nfs_bio.c revision 207746
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/nfsclient/nfs_bio.c 207746 2010-05-07 15:49:43Z alc $");
37
38#include "opt_kdtrace.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bio.h>
43#include <sys/buf.h>
44#include <sys/kernel.h>
45#include <sys/mbuf.h>
46#include <sys/mount.h>
47#include <sys/proc.h>
48#include <sys/vmmeter.h>
49#include <sys/vnode.h>
50
51#include <vm/vm.h>
52#include <vm/vm_extern.h>
53#include <vm/vm_page.h>
54#include <vm/vm_object.h>
55#include <vm/vm_pager.h>
56#include <vm/vnode_pager.h>
57
58#include <nfs/nfsproto.h>
59#include <nfsclient/nfs.h>
60#include <nfsclient/nfsmount.h>
61#include <nfsclient/nfsnode.h>
62#include <nfsclient/nfs_kdtrace.h>
63
64static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
65		    struct thread *td);
66static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
67			      struct ucred *cred, int ioflag);
68
69extern int nfs_directio_enable;
70extern int nfs_directio_allow_mmap;
71
72/*
73 * Vnode op for VM getpages.
74 */
75int
76nfs_getpages(struct vop_getpages_args *ap)
77{
78	int i, error, nextoff, size, toff, count, npages;
79	struct uio uio;
80	struct iovec iov;
81	vm_offset_t kva;
82	struct buf *bp;
83	struct vnode *vp;
84	struct thread *td;
85	struct ucred *cred;
86	struct nfsmount *nmp;
87	vm_object_t object;
88	vm_page_t *pages;
89	struct nfsnode *np;
90
91	vp = ap->a_vp;
92	np = VTONFS(vp);
93	td = curthread;				/* XXX */
94	cred = curthread->td_ucred;		/* XXX */
95	nmp = VFSTONFS(vp->v_mount);
96	pages = ap->a_m;
97	count = ap->a_count;
98
99	if ((object = vp->v_object) == NULL) {
100		nfs_printf("nfs_getpages: called with non-merged cache vnode??\n");
101		return (VM_PAGER_ERROR);
102	}
103
104	if (nfs_directio_enable && !nfs_directio_allow_mmap) {
105		mtx_lock(&np->n_mtx);
106		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
107			mtx_unlock(&np->n_mtx);
108			nfs_printf("nfs_getpages: called on non-cacheable vnode??\n");
109			return (VM_PAGER_ERROR);
110		} else
111			mtx_unlock(&np->n_mtx);
112	}
113
114	mtx_lock(&nmp->nm_mtx);
115	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
116	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
117		mtx_unlock(&nmp->nm_mtx);
118		/* We'll never get here for v4, because we always have fsinfo */
119		(void)nfs_fsinfo(nmp, vp, cred, td);
120	} else
121		mtx_unlock(&nmp->nm_mtx);
122
123	npages = btoc(count);
124
125	/*
126	 * If the requested page is partially valid, just return it and
127	 * allow the pager to zero-out the blanks.  Partially valid pages
128	 * can only occur at the file EOF.
129	 */
130	VM_OBJECT_LOCK(object);
131	if (pages[ap->a_reqpage]->valid != 0) {
132		for (i = 0; i < npages; ++i) {
133			if (i != ap->a_reqpage) {
134				vm_page_lock(pages[i]);
135				vm_page_free(pages[i]);
136				vm_page_unlock(pages[i]);
137			}
138		}
139		VM_OBJECT_UNLOCK(object);
140		return (0);
141	}
142	VM_OBJECT_UNLOCK(object);
143
144	/*
145	 * We use only the kva address for the buffer, but this is extremely
146	 * convienient and fast.
147	 */
148	bp = getpbuf(&nfs_pbuf_freecnt);
149
150	kva = (vm_offset_t) bp->b_data;
151	pmap_qenter(kva, pages, npages);
152	PCPU_INC(cnt.v_vnodein);
153	PCPU_ADD(cnt.v_vnodepgsin, npages);
154
155	iov.iov_base = (caddr_t) kva;
156	iov.iov_len = count;
157	uio.uio_iov = &iov;
158	uio.uio_iovcnt = 1;
159	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
160	uio.uio_resid = count;
161	uio.uio_segflg = UIO_SYSSPACE;
162	uio.uio_rw = UIO_READ;
163	uio.uio_td = td;
164
165	error = (nmp->nm_rpcops->nr_readrpc)(vp, &uio, cred);
166	pmap_qremove(kva, npages);
167
168	relpbuf(bp, &nfs_pbuf_freecnt);
169
170	if (error && (uio.uio_resid == count)) {
171		nfs_printf("nfs_getpages: error %d\n", error);
172		VM_OBJECT_LOCK(object);
173		for (i = 0; i < npages; ++i) {
174			if (i != ap->a_reqpage) {
175				vm_page_lock(pages[i]);
176				vm_page_free(pages[i]);
177				vm_page_unlock(pages[i]);
178			}
179		}
180		VM_OBJECT_UNLOCK(object);
181		return (VM_PAGER_ERROR);
182	}
183
184	/*
185	 * Calculate the number of bytes read and validate only that number
186	 * of bytes.  Note that due to pending writes, size may be 0.  This
187	 * does not mean that the remaining data is invalid!
188	 */
189
190	size = count - uio.uio_resid;
191	VM_OBJECT_LOCK(object);
192	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
193		vm_page_t m;
194		nextoff = toff + PAGE_SIZE;
195		m = pages[i];
196
197		if (nextoff <= size) {
198			/*
199			 * Read operation filled an entire page
200			 */
201			m->valid = VM_PAGE_BITS_ALL;
202			KASSERT(m->dirty == 0,
203			    ("nfs_getpages: page %p is dirty", m));
204		} else if (size > toff) {
205			/*
206			 * Read operation filled a partial page.
207			 */
208			m->valid = 0;
209			vm_page_set_valid(m, 0, size - toff);
210			KASSERT(m->dirty == 0,
211			    ("nfs_getpages: page %p is dirty", m));
212		} else {
213			/*
214			 * Read operation was short.  If no error occured
215			 * we may have hit a zero-fill section.   We simply
216			 * leave valid set to 0.
217			 */
218			;
219		}
220		if (i != ap->a_reqpage) {
221			/*
222			 * Whether or not to leave the page activated is up in
223			 * the air, but we should put the page on a page queue
224			 * somewhere (it already is in the object).  Result:
225			 * It appears that emperical results show that
226			 * deactivating pages is best.
227			 */
228
229			/*
230			 * Just in case someone was asking for this page we
231			 * now tell them that it is ok to use.
232			 */
233			if (!error) {
234				if (m->oflags & VPO_WANTED) {
235					vm_page_lock(m);
236					vm_page_activate(m);
237					vm_page_unlock(m);
238				} else {
239					vm_page_lock(m);
240					vm_page_deactivate(m);
241					vm_page_unlock(m);
242				}
243				vm_page_wakeup(m);
244			} else {
245				vm_page_lock(m);
246				vm_page_free(m);
247				vm_page_unlock(m);
248			}
249		}
250	}
251	VM_OBJECT_UNLOCK(object);
252	return (0);
253}
254
255/*
256 * Vnode op for VM putpages.
