nfs_bio.c revision 51344
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
37 * $FreeBSD: head/sys/nfsclient/nfs_bio.c 51344 1999-09-17 05:57:57Z dillon $
38 */
39
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/resourcevar.h>
44#include <sys/signalvar.h>
45#include <sys/proc.h>
46#include <sys/buf.h>
47#include <sys/vnode.h>
48#include <sys/mount.h>
49#include <sys/kernel.h>
50
51#include <vm/vm.h>
52#include <vm/vm_extern.h>
53#include <vm/vm_prot.h>
54#include <vm/vm_page.h>
55#include <vm/vm_object.h>
56#include <vm/vm_pager.h>
57#include <vm/vnode_pager.h>
58
59#include <nfs/rpcv2.h>
60#include <nfs/nfsproto.h>
61#include <nfs/nfs.h>
62#include <nfs/nfsmount.h>
63#include <nfs/nqnfs.h>
64#include <nfs/nfsnode.h>
65
66static struct buf *nfs_getcacheblk __P((struct vnode *vp, daddr_t bn, int size,
67					struct proc *p));
68
69extern int nfs_numasync;
70extern int nfs_pbuf_freecnt;
71extern struct nfsstats nfsstats;
72
73/*
74 * Vnode op for VM getpages.
75 */
76int
77nfs_getpages(ap)
78	struct vop_getpages_args /* {
79		struct vnode *a_vp;
80		vm_page_t *a_m;
81		int a_count;
82		int a_reqpage;
83		vm_ooffset_t a_offset;
84	} */ *ap;
85{
86	int i, error, nextoff, size, toff, count, npages;
87	struct uio uio;
88	struct iovec iov;
89	vm_offset_t kva;
90	struct buf *bp;
91	struct vnode *vp;
92	struct proc *p;
93	struct ucred *cred;
94	struct nfsmount *nmp;
95	vm_page_t *pages;
96
97	vp = ap->a_vp;
98	p = curproc;				/* XXX */
99	cred = curproc->p_ucred;		/* XXX */
100	nmp = VFSTONFS(vp->v_mount);
101	pages = ap->a_m;
102	count = ap->a_count;
103
104	if (vp->v_object == NULL) {
105		printf("nfs_getpages: called with non-merged cache vnode??\n");
106		return VM_PAGER_ERROR;
107	}
108
109	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
110	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
111		(void)nfs_fsinfo(nmp, vp, cred, p);
112
113	npages = btoc(count);
114
115	/*
116	 * If the requested page is partially valid, just return it and
117	 * allow the pager to zero-out the blanks.  Partially valid pages
118	 * can only occur at the file EOF.
119	 */
120
121	{
122		vm_page_t m = pages[ap->a_reqpage];
123
124		if (m->valid != 0) {
125			/* handled by vm_fault now	  */
126			/* vm_page_zero_invalid(m, TRUE); */
127			for (i = 0; i < npages; ++i) {
128				if (i != ap->a_reqpage)
129					vnode_pager_freepage(pages[i]);
130			}
131			return(0);
132		}
133	}
134
135	/*
136	 * We use only the kva address for the buffer, but this is extremely
137	 * convienient and fast.
138	 */
139	bp = getpbuf(&nfs_pbuf_freecnt);
140
141	kva = (vm_offset_t) bp->b_data;
142	pmap_qenter(kva, pages, npages);
143
144	iov.iov_base = (caddr_t) kva;
145	iov.iov_len = count;
146	uio.uio_iov = &iov;
147	uio.uio_iovcnt = 1;
148	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
149	uio.uio_resid = count;
150	uio.uio_segflg = UIO_SYSSPACE;
151	uio.uio_rw = UIO_READ;
152	uio.uio_procp = p;
153
154	error = nfs_readrpc(vp, &uio, cred);
155	pmap_qremove(kva, npages);
156
157	relpbuf(bp, &nfs_pbuf_freecnt);
158
159	if (error && (uio.uio_resid == count)) {
160		printf("nfs_getpages: error %d\n", error);
161		for (i = 0; i < npages; ++i) {
162			if (i != ap->a_reqpage)
163				vnode_pager_freepage(pages[i]);
164		}
165		return VM_PAGER_ERROR;
166	}
167
168	/*
169	 * Calculate the number of bytes read and validate only that number
170	 * of bytes.  Note that due to pending writes, size may be 0.  This
171	 * does not mean that the remaining data is invalid!
172	 */
173
174	size = count - uio.uio_resid;
175
176	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
177		vm_page_t m;
178		nextoff = toff + PAGE_SIZE;
179		m = pages[i];
180
181		m->flags &= ~PG_ZERO;
182
183		if (nextoff <= size) {
184			/*
185			 * Read operation filled an entire page
186			 */
187			m->valid = VM_PAGE_BITS_ALL;
188			vm_page_undirty(m);
189		} else if (size > toff) {
190			/*
191			 * Read operation filled a partial page.
192			 */
193			m->valid = 0;
194			vm_page_set_validclean(m, 0, size - toff);
195			/* handled by vm_fault now	  */
196			/* vm_page_zero_invalid(m, TRUE); */
197		}
198
199		if (i != ap->a_reqpage) {
200			/*
201			 * Whether or not to leave the page activated is up in
202			 * the air, but we should put the page on a page queue
203			 * somewhere (it already is in the object).  Result:
204			 * It appears that emperical results show that
205			 * deactivating pages is best.
206			 */
207
208			/*
209			 * Just in case someone was asking for this page we
210			 * now tell them that it is ok to use.
211			 */
212			if (!error) {
213				if (m->flags & PG_WANTED)
214					vm_page_activate(m);
215				else
216					vm_page_deactivate(m);
217				vm_page_wakeup(m);
218			} else {
219				vnode_pager_freepage(m);
220			}
221		}
222	}
223	return 0;
224}
225
226/*
227 * Vnode op for VM putpages.
