nfs_bio.c revision 195203
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/nfsclient/nfs_bio.c 195203 2009-06-30 19:10:17Z dfr $");
37
38#include "opt_kdtrace.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bio.h>
43#include <sys/buf.h>
44#include <sys/kernel.h>
45#include <sys/mbuf.h>
46#include <sys/mount.h>
47#include <sys/proc.h>
48#include <sys/resourcevar.h>
49#include <sys/signalvar.h>
50#include <sys/vmmeter.h>
51#include <sys/vnode.h>
52
53#include <vm/vm.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_page.h>
56#include <vm/vm_object.h>
57#include <vm/vm_pager.h>
58#include <vm/vnode_pager.h>
59
60#include <nfs/nfsproto.h>
61#include <nfsclient/nfs.h>
62#include <nfsclient/nfsmount.h>
63#include <nfsclient/nfsnode.h>
64#include <nfsclient/nfs_kdtrace.h>
65
66static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
67		    struct thread *td);
68static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
69			      struct ucred *cred, int ioflag);
70
71extern int nfs_directio_enable;
72extern int nfs_directio_allow_mmap;
73
74/*
75 * Vnode op for VM getpages.
76 */
77int
78nfs_getpages(struct vop_getpages_args *ap)
79{
80	int i, error, nextoff, size, toff, count, npages;
81	struct uio uio;
82	struct iovec iov;
83	vm_offset_t kva;
84	struct buf *bp;
85	struct vnode *vp;
86	struct thread *td;
87	struct ucred *cred;
88	struct nfsmount *nmp;
89	vm_object_t object;
90	vm_page_t *pages;
91	struct nfsnode *np;
92
93	vp = ap->a_vp;
94	np = VTONFS(vp);
95	td = curthread;				/* XXX */
96	cred = curthread->td_ucred;		/* XXX */
97	nmp = VFSTONFS(vp->v_mount);
98	pages = ap->a_m;
99	count = ap->a_count;
100
101	if ((object = vp->v_object) == NULL) {
102		nfs_printf("nfs_getpages: called with non-merged cache vnode??\n");
103		return (VM_PAGER_ERROR);
104	}
105
106	if (nfs_directio_enable && !nfs_directio_allow_mmap) {
107		mtx_lock(&np->n_mtx);
108		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
109			mtx_unlock(&np->n_mtx);
110			nfs_printf("nfs_getpages: called on non-cacheable vnode??\n");
111			return (VM_PAGER_ERROR);
112		} else
113			mtx_unlock(&np->n_mtx);
114	}
115
116	mtx_lock(&nmp->nm_mtx);
117	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
118	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
119		mtx_unlock(&nmp->nm_mtx);
120		/* We'll never get here for v4, because we always have fsinfo */
121		(void)nfs_fsinfo(nmp, vp, cred, td);
122	} else
123		mtx_unlock(&nmp->nm_mtx);
124
125	npages = btoc(count);
126
127	/*
128	 * If the requested page is partially valid, just return it and
129	 * allow the pager to zero-out the blanks.  Partially valid pages
130	 * can only occur at the file EOF.
131	 */
132	VM_OBJECT_LOCK(object);
133	if (pages[ap->a_reqpage]->valid != 0) {
134		vm_page_lock_queues();
135		for (i = 0; i < npages; ++i) {
136			if (i != ap->a_reqpage)
137				vm_page_free(pages[i]);
138		}
139		vm_page_unlock_queues();
140		VM_OBJECT_UNLOCK(object);
141		return (0);
142	}
143	VM_OBJECT_UNLOCK(object);
144
145	/*
146	 * We use only the kva address for the buffer, but this is extremely
147	 * convienient and fast.
148	 */
149	bp = getpbuf(&nfs_pbuf_freecnt);
150
151	kva = (vm_offset_t) bp->b_data;
152	pmap_qenter(kva, pages, npages);
153	PCPU_INC(cnt.v_vnodein);
154	PCPU_ADD(cnt.v_vnodepgsin, npages);
155
156	iov.iov_base = (caddr_t) kva;
157	iov.iov_len = count;
158	uio.uio_iov = &iov;
159	uio.uio_iovcnt = 1;
160	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
161	uio.uio_resid = count;
162	uio.uio_segflg = UIO_SYSSPACE;
163	uio.uio_rw = UIO_READ;
164	uio.uio_td = td;
165
166	error = (nmp->nm_rpcops->nr_readrpc)(vp, &uio, cred);
167	pmap_qremove(kva, npages);
168
169	relpbuf(bp, &nfs_pbuf_freecnt);
170
171	if (error && (uio.uio_resid == count)) {
172		nfs_printf("nfs_getpages: error %d\n", error);
173		VM_OBJECT_LOCK(object);
174		vm_page_lock_queues();
175		for (i = 0; i < npages; ++i) {
176			if (i != ap->a_reqpage)
177				vm_page_free(pages[i]);
178		}
179		vm_page_unlock_queues();
180		VM_OBJECT_UNLOCK(object);
181		return (VM_PAGER_ERROR);
182	}
183
184	/*
185	 * Calculate the number of bytes read and validate only that number
186	 * of bytes.  Note that due to pending writes, size may be 0.  This
187	 * does not mean that the remaining data is invalid!
188	 */
189
190	size = count - uio.uio_resid;
191	VM_OBJECT_LOCK(object);
192	vm_page_lock_queues();
193	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
194		vm_page_t m;
195		nextoff = toff + PAGE_SIZE;
196		m = pages[i];
197
198		if (nextoff <= size) {
199			/*
200			 * Read operation filled an entire page
201			 */
202			m->valid = VM_PAGE_BITS_ALL;
203			KASSERT(m->dirty == 0,
204			    ("nfs_getpages: page %p is dirty", m));
205		} else if (size > toff) {
206			/*
207			 * Read operation filled a partial page.
208			 */
209			m->valid = 0;
210			vm_page_set_valid(m, 0, size - toff);
211			KASSERT(m->dirty == 0,
212			    ("nfs_getpages: page %p is dirty", m));
213		} else {
214			/*
215			 * Read operation was short.  If no error occured
216			 * we may have hit a zero-fill section.   We simply
217			 * leave valid set to 0.
218			 */
219			;
220		}
221		if (i != ap->a_reqpage) {
222			/*
223			 * Whether or not to leave the page activated is up in
224			 * the air, but we should put the page on a page queue
225			 * somewhere (it already is in the object).  Result:
226			 * It appears that emperical results show that
227			 * deactivating pages is best.
228			 */
229
230			/*
231			 * Just in case someone was asking for this page we
232			 * now tell them that it is ok to use.
233			 */
234			if (!error) {
235				if (m->oflags & VPO_WANTED)
236					vm_page_activate(m);
237				else
238					vm_page_deactivate(m);
239				vm_page_wakeup(m);
240			} else {
241				vm_page_free(m);
242			}
243		}
244	}
245	vm_page_unlock_queues();
246	VM_OBJECT_UNLOCK(object);
247	return (0);
248}
249
250/*
251 * Vnode op for VM putpages.