257 */
258int
259nfs_putpages(struct vop_putpages_args *ap)
260{
261	struct uio uio;
262	struct iovec iov;
263	vm_offset_t kva;
264	struct buf *bp;
265	int iomode, must_commit, i, error, npages, count;
266	off_t offset;
267	int *rtvals;
268	struct vnode *vp;
269	struct thread *td;
270	struct ucred *cred;
271	struct nfsmount *nmp;
272	struct nfsnode *np;
273	vm_page_t *pages;
274
275	vp = ap->a_vp;
276	np = VTONFS(vp);
277	td = curthread;				/* XXX */
278	cred = curthread->td_ucred;		/* XXX */
279	nmp = VFSTONFS(vp->v_mount);
280	pages = ap->a_m;
281	count = ap->a_count;
282	rtvals = ap->a_rtvals;
283	npages = btoc(count);
284	offset = IDX_TO_OFF(pages[0]->pindex);
285
286	mtx_lock(&nmp->nm_mtx);
287	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
288	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
289		mtx_unlock(&nmp->nm_mtx);
290		(void)nfs_fsinfo(nmp, vp, cred, td);
291	} else
292		mtx_unlock(&nmp->nm_mtx);
293
294	mtx_lock(&np->n_mtx);
295	if (nfs_directio_enable && !nfs_directio_allow_mmap &&
296	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
297		mtx_unlock(&np->n_mtx);
298		nfs_printf("nfs_putpages: called on noncache-able vnode??\n");
299		mtx_lock(&np->n_mtx);
300	}
301
302	for (i = 0; i < npages; i++)
303		rtvals[i] = VM_PAGER_AGAIN;
304
305	/*
306	 * When putting pages, do not extend file past EOF.
307	 */
308	if (offset + count > np->n_size) {
309		count = np->n_size - offset;
310		if (count < 0)
311			count = 0;
312	}
313	mtx_unlock(&np->n_mtx);
314
315	/*
316	 * We use only the kva address for the buffer, but this is extremely
317	 * convienient and fast.
318	 */
319	bp = getpbuf(&nfs_pbuf_freecnt);
320
321	kva = (vm_offset_t) bp->b_data;
322	pmap_qenter(kva, pages, npages);
323	PCPU_INC(cnt.v_vnodeout);
324	PCPU_ADD(cnt.v_vnodepgsout, count);
325
326	iov.iov_base = (caddr_t) kva;
327	iov.iov_len = count;
328	uio.uio_iov = &iov;
329	uio.uio_iovcnt = 1;
330	uio.uio_offset = offset;
331	uio.uio_resid = count;
332	uio.uio_segflg = UIO_SYSSPACE;
333	uio.uio_rw = UIO_WRITE;
334	uio.uio_td = td;
335
336	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
337	    iomode = NFSV3WRITE_UNSTABLE;
338	else
339	    iomode = NFSV3WRITE_FILESYNC;
340
341	error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, &iomode, &must_commit);
342
343	pmap_qremove(kva, npages);
344	relpbuf(bp, &nfs_pbuf_freecnt);
345
346	if (!error) {
347		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
348		for (i = 0; i < nwritten; i++) {
349			rtvals[i] = VM_PAGER_OK;
350			vm_page_undirty(pages[i]);
351		}
352		if (must_commit) {
353			nfs_clearcommit(vp->v_mount);
354		}
355	}
356	return rtvals[0];
357}
358
359/*
360 * For nfs, cache consistency can only be maintained approximately.
361 * Although RFC1094 does not specify the criteria, the following is
362 * believed to be compatible with the reference port.
363 * For nfs:
364 * If the file's modify time on the server has changed since the
365 * last read rpc or you have written to the file,
366 * you may have lost data cache consistency with the
367 * server, so flush all of the file's data out of the cache.
368 * Then force a getattr rpc to ensure that you have up to date
369 * attributes.
370 * NB: This implies that cache data can be read when up to
371 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
372 * attributes this could be forced by setting n_attrstamp to 0 before
373 * the VOP_GETATTR() call.
374 */
375static inline int
376nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
377{
378	int error = 0;
379	struct vattr vattr;
380	struct nfsnode *np = VTONFS(vp);
381	int old_lock;
382	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
383
384	/*
385	 * Grab the exclusive lock before checking whether the cache is
386	 * consistent.
387	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
388	 * But for now, this suffices.
389	 */
390	old_lock = nfs_upgrade_vnlock(vp);
391	if (vp->v_iflag & VI_DOOMED) {
392		nfs_downgrade_vnlock(vp, old_lock);
393		return (EBADF);
394	}
395
396	mtx_lock(&np->n_mtx);
397	if (np->n_flag & NMODIFIED) {
398		mtx_unlock(&np->n_mtx);
399		if (vp->v_type != VREG) {
400			if (vp->v_type != VDIR)
401				panic("nfs: bioread, not dir");
402			(nmp->nm_rpcops->nr_invaldir)(vp);
403			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
404			if (error)
405				goto out;
406		}
407		np->n_attrstamp = 0;
408		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
409		error = VOP_GETATTR(vp, &vattr, cred);
410		if (error)
411			goto out;
412		mtx_lock(&np->n_mtx);
413		np->n_mtime = vattr.va_mtime;
414		mtx_unlock(&np->n_mtx);
415	} else {
416		mtx_unlock(&np->n_mtx);
417		error = VOP_GETATTR(vp, &vattr, cred);
418		if (error)
419			return (error);
420		mtx_lock(&np->n_mtx);
421		if ((np->n_flag & NSIZECHANGED)
422		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
423			mtx_unlock(&np->n_mtx);
424			if (vp->v_type == VDIR)
425				(nmp->nm_rpcops->nr_invaldir)(vp);
426			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
427			if (error)
428				goto out;
429			mtx_lock(&np->n_mtx);
430			np->n_mtime = vattr.va_mtime;
431			np->n_flag &= ~NSIZECHANGED;
432		}
433		mtx_unlock(&np->n_mtx);
434	}
435out:
436	nfs_downgrade_vnlock(vp, old_lock);
437	return error;
438}
439
440/*
441 * Vnode op for read using bio
442 */
443int
444nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
445{
446	struct nfsnode *np = VTONFS(vp);
447	int biosize, i;
448	struct buf *bp, *rabp;
449	struct thread *td;
450	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
451	daddr_t lbn, rabn;
452	int bcount;
453	int seqcount;
454	int nra, error = 0, n = 0, on = 0;
455
456#ifdef DIAGNOSTIC
457	if (uio->uio_rw != UIO_READ)
458		panic("nfs_read mode");
459#endif
460	if (uio->uio_resid == 0)
461		return (0);
462	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
463		return (EINVAL);
464	td = uio->uio_td;
465
466	mtx_lock(&nmp->nm_mtx);
467	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
468	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
469		mtx_unlock(&nmp->nm_mtx);
470		(void)nfs_fsinfo(nmp, vp, cred, td);
471	} else
472		mtx_unlock(&nmp->nm_mtx);
473
474	if (vp->v_type != VDIR &&
475	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
476		return (EFBIG);
477
478	if (nfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
479		/* No caching/ no readaheads. Just read data into the user buffer */
480		return nfs_readrpc(vp, uio, cred);
481
482	biosize = vp->v_mount->mnt_stat.f_iosize;
483	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
484
485	error = nfs_bioread_check_cons(vp, td, cred);
486	if (error)
487		return error;
488
489	do {
490	    u_quad_t nsize;
491
492	    mtx_lock(&np->n_mtx);
493	    nsize = np->n_size;
494	    mtx_unlock(&np->n_mtx);
495
496	    switch (vp->v_type) {
497	    case VREG:
498		nfsstats.biocache_reads++;
499		lbn = uio->uio_offset / biosize;
500		on = uio->uio_offset & (biosize - 1);
501
502		/*
503		 * Start the read ahead(s), as required.
