nfs_bio.c revision 46349
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
37 * $Id: nfs_bio.c,v 1.69 1999/04/06 03:07:54 peter Exp $
38 */
39
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/resourcevar.h>
44#include <sys/signalvar.h>
45#include <sys/proc.h>
46#include <sys/buf.h>
47#include <sys/vnode.h>
48#include <sys/mount.h>
49#include <sys/kernel.h>
50
51#include <vm/vm.h>
52#include <vm/vm_extern.h>
53#include <vm/vm_prot.h>
54#include <vm/vm_page.h>
55#include <vm/vm_object.h>
56#include <vm/vm_pager.h>
57#include <vm/vnode_pager.h>
58
59#include <nfs/rpcv2.h>
60#include <nfs/nfsproto.h>
61#include <nfs/nfs.h>
62#include <nfs/nfsmount.h>
63#include <nfs/nqnfs.h>
64#include <nfs/nfsnode.h>
65
66static struct buf *nfs_getcacheblk __P((struct vnode *vp, daddr_t bn, int size,
67					struct proc *p));
68
69extern int nfs_numasync;
70extern int nfs_pbuf_freecnt;
71extern struct nfsstats nfsstats;
72
73/*
74 * Vnode op for VM getpages.
75 */
76int
77nfs_getpages(ap)
78	struct vop_getpages_args /* {
79		struct vnode *a_vp;
80		vm_page_t *a_m;
81		int a_count;
82		int a_reqpage;
83		vm_ooffset_t a_offset;
84	} */ *ap;
85{
86	int i, error, nextoff, size, toff, count, npages;
87	struct uio uio;
88	struct iovec iov;
89	vm_offset_t kva;
90	struct buf *bp;
91	struct vnode *vp;
92	struct proc *p;
93	struct ucred *cred;
94	struct nfsmount *nmp;
95	vm_page_t *pages;
96
97	vp = ap->a_vp;
98	p = curproc;				/* XXX */
99	cred = curproc->p_ucred;		/* XXX */
100	nmp = VFSTONFS(vp->v_mount);
101	pages = ap->a_m;
102	count = ap->a_count;
103
104	if (vp->v_object == NULL) {
105		printf("nfs_getpages: called with non-merged cache vnode??\n");
106		return VM_PAGER_ERROR;
107	}
108
109	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
110	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
111		(void)nfs_fsinfo(nmp, vp, cred, p);
112
113	npages = btoc(count);
114
115	/*
116	 * If the requested page is partially valid, just return it and
117	 * allow the pager to zero-out the blanks.  Partially valid pages
118	 * can only occur at the file EOF.
119	 */
120
121	{
122		vm_page_t m = pages[ap->a_reqpage];
123
124		if (m->valid != 0) {
125			/* handled by vm_fault now	  */
126			/* vm_page_zero_invalid(m, TRUE); */
127			for (i = 0; i < npages; ++i) {
128				if (i != ap->a_reqpage)
129					vnode_pager_freepage(pages[i]);
130			}
131			return(0);
132		}
133	}
134
135	/*
136	 * We use only the kva address for the buffer, but this is extremely
137	 * convienient and fast.
138	 */
139	bp = getpbuf(&nfs_pbuf_freecnt);
140
141	kva = (vm_offset_t) bp->b_data;
142	pmap_qenter(kva, pages, npages);
143
144	iov.iov_base = (caddr_t) kva;
145	iov.iov_len = count;
146	uio.uio_iov = &iov;
147	uio.uio_iovcnt = 1;
148	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
149	uio.uio_resid = count;
150	uio.uio_segflg = UIO_SYSSPACE;
151	uio.uio_rw = UIO_READ;
152	uio.uio_procp = p;
153
154	error = nfs_readrpc(vp, &uio, cred);
155	pmap_qremove(kva, npages);
156
157	relpbuf(bp, &nfs_pbuf_freecnt);
158
159	if (error && (uio.uio_resid == count)) {
160		printf("nfs_getpages: error %d\n", error);
161		for (i = 0; i < npages; ++i) {
162			if (i != ap->a_reqpage)
163				vnode_pager_freepage(pages[i]);
164		}
165		return VM_PAGER_ERROR;
166	}
167
168	/*
169	 * Calculate the number of bytes read and validate only that number
170	 * of bytes.  Note that due to pending writes, size may be 0.  This
171	 * does not mean that the remaining data is invalid!
172	 */
173
174	size = count - uio.uio_resid;
175
176	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
177		vm_page_t m;
178		nextoff = toff + PAGE_SIZE;
179		m = pages[i];
180
181		m->flags &= ~PG_ZERO;
182
183		if (nextoff <= size) {
184			/*
185			 * Read operation filled an entire page
186			 */
187			m->valid = VM_PAGE_BITS_ALL;
188			m->dirty = 0;
189		} else if (size > toff) {
190			/*
191			 * Read operation filled a partial page.
192			 */
193			m->valid = 0;
194			vm_page_set_validclean(m, 0, size - toff);
195			/* handled by vm_fault now	  */
196			/* vm_page_zero_invalid(m, TRUE); */
197		}
198
199		if (i != ap->a_reqpage) {
200			/*
201			 * Whether or not to leave the page activated is up in
202			 * the air, but we should put the page on a page queue
203			 * somewhere (it already is in the object).  Result:
204			 * It appears that emperical results show that
205			 * deactivating pages is best.
206			 */
207
208			/*
209			 * Just in case someone was asking for this page we
210			 * now tell them that it is ok to use.
211			 */
212			if (!error) {
213				if (m->flags & PG_WANTED)
214					vm_page_activate(m);
215				else
216					vm_page_deactivate(m);
217				vm_page_wakeup(m);
218			} else {
219				vnode_pager_freepage(m);
220			}
221		}
222	}
223	return 0;
224}
225
226/*
227 * Vnode op for VM putpages.