252 */
253int
254nfs_putpages(struct vop_putpages_args *ap)
255{
256	struct uio uio;
257	struct iovec iov;
258	vm_offset_t kva;
259	struct buf *bp;
260	int iomode, must_commit, i, error, npages, count;
261	off_t offset;
262	int *rtvals;
263	struct vnode *vp;
264	struct thread *td;
265	struct ucred *cred;
266	struct nfsmount *nmp;
267	struct nfsnode *np;
268	vm_page_t *pages;
269
270	vp = ap->a_vp;
271	np = VTONFS(vp);
272	td = curthread;				/* XXX */
273	cred = curthread->td_ucred;		/* XXX */
274	nmp = VFSTONFS(vp->v_mount);
275	pages = ap->a_m;
276	count = ap->a_count;
277	rtvals = ap->a_rtvals;
278	npages = btoc(count);
279	offset = IDX_TO_OFF(pages[0]->pindex);
280
281	mtx_lock(&nmp->nm_mtx);
282	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
283	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
284		mtx_unlock(&nmp->nm_mtx);
285		(void)nfs_fsinfo(nmp, vp, cred, td);
286	} else
287		mtx_unlock(&nmp->nm_mtx);
288
289	mtx_lock(&np->n_mtx);
290	if (nfs_directio_enable && !nfs_directio_allow_mmap &&
291	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
292		mtx_unlock(&np->n_mtx);
293		nfs_printf("nfs_putpages: called on noncache-able vnode??\n");
294		mtx_lock(&np->n_mtx);
295	}
296
297	for (i = 0; i < npages; i++)
298		rtvals[i] = VM_PAGER_AGAIN;
299
300	/*
301	 * When putting pages, do not extend file past EOF.
302	 */
303	if (offset + count > np->n_size) {
304		count = np->n_size - offset;
305		if (count < 0)
306			count = 0;
307	}
308	mtx_unlock(&np->n_mtx);
309
310	/*
311	 * We use only the kva address for the buffer, but this is extremely
312	 * convienient and fast.
313	 */
314	bp = getpbuf(&nfs_pbuf_freecnt);
315
316	kva = (vm_offset_t) bp->b_data;
317	pmap_qenter(kva, pages, npages);
318	PCPU_INC(cnt.v_vnodeout);
319	PCPU_ADD(cnt.v_vnodepgsout, count);
320
321	iov.iov_base = (caddr_t) kva;
322	iov.iov_len = count;
323	uio.uio_iov = &iov;
324	uio.uio_iovcnt = 1;
325	uio.uio_offset = offset;
326	uio.uio_resid = count;
327	uio.uio_segflg = UIO_SYSSPACE;
328	uio.uio_rw = UIO_WRITE;
329	uio.uio_td = td;
330
331	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
332	    iomode = NFSV3WRITE_UNSTABLE;
333	else
334	    iomode = NFSV3WRITE_FILESYNC;
335
336	error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, &iomode, &must_commit);
337
338	pmap_qremove(kva, npages);
339	relpbuf(bp, &nfs_pbuf_freecnt);
340
341	if (!error) {
342		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
343		for (i = 0; i < nwritten; i++) {
344			rtvals[i] = VM_PAGER_OK;
345			vm_page_undirty(pages[i]);
346		}
347		if (must_commit) {
348			nfs_clearcommit(vp->v_mount);
349		}
350	}
351	return rtvals[0];
352}
353
354/*
355 * For nfs, cache consistency can only be maintained approximately.
356 * Although RFC1094 does not specify the criteria, the following is
357 * believed to be compatible with the reference port.
358 * For nfs:
359 * If the file's modify time on the server has changed since the
360 * last read rpc or you have written to the file,
361 * you may have lost data cache consistency with the
362 * server, so flush all of the file's data out of the cache.
363 * Then force a getattr rpc to ensure that you have up to date
364 * attributes.
365 * NB: This implies that cache data can be read when up to
366 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
367 * attributes this could be forced by setting n_attrstamp to 0 before
368 * the VOP_GETATTR() call.
369 */
370static inline int
371nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
372{
373	int error = 0;
374	struct vattr vattr;
375	struct nfsnode *np = VTONFS(vp);
376	int old_lock;
377	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
378
379	/*
380	 * Grab the exclusive lock before checking whether the cache is
381	 * consistent.
382	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
383	 * But for now, this suffices.
384	 */
385	old_lock = nfs_upgrade_vnlock(vp);
386	if (vp->v_iflag & VI_DOOMED) {
387		nfs_downgrade_vnlock(vp, old_lock);
388		return (EBADF);
389	}
390
391	mtx_lock(&np->n_mtx);
392	if (np->n_flag & NMODIFIED) {
393		mtx_unlock(&np->n_mtx);
394		if (vp->v_type != VREG) {
395			if (vp->v_type != VDIR)
396				panic("nfs: bioread, not dir");
397			(nmp->nm_rpcops->nr_invaldir)(vp);
398			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
399			if (error)
400				goto out;
401		}
402		np->n_attrstamp = 0;
403		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
404		error = VOP_GETATTR(vp, &vattr, cred);
405		if (error)
406			goto out;
407		mtx_lock(&np->n_mtx);
408		np->n_mtime = vattr.va_mtime;
409		mtx_unlock(&np->n_mtx);
410	} else {
411		mtx_unlock(&np->n_mtx);
412		error = VOP_GETATTR(vp, &vattr, cred);
413		if (error)
414			return (error);
415		mtx_lock(&np->n_mtx);
416		if ((np->n_flag & NSIZECHANGED)
417		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
418			mtx_unlock(&np->n_mtx);
419			if (vp->v_type == VDIR)
420				(nmp->nm_rpcops->nr_invaldir)(vp);
421			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
422			if (error)
423				goto out;
424			mtx_lock(&np->n_mtx);
425			np->n_mtime = vattr.va_mtime;
426			np->n_flag &= ~NSIZECHANGED;
427		}
428		mtx_unlock(&np->n_mtx);
429	}
430out:
431	nfs_downgrade_vnlock(vp, old_lock);
432	return error;
433}
434
435/*
436 * Vnode op for read using bio
437 */
438int
439nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
440{
441	struct nfsnode *np = VTONFS(vp);
442	int biosize, i;
443	struct buf *bp, *rabp;
444	struct thread *td;
445	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
446	daddr_t lbn, rabn;
447	int bcount;
448	int seqcount;
449	int nra, error = 0, n = 0, on = 0;
450
451#ifdef DIAGNOSTIC
452	if (uio->uio_rw != UIO_READ)
453		panic("nfs_read mode");
454#endif
455	if (uio->uio_resid == 0)
456		return (0);
457	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
458		return (EINVAL);
459	td = uio->uio_td;
460
461	mtx_lock(&nmp->nm_mtx);
462	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
463	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
464		mtx_unlock(&nmp->nm_mtx);
465		(void)nfs_fsinfo(nmp, vp, cred, td);
466	} else
467		mtx_unlock(&nmp->nm_mtx);
468
469	if (vp->v_type != VDIR &&
470	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
471		return (EFBIG);
472
473	if (nfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
474		/* No caching/ no readaheads. Just read data into the user buffer */
475		return nfs_readrpc(vp, uio, cred);
476
477	biosize = vp->v_mount->mnt_stat.f_iosize;
478	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
479
480	error = nfs_bioread_check_cons(vp, td, cred);
481	if (error)
482		return error;
483
484	do {
485	    u_quad_t nsize;
486
487	    mtx_lock(&np->n_mtx);
488	    nsize = np->n_size;
489	    mtx_unlock(&np->n_mtx);
490
491	    switch (vp->v_type) {
492	    case VREG:
493		nfsstats.biocache_reads++;
494		lbn = uio->uio_offset / biosize;
495		on = uio->uio_offset & (biosize - 1);
496
497		/*
498		 * Start the read ahead(s), as required.