228 */
229int
230nfs_putpages(ap)
231	struct vop_putpages_args /* {
232		struct vnode *a_vp;
233		vm_page_t *a_m;
234		int a_count;
235		int a_sync;
236		int *a_rtvals;
237		vm_ooffset_t a_offset;
238	} */ *ap;
239{
240	struct uio uio;
241	struct iovec iov;
242	vm_offset_t kva;
243	struct buf *bp;
244	int iomode, must_commit, i, error, npages, count;
245	off_t offset;
246	int *rtvals;
247	struct vnode *vp;
248	struct proc *p;
249	struct ucred *cred;
250	struct nfsmount *nmp;
251	struct nfsnode *np;
252	vm_page_t *pages;
253
254	vp = ap->a_vp;
255	np = VTONFS(vp);
256	p = curproc;				/* XXX */
257	cred = curproc->p_ucred;		/* XXX */
258	nmp = VFSTONFS(vp->v_mount);
259	pages = ap->a_m;
260	count = ap->a_count;
261	rtvals = ap->a_rtvals;
262	npages = btoc(count);
263	offset = IDX_TO_OFF(pages[0]->pindex);
264
265	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
266	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
267		(void)nfs_fsinfo(nmp, vp, cred, p);
268
269	for (i = 0; i < npages; i++) {
270		rtvals[i] = VM_PAGER_AGAIN;
271	}
272
273	/*
274	 * When putting pages, do not extend file past EOF.
275	 */
276
277	if (offset + count > np->n_size) {
278		count = np->n_size - offset;
279		if (count < 0)
280			count = 0;
281	}
282
283	/*
284	 * We use only the kva address for the buffer, but this is extremely
285	 * convienient and fast.
286	 */
287	bp = getpbuf(&nfs_pbuf_freecnt);
288
289	kva = (vm_offset_t) bp->b_data;
290	pmap_qenter(kva, pages, npages);
291
292	iov.iov_base = (caddr_t) kva;
293	iov.iov_len = count;
294	uio.uio_iov = &iov;
295	uio.uio_iovcnt = 1;
296	uio.uio_offset = offset;
297	uio.uio_resid = count;
298	uio.uio_segflg = UIO_SYSSPACE;
299	uio.uio_rw = UIO_WRITE;
300	uio.uio_procp = p;
301
302	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
303	    iomode = NFSV3WRITE_UNSTABLE;
304	else
305	    iomode = NFSV3WRITE_FILESYNC;
306
307	error = nfs_writerpc(vp, &uio, cred, &iomode, &must_commit);
308
309	pmap_qremove(kva, npages);
310	relpbuf(bp, &nfs_pbuf_freecnt);
311
312	if (!error) {
313		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
314		for (i = 0; i < nwritten; i++) {
315			rtvals[i] = VM_PAGER_OK;
316			vm_page_undirty(pages[i]);
317		}
318		if (must_commit)
319			nfs_clearcommit(vp->v_mount);
320	}
321	return rtvals[0];
322}
323
324/*
325 * Vnode op for read using bio
326 */
327int
328nfs_bioread(vp, uio, ioflag, cred)
329	register struct vnode *vp;
330	register struct uio *uio;
331	int ioflag;
332	struct ucred *cred;
333{
334	register struct nfsnode *np = VTONFS(vp);
335	register int biosize, i;
336	struct buf *bp = 0, *rabp;
337	struct vattr vattr;
338	struct proc *p;
339	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
340	daddr_t lbn, rabn;
341	int bcount;
342	int seqcount;
343	int nra, error = 0, n = 0, on = 0;
344
345#ifdef DIAGNOSTIC
346	if (uio->uio_rw != UIO_READ)
347		panic("nfs_read mode");
348#endif
349	if (uio->uio_resid == 0)
350		return (0);
351	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
352		return (EINVAL);
353	p = uio->uio_procp;
354
355	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
356	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
357		(void)nfs_fsinfo(nmp, vp, cred, p);
358	if (vp->v_type != VDIR &&
359	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
360		return (EFBIG);
361	biosize = vp->v_mount->mnt_stat.f_iosize;
362	seqcount = (int)((off_t)(ioflag >> 16) * biosize / BKVASIZE);
363	/*
364	 * For nfs, cache consistency can only be maintained approximately.
365	 * Although RFC1094 does not specify the criteria, the following is
366	 * believed to be compatible with the reference port.
367	 * For nqnfs, full cache consistency is maintained within the loop.
368	 * For nfs:
369	 * If the file's modify time on the server has changed since the
370	 * last read rpc or you have written to the file,
371	 * you may have lost data cache consistency with the
372	 * server, so flush all of the file's data out of the cache.
373	 * Then force a getattr rpc to ensure that you have up to date
374	 * attributes.
375	 * NB: This implies that cache data can be read when up to
376	 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
377	 * attributes this could be forced by setting n_attrstamp to 0 before
378	 * the VOP_GETATTR() call.
379	 */
380	if ((nmp->nm_flag & NFSMNT_NQNFS) == 0) {
381		if (np->n_flag & NMODIFIED) {
382			if (vp->v_type != VREG) {
383				if (vp->v_type != VDIR)
384					panic("nfs: bioread, not dir");
385				nfs_invaldir(vp);
386				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
387				if (error)
388					return (error);
389			}
390			np->n_attrstamp = 0;
391			error = VOP_GETATTR(vp, &vattr, cred, p);
392			if (error)
393				return (error);
394			np->n_mtime = vattr.va_mtime.tv_sec;
395		} else {
396			error = VOP_GETATTR(vp, &vattr, cred, p);
397			if (error)
398				return (error);
399			if (np->n_mtime != vattr.va_mtime.tv_sec) {
400				if (vp->v_type == VDIR)
401					nfs_invaldir(vp);
402				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
403				if (error)
404					return (error);
405				np->n_mtime = vattr.va_mtime.tv_sec;
406			}
407		}
408	}
409	do {
410
411	    /*
412	     * Get a valid lease. If cached data is stale, flush it.
