nfs_bio.c revision 207584
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/nfsclient/nfs_bio.c 207584 2010-05-03 20:31:13Z kib $");
37
38#include "opt_kdtrace.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bio.h>
43#include <sys/buf.h>
44#include <sys/kernel.h>
45#include <sys/mbuf.h>
46#include <sys/mount.h>
47#include <sys/proc.h>
48#include <sys/resourcevar.h>
49#include <sys/signalvar.h>
50#include <sys/vmmeter.h>
51#include <sys/vnode.h>
52
53#include <vm/vm.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_page.h>
56#include <vm/vm_object.h>
57#include <vm/vm_pager.h>
58#include <vm/vnode_pager.h>
59
60#include <nfs/nfsproto.h>
61#include <nfsclient/nfs.h>
62#include <nfsclient/nfsmount.h>
63#include <nfsclient/nfsnode.h>
64#include <nfsclient/nfs_kdtrace.h>
65
66static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
67		    struct thread *td);
68static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
69			      struct ucred *cred, int ioflag);
70
71extern int nfs_directio_enable;
72extern int nfs_directio_allow_mmap;
73
74/*
75 * Vnode op for VM getpages.
76 */
77int
78nfs_getpages(struct vop_getpages_args *ap)
79{
80	int i, error, nextoff, size, toff, count, npages;
81	struct uio uio;
82	struct iovec iov;
83	vm_offset_t kva;
84	struct buf *bp;
85	struct vnode *vp;
86	struct thread *td;
87	struct ucred *cred;
88	struct nfsmount *nmp;
89	vm_object_t object;
90	vm_page_t *pages;
91	struct nfsnode *np;
92
93	vp = ap->a_vp;
94	np = VTONFS(vp);
95	td = curthread;				/* XXX */
96	cred = curthread->td_ucred;		/* XXX */
97	nmp = VFSTONFS(vp->v_mount);
98	pages = ap->a_m;
99	count = ap->a_count;
100
101	if ((object = vp->v_object) == NULL) {
102		nfs_printf("nfs_getpages: called with non-merged cache vnode??\n");
103		return (VM_PAGER_ERROR);
104	}
105
106	if (nfs_directio_enable && !nfs_directio_allow_mmap) {
107		mtx_lock(&np->n_mtx);
108		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
109			mtx_unlock(&np->n_mtx);
110			nfs_printf("nfs_getpages: called on non-cacheable vnode??\n");
111			return (VM_PAGER_ERROR);
112		} else
113			mtx_unlock(&np->n_mtx);
114	}
115
116	mtx_lock(&nmp->nm_mtx);
117	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
118	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
119		mtx_unlock(&nmp->nm_mtx);
120		/* We'll never get here for v4, because we always have fsinfo */
121		(void)nfs_fsinfo(nmp, vp, cred, td);
122	} else
123		mtx_unlock(&nmp->nm_mtx);
124
125	npages = btoc(count);
126
127	/*
128	 * If the requested page is partially valid, just return it and
129	 * allow the pager to zero-out the blanks.  Partially valid pages
130	 * can only occur at the file EOF.
131	 */
132	VM_OBJECT_LOCK(object);
133	if (pages[ap->a_reqpage]->valid != 0) {
134		vm_page_lock_queues();
135		for (i = 0; i < npages; ++i) {
136			if (i != ap->a_reqpage)
137				vm_page_free(pages[i]);
138		}
139		vm_page_unlock_queues();
140		VM_OBJECT_UNLOCK(object);
141		return (0);
142	}
143	VM_OBJECT_UNLOCK(object);
144
145	/*
146	 * We use only the kva address for the buffer, but this is extremely
147	 * convienient and fast.
148	 */
149	bp = getpbuf(&nfs_pbuf_freecnt);
150
151	kva = (vm_offset_t) bp->b_data;
152	pmap_qenter(kva, pages, npages);
153	PCPU_INC(cnt.v_vnodein);
154	PCPU_ADD(cnt.v_vnodepgsin, npages);
155
156	iov.iov_base = (caddr_t) kva;
157	iov.iov_len = count;
158	uio.uio_iov = &iov;
159	uio.uio_iovcnt = 1;
160	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
161	uio.uio_resid = count;
162	uio.uio_segflg = UIO_SYSSPACE;
163	uio.uio_rw = UIO_READ;
164	uio.uio_td = td;
165
166	error = (nmp->nm_rpcops->nr_readrpc)(vp, &uio, cred);
167	pmap_qremove(kva, npages);
168
169	relpbuf(bp, &nfs_pbuf_freecnt);
170
171	if (error && (uio.uio_resid == count)) {
172		nfs_printf("nfs_getpages: error %d\n", error);
173		VM_OBJECT_LOCK(object);
174		vm_page_lock_queues();
175		for (i = 0; i < npages; ++i) {
176			if (i != ap->a_reqpage)
177				vm_page_free(pages[i]);
178		}
179		vm_page_unlock_queues();
180		VM_OBJECT_UNLOCK(object);
181		return (VM_PAGER_ERROR);
182	}
183
184	/*
185	 * Calculate the number of bytes read and validate only that number
186	 * of bytes.  Note that due to pending writes, size may be 0.  This
187	 * does not mean that the remaining data is invalid!
188	 */
189
190	size = count - uio.uio_resid;
191	VM_OBJECT_LOCK(object);
192	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
193		vm_page_t m;
194		nextoff = toff + PAGE_SIZE;
195		m = pages[i];
196
197		vm_page_lock(m);
198		vm_page_lock_queues();
199
200		if (nextoff <= size) {
201			/*
202			 * Read operation filled an entire page
203			 */
204			m->valid = VM_PAGE_BITS_ALL;
205			KASSERT(m->dirty == 0,
206			    ("nfs_getpages: page %p is dirty", m));
207		} else if (size > toff) {
208			/*
209			 * Read operation filled a partial page.
210			 */
211			m->valid = 0;
212			vm_page_set_valid(m, 0, size - toff);
213			KASSERT(m->dirty == 0,
214			    ("nfs_getpages: page %p is dirty", m));
215		} else {
216			/*
217			 * Read operation was short.  If no error occured
218			 * we may have hit a zero-fill section.   We simply
219			 * leave valid set to 0.
220			 */
221			;
222		}
223		if (i != ap->a_reqpage) {
224			/*
225			 * Whether or not to leave the page activated is up in
226			 * the air, but we should put the page on a page queue
227			 * somewhere (it already is in the object).  Result:
228			 * It appears that emperical results show that
229			 * deactivating pages is best.
230			 */
231
232			/*
233			 * Just in case someone was asking for this page we
234			 * now tell them that it is ok to use.
235			 */
236			if (!error) {
237				if (m->oflags & VPO_WANTED)
238					vm_page_activate(m);
239				else
240					vm_page_deactivate(m);
241				vm_page_wakeup(m);
242			} else {
243				vm_page_free(m);
244			}
245		}
246
247		vm_page_unlock_queues();
248		vm_page_unlock(m);
249	}
250	VM_OBJECT_UNLOCK(object);
251	return (0);
252}
253
254/*
255 * Vnode op for VM putpages.
