audit_worker.c revision 159265
1/*
2 * Copyright (c) 1999-2005 Apple Computer, Inc.
3 * Copyright (c) 2006 Robert N. M. Watson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1.  Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 * 2.  Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
15 *     its contributors may be used to endorse or promote products derived
16 *     from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 *
30 * $FreeBSD: head/sys/security/audit/audit_worker.c 159265 2006-06-05 14:09:59Z rwatson $
31 */
32
33#include <sys/param.h>
34#include <sys/condvar.h>
35#include <sys/conf.h>
36#include <sys/file.h>
37#include <sys/filedesc.h>
38#include <sys/fcntl.h>
39#include <sys/ipc.h>
40#include <sys/kernel.h>
41#include <sys/kthread.h>
42#include <sys/malloc.h>
43#include <sys/mount.h>
44#include <sys/namei.h>
45#include <sys/proc.h>
46#include <sys/queue.h>
47#include <sys/socket.h>
48#include <sys/socketvar.h>
49#include <sys/protosw.h>
50#include <sys/domain.h>
51#include <sys/sysproto.h>
52#include <sys/sysent.h>
53#include <sys/systm.h>
54#include <sys/ucred.h>
55#include <sys/uio.h>
56#include <sys/un.h>
57#include <sys/unistd.h>
58#include <sys/vnode.h>
59
60#include <bsm/audit.h>
61#include <bsm/audit_internal.h>
62#include <bsm/audit_kevents.h>
63
64#include <netinet/in.h>
65#include <netinet/in_pcb.h>
66
67#include <security/audit/audit.h>
68#include <security/audit/audit_private.h>
69
70#include <vm/uma.h>
71
72/*
73 * Worker thread that will schedule disk I/O, etc.
74 */
75static struct proc		*audit_thread;
76
77/*
78 * When an audit log is rotated, the actual rotation must be performed by the
79 * audit worker thread, as it may have outstanding writes on the current
80 * audit log.  audit_replacement_vp holds the vnode replacing the current
81 * vnode.  We can't let more than one replacement occur at a time, so if more
82 * than one thread requests a replacement, only one can have the replacement
83 * "in progress" at any given moment.  If a thread tries to replace the audit
84 * vnode and discovers a replacement is already in progress (i.e.,
85 * audit_replacement_flag != 0), then it will sleep on audit_replacement_cv
86 * waiting its turn to perform a replacement.  When a replacement is
87 * completed, this cv is signalled by the worker thread so a waiting thread
88 * can start another replacement.  We also store a credential to perform
89 * audit log write operations with.
90 *
91 * The current credential and vnode are thread-local to audit_worker.
92 */
93static struct cv		audit_replacement_cv;
94
95static int			audit_replacement_flag;
96static struct vnode		*audit_replacement_vp;
97static struct ucred		*audit_replacement_cred;
98
99/*
100 * Flags related to Kernel->user-space communication.
101 */
102static int			audit_file_rotate_wait;
103
104/*
105 * XXXAUDIT: Should adjust comments below to make it clear that we get to
106 * this point only if we believe we have storage, so not having space here is
107 * a violation of invariants derived from administrative procedures. I.e.,
108 * someone else has written to the audit partition, leaving less space than
109 * we accounted for.
110 */
111static int
112audit_record_write(struct vnode *vp, struct ucred *cred, struct thread *td,
113    void *data, size_t len)
114{
115	int ret;
116	long temp;
117	struct vattr vattr;
118	struct statfs *mnt_stat = &vp->v_mount->mnt_stat;
119	int vfslocked;
120
121	if (vp == NULL)
122		return (0);
123
124	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
125
126	/*
127	 * First, gather statistics on the audit log file and file system so
128	 * that we know how we're doing on space.  In both cases, if we're
129	 * unable to perform the operation, we drop the record and return.
130	 * However, this is arguably an assertion failure.
131	 * XXX Need a FreeBSD equivalent.
132	 */
133	ret = VFS_STATFS(vp->v_mount, mnt_stat, td);
134	if (ret)
135		goto out;
136
137	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
138	ret = VOP_GETATTR(vp, &vattr, cred, td);
139	VOP_UNLOCK(vp, 0, td);
140	if (ret)
141		goto out;
142
143	/* update the global stats struct */
144	audit_fstat.af_currsz = vattr.va_size;
145
146	/*
147	 * XXX Need to decide what to do if the trigger to the audit daemon
148	 * fails.