413	     */
414	    if (nmp->nm_flag & NFSMNT_NQNFS) {
415		if (NQNFS_CKINVALID(vp, np, ND_READ)) {
416		    do {
417			error = nqnfs_getlease(vp, ND_READ, cred, p);
418		    } while (error == NQNFS_EXPIRED);
419		    if (error)
420			return (error);
421		    if (np->n_lrev != np->n_brev ||
422			(np->n_flag & NQNFSNONCACHE) ||
423			((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) {
424			if (vp->v_type == VDIR)
425			    nfs_invaldir(vp);
426			error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
427			if (error)
428			    return (error);
429			np->n_brev = np->n_lrev;
430		    }
431		} else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) {
432		    nfs_invaldir(vp);
433		    error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
434		    if (error)
435			return (error);
436		}
437	    }
438	    if (np->n_flag & NQNFSNONCACHE) {
439		switch (vp->v_type) {
440		case VREG:
441			return (nfs_readrpc(vp, uio, cred));
442		case VLNK:
443			return (nfs_readlinkrpc(vp, uio, cred));
444		case VDIR:
445			break;
446		default:
447			printf(" NQNFSNONCACHE: type %x unexpected\n",
448				vp->v_type);
449		};
450	    }
451	    switch (vp->v_type) {
452	    case VREG:
453		nfsstats.biocache_reads++;
454		lbn = uio->uio_offset / biosize;
455		on = uio->uio_offset & (biosize - 1);
456
457		/*
458		 * Start the read ahead(s), as required.
459		 */
460		if (nfs_numasync > 0 && nmp->nm_readahead > 0) {
461		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
462			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
463			rabn = lbn + 1 + nra;
464			if (!incore(vp, rabn)) {
465			    rabp = nfs_getcacheblk(vp, rabn, biosize, p);
466			    if (!rabp)
467				return (EINTR);
468			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
469				rabp->b_flags |= (B_READ | B_ASYNC);
470				vfs_busy_pages(rabp, 0);
471				if (nfs_asyncio(rabp, cred, p)) {
472				    rabp->b_flags |= B_INVAL|B_ERROR;
473				    vfs_unbusy_pages(rabp);
474				    brelse(rabp);
475				}
476			    } else
477				brelse(rabp);
478			}
479		    }
480		}
481
482		/*
483		 * Obtain the buffer cache block.  Figure out the buffer size
484		 * when we are at EOF.  nfs_getcacheblk() will also force
485		 * uncached delayed-writes to be flushed to the server.
486		 *
487		 * Note that bcount is *not* DEV_BSIZE aligned.
488		 */
489
490		bcount = biosize;
491		if ((off_t)lbn * biosize >= np->n_size) {
492			bcount = 0;
493		} else if ((off_t)(lbn + 1) * biosize > np->n_size) {
494			bcount = np->n_size - (off_t)lbn * biosize;
495		}
496
497		bp = nfs_getcacheblk(vp, lbn, bcount, p);
498		if (!bp)
499			return (EINTR);
500
501		/*
502		 * If B_CACHE is not set, we must issue the read.  If this
503		 * fails, we return an error.
504		 */
505
506		if ((bp->b_flags & B_CACHE) == 0) {
507		    bp->b_flags |= B_READ;
508		    vfs_busy_pages(bp, 0);
509		    error = nfs_doio(bp, cred, p);
510		    if (error) {
511			brelse(bp);
512			return (error);
513		    }
514		}
515
516		/*
517		 * on is the offset into the current bp.  Figure out how many
518		 * bytes we can copy out of the bp.  Note that bcount is
519		 * NOT DEV_BSIZE aligned.
520		 *
521		 * Then figure out how many bytes we can copy into the uio.
522		 */
523
524		n = 0;
525		if (on < bcount)
526			n = min((unsigned)(bcount - on), uio->uio_resid);
527		break;
528	    case VLNK:
529		nfsstats.biocache_readlinks++;
530		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, p);
531		if (!bp)
532			return (EINTR);
533		if ((bp->b_flags & B_CACHE) == 0) {
534		    bp->b_flags |= B_READ;
535		    vfs_busy_pages(bp, 0);
536		    error = nfs_doio(bp, cred, p);
537		    if (error) {
538			bp->b_flags |= B_ERROR;
539			brelse(bp);
540			return (error);
541		    }
542		}
543		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
544		on = 0;
545		break;
546	    case VDIR:
547		nfsstats.biocache_readdirs++;
548		if (np->n_direofoffset
549		    && uio->uio_offset >= np->n_direofoffset) {
550		    return (0);
551		}
552		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
553		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
554		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, p);
555		if (!bp)
556		    return (EINTR);
557		if ((bp->b_flags & B_CACHE) == 0) {
558		    bp->b_flags |= B_READ;
559		    vfs_busy_pages(bp, 0);
560		    error = nfs_doio(bp, cred, p);
561		    if (error) {
562			    brelse(bp);
563		    }
564		    while (error == NFSERR_BAD_COOKIE) {
565			printf("got bad cookie vp %p bp %p\n", vp, bp);
566			nfs_invaldir(vp);
567			error = nfs_vinvalbuf(vp, 0, cred, p, 1);
568			/*
569			 * Yuck! The directory has been modified on the
570			 * server. The only way to get the block is by
571			 * reading from the beginning to get all the
572			 * offset cookies.
573			 *
574			 * Leave the last bp intact unless there is an error.
575			 * Loop back up to the while if the error is another
576			 * NFSERR_BAD_COOKIE (double yuch!).