228 */
229int
230nfs_putpages(ap)
231	struct vop_putpages_args /* {
232		struct vnode *a_vp;
233		vm_page_t *a_m;
234		int a_count;
235		int a_sync;
236		int *a_rtvals;
237		vm_ooffset_t a_offset;
238	} */ *ap;
239{
240	struct uio uio;
241	struct iovec iov;
242	vm_offset_t kva;
243	struct buf *bp;
244	int iomode, must_commit, i, error, npages, count;
245	off_t offset;
246	int *rtvals;
247	struct vnode *vp;
248	struct proc *p;
249	struct ucred *cred;
250	struct nfsmount *nmp;
251	struct nfsnode *np;
252	vm_page_t *pages;
253
254	vp = ap->a_vp;
255	np = VTONFS(vp);
256	p = curproc;				/* XXX */
257	cred = curproc->p_ucred;		/* XXX */
258	nmp = VFSTONFS(vp->v_mount);
259	pages = ap->a_m;
260	count = ap->a_count;
261	rtvals = ap->a_rtvals;
262	npages = btoc(count);
263	offset = IDX_TO_OFF(pages[0]->pindex);
264
265	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
266	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
267		(void)nfs_fsinfo(nmp, vp, cred, p);
268
269	for (i = 0; i < npages; i++) {
270		rtvals[i] = VM_PAGER_AGAIN;
271	}
272
273	/*
274	 * When putting pages, do not extend file past EOF.
275	 */
276
277	if (offset + count > np->n_size) {
278		count = np->n_size - offset;
279		if (count < 0)
280			count = 0;
281	}
282
283	/*
284	 * We use only the kva address for the buffer, but this is extremely
285	 * convienient and fast.
286	 */
287	bp = getpbuf(&nfs_pbuf_freecnt);
288
289	kva = (vm_offset_t) bp->b_data;
290	pmap_qenter(kva, pages, npages);
291
292	iov.iov_base = (caddr_t) kva;
293	iov.iov_len = count;
294	uio.uio_iov = &iov;
295	uio.uio_iovcnt = 1;
296	uio.uio_offset = offset;
297	uio.uio_resid = count;
298	uio.uio_segflg = UIO_SYSSPACE;
299	uio.uio_rw = UIO_WRITE;
300	uio.uio_procp = p;
301
302	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
303	    iomode = NFSV3WRITE_UNSTABLE;
304	else
305	    iomode = NFSV3WRITE_FILESYNC;
306
307	error = nfs_writerpc(vp, &uio, cred, &iomode, &must_commit);
308
309	pmap_qremove(kva, npages);
310	relpbuf(bp, &nfs_pbuf_freecnt);
311
312	if (!error) {
313		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
314		for (i = 0; i < nwritten; i++) {
315			rtvals[i] = VM_PAGER_OK;
316			pages[i]->dirty = 0;
317		}
318		if (must_commit)
319			nfs_clearcommit(vp->v_mount);
320	}
321	return rtvals[0];
322}
323
324/*
325 * Vnode op for read using bio
326 */
327int
328nfs_bioread(vp, uio, ioflag, cred)
329	register struct vnode *vp;
330	register struct uio *uio;
331	int ioflag;
332	struct ucred *cred;
333{
334	register struct nfsnode *np = VTONFS(vp);
335	register int biosize, i;
336	struct buf *bp = 0, *rabp;
337	struct vattr vattr;
338	struct proc *p;
339	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
340	daddr_t lbn, rabn;
341	int bcount;
342	int nra, error = 0, n = 0, on = 0;
343
344#ifdef DIAGNOSTIC
345	if (uio->uio_rw != UIO_READ)
346		panic("nfs_read mode");
347#endif
348	if (uio->uio_resid == 0)
349		return (0);
350	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
351		return (EINVAL);
352	p = uio->uio_procp;
353	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
354	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
355		(void)nfs_fsinfo(nmp, vp, cred, p);
356	if (vp->v_type != VDIR &&
357	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
358		return (EFBIG);
359	biosize = vp->v_mount->mnt_stat.f_iosize;
360	/*
361	 * For nfs, cache consistency can only be maintained approximately.
362	 * Although RFC1094 does not specify the criteria, the following is
363	 * believed to be compatible with the reference port.
364	 * For nqnfs, full cache consistency is maintained within the loop.
365	 * For nfs:
366	 * If the file's modify time on the server has changed since the
367	 * last read rpc or you have written to the file,
368	 * you may have lost data cache consistency with the
369	 * server, so flush all of the file's data out of the cache.
370	 * Then force a getattr rpc to ensure that you have up to date
371	 * attributes.
372	 * NB: This implies that cache data can be read when up to
373	 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
374	 * attributes this could be forced by setting n_attrstamp to 0 before
375	 * the VOP_GETATTR() call.
376	 */
377	if ((nmp->nm_flag & NFSMNT_NQNFS) == 0) {
378		if (np->n_flag & NMODIFIED) {
379			if (vp->v_type != VREG) {
380				if (vp->v_type != VDIR)
381					panic("nfs: bioread, not dir");
382				nfs_invaldir(vp);
383				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
384				if (error)
385					return (error);
386			}
387			np->n_attrstamp = 0;
388			error = VOP_GETATTR(vp, &vattr, cred, p);
389			if (error)
390				return (error);
391			np->n_mtime = vattr.va_mtime.tv_sec;
392		} else {
393			error = VOP_GETATTR(vp, &vattr, cred, p);
394			if (error)
395				return (error);
396			if (np->n_mtime != vattr.va_mtime.tv_sec) {
397				if (vp->v_type == VDIR)
398					nfs_invaldir(vp);
399				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
400				if (error)
401					return (error);
402				np->n_mtime = vattr.va_mtime.tv_sec;
403			}
404		}
405	}
406	do {
407
408	    /*
409	     * Get a valid lease. If cached data is stale, flush it.