499		 */
500		if (nmp->nm_readahead > 0) {
501		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
502			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
503			rabn = lbn + 1 + nra;
504			if (incore(&vp->v_bufobj, rabn) == NULL) {
505			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
506			    if (!rabp) {
507				error = nfs_sigintr(nmp, td);
508				return (error ? error : EINTR);
509			    }
510			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
511				rabp->b_flags |= B_ASYNC;
512				rabp->b_iocmd = BIO_READ;
513				vfs_busy_pages(rabp, 0);
514				if (nfs_asyncio(nmp, rabp, cred, td)) {
515				    rabp->b_flags |= B_INVAL;
516				    rabp->b_ioflags |= BIO_ERROR;
517				    vfs_unbusy_pages(rabp);
518				    brelse(rabp);
519				    break;
520				}
521			    } else {
522				brelse(rabp);
523			    }
524			}
525		    }
526		}
527
528		/* Note that bcount is *not* DEV_BSIZE aligned. */
529		bcount = biosize;
530		if ((off_t)lbn * biosize >= nsize) {
531			bcount = 0;
532		} else if ((off_t)(lbn + 1) * biosize > nsize) {
533			bcount = nsize - (off_t)lbn * biosize;
534		}
535		bp = nfs_getcacheblk(vp, lbn, bcount, td);
536
537		if (!bp) {
538			error = nfs_sigintr(nmp, td);
539			return (error ? error : EINTR);
540		}
541
542		/*
543		 * If B_CACHE is not set, we must issue the read.  If this
544		 * fails, we return an error.
545		 */
546
547		if ((bp->b_flags & B_CACHE) == 0) {
548		    bp->b_iocmd = BIO_READ;
549		    vfs_busy_pages(bp, 0);
550		    error = nfs_doio(vp, bp, cred, td);
551		    if (error) {
552			brelse(bp);
553			return (error);
554		    }
555		}
556
557		/*
558		 * on is the offset into the current bp.  Figure out how many
559		 * bytes we can copy out of the bp.  Note that bcount is
560		 * NOT DEV_BSIZE aligned.
561		 *
562		 * Then figure out how many bytes we can copy into the uio.
563		 */
564
565		n = 0;
566		if (on < bcount)
567			n = min((unsigned)(bcount - on), uio->uio_resid);
568		break;
569	    case VLNK:
570		nfsstats.biocache_readlinks++;
571		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
572		if (!bp) {
573			error = nfs_sigintr(nmp, td);
574			return (error ? error : EINTR);
575		}
576		if ((bp->b_flags & B_CACHE) == 0) {
577		    bp->b_iocmd = BIO_READ;
578		    vfs_busy_pages(bp, 0);
579		    error = nfs_doio(vp, bp, cred, td);
580		    if (error) {
581			bp->b_ioflags |= BIO_ERROR;
582			brelse(bp);
583			return (error);
584		    }
585		}
586		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
587		on = 0;
588		break;
589	    case VDIR:
590		nfsstats.biocache_readdirs++;
591		if (np->n_direofoffset
592		    && uio->uio_offset >= np->n_direofoffset) {
593		    return (0);
594		}
595		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
596		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
597		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
598		if (!bp) {
599		    error = nfs_sigintr(nmp, td);
600		    return (error ? error : EINTR);
601		}
602		if ((bp->b_flags & B_CACHE) == 0) {
603		    bp->b_iocmd = BIO_READ;
604		    vfs_busy_pages(bp, 0);
605		    error = nfs_doio(vp, bp, cred, td);
606		    if (error) {
607			    brelse(bp);
608		    }
609		    while (error == NFSERR_BAD_COOKIE) {
610			(nmp->nm_rpcops->nr_invaldir)(vp);
611			error = nfs_vinvalbuf(vp, 0, td, 1);
612			/*
613			 * Yuck! The directory has been modified on the
614			 * server. The only way to get the block is by
615			 * reading from the beginning to get all the
616			 * offset cookies.
617			 *
618			 * Leave the last bp intact unless there is an error.
619			 * Loop back up to the while if the error is another
620			 * NFSERR_BAD_COOKIE (double yuch!).
621			 */
622			for (i = 0; i <= lbn && !error; i++) {
623			    if (np->n_direofoffset
624				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
625				    return (0);
626			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
627			    if (!bp) {
628				error = nfs_sigintr(nmp, td);
629				return (error ? error : EINTR);
630			    }
631			    if ((bp->b_flags & B_CACHE) == 0) {
632				    bp->b_iocmd = BIO_READ;
633				    vfs_busy_pages(bp, 0);
634				    error = nfs_doio(vp, bp, cred, td);
635				    /*
636				     * no error + B_INVAL == directory EOF,
637				     * use the block.
638				     */
639				    if (error == 0 && (bp->b_flags & B_INVAL))
640					    break;
641			    }
642			    /*
643			     * An error will throw away the block and the
644			     * for loop will break out.  If no error and this
645			     * is not the block we want, we throw away the
646			     * block and go for the next one via the for loop.
647			     */
648			    if (error || i < lbn)
649				    brelse(bp);
650			}
651		    }
652		    /*
653		     * The above while is repeated if we hit another cookie
654		     * error.  If we hit an error and it wasn't a cookie error,
655		     * we give up.
656		     */
657		    if (error)
658			    return (error);
659		}
660
661		/*
662		 * If not eof and read aheads are enabled, start one.
663		 * (You need the current block first, so that you have the
664		 *  directory offset cookie of the next block.)
665		 */
666		if (nmp->nm_readahead > 0 &&
667		    (bp->b_flags & B_INVAL) == 0 &&
668		    (np->n_direofoffset == 0 ||
669		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
670		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
671			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
672			if (rabp) {
673			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
674				rabp->b_flags |= B_ASYNC;
675				rabp->b_iocmd = BIO_READ;
676				vfs_busy_pages(rabp, 0);
677				if (nfs_asyncio(nmp, rabp, cred, td)) {
678				    rabp->b_flags |= B_INVAL;
679				    rabp->b_ioflags |= BIO_ERROR;
680				    vfs_unbusy_pages(rabp);
681				    brelse(rabp);
682				}
683			    } else {
684				brelse(rabp);
685			    }
686			}
687		}
688		/*
689		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
690		 * chopped for the EOF condition, we cannot tell how large
691		 * NFS directories are going to be until we hit EOF.  So
692		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
693		 * it just so happens that b_resid will effectively chop it
694		 * to EOF.  *BUT* this information is lost if the buffer goes
695		 * away and is reconstituted into a B_CACHE state ( due to
696		 * being VMIO ) later.  So we keep track of the directory eof
697		 * in np->n_direofoffset and chop it off as an extra step
698		 * right here.
699		 */
700		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
701		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
702			n = np->n_direofoffset - uio->uio_offset;
703		break;
704	    default:
705		nfs_printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
706		bp = NULL;
707		break;
708	    };
709
710	    if (n > 0) {
711		    error = uiomove(bp->b_data + on, (int)n, uio);
712	    }
713	    if (vp->v_type == VLNK)
714		n = 0;
715	    if (bp != NULL)
716		brelse(bp);
717	} while (error == 0 && uio->uio_resid > 0 && n > 0);
718	return (error);
719}
720
721/*
722 * The NFS write path cannot handle iovecs with len > 1. So we need to
723 * break up iovecs accordingly (restricting them to wsize).
724 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
725 * For the ASYNC case, 2 copies are needed. The first a copy from the
726 * user buffer to a staging buffer and then a second copy from the staging
727 * buffer to mbufs. This can be optimized by copying from the user buffer
728 * directly into mbufs and passing the chain down, but that requires a
729 * fair amount of re-working of the relevant codepaths (and can be done
730 * later).