256 */
257int
258nfs_putpages(struct vop_putpages_args *ap)
259{
260	struct uio uio;
261	struct iovec iov;
262	vm_offset_t kva;
263	struct buf *bp;
264	int iomode, must_commit, i, error, npages, count;
265	off_t offset;
266	int *rtvals;
267	struct vnode *vp;
268	struct thread *td;
269	struct ucred *cred;
270	struct nfsmount *nmp;
271	struct nfsnode *np;
272	vm_page_t *pages;
273
274	vp = ap->a_vp;
275	np = VTONFS(vp);
276	td = curthread;				/* XXX */
277	cred = curthread->td_ucred;		/* XXX */
278	nmp = VFSTONFS(vp->v_mount);
279	pages = ap->a_m;
280	count = ap->a_count;
281	rtvals = ap->a_rtvals;
282	npages = btoc(count);
283	offset = IDX_TO_OFF(pages[0]->pindex);
284
285	mtx_lock(&nmp->nm_mtx);
286	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
287	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
288		mtx_unlock(&nmp->nm_mtx);
289		(void)nfs_fsinfo(nmp, vp, cred, td);
290	} else
291		mtx_unlock(&nmp->nm_mtx);
292
293	mtx_lock(&np->n_mtx);
294	if (nfs_directio_enable && !nfs_directio_allow_mmap &&
295	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
296		mtx_unlock(&np->n_mtx);
297		nfs_printf("nfs_putpages: called on noncache-able vnode??\n");
298		mtx_lock(&np->n_mtx);
299	}
300
301	for (i = 0; i < npages; i++)
302		rtvals[i] = VM_PAGER_AGAIN;
303
304	/*
305	 * When putting pages, do not extend file past EOF.
306	 */
307	if (offset + count > np->n_size) {
308		count = np->n_size - offset;
309		if (count < 0)
310			count = 0;
311	}
312	mtx_unlock(&np->n_mtx);
313
314	/*
315	 * We use only the kva address for the buffer, but this is extremely
316	 * convienient and fast.
317	 */
318	bp = getpbuf(&nfs_pbuf_freecnt);
319
320	kva = (vm_offset_t) bp->b_data;
321	pmap_qenter(kva, pages, npages);
322	PCPU_INC(cnt.v_vnodeout);
323	PCPU_ADD(cnt.v_vnodepgsout, count);
324
325	iov.iov_base = (caddr_t) kva;
326	iov.iov_len = count;
327	uio.uio_iov = &iov;
328	uio.uio_iovcnt = 1;
329	uio.uio_offset = offset;
330	uio.uio_resid = count;
331	uio.uio_segflg = UIO_SYSSPACE;
332	uio.uio_rw = UIO_WRITE;
333	uio.uio_td = td;
334
335	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
336	    iomode = NFSV3WRITE_UNSTABLE;
337	else
338	    iomode = NFSV3WRITE_FILESYNC;
339
340	error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, &iomode, &must_commit);
341
342	pmap_qremove(kva, npages);
343	relpbuf(bp, &nfs_pbuf_freecnt);
344
345	if (!error) {
346		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
347		for (i = 0; i < nwritten; i++) {
348			rtvals[i] = VM_PAGER_OK;
349			vm_page_undirty(pages[i]);
350		}
351		if (must_commit) {
352			nfs_clearcommit(vp->v_mount);
353		}
354	}
355	return rtvals[0];
356}
357
358/*
359 * For nfs, cache consistency can only be maintained approximately.
360 * Although RFC1094 does not specify the criteria, the following is
361 * believed to be compatible with the reference port.
362 * For nfs:
363 * If the file's modify time on the server has changed since the
364 * last read rpc or you have written to the file,
365 * you may have lost data cache consistency with the
366 * server, so flush all of the file's data out of the cache.
367 * Then force a getattr rpc to ensure that you have up to date
368 * attributes.
369 * NB: This implies that cache data can be read when up to
370 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
371 * attributes this could be forced by setting n_attrstamp to 0 before
372 * the VOP_GETATTR() call.
373 */
374static inline int
375nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
376{
377	int error = 0;
378	struct vattr vattr;
379	struct nfsnode *np = VTONFS(vp);
380	int old_lock;
381	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
382
383	/*
384	 * Grab the exclusive lock before checking whether the cache is
385	 * consistent.
386	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
387	 * But for now, this suffices.
388	 */
389	old_lock = nfs_upgrade_vnlock(vp);
390	if (vp->v_iflag & VI_DOOMED) {
391		nfs_downgrade_vnlock(vp, old_lock);
392		return (EBADF);
393	}
394
395	mtx_lock(&np->n_mtx);
396	if (np->n_flag & NMODIFIED) {
397		mtx_unlock(&np->n_mtx);
398		if (vp->v_type != VREG) {
399			if (vp->v_type != VDIR)
400				panic("nfs: bioread, not dir");
401			(nmp->nm_rpcops->nr_invaldir)(vp);
402			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
403			if (error)
404				goto out;
405		}
406		np->n_attrstamp = 0;
407		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
408		error = VOP_GETATTR(vp, &vattr, cred);
409		if (error)
410			goto out;
411		mtx_lock(&np->n_mtx);
412		np->n_mtime = vattr.va_mtime;
413		mtx_unlock(&np->n_mtx);
414	} else {
415		mtx_unlock(&np->n_mtx);
416		error = VOP_GETATTR(vp, &vattr, cred);
417		if (error)
418			return (error);
419		mtx_lock(&np->n_mtx);
420		if ((np->n_flag & NSIZECHANGED)
421		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
422			mtx_unlock(&np->n_mtx);
423			if (vp->v_type == VDIR)
424				(nmp->nm_rpcops->nr_invaldir)(vp);
425			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
426			if (error)
427				goto out;
428			mtx_lock(&np->n_mtx);
429			np->n_mtime = vattr.va_mtime;
430			np->n_flag &= ~NSIZECHANGED;
431		}
432		mtx_unlock(&np->n_mtx);
433	}
434out:
435	nfs_downgrade_vnlock(vp, old_lock);
436	return error;
437}
438
439/*
440 * Vnode op for read using bio
441 */
442int
443nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
444{
445	struct nfsnode *np = VTONFS(vp);
446	int biosize, i;
447	struct buf *bp, *rabp;
448	struct thread *td;
449	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
450	daddr_t lbn, rabn;
451	int bcount;
452	int seqcount;
453	int nra, error = 0, n = 0, on = 0;
454
455#ifdef DIAGNOSTIC
456	if (uio->uio_rw != UIO_READ)
457		panic("nfs_read mode");
458#endif
459	if (uio->uio_resid == 0)
460		return (0);
461	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
462		return (EINVAL);
463	td = uio->uio_td;
464
465	mtx_lock(&nmp->nm_mtx);
466	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
467	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
468		mtx_unlock(&nmp->nm_mtx);
469		(void)nfs_fsinfo(nmp, vp, cred, td);
470	} else
471		mtx_unlock(&nmp->nm_mtx);
472
473	if (vp->v_type != VDIR &&
474	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
475		return (EFBIG);
476
477	if (nfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
478		/* No caching/ no readaheads. Just read data into the user buffer */
479		return nfs_readrpc(vp, uio, cred);
480
481	biosize = vp->v_mount->mnt_stat.f_iosize;
482	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
483
484	error = nfs_bioread_check_cons(vp, td, cred);
485	if (error)
486		return error;
487
488	do {
489	    u_quad_t nsize;
490
491	    mtx_lock(&np->n_mtx);
492	    nsize = np->n_size;
493	    mtx_unlock(&np->n_mtx);
494
495	    switch (vp->v_type) {
496	    case VREG:
497		nfsstats.biocache_reads++;
498		lbn = uio->uio_offset / biosize;
499		on = uio->uio_offset & (biosize - 1);
500
501		/*
502		 * Start the read ahead(s), as required.