577			 */
578			for (i = 0; i <= lbn && !error; i++) {
579			    if (np->n_direofoffset
580				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
581				    return (0);
582			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, p);
583			    if (!bp)
584				return (EINTR);
585			    if ((bp->b_flags & B_CACHE) == 0) {
586				    bp->b_flags |= B_READ;
587				    vfs_busy_pages(bp, 0);
588				    error = nfs_doio(bp, cred, p);
589				    /*
590				     * no error + B_INVAL == directory EOF,
591				     * use the block.
592				     */
593				    if (error == 0 && (bp->b_flags & B_INVAL))
594					    break;
595			    }
596			    /*
597			     * An error will throw away the block and the
598			     * for loop will break out.  If no error and this
599			     * is not the block we want, we throw away the
600			     * block and go for the next one via the for loop.
601			     */
602			    if (error || i < lbn)
603				    brelse(bp);
604			}
605		    }
606		    /*
607		     * The above while is repeated if we hit another cookie
608		     * error.  If we hit an error and it wasn't a cookie error,
609		     * we give up.
610		     */
611		    if (error)
612			    return (error);
613		}
614
615		/*
616		 * If not eof and read aheads are enabled, start one.
617		 * (You need the current block first, so that you have the
618		 *  directory offset cookie of the next block.)
619		 */
620		if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
621		    (bp->b_flags & B_INVAL) == 0 &&
622		    (np->n_direofoffset == 0 ||
623		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
624		    !(np->n_flag & NQNFSNONCACHE) &&
625		    !incore(vp, lbn + 1)) {
626			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, p);
627			if (rabp) {
628			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
629				rabp->b_flags |= (B_READ | B_ASYNC);
630				vfs_busy_pages(rabp, 0);
631				if (nfs_asyncio(rabp, cred, p)) {
632				    rabp->b_flags |= B_INVAL|B_ERROR;
633				    vfs_unbusy_pages(rabp);
634				    brelse(rabp);
635				}
636			    } else {
637				brelse(rabp);
638			    }
639			}
640		}
641		/*
642		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
643		 * chopped for the EOF condition, we cannot tell how large
644		 * NFS directories are going to be until we hit EOF.  So
645		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
646		 * it just so happens that b_resid will effectively chop it
647		 * to EOF.  *BUT* this information is lost if the buffer goes
648		 * away and is reconstituted into a B_CACHE state ( due to
649		 * being VMIO ) later.  So we keep track of the directory eof
650		 * in np->n_direofoffset and chop it off as an extra step
651		 * right here.
652		 */
653		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
654		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
655			n = np->n_direofoffset - uio->uio_offset;
656		break;
657	    default:
658		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
659		break;
660	    };
661
662	    if (n > 0) {
663		    error = uiomove(bp->b_data + on, (int)n, uio);
664	    }
665	    switch (vp->v_type) {
666	    case VREG:
667		break;
668	    case VLNK:
669		n = 0;
670		break;
671	    case VDIR:
672		/*
673		 * Invalidate buffer if caching is disabled, forcing a
674		 * re-read from the remote later.
675		 */
676		if (np->n_flag & NQNFSNONCACHE)
677			bp->b_flags |= B_INVAL;
678		break;
679	    default:
680		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
681	    }
682	    brelse(bp);
683	} while (error == 0 && uio->uio_resid > 0 && n > 0);
684	return (error);
685}
686
687/*
688 * Vnode op for write using bio
689 */
690int
691nfs_write(ap)
692	struct vop_write_args /* {
693		struct vnode *a_vp;
694		struct uio *a_uio;
695		int  a_ioflag;
696		struct ucred *a_cred;
697	} */ *ap;
698{
699	int biosize;
700	struct uio *uio = ap->a_uio;
701	struct proc *p = uio->uio_procp;
702	struct vnode *vp = ap->a_vp;
703	struct nfsnode *np = VTONFS(vp);
704	struct ucred *cred = ap->a_cred;
705	int ioflag = ap->a_ioflag;
706	struct buf *bp;
707	struct vattr vattr;
708	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
709	daddr_t lbn;
710	int bcount;
711	int n, on, error = 0, iomode, must_commit;
712
713#ifdef DIAGNOSTIC
714	if (uio->uio_rw != UIO_WRITE)
715		panic("nfs_write mode");
716	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_procp != curproc)
717		panic("nfs_write proc");
718#endif
719	if (vp->v_type != VREG)
720		return (EIO);
721	if (np->n_flag & NWRITEERR) {
722		np->n_flag &= ~NWRITEERR;
723		return (np->n_error);
724	}
725	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
726	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
727		(void)nfs_fsinfo(nmp, vp, cred, p);
728	if (ioflag & (IO_APPEND | IO_SYNC)) {
729		if (np->n_flag & NMODIFIED) {
730			np->n_attrstamp = 0;
731			error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
732			if (error)
733				return (error);
734		}
735		if (ioflag & IO_APPEND) {
736			np->n_attrstamp = 0;
737			error = VOP_GETATTR(vp, &vattr, cred, p);
738			if (error)
739				return (error);
740			uio->uio_offset = np->n_size;
741		}
742	}
743	if (uio->uio_offset < 0)
744		return (EINVAL);
745	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
746		return (EFBIG);
747	if (uio->uio_resid == 0)
748		return (0);
749	/*
750	 * Maybe this should be above the vnode op call, but so long as
751	 * file servers have no limits, i don't think it matters
752	 */
753	if (p && uio->uio_offset + uio->uio_resid >
754	      p->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
755		psignal(p, SIGXFSZ);
756		return (EFBIG);
757	}
758
759	biosize = vp->v_mount->mnt_stat.f_iosize;
760
761	do {
762		/*
763		 * Check for a valid write lease.