731 */
732static int
733nfs_directio_write(vp, uiop, cred, ioflag)
734	struct vnode *vp;
735	struct uio *uiop;
736	struct ucred *cred;
737	int ioflag;
738{
739	int error;
740	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
741	struct thread *td = uiop->uio_td;
742	int size;
743	int wsize;
744
745	mtx_lock(&nmp->nm_mtx);
746	wsize = nmp->nm_wsize;
747	mtx_unlock(&nmp->nm_mtx);
748	if (ioflag & IO_SYNC) {
749		int iomode, must_commit;
750		struct uio uio;
751		struct iovec iov;
752do_sync:
753		while (uiop->uio_resid > 0) {
754			size = min(uiop->uio_resid, wsize);
755			size = min(uiop->uio_iov->iov_len, size);
756			iov.iov_base = uiop->uio_iov->iov_base;
757			iov.iov_len = size;
758			uio.uio_iov = &iov;
759			uio.uio_iovcnt = 1;
760			uio.uio_offset = uiop->uio_offset;
761			uio.uio_resid = size;
762			uio.uio_segflg = UIO_USERSPACE;
763			uio.uio_rw = UIO_WRITE;
764			uio.uio_td = td;
765			iomode = NFSV3WRITE_FILESYNC;
766			error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred,
767						      &iomode, &must_commit);
768			KASSERT((must_commit == 0),
769				("nfs_directio_write: Did not commit write"));
770			if (error)
771				return (error);
772			uiop->uio_offset += size;
773			uiop->uio_resid -= size;
774			if (uiop->uio_iov->iov_len <= size) {
775				uiop->uio_iovcnt--;
776				uiop->uio_iov++;
777			} else {
778				uiop->uio_iov->iov_base =
779					(char *)uiop->uio_iov->iov_base + size;
780				uiop->uio_iov->iov_len -= size;
781			}
782		}
783	} else {
784		struct uio *t_uio;
785		struct iovec *t_iov;
786		struct buf *bp;
787
788		/*
789		 * Break up the write into blocksize chunks and hand these
790		 * over to nfsiod's for write back.
791		 * Unfortunately, this incurs a copy of the data. Since
792		 * the user could modify the buffer before the write is
793		 * initiated.
794		 *
795		 * The obvious optimization here is that one of the 2 copies
796		 * in the async write path can be eliminated by copying the
797		 * data here directly into mbufs and passing the mbuf chain
798		 * down. But that will require a fair amount of re-working
799		 * of the code and can be done if there's enough interest
800		 * in NFS directio access.
801		 */
802		while (uiop->uio_resid > 0) {
803			size = min(uiop->uio_resid, wsize);
804			size = min(uiop->uio_iov->iov_len, size);
805			bp = getpbuf(&nfs_pbuf_freecnt);
806			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
807			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
808			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
809			t_iov->iov_len = size;
810			t_uio->uio_iov = t_iov;
811			t_uio->uio_iovcnt = 1;
812			t_uio->uio_offset = uiop->uio_offset;
813			t_uio->uio_resid = size;
814			t_uio->uio_segflg = UIO_SYSSPACE;
815			t_uio->uio_rw = UIO_WRITE;
816			t_uio->uio_td = td;
817			bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size);
818			bp->b_flags |= B_DIRECT;
819			bp->b_iocmd = BIO_WRITE;
820			if (cred != NOCRED) {
821				crhold(cred);
822				bp->b_wcred = cred;
823			} else
824				bp->b_wcred = NOCRED;
825			bp->b_caller1 = (void *)t_uio;
826			bp->b_vp = vp;
827			error = nfs_asyncio(nmp, bp, NOCRED, td);
828			if (error) {
829				free(t_iov->iov_base, M_NFSDIRECTIO);
830				free(t_iov, M_NFSDIRECTIO);
831				free(t_uio, M_NFSDIRECTIO);
832				bp->b_vp = NULL;
833				relpbuf(bp, &nfs_pbuf_freecnt);
834				if (error == EINTR)
835					return (error);
836				goto do_sync;
837			}
838			uiop->uio_offset += size;
839			uiop->uio_resid -= size;
840			if (uiop->uio_iov->iov_len <= size) {
841				uiop->uio_iovcnt--;
842				uiop->uio_iov++;
843			} else {
844				uiop->uio_iov->iov_base =
845					(char *)uiop->uio_iov->iov_base + size;
846				uiop->uio_iov->iov_len -= size;
847			}
848		}
849	}
850	return (0);
851}
852
853/*
854 * Vnode op for write using bio
855 */
856int
857nfs_write(struct vop_write_args *ap)
858{
859	int biosize;
860	struct uio *uio = ap->a_uio;
861	struct thread *td = uio->uio_td;
862	struct vnode *vp = ap->a_vp;
863	struct nfsnode *np = VTONFS(vp);
864	struct ucred *cred = ap->a_cred;
865	int ioflag = ap->a_ioflag;
866	struct buf *bp;
867	struct vattr vattr;
868	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
869	daddr_t lbn;
870	int bcount;
871	int n, on, error = 0;
872	struct proc *p = td?td->td_proc:NULL;
873
874#ifdef DIAGNOSTIC
875	if (uio->uio_rw != UIO_WRITE)
876		panic("nfs_write mode");
877	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
878		panic("nfs_write proc");
879#endif
880	if (vp->v_type != VREG)
881		return (EIO);
882	mtx_lock(&np->n_mtx);
883	if (np->n_flag & NWRITEERR) {
884		np->n_flag &= ~NWRITEERR;
885		mtx_unlock(&np->n_mtx);
886		return (np->n_error);
887	} else
888		mtx_unlock(&np->n_mtx);
889	mtx_lock(&nmp->nm_mtx);
890	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
891	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
892		mtx_unlock(&nmp->nm_mtx);
893		(void)nfs_fsinfo(nmp, vp, cred, td);
894	} else
895		mtx_unlock(&nmp->nm_mtx);
896
897	/*
898	 * Synchronously flush pending buffers if we are in synchronous
899	 * mode or if we are appending.
900	 */
901	if (ioflag & (IO_APPEND | IO_SYNC)) {
902		mtx_lock(&np->n_mtx);
903		if (np->n_flag & NMODIFIED) {
904			mtx_unlock(&np->n_mtx);
905#ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
906			/*
907			 * Require non-blocking, synchronous writes to
908			 * dirty files to inform the program it needs
909			 * to fsync(2) explicitly.
910			 */
911			if (ioflag & IO_NDELAY)
912				return (EAGAIN);
913#endif
914flush_and_restart:
915			np->n_attrstamp = 0;
916			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
917			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
918			if (error)
919				return (error);
920		} else
921			mtx_unlock(&np->n_mtx);
922	}
923
924	/*
925	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
926	 * get the append lock.