149	 */
150
151	/*
152	 * If we fall below minimum free blocks (hard limit), tell the audit
153	 * daemon to force a rotation off of the file system. We also stop
154	 * writing, which means this audit record is probably lost.  If we
155	 * fall below the minimum percent free blocks (soft limit), then
156	 * kindly suggest to the audit daemon to do something.
157	 */
158	if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) {
159		(void)send_trigger(AUDIT_TRIGGER_NO_SPACE);
160		/*
161		 * Hopefully userspace did something about all the previous
162		 * triggers that were sent prior to this critical condition.
163		 * If fail-stop is set, then we're done; goodnight Gracie.
164		 */
165		if (audit_fail_stop)
166			panic("Audit log space exhausted and fail-stop set.");
167		else {
168			audit_suspended = 1;
169			ret = ENOSPC;
170			goto out;
171		}
172	} else
173		/*
174		 * Send a message to the audit daemon that disk space is
175		 * getting low.
176		 *
177		 * XXXAUDIT: Check math and block size calculation here.
178		 */
179		if (audit_qctrl.aq_minfree != 0) {
180			temp = mnt_stat->f_blocks / (100 /
181			    audit_qctrl.aq_minfree);
182			if (mnt_stat->f_bfree < temp)
183				(void)send_trigger(AUDIT_TRIGGER_LOW_SPACE);
184		}
185
186	/*
187	 * Check if the current log file is full; if so, call for a log
188	 * rotate. This is not an exact comparison; we may write some records
189	 * over the limit. If that's not acceptable, then add a fudge factor
190	 * here.
191	 */
192	if ((audit_fstat.af_filesz != 0) &&
193	    (audit_file_rotate_wait == 0) &&
194	    (vattr.va_size >= audit_fstat.af_filesz)) {
195		audit_file_rotate_wait = 1;
196		(void)send_trigger(AUDIT_TRIGGER_OPEN_NEW);
197	}
198
199	/*
200	 * If the estimated amount of audit data in the audit event queue
201	 * (plus records allocated but not yet queued) has reached the amount
202	 * of free space on the disk, then we need to go into an audit fail
203	 * stop state, in which we do not permit the allocation/committing of
204	 * any new audit records.  We continue to process packets but don't
205	 * allow any activities that might generate new records.  In the
206	 * future, we might want to detect when space is available again and
207	 * allow operation to continue, but this behavior is sufficient to
208	 * meet fail stop requirements in CAPP.
209	 */
210	if (audit_fail_stop &&
211	    (unsigned long)
212	    ((audit_q_len + audit_pre_q_len + 1) * MAX_AUDIT_RECORD_SIZE) /
213	    mnt_stat->f_bsize >= (unsigned long)(mnt_stat->f_bfree)) {
214		printf("audit_record_write: free space below size of audit "
215		    "queue, failing stop\n");
216		audit_in_failure = 1;
217	}
218
219	ret = vn_rdwr(UIO_WRITE, vp, data, len, (off_t)0, UIO_SYSSPACE,
220	    IO_APPEND|IO_UNIT, cred, NULL, NULL, td);
221
222out:
223	/*
224	 * When we're done processing the current record, we have to check to
225	 * see if we're in a failure mode, and if so, whether this was the
226	 * last record left to be drained.  If we're done draining, then we
227	 * fsync the vnode and panic.
228	 */
229	if (audit_in_failure && audit_q_len == 0 && audit_pre_q_len == 0) {
230		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
231		(void)VOP_FSYNC(vp, MNT_WAIT, td);
232		VOP_UNLOCK(vp, 0, td);
233		panic("Audit store overflow; record queue drained.");
234	}
235
236	VFS_UNLOCK_GIANT(vfslocked);
237
238	return (ret);
239}
240
241/*
242 * If an appropriate signal has been received rotate the audit log based on
243 * the global replacement variables.  Signal consumers as needed that the
244 * rotation has taken place.
245 *
246 * XXXRW: The global variables and CVs used to signal the audit_worker to
247 * perform a rotation are essentially a message queue of depth 1.  It would
248 * be much nicer to actually use a message queue.
249 */
250static void
251audit_worker_rotate(struct ucred **audit_credp, struct vnode **audit_vpp,
252    struct thread *audit_td)
253{
254	int do_replacement_signal, vfslocked;
255	struct ucred *old_cred;
256	struct vnode *old_vp;
257
258	mtx_assert(&audit_mtx, MA_OWNED);
259
260	do_replacement_signal = 0;
261	while (audit_replacement_flag != 0) {
262		old_cred = *audit_credp;
263		old_vp = *audit_vpp;
264		*audit_credp = audit_replacement_cred;
265		*audit_vpp = audit_replacement_vp;
266		audit_replacement_cred = NULL;
267		audit_replacement_vp = NULL;
268		audit_replacement_flag = 0;
269
270		audit_enabled = (*audit_vpp != NULL);
271
272		/*
273		 * XXX: What to do about write failures here?