503		 */
504		if (nmp->nm_readahead > 0) {
505		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
506			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
507			rabn = lbn + 1 + nra;
508			if (incore(&vp->v_bufobj, rabn) == NULL) {
509			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
510			    if (!rabp) {
511				error = nfs_sigintr(nmp, td);
512				return (error ? error : EINTR);
513			    }
514			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
515				rabp->b_flags |= B_ASYNC;
516				rabp->b_iocmd = BIO_READ;
517				vfs_busy_pages(rabp, 0);
518				if (nfs_asyncio(nmp, rabp, cred, td)) {
519				    rabp->b_flags |= B_INVAL;
520				    rabp->b_ioflags |= BIO_ERROR;
521				    vfs_unbusy_pages(rabp);
522				    brelse(rabp);
523				    break;
524				}
525			    } else {
526				brelse(rabp);
527			    }
528			}
529		    }
530		}
531
532		/* Note that bcount is *not* DEV_BSIZE aligned. */
533		bcount = biosize;
534		if ((off_t)lbn * biosize >= nsize) {
535			bcount = 0;
536		} else if ((off_t)(lbn + 1) * biosize > nsize) {
537			bcount = nsize - (off_t)lbn * biosize;
538		}
539		bp = nfs_getcacheblk(vp, lbn, bcount, td);
540
541		if (!bp) {
542			error = nfs_sigintr(nmp, td);
543			return (error ? error : EINTR);
544		}
545
546		/*
547		 * If B_CACHE is not set, we must issue the read.  If this
548		 * fails, we return an error.
549		 */
550
551		if ((bp->b_flags & B_CACHE) == 0) {
552		    bp->b_iocmd = BIO_READ;
553		    vfs_busy_pages(bp, 0);
554		    error = nfs_doio(vp, bp, cred, td);
555		    if (error) {
556			brelse(bp);
557			return (error);
558		    }
559		}
560
561		/*
562		 * on is the offset into the current bp.  Figure out how many
563		 * bytes we can copy out of the bp.  Note that bcount is
564		 * NOT DEV_BSIZE aligned.
565		 *
566		 * Then figure out how many bytes we can copy into the uio.
567		 */
568
569		n = 0;
570		if (on < bcount)
571			n = min((unsigned)(bcount - on), uio->uio_resid);
572		break;
573	    case VLNK:
574		nfsstats.biocache_readlinks++;
575		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
576		if (!bp) {
577			error = nfs_sigintr(nmp, td);
578			return (error ? error : EINTR);
579		}
580		if ((bp->b_flags & B_CACHE) == 0) {
581		    bp->b_iocmd = BIO_READ;
582		    vfs_busy_pages(bp, 0);
583		    error = nfs_doio(vp, bp, cred, td);
584		    if (error) {
585			bp->b_ioflags |= BIO_ERROR;
586			brelse(bp);
587			return (error);
588		    }
589		}
590		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
591		on = 0;
592		break;
593	    case VDIR:
594		nfsstats.biocache_readdirs++;
595		if (np->n_direofoffset
596		    && uio->uio_offset >= np->n_direofoffset) {
597		    return (0);
598		}
599		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
600		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
601		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
602		if (!bp) {
603		    error = nfs_sigintr(nmp, td);
604		    return (error ? error : EINTR);
605		}
606		if ((bp->b_flags & B_CACHE) == 0) {
607		    bp->b_iocmd = BIO_READ;
608		    vfs_busy_pages(bp, 0);
609		    error = nfs_doio(vp, bp, cred, td);
610		    if (error) {
611			    brelse(bp);
612		    }
613		    while (error == NFSERR_BAD_COOKIE) {
614			(nmp->nm_rpcops->nr_invaldir)(vp);
615			error = nfs_vinvalbuf(vp, 0, td, 1);
616			/*
617			 * Yuck! The directory has been modified on the
618			 * server. The only way to get the block is by
619			 * reading from the beginning to get all the
620			 * offset cookies.
621			 *
622			 * Leave the last bp intact unless there is an error.
623			 * Loop back up to the while if the error is another
624			 * NFSERR_BAD_COOKIE (double yuch!).
625			 */
626			for (i = 0; i <= lbn && !error; i++) {
627			    if (np->n_direofoffset
628				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
629				    return (0);
630			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
631			    if (!bp) {
632				error = nfs_sigintr(nmp, td);
633				return (error ? error : EINTR);
634			    }
635			    if ((bp->b_flags & B_CACHE) == 0) {
636				    bp->b_iocmd = BIO_READ;
637				    vfs_busy_pages(bp, 0);
638				    error = nfs_doio(vp, bp, cred, td);
639				    /*
640				     * no error + B_INVAL == directory EOF,
641				     * use the block.
642				     */
643				    if (error == 0 && (bp->b_flags & B_INVAL))
644					    break;
645			    }
646			    /*
647			     * An error will throw away the block and the
648			     * for loop will break out.  If no error and this
649			     * is not the block we want, we throw away the
650			     * block and go for the next one via the for loop.
651			     */
652			    if (error || i < lbn)
653				    brelse(bp);
654			}
655		    }
656		    /*
657		     * The above while is repeated if we hit another cookie
658		     * error.  If we hit an error and it wasn't a cookie error,
659		     * we give up.
660		     */
661		    if (error)
662			    return (error);
663		}
664
665		/*
666		 * If not eof and read aheads are enabled, start one.
667		 * (You need the current block first, so that you have the
668		 *  directory offset cookie of the next block.)
669		 */
670		if (nmp->nm_readahead > 0 &&
671		    (bp->b_flags & B_INVAL) == 0 &&
672		    (np->n_direofoffset == 0 ||
673		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
674		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
675			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
676			if (rabp) {
677			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
678				rabp->b_flags |= B_ASYNC;
679				rabp->b_iocmd = BIO_READ;
680				vfs_busy_pages(rabp, 0);
681				if (nfs_asyncio(nmp, rabp, cred, td)) {
682				    rabp->b_flags |= B_INVAL;
683				    rabp->b_ioflags |= BIO_ERROR;
684				    vfs_unbusy_pages(rabp);
685				    brelse(rabp);
686				}
687			    } else {
688				brelse(rabp);
689			    }
690			}
691		}
692		/*
693		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
694		 * chopped for the EOF condition, we cannot tell how large
695		 * NFS directories are going to be until we hit EOF.  So
696		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
697		 * it just so happens that b_resid will effectively chop it
698		 * to EOF.  *BUT* this information is lost if the buffer goes
699		 * away and is reconstituted into a B_CACHE state ( due to
700		 * being VMIO ) later.  So we keep track of the directory eof
701		 * in np->n_direofoffset and chop it off as an extra step
702		 * right here.
703		 */
704		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
705		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
706			n = np->n_direofoffset - uio->uio_offset;
707		break;
708	    default:
709		nfs_printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
710		bp = NULL;
711		break;
712	    };
713
714	    if (n > 0) {
715		    error = uiomove(bp->b_data + on, (int)n, uio);
716	    }
717	    if (vp->v_type == VLNK)
718		n = 0;
719	    if (bp != NULL)
720		brelse(bp);
721	} while (error == 0 && uio->uio_resid > 0 && n > 0);
722	return (error);
723}
724
725/*
726 * The NFS write path cannot handle iovecs with len > 1. So we need to
727 * break up iovecs accordingly (restricting them to wsize).
728 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
729 * For the ASYNC case, 2 copies are needed. The first a copy from the
730 * user buffer to a staging buffer and then a second copy from the staging
731 * buffer to mbufs. This can be optimized by copying from the user buffer
732 * directly into mbufs and passing the chain down, but that requires a
733 * fair amount of re-working of the relevant codepaths (and can be done
734 * later).