764		 */
765		if ((nmp->nm_flag & NFSMNT_NQNFS) &&
766		    NQNFS_CKINVALID(vp, np, ND_WRITE)) {
767			do {
768				error = nqnfs_getlease(vp, ND_WRITE, cred, p);
769			} while (error == NQNFS_EXPIRED);
770			if (error)
771				return (error);
772			if (np->n_lrev != np->n_brev ||
773			    (np->n_flag & NQNFSNONCACHE)) {
774				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
775				if (error)
776					return (error);
777				np->n_brev = np->n_lrev;
778			}
779		}
780		if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
781		    iomode = NFSV3WRITE_FILESYNC;
782		    error = nfs_writerpc(vp, uio, cred, &iomode, &must_commit);
783		    if (must_commit)
784			nfs_clearcommit(vp->v_mount);
785		    return (error);
786		}
787		nfsstats.biocache_writes++;
788		lbn = uio->uio_offset / biosize;
789		on = uio->uio_offset & (biosize-1);
790		n = min((unsigned)(biosize - on), uio->uio_resid);
791again:
792		/*
793		 * Handle direct append and file extension cases, calculate
794		 * unaligned buffer size.
795		 */
796
797		if (uio->uio_offset == np->n_size && n) {
798			/*
799			 * special append case.  Obtain buffer prior to
800			 * resizing it to maintain B_CACHE.
801			 */
802			long save;
803
804			bcount = on;
805			bp = nfs_getcacheblk(vp, lbn, bcount, p);
806			if (!bp)
807				return (EINTR);
808			save = bp->b_flags & B_CACHE;
809
810			np->n_size = uio->uio_offset + n;
811			np->n_flag |= NMODIFIED;
812			vnode_pager_setsize(vp, np->n_size);
813
814			bcount += n;
815			allocbuf(bp, bcount);
816			bp->b_flags |= save;
817		} else {
818			if (uio->uio_offset + n > np->n_size) {
819				np->n_size = uio->uio_offset + n;
820				np->n_flag |= NMODIFIED;
821				vnode_pager_setsize(vp, np->n_size);
822			}
823			bcount = biosize;
824			if ((off_t)(lbn + 1) * biosize > np->n_size)
825				bcount = np->n_size - (off_t)lbn * biosize;
826			bp = nfs_getcacheblk(vp, lbn, bcount, p);
827			if (!bp)
828				return (EINTR);
829		}
830
831		/*
832		 * Issue a READ if B_CACHE is not set.  In special-append
833		 * mode, B_CACHE is based on the buffer prior to the write
834		 * op and is typically set, avoiding the read.  If a read
835		 * is required in special append mode, the server will
836		 * probably send us a short-read since we extended the file
837		 * on our end, resulting in b_resid == 0 and, thusly,
838		 * B_CACHE getting set.
839		 *
840		 * We can also avoid issuing the read if the write covers
841		 * the entire buffer.  We have to make sure the buffer state
842		 * is reasonable in this case since we will not be initiating
843		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
844		 * more information.
845		 *
846		 * B_CACHE may also be set due to the buffer being cached
847		 * normally.
848		 */
849
850		if (on == 0 && n == bcount) {
851			bp->b_flags |= B_CACHE;
852			bp->b_flags &= ~(B_ERROR | B_INVAL);
853		}
854
855		if ((bp->b_flags & B_CACHE) == 0) {
856			bp->b_flags |= B_READ;
857			vfs_busy_pages(bp, 0);
858			error = nfs_doio(bp, cred, p);
859			if (error) {
860				brelse(bp);
861				return (error);
862			}
863		}
864		if (!bp)
865			return (EINTR);
866		if (bp->b_wcred == NOCRED) {
867			crhold(cred);
868			bp->b_wcred = cred;
869		}
870		np->n_flag |= NMODIFIED;
871
872		/*
873		 * If dirtyend exceeds file size, chop it down.  If this
874		 * creates a reverse-indexed or degenerate situation with
875		 * dirtyoff/end, 0 them.
876		 */
877
878		if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
879			bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
880		if (bp->b_dirtyoff >= bp->b_dirtyend)
881			bp->b_dirtyoff = bp->b_dirtyend = 0;
882
883		/*
884		 * If the new write will leave a contiguous dirty
885		 * area, just update the b_dirtyoff and b_dirtyend,
886		 * otherwise force a write rpc of the old dirty area.
887		 *
888		 * While it is possible to merge discontiguous writes due to
889		 * our having a B_CACHE buffer ( and thus valid read data
890		 * for the hole), we don't because it could lead to
891		 * significant cache coherency problems with multiple clients,
892		 * especially if locking is implemented later on.
893		 *
894		 * as an optimization we could theoretically maintain
895		 * a linked list of discontinuous areas, but we would still
896		 * have to commit them separately so there isn't much
897		 * advantage to it except perhaps a bit of asynchronization.
898		 */
899
900		if (bp->b_dirtyend > 0 &&
901		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
902			if (VOP_BWRITE(bp->b_vp, bp) == EINTR)
903				return (EINTR);
904			goto again;
905		}
906
907		/*
908		 * Check for valid write lease and get one as required.
909		 * In case getblk() and/or bwrite() delayed us.
910		 */
911		if ((nmp->nm_flag & NFSMNT_NQNFS) &&
912		    NQNFS_CKINVALID(vp, np, ND_WRITE)) {
913			do {
914				error = nqnfs_getlease(vp, ND_WRITE, cred, p);
915			} while (error == NQNFS_EXPIRED);
916			if (error) {
917				brelse(bp);
918				return (error);
919			}
920			if (np->n_lrev != np->n_brev ||
921			    (np->n_flag & NQNFSNONCACHE)) {
922				brelse(bp);
923				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
924				if (error)
925					return (error);
926				np->n_brev = np->n_lrev;
927				goto again;
928			}
929		}
930
931		error = uiomove((char *)bp->b_data + on, n, uio);
932		bp->b_flags &= ~B_NEEDCOMMIT;
933		if (error) {
934			bp->b_flags |= B_ERROR;
935			brelse(bp);
936			return (error);
937		}
938
939		/*
940		 * Only update dirtyoff/dirtyend if not a degenerate
941		 * condition.