504		 */
505		if (nmp->nm_readahead > 0) {
506		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
507			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
508			rabn = lbn + 1 + nra;
509			if (incore(&vp->v_bufobj, rabn) == NULL) {
510			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
511			    if (!rabp) {
512				error = nfs_sigintr(nmp, td);
513				return (error ? error : EINTR);
514			    }
515			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
516				rabp->b_flags |= B_ASYNC;
517				rabp->b_iocmd = BIO_READ;
518				vfs_busy_pages(rabp, 0);
519				if (nfs_asyncio(nmp, rabp, cred, td)) {
520				    rabp->b_flags |= B_INVAL;
521				    rabp->b_ioflags |= BIO_ERROR;
522				    vfs_unbusy_pages(rabp);
523				    brelse(rabp);
524				    break;
525				}
526			    } else {
527				brelse(rabp);
528			    }
529			}
530		    }
531		}
532
533		/* Note that bcount is *not* DEV_BSIZE aligned. */
534		bcount = biosize;
535		if ((off_t)lbn * biosize >= nsize) {
536			bcount = 0;
537		} else if ((off_t)(lbn + 1) * biosize > nsize) {
538			bcount = nsize - (off_t)lbn * biosize;
539		}
540		bp = nfs_getcacheblk(vp, lbn, bcount, td);
541
542		if (!bp) {
543			error = nfs_sigintr(nmp, td);
544			return (error ? error : EINTR);
545		}
546
547		/*
548		 * If B_CACHE is not set, we must issue the read.  If this
549		 * fails, we return an error.
550		 */
551
552		if ((bp->b_flags & B_CACHE) == 0) {
553		    bp->b_iocmd = BIO_READ;
554		    vfs_busy_pages(bp, 0);
555		    error = nfs_doio(vp, bp, cred, td);
556		    if (error) {
557			brelse(bp);
558			return (error);
559		    }
560		}
561
562		/*
563		 * on is the offset into the current bp.  Figure out how many
564		 * bytes we can copy out of the bp.  Note that bcount is
565		 * NOT DEV_BSIZE aligned.
566		 *
567		 * Then figure out how many bytes we can copy into the uio.
568		 */
569
570		n = 0;
571		if (on < bcount)
572			n = min((unsigned)(bcount - on), uio->uio_resid);
573		break;
574	    case VLNK:
575		nfsstats.biocache_readlinks++;
576		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
577		if (!bp) {
578			error = nfs_sigintr(nmp, td);
579			return (error ? error : EINTR);
580		}
581		if ((bp->b_flags & B_CACHE) == 0) {
582		    bp->b_iocmd = BIO_READ;
583		    vfs_busy_pages(bp, 0);
584		    error = nfs_doio(vp, bp, cred, td);
585		    if (error) {
586			bp->b_ioflags |= BIO_ERROR;
587			brelse(bp);
588			return (error);
589		    }
590		}
591		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
592		on = 0;
593		break;
594	    case VDIR:
595		nfsstats.biocache_readdirs++;
596		if (np->n_direofoffset
597		    && uio->uio_offset >= np->n_direofoffset) {
598		    return (0);
599		}
600		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
601		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
602		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
603		if (!bp) {
604		    error = nfs_sigintr(nmp, td);
605		    return (error ? error : EINTR);
606		}
607		if ((bp->b_flags & B_CACHE) == 0) {
608		    bp->b_iocmd = BIO_READ;
609		    vfs_busy_pages(bp, 0);
610		    error = nfs_doio(vp, bp, cred, td);
611		    if (error) {
612			    brelse(bp);
613		    }
614		    while (error == NFSERR_BAD_COOKIE) {
615			(nmp->nm_rpcops->nr_invaldir)(vp);
616			error = nfs_vinvalbuf(vp, 0, td, 1);
617			/*
618			 * Yuck! The directory has been modified on the
619			 * server. The only way to get the block is by
620			 * reading from the beginning to get all the
621			 * offset cookies.
622			 *
623			 * Leave the last bp intact unless there is an error.
624			 * Loop back up to the while if the error is another
625			 * NFSERR_BAD_COOKIE (double yuch!).
626			 */
627			for (i = 0; i <= lbn && !error; i++) {
628			    if (np->n_direofoffset
629				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
630				    return (0);
631			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
632			    if (!bp) {
633				error = nfs_sigintr(nmp, td);
634				return (error ? error : EINTR);
635			    }
636			    if ((bp->b_flags & B_CACHE) == 0) {
637				    bp->b_iocmd = BIO_READ;
638				    vfs_busy_pages(bp, 0);
639				    error = nfs_doio(vp, bp, cred, td);
640				    /*
641				     * no error + B_INVAL == directory EOF,
642				     * use the block.
643				     */
644				    if (error == 0 && (bp->b_flags & B_INVAL))
645					    break;
646			    }
647			    /*
648			     * An error will throw away the block and the
649			     * for loop will break out.  If no error and this
650			     * is not the block we want, we throw away the
651			     * block and go for the next one via the for loop.
652			     */
653			    if (error || i < lbn)
654				    brelse(bp);
655			}
656		    }
657		    /*
658		     * The above while is repeated if we hit another cookie
659		     * error.  If we hit an error and it wasn't a cookie error,
660		     * we give up.
661		     */
662		    if (error)
663			    return (error);
664		}
665
666		/*
667		 * If not eof and read aheads are enabled, start one.
668		 * (You need the current block first, so that you have the
669		 *  directory offset cookie of the next block.)
670		 */
671		if (nmp->nm_readahead > 0 &&
672		    (bp->b_flags & B_INVAL) == 0 &&
673		    (np->n_direofoffset == 0 ||
674		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
675		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
676			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
677			if (rabp) {
678			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
679				rabp->b_flags |= B_ASYNC;
680				rabp->b_iocmd = BIO_READ;
681				vfs_busy_pages(rabp, 0);
682				if (nfs_asyncio(nmp, rabp, cred, td)) {
683				    rabp->b_flags |= B_INVAL;
684				    rabp->b_ioflags |= BIO_ERROR;
685				    vfs_unbusy_pages(rabp);
686				    brelse(rabp);
687				}
688			    } else {
689				brelse(rabp);
690			    }
691			}
692		}
693		/*
694		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
695		 * chopped for the EOF condition, we cannot tell how large
696		 * NFS directories are going to be until we hit EOF.  So
697		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
698		 * it just so happens that b_resid will effectively chop it
699		 * to EOF.  *BUT* this information is lost if the buffer goes
700		 * away and is reconstituted into a B_CACHE state ( due to
701		 * being VMIO ) later.  So we keep track of the directory eof
702		 * in np->n_direofoffset and chop it off as an extra step
703		 * right here.
704		 */
705		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
706		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
707			n = np->n_direofoffset - uio->uio_offset;
708		break;
709	    default:
710		nfs_printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
711		bp = NULL;
712		break;
713	    };
714
715	    if (n > 0) {
716		    error = uiomove(bp->b_data + on, (int)n, uio);
717	    }
718	    if (vp->v_type == VLNK)
719		n = 0;
720	    if (bp != NULL)
721		brelse(bp);
722	} while (error == 0 && uio->uio_resid > 0 && n > 0);
723	return (error);
724}
725
726/*
727 * The NFS write path cannot handle iovecs with len > 1. So we need to
728 * break up iovecs accordingly (restricting them to wsize).
