nfs_bio.c revision 193952
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/nfsclient/nfs_bio.c 193952 2009-06-10 21:03:57Z rmacklem $");
37
38#include "opt_kdtrace.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bio.h>
43#include <sys/buf.h>
44#include <sys/kernel.h>
45#include <sys/mbuf.h>
46#include <sys/mount.h>
47#include <sys/proc.h>
48#include <sys/resourcevar.h>
49#include <sys/signalvar.h>
50#include <sys/vmmeter.h>
51#include <sys/vnode.h>
52
53#include <vm/vm.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_page.h>
56#include <vm/vm_object.h>
57#include <vm/vm_pager.h>
58#include <vm/vnode_pager.h>
59
60#include <nfs/rpcv2.h>
61#include <nfs/nfsproto.h>
62#include <nfsclient/nfs.h>
63#include <nfsclient/nfsmount.h>
64#include <nfsclient/nfsnode.h>
65#include <nfsclient/nfs_kdtrace.h>
66
67static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
68		    struct thread *td);
69static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
70			      struct ucred *cred, int ioflag);
71
72extern int nfs_directio_enable;
73extern int nfs_directio_allow_mmap;
74
75/*
76 * Vnode op for VM getpages.
77 */
78int
79nfs_getpages(struct vop_getpages_args *ap)
80{
81	int i, error, nextoff, size, toff, count, npages;
82	struct uio uio;
83	struct iovec iov;
84	vm_offset_t kva;
85	struct buf *bp;
86	struct vnode *vp;
87	struct thread *td;
88	struct ucred *cred;
89	struct nfsmount *nmp;
90	vm_object_t object;
91	vm_page_t *pages;
92	struct nfsnode *np;
93
94	vp = ap->a_vp;
95	np = VTONFS(vp);
96	td = curthread;				/* XXX */
97	cred = curthread->td_ucred;		/* XXX */
98	nmp = VFSTONFS(vp->v_mount);
99	pages = ap->a_m;
100	count = ap->a_count;
101
102	if ((object = vp->v_object) == NULL) {
103		nfs_printf("nfs_getpages: called with non-merged cache vnode??\n");
104		return VM_PAGER_ERROR;
105	}
106
107	if (nfs_directio_enable && !nfs_directio_allow_mmap) {
108		mtx_lock(&np->n_mtx);
109		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
110			mtx_unlock(&np->n_mtx);
111			nfs_printf("nfs_getpages: called on non-cacheable vnode??\n");
112			return VM_PAGER_ERROR;
113		} else
114			mtx_unlock(&np->n_mtx);
115	}
116
117	mtx_lock(&nmp->nm_mtx);
118	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
119	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
120		mtx_unlock(&nmp->nm_mtx);
121		/* We'll never get here for v4, because we always have fsinfo */
122		(void)nfs_fsinfo(nmp, vp, cred, td);
123	} else
124		mtx_unlock(&nmp->nm_mtx);
125
126	npages = btoc(count);
127
128	/*
129	 * If the requested page is partially valid, just return it and
130	 * allow the pager to zero-out the blanks.  Partially valid pages
131	 * can only occur at the file EOF.
132	 */
133
134	{
135		vm_page_t m = pages[ap->a_reqpage];
136
137		VM_OBJECT_LOCK(object);
138		if (m->valid != 0) {
139			vm_page_lock_queues();
140			for (i = 0; i < npages; ++i) {
141				if (i != ap->a_reqpage)
142					vm_page_free(pages[i]);
143			}
144			vm_page_unlock_queues();
145			VM_OBJECT_UNLOCK(object);
146			return(0);
147		}
148		VM_OBJECT_UNLOCK(object);
149	}
150
151	/*
152	 * We use only the kva address for the buffer, but this is extremely
153	 * convienient and fast.