942		 */
943		if (n) {
944			if (bp->b_dirtyend > 0) {
945				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
946				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
947			} else {
948				bp->b_dirtyoff = on;
949				bp->b_dirtyend = on + n;
950			}
951			vfs_bio_set_validclean(bp, on, n);
952		}
953
954		/*
955		 * Since this block is being modified, it must be written
956		 * again and not just committed.
957		 */
958		bp->b_flags &= ~B_NEEDCOMMIT;
959
960		/*
961		 * If the lease is non-cachable or IO_SYNC do bwrite().
962		 *
963		 * IO_INVAL appears to be unused.  The idea appears to be
964		 * to turn off caching in this case.  Very odd.  XXX
965		 */
966		if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
967			if (ioflag & IO_INVAL)
968				bp->b_flags |= B_NOCACHE;
969			error = VOP_BWRITE(bp->b_vp, bp);
970			if (error)
971				return (error);
972			if (np->n_flag & NQNFSNONCACHE) {
973				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
974				if (error)
975					return (error);
976			}
977		} else if ((n + on) == biosize &&
978			(nmp->nm_flag & NFSMNT_NQNFS) == 0) {
979			bp->b_flags |= B_ASYNC;
980			(void)nfs_writebp(bp, 0, 0);
981		} else {
982			bdwrite(bp);
983		}
984	} while (uio->uio_resid > 0 && n > 0);
985	return (0);
986}
987
988/*
989 * Get an nfs cache block.
990 * Allocate a new one if the block isn't currently in the cache
991 * and return the block marked busy. If the calling process is
992 * interrupted by a signal for an interruptible mount point, return
993 * NULL.
994 */
995static struct buf *
996nfs_getcacheblk(vp, bn, size, p)
997	struct vnode *vp;
998	daddr_t bn;
999	int size;
1000	struct proc *p;
1001{
1002	register struct buf *bp;
1003	struct mount *mp;
1004	struct nfsmount *nmp;
1005
1006	mp = vp->v_mount;
1007	nmp = VFSTONFS(mp);
1008
1009	if (nmp->nm_flag & NFSMNT_INT) {
1010		bp = getblk(vp, bn, size, PCATCH, 0);
1011		while (bp == (struct buf *)0) {
1012			if (nfs_sigintr(nmp, (struct nfsreq *)0, p))
1013				return ((struct buf *)0);
1014			bp = getblk(vp, bn, size, 0, 2 * hz);
1015		}
1016	} else {
1017		bp = getblk(vp, bn, size, 0, 0);
1018	}
1019
1020	if (vp->v_type == VREG) {
1021		int biosize;
1022
1023		biosize = mp->mnt_stat.f_iosize;
1024		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1025	}
1026	return (bp);
1027}
1028
1029/*
1030 * Flush and invalidate all dirty buffers. If another process is already
1031 * doing the flush, just wait for completion.
1032 */
1033int
1034nfs_vinvalbuf(vp, flags, cred, p, intrflg)
1035	struct vnode *vp;
1036	int flags;
1037	struct ucred *cred;
1038	struct proc *p;
1039	int intrflg;
1040{
1041	register struct nfsnode *np = VTONFS(vp);
1042	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1043	int error = 0, slpflag, slptimeo;
1044
1045	if (vp->v_flag & VXLOCK) {
1046		return (0);
1047	}
1048
1049	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1050		intrflg = 0;
1051	if (intrflg) {
1052		slpflag = PCATCH;
1053		slptimeo = 2 * hz;
1054	} else {
1055		slpflag = 0;
1056		slptimeo = 0;
1057	}
1058	/*
1059	 * First wait for any other process doing a flush to complete.
1060	 */
1061	while (np->n_flag & NFLUSHINPROG) {
1062		np->n_flag |= NFLUSHWANT;
1063		error = tsleep((caddr_t)&np->n_flag, PRIBIO + 2, "nfsvinval",
1064			slptimeo);
1065		if (error && intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, p))
1066			return (EINTR);
1067	}
1068
1069	/*
1070	 * Now, flush as required.
1071	 */
1072	np->n_flag |= NFLUSHINPROG;
1073	error = vinvalbuf(vp, flags, cred, p, slpflag, 0);
1074	while (error) {
1075		if (intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, p)) {
1076			np->n_flag &= ~NFLUSHINPROG;
1077			if (np->n_flag & NFLUSHWANT) {
1078				np->n_flag &= ~NFLUSHWANT;
1079				wakeup((caddr_t)&np->n_flag);
1080			}
1081			return (EINTR);
1082		}
1083		error = vinvalbuf(vp, flags, cred, p, 0, slptimeo);
1084	}
1085	np->n_flag &= ~(NMODIFIED | NFLUSHINPROG);
1086	if (np->n_flag & NFLUSHWANT) {
1087		np->n_flag &= ~NFLUSHWANT;
1088		wakeup((caddr_t)&np->n_flag);
1089	}
1090	return (0);
1091}
1092
1093/*
1094 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1095 * This is mainly to avoid queueing async I/O requests when the nfsiods
1096 * are all hung on a dead server.
1097 *
1098 * Note: nfs_asyncio() does not clear (B_ERROR|B_INVAL) but when the bp
1099 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1100 */
1101int
1102nfs_asyncio(bp, cred, procp)
1103	register struct buf *bp;
1104	struct ucred *cred;
1105	struct proc *procp;
1106{
1107	struct nfsmount *nmp;
1108	int i;
1109	int gotiod;
1110	int slpflag = 0;
1111	int slptimeo = 0;
1112	int error;
1113
1114	if (nfs_numasync == 0)
1115		return (EIO);
1116
1117	nmp = VFSTONFS(bp->b_vp->v_mount);
1118again:
1119	if (nmp->nm_flag & NFSMNT_INT)
1120		slpflag = PCATCH;
1121	gotiod = FALSE;
1122
1123	/*
1124	 * Find a free iod to process this request.