729 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
730 * For the ASYNC case, 2 copies are needed. The first a copy from the
731 * user buffer to a staging buffer and then a second copy from the staging
732 * buffer to mbufs. This can be optimized by copying from the user buffer
733 * directly into mbufs and passing the chain down, but that requires a
734 * fair amount of re-working of the relevant codepaths (and can be done
735 * later).
736 */
737static int
738nfs_directio_write(vp, uiop, cred, ioflag)
739	struct vnode *vp;
740	struct uio *uiop;
741	struct ucred *cred;
742	int ioflag;
743{
744	int error;
745	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
746	struct thread *td = uiop->uio_td;
747	int size;
748	int wsize;
749
750	mtx_lock(&nmp->nm_mtx);
751	wsize = nmp->nm_wsize;
752	mtx_unlock(&nmp->nm_mtx);
753	if (ioflag & IO_SYNC) {
754		int iomode, must_commit;
755		struct uio uio;
756		struct iovec iov;
757do_sync:
758		while (uiop->uio_resid > 0) {
759			size = min(uiop->uio_resid, wsize);
760			size = min(uiop->uio_iov->iov_len, size);
761			iov.iov_base = uiop->uio_iov->iov_base;
762			iov.iov_len = size;
763			uio.uio_iov = &iov;
764			uio.uio_iovcnt = 1;
765			uio.uio_offset = uiop->uio_offset;
766			uio.uio_resid = size;
767			uio.uio_segflg = UIO_USERSPACE;
768			uio.uio_rw = UIO_WRITE;
769			uio.uio_td = td;
770			iomode = NFSV3WRITE_FILESYNC;
771			error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred,
772						      &iomode, &must_commit);
773			KASSERT((must_commit == 0),
774				("nfs_directio_write: Did not commit write"));
775			if (error)
776				return (error);
777			uiop->uio_offset += size;
778			uiop->uio_resid -= size;
779			if (uiop->uio_iov->iov_len <= size) {
780				uiop->uio_iovcnt--;
781				uiop->uio_iov++;
782			} else {
783				uiop->uio_iov->iov_base =
784					(char *)uiop->uio_iov->iov_base + size;
785				uiop->uio_iov->iov_len -= size;
786			}
787		}
788	} else {
789		struct uio *t_uio;
790		struct iovec *t_iov;
791		struct buf *bp;
792
793		/*
794		 * Break up the write into blocksize chunks and hand these
795		 * over to nfsiod's for write back.
796		 * Unfortunately, this incurs a copy of the data. Since
797		 * the user could modify the buffer before the write is
798		 * initiated.
799		 *
800		 * The obvious optimization here is that one of the 2 copies
801		 * in the async write path can be eliminated by copying the
802		 * data here directly into mbufs and passing the mbuf chain
803		 * down. But that will require a fair amount of re-working
804		 * of the code and can be done if there's enough interest
805		 * in NFS directio access.
806		 */
807		while (uiop->uio_resid > 0) {
808			size = min(uiop->uio_resid, wsize);
809			size = min(uiop->uio_iov->iov_len, size);
810			bp = getpbuf(&nfs_pbuf_freecnt);
811			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
812			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
813			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
814			t_iov->iov_len = size;
815			t_uio->uio_iov = t_iov;
816			t_uio->uio_iovcnt = 1;
817			t_uio->uio_offset = uiop->uio_offset;
818			t_uio->uio_resid = size;
819			t_uio->uio_segflg = UIO_SYSSPACE;
820			t_uio->uio_rw = UIO_WRITE;
821			t_uio->uio_td = td;
822			bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size);
823			bp->b_flags |= B_DIRECT;
824			bp->b_iocmd = BIO_WRITE;
825			if (cred != NOCRED) {
826				crhold(cred);
827				bp->b_wcred = cred;
828			} else
829				bp->b_wcred = NOCRED;
830			bp->b_caller1 = (void *)t_uio;
831			bp->b_vp = vp;
832			error = nfs_asyncio(nmp, bp, NOCRED, td);
833			if (error) {
834				free(t_iov->iov_base, M_NFSDIRECTIO);
835				free(t_iov, M_NFSDIRECTIO);
836				free(t_uio, M_NFSDIRECTIO);
837				bp->b_vp = NULL;
838				relpbuf(bp, &nfs_pbuf_freecnt);
839				if (error == EINTR)
840					return (error);
841				goto do_sync;
842			}
843			uiop->uio_offset += size;
844			uiop->uio_resid -= size;
845			if (uiop->uio_iov->iov_len <= size) {
846				uiop->uio_iovcnt--;
847				uiop->uio_iov++;
848			} else {
849				uiop->uio_iov->iov_base =
850					(char *)uiop->uio_iov->iov_base + size;
851				uiop->uio_iov->iov_len -= size;
852			}
853		}
854	}
855	return (0);
856}
857
858/*
859 * Vnode op for write using bio
860 */
861int
862nfs_write(struct vop_write_args *ap)
863{
864	int biosize;
865	struct uio *uio = ap->a_uio;
866	struct thread *td = uio->uio_td;
867	struct vnode *vp = ap->a_vp;
868	struct nfsnode *np = VTONFS(vp);
869	struct ucred *cred = ap->a_cred;
870	int ioflag = ap->a_ioflag;
871	struct buf *bp;
872	struct vattr vattr;
873	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
874	daddr_t lbn;
875	int bcount;
876	int n, on, error = 0;
877
878#ifdef DIAGNOSTIC
879	if (uio->uio_rw != UIO_WRITE)
880		panic("nfs_write mode");
881	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
882		panic("nfs_write proc");
883#endif
884	if (vp->v_type != VREG)
885		return (EIO);
886	mtx_lock(&np->n_mtx);
887	if (np->n_flag & NWRITEERR) {
888		np->n_flag &= ~NWRITEERR;
889		mtx_unlock(&np->n_mtx);
890		return (np->n_error);
891	} else
892		mtx_unlock(&np->n_mtx);
893	mtx_lock(&nmp->nm_mtx);
894	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
895	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
896		mtx_unlock(&nmp->nm_mtx);
897		(void)nfs_fsinfo(nmp, vp, cred, td);
898	} else
899		mtx_unlock(&nmp->nm_mtx);
900
901	/*
902	 * Synchronously flush pending buffers if we are in synchronous
903	 * mode or if we are appending.
904	 */
905	if (ioflag & (IO_APPEND | IO_SYNC)) {
906		mtx_lock(&np->n_mtx);
907		if (np->n_flag & NMODIFIED) {
908			mtx_unlock(&np->n_mtx);
909#ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
910			/*
911			 * Require non-blocking, synchronous writes to
912			 * dirty files to inform the program it needs
913			 * to fsync(2) explicitly.
914			 */
915			if (ioflag & IO_NDELAY)
916				return (EAGAIN);
917#endif
918flush_and_restart:
919			np->n_attrstamp = 0;
920			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
921			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
922			if (error)
923				return (error);
924		} else
925			mtx_unlock(&np->n_mtx);
926	}
927
928	/*
929	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
930	 * get the append lock.