735 */
736static int
737nfs_directio_write(vp, uiop, cred, ioflag)
738	struct vnode *vp;
739	struct uio *uiop;
740	struct ucred *cred;
741	int ioflag;
742{
743	int error;
744	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
745	struct thread *td = uiop->uio_td;
746	int size;
747	int wsize;
748
749	mtx_lock(&nmp->nm_mtx);
750	wsize = nmp->nm_wsize;
751	mtx_unlock(&nmp->nm_mtx);
752	if (ioflag & IO_SYNC) {
753		int iomode, must_commit;
754		struct uio uio;
755		struct iovec iov;
756do_sync:
757		while (uiop->uio_resid > 0) {
758			size = min(uiop->uio_resid, wsize);
759			size = min(uiop->uio_iov->iov_len, size);
760			iov.iov_base = uiop->uio_iov->iov_base;
761			iov.iov_len = size;
762			uio.uio_iov = &iov;
763			uio.uio_iovcnt = 1;
764			uio.uio_offset = uiop->uio_offset;
765			uio.uio_resid = size;
766			uio.uio_segflg = UIO_USERSPACE;
767			uio.uio_rw = UIO_WRITE;
768			uio.uio_td = td;
769			iomode = NFSV3WRITE_FILESYNC;
770			error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred,
771						      &iomode, &must_commit);
772			KASSERT((must_commit == 0),
773				("nfs_directio_write: Did not commit write"));
774			if (error)
775				return (error);
776			uiop->uio_offset += size;
777			uiop->uio_resid -= size;
778			if (uiop->uio_iov->iov_len <= size) {
779				uiop->uio_iovcnt--;
780				uiop->uio_iov++;
781			} else {
782				uiop->uio_iov->iov_base =
783					(char *)uiop->uio_iov->iov_base + size;
784				uiop->uio_iov->iov_len -= size;
785			}
786		}
787	} else {
788		struct uio *t_uio;
789		struct iovec *t_iov;
790		struct buf *bp;
791
792		/*
793		 * Break up the write into blocksize chunks and hand these
794		 * over to nfsiod's for write back.
795		 * Unfortunately, this incurs a copy of the data. Since
796		 * the user could modify the buffer before the write is
797		 * initiated.
798		 *
799		 * The obvious optimization here is that one of the 2 copies
800		 * in the async write path can be eliminated by copying the
801		 * data here directly into mbufs and passing the mbuf chain
802		 * down. But that will require a fair amount of re-working
803		 * of the code and can be done if there's enough interest
804		 * in NFS directio access.
805		 */
806		while (uiop->uio_resid > 0) {
807			size = min(uiop->uio_resid, wsize);
808			size = min(uiop->uio_iov->iov_len, size);
809			bp = getpbuf(&nfs_pbuf_freecnt);
810			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
811			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
812			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
813			t_iov->iov_len = size;
814			t_uio->uio_iov = t_iov;
815			t_uio->uio_iovcnt = 1;
816			t_uio->uio_offset = uiop->uio_offset;
817			t_uio->uio_resid = size;
818			t_uio->uio_segflg = UIO_SYSSPACE;
819			t_uio->uio_rw = UIO_WRITE;
820			t_uio->uio_td = td;
821			bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size);
822			bp->b_flags |= B_DIRECT;
823			bp->b_iocmd = BIO_WRITE;
824			if (cred != NOCRED) {
825				crhold(cred);
826				bp->b_wcred = cred;
827			} else
828				bp->b_wcred = NOCRED;
829			bp->b_caller1 = (void *)t_uio;
830			bp->b_vp = vp;
831			error = nfs_asyncio(nmp, bp, NOCRED, td);
832			if (error) {
833				free(t_iov->iov_base, M_NFSDIRECTIO);
834				free(t_iov, M_NFSDIRECTIO);
835				free(t_uio, M_NFSDIRECTIO);
836				bp->b_vp = NULL;
837				relpbuf(bp, &nfs_pbuf_freecnt);
838				if (error == EINTR)
839					return (error);
840				goto do_sync;
841			}
842			uiop->uio_offset += size;
843			uiop->uio_resid -= size;
844			if (uiop->uio_iov->iov_len <= size) {
845				uiop->uio_iovcnt--;
846				uiop->uio_iov++;
847			} else {
848				uiop->uio_iov->iov_base =
849					(char *)uiop->uio_iov->iov_base + size;
850				uiop->uio_iov->iov_len -= size;
851			}
852		}
853	}
854	return (0);
855}
856
857/*
858 * Vnode op for write using bio
859 */
860int
861nfs_write(struct vop_write_args *ap)
862{
863	int biosize;
864	struct uio *uio = ap->a_uio;
865	struct thread *td = uio->uio_td;
866	struct vnode *vp = ap->a_vp;
867	struct nfsnode *np = VTONFS(vp);
868	struct ucred *cred = ap->a_cred;
869	int ioflag = ap->a_ioflag;
870	struct buf *bp;
871	struct vattr vattr;
872	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
873	daddr_t lbn;
874	int bcount;
875	int n, on, error = 0;
876	struct proc *p = td?td->td_proc:NULL;
877
878#ifdef DIAGNOSTIC
879	if (uio->uio_rw != UIO_WRITE)
880		panic("nfs_write mode");
881	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
882		panic("nfs_write proc");
883#endif
884	if (vp->v_type != VREG)
885		return (EIO);
886	mtx_lock(&np->n_mtx);
887	if (np->n_flag & NWRITEERR) {
888		np->n_flag &= ~NWRITEERR;
889		mtx_unlock(&np->n_mtx);
890		return (np->n_error);
891	} else
892		mtx_unlock(&np->n_mtx);
893	mtx_lock(&nmp->nm_mtx);
894	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
895	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
896		mtx_unlock(&nmp->nm_mtx);
897		(void)nfs_fsinfo(nmp, vp, cred, td);
898	} else
899		mtx_unlock(&nmp->nm_mtx);
900
901	/*
902	 * Synchronously flush pending buffers if we are in synchronous
903	 * mode or if we are appending.
904	 */
905	if (ioflag & (IO_APPEND | IO_SYNC)) {
906		mtx_lock(&np->n_mtx);
907		if (np->n_flag & NMODIFIED) {
908			mtx_unlock(&np->n_mtx);
909#ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
910			/*
911			 * Require non-blocking, synchronous writes to
912			 * dirty files to inform the program it needs
913			 * to fsync(2) explicitly.
914			 */
915			if (ioflag & IO_NDELAY)
916				return (EAGAIN);
917#endif
918flush_and_restart:
919			np->n_attrstamp = 0;
920			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
921			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
922			if (error)
923				return (error);
924		} else
925			mtx_unlock(&np->n_mtx);
926	}
927
928	/*
929	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
930	 * get the append lock.