274		 */
275		if (old_vp != NULL) {
276			AUDIT_PRINTF(("Closing old audit file\n"));
277			mtx_unlock(&audit_mtx);
278			vfslocked = VFS_LOCK_GIANT(old_vp->v_mount);
279			vn_close(old_vp, AUDIT_CLOSE_FLAGS, old_cred,
280			    audit_td);
281			VFS_UNLOCK_GIANT(vfslocked);
282			crfree(old_cred);
283			mtx_lock(&audit_mtx);
284			old_cred = NULL;
285			old_vp = NULL;
286			AUDIT_PRINTF(("Audit file closed\n"));
287		}
288		if (*audit_vpp != NULL) {
289			AUDIT_PRINTF(("Opening new audit file\n"));
290		}
291		do_replacement_signal = 1;
292	}
293
294	/*
295	 * Signal that replacement have occurred to wake up and
296	 * start any other replacements started in parallel.  We can
297	 * continue about our business in the mean time.  We
298	 * broadcast so that both new replacements can be inserted,
299	 * but also so that the source(s) of replacement can return
300	 * successfully.
301	 */
302	if (do_replacement_signal)
303		cv_broadcast(&audit_replacement_cv);
304}
305
306/*
307 * Given a kernel audit record, process as required.  Kernel audit records
308 * are converted to one, or possibly two, BSM records, depending on whether
309 * there is a user audit record present also.  Kernel records need be
310 * converted to BSM before they can be written out.  Both types will be
311 * written to disk, and audit pipes.
312 */
313static void
314audit_worker_process_record(struct vnode *audit_vp, struct ucred *audit_cred,
315    struct thread *audit_td, struct kaudit_record *ar)
316{
317	struct au_record *bsm;
318	int error, ret;
319
320	if (ar->k_ar_commit & AR_COMMIT_USER) {
321		error = audit_record_write(audit_vp, audit_cred, audit_td,
322		    ar->k_udata, ar->k_ulen);
323		if (error && audit_panic_on_write_fail)
324			panic("audit_worker: write error %d\n", error);
325		else if (error)
326			printf("audit_worker: write error %d\n", error);
327		audit_pipe_submit(ar->k_udata, ar->k_ulen);
328	}
329
330	if (ar->k_ar_commit & AR_COMMIT_KERNEL) {
331		ret = kaudit_to_bsm(ar, &bsm);
332		switch (ret) {
333		case BSM_NOAUDIT:
334			break;
335
336		case BSM_FAILURE:
337			printf("audit_worker_process_record: BSM_FAILURE\n");
338			break;
339
340		case BSM_SUCCESS:
341			error = audit_record_write(audit_vp, audit_cred,
342			    audit_td, bsm->data, bsm->len);
343			if (error && audit_panic_on_write_fail)
344				panic("audit_worker: write error %d\n",
345				    error);
346			else if (error)
347				printf("audit_worker: write error %d\n",
348				    error);
349			audit_pipe_submit(bsm->data, bsm->len);
350			kau_free(bsm);
351			break;
352
353		default:
354			panic("kaudit_to_bsm returned %d", ret);
355		}
356	}
357}
358
359/*
360 * The audit_worker thread is responsible for watching the event queue,
361 * dequeueing records, converting them to BSM format, and committing them to
362 * disk.  In order to minimize lock thrashing, records are dequeued in sets
363 * to a thread-local work queue.  In addition, the audit_work performs the
364 * actual exchange of audit log vnode pointer, as audit_vp is a thread-local
365 * variable.
366 */
367static void
368audit_worker(void *arg)
369{
370	struct kaudit_queue ar_worklist;
371	struct kaudit_record *ar;
372	struct ucred *audit_cred;
373	struct thread *audit_td;
374	struct vnode *audit_vp;
375	int lowater_signal;
376
377	AUDIT_PRINTF(("audit_worker starting\n"));
378
379	/*
380	 * These are thread-local variables requiring no synchronization.
381	 */
382	TAILQ_INIT(&ar_worklist);
383	audit_cred = NULL;
384	audit_td = curthread;
385	audit_vp = NULL;
386
387	mtx_lock(&audit_mtx);
388	while (1) {
389		mtx_assert(&audit_mtx, MA_OWNED);
390
391		/*
392		 * Wait for record or rotation events.