931	 */
932	if (ioflag & IO_APPEND) {
933		np->n_attrstamp = 0;
934		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
935		error = VOP_GETATTR(vp, &vattr, cred);
936		if (error)
937			return (error);
938		mtx_lock(&np->n_mtx);
939		uio->uio_offset = np->n_size;
940		mtx_unlock(&np->n_mtx);
941	}
942
943	if (uio->uio_offset < 0)
944		return (EINVAL);
945	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
946		return (EFBIG);
947	if (uio->uio_resid == 0)
948		return (0);
949
950	if (nfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
951		return nfs_directio_write(vp, uio, cred, ioflag);
952
953	/*
954	 * Maybe this should be above the vnode op call, but so long as
955	 * file servers have no limits, i don't think it matters
956	 */
957	if (vn_rlimit_fsize(vp, uio, td))
958		return (EFBIG);
959
960	biosize = vp->v_mount->mnt_stat.f_iosize;
961	/*
962	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
963	 * would exceed the local maximum per-file write commit size when
964	 * combined with those, we must decide whether to flush,
965	 * go synchronous, or return error.  We don't bother checking
966	 * IO_UNIT -- we just make all writes atomic anyway, as there's
967	 * no point optimizing for something that really won't ever happen.
968	 */
969	if (!(ioflag & IO_SYNC)) {
970		int nflag;
971
972		mtx_lock(&np->n_mtx);
973		nflag = np->n_flag;
974		mtx_unlock(&np->n_mtx);
975		int needrestart = 0;
976		if (nmp->nm_wcommitsize < uio->uio_resid) {
977			/*
978			 * If this request could not possibly be completed
979			 * without exceeding the maximum outstanding write
980			 * commit size, see if we can convert it into a
981			 * synchronous write operation.
982			 */
983			if (ioflag & IO_NDELAY)
984				return (EAGAIN);
985			ioflag |= IO_SYNC;
986			if (nflag & NMODIFIED)
987				needrestart = 1;
988		} else if (nflag & NMODIFIED) {
989			int wouldcommit = 0;
990			BO_LOCK(&vp->v_bufobj);
991			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
992				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
993				    b_bobufs) {
994					if (bp->b_flags & B_NEEDCOMMIT)
995						wouldcommit += bp->b_bcount;
996				}
997			}
998			BO_UNLOCK(&vp->v_bufobj);
999			/*
1000			 * Since we're not operating synchronously and
1001			 * bypassing the buffer cache, we are in a commit
1002			 * and holding all of these buffers whether
1003			 * transmitted or not.  If not limited, this
1004			 * will lead to the buffer cache deadlocking,
1005			 * as no one else can flush our uncommitted buffers.
1006			 */
1007			wouldcommit += uio->uio_resid;
1008			/*
1009			 * If we would initially exceed the maximum
1010			 * outstanding write commit size, flush and restart.
1011			 */
1012			if (wouldcommit > nmp->nm_wcommitsize)
1013				needrestart = 1;
1014		}
1015		if (needrestart)
1016			goto flush_and_restart;
1017	}
1018
1019	do {
1020		nfsstats.biocache_writes++;
1021		lbn = uio->uio_offset / biosize;
1022		on = uio->uio_offset & (biosize-1);
1023		n = min((unsigned)(biosize - on), uio->uio_resid);
1024again:
1025		/*
1026		 * Handle direct append and file extension cases, calculate
1027		 * unaligned buffer size.
1028		 */
1029		mtx_lock(&np->n_mtx);
1030		if (uio->uio_offset == np->n_size && n) {
1031			mtx_unlock(&np->n_mtx);
1032			/*
1033			 * Get the buffer (in its pre-append state to maintain
1034			 * B_CACHE if it was previously set).  Resize the
1035			 * nfsnode after we have locked the buffer to prevent
1036			 * readers from reading garbage.
1037			 */
1038			bcount = on;
1039			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1040
1041			if (bp != NULL) {
1042				long save;
1043
1044				mtx_lock(&np->n_mtx);
1045				np->n_size = uio->uio_offset + n;
1046				np->n_flag |= NMODIFIED;
1047				vnode_pager_setsize(vp, np->n_size);
1048				mtx_unlock(&np->n_mtx);
1049
1050				save = bp->b_flags & B_CACHE;
1051				bcount += n;
1052				allocbuf(bp, bcount);
1053				bp->b_flags |= save;
1054			}
1055		} else {
1056			/*
1057			 * Obtain the locked cache block first, and then
1058			 * adjust the file's size as appropriate.
1059			 */
1060			bcount = on + n;
1061			if ((off_t)lbn * biosize + bcount < np->n_size) {
1062				if ((off_t)(lbn + 1) * biosize < np->n_size)
1063					bcount = biosize;
1064				else
1065					bcount = np->n_size - (off_t)lbn * biosize;
1066			}
1067			mtx_unlock(&np->n_mtx);
1068			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1069			mtx_lock(&np->n_mtx);
1070			if (uio->uio_offset + n > np->n_size) {
1071				np->n_size = uio->uio_offset + n;
1072				np->n_flag |= NMODIFIED;
1073				vnode_pager_setsize(vp, np->n_size);
1074			}
1075			mtx_unlock(&np->n_mtx);
1076		}
1077
1078		if (!bp) {
1079			error = nfs_sigintr(nmp, td);
1080			if (!error)
1081				error = EINTR;
1082			break;
1083		}
1084
1085		/*
1086		 * Issue a READ if B_CACHE is not set.  In special-append
1087		 * mode, B_CACHE is based on the buffer prior to the write
1088		 * op and is typically set, avoiding the read.  If a read
1089		 * is required in special append mode, the server will
1090		 * probably send us a short-read since we extended the file
1091		 * on our end, resulting in b_resid == 0 and, thusly,
1092		 * B_CACHE getting set.
1093		 *
1094		 * We can also avoid issuing the read if the write covers
1095		 * the entire buffer.  We have to make sure the buffer state
1096		 * is reasonable in this case since we will not be initiating
1097		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1098		 * more information.
1099		 *
1100		 * B_CACHE may also be set due to the buffer being cached
1101		 * normally.
1102		 */
1103
1104		if (on == 0 && n == bcount) {
1105			bp->b_flags |= B_CACHE;
1106			bp->b_flags &= ~B_INVAL;
1107			bp->b_ioflags &= ~BIO_ERROR;
1108		}
1109
1110		if ((bp->b_flags & B_CACHE) == 0) {
1111			bp->b_iocmd = BIO_READ;
1112			vfs_busy_pages(bp, 0);
1113			error = nfs_doio(vp, bp, cred, td);
1114			if (error) {
1115				brelse(bp);
1116				break;
1117			}
1118		}
1119		if (bp->b_wcred == NOCRED)
1120			bp->b_wcred = crhold(cred);
1121		mtx_lock(&np->n_mtx);
1122		np->n_flag |= NMODIFIED;
1123		mtx_unlock(&np->n_mtx);
1124
1125		/*
1126		 * If dirtyend exceeds file size, chop it down.  This should
1127		 * not normally occur but there is an append race where it
1128		 * might occur XXX, so we log it.
1129		 *
1130		 * If the chopping creates a reverse-indexed or degenerate
1131		 * situation with dirtyoff/end, we 0 both of them.
1132		 */
1133
1134		if (bp->b_dirtyend > bcount) {
1135			nfs_printf("NFS append race @%lx:%d\n",
1136			    (long)bp->b_blkno * DEV_BSIZE,
1137			    bp->b_dirtyend - bcount);
1138			bp->b_dirtyend = bcount;
1139		}
1140
1141		if (bp->b_dirtyoff >= bp->b_dirtyend)
1142			bp->b_dirtyoff = bp->b_dirtyend = 0;
1143
1144		/*
1145		 * If the new write will leave a contiguous dirty
1146		 * area, just update the b_dirtyoff and b_dirtyend,
1147		 * otherwise force a write rpc of the old dirty area.