1125	 */
1126	for (i = 0; i < NFS_MAXASYNCDAEMON; i++)
1127		if (nfs_iodwant[i]) {
1128			/*
1129			 * Found one, so wake it up and tell it which
1130			 * mount to process.
1131			 */
1132			NFS_DPF(ASYNCIO,
1133				("nfs_asyncio: waking iod %d for mount %p\n",
1134				 i, nmp));
1135			nfs_iodwant[i] = (struct proc *)0;
1136			nfs_iodmount[i] = nmp;
1137			nmp->nm_bufqiods++;
1138			wakeup((caddr_t)&nfs_iodwant[i]);
1139			gotiod = TRUE;
1140			break;
1141		}
1142
1143	/*
1144	 * If none are free, we may already have an iod working on this mount
1145	 * point.  If so, it will process our request.
1146	 */
1147	if (!gotiod) {
1148		if (nmp->nm_bufqiods > 0) {
1149			NFS_DPF(ASYNCIO,
1150				("nfs_asyncio: %d iods are already processing mount %p\n",
1151				 nmp->nm_bufqiods, nmp));
1152			gotiod = TRUE;
1153		}
1154	}
1155
1156	/*
1157	 * If we have an iod which can process the request, then queue
1158	 * the buffer.
1159	 */
1160	if (gotiod) {
1161		/*
1162		 * Ensure that the queue never grows too large.
1163		 */
1164		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1165			NFS_DPF(ASYNCIO,
1166				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1167			nmp->nm_bufqwant = TRUE;
1168			error = tsleep(&nmp->nm_bufq, slpflag | PRIBIO,
1169				       "nfsaio", slptimeo);
1170			if (error) {
1171				if (nfs_sigintr(nmp, NULL, procp))
1172					return (EINTR);
1173				if (slpflag == PCATCH) {
1174					slpflag = 0;
1175					slptimeo = 2 * hz;
1176				}
1177			}
1178			/*
1179			 * We might have lost our iod while sleeping,
1180			 * so check and loop if nescessary.
1181			 */
1182			if (nmp->nm_bufqiods == 0) {
1183				NFS_DPF(ASYNCIO,
1184					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1185				goto again;
1186			}
1187		}
1188
1189		if (bp->b_flags & B_READ) {
1190			if (bp->b_rcred == NOCRED && cred != NOCRED) {
1191				crhold(cred);
1192				bp->b_rcred = cred;
1193			}
1194		} else {
1195			bp->b_flags |= B_WRITEINPROG;
1196			if (bp->b_wcred == NOCRED && cred != NOCRED) {
1197				crhold(cred);
1198				bp->b_wcred = cred;
1199			}
1200		}
1201
1202		BUF_KERNPROC(bp);
1203		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1204		nmp->nm_bufqlen++;
1205		return (0);
1206	}
1207
1208	/*
1209	 * All the iods are busy on other mounts, so return EIO to
1210	 * force the caller to process the i/o synchronously.
1211	 */
1212	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1213	return (EIO);
1214}
1215
1216/*
1217 * Do an I/O operation to/from a cache block. This may be called
1218 * synchronously or from an nfsiod.
1219 */
1220int
1221nfs_doio(bp, cr, p)
1222	struct buf *bp;
1223	struct ucred *cr;
1224	struct proc *p;
1225{
1226	struct uio *uiop;
1227	struct vnode *vp;
1228	struct nfsnode *np;
1229	struct nfsmount *nmp;
1230	int error = 0, iomode, must_commit = 0;
1231	struct uio uio;
1232	struct iovec io;
1233
1234	vp = bp->b_vp;
1235	np = VTONFS(vp);
1236	nmp = VFSTONFS(vp->v_mount);
1237	uiop = &uio;
1238	uiop->uio_iov = &io;
1239	uiop->uio_iovcnt = 1;
1240	uiop->uio_segflg = UIO_SYSSPACE;
1241	uiop->uio_procp = p;
1242
1243	/*
1244	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
1245	 * do this here so we do not have to do it in all the code that
1246	 * calls us.
1247	 */
1248	bp->b_flags &= ~(B_ERROR | B_INVAL);
1249
1250	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1251
1252	/*
1253	 * Historically, paging was done with physio, but no more.
1254	 */
1255	if (bp->b_flags & B_PHYS) {
1256	    /*
1257	     * ...though reading /dev/drum still gets us here.
1258	     */
1259	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1260	    /* mapping was done by vmapbuf() */
1261	    io.iov_base = bp->b_data;
1262	    uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1263	    if (bp->b_flags & B_READ) {
1264		uiop->uio_rw = UIO_READ;
1265		nfsstats.read_physios++;
1266		error = nfs_readrpc(vp, uiop, cr);
1267	    } else {
1268		int com;
1269
1270		iomode = NFSV3WRITE_DATASYNC;
1271		uiop->uio_rw = UIO_WRITE;
1272		nfsstats.write_physios++;
1273		error = nfs_writerpc(vp, uiop, cr, &iomode, &com);
1274	    }
1275	    if (error) {
1276		bp->b_flags |= B_ERROR;
1277		bp->b_error = error;
1278	    }
1279	} else if (bp->b_flags & B_READ) {
1280	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1281	    io.iov_base = bp->b_data;
1282	    uiop->uio_rw = UIO_READ;
1283	    switch (vp->v_type) {
1284	    case VREG:
1285		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1286		nfsstats.read_bios++;
1287		error = nfs_readrpc(vp, uiop, cr);
1288		if (!error) {
1289		    if (uiop->uio_resid) {
1290			/*
1291			 * If we had a short read with no error, we must have
1292			 * hit a file hole.  We should zero-fill the remainder.