927	 */
928	if (ioflag & IO_APPEND) {
929		np->n_attrstamp = 0;
930		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
931		error = VOP_GETATTR(vp, &vattr, cred);
932		if (error)
933			return (error);
934		mtx_lock(&np->n_mtx);
935		uio->uio_offset = np->n_size;
936		mtx_unlock(&np->n_mtx);
937	}
938
939	if (uio->uio_offset < 0)
940		return (EINVAL);
941	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
942		return (EFBIG);
943	if (uio->uio_resid == 0)
944		return (0);
945
946	if (nfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
947		return nfs_directio_write(vp, uio, cred, ioflag);
948
949	/*
950	 * Maybe this should be above the vnode op call, but so long as
951	 * file servers have no limits, i don't think it matters
952	 */
953	if (p != NULL) {
954		PROC_LOCK(p);
955		if (uio->uio_offset + uio->uio_resid >
956		    lim_cur(p, RLIMIT_FSIZE)) {
957			psignal(p, SIGXFSZ);
958			PROC_UNLOCK(p);
959			return (EFBIG);
960		}
961		PROC_UNLOCK(p);
962	}
963
964	biosize = vp->v_mount->mnt_stat.f_iosize;
965	/*
966	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
967	 * would exceed the local maximum per-file write commit size when
968	 * combined with those, we must decide whether to flush,
969	 * go synchronous, or return error.  We don't bother checking
970	 * IO_UNIT -- we just make all writes atomic anyway, as there's
971	 * no point optimizing for something that really won't ever happen.
972	 */
973	if (!(ioflag & IO_SYNC)) {
974		int nflag;
975
976		mtx_lock(&np->n_mtx);
977		nflag = np->n_flag;
978		mtx_unlock(&np->n_mtx);
979		int needrestart = 0;
980		if (nmp->nm_wcommitsize < uio->uio_resid) {
981			/*
982			 * If this request could not possibly be completed
983			 * without exceeding the maximum outstanding write
984			 * commit size, see if we can convert it into a
985			 * synchronous write operation.
986			 */
987			if (ioflag & IO_NDELAY)
988				return (EAGAIN);
989			ioflag |= IO_SYNC;
990			if (nflag & NMODIFIED)
991				needrestart = 1;
992		} else if (nflag & NMODIFIED) {
993			int wouldcommit = 0;
994			BO_LOCK(&vp->v_bufobj);
995			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
996				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
997				    b_bobufs) {
998					if (bp->b_flags & B_NEEDCOMMIT)
999						wouldcommit += bp->b_bcount;
1000				}
1001			}
1002			BO_UNLOCK(&vp->v_bufobj);
1003			/*
1004			 * Since we're not operating synchronously and
1005			 * bypassing the buffer cache, we are in a commit
1006			 * and holding all of these buffers whether
1007			 * transmitted or not.  If not limited, this
1008			 * will lead to the buffer cache deadlocking,
1009			 * as no one else can flush our uncommitted buffers.
1010			 */
1011			wouldcommit += uio->uio_resid;
1012			/*
1013			 * If we would initially exceed the maximum
1014			 * outstanding write commit size, flush and restart.
1015			 */
1016			if (wouldcommit > nmp->nm_wcommitsize)
1017				needrestart = 1;
1018		}
1019		if (needrestart)
1020			goto flush_and_restart;
1021	}
1022
1023	do {
1024		nfsstats.biocache_writes++;
1025		lbn = uio->uio_offset / biosize;
1026		on = uio->uio_offset & (biosize-1);
1027		n = min((unsigned)(biosize - on), uio->uio_resid);
1028again:
1029		/*
1030		 * Handle direct append and file extension cases, calculate
1031		 * unaligned buffer size.
1032		 */
1033		mtx_lock(&np->n_mtx);
1034		if (uio->uio_offset == np->n_size && n) {
1035			mtx_unlock(&np->n_mtx);
1036			/*
1037			 * Get the buffer (in its pre-append state to maintain
1038			 * B_CACHE if it was previously set).  Resize the
1039			 * nfsnode after we have locked the buffer to prevent
1040			 * readers from reading garbage.
1041			 */
1042			bcount = on;
1043			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1044
1045			if (bp != NULL) {
1046				long save;
1047
1048				mtx_lock(&np->n_mtx);
1049				np->n_size = uio->uio_offset + n;
1050				np->n_flag |= NMODIFIED;
1051				vnode_pager_setsize(vp, np->n_size);
1052				mtx_unlock(&np->n_mtx);
1053
1054				save = bp->b_flags & B_CACHE;
1055				bcount += n;
1056				allocbuf(bp, bcount);
1057				bp->b_flags |= save;
1058			}
1059		} else {
1060			/*
1061			 * Obtain the locked cache block first, and then
1062			 * adjust the file's size as appropriate.
1063			 */
1064			bcount = on + n;
1065			if ((off_t)lbn * biosize + bcount < np->n_size) {
1066				if ((off_t)(lbn + 1) * biosize < np->n_size)
1067					bcount = biosize;
1068				else
1069					bcount = np->n_size - (off_t)lbn * biosize;
1070			}
1071			mtx_unlock(&np->n_mtx);
1072			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1073			mtx_lock(&np->n_mtx);
1074			if (uio->uio_offset + n > np->n_size) {
1075				np->n_size = uio->uio_offset + n;
1076				np->n_flag |= NMODIFIED;
1077				vnode_pager_setsize(vp, np->n_size);
1078			}
1079			mtx_unlock(&np->n_mtx);
1080		}
1081
1082		if (!bp) {
1083			error = nfs_sigintr(nmp, td);
1084			if (!error)
1085				error = EINTR;
1086			break;
1087		}
1088
1089		/*
1090		 * Issue a READ if B_CACHE is not set.  In special-append
1091		 * mode, B_CACHE is based on the buffer prior to the write
1092		 * op and is typically set, avoiding the read.  If a read
1093		 * is required in special append mode, the server will
1094		 * probably send us a short-read since we extended the file
1095		 * on our end, resulting in b_resid == 0 and, thusly,
1096		 * B_CACHE getting set.
1097		 *
1098		 * We can also avoid issuing the read if the write covers
1099		 * the entire buffer.  We have to make sure the buffer state
1100		 * is reasonable in this case since we will not be initiating
1101		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1102		 * more information.
1103		 *
1104		 * B_CACHE may also be set due to the buffer being cached
1105		 * normally.
1106		 */
1107
1108		if (on == 0 && n == bcount) {
1109			bp->b_flags |= B_CACHE;
1110			bp->b_flags &= ~B_INVAL;
1111			bp->b_ioflags &= ~BIO_ERROR;
1112		}
1113
1114		if ((bp->b_flags & B_CACHE) == 0) {
1115			bp->b_iocmd = BIO_READ;
1116			vfs_busy_pages(bp, 0);
1117			error = nfs_doio(vp, bp, cred, td);
1118			if (error) {
1119				brelse(bp);
1120				break;
1121			}
1122		}
1123		if (bp->b_wcred == NOCRED)
1124			bp->b_wcred = crhold(cred);
1125		mtx_lock(&np->n_mtx);
1126		np->n_flag |= NMODIFIED;
1127		mtx_unlock(&np->n_mtx);
1128
1129		/*
1130		 * If dirtyend exceeds file size, chop it down.  This should
1131		 * not normally occur but there is an append race where it
1132		 * might occur XXX, so we log it.
1133		 *
1134		 * If the chopping creates a reverse-indexed or degenerate
1135		 * situation with dirtyoff/end, we 0 both of them.
1136		 */
1137
1138		if (bp->b_dirtyend > bcount) {
1139			nfs_printf("NFS append race @%lx:%d\n",
1140			    (long)bp->b_blkno * DEV_BSIZE,
1141			    bp->b_dirtyend - bcount);
1142			bp->b_dirtyend = bcount;
1143		}
1144
1145		if (bp->b_dirtyoff >= bp->b_dirtyend)
1146			bp->b_dirtyoff = bp->b_dirtyend = 0;
1147
1148		/*
1149		 * If the new write will leave a contiguous dirty
1150		 * area, just update the b_dirtyoff and b_dirtyend,
1151		 * otherwise force a write rpc of the old dirty area.