931	 */
932	if (ioflag & IO_APPEND) {
933		np->n_attrstamp = 0;
934		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
935		error = VOP_GETATTR(vp, &vattr, cred);
936		if (error)
937			return (error);
938		mtx_lock(&np->n_mtx);
939		uio->uio_offset = np->n_size;
940		mtx_unlock(&np->n_mtx);
941	}
942
943	if (uio->uio_offset < 0)
944		return (EINVAL);
945	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
946		return (EFBIG);
947	if (uio->uio_resid == 0)
948		return (0);
949
950	if (nfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
951		return nfs_directio_write(vp, uio, cred, ioflag);
952
953	/*
954	 * Maybe this should be above the vnode op call, but so long as
955	 * file servers have no limits, i don't think it matters
956	 */
957	if (p != NULL) {
958		PROC_LOCK(p);
959		if (uio->uio_offset + uio->uio_resid >
960		    lim_cur(p, RLIMIT_FSIZE)) {
961			psignal(p, SIGXFSZ);
962			PROC_UNLOCK(p);
963			return (EFBIG);
964		}
965		PROC_UNLOCK(p);
966	}
967
968	biosize = vp->v_mount->mnt_stat.f_iosize;
969	/*
970	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
971	 * would exceed the local maximum per-file write commit size when
972	 * combined with those, we must decide whether to flush,
973	 * go synchronous, or return error.  We don't bother checking
974	 * IO_UNIT -- we just make all writes atomic anyway, as there's
975	 * no point optimizing for something that really won't ever happen.
976	 */
977	if (!(ioflag & IO_SYNC)) {
978		int nflag;
979
980		mtx_lock(&np->n_mtx);
981		nflag = np->n_flag;
982		mtx_unlock(&np->n_mtx);
983		int needrestart = 0;
984		if (nmp->nm_wcommitsize < uio->uio_resid) {
985			/*
986			 * If this request could not possibly be completed
987			 * without exceeding the maximum outstanding write
988			 * commit size, see if we can convert it into a
989			 * synchronous write operation.
990			 */
991			if (ioflag & IO_NDELAY)
992				return (EAGAIN);
993			ioflag |= IO_SYNC;
994			if (nflag & NMODIFIED)
995				needrestart = 1;
996		} else if (nflag & NMODIFIED) {
997			int wouldcommit = 0;
998			BO_LOCK(&vp->v_bufobj);
999			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
1000				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
1001				    b_bobufs) {
1002					if (bp->b_flags & B_NEEDCOMMIT)
1003						wouldcommit += bp->b_bcount;
1004				}
1005			}
1006			BO_UNLOCK(&vp->v_bufobj);
1007			/*
1008			 * Since we're not operating synchronously and
1009			 * bypassing the buffer cache, we are in a commit
1010			 * and holding all of these buffers whether
1011			 * transmitted or not.  If not limited, this
1012			 * will lead to the buffer cache deadlocking,
1013			 * as no one else can flush our uncommitted buffers.
1014			 */
1015			wouldcommit += uio->uio_resid;
1016			/*
1017			 * If we would initially exceed the maximum
1018			 * outstanding write commit size, flush and restart.
1019			 */
1020			if (wouldcommit > nmp->nm_wcommitsize)
1021				needrestart = 1;
1022		}
1023		if (needrestart)
1024			goto flush_and_restart;
1025	}
1026
1027	do {
1028		nfsstats.biocache_writes++;
1029		lbn = uio->uio_offset / biosize;
1030		on = uio->uio_offset & (biosize-1);
1031		n = min((unsigned)(biosize - on), uio->uio_resid);
1032again:
1033		/*
1034		 * Handle direct append and file extension cases, calculate
1035		 * unaligned buffer size.
1036		 */
1037		mtx_lock(&np->n_mtx);
1038		if (uio->uio_offset == np->n_size && n) {
1039			mtx_unlock(&np->n_mtx);
1040			/*
1041			 * Get the buffer (in its pre-append state to maintain
1042			 * B_CACHE if it was previously set).  Resize the
1043			 * nfsnode after we have locked the buffer to prevent
1044			 * readers from reading garbage.
1045			 */
1046			bcount = on;
1047			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1048
1049			if (bp != NULL) {
1050				long save;
1051
1052				mtx_lock(&np->n_mtx);
1053				np->n_size = uio->uio_offset + n;
1054				np->n_flag |= NMODIFIED;
1055				vnode_pager_setsize(vp, np->n_size);
1056				mtx_unlock(&np->n_mtx);
1057
1058				save = bp->b_flags & B_CACHE;
1059				bcount += n;
1060				allocbuf(bp, bcount);
1061				bp->b_flags |= save;
1062			}
1063		} else {
1064			/*
1065			 * Obtain the locked cache block first, and then
1066			 * adjust the file's size as appropriate.
1067			 */
1068			bcount = on + n;
1069			if ((off_t)lbn * biosize + bcount < np->n_size) {
1070				if ((off_t)(lbn + 1) * biosize < np->n_size)
1071					bcount = biosize;
1072				else
1073					bcount = np->n_size - (off_t)lbn * biosize;
1074			}
1075			mtx_unlock(&np->n_mtx);
1076			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1077			mtx_lock(&np->n_mtx);
1078			if (uio->uio_offset + n > np->n_size) {
1079				np->n_size = uio->uio_offset + n;
1080				np->n_flag |= NMODIFIED;
1081				vnode_pager_setsize(vp, np->n_size);
1082			}
1083			mtx_unlock(&np->n_mtx);
1084		}
1085
1086		if (!bp) {
1087			error = nfs_sigintr(nmp, td);
1088			if (!error)
1089				error = EINTR;
1090			break;
1091		}
1092
1093		/*
1094		 * Issue a READ if B_CACHE is not set.  In special-append
1095		 * mode, B_CACHE is based on the buffer prior to the write
1096		 * op and is typically set, avoiding the read.  If a read
1097		 * is required in special append mode, the server will
1098		 * probably send us a short-read since we extended the file
1099		 * on our end, resulting in b_resid == 0 and, thusly,
1100		 * B_CACHE getting set.
1101		 *
1102		 * We can also avoid issuing the read if the write covers
1103		 * the entire buffer.  We have to make sure the buffer state
1104		 * is reasonable in this case since we will not be initiating
1105		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1106		 * more information.
1107		 *
1108		 * B_CACHE may also be set due to the buffer being cached
1109		 * normally.
1110		 */
1111
1112		if (on == 0 && n == bcount) {
1113			bp->b_flags |= B_CACHE;
1114			bp->b_flags &= ~B_INVAL;
1115			bp->b_ioflags &= ~BIO_ERROR;
1116		}
1117
1118		if ((bp->b_flags & B_CACHE) == 0) {
1119			bp->b_iocmd = BIO_READ;
1120			vfs_busy_pages(bp, 0);
1121			error = nfs_doio(vp, bp, cred, td);
1122			if (error) {
1123				brelse(bp);
1124				break;
1125			}
1126		}
1127		if (bp->b_wcred == NOCRED)
1128			bp->b_wcred = crhold(cred);
1129		mtx_lock(&np->n_mtx);
1130		np->n_flag |= NMODIFIED;
1131		mtx_unlock(&np->n_mtx);
1132
1133		/*
1134		 * If dirtyend exceeds file size, chop it down.  This should
1135		 * not normally occur but there is an append race where it
1136		 * might occur XXX, so we log it.
1137		 *
1138		 * If the chopping creates a reverse-indexed or degenerate
1139		 * situation with dirtyoff/end, we 0 both of them.
1140		 */
1141
1142		if (bp->b_dirtyend > bcount) {
1143			nfs_printf("NFS append race @%lx:%d\n",
1144			    (long)bp->b_blkno * DEV_BSIZE,
1145			    bp->b_dirtyend - bcount);
1146			bp->b_dirtyend = bcount;
1147		}
1148
1149		if (bp->b_dirtyoff >= bp->b_dirtyend)
1150			bp->b_dirtyoff = bp->b_dirtyend = 0;
1151
1152		/*
1153		 * If the new write will leave a contiguous dirty
1154		 * area, just update the b_dirtyoff and b_dirtyend,
1155		 * otherwise force a write rpc of the old dirty area.
