating rotation requests to auditd.
445 */
446void
447audit_rotate_vnode(struct ucred *cred, struct vnode *vp)
448{
449	struct ucred *old_audit_cred;
450	struct vnode *old_audit_vp;
451
452	KASSERT((cred != NULL && vp != NULL) || (cred == NULL && vp == NULL),
453	    ("audit_rotate_vnode: cred %p vp %p", cred, vp));
454
455	/*
456	 * Rotate the vnode/cred, and clear the rotate flag so that we will
457	 * send a rotate trigger if the new file fills.
458	 */
459	AUDIT_WORKER_LOCK();
460	old_audit_cred = audit_cred;
461	old_audit_vp = audit_vp;
462	audit_cred = cred;
463	audit_vp = vp;
464	audit_file_rotate_wait = 0;
465	audit_enabled = (audit_vp != NULL);
466	AUDIT_WORKER_UNLOCK();
467
468	/*
469	 * If there was an old vnode/credential, close and free.
470	 */
471	if (old_audit_vp != NULL) {
472		vn_close(old_audit_vp, AUDIT_CLOSE_FLAGS, old_audit_cred,
473		    curthread);
474		crfree(old_audit_cred);
475	}
476}
477
478void
479audit_worker_init(void)
480{
481	int error;
482
483	AUDIT_WORKER_LOCK_INIT();
484	error = kproc_create(audit_worker, NULL, &audit_thread, RFHIGHPID,
485	    0, "audit");
486	if (error)
487		panic("audit_worker_init: kproc_create returned %d", error);
488}
489