1148		 *
1149		 * While it is possible to merge discontiguous writes due to
1150		 * our having a B_CACHE buffer ( and thus valid read data
1151		 * for the hole), we don't because it could lead to
1152		 * significant cache coherency problems with multiple clients,
1153		 * especially if locking is implemented later on.
1154		 *
1155		 * as an optimization we could theoretically maintain
1156		 * a linked list of discontinuous areas, but we would still
1157		 * have to commit them separately so there isn't much
1158		 * advantage to it except perhaps a bit of asynchronization.
1159		 */
1160
1161		if (bp->b_dirtyend > 0 &&
1162		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1163			if (bwrite(bp) == EINTR) {
1164				error = EINTR;
1165				break;
1166			}
1167			goto again;
1168		}
1169
1170		error = uiomove((char *)bp->b_data + on, n, uio);
1171
1172		/*
1173		 * Since this block is being modified, it must be written
1174		 * again and not just committed.  Since write clustering does
1175		 * not work for the stage 1 data write, only the stage 2
1176		 * commit rpc, we have to clear B_CLUSTEROK as well.
1177		 */
1178		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1179
1180		if (error) {
1181			bp->b_ioflags |= BIO_ERROR;
1182			brelse(bp);
1183			break;
1184		}
1185
1186		/*
1187		 * Only update dirtyoff/dirtyend if not a degenerate
1188		 * condition.
1189		 */
1190		if (n) {
1191			if (bp->b_dirtyend > 0) {
1192				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1193				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1194			} else {
1195				bp->b_dirtyoff = on;
1196				bp->b_dirtyend = on + n;
1197			}
1198			vfs_bio_set_valid(bp, on, n);
1199		}
1200
1201		/*
1202		 * If IO_SYNC do bwrite().
1203		 *
1204		 * IO_INVAL appears to be unused.  The idea appears to be
1205		 * to turn off caching in this case.  Very odd.  XXX
1206		 */
1207		if ((ioflag & IO_SYNC)) {
1208			if (ioflag & IO_INVAL)
1209				bp->b_flags |= B_NOCACHE;
1210			error = bwrite(bp);
1211			if (error)
1212				break;
1213		} else if ((n + on) == biosize) {
1214			bp->b_flags |= B_ASYNC;
1215			(void) (nmp->nm_rpcops->nr_writebp)(bp, 0, NULL);
1216		} else {
1217			bdwrite(bp);
1218		}
1219	} while (uio->uio_resid > 0 && n > 0);
1220
1221	return (error);
1222}
1223
1224/*
1225 * Get an nfs cache block.
1226 *
1227 * Allocate a new one if the block isn't currently in the cache
1228 * and return the block marked busy. If the calling process is
1229 * interrupted by a signal for an interruptible mount point, return
1230 * NULL.
1231 *
1232 * The caller must carefully deal with the possible B_INVAL state of
1233 * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1234 * indirectly), so synchronous reads can be issued without worrying about
1235 * the B_INVAL state.  We have to be a little more careful when dealing
1236 * with writes (see comments in nfs_write()) when extending a file past
1237 * its EOF.
1238 */
1239static struct buf *
1240nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1241{
1242	struct buf *bp;
1243	struct mount *mp;
1244	struct nfsmount *nmp;
1245
1246	mp = vp->v_mount;
1247	nmp = VFSTONFS(mp);
1248
1249	if (nmp->nm_flag & NFSMNT_INT) {
1250 		sigset_t oldset;
1251
1252 		nfs_set_sigmask(td, &oldset);
1253		bp = getblk(vp, bn, size, NFS_PCATCH, 0, 0);
1254 		nfs_restore_sigmask(td, &oldset);
1255		while (bp == NULL) {
1256			if (nfs_sigintr(nmp, td))
1257				return (NULL);
1258			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1259		}
1260	} else {
1261		bp = getblk(vp, bn, size, 0, 0, 0);
1262	}
1263
1264	if (vp->v_type == VREG) {
1265		int biosize;
1266
1267		biosize = mp->mnt_stat.f_iosize;
1268		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1269	}
1270	return (bp);
1271}
1272
1273/*
1274 * Flush and invalidate all dirty buffers. If another process is already
1275 * doing the flush, just wait for completion.
1276 */
1277int
1278nfs_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1279{
1280	struct nfsnode *np = VTONFS(vp);
1281	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1282	int error = 0, slpflag, slptimeo;
1283 	int old_lock = 0;
1284
1285	ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
1286
1287	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1288		intrflg = 0;
1289	if (intrflg) {
1290		slpflag = NFS_PCATCH;
1291		slptimeo = 2 * hz;
1292	} else {
1293		slpflag = 0;
1294		slptimeo = 0;
1295	}
1296
1297	old_lock = nfs_upgrade_vnlock(vp);
1298	if (vp->v_iflag & VI_DOOMED) {
1299		/*
1300		 * Since vgonel() uses the generic vinvalbuf() to flush
1301		 * dirty buffers and it does not call this function, it
1302		 * is safe to just return OK when VI_DOOMED is set.
1303		 */
1304		nfs_downgrade_vnlock(vp, old_lock);
1305		return (0);
1306	}
1307
1308	/*
1309	 * Now, flush as required.
1310	 */
1311	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1312		VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
1313		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1314		VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
1315		/*
1316		 * If the page clean was interrupted, fail the invalidation.
1317		 * Not doing so, we run the risk of losing dirty pages in the
1318		 * vinvalbuf() call below.
1319		 */
1320		if (intrflg && (error = nfs_sigintr(nmp, td)))
1321			goto out;
1322	}
1323
1324	error = vinvalbuf(vp, flags, slpflag, 0);
1325	while (error) {
1326		if (intrflg && (error = nfs_sigintr(nmp, td)))
1327			goto out;
1328		error = vinvalbuf(vp, flags, 0, slptimeo);
1329	}
1330	mtx_lock(&np->n_mtx);
1331	if (np->n_directio_asyncwr == 0)
1332		np->n_flag &= ~NMODIFIED;
1333	mtx_unlock(&np->n_mtx);
1334out:
1335	nfs_downgrade_vnlock(vp, old_lock);
1336	return error;
1337}
1338
1339/*
1340 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1341 * This is mainly to avoid queueing async I/O requests when the nfsiods
1342 * are all hung on a dead server.
1343 *
1344 * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1345 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1346 */
1347int
1348nfs_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1349{
1350	int iod;
1351	int gotiod;
1352	int slpflag = 0;
1353	int slptimeo = 0;
1354	int error, error2;
1355
1356	/*
1357	 * Commits are usually short and sweet so lets save some cpu and
1358	 * leave the async daemons for more important rpc's (such as reads
1359	 * and writes).
1360	 */
1361	mtx_lock(&nfs_iod_mtx);
1362	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1363	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1364		mtx_unlock(&nfs_iod_mtx);
1365		return(EIO);
1366	}
1367again:
1368	if (nmp->nm_flag & NFSMNT_INT)
1369		slpflag = NFS_PCATCH;
1370	gotiod = FALSE;
1371
1372	/*
1373	 * Find a free iod to process this request.
1374	 */
1375	for (iod = 0; iod < nfs_numasync; iod++)
1376		if (nfs_iodwant[iod] == NFSIOD_AVAILABLE) {
1377			gotiod = TRUE;
1378			break;
1379		}
1380
1381	/*
1382	 * Try to create one if none are free.
