audit_worker.c revision 162380
1/*
2 * Copyright (c) 1999-2005 Apple Computer, Inc.
3 * Copyright (c) 2006 Robert N. M. Watson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1.  Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 * 2.  Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
15 *     its contributors may be used to endorse or promote products derived
16 *     from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 *
30 * $FreeBSD: head/sys/security/audit/audit_worker.c 162380 2006-09-17 17:52:57Z csjp $
31 */
32
33#include <sys/param.h>
34#include <sys/condvar.h>
35#include <sys/conf.h>
36#include <sys/file.h>
37#include <sys/filedesc.h>
38#include <sys/fcntl.h>
39#include <sys/ipc.h>
40#include <sys/kernel.h>
41#include <sys/kthread.h>
42#include <sys/malloc.h>
43#include <sys/mount.h>
44#include <sys/namei.h>
45#include <sys/proc.h>
46#include <sys/queue.h>
47#include <sys/socket.h>
48#include <sys/socketvar.h>
49#include <sys/protosw.h>
50#include <sys/domain.h>
51#include <sys/sysproto.h>
52#include <sys/sysent.h>
53#include <sys/systm.h>
54#include <sys/ucred.h>
55#include <sys/uio.h>
56#include <sys/un.h>
57#include <sys/unistd.h>
58#include <sys/vnode.h>
59
60#include <bsm/audit.h>
61#include <bsm/audit_internal.h>
62#include <bsm/audit_kevents.h>
63
64#include <netinet/in.h>
65#include <netinet/in_pcb.h>
66
67#include <security/audit/audit.h>
68#include <security/audit/audit_private.h>
69
70#include <vm/uma.h>
71
72/*
73 * Worker thread that will schedule disk I/O, etc.
74 */
75static struct proc		*audit_thread;
76
77/*
78 * When an audit log is rotated, the actual rotation must be performed by the
79 * audit worker thread, as it may have outstanding writes on the current
80 * audit log.  audit_replacement_vp holds the vnode replacing the current
81 * vnode.  We can't let more than one replacement occur at a time, so if more
82 * than one thread requests a replacement, only one can have the replacement
83 * "in progress" at any given moment.  If a thread tries to replace the audit
84 * vnode and discovers a replacement is already in progress (i.e.,
85 * audit_replacement_flag != 0), then it will sleep on audit_replacement_cv
86 * waiting its turn to perform a replacement.  When a replacement is
87 * completed, this cv is signalled by the worker thread so a waiting thread
88 * can start another replacement.  We also store a credential to perform
89 * audit log write operations with.
90 *
91 * The current credential and vnode are thread-local to audit_worker.
92 */
93static struct cv		audit_replacement_cv;
94
95static int			audit_replacement_flag;
96static struct vnode		*audit_replacement_vp;
97static struct ucred		*audit_replacement_cred;
98
99/*
100 * Flags related to Kernel->user-space communication.
101 */
102static int			audit_file_rotate_wait;
103
104/*
105 * XXXAUDIT: Should adjust comments below to make it clear that we get to
106 * this point only if we believe we have storage, so not having space here is
107 * a violation of invariants derived from administrative procedures. I.e.,
108 * someone else has written to the audit partition, leaving less space than
109 * we accounted for.
110 */
111static int
112audit_record_write(struct vnode *vp, struct ucred *cred, struct thread *td,
113    void *data, size_t len)
114{
115	int ret;
116	long temp;
117	struct vattr vattr;
118	struct statfs *mnt_stat;
119	int vfslocked;
120
121	if (vp == NULL)
122		return (0);
123
124 	mnt_stat = &vp->v_mount->mnt_stat;
125	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
126
127	/*
128	 * First, gather statistics on the audit log file and file system so
129	 * that we know how we're doing on space.  In both cases, if we're
130	 * unable to perform the operation, we drop the record and return.
131	 * However, this is arguably an assertion failure.