1156		 *
1157		 * While it is possible to merge discontiguous writes due to
1158		 * our having a B_CACHE buffer ( and thus valid read data
1159		 * for the hole), we don't because it could lead to
1160		 * significant cache coherency problems with multiple clients,
1161		 * especially if locking is implemented later on.
1162		 *
1163		 * as an optimization we could theoretically maintain
1164		 * a linked list of discontinuous areas, but we would still
1165		 * have to commit them separately so there isn't much
1166		 * advantage to it except perhaps a bit of asynchronization.
1167		 */
1168
1169		if (bp->b_dirtyend > 0 &&
1170		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1171			if (bwrite(bp) == EINTR) {
1172				error = EINTR;
1173				break;
1174			}
1175			goto again;
1176		}
1177
1178		error = uiomove((char *)bp->b_data + on, n, uio);
1179
1180		/*
1181		 * Since this block is being modified, it must be written
1182		 * again and not just committed.  Since write clustering does
1183		 * not work for the stage 1 data write, only the stage 2
1184		 * commit rpc, we have to clear B_CLUSTEROK as well.
1185		 */
1186		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1187
1188		if (error) {
1189			bp->b_ioflags |= BIO_ERROR;
1190			brelse(bp);
1191			break;
1192		}
1193
1194		/*
1195		 * Only update dirtyoff/dirtyend if not a degenerate
1196		 * condition.
1197		 */
1198		if (n) {
1199			if (bp->b_dirtyend > 0) {
1200				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1201				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1202			} else {
1203				bp->b_dirtyoff = on;
1204				bp->b_dirtyend = on + n;
1205			}
1206			vfs_bio_set_valid(bp, on, n);
1207		}
1208
1209		/*
1210		 * If IO_SYNC do bwrite().
1211		 *
1212		 * IO_INVAL appears to be unused.  The idea appears to be
1213		 * to turn off caching in this case.  Very odd.  XXX
1214		 */
1215		if ((ioflag & IO_SYNC)) {
1216			if (ioflag & IO_INVAL)
1217				bp->b_flags |= B_NOCACHE;
1218			error = bwrite(bp);
1219			if (error)
1220				break;
1221		} else if ((n + on) == biosize) {
1222			bp->b_flags |= B_ASYNC;
1223			(void) (nmp->nm_rpcops->nr_writebp)(bp, 0, NULL);
1224		} else {
1225			bdwrite(bp);
1226		}
1227	} while (uio->uio_resid > 0 && n > 0);
1228
1229	return (error);
1230}
1231
1232/*
1233 * Get an nfs cache block.
1234 *
1235 * Allocate a new one if the block isn't currently in the cache
1236 * and return the block marked busy. If the calling process is
1237 * interrupted by a signal for an interruptible mount point, return
1238 * NULL.
1239 *
1240 * The caller must carefully deal with the possible B_INVAL state of
1241 * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1242 * indirectly), so synchronous reads can be issued without worrying about
1243 * the B_INVAL state.  We have to be a little more careful when dealing
1244 * with writes (see comments in nfs_write()) when extending a file past
1245 * its EOF.
1246 */
1247static struct buf *
1248nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1249{
1250	struct buf *bp;
1251	struct mount *mp;
1252	struct nfsmount *nmp;
1253
1254	mp = vp->v_mount;
1255	nmp = VFSTONFS(mp);
1256
1257	if (nmp->nm_flag & NFSMNT_INT) {
1258 		sigset_t oldset;
1259
1260 		nfs_set_sigmask(td, &oldset);
1261		bp = getblk(vp, bn, size, NFS_PCATCH, 0, 0);
1262 		nfs_restore_sigmask(td, &oldset);
1263		while (bp == NULL) {
1264			if (nfs_sigintr(nmp, td))
1265				return (NULL);
1266			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1267		}
1268	} else {
1269		bp = getblk(vp, bn, size, 0, 0, 0);
1270	}
1271
1272	if (vp->v_type == VREG) {
1273		int biosize;
1274
1275		biosize = mp->mnt_stat.f_iosize;
1276		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1277	}
1278	return (bp);
1279}
1280
1281/*
1282 * Flush and invalidate all dirty buffers. If another process is already
1283 * doing the flush, just wait for completion.
1284 */
1285int
1286nfs_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1287{
1288	struct nfsnode *np = VTONFS(vp);
1289	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1290	int error = 0, slpflag, slptimeo;
1291 	int old_lock = 0;
1292
1293	ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
1294
1295	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1296		intrflg = 0;
1297	if (intrflg) {
1298		slpflag = NFS_PCATCH;
1299		slptimeo = 2 * hz;
1300	} else {
1301		slpflag = 0;
1302		slptimeo = 0;
1303	}
1304
1305	old_lock = nfs_upgrade_vnlock(vp);
1306	if (vp->v_iflag & VI_DOOMED) {
1307		/*
1308		 * Since vgonel() uses the generic vinvalbuf() to flush
1309		 * dirty buffers and it does not call this function, it
1310		 * is safe to just return OK when VI_DOOMED is set.
1311		 */
1312		nfs_downgrade_vnlock(vp, old_lock);
1313		return (0);
1314	}
1315
1316	/*
1317	 * Now, flush as required.
1318	 */
1319	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1320		VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
1321		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1322		VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
1323		/*
1324		 * If the page clean was interrupted, fail the invalidation.
1325		 * Not doing so, we run the risk of losing dirty pages in the
1326		 * vinvalbuf() call below.
1327		 */
1328		if (intrflg && (error = nfs_sigintr(nmp, td)))
1329			goto out;
1330	}
1331
1332	error = vinvalbuf(vp, flags, slpflag, 0);
1333	while (error) {
1334		if (intrflg && (error = nfs_sigintr(nmp, td)))
1335			goto out;
1336		error = vinvalbuf(vp, flags, 0, slptimeo);
1337	}
1338	mtx_lock(&np->n_mtx);
1339	if (np->n_directio_asyncwr == 0)
1340		np->n_flag &= ~NMODIFIED;
1341	mtx_unlock(&np->n_mtx);
1342out:
1343	nfs_downgrade_vnlock(vp, old_lock);
1344	return error;
1345}
1346
1347/*
1348 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1349 * This is mainly to avoid queueing async I/O requests when the nfsiods
1350 * are all hung on a dead server.
1351 *
1352 * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1353 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1354 */
1355int
1356nfs_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1357{
1358	int iod;
1359	int gotiod;
1360	int slpflag = 0;
1361	int slptimeo = 0;
1362	int error, error2;
1363
1364	/*
1365	 * Commits are usually short and sweet so lets save some cpu and
1366	 * leave the async daemons for more important rpc's (such as reads
1367	 * and writes).
1368	 */
1369	mtx_lock(&nfs_iod_mtx);
1370	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1371	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1372		mtx_unlock(&nfs_iod_mtx);
1373		return(EIO);
1374	}
1375again:
1376	if (nmp->nm_flag & NFSMNT_INT)
1377		slpflag = NFS_PCATCH;
1378	gotiod = FALSE;
1379
1380	/*
1381	 * Find a free iod to process this request.
1382	 */
1383	for (iod = 0; iod < nfs_numasync; iod++)
1384		if (nfs_iodwant[iod] == NFSIOD_AVAILABLE) {
1385			gotiod = TRUE;
1386			break;
1387		}
1388
1389	/*
1390	 * Try to create one if none are free.