154	 */
155	bp = getpbuf(&nfs_pbuf_freecnt);
156
157	kva = (vm_offset_t) bp->b_data;
158	pmap_qenter(kva, pages, npages);
159	PCPU_INC(cnt.v_vnodein);
160	PCPU_ADD(cnt.v_vnodepgsin, npages);
161
162	iov.iov_base = (caddr_t) kva;
163	iov.iov_len = count;
164	uio.uio_iov = &iov;
165	uio.uio_iovcnt = 1;
166	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
167	uio.uio_resid = count;
168	uio.uio_segflg = UIO_SYSSPACE;
169	uio.uio_rw = UIO_READ;
170	uio.uio_td = td;
171
172	error = (nmp->nm_rpcops->nr_readrpc)(vp, &uio, cred);
173	pmap_qremove(kva, npages);
174
175	relpbuf(bp, &nfs_pbuf_freecnt);
176
177	if (error && (uio.uio_resid == count)) {
178		nfs_printf("nfs_getpages: error %d\n", error);
179		VM_OBJECT_LOCK(object);
180		vm_page_lock_queues();
181		for (i = 0; i < npages; ++i) {
182			if (i != ap->a_reqpage)
183				vm_page_free(pages[i]);
184		}
185		vm_page_unlock_queues();
186		VM_OBJECT_UNLOCK(object);
187		return VM_PAGER_ERROR;
188	}
189
190	/*
191	 * Calculate the number of bytes read and validate only that number
192	 * of bytes.  Note that due to pending writes, size may be 0.  This
193	 * does not mean that the remaining data is invalid!
194	 */
195
196	size = count - uio.uio_resid;
197	VM_OBJECT_LOCK(object);
198	vm_page_lock_queues();
199	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
200		vm_page_t m;
201		nextoff = toff + PAGE_SIZE;
202		m = pages[i];
203
204		if (nextoff <= size) {
205			/*
206			 * Read operation filled an entire page
207			 */
208			m->valid = VM_PAGE_BITS_ALL;
209			KASSERT(m->dirty == 0,
210			    ("nfs_getpages: page %p is dirty", m));
211		} else if (size > toff) {
212			/*
213			 * Read operation filled a partial page.
214			 */
215			m->valid = 0;
216			vm_page_set_valid(m, 0, size - toff);
217			KASSERT(m->dirty == 0,
218			    ("nfs_getpages: page %p is dirty", m));
219		} else {
220			/*
221			 * Read operation was short.  If no error occured
222			 * we may have hit a zero-fill section.   We simply
223			 * leave valid set to 0.
224			 */
225			;
226		}
227		if (i != ap->a_reqpage) {
228			/*
229			 * Whether or not to leave the page activated is up in
230			 * the air, but we should put the page on a page queue
231			 * somewhere (it already is in the object).  Result:
232			 * It appears that emperical results show that
233			 * deactivating pages is best.
234			 */
235
236			/*
237			 * Just in case someone was asking for this page we
238			 * now tell them that it is ok to use.
239			 */
240			if (!error) {
241				if (m->oflags & VPO_WANTED)
242					vm_page_activate(m);
243				else
244					vm_page_deactivate(m);
245				vm_page_wakeup(m);
246			} else {
247				vm_page_free(m);
248			}
249		}
250	}
251	vm_page_unlock_queues();
252	VM_OBJECT_UNLOCK(object);
253	return 0;
254}
255
256/*
257 * Vnode op for VM putpages.
258 */
259int
260nfs_putpages(struct vop_putpages_args *ap)
261{
262	struct uio uio;
263	struct iovec iov;
264	vm_offset_t kva;
265	struct buf *bp;
266	int iomode, must_commit, i, error, npages, count;
267	off_t offset;
268	int *rtvals;
269	struct vnode *vp;
270	struct thread *td;
271	struct ucred *cred;
272	struct nfsmount *nmp;
273	struct nfsnode *np;
274	vm_page_t *pages;
275
276	vp = ap->a_vp;
277	np = VTONFS(vp);
278	td = curthread;				/* XXX */
279	cred = curthread->td_ucred;		/* XXX */
280	nmp = VFSTONFS(vp->v_mount);
281	pages = ap->a_m;
282	count = ap->a_count;
283	rtvals = ap->a_rtvals;
284	npages = btoc(count);
285	offset = IDX_TO_OFF(pages[0]->pindex);
286
287	mtx_lock(&nmp->nm_mtx);
288	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
289	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
290		mtx_unlock(&nmp->nm_mtx);
291		(void)nfs_fsinfo(nmp, vp, cred, td);
292	} else
293		mtx_unlock(&nmp->nm_mtx);
294
295	mtx_lock(&np->n_mtx);
296	if (nfs_directio_enable && !nfs_directio_allow_mmap &&
297	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
298		mtx_unlock(&np->n_mtx);
299		nfs_printf("nfs_putpages: called on noncache-able vnode??\n");
300		mtx_lock(&np->n_mtx);
301	}
302
303	for (i = 0; i < npages; i++)
304		rtvals[i] = VM_PAGER_AGAIN;
305
306	/*
307	 * When putting pages, do not extend file past EOF.