410	     */
411	    if (nmp->nm_flag & NFSMNT_NQNFS) {
412		if (NQNFS_CKINVALID(vp, np, ND_READ)) {
413		    do {
414			error = nqnfs_getlease(vp, ND_READ, cred, p);
415		    } while (error == NQNFS_EXPIRED);
416		    if (error)
417			return (error);
418		    if (np->n_lrev != np->n_brev ||
419			(np->n_flag & NQNFSNONCACHE) ||
420			((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) {
421			if (vp->v_type == VDIR)
422			    nfs_invaldir(vp);
423			error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
424			if (error)
425			    return (error);
426			np->n_brev = np->n_lrev;
427		    }
428		} else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) {
429		    nfs_invaldir(vp);
430		    error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
431		    if (error)
432			return (error);
433		}
434	    }
435	    if (np->n_flag & NQNFSNONCACHE) {
436		switch (vp->v_type) {
437		case VREG:
438			return (nfs_readrpc(vp, uio, cred));
439		case VLNK:
440			return (nfs_readlinkrpc(vp, uio, cred));
441		case VDIR:
442			break;
443		default:
444			printf(" NQNFSNONCACHE: type %x unexpected\n",
445				vp->v_type);
446		};
447	    }
448	    switch (vp->v_type) {
449	    case VREG:
450		nfsstats.biocache_reads++;
451		lbn = uio->uio_offset / biosize;
452		on = uio->uio_offset & (biosize - 1);
453
454		/*
455		 * Start the read ahead(s), as required.
456		 */
457		if (nfs_numasync > 0 && nmp->nm_readahead > 0) {
458		    for (nra = 0; nra < nmp->nm_readahead &&
459			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
460			rabn = lbn + 1 + nra;
461			if (!incore(vp, rabn)) {
462			    rabp = nfs_getcacheblk(vp, rabn, biosize, p);
463			    if (!rabp)
464				return (EINTR);
465			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
466				rabp->b_flags |= (B_READ | B_ASYNC);
467				vfs_busy_pages(rabp, 0);
468				if (nfs_asyncio(rabp, cred)) {
469				    rabp->b_flags |= B_INVAL|B_ERROR;
470				    vfs_unbusy_pages(rabp);
471				    brelse(rabp);
472				}
473			    } else
474				brelse(rabp);
475			}
476		    }
477		}
478
479		/*
480		 * Obtain the buffer cache block.  Figure out the buffer size
481		 * when we are at EOF.  nfs_getcacheblk() will also force
482		 * uncached delayed-writes to be flushed to the server.
483		 *
484		 * Note that bcount is *not* DEV_BSIZE aligned.
485		 */
486
487		bcount = biosize;
488		if ((off_t)lbn * biosize >= np->n_size) {
489			bcount = 0;
490		} else if ((off_t)(lbn + 1) * biosize > np->n_size) {
491			bcount = np->n_size - (off_t)lbn * biosize;
492		}
493
494		bp = nfs_getcacheblk(vp, lbn, bcount, p);
495		if (!bp)
496			return (EINTR);
497
498		/*
499		 * If B_CACHE is not set, we must issue the read.  If this
500		 * fails, we return an error.
501		 */
502
503		if ((bp->b_flags & B_CACHE) == 0) {
504		    bp->b_flags |= B_READ;
505		    vfs_busy_pages(bp, 0);
506		    error = nfs_doio(bp, cred, p);
507		    if (error) {
508			brelse(bp);
509			return (error);
510		    }
511		}
512
513		/*
514		 * on is the offset into the current bp.  Figure out how many
515		 * bytes we can copy out of the bp.  Note that bcount is
516		 * NOT DEV_BSIZE aligned.
517		 *
518		 * Then figure out how many bytes we can copy into the uio.
519		 */
520
521		n = 0;
522		if (on < bcount)
523			n = min((unsigned)(bcount - on), uio->uio_resid);
524
525		vp->v_lastr = lbn;
526		break;
527	    case VLNK:
528		nfsstats.biocache_readlinks++;
529		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, p);
530		if (!bp)
531			return (EINTR);
532		if ((bp->b_flags & B_CACHE) == 0) {
533		    bp->b_flags |= B_READ;
534		    vfs_busy_pages(bp, 0);
535		    error = nfs_doio(bp, cred, p);
536		    if (error) {
537			bp->b_flags |= B_ERROR;
538			brelse(bp);
539			return (error);
540		    }
541		}
542		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
543		on = 0;
544		break;
545	    case VDIR:
546		nfsstats.biocache_readdirs++;
547		if (np->n_direofoffset
548		    && uio->uio_offset >= np->n_direofoffset) {
549		    return (0);
550		}
551		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
552		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
553		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, p);
554		if (!bp)
555		    return (EINTR);
556		if ((bp->b_flags & B_CACHE) == 0) {
557		    bp->b_flags |= B_READ;
558		    vfs_busy_pages(bp, 0);
559		    error = nfs_doio(bp, cred, p);
560		    if (error) {
561			    brelse(bp);
562		    }
563		    while (error == NFSERR_BAD_COOKIE) {
564			printf("got bad cookie vp %p bp %p\n", vp, bp);
565			nfs_invaldir(vp);
566			error = nfs_vinvalbuf(vp, 0, cred, p, 1);
567			/*
568			 * Yuck! The directory has been modified on the
569			 * server. The only way to get the block is by
570			 * reading from the beginning to get all the
571			 * offset cookies.