1391	 */
1392	if (!gotiod) {
1393		iod = nfs_nfsiodnew(1);
1394		if (iod != -1)
1395			gotiod = TRUE;
1396	}
1397
1398	if (gotiod) {
1399		/*
1400		 * Found one, so wake it up and tell it which
1401		 * mount to process.
1402		 */
1403		NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
1404		    iod, nmp));
1405		nfs_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1406		nfs_iodmount[iod] = nmp;
1407		nmp->nm_bufqiods++;
1408		wakeup(&nfs_iodwant[iod]);
1409	}
1410
1411	/*
1412	 * If none are free, we may already have an iod working on this mount
1413	 * point.  If so, it will process our request.
1414	 */
1415	if (!gotiod) {
1416		if (nmp->nm_bufqiods > 0) {
1417			NFS_DPF(ASYNCIO,
1418				("nfs_asyncio: %d iods are already processing mount %p\n",
1419				 nmp->nm_bufqiods, nmp));
1420			gotiod = TRUE;
1421		}
1422	}
1423
1424	/*
1425	 * If we have an iod which can process the request, then queue
1426	 * the buffer.
1427	 */
1428	if (gotiod) {
1429		/*
1430		 * Ensure that the queue never grows too large.  We still want
1431		 * to asynchronize so we block rather then return EIO.
1432		 */
1433		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1434			NFS_DPF(ASYNCIO,
1435				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1436			nmp->nm_bufqwant = TRUE;
1437 			error = nfs_msleep(td, &nmp->nm_bufq, &nfs_iod_mtx,
1438					   slpflag | PRIBIO,
1439 					   "nfsaio", slptimeo);
1440			if (error) {
1441				error2 = nfs_sigintr(nmp, td);
1442				if (error2) {
1443					mtx_unlock(&nfs_iod_mtx);
1444					return (error2);
1445				}
1446				if (slpflag == NFS_PCATCH) {
1447					slpflag = 0;
1448					slptimeo = 2 * hz;
1449				}
1450			}
1451			/*
1452			 * We might have lost our iod while sleeping,
1453			 * so check and loop if nescessary.
1454			 */
1455			if (nmp->nm_bufqiods == 0) {
1456				NFS_DPF(ASYNCIO,
1457					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1458				goto again;
1459			}
1460		}
1461
1462		/* We might have lost our nfsiod */
1463		if (nmp->nm_bufqiods == 0) {
1464			NFS_DPF(ASYNCIO,
1465				("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1466			goto again;
1467		}
1468
1469		if (bp->b_iocmd == BIO_READ) {
1470			if (bp->b_rcred == NOCRED && cred != NOCRED)
1471				bp->b_rcred = crhold(cred);
1472		} else {
1473			if (bp->b_wcred == NOCRED && cred != NOCRED)
1474				bp->b_wcred = crhold(cred);
1475		}
1476
1477		if (bp->b_flags & B_REMFREE)
1478			bremfreef(bp);
1479		BUF_KERNPROC(bp);
1480		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1481		nmp->nm_bufqlen++;
1482		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1483			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1484			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1485			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1486			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1487		}
1488		mtx_unlock(&nfs_iod_mtx);
1489		return (0);
1490	}
1491
1492	mtx_unlock(&nfs_iod_mtx);
1493
1494	/*
1495	 * All the iods are busy on other mounts, so return EIO to
1496	 * force the caller to process the i/o synchronously.
1497	 */
1498	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1499	return (EIO);
1500}
1501
1502void
1503nfs_doio_directwrite(struct buf *bp)
1504{
1505	int iomode, must_commit;
1506	struct uio *uiop = (struct uio *)bp->b_caller1;
1507	char *iov_base = uiop->uio_iov->iov_base;
1508	struct nfsmount *nmp = VFSTONFS(bp->b_vp->v_mount);
1509
1510	iomode = NFSV3WRITE_FILESYNC;
1511	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1512	(nmp->nm_rpcops->nr_writerpc)(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit);
1513	KASSERT((must_commit == 0), ("nfs_doio_directwrite: Did not commit write"));
1514	free(iov_base, M_NFSDIRECTIO);
1515	free(uiop->uio_iov, M_NFSDIRECTIO);
1516	free(uiop, M_NFSDIRECTIO);
1517	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1518		struct nfsnode *np = VTONFS(bp->b_vp);
1519		mtx_lock(&np->n_mtx);
1520		np->n_directio_asyncwr--;
1521		if (np->n_directio_asyncwr == 0) {
1522			VTONFS(bp->b_vp)->n_flag &= ~NMODIFIED;
1523			if ((np->n_flag & NFSYNCWAIT)) {
1524				np->n_flag &= ~NFSYNCWAIT;
1525				wakeup((caddr_t)&np->n_directio_asyncwr);
1526			}
1527		}
1528		mtx_unlock(&np->n_mtx);
1529	}
1530	bp->b_vp = NULL;
1531	relpbuf(bp, &nfs_pbuf_freecnt);
1532}
1533
1534/*
1535 * Do an I/O operation to/from a cache block. This may be called
1536 * synchronously or from an nfsiod.
1537 */
1538int
1539nfs_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td)
1540{
1541	struct uio *uiop;
1542	struct nfsnode *np;
1543	struct nfsmount *nmp;
1544	int error = 0, iomode, must_commit = 0;
1545	struct uio uio;
1546	struct iovec io;
1547	struct proc *p = td ? td->td_proc : NULL;
1548	uint8_t	iocmd;
1549
1550	np = VTONFS(vp);
1551	nmp = VFSTONFS(vp->v_mount);
1552	uiop = &uio;
1553	uiop->uio_iov = &io;
1554	uiop->uio_iovcnt = 1;
1555	uiop->uio_segflg = UIO_SYSSPACE;
1556	uiop->uio_td = td;
1557
1558	/*
1559	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1560	 * do this here so we do not have to do it in all the code that
1561	 * calls us.
1562	 */
1563	bp->b_flags &= ~B_INVAL;
1564	bp->b_ioflags &= ~BIO_ERROR;
1565
1566	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1567	iocmd = bp->b_iocmd;
1568	if (iocmd == BIO_READ) {
1569	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1570	    io.iov_base = bp->b_data;
1571	    uiop->uio_rw = UIO_READ;
1572
1573	    switch (vp->v_type) {
1574	    case VREG:
1575		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1576		nfsstats.read_bios++;
1577		error = (nmp->nm_rpcops->nr_readrpc)(vp, uiop, cr);
1578
1579		if (!error) {
1580		    if (uiop->uio_resid) {
1581			/*
1582			 * If we had a short read with no error, we must have
1583			 * hit a file hole.  We should zero-fill the remainder.
1584			 * This can also occur if the server hits the file EOF.
1585			 *
1586			 * Holes used to be able to occur due to pending
1587			 * writes, but that is not possible any longer.