308	 */
309	if (offset + count > np->n_size) {
310		count = np->n_size - offset;
311		if (count < 0)
312			count = 0;
313	}
314	mtx_unlock(&np->n_mtx);
315
316	/*
317	 * We use only the kva address for the buffer, but this is extremely
318	 * convienient and fast.
319	 */
320	bp = getpbuf(&nfs_pbuf_freecnt);
321
322	kva = (vm_offset_t) bp->b_data;
323	pmap_qenter(kva, pages, npages);
324	PCPU_INC(cnt.v_vnodeout);
325	PCPU_ADD(cnt.v_vnodepgsout, count);
326
327	iov.iov_base = (caddr_t) kva;
328	iov.iov_len = count;
329	uio.uio_iov = &iov;
330	uio.uio_iovcnt = 1;
331	uio.uio_offset = offset;
332	uio.uio_resid = count;
333	uio.uio_segflg = UIO_SYSSPACE;
334	uio.uio_rw = UIO_WRITE;
335	uio.uio_td = td;
336
337	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
338	    iomode = NFSV3WRITE_UNSTABLE;
339	else
340	    iomode = NFSV3WRITE_FILESYNC;
341
342	error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, &iomode, &must_commit);
343
344	pmap_qremove(kva, npages);
345	relpbuf(bp, &nfs_pbuf_freecnt);
346
347	if (!error) {
348		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
349		for (i = 0; i < nwritten; i++) {
350			rtvals[i] = VM_PAGER_OK;
351			vm_page_undirty(pages[i]);
352		}
353		if (must_commit) {
354			nfs_clearcommit(vp->v_mount);
355		}
356	}
357	return rtvals[0];
358}
359
360/*
361 * For nfs, cache consistency can only be maintained approximately.
362 * Although RFC1094 does not specify the criteria, the following is
363 * believed to be compatible with the reference port.
364 * For nfs:
365 * If the file's modify time on the server has changed since the
366 * last read rpc or you have written to the file,
367 * you may have lost data cache consistency with the
368 * server, so flush all of the file's data out of the cache.
369 * Then force a getattr rpc to ensure that you have up to date
370 * attributes.
371 * NB: This implies that cache data can be read when up to
372 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
373 * attributes this could be forced by setting n_attrstamp to 0 before
374 * the VOP_GETATTR() call.
375 */
376static inline int
377nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
378{
379	int error = 0;
380	struct vattr vattr;
381	struct nfsnode *np = VTONFS(vp);
382	int old_lock;
383	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
384
385	/*
386	 * Grab the exclusive lock before checking whether the cache is
387	 * consistent.
388	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
389	 * But for now, this suffices.