572			 *
573			 * Leave the last bp intact unless there is an error.
574			 * Loop back up to the while if the error is another
575			 * NFSERR_BAD_COOKIE (double yuch!).
576			 */
577			for (i = 0; i <= lbn && !error; i++) {
578			    if (np->n_direofoffset
579				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
580				    return (0);
581			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, p);
582			    if (!bp)
583				return (EINTR);
584			    if ((bp->b_flags & B_CACHE) == 0) {
585				    bp->b_flags |= B_READ;
586				    vfs_busy_pages(bp, 0);
587				    error = nfs_doio(bp, cred, p);
588				    /*
589				     * no error + B_INVAL == directory EOF,
590				     * use the block.
591				     */
592				    if (error == 0 && (bp->b_flags & B_INVAL))
593					    break;
594			    }
595			    /*
596			     * An error will throw away the block and the
597			     * for loop will break out.  If no error and this
598			     * is not the block we want, we throw away the
599			     * block and go for the next one via the for loop.
600			     */
601			    if (error || i < lbn)
602				    brelse(bp);
603			}
604		    }
605		    /*
606		     * The above while is repeated if we hit another cookie
607		     * error.  If we hit an error and it wasn't a cookie error,
608		     * we give up.
609		     */
610		    if (error)
611			    return (error);
612		}
613
614		/*
615		 * If not eof and read aheads are enabled, start one.
616		 * (You need the current block first, so that you have the
617		 *  directory offset cookie of the next block.)
618		 */
619		if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
620		    (bp->b_flags & B_INVAL) == 0 &&
621		    (np->n_direofoffset == 0 ||
622		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
623		    !(np->n_flag & NQNFSNONCACHE) &&
624		    !incore(vp, lbn + 1)) {
625			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, p);
626			if (rabp) {
627			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
628				rabp->b_flags |= (B_READ | B_ASYNC);
629				vfs_busy_pages(rabp, 0);
630				if (nfs_asyncio(rabp, cred)) {
631				    rabp->b_flags |= B_INVAL|B_ERROR;
632				    vfs_unbusy_pages(rabp);
633				    brelse(rabp);
634				}
635			    } else {
636				brelse(rabp);
637			    }
638			}
639		}
640		/*
641		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
642		 * chopped for the EOF condition, we cannot tell how large
643		 * NFS directories are going to be until we hit EOF.  So
644		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
645		 * it just so happens that b_resid will effectively chop it
646		 * to EOF.  *BUT* this information is lost if the buffer goes
647		 * away and is reconstituted into a B_CACHE state ( due to
648		 * being VMIO ) later.  So we keep track of the directory eof
649		 * in np->n_direofoffset and chop it off as an extra step
650		 * right here.
651		 */
652		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
653		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
654			n = np->n_direofoffset - uio->uio_offset;
655		break;
656	    default:
657		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
658		break;
659	    };
660
661	    if (n > 0) {
662		    error = uiomove(bp->b_data + on, (int)n, uio);
663	    }
664	    switch (vp->v_type) {
665	    case VREG:
666		break;
667	    case VLNK:
668		n = 0;
669		break;
670	    case VDIR:
671		/*
672		 * Invalidate buffer if caching is disabled, forcing a
673		 * re-read from the remote later.
674		 */
675		if (np->n_flag & NQNFSNONCACHE)
676			bp->b_flags |= B_INVAL;
677		break;
678	    default:
679		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
680	    }
681	    brelse(bp);
682	} while (error == 0 && uio->uio_resid > 0 && n > 0);
683	return (error);
684}
685
686/*
687 * Vnode op for write using bio
688 */
689int
690nfs_write(ap)
691	struct vop_write_args /* {
692		struct vnode *a_vp;
693		struct uio *a_uio;
694		int  a_ioflag;
695		struct ucred *a_cred;
696	} */ *ap;
697{
698	int biosize;
699	struct uio *uio = ap->a_uio;
700	struct proc *p = uio->uio_procp;
701	struct vnode *vp = ap->a_vp;
702	struct nfsnode *np = VTONFS(vp);
703	struct ucred *cred = ap->a_cred;
704	int ioflag = ap->a_ioflag;
705	struct buf *bp;
706	struct vattr vattr;
707	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
708	daddr_t lbn;
709	int bcount;
710	int n, on, error = 0, iomode, must_commit;
711
712#ifdef DIAGNOSTIC
713	if (uio->uio_rw != UIO_WRITE)
714		panic("nfs_write mode");
715	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_procp != curproc)
716		panic("nfs_write proc");
717#endif
718	if (vp->v_type != VREG)
719		return (EIO);
720	if (np->n_flag & NWRITEERR) {
721		np->n_flag &= ~NWRITEERR;
722		return (np->n_error);
723	}
724	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
725	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
726		(void)nfs_fsinfo(nmp, vp, cred, p);
727	if (ioflag & (IO_APPEND | IO_SYNC)) {
728		if (np->n_flag & NMODIFIED) {
729			np->n_attrstamp = 0;
730			error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
731			if (error)
732				return (error);
733		}
734		if (ioflag & IO_APPEND) {
735			np->n_attrstamp = 0;
736			error = VOP_GETATTR(vp, &vattr, cred, p);
737			if (error)
738				return (error);
739			uio->uio_offset = np->n_size;
740		}
741	}
742	if (uio->uio_offset < 0)
743		return (EINVAL);
744	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
745		return (EFBIG);
746	if (uio->uio_resid == 0)
747		return (0);
748	/*
749	 * Maybe this should be above the vnode op call, but so long as
750	 * file servers have no limits, i don't think it matters
751	 */
752	if (p && uio->uio_offset + uio->uio_resid >
753	      p->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
754		psignal(p, SIGXFSZ);
755		return (EFBIG);
756	}
757
758	biosize = vp->v_mount->mnt_stat.f_iosize;
759
760	do {
761		/*
762		 * Check for a valid write lease.