132	 * XXX Need a FreeBSD equivalent.
133	 */
134	ret = VFS_STATFS(vp->v_mount, mnt_stat, td);
135	if (ret)
136		goto out;
137
138	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
139	ret = VOP_GETATTR(vp, &vattr, cred, td);
140	VOP_UNLOCK(vp, 0, td);
141	if (ret)
142		goto out;
143
144	/* update the global stats struct */
145	audit_fstat.af_currsz = vattr.va_size;
146
147	/*
148	 * XXX Need to decide what to do if the trigger to the audit daemon
149	 * fails.
150	 */
151
152	/*
153	 * If we fall below minimum free blocks (hard limit), tell the audit
154	 * daemon to force a rotation off of the file system. We also stop
155	 * writing, which means this audit record is probably lost.  If we
156	 * fall below the minimum percent free blocks (soft limit), then
157	 * kindly suggest to the audit daemon to do something.
158	 */
159	if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) {
160		(void)send_trigger(AUDIT_TRIGGER_NO_SPACE);
161		/*
162		 * Hopefully userspace did something about all the previous
163		 * triggers that were sent prior to this critical condition.
164		 * If fail-stop is set, then we're done; goodnight Gracie.
165		 */
166		if (audit_fail_stop)
167			panic("Audit log space exhausted and fail-stop set.");
168		else {
169			audit_suspended = 1;
170			ret = ENOSPC;
171			goto out;
172		}
173	} else
174		/*
175		 * Send a message to the audit daemon that disk space is
176		 * getting low.
177		 *
178		 * XXXAUDIT: Check math and block size calculation here.
179		 */
180		if (audit_qctrl.aq_minfree != 0) {
181			temp = mnt_stat->f_blocks / (100 /
182			    audit_qctrl.aq_minfree);
183			if (mnt_stat->f_bfree < temp)
184				(void)send_trigger(AUDIT_TRIGGER_LOW_SPACE);
185		}
186
187	/*
188	 * Check if the current log file is full; if so, call for a log
189	 * rotate. This is not an exact comparison; we may write some records
190	 * over the limit. If that's not acceptable, then add a fudge factor
191	 * here.
192	 */
193	if ((audit_fstat.af_filesz != 0) &&
194	    (audit_file_rotate_wait == 0) &&
195	    (vattr.va_size >= audit_fstat.af_filesz)) {
196		audit_file_rotate_wait = 1;
197		(void)send_trigger(AUDIT_TRIGGER_OPEN_NEW);
198	}
199
200	/*
201	 * If the estimated amount of audit data in the audit event queue
202	 * (plus records allocated but not yet queued) has reached the amount
203	 * of free space on the disk, then we need to go into an audit fail
204	 * stop state, in which we do not permit the allocation/committing of
205	 * any new audit records.  We continue to process packets but don't
206	 * allow any activities that might generate new records.  In the
207	 * future, we might want to detect when space is available again and
208	 * allow operation to continue, but this behavior is sufficient to
209	 * meet fail stop requirements in CAPP.
210	 */
211	if (audit_fail_stop &&
212	    (unsigned long)
213	    ((audit_q_len + audit_pre_q_len + 1) * MAX_AUDIT_RECORD_SIZE) /
214	    mnt_stat->f_bsize >= (unsigned long)(mnt_stat->f_bfree)) {
215		printf("audit_record_write: free space below size of audit "
216		    "queue, failing stop\n");
217		audit_in_failure = 1;
218	}
219
220	ret = vn_rdwr(UIO_WRITE, vp, data, len, (off_t)0, UIO_SYSSPACE,
221	    IO_APPEND|IO_UNIT, cred, NULL, NULL, td);
222
223out:
224	/*
225	 * When we're done processing the current record, we have to check to
226	 * see if we're in a failure mode, and if so, whether this was the
227	 * last record left to be drained.  If we're done draining, then we
228	 * fsync the vnode and panic.