1293			 * This can also occur if the server hits the file EOF.
1294			 *
1295			 * Holes used to be able to occur due to pending
1296			 * writes, but that is not possible any longer.
1297			 */
1298			int nread = bp->b_bcount - uiop->uio_resid;
1299			int left  = bp->b_bcount - nread;
1300
1301			if (left > 0)
1302				bzero((char *)bp->b_data + nread, left);
1303			uiop->uio_resid = 0;
1304		    }
1305		}
1306		if (p && (vp->v_flag & VTEXT) &&
1307			(((nmp->nm_flag & NFSMNT_NQNFS) &&
1308			  NQNFS_CKINVALID(vp, np, ND_READ) &&
1309			  np->n_lrev != np->n_brev) ||
1310			 (!(nmp->nm_flag & NFSMNT_NQNFS) &&
1311			  np->n_mtime != np->n_vattr.va_mtime.tv_sec))) {
1312			uprintf("Process killed due to text file modification\n");
1313			psignal(p, SIGKILL);
1314			PHOLD(p);
1315		}
1316		break;
1317	    case VLNK:
1318		uiop->uio_offset = (off_t)0;
1319		nfsstats.readlink_bios++;
1320		error = nfs_readlinkrpc(vp, uiop, cr);
1321		break;
1322	    case VDIR:
1323		nfsstats.readdir_bios++;
1324		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1325		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1326			error = nfs_readdirplusrpc(vp, uiop, cr);
1327			if (error == NFSERR_NOTSUPP)
1328				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1329		}
1330		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1331			error = nfs_readdirrpc(vp, uiop, cr);
1332		/*
1333		 * end-of-directory sets B_INVAL but does not generate an
1334		 * error.
1335		 */
1336		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1337			bp->b_flags |= B_INVAL;
1338		break;
1339	    default:
1340		printf("nfs_doio:  type %x unexpected\n",vp->v_type);
1341		break;
1342	    };
1343	    if (error) {
1344		bp->b_flags |= B_ERROR;
1345		bp->b_error = error;
1346	    }
1347	} else {
1348	    /*
1349	     * If we only need to commit, try to commit
1350	     */
1351	    if (bp->b_flags & B_NEEDCOMMIT) {
1352		    int retv;
1353		    off_t off;
1354
1355		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1356		    bp->b_flags |= B_WRITEINPROG;
1357		    retv = nfs_commit(
1358				bp->b_vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1359				bp->b_wcred, p);
1360		    bp->b_flags &= ~B_WRITEINPROG;
1361		    if (retv == 0) {
1362			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1363			    bp->b_flags &= ~B_NEEDCOMMIT;
1364			    bp->b_resid = 0;
1365			    biodone(bp);
1366			    return (0);
1367		    }
1368		    if (retv == NFSERR_STALEWRITEVERF) {
1369			    nfs_clearcommit(bp->b_vp->v_mount);
1370		    }
1371	    }
1372
1373	    /*
1374	     * Setup for actual write
1375	     */
1376
1377	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1378		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1379
1380	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1381		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1382		    - bp->b_dirtyoff;
1383		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1384		    + bp->b_dirtyoff;
1385		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1386		uiop->uio_rw = UIO_WRITE;
1387		nfsstats.write_bios++;
1388
1389		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1390		    iomode = NFSV3WRITE_UNSTABLE;
1391		else
1392		    iomode = NFSV3WRITE_FILESYNC;
1393
1394		bp->b_flags |= B_WRITEINPROG;
1395		error = nfs_writerpc(vp, uiop, cr, &iomode, &must_commit);
1396		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1397		    bp->b_flags |= B_NEEDCOMMIT;
1398		    if (bp->b_dirtyoff == 0
1399			&& bp->b_dirtyend == bp->b_bcount)
1400			bp->b_flags |= B_CLUSTEROK;
1401		} else {
1402		    bp->b_flags &= ~B_NEEDCOMMIT;
1403		}
1404		bp->b_flags &= ~B_WRITEINPROG;
1405
1406		/*
1407		 * For an interrupted write, the buffer is still valid
1408		 * and the write hasn't been pushed to the server yet,
1409		 * so we can't set B_ERROR and report the interruption
1410		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1411		 * is not relevant, so the rpc attempt is essentially
1412		 * a noop.  For the case of a V3 write rpc not being
1413		 * committed to stable storage, the block is still
1414		 * dirty and requires either a commit rpc or another
1415		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1416		 * the block is reused. This is indicated by setting
1417		 * the B_DELWRI and B_NEEDCOMMIT flags.
1418		 *
1419		 * If the buffer is marked B_PAGING, it does not reside on
1420		 * the vp's paging queues so we cannot call bdirty().  The
1421		 * bp in this case is not an NFS cache block so we should
1422		 * be safe. XXX
1423		 */
1424    		if (error == EINTR
1425		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1426			int s;
1427
1428			s = splbio();
1429			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1430			if ((bp->b_flags & B_PAGING) == 0) {
1431			    bdirty(bp);
1432			    bp->b_flags &= ~B_DONE;
1433			}
1434			if (error && (bp->b_flags & B_ASYNC) == 0)
1435			    bp->b_flags |= B_EINTR;
1436			splx(s);
1437	    	} else {
1438		    if (error) {
1439			bp->b_flags |= B_ERROR;
1440			bp->b_error = np->n_error = error;
1441			np->n_flag |= NWRITEERR;
1442		    }
1443		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1444		}
1445	    } else {
1446		bp->b_resid = 0;
1447		biodone(bp);
1448		return (0);
1449	    }
1450	}
1451	bp->b_resid = uiop->uio_resid;
1452	if (must_commit)
1453	    nfs_clearcommit(vp->v_mount);
1454	biodone(bp);
1455	return (error);
1456}
1457