390	 */
391	old_lock = nfs_upgrade_vnlock(vp);
392	if (vp->v_iflag & VI_DOOMED) {
393		nfs_downgrade_vnlock(vp, old_lock);
394		return (EBADF);
395	}
396
397	mtx_lock(&np->n_mtx);
398	if (np->n_flag & NMODIFIED) {
399		mtx_unlock(&np->n_mtx);
400		if (vp->v_type != VREG) {
401			if (vp->v_type != VDIR)
402				panic("nfs: bioread, not dir");
403			(nmp->nm_rpcops->nr_invaldir)(vp);
404			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
405			if (error)
406				goto out;
407		}
408		np->n_attrstamp = 0;
409		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
410		error = VOP_GETATTR(vp, &vattr, cred);
411		if (error)
412			goto out;
413		mtx_lock(&np->n_mtx);
414		np->n_mtime = vattr.va_mtime;
415		mtx_unlock(&np->n_mtx);
416	} else {
417		mtx_unlock(&np->n_mtx);
418		error = VOP_GETATTR(vp, &vattr, cred);
419		if (error)
420			return (error);
421		mtx_lock(&np->n_mtx);
422		if ((np->n_flag & NSIZECHANGED)
423		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
424			mtx_unlock(&np->n_mtx);
425			if (vp->v_type == VDIR)
426				(nmp->nm_rpcops->nr_invaldir)(vp);
427			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
428			if (error)
429				goto out;
430			mtx_lock(&np->n_mtx);
431			np->n_mtime = vattr.va_mtime;
432			np->n_flag &= ~NSIZECHANGED;
433		}
434		mtx_unlock(&np->n_mtx);
435	}
436out:
437	nfs_downgrade_vnlock(vp, old_lock);
438	return error;
439}
440
441/*
442 * Vnode op for read using bio
443 */
444int
445nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
446{
447	struct nfsnode *np = VTONFS(vp);
448	int biosize, i;
449	struct buf *bp, *rabp;
450	struct thread *td;
451	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
452	daddr_t lbn, rabn;
453	int bcount;
454	int seqcount;
455	int nra, error = 0, n = 0, on = 0;
456
457#ifdef DIAGNOSTIC
458	if (uio->uio_rw != UIO_READ)
459		panic("nfs_read mode");
460#endif
461	if (uio->uio_resid == 0)
462		return (0);
463	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
464		return (EINVAL);
465	td = uio->uio_td;
466
467	mtx_lock(&nmp->nm_mtx);
468	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
469	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
470		mtx_unlock(&nmp->nm_mtx);
471		(void)nfs_fsinfo(nmp, vp, cred, td);
472	} else
473		mtx_unlock(&nmp->nm_mtx);
474
475	if (vp->v_type != VDIR &&
476	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
477		return (EFBIG);
478
479	if (nfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
480		/* No caching/ no readaheads. Just read data into the user buffer */
481		return nfs_readrpc(vp, uio, cred);
482
483	biosize = vp->v_mount->mnt_stat.f_iosize;
484	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
485
486	error = nfs_bioread_check_cons(vp, td, cred);
487	if (error)
488		return error;
489
490	do {
491	    u_quad_t nsize;
492
493	    mtx_lock(&np->n_mtx);
494	    nsize = np->n_size;
495	    mtx_unlock(&np->n_mtx);
496
497	    switch (vp->v_type) {
498	    case VREG:
499		nfsstats.biocache_reads++;
500		lbn = uio->uio_offset / biosize;
501		on = uio->uio_offset & (biosize - 1);
502
503		/*
504		 * Start the read ahead(s), as required.
505		 */
506		if (nmp->nm_readahead > 0) {
507		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
508			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
509			rabn = lbn + 1 + nra;
510			if (incore(&vp->v_bufobj, rabn) == NULL) {
511			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
512			    if (!rabp) {
513				error = nfs_sigintr(nmp, NULL, td);
514				return (error ? error : EINTR);
515			    }
516			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
517				rabp->b_flags |= B_ASYNC;
518				rabp->b_iocmd = BIO_READ;
519				vfs_busy_pages(rabp, 0);
520				if (nfs_asyncio(nmp, rabp, cred, td)) {
521				    rabp->b_flags |= B_INVAL;
522				    rabp->b_ioflags |= BIO_ERROR;
523				    vfs_unbusy_pages(rabp);
524				    brelse(rabp);
525				    break;
526				}
527			    } else {
528				brelse(rabp);
529			    }
530			}
531		    }
532		}
533
534		/* Note that bcount is *not* DEV_BSIZE aligned. */
535		bcount = biosize;
536		if ((off_t)lbn * biosize >= nsize) {
537			bcount = 0;
538		} else if ((off_t)(lbn + 1) * biosize > nsize) {
539			bcount = nsize - (off_t)lbn * biosize;
540		}
541		bp = nfs_getcacheblk(vp, lbn, bcount, td