1152		 *
1153		 * While it is possible to merge discontiguous writes due to
1154		 * our having a B_CACHE buffer ( and thus valid read data
1155		 * for the hole), we don't because it could lead to
1156		 * significant cache coherency problems with multiple clients,
1157		 * especially if locking is implemented later on.
1158		 *
1159		 * as an optimization we could theoretically maintain
1160		 * a linked list of discontinuous areas, but we would still
1161		 * have to commit them separately so there isn't much
1162		 * advantage to it except perhaps a bit of asynchronization.
1163		 */
1164
1165		if (bp->b_dirtyend > 0 &&
1166		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1167			if (bwrite(bp) == EINTR) {
1168				error = EINTR;
1169				break;
1170			}
1171			goto again;
1172		}
1173
1174		error = uiomove((char *)bp->b_data + on, n, uio);
1175
1176		/*
1177		 * Since this block is being modified, it must be written
1178		 * again and not just committed.  Since write clustering does
1179		 * not work for the stage 1 data write, only the stage 2
1180		 * commit rpc, we have to clear B_CLUSTEROK as well.
1181		 */
1182		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1183
1184		if (error) {
1185			bp->b_ioflags |= BIO_ERROR;
1186			brelse(bp);
1187			break;
1188		}
1189
1190		/*
1191		 * Only update dirtyoff/dirtyend if not a degenerate
1192		 * condition.
1193		 */
1194		if (n) {
1195			if (bp->b_dirtyend > 0) {
1196				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1197				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1198			} else {
1199				bp->b_dirtyoff = on;
1200				bp->b_dirtyend = on + n;
1201			}
1202			vfs_bio_set_valid(bp, on, n);
1203		}
1204
1205		/*
1206		 * If IO_SYNC do bwrite().
1207		 *
1208		 * IO_INVAL appears to be unused.  The idea appears to be
1209		 * to turn off caching in this case.  Very odd.  XXX
1210		 */
1211		if ((ioflag & IO_SYNC)) {
1212			if (ioflag & IO_INVAL)
1213				bp->b_flags |= B_NOCACHE;
1214			error = bwrite(bp);
1215			if (error)
1216				break;
1217		} else if ((n + on) == biosize) {
1218			bp->b_flags |= B_ASYNC;
1219			(void) (nmp->nm_rpcops->nr_writebp)(bp, 0, NULL);
1220		} else {
1221			bdwrite(bp);
1222		}
1223	} while (uio->uio_resid > 0 && n > 0);
1224
1225	return (error);
1226}
1227
1228/*
1229 * Get an nfs cache block.
1230 *
1231 * Allocate a new one if the block isn't currently in the cache
1232 * and return the block marked busy. If the calling process is
1233 * interrupted by a signal for an interruptible mount point, return
1234 * NULL.
1235 *
1236 * The caller must carefully deal with the possible B_INVAL state of
1237 * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1238 * indirectly), so synchronous reads can be issued without worrying about
1239 * the B_INVAL state.  We have to be a little more careful when dealing
1240 * with writes (see comments in nfs_write()) when extending a file past
1241 * its EOF.
1242 */
1243static struct buf *
1244nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1245{
1246	struct buf *bp;
1247	struct mount *mp;
1248	struct nfsmount *nmp;
1249
1250	mp = vp->v_mount;
1251	nmp = VFSTONFS(mp);
1252
1253	if (nmp->nm_flag & NFSMNT_INT) {
1254 		sigset_t oldset;
1255
1256 		nfs_set_sigmask(td, &oldset);
1257		bp = getblk(vp, bn, size, PCATCH, 0, 0);
1258 		nfs_restore_sigmask(td, &oldset);
1259		while (bp == NULL) {
1260			if (nfs_sigintr(nmp, td))
1261				return (NULL);
1262			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1263		}
1264	} else {
1265		bp = getblk(vp, bn, size, 0, 0, 0);
1266	}
1267
1268	if (vp->v_type == VREG) {
1269		int biosize;
1270
1271		biosize = mp->mnt_stat.f_iosize;
1272		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1273	}
1274	return (bp);
1275}
1276
1277/*
1278 * Flush and invalidate all dirty buffers. If another process is already
1279 * doing the flush, just wait for completion.
1280 */
1281int
1282nfs_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1283{
1284	struct nfsnode *np = VTONFS(vp);
1285	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1286	int error = 0, slpflag, slptimeo;
1287 	int old_lock = 0;
1288
1289	ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
1290
1291	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1292		intrflg = 0;
1293	if (intrflg) {
1294		slpflag = PCATCH;
1295		slptimeo = 2 * hz;
1296	} else {
1297		slpflag = 0;
1298		slptimeo = 0;
1299	}
1300
1301	old_lock = nfs_upgrade_vnlock(vp);
1302	if (vp->v_iflag & VI_DOOMED) {
1303		/*
1304		 * Since vgonel() uses the generic vinvalbuf() to flush
1305		 * dirty buffers and it does not call this function, it
1306		 * is safe to just return OK when VI_DOOMED is set.
1307		 */
1308		nfs_downgrade_vnlock(vp, old_lock);
1309		return (0);
1310	}
1311
1312	/*
1313	 * Now, flush as required.
1314	 */
1315	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1316		VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
1317		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1318		VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
1319		/*
1320		 * If the page clean was interrupted, fail the invalidation.
1321		 * Not doing so, we run the risk of losing dirty pages in the
1322		 * vinvalbuf() call below.
1323		 */
1324		if (intrflg && (error = nfs_sigintr(nmp, td)))
1325			goto out;
1326	}
1327
1328	error = vinvalbuf(vp, flags, slpflag, 0);
1329	while (error) {
1330		if (intrflg && (error = nfs_sigintr(nmp, td)))
1331			goto out;
1332		error = vinvalbuf(vp, flags, 0, slptimeo);
1333	}
1334	mtx_lock(&np->n_mtx);
1335	if (np->n_directio_asyncwr == 0)
1336		np->n_flag &= ~NMODIFIED;
1337	mtx_unlock(&np->n_mtx);
1338out:
1339	nfs_downgrade_vnlock(vp, old_lock);
1340	return error;
1341}
1342
1343/*
1344 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1345 * This is mainly to avoid queueing async I/O requests when the nfsiods
1346 * are all hung on a dead server.
1347 *
1348 * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1349 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1350 */
1351int
1352nfs_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1353{
1354	int iod;
1355	int gotiod;
1356	int slpflag = 0;
1357	int slptimeo = 0;
1358	int error, error2;
1359
1360	/*
1361	 * Commits are usually short and sweet so lets save some cpu and
1362	 * leave the async daemons for more important rpc's (such as reads
1363	 * and writes).
1364	 */
1365	mtx_lock(&nfs_iod_mtx);
1366	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1367	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1368		mtx_unlock(&nfs_iod_mtx);
1369		return(EIO);
1370	}
1371again:
1372	if (nmp->nm_flag & NFSMNT_INT)
1373		slpflag = PCATCH;
1374	gotiod = FALSE;
1375
1376	/*
1377	 * Find a free iod to process this request.
1378	 */
1379	for (iod = 0; iod < nfs_numasync; iod++)
1380		if (nfs_iodwant[iod]) {
1381			gotiod = TRUE;
1382			break;
1383		}
1384
1385	/*
1386	 * Try to create one if none are free.