229	 */
230	if (audit_in_failure && audit_q_len == 0 && audit_pre_q_len == 0) {
231		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
232		(void)VOP_FSYNC(vp, MNT_WAIT, td);
233		VOP_UNLOCK(vp, 0, td);
234		panic("Audit store overflow; record queue drained.");
235	}
236
237	VFS_UNLOCK_GIANT(vfslocked);
238
239	return (ret);
240}
241
242/*
243 * If an appropriate signal has been received rotate the audit log based on
244 * the global replacement variables.  Signal consumers as needed that the
245 * rotation has taken place.
246 *
247 * XXXRW: The global variables and CVs used to signal the audit_worker to
248 * perform a rotation are essentially a message queue of depth 1.  It would
249 * be much nicer to actually use a message queue.
250 */
251static void
252audit_worker_rotate(struct ucred **audit_credp, struct vnode **audit_vpp,
253    struct thread *audit_td)
254{
255	int do_replacement_signal, vfslocked;
256	struct ucred *old_cred;
257	struct vnode *old_vp;
258
259	mtx_assert(&audit_mtx, MA_OWNED);
260
261	do_replacement_signal = 0;
262	while (audit_replacement_flag != 0) {
263		old_cred = *audit_credp;
264		old_vp = *audit_vpp;
265		*audit_credp = audit_replacement_cred;
266		*audit_vpp = audit_replacement_vp;
267		audit_replacement_cred = NULL;
268		audit_replacement_vp = NULL;
269		audit_replacement_flag = 0;
270
271		audit_enabled = (*audit_vpp != NULL);
272
273		/*
274		 * XXX: What to do about write failures here?
275		 */
276		if (old_vp != NULL) {
277			AUDIT_PRINTF(("Closing old audit file\n"));
278			mtx_unlock(&audit_mtx);
279			vfslocked = VFS_LOCK_GIANT(old_vp->v_mount);
280			vn_close(old_vp, AUDIT_CLOSE_FLAGS, old_cred,
281			    audit_td);
282			VFS_UNLOCK_GIANT(vfslocked);
283			crfree(old_cred);
284			mtx_lock(&audit_mtx);
285			old_cred = NULL;
286			old_vp = NULL;
287			AUDIT_PRINTF(("Audit file closed\n"));
288		}
289		if (*audit_vpp != NULL) {
290			AUDIT_PRINTF(("Opening new audit file\n"));
291		}
292		do_replacement_signal = 1;
293	}
294
295	/*
296	 * Signal that replacement have occurred to wake up and
297	 * start any other replacements started in parallel.  We can
298	 * continue about our business in the mean time.  We
299	 * broadcast so that both new replacements can be inserted,
300	 * but also so that the source(s) of replacement can return
301	 * successfully.
302	 */
303	if (do_replacement_signal)
304		cv_broadcast(&audit_replacement_cv);
305}
306
307/*
308 * Given a kernel audit record, process as required.  Kernel audit records
309 * are converted to one, or possibly two, BSM records, depending on whether
310 * there is a user audit record present also.  Kernel records need be
311 * converted to BSM before they can be written out.  Both types will be
312 * written to disk, and audit pipes.