1588			 */
1589			int nread = bp->b_bcount - uiop->uio_resid;
1590			int left  = uiop->uio_resid;
1591
1592			if (left > 0)
1593				bzero((char *)bp->b_data + nread, left);
1594			uiop->uio_resid = 0;
1595		    }
1596		}
1597		/* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
1598		if (p && (vp->v_vflag & VV_TEXT)) {
1599			mtx_lock(&np->n_mtx);
1600			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.va_mtime)) {
1601				mtx_unlock(&np->n_mtx);
1602				PROC_LOCK(p);
1603				killproc(p, "text file modification");
1604				PROC_UNLOCK(p);
1605			} else
1606				mtx_unlock(&np->n_mtx);
1607		}
1608		break;
1609	    case VLNK:
1610		uiop->uio_offset = (off_t)0;
1611		nfsstats.readlink_bios++;
1612		error = (nmp->nm_rpcops->nr_readlinkrpc)(vp, uiop, cr);
1613		break;
1614	    case VDIR:
1615		nfsstats.readdir_bios++;
1616		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1617		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1618			error = nfs_readdirplusrpc(vp, uiop, cr);
1619			if (error == NFSERR_NOTSUPP)
1620				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1621		}
1622		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1623			error = nfs_readdirrpc(vp, uiop, cr);
1624		/*
1625		 * end-of-directory sets B_INVAL but does not generate an
1626		 * error.
1627		 */
1628		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1629			bp->b_flags |= B_INVAL;
1630		break;
1631	    default:
1632		nfs_printf("nfs_doio:  type %x unexpected\n", vp->v_type);
1633		break;
1634	    };
1635	    if (error) {
1636		bp->b_ioflags |= BIO_ERROR;
1637		bp->b_error = error;
1638	    }
1639	} else {
1640	    /*
1641	     * If we only need to commit, try to commit
1642	     */
1643	    if (bp->b_flags & B_NEEDCOMMIT) {
1644		    int retv;
1645		    off_t off;
1646
1647		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1648		    retv = (nmp->nm_rpcops->nr_commit)(
1649				vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1650				bp->b_wcred, td);
1651		    if (retv == 0) {
1652			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1653			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1654			    bp->b_resid = 0;
1655			    bufdone(bp);
1656			    return (0);
1657		    }
1658		    if (retv == NFSERR_STALEWRITEVERF) {
1659			    nfs_clearcommit(vp->v_mount);
1660		    }
1661	    }
1662
1663	    /*
1664	     * Setup for actual write
1665	     */
1666	    mtx_lock(&np->n_mtx);
1667	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1668		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1669	    mtx_unlock(&np->n_mtx);
1670
1671	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1672		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1673		    - bp->b_dirtyoff;
1674		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1675		    + bp->b_dirtyoff;
1676		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1677		uiop->uio_rw = UIO_WRITE;
1678		nfsstats.write_bios++;
1679
1680		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1681		    iomode = NFSV3WRITE_UNSTABLE;
1682		else
1683		    iomode = NFSV3WRITE_FILESYNC;
1684
1685		error = (nmp->nm_rpcops->nr_writerpc)(vp, uiop, cr, &iomode, &must_commit);
1686
1687		/*
1688		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1689		 * to cluster the buffers needing commit.  This will allow
1690		 * the system to submit a single commit rpc for the whole
1691		 * cluster.  We can do this even if the buffer is not 100%
1692		 * dirty (relative to the NFS blocksize), so we optimize the
1693		 * append-to-file-case.
1694		 *
1695		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1696		 * cleared because write clustering only works for commit
1697		 * rpc's, not for the data portion of the write).
1698		 */
1699
1700		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1701		    bp->b_flags |= B_NEEDCOMMIT;
1702		    if (bp->b_dirtyoff == 0
1703			&& bp->b_dirtyend == bp->b_bcount)
1704			bp->b_flags |= B_CLUSTEROK;
1705		} else {
1706		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1707		}
1708
1709		/*
1710		 * For an interrupted write, the buffer is still valid
1711		 * and the write hasn't been pushed to the server yet,
1712		 * so we can't set BIO_ERROR and report the interruption
1713		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1714		 * is not relevant, so the rpc attempt is essentially
1715		 * a noop.  For the case of a V3 write rpc not being
1716		 * committed to stable storage, the block is still
1717		 * dirty and requires either a commit rpc or another
1718		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1719		 * the block is reused. This is indicated by setting
1720		 * the B_DELWRI and B_NEEDCOMMIT flags.
1721		 *
1722		 * If the buffer is marked B_PAGING, it does not reside on
1723		 * the vp's paging queues so we cannot call bdirty().  The
1724		 * bp in this case is not an NFS cache block so we should
1725		 * be safe. XXX
1726		 *
1727		 * The logic below breaks up errors into recoverable and
1728		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1729		 * and keep the buffer around for potential write retries.
1730		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1731		 * and save the error in the nfsnode. This is less than ideal
1732		 * but necessary. Keeping such buffers around could potentially
1733		 * cause buffer exhaustion eventually (they can never be written
1734		 * out, so will get constantly be re-dirtied). It also causes
1735		 * all sorts of vfs panics. For non-recoverable write errors,
1736		 * also invalidate the attrcache, so we'll be forced to go over
1737		 * the wire for this object, returning an error to user on next
1738		 * call (most of the time).
1739		 */
1740    		if (error == EINTR || error == EIO || error == ETIMEDOUT
1741		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1742			int s;
1743
1744			s = splbio();
1745			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1746			if ((bp->b_flags & B_PAGING) == 0) {
1747			    bdirty(bp);
1748			    bp->b_flags &= ~B_DONE;
1749			}
1750			if (error && (bp->b_flags & B_ASYNC) == 0)
1751			    bp->b_flags |= B_EINTR;
1752			splx(s);
1753	    	} else {
1754		    if (error) {
1755			bp->b_ioflags |= BIO_ERROR;
1756			bp->b_flags |= B_INVAL;
1757			bp->b_error = np->n_error = error;
1758			mtx_lock(&np->n_mtx);
1759			np->n_flag |= NWRITEERR;
1760			np->n_attrstamp = 0;
1761			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1762			mtx_unlock(&np->n_mtx);
1763		    }
1764		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1765		}
1766	    } else {
1767		bp->b_resid = 0;
1768		bufdone(bp);
1769		return (0);
1770	    }
1771	}
1772	bp->b_resid = uiop->uio_resid;
1773	if (must_commit)
1774	    nfs_clearcommit(vp->v_mount);
1775	bufdone(bp);
1776	return (error);
1777}
1778
1779/*
1780 * Used to aid in handling ftruncate() operations on the NFS client side.
1781 * Truncation creates a number of special problems for NFS.  We have to
1782 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1783 * we have to properly handle VM pages or (potentially dirty) buffers
1784 * that straddle the truncation point.
1785 */
1786
1787int
1788nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1789{
1790	struct nfsnode *np = VTONFS(vp);
1791	u_quad_t tsize;
1792	int biosize = vp->v_mount->mnt_stat.f_iosize;
1793	int error = 0;
1794
1795	mtx_lock(&np->n_mtx);
1796	tsize = np->n_size;
1797	np->n_size = nsize;
1798	mtx_unlock(&np->n_mtx);
1799
1800	if (nsize < tsize) {
1801		struct buf *bp;
1802		daddr_t lbn;
1803		int bufsize;
1804
1805		/*
1806		 * vtruncbuf() doesn't get the buffer overlapping the
1807		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1808		 * buffer that now needs to be truncated.
1809		 */
1810		error = vtruncbuf(vp, cred, td, nsize, biosize);
1811		lbn = nsize / biosize;
1812		bufsize = nsize & (biosize - 1);
1813		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1814 		if (!bp)
1815 			return EINTR;
1816		if (bp->b_dirtyoff > bp->b_bcount)
1817			bp->b_dirtyoff = bp->b_bcount;
1818		if (bp->b_dirtyend > bp->b_bcount)
1819			bp->b_dirtyend = bp->b_bcount;
1820		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1821		brelse(bp);
1822	} else {
1823		vnode_pager_setsize(vp, nsize);
1824	}
1825	return(error);
1826}
1827
1828