763		 */
764		if ((nmp->nm_flag & NFSMNT_NQNFS) &&
765		    NQNFS_CKINVALID(vp, np, ND_WRITE)) {
766			do {
767				error = nqnfs_getlease(vp, ND_WRITE, cred, p);
768			} while (error == NQNFS_EXPIRED);
769			if (error)
770				return (error);
771			if (np->n_lrev != np->n_brev ||
772			    (np->n_flag & NQNFSNONCACHE)) {
773				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
774				if (error)
775					return (error);
776				np->n_brev = np->n_lrev;
777			}
778		}
779		if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
780		    iomode = NFSV3WRITE_FILESYNC;
781		    error = nfs_writerpc(vp, uio, cred, &iomode, &must_commit);
782		    if (must_commit)
783			nfs_clearcommit(vp->v_mount);
784		    return (error);
785		}
786		nfsstats.biocache_writes++;
787		lbn = uio->uio_offset / biosize;
788		on = uio->uio_offset & (biosize-1);
789		n = min((unsigned)(biosize - on), uio->uio_resid);
790again:
791		/*
792		 * Handle direct append and file extension cases, calculate
793		 * unaligned buffer size.
794		 */
795
796		if (uio->uio_offset == np->n_size && n) {
797			/*
798			 * special append case.  Obtain buffer prior to
799			 * resizing it to maintain B_CACHE.
800			 */
801			long save;
802
803			bcount = on;
804			bp = nfs_getcacheblk(vp, lbn, bcount, p);
805			save = bp->b_flags & B_CACHE;
806
807			np->n_size = uio->uio_offset + n;
808			np->n_flag |= NMODIFIED;
809			vnode_pager_setsize(vp, np->n_size);
810
811			bcount += n;
812			allocbuf(bp, bcount);
813			bp->b_flags |= save;
814		} else {
815			if (uio->uio_offset + n > np->n_size) {
816				np->n_size = uio->uio_offset + n;
817				np->n_flag |= NMODIFIED;
818				vnode_pager_setsize(vp, np->n_size);
819			}
820			bcount = biosize;
821			if ((off_t)(lbn + 1) * biosize > np->n_size)
822				bcount = np->n_size - (off_t)lbn * biosize;
823			bp = nfs_getcacheblk(vp, lbn, bcount, p);
824		}
825
826		/*
827		 * Issue a READ if B_CACHE is not set.  In special-append
828		 * mode, B_CACHE is based on the buffer prior to the write
829		 * op and is typically set, avoiding the read.  If a read
830		 * is required in special append mode, the server will
831		 * probably send us a short-read since we extended the file
832		 * on our end, resulting in b_resid == 0 and, thusly,
833		 * B_CACHE getting set.
834		 *
835		 * We can also avoid issuing the read if the write covers
836		 * the entire buffer.  We have to make sure the buffer state
837		 * is reasonable in this case since we will not be initiating
838		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
839		 * more information.
840		 *
841		 * B_CACHE may also be set due to the buffer being cached
842		 * normally.
843		 */
844
845		if (on == 0 && n == bcount) {
846			bp->b_flags |= B_CACHE;
847			bp->b_flags &= ~(B_ERROR | B_INVAL);
848		}
849
850		if ((bp->b_flags & B_CACHE) == 0) {
851			bp->b_flags |= B_READ;
852			vfs_busy_pages(bp, 0);
853			error = nfs_doio(bp, cred, p);
854			if (error) {
855				brelse(bp);
856				return (error);
857			}
858		}
859		if (!bp)
860			return (EINTR);
861		if (bp->b_wcred == NOCRED) {
862			crhold(cred);
863			bp->b_wcred = cred;
864		}
865		np->n_flag |= NMODIFIED;
866
867		/*
868		 * If dirtyend exceeds file size, chop it down.  If this
869		 * creates a reverse-indexed or degenerate situation with
870		 * dirtyoff/end, 0 them.
871		 */
872
873		if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
874			bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
875		if (bp->b_dirtyoff >= bp->b_dirtyend)
876			bp->b_dirtyoff = bp->b_dirtyend = 0;
877
878		/*
879		 * If the new write will leave a contiguous dirty
880		 * area, just update the b_dirtyoff and b_dirtyend,
881		 * otherwise force a write rpc of the old dirty area.
882		 *
883		 * While it is possible to merge discontiguous writes due to
884		 * our having a B_CACHE buffer ( and thus valid read data
885		 * for the hole), we don't because it could lead to
886		 * significant cache coherency problems with multiple clients,
887		 * especially if locking is implemented later on.
888		 *
889		 * as an optimization we could theoretically maintain
890		 * a linked list of discontinuous areas, but we would still
891		 * have to commit them separately so there isn't much
892		 * advantage to it except perhaps a bit of asynchronization.
893		 */
894
895		if (bp->b_dirtyend > 0 &&
896		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
897			bp->b_proc = p;
898			if (VOP_BWRITE(bp) == EINTR)
899				return (EINTR);
900			goto again;
901		}
902
903		/*
904		 * Check for valid write lease and get one as required.
905		 * In case getblk() and/or bwrite() delayed us.