393		 */
394		while (!audit_replacement_flag && TAILQ_EMPTY(&audit_q)) {
395			AUDIT_PRINTF(("audit_worker waiting\n"));
396			cv_wait(&audit_worker_cv, &audit_mtx);
397			AUDIT_PRINTF(("audit_worker woken up\n"));
398			AUDIT_PRINTF(("audit_worker: new vp = %p; value of "
399			    "flag %d\n", audit_replacement_vp,
400			    audit_replacement_flag));
401		}
402
403		/*
404		 * First priority: replace the audit log target if requested.
405		 */
406		audit_worker_rotate(&audit_cred, &audit_vp, audit_td);
407
408		/*
409		 * If there are records in the global audit record queue,
410		 * transfer them to a thread-local queue and process them
411		 * one by one.  If we cross the low watermark threshold,
412		 * signal any waiting processes that they may wake up and
413		 * continue generating records.
414		 */
415		lowater_signal = 0;
416		while ((ar = TAILQ_FIRST(&audit_q))) {
417			TAILQ_REMOVE(&audit_q, ar, k_q);
418			audit_q_len--;
419			if (audit_q_len == audit_qctrl.aq_lowater)
420				lowater_signal++;
421			TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q);
422		}
423		if (lowater_signal)
424			cv_broadcast(&audit_watermark_cv);
425
426		mtx_unlock(&audit_mtx);
427		while ((ar = TAILQ_FIRST(&ar_worklist))) {
428			TAILQ_REMOVE(&ar_worklist, ar, k_q);
429			audit_worker_process_record(audit_vp, audit_cred,
430			    audit_td, ar);
431			audit_free(ar);
432		}
433		mtx_lock(&audit_mtx);
434	}
435}
436
437/*
438 * audit_rotate_vnode() is called by a user or kernel thread to configure or
439 * de-configure auditing on a vnode.  The arguments are the replacement
440 * credential and vnode to substitute for the current credential and vnode,
441 * if any.  If either is set to NULL, both should be NULL, and this is used
442 * to indicate that audit is being disabled.  The real work is done in the
443 * audit_worker thread, but audit_rotate_vnode() waits synchronously for that
444 * to complete.
445 *
446 * The vnode should be referenced and opened by the caller.  The credential
447 * should be referenced.  audit_rotate_vnode() will own both references as of
448 * this call, so the caller should not release either.
449 *
450 * XXXAUDIT: Review synchronize communication logic.  Really, this is a
451 * message queue of depth 1.
452 *
453 * XXXAUDIT: Enhance the comments below to indicate that we are basically
454 * acquiring ownership of the communications queue, inserting our message,
455 * and waiting for an acknowledgement.
456 */
457void
458audit_rotate_vnode(struct ucred *cred, struct vnode *vp)
459{
460
461	/*
462	 * If other parallel log replacements have been requested, we wait
463	 * until they've finished before continuing.
464	 */
465	mtx_lock(&audit_mtx);
466	while (audit_replacement_flag != 0) {
467		AUDIT_PRINTF(("audit_rotate_vnode: sleeping to wait for "
468		    "flag\n"));
469		cv_wait(&audit_replacement_cv, &audit_mtx);
470		AUDIT_PRINTF(("audit_rotate_vnode: woken up (flag %d)\n",
471		    audit_replacement_flag));
472	}
473	audit_replacement_cred = cred;
474	audit_replacement_flag = 1;
475	audit_replacement_vp = vp;
476
477	/*
478	 * Wake up the audit worker to perform the exchange once we
479	 * release the mutex.
480	 */
481	cv_signal(&audit_worker_cv);
482
483	/*
484	 * Wait for the audit_worker to broadcast that a replacement has
485	 * taken place; we know that once this has happened, our vnode
486	 * has been replaced in, so we can return successfully.
487	 */
488	AUDIT_PRINTF(("audit_rotate_vnode: waiting for news of "
489	    "replacement\n"));
490	cv_wait(&audit_replacement_cv, &audit_mtx);
491	AUDIT_PRINTF(("audit_rotate_vnode: change acknowledged by "
492	    "audit_worker (flag " "now %d)\n", audit_replacement_flag));
493	mtx_unlock(&audit_mtx);
494
495	audit_file_rotate_wait = 0; /* We can now request another rotation */
496}
497
498void
499audit_worker_init(void)
500{
501	int error;
502
503	cv_init(&audit_replacement_cv, "audit_replacement_cv");
504	error = kthread_create(audit_worker, NULL, &audit_thread, RFHIGHPID,
505	    0, "audit_worker");
506	if (error)
507		panic("audit_worker_init: kthread_create returned %d", error);
508}
509