1387	 */
1388	if (!gotiod) {
1389		iod = nfs_nfsiodnew();
1390		if (iod != -1)
1391			gotiod = TRUE;
1392	}
1393
1394	if (gotiod) {
1395		/*
1396		 * Found one, so wake it up and tell it which
1397		 * mount to process.
1398		 */
1399		NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
1400		    iod, nmp));
1401		nfs_iodwant[iod] = NULL;
1402		nfs_iodmount[iod] = nmp;
1403		nmp->nm_bufqiods++;
1404		wakeup(&nfs_iodwant[iod]);
1405	}
1406
1407	/*
1408	 * If none are free, we may already have an iod working on this mount
1409	 * point.  If so, it will process our request.
1410	 */
1411	if (!gotiod) {
1412		if (nmp->nm_bufqiods > 0) {
1413			NFS_DPF(ASYNCIO,
1414				("nfs_asyncio: %d iods are already processing mount %p\n",
1415				 nmp->nm_bufqiods, nmp));
1416			gotiod = TRUE;
1417		}
1418	}
1419
1420	/*
1421	 * If we have an iod which can process the request, then queue
1422	 * the buffer.
1423	 */
1424	if (gotiod) {
1425		/*
1426		 * Ensure that the queue never grows too large.  We still want
1427		 * to asynchronize so we block rather then return EIO.
1428		 */
1429		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1430			NFS_DPF(ASYNCIO,
1431				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1432			nmp->nm_bufqwant = TRUE;
1433 			error = nfs_msleep(td, &nmp->nm_bufq, &nfs_iod_mtx,
1434					   slpflag | PRIBIO,
1435 					   "nfsaio", slptimeo);
1436			if (error) {
1437				error2 = nfs_sigintr(nmp, td);
1438				if (error2) {
1439					mtx_unlock(&nfs_iod_mtx);
1440					return (error2);
1441				}
1442				if (slpflag == PCATCH) {
1443					slpflag = 0;
1444					slptimeo = 2 * hz;
1445				}
1446			}
1447			/*
1448			 * We might have lost our iod while sleeping,
1449			 * so check and loop if nescessary.
1450			 */
1451			if (nmp->nm_bufqiods == 0) {
1452				NFS_DPF(ASYNCIO,
1453					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1454				goto again;
1455			}
1456		}
1457
1458		/* We might have lost our nfsiod */
1459		if (nmp->nm_bufqiods == 0) {
1460			NFS_DPF(ASYNCIO,
1461				("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1462			goto again;
1463		}
1464
1465		if (bp->b_iocmd == BIO_READ) {
1466			if (bp->b_rcred == NOCRED && cred != NOCRED)
1467				bp->b_rcred = crhold(cred);
1468		} else {
1469			if (bp->b_wcred == NOCRED && cred != NOCRED)
1470				bp->b_wcred = crhold(cred);
1471		}
1472
1473		if (bp->b_flags & B_REMFREE)
1474			bremfreef(bp);
1475		BUF_KERNPROC(bp);
1476		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1477		nmp->nm_bufqlen++;
1478		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1479			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1480			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1481			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1482			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1483		}
1484		mtx_unlock(&nfs_iod_mtx);
1485		return (0);
1486	}
1487
1488	mtx_unlock(&nfs_iod_mtx);
1489
1490	/*
1491	 * All the iods are busy on other mounts, so return EIO to
1492	 * force the caller to process the i/o synchronously.
1493	 */
1494	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1495	return (EIO);
1496}
1497
1498void
1499nfs_doio_directwrite(struct buf *bp)
1500{
1501	int iomode, must_commit;
1502	struct uio *uiop = (struct uio *)bp->b_caller1;
1503	char *iov_base = uiop->uio_iov->iov_base;
1504	struct nfsmount *nmp = VFSTONFS(bp->b_vp->v_mount);
1505
1506	iomode = NFSV3WRITE_FILESYNC;
1507	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1508	(nmp->nm_rpcops->nr_writerpc)(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit);
1509	KASSERT((must_commit == 0), ("nfs_doio_directwrite: Did not commit write"));
1510	free(iov_base, M_NFSDIRECTIO);
1511	free(uiop->uio_iov, M_NFSDIRECTIO);
1512	free(uiop, M_NFSDIRECTIO);
1513	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1514		struct nfsnode *np = VTONFS(bp->b_vp);
1515		mtx_lock(&np->n_mtx);
1516		np->n_directio_asyncwr--;
1517		if (np->n_directio_asyncwr == 0) {
1518			VTONFS(bp->b_vp)->n_flag &= ~NMODIFIED;
1519			if ((np->n_flag & NFSYNCWAIT)) {
1520				np->n_flag &= ~NFSYNCWAIT;
1521				wakeup((caddr_t)&np->n_directio_asyncwr);
1522			}
1523		}
1524		mtx_unlock(&np->n_mtx);
1525	}
1526	bp->b_vp = NULL;
1527	relpbuf(bp, &nfs_pbuf_freecnt);
1528}
1529
1530/*
1531 * Do an I/O operation to/from a cache block. This may be called
1532 * synchronously or from an nfsiod.
1533 */
1534int
1535nfs_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td)
1536{
1537	struct uio *uiop;
1538	struct nfsnode *np;
1539	struct nfsmount *nmp;
1540	int error = 0, iomode, must_commit = 0;
1541	struct uio uio;
1542	struct iovec io;
1543	struct proc *p = td ? td->td_proc : NULL;
1544	uint8_t	iocmd;
1545
1546	np = VTONFS(vp);
1547	nmp = VFSTONFS(vp->v_mount);
1548	uiop = &uio;
1549	uiop->uio_iov = &io;
1550	uiop->uio_iovcnt = 1;
1551	uiop->uio_segflg = UIO_SYSSPACE;
1552	uiop->uio_td = td;
1553
1554	/*
1555	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1556	 * do this here so we do not have to do it in all the code that
1557	 * calls us.
1558	 */
1559	bp->b_flags &= ~B_INVAL;
1560	bp->b_ioflags &= ~BIO_ERROR;
1561
1562	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1563	iocmd = bp->b_iocmd;
1564	if (iocmd == BIO_READ) {
1565	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1566	    io.iov_base = bp->b_data;
1567	    uiop->uio_rw = UIO_READ;
1568
1569	    switch (vp->v_type) {
1570	    case VREG:
1571		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1572		nfsstats.read_bios++;
1573		error = (nmp->nm_rpcops->nr_readrpc)(vp, uiop, cr);
1574
1575		if (!error) {
1576		    if (uiop->uio_resid) {
1577			/*
1578			 * If we had a short read with no error, we must have
1579			 * hit a file hole.  We should zero-fill the remainder.
1580			 * This can also occur if the server hits the file EOF.
1581			 *
1582			 * Holes used to be able to occur due to pending
1583			 * writes, but that is not possible any longer.
1584			 */
1585			int nread = bp->b_bcount - uiop->uio_resid;
1586			int left  = uiop->uio_resid;
1587
1588			if (left > 0)
1589				bzero((char *)bp->b_data + nread, left);
1590			uiop->uio_resid = 0;
1591		    }
1592		}
1593		/* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
1594		if (p && (vp->v_vflag & VV_TEXT)) {
1595			mtx_lock(&np->n_mtx);
1596			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.va_mtime)) {
1597				mtx_unlock(&np->n_mtx);
1598				PROC_LOCK(p);
1599				killproc(p, "text file modification");
1600				PROC_UNLOCK(p);
1601			} else
1602				mtx_unlock(&np->n_mtx);
1603		}
1604		break;
1605	    case VLNK:
1606		uiop->uio_offset = (off_t)0;
1607		nfsstats.readlink_bios++;
1608		error = (nmp->nm_rpcops->nr_readlinkrpc)(vp, uiop, cr);
1609		break;
1610	    case VDIR:
1611		nfsstats.readdir_bios++;
1612		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1613		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1614			error = nfs_readdirplusrpc(vp, uiop, cr);
1615			if (error == NFSERR_NOTSUPP)
1616				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1617		}
1618		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1619			error = nfs_readdirrpc(vp, uiop, cr);
1620		/*
1621		 * end-of-directory sets B_INVAL but does not generate an
1622		 * error.