1383	 */
1384	if (!gotiod) {
1385		iod = nfs_nfsiodnew(1);
1386		if (iod != -1)
1387			gotiod = TRUE;
1388	}
1389
1390	if (gotiod) {
1391		/*
1392		 * Found one, so wake it up and tell it which
1393		 * mount to process.
1394		 */
1395		NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
1396		    iod, nmp));
1397		nfs_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1398		nfs_iodmount[iod] = nmp;
1399		nmp->nm_bufqiods++;
1400		wakeup(&nfs_iodwant[iod]);
1401	}
1402
1403	/*
1404	 * If none are free, we may already have an iod working on this mount
1405	 * point.  If so, it will process our request.
1406	 */
1407	if (!gotiod) {
1408		if (nmp->nm_bufqiods > 0) {
1409			NFS_DPF(ASYNCIO,
1410				("nfs_asyncio: %d iods are already processing mount %p\n",
1411				 nmp->nm_bufqiods, nmp));
1412			gotiod = TRUE;
1413		}
1414	}
1415
1416	/*
1417	 * If we have an iod which can process the request, then queue
1418	 * the buffer.
1419	 */
1420	if (gotiod) {
1421		/*
1422		 * Ensure that the queue never grows too large.  We still want
1423		 * to asynchronize so we block rather then return EIO.
1424		 */
1425		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1426			NFS_DPF(ASYNCIO,
1427				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1428			nmp->nm_bufqwant = TRUE;
1429 			error = nfs_msleep(td, &nmp->nm_bufq, &nfs_iod_mtx,
1430					   slpflag | PRIBIO,
1431 					   "nfsaio", slptimeo);
1432			if (error) {
1433				error2 = nfs_sigintr(nmp, td);
1434				if (error2) {
1435					mtx_unlock(&nfs_iod_mtx);
1436					return (error2);
1437				}
1438				if (slpflag == NFS_PCATCH) {
1439					slpflag = 0;
1440					slptimeo = 2 * hz;
1441				}
1442			}
1443			/*
1444			 * We might have lost our iod while sleeping,
1445			 * so check and loop if nescessary.
1446			 */
1447			if (nmp->nm_bufqiods == 0) {
1448				NFS_DPF(ASYNCIO,
1449					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1450				goto again;
1451			}
1452		}
1453
1454		/* We might have lost our nfsiod */
1455		if (nmp->nm_bufqiods == 0) {
1456			NFS_DPF(ASYNCIO,
1457				("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1458			goto again;
1459		}
1460
1461		if (bp->b_iocmd == BIO_READ) {
1462			if (bp->b_rcred == NOCRED && cred != NOCRED)
1463				bp->b_rcred = crhold(cred);
1464		} else {
1465			if (bp->b_wcred == NOCRED && cred != NOCRED)
1466				bp->b_wcred = crhold(cred);
1467		}
1468
1469		if (bp->b_flags & B_REMFREE)
1470			bremfreef(bp);
1471		BUF_KERNPROC(bp);
1472		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1473		nmp->nm_bufqlen++;
1474		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1475			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1476			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1477			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1478			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1479		}
1480		mtx_unlock(&nfs_iod_mtx);
1481		return (0);
1482	}
1483
1484	mtx_unlock(&nfs_iod_mtx);
1485
1486	/*
1487	 * All the iods are busy on other mounts, so return EIO to
1488	 * force the caller to process the i/o synchronously.
1489	 */
1490	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1491	return (EIO);
1492}
1493
1494void
1495nfs_doio_directwrite(struct buf *bp)
1496{
1497	int iomode, must_commit;
1498	struct uio *uiop = (struct uio *)bp->b_caller1;
1499	char *iov_base = uiop->uio_iov->iov_base;
1500	struct nfsmount *nmp = VFSTONFS(bp->b_vp->v_mount);
1501
1502	iomode = NFSV3WRITE_FILESYNC;
1503	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1504	(nmp->nm_rpcops->nr_writerpc)(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit);
1505	KASSERT((must_commit == 0), ("nfs_doio_directwrite: Did not commit write"));
1506	free(iov_base, M_NFSDIRECTIO);
1507	free(uiop->uio_iov, M_NFSDIRECTIO);
1508	free(uiop, M_NFSDIRECTIO);
1509	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1510		struct nfsnode *np = VTONFS(bp->b_vp);
1511		mtx_lock(&np->n_mtx);
1512		np->n_directio_asyncwr--;
1513		if (np->n_directio_asyncwr == 0) {
1514			VTONFS(bp->b_vp)->n_flag &= ~NMODIFIED;
1515			if ((np->n_flag & NFSYNCWAIT)) {
1516				np->n_flag &= ~NFSYNCWAIT;
1517				wakeup((caddr_t)&np->n_directio_asyncwr);
1518			}
1519		}
1520		mtx_unlock(&np->n_mtx);
1521	}
1522	bp->b_vp = NULL;
1523	relpbuf(bp, &nfs_pbuf_freecnt);
1524}
1525
1526/*
1527 * Do an I/O operation to/from a cache block. This may be called
1528 * synchronously or from an nfsiod.
1529 */
1530int
1531nfs_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td)
1532{
1533	struct uio *uiop;
1534	struct nfsnode *np;
1535	struct nfsmount *nmp;
1536	int error = 0, iomode, must_commit = 0;
1537	struct uio uio;
1538	struct iovec io;
1539	struct proc *p = td ? td->td_proc : NULL;
1540	uint8_t	iocmd;
1541
1542	np = VTONFS(vp);
1543	nmp = VFSTONFS(vp->v_mount);
1544	uiop = &uio;
1545	uiop->uio_iov = &io;
1546	uiop->uio_iovcnt = 1;
1547	uiop->uio_segflg = UIO_SYSSPACE;
1548	uiop->uio_td = td;
1549
1550	/*
1551	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1552	 * do this here so we do not have to do it in all the code that
1553	 * calls us.
1554	 */
1555	bp->b_flags &= ~B_INVAL;
1556	bp->b_ioflags &= ~BIO_ERROR;
1557
1558	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1559	iocmd = bp->b_iocmd;
1560	if (iocmd == BIO_READ) {
1561	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1562	    io.iov_base = bp->b_data;
1563	    uiop->uio_rw = UIO_READ;
1564
1565	    switch (vp->v_type) {
1566	    case VREG:
1567		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1568		nfsstats.read_bios++;
1569		error = (nmp->nm_rpcops->nr_readrpc)(vp, uiop, cr);
1570
1571		if (!error) {
1572		    if (uiop->uio_resid) {
1573			/*
1574			 * If we had a short read with no error, we must have
1575			 * hit a file hole.  We should zero-fill the remainder.
1576			 * This can also occur if the server hits the file EOF.
1577			 *
1578			 * Holes used to be able to occur due to pending
1579			 * writes, but that is not possible any longer.
1580			 */
1581			int nread = bp->b_bcount - uiop->uio_resid;
1582			int left  = uiop->uio_resid;
1583
1584			if (left > 0)
1585				bzero((char *)bp->b_data + nread, left);
1586			uiop->uio_resid = 0;
1587		    }
1588		}
1589		/* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
1590		if (p && (vp->v_vflag & VV_TEXT)) {
1591			mtx_lock(&np->n_mtx);
1592			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.va_mtime)) {
1593				mtx_unlock(&np->n_mtx);
1594				PROC_LOCK(p);
1595				killproc(p, "text file modification");
1596				PROC_UNLOCK(p);
1597			} else
1598				mtx_unlock(&np->n_mtx);
1599		}
1600		break;
1601	    case VLNK:
1602		uiop->uio_offset = (off_t)0;
1603		nfsstats.readlink_bios++;
1604		error = (nmp->nm_rpcops->nr_readlinkrpc)(vp, uiop, cr);
1605		break;
1606	    case VDIR:
1607		nfsstats.readdir_bios++;
1608		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1609		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1610			error = nfs_readdirplusrpc(vp, uiop, cr);
1611			if (error == NFSERR_NOTSUPP)
1612				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1613		}
1614		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1615			error = nfs_readdirrpc(vp, uiop, cr);
1616		/*
1617		 * end-of-directory sets B_INVAL but does not generate an
1618		 * error.