313 */
314static void
315audit_worker_process_record(struct vnode *audit_vp, struct ucred *audit_cred,
316    struct thread *audit_td, struct kaudit_record *ar)
317{
318	struct au_record *bsm;
319	au_class_t class;
320	au_event_t event;
321	int error, ret;
322	au_id_t auid;
323	int sorf;
324
325	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
326	    (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) {
327		error = audit_record_write(audit_vp, audit_cred, audit_td,
328		    ar->k_udata, ar->k_ulen);
329		if (error && audit_panic_on_write_fail)
330			panic("audit_worker: write error %d\n", error);
331		else if (error)
332			printf("audit_worker: write error %d\n", error);
333	}
334
335	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
336	    (ar->k_ar_commit & AR_PRESELECT_USER_PIPE))
337		audit_pipe_submit_user(ar->k_udata, ar->k_ulen);
338
339	if (!(ar->k_ar_commit & AR_COMMIT_KERNEL) ||
340	    ((ar->k_ar_commit & AR_PRESELECT_PIPE) == 0 &&
341	    (ar->k_ar_commit & AR_PRESELECT_TRAIL) == 0))
342		return;
343
344	auid = ar->k_ar.ar_subj_auid;
345	event = ar->k_ar.ar_event;
346	class = au_event_class(event);
347	if (ar->k_ar.ar_errno == 0)
348		sorf = AU_PRS_SUCCESS;
349	else
350		sorf = AU_PRS_FAILURE;
351
352	ret = kaudit_to_bsm(ar, &bsm);
353	switch (ret) {
354	case BSM_NOAUDIT:
355		return;
356
357	case BSM_FAILURE:
358		printf("audit_worker_process_record: BSM_FAILURE\n");
359		return;
360
361	case BSM_SUCCESS:
362		break;
363
364	default:
365		panic("kaudit_to_bsm returned %d", ret);
366	}
367
368	if (ar->k_ar_commit & AR_PRESELECT_TRAIL) {
369		error = audit_record_write(audit_vp, audit_cred,
370		    audit_td, bsm->data, bsm->len);
371		if (error && audit_panic_on_write_fail)
372			panic("audit_worker: write error %d\n",
373			    error);
374		else if (error)
375			printf("audit_worker: write error %d\n",
376			    error);
377	}
378
379	if (ar->k_ar_commit & AR_PRESELECT_PIPE)
380		audit_pipe_submit(auid, event, class, sorf,
381		    ar->k_ar_commit & AR_PRESELECT_TRAIL, bsm->data,
382		    bsm->len);
383	kau_free(bsm);
384}
385
386/*
387 * The audit_worker thread is responsible for watching the event queue,
388 * dequeueing records, converting them to BSM format, and committing them to
389 * disk.  In order to minimize lock thrashing, records are dequeued in sets
390 * to a thread-local work queue.  In addition, the audit_work performs the
391 * actual exchange of audit log vnode pointer, as audit_vp is a thread-local
392 * variable.
393 */
394static void
395audit_worker(void *arg)
396{
397	struct kaudit_queue ar_worklist;
398	struct kaudit_record *ar;
399	struct ucred *audit_cred;
400	struct thread *audit_td;
401	struct vnode *audit_vp;
402	int lowater_signal;
403
404	AUDIT_PRINTF(("audit_worker starting\n"));
405
406	/*
407	 * These are thread-local variables requiring no synchronization.
408	 */
409	TAILQ_INIT(&ar_worklist);
410	audit_cred = NULL;
411	audit_td = curthread;
412	audit_vp = NULL;
413
414	mtx_lock(&audit_mtx);
415	while (1) {
416		mtx_assert(&audit_mtx, MA_OWNED);
417
418		/*
419		 * Wait for record or rotation events.
420		 */
421		while (!audit_replacement_flag && TAILQ_EMPTY(&audit_q)) {
422			AUDIT_PRINTF(("audit_worker waiting\n"));
423			cv_wait(&audit_worker_cv, &audit_mtx);
424			AUDIT_PRINTF(("audit_worker woken up\n"));
425			AUDIT_PRINTF(("audit_worker: new vp = %p; value of "
426			    "flag %d\n", audit_replacement_vp,
427			    audit_replacement_flag));
428		}
429
430		/*
431		 * First priority: replace the audit log target if requested.
432		 */
433		audit_worker_rotate(&audit_cred, &audit_vp, audit_td);
434
435		/*
436		 * If there are records in the global audit record queue,
437		 * transfer them to a thread-local queue and process them
438		 * one by one.  If we cross the low watermark threshold,
439		 * signal any waiting processes that they may wake up and
440		 * continue generating records.