906		 */
907		if ((nmp->nm_flag & NFSMNT_NQNFS) &&
908		    NQNFS_CKINVALID(vp, np, ND_WRITE)) {
909			do {
910				error = nqnfs_getlease(vp, ND_WRITE, cred, p);
911			} while (error == NQNFS_EXPIRED);
912			if (error) {
913				brelse(bp);
914				return (error);
915			}
916			if (np->n_lrev != np->n_brev ||
917			    (np->n_flag & NQNFSNONCACHE)) {
918				brelse(bp);
919				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
920				if (error)
921					return (error);
922				np->n_brev = np->n_lrev;
923				goto again;
924			}
925		}
926
927		error = uiomove((char *)bp->b_data + on, n, uio);
928		bp->b_flags &= ~B_NEEDCOMMIT;
929		if (error) {
930			bp->b_flags |= B_ERROR;
931			brelse(bp);
932			return (error);
933		}
934
935		/*
936		 * Only update dirtyoff/dirtyend if not a degenerate
937		 * condition.
938		 */
939		if (n) {
940			if (bp->b_dirtyend > 0) {
941				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
942				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
943			} else {
944				bp->b_dirtyoff = on;
945				bp->b_dirtyend = on + n;
946			}
947			vfs_bio_set_validclean(bp, on, n);
948		}
949
950		/*
951		 * Since this block is being modified, it must be written
952		 * again and not just committed.
953		 */
954		bp->b_flags &= ~B_NEEDCOMMIT;
955
956		/*
957		 * If the lease is non-cachable or IO_SYNC do bwrite().
958		 *
959		 * IO_INVAL appears to be unused.  The idea appears to be
960		 * to turn off caching in this case.  Very odd.  XXX
961		 */
962		if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
963			bp->b_proc = p;
964			if (ioflag & IO_INVAL)
965				bp->b_flags |= B_NOCACHE;
966			error = VOP_BWRITE(bp);
967			if (error)
968				return (error);
969			if (np->n_flag & NQNFSNONCACHE) {
970				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
971				if (error)
972					return (error);
973			}
974		} else if ((n + on) == biosize &&
975			(nmp->nm_flag & NFSMNT_NQNFS) == 0) {
976			bp->b_proc = (struct proc *)0;
977			bp->b_flags |= B_ASYNC;
978			(void)nfs_writebp(bp, 0);
979		} else {
980			bdwrite(bp);
981		}
982	} while (uio->uio_resid > 0 && n > 0);
983	return (0);
984}
985
986/*
987 * Get an nfs cache block.
988 * Allocate a new one if the block isn't currently in the cache
989 * and return the block marked busy. If the calling process is
990 * interrupted by a signal for an interruptible mount point, return
991 * NULL.
992 */
993static struct buf *
994nfs_getcacheblk(vp, bn, size, p)
995	struct vnode *vp;
996	daddr_t bn;
997	int size;
998	struct proc *p;
999{
1000	register struct buf *bp;
1001	struct mount *mp;
1002	struct nfsmount *nmp;
1003
1004	mp = vp->v_mount;
1005	nmp = VFSTONFS(mp);
1006
1007	if (nmp->nm_flag & NFSMNT_INT) {
1008		bp = getblk(vp, bn, size, PCATCH, 0);
1009		while (bp == (struct buf *)0) {
1010			if (nfs_sigintr(nmp, (struct nfsreq *)0, p))
1011				return ((struct buf *)0);
1012			bp = getblk(vp, bn, size, 0, 2 * hz);
1013		}
1014	} else {
1015		bp = getblk(vp, bn, size, 0, 0);
1016	}
1017
1018	if (vp->v_type == VREG) {
1019		int biosize;
1020
1021		biosize = mp->mnt_stat.f_iosize;
1022		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1023	}
1024	return (bp);
1025}
1026
1027/*
1028 * Flush and invalidate all dirty buffers. If another process is already
1029 * doing the flush, just wait for completion.
1030 */
1031int
1032nfs_vinvalbuf(vp, flags, cred, p, intrflg)
1033	struct vnode *vp;
1034	int flags;
1035	struct ucred *cred;
1036	struct proc *p;
1037	int intrflg;
1038{
1039	register struct nfsnode *np = VTONFS(vp);
1040	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1041	int error = 0, slpflag, slptimeo;
1042
1043	if (vp->v_flag & VXLOCK) {
1044		return (0);
1045	}
1046
1047	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1048		intrflg = 0;
1049	if (intrflg) {
1050		slpflag = PCATCH;
1051		slptimeo = 2 * hz;
1052	} else {
1053		slpflag = 0;
1054		slptimeo = 0;
1055	}
1056	/*
1057	 * First wait for any other process doing a flush to complete.
1058	 */
1059	while (np->n_flag & NFLUSHINPROG) {
1060		np->n_flag |= NFLUSHWANT;
1061		error = tsleep((caddr_t)&np->n_flag, PRIBIO + 2, "nfsvinval",
1062			slptimeo);
1063		if (error && intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, p))
1064			return (EINTR);
1065	}
1066
1067	/*
1068	 * Now, flush as required.
1069	 */
1070	np->n_flag |= NFLUSHINPROG;
1071	error = vinvalbuf(vp, flags, cred, p, slpflag, 0);
1072	while (error) {
1073		if (intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, p)) {
1074			np->n_flag &= ~NFLUSHINPROG;
1075			if (np->n_flag & NFLUSHWANT) {
1076				np->n_flag &= ~NFLUSHWANT;
1077				wakeup((caddr_t)&np->n_flag);
1078			}
1079			return (EINTR);
1080		}
1081		error = vinvalbuf(vp, flags, cred, p, 0, slptimeo);
1082	}
1083	np->n_flag &= ~(NMODIFIED | NFLUSHINPROG);
1084	if (np->n_flag & NFLUSHWANT) {
1085		np->n_flag &= ~NFLUSHWANT;
1086		wakeup((caddr_t)&np->n_flag);
1087	}
1088	return (0);
1089}
1090
1091/*
1092 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1093 * This is mainly to avoid queueing async I/O requests when the nfsiods
1094 * are all hung on a dead server.