1619		 */
1620		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1621			bp->b_flags |= B_INVAL;
1622		break;
1623	    default:
1624		nfs_printf("nfs_doio:  type %x unexpected\n", vp->v_type);
1625		break;
1626	    };
1627	    if (error) {
1628		bp->b_ioflags |= BIO_ERROR;
1629		bp->b_error = error;
1630	    }
1631	} else {
1632	    /*
1633	     * If we only need to commit, try to commit
1634	     */
1635	    if (bp->b_flags & B_NEEDCOMMIT) {
1636		    int retv;
1637		    off_t off;
1638
1639		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1640		    retv = (nmp->nm_rpcops->nr_commit)(
1641				vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1642				bp->b_wcred, td);
1643		    if (retv == 0) {
1644			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1645			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1646			    bp->b_resid = 0;
1647			    bufdone(bp);
1648			    return (0);
1649		    }
1650		    if (retv == NFSERR_STALEWRITEVERF) {
1651			    nfs_clearcommit(vp->v_mount);
1652		    }
1653	    }
1654
1655	    /*
1656	     * Setup for actual write
1657	     */
1658	    mtx_lock(&np->n_mtx);
1659	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1660		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1661	    mtx_unlock(&np->n_mtx);
1662
1663	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1664		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1665		    - bp->b_dirtyoff;
1666		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1667		    + bp->b_dirtyoff;
1668		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1669		uiop->uio_rw = UIO_WRITE;
1670		nfsstats.write_bios++;
1671
1672		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1673		    iomode = NFSV3WRITE_UNSTABLE;
1674		else
1675		    iomode = NFSV3WRITE_FILESYNC;
1676
1677		error = (nmp->nm_rpcops->nr_writerpc)(vp, uiop, cr, &iomode, &must_commit);
1678
1679		/*
1680		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1681		 * to cluster the buffers needing commit.  This will allow
1682		 * the system to submit a single commit rpc for the whole
1683		 * cluster.  We can do this even if the buffer is not 100%
1684		 * dirty (relative to the NFS blocksize), so we optimize the
1685		 * append-to-file-case.
1686		 *
1687		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1688		 * cleared because write clustering only works for commit
1689		 * rpc's, not for the data portion of the write).
1690		 */
1691
1692		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1693		    bp->b_flags |= B_NEEDCOMMIT;
1694		    if (bp->b_dirtyoff == 0
1695			&& bp->b_dirtyend == bp->b_bcount)
1696			bp->b_flags |= B_CLUSTEROK;
1697		} else {
1698		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1699		}
1700
1701		/*
1702		 * For an interrupted write, the buffer is still valid
1703		 * and the write hasn't been pushed to the server yet,
1704		 * so we can't set BIO_ERROR and report the interruption
1705		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1706		 * is not relevant, so the rpc attempt is essentially
1707		 * a noop.  For the case of a V3 write rpc not being
1708		 * committed to stable storage, the block is still
1709		 * dirty and requires either a commit rpc or another
1710		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1711		 * the block is reused. This is indicated by setting
1712		 * the B_DELWRI and B_NEEDCOMMIT flags.
1713		 *
1714		 * If the buffer is marked B_PAGING, it does not reside on
1715		 * the vp's paging queues so we cannot call bdirty().  The
1716		 * bp in this case is not an NFS cache block so we should
1717		 * be safe. XXX
1718		 *
1719		 * The logic below breaks up errors into recoverable and
1720		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1721		 * and keep the buffer around for potential write retries.
1722		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1723		 * and save the error in the nfsnode. This is less than ideal
1724		 * but necessary. Keeping such buffers around could potentially
1725		 * cause buffer exhaustion eventually (they can never be written
1726		 * out, so will get constantly be re-dirtied). It also causes
1727		 * all sorts of vfs panics. For non-recoverable write errors,
1728		 * also invalidate the attrcache, so we'll be forced to go over
1729		 * the wire for this object, returning an error to user on next
1730		 * call (most of the time).
1731		 */
1732    		if (error == EINTR || error == EIO || error == ETIMEDOUT
1733		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1734			int s;
1735
1736			s = splbio();
1737			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1738			if ((bp->b_flags & B_PAGING) == 0) {
1739			    bdirty(bp);
1740			    bp->b_flags &= ~B_DONE;
1741			}
1742			if (error && (bp->b_flags & B_ASYNC) == 0)
1743			    bp->b_flags |= B_EINTR;
1744			splx(s);
1745	    	} else {
1746		    if (error) {
1747			bp->b_ioflags |= BIO_ERROR;
1748			bp->b_flags |= B_INVAL;
1749			bp->b_error = np->n_error = error;
1750			mtx_lock(&np->n_mtx);
1751			np->n_flag |= NWRITEERR;
1752			np->n_attrstamp = 0;
1753			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1754			mtx_unlock(&np->n_mtx);
1755		    }
1756		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1757		}
1758	    } else {
1759		bp->b_resid = 0;
1760		bufdone(bp);
1761		return (0);
1762	    }
1763	}
1764	bp->b_resid = uiop->uio_resid;
1765	if (must_commit)
1766	    nfs_clearcommit(vp->v_mount);
1767	bufdone(bp);
1768	return (error);
1769}
1770
1771/*
1772 * Used to aid in handling ftruncate() operations on the NFS client side.
1773 * Truncation creates a number of special problems for NFS.  We have to
1774 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1775 * we have to properly handle VM pages or (potentially dirty) buffers
1776 * that straddle the truncation point.
1777 */
1778
1779int
1780nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1781{
1782	struct nfsnode *np = VTONFS(vp);
1783	u_quad_t tsize;
1784	int biosize = vp->v_mount->mnt_stat.f_iosize;
1785	int error = 0;
1786
1787	mtx_lock(&np->n_mtx);
1788	tsize = np->n_size;
1789	np->n_size = nsize;
1790	mtx_unlock(&np->n_mtx);
1791
1792	if (nsize < tsize) {
1793		struct buf *bp;
1794		daddr_t lbn;
1795		int bufsize;
1796
1797		/*
1798		 * vtruncbuf() doesn't get the buffer overlapping the
1799		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1800		 * buffer that now needs to be truncated.
1801		 */
1802		error = vtruncbuf(vp, cred, td, nsize, biosize);
1803		lbn = nsize / biosize;
1804		bufsize = nsize & (biosize - 1);
1805		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1806 		if (!bp)
1807 			return EINTR;
1808		if (bp->b_dirtyoff > bp->b_bcount)
1809			bp->b_dirtyoff = bp->b_bcount;
1810		if (bp->b_dirtyend > bp->b_bcount)
1811			bp->b_dirtyend = bp->b_bcount;
1812		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1813		brelse(bp);
1814	} else {
1815		vnode_pager_setsize(vp, nsize);
1816	}
1817	return(error);
1818}
1819
1820