441		 */
442		lowater_signal = 0;
443		while ((ar = TAILQ_FIRST(&audit_q))) {
444			TAILQ_REMOVE(&audit_q, ar, k_q);
445			audit_q_len--;
446			if (audit_q_len == audit_qctrl.aq_lowater)
447				lowater_signal++;
448			TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q);
449		}
450		if (lowater_signal)
451			cv_broadcast(&audit_watermark_cv);
452
453		mtx_unlock(&audit_mtx);
454		while ((ar = TAILQ_FIRST(&ar_worklist))) {
455			TAILQ_REMOVE(&ar_worklist, ar, k_q);
456			audit_worker_process_record(audit_vp, audit_cred,
457			    audit_td, ar);
458			audit_free(ar);
459		}
460		mtx_lock(&audit_mtx);
461	}
462}
463
464/*
465 * audit_rotate_vnode() is called by a user or kernel thread to configure or
466 * de-configure auditing on a vnode.  The arguments are the replacement
467 * credential and vnode to substitute for the current credential and vnode,
468 * if any.  If either is set to NULL, both should be NULL, and this is used
469 * to indicate that audit is being disabled.  The real work is done in the
470 * audit_worker thread, but audit_rotate_vnode() waits synchronously for that
471 * to complete.
472 *
473 * The vnode should be referenced and opened by the caller.  The credential
474 * should be referenced.  audit_rotate_vnode() will own both references as of
475 * this call, so the caller should not release either.
476 *
477 * XXXAUDIT: Review synchronize communication logic.  Really, this is a
478 * message queue of depth 1.
479 *
480 * XXXAUDIT: Enhance the comments below to indicate that we are basically
481 * acquiring ownership of the communications queue, inserting our message,
482 * and waiting for an acknowledgement.
483 */
484void
485audit_rotate_vnode(struct ucred *cred, struct vnode *vp)
486{
487
488	/*
489	 * If other parallel log replacements have been requested, we wait
490	 * until they've finished before continuing.
491	 */
492	mtx_lock(&audit_mtx);
493	while (audit_replacement_flag != 0) {
494		AUDIT_PRINTF(("audit_rotate_vnode: sleeping to wait for "
495		    "flag\n"));
496		cv_wait(&audit_replacement_cv, &audit_mtx);
497		AUDIT_PRINTF(("audit_rotate_vnode: woken up (flag %d)\n",
498		    audit_replacement_flag));
499	}
500	audit_replacement_cred = cred;
501	audit_replacement_flag = 1;
502	audit_replacement_vp = vp;
503
504	/*
505	 * Wake up the audit worker to perform the exchange once we
506	 * release the mutex.
507	 */
508	cv_signal(&audit_worker_cv);
509
510	/*
511	 * Wait for the audit_worker to broadcast that a replacement has
512	 * taken place; we know that once this has happened, our vnode
513	 * has been replaced in, so we can return successfully.
514	 */
515	AUDIT_PRINTF(("audit_rotate_vnode: waiting for news of "
516	    "replacement\n"));
517	cv_wait(&audit_replacement_cv, &audit_mtx);
518	AUDIT_PRINTF(("audit_rotate_vnode: change acknowledged by "
519	    "audit_worker (flag " "now %d)\n", audit_replacement_flag));
520	mtx_unlock(&audit_mtx);
521
522	audit_file_rotate_wait = 0; /* We can now request another rotation */
523}
524
525void
526audit_worker_init(void)
527{
528	int error;
529
530	cv_init(&audit_replacement_cv, "audit_replacement_cv");
531	error = kthread_create(audit_worker, NULL, &audit_thread, RFHIGHPID,
532	    0, "audit_worker");
533	if (error)
534		panic("audit_worker_init: kthread_create returned %d", error);
535}
536