1095 *
1096 * Note: nfs_asyncio() does not clear (B_ERROR|B_INVAL) but when the bp
1097 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1098 */
1099int
1100nfs_asyncio(bp, cred)
1101	register struct buf *bp;
1102	struct ucred *cred;
1103{
1104	struct nfsmount *nmp;
1105	int i;
1106	int gotiod;
1107	int slpflag = 0;
1108	int slptimeo = 0;
1109	int error;
1110
1111	if (nfs_numasync == 0)
1112		return (EIO);
1113
1114	nmp = VFSTONFS(bp->b_vp->v_mount);
1115again:
1116	if (nmp->nm_flag & NFSMNT_INT)
1117		slpflag = PCATCH;
1118	gotiod = FALSE;
1119
1120	/*
1121	 * Find a free iod to process this request.
1122	 */
1123	for (i = 0; i < NFS_MAXASYNCDAEMON; i++)
1124		if (nfs_iodwant[i]) {
1125			/*
1126			 * Found one, so wake it up and tell it which
1127			 * mount to process.
1128			 */
1129			NFS_DPF(ASYNCIO,
1130				("nfs_asyncio: waking iod %d for mount %p\n",
1131				 i, nmp));
1132			nfs_iodwant[i] = (struct proc *)0;
1133			nfs_iodmount[i] = nmp;
1134			nmp->nm_bufqiods++;
1135			wakeup((caddr_t)&nfs_iodwant[i]);
1136			gotiod = TRUE;
1137			break;
1138		}
1139
1140	/*
1141	 * If none are free, we may already have an iod working on this mount
1142	 * point.  If so, it will process our request.
1143	 */
1144	if (!gotiod) {
1145		if (nmp->nm_bufqiods > 0) {
1146			NFS_DPF(ASYNCIO,
1147				("nfs_asyncio: %d iods are already processing mount %p\n",
1148				 nmp->nm_bufqiods, nmp));
1149			gotiod = TRUE;
1150		}
1151	}
1152
1153	/*
1154	 * If we have an iod which can process the request, then queue
1155	 * the buffer.
1156	 */
1157	if (gotiod) {
1158		/*
1159		 * Ensure that the queue never grows too large.
1160		 */
1161		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1162			NFS_DPF(ASYNCIO,
1163				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1164			nmp->nm_bufqwant = TRUE;
1165			error = tsleep(&nmp->nm_bufq, slpflag | PRIBIO,
1166				       "nfsaio", slptimeo);
1167			if (error) {
1168				if (nfs_sigintr(nmp, NULL, bp->b_proc))
1169					return (EINTR);
1170				if (slpflag == PCATCH) {
1171					slpflag = 0;
1172					slptimeo = 2 * hz;
1173				}
1174			}
1175			/*
1176			 * We might have lost our iod while sleeping,
1177			 * so check and loop if nescessary.
1178			 */
1179			if (nmp->nm_bufqiods == 0) {
1180				NFS_DPF(ASYNCIO,
1181					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1182				goto again;
1183			}
1184		}
1185
1186		if (bp->b_flags & B_READ) {
1187			if (bp->b_rcred == NOCRED && cred != NOCRED) {
1188				crhold(cred);
1189				bp->b_rcred = cred;
1190			}
1191		} else {
1192			bp->b_flags |= B_WRITEINPROG;
1193			if (bp->b_wcred == NOCRED && cred != NOCRED) {
1194				crhold(cred);
1195				bp->b_wcred = cred;
1196			}
1197		}
1198
1199		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1200		nmp->nm_bufqlen++;
1201		return (0);
1202	}
1203
1204	/*
1205	 * All the iods are busy on other mounts, so return EIO to
1206	 * force the caller to process the i/o synchronously.
1207	 */
1208	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1209	return (EIO);
1210}
1211
1212/*
1213 * Do an I/O operation to/from a cache block. This may be called
1214 * synchronously or from an nfsiod.
1215 */
1216int
1217nfs_doio(bp, cr, p)
1218	struct buf *bp;
1219	struct ucred *cr;
1220	struct proc *p;
1221{
1222	struct uio *uiop;
1223	struct vnode *vp;
1224	struct nfsnode *np;
1225	struct nfsmount *nmp;
1226	int error = 0, iomode, must_commit = 0;
1227	struct uio uio;
1228	struct iovec io;
1229
1230	vp = bp->b_vp;
1231	np = VTONFS(vp);
1232	nmp = VFSTONFS(vp->v_mount);
1233	uiop = &uio;
1234	uiop->uio_iov = &io;
1235	uiop->uio_iovcnt = 1;
1236	uiop->uio_segflg = UIO_SYSSPACE;
1237	uiop->uio_procp = p;
1238
1239	/*
1240	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
1241	 * do this here so we do not have to do it in all the code that
1242	 * calls us.
1243	 */
1244	bp->b_flags &= ~(B_ERROR | B_INVAL);
1245
1246	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1247
1248	/*
1249	 * Historically, paging was done with physio, but no more.
1250	 */
1251	if (bp->b_flags & B_PHYS) {
1252	    /*
1253	     * ...though reading /dev/drum still gets us here.