1623		 */
1624		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1625			bp->b_flags |= B_INVAL;
1626		break;
1627	    default:
1628		nfs_printf("nfs_doio:  type %x unexpected\n", vp->v_type);
1629		break;
1630	    };
1631	    if (error) {
1632		bp->b_ioflags |= BIO_ERROR;
1633		bp->b_error = error;
1634	    }
1635	} else {
1636	    /*
1637	     * If we only need to commit, try to commit
1638	     */
1639	    if (bp->b_flags & B_NEEDCOMMIT) {
1640		    int retv;
1641		    off_t off;
1642
1643		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1644		    retv = (nmp->nm_rpcops->nr_commit)(
1645				vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1646				bp->b_wcred, td);
1647		    if (retv == 0) {
1648			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1649			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1650			    bp->b_resid = 0;
1651			    bufdone(bp);
1652			    return (0);
1653		    }
1654		    if (retv == NFSERR_STALEWRITEVERF) {
1655			    nfs_clearcommit(vp->v_mount);
1656		    }
1657	    }
1658
1659	    /*
1660	     * Setup for actual write
1661	     */
1662	    mtx_lock(&np->n_mtx);
1663	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1664		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1665	    mtx_unlock(&np->n_mtx);
1666
1667	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1668		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1669		    - bp->b_dirtyoff;
1670		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1671		    + bp->b_dirtyoff;
1672		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1673		uiop->uio_rw = UIO_WRITE;
1674		nfsstats.write_bios++;
1675
1676		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1677		    iomode = NFSV3WRITE_UNSTABLE;
1678		else
1679		    iomode = NFSV3WRITE_FILESYNC;
1680
1681		error = (nmp->nm_rpcops->nr_writerpc)(vp, uiop, cr, &iomode, &must_commit);
1682
1683		/*
1684		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1685		 * to cluster the buffers needing commit.  This will allow
1686		 * the system to submit a single commit rpc for the whole
1687		 * cluster.  We can do this even if the buffer is not 100%
1688		 * dirty (relative to the NFS blocksize), so we optimize the
1689		 * append-to-file-case.
1690		 *
1691		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1692		 * cleared because write clustering only works for commit
1693		 * rpc's, not for the data portion of the write).
1694		 */
1695
1696		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1697		    bp->b_flags |= B_NEEDCOMMIT;
1698		    if (bp->b_dirtyoff == 0
1699			&& bp->b_dirtyend == bp->b_bcount)
1700			bp->b_flags |= B_CLUSTEROK;
1701		} else {
1702		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1703		}
1704
1705		/*
1706		 * For an interrupted write, the buffer is still valid
1707		 * and the write hasn't been pushed to the server yet,
1708		 * so we can't set BIO_ERROR and report the interruption
1709		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1710		 * is not relevant, so the rpc attempt is essentially
1711		 * a noop.  For the case of a V3 write rpc not being
1712		 * committed to stable storage, the block is still
1713		 * dirty and requires either a commit rpc or another
1714		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1715		 * the block is reused. This is indicated by setting
1716		 * the B_DELWRI and B_NEEDCOMMIT flags.
1717		 *
1718		 * If the buffer is marked B_PAGING, it does not reside on
1719		 * the vp's paging queues so we cannot call bdirty().  The
1720		 * bp in this case is not an NFS cache block so we should
1721		 * be safe. XXX
1722		 *
1723		 * The logic below breaks up errors into recoverable and
1724		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1725		 * and keep the buffer around for potential write retries.
1726		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1727		 * and save the error in the nfsnode. This is less than ideal
1728		 * but necessary. Keeping such buffers around could potentially
1729		 * cause buffer exhaustion eventually (they can never be written
1730		 * out, so will get constantly be re-dirtied). It also causes
1731		 * all sorts of vfs panics. For non-recoverable write errors,
1732		 * also invalidate the attrcache, so we'll be forced to go over
1733		 * the wire for this object, returning an error to user on next
1734		 * call (most of the time).
1735		 */
1736    		if (error == EINTR || error == EIO || error == ETIMEDOUT
1737		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1738			int s;
1739
1740			s = splbio();
1741			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1742			if ((bp->b_flags & B_PAGING) == 0) {
1743			    bdirty(bp);
1744			    bp->b_flags &= ~B_DONE;
1745			}
1746			if (error && (bp->b_flags & B_ASYNC) == 0)
1747			    bp->b_flags |= B_EINTR;
1748			splx(s);
1749	    	} else {
1750		    if (error) {
1751			bp->b_ioflags |= BIO_ERROR;
1752			bp->b_flags |= B_INVAL;
1753			bp->b_error = np->n_error = error;
1754			mtx_lock(&np->n_mtx);
1755			np->n_flag |= NWRITEERR;
1756			np->n_attrstamp = 0;
1757			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1758			mtx_unlock(&np->n_mtx);
1759		    }
1760		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1761		}
1762	    } else {
1763		bp->b_resid = 0;
1764		bufdone(bp);
1765		return (0);
1766	    }
1767	}
1768	bp->b_resid = uiop->uio_resid;
1769	if (must_commit)
1770	    nfs_clearcommit(vp->v_mount);
1771	bufdone(bp);
1772	return (error);
1773}
1774
1775/*
1776 * Used to aid in handling ftruncate() operations on the NFS client side.
1777 * Truncation creates a number of special problems for NFS.  We have to
1778 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1779 * we have to properly handle VM pages or (potentially dirty) buffers
1780 * that straddle the truncation point.
1781 */
1782
1783int
1784nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1785{
1786	struct nfsnode *np = VTONFS(vp);
1787	u_quad_t tsize;
1788	int biosize = vp->v_mount->mnt_stat.f_iosize;
1789	int error = 0;
1790
1791	mtx_lock(&np->n_mtx);
1792	tsize = np->n_size;
1793	np->n_size = nsize;
1794	mtx_unlock(&np->n_mtx);
1795
1796	if (nsize < tsize) {
1797		struct buf *bp;
1798		daddr_t lbn;
1799		int bufsize;
1800
1801		/*
1802		 * vtruncbuf() doesn't get the buffer overlapping the
1803		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1804		 * buffer that now needs to be truncated.
1805		 */
1806		error = vtruncbuf(vp, cred, td, nsize, biosize);
1807		lbn = nsize / biosize;
1808		bufsize = nsize & (biosize - 1);
1809		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1810 		if (!bp)
1811 			return EINTR;
1812		if (bp->b_dirtyoff > bp->b_bcount)
1813			bp->b_dirtyoff = bp->b_bcount;
1814		if (bp->b_dirtyend > bp->b_bcount)
1815			bp->b_dirtyend = bp->b_bcount;
1816		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1817		brelse(bp);
1818	} else {
1819		vnode_pager_setsize(vp, nsize);
1820	}
1821	return(error);
1822}
1823
1824