1254	     */
1255	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1256	    /* mapping was done by vmapbuf() */
1257	    io.iov_base = bp->b_data;
1258	    uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1259	    if (bp->b_flags & B_READ) {
1260		uiop->uio_rw = UIO_READ;
1261		nfsstats.read_physios++;
1262		error = nfs_readrpc(vp, uiop, cr);
1263	    } else {
1264		int com;
1265
1266		iomode = NFSV3WRITE_DATASYNC;
1267		uiop->uio_rw = UIO_WRITE;
1268		nfsstats.write_physios++;
1269		error = nfs_writerpc(vp, uiop, cr, &iomode, &com);
1270	    }
1271	    if (error) {
1272		bp->b_flags |= B_ERROR;
1273		bp->b_error = error;
1274	    }
1275	} else if (bp->b_flags & B_READ) {
1276	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1277	    io.iov_base = bp->b_data;
1278	    uiop->uio_rw = UIO_READ;
1279	    switch (vp->v_type) {
1280	    case VREG:
1281		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1282		nfsstats.read_bios++;
1283		error = nfs_readrpc(vp, uiop, cr);
1284		if (!error) {
1285		    if (uiop->uio_resid) {
1286			/*
1287			 * If we had a short read with no error, we must have
1288			 * hit a file hole.  We should zero-fill the remainder.
1289			 * This can also occur if the server hits the file EOF.
1290			 *
1291			 * Holes used to be able to occur due to pending
1292			 * writes, but that is not possible any longer.
1293			 */
1294			int nread = bp->b_bcount - uiop->uio_resid;
1295			int left  = bp->b_bcount - nread;
1296
1297			if (left > 0)
1298				bzero((char *)bp->b_data + nread, left);
1299			uiop->uio_resid = 0;
1300		    }
1301		}
1302		if (p && (vp->v_flag & VTEXT) &&
1303			(((nmp->nm_flag & NFSMNT_NQNFS) &&
1304			  NQNFS_CKINVALID(vp, np, ND_READ) &&
1305			  np->n_lrev != np->n_brev) ||
1306			 (!(nmp->nm_flag & NFSMNT_NQNFS) &&
1307			  np->n_mtime != np->n_vattr.va_mtime.tv_sec))) {
1308			uprintf("Process killed due to text file modification\n");
1309			psignal(p, SIGKILL);
1310			PHOLD(p);
1311		}
1312		break;
1313	    case VLNK:
1314		uiop->uio_offset = (off_t)0;
1315		nfsstats.readlink_bios++;
1316		error = nfs_readlinkrpc(vp, uiop, cr);
1317		break;
1318	    case VDIR:
1319		nfsstats.readdir_bios++;
1320		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1321		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1322			error = nfs_readdirplusrpc(vp, uiop, cr);
1323			if (error == NFSERR_NOTSUPP)
1324				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1325		}
1326		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1327			error = nfs_readdirrpc(vp, uiop, cr);
1328		/*
1329		 * end-of-directory sets B_INVAL but does not generate an
1330		 * error.
1331		 */
1332		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1333			bp->b_flags |= B_INVAL;
1334		break;
1335	    default:
1336		printf("nfs_doio:  type %x unexpected\n",vp->v_type);
1337		break;
1338	    };
1339	    if (error) {
1340		bp->b_flags |= B_ERROR;
1341		bp->b_error = error;
1342	    }
1343	} else {
1344	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1345		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1346
1347	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1348		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1349		    - bp->b_dirtyoff;
1350		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1351		    + bp->b_dirtyoff;
1352		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1353		uiop->uio_rw = UIO_WRITE;
1354		nfsstats.write_bios++;
1355
1356		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1357		    iomode = NFSV3WRITE_UNSTABLE;
1358		else
1359		    iomode = NFSV3WRITE_FILESYNC;
1360
1361		bp->b_flags |= B_WRITEINPROG;
1362		error = nfs_writerpc(vp, uiop, cr, &iomode, &must_commit);
1363		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1364		    bp->b_flags |= B_NEEDCOMMIT;
1365		    if (bp->b_dirtyoff == 0
1366			&& bp->b_dirtyend == bp->b_bcount)
1367			bp->b_flags |= B_CLUSTEROK;
1368		} else {
1369		    bp->b_flags &= ~B_NEEDCOMMIT;
1370		}
1371		bp->b_flags &= ~B_WRITEINPROG;
1372
1373		/*
1374		 * For an interrupted write, the buffer is still valid
1375		 * and the write hasn't been pushed to the server yet,
1376		 * so we can't set B_ERROR and report the interruption
1377		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1378		 * is not relevant, so the rpc attempt is essentially
1379		 * a noop.  For the case of a V3 write rpc not being
1380		 * committed to stable storage, the block is still
1381		 * dirty and requires either a commit rpc or another
1382		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1383		 * the block is reused. This is indicated by setting
1384		 * the B_DELWRI and B_NEEDCOMMIT flags.
1385		 *
1386		 * If the buffer is marked B_PAGING, it does not reside on
1387		 * the vp's paging queues so we cannot call bdirty().  The
1388		 * bp in this case is not an NFS cache block so we should
1389		 * be safe. XXX
1390		 */
1391    		if (error == EINTR
1392		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1393			int s;
1394
1395			s = splbio();
1396			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1397			if ((bp->b_flags & B_PAGING) == 0) {
1398			    bdirty(bp);
1399			    bp->b_flags &= ~B_DONE;
1400			}
1401			if ((bp->b_flags & B_ASYNC) == 0)
1402			    bp->b_flags |= B_EINTR;
1403			splx(s);
1404	    	} else {
1405		    if (error) {
1406			bp->b_flags |= B_ERROR;
1407			bp->b_error = np->n_error = error;
1408			np->n_flag |= NWRITEERR;
1409		    }
1410		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1411		}
1412	    } else {
1413		bp->b_resid = 0;
1414		biodone(bp);
1415		return (0);
1416	    }
1417	}
1418	bp->b_resid = uiop->uio_resid;
1419	if (must_commit)
1420	    nfs_clearcommit(vp->v_mount);
1421	biodone(bp);
1422	return (error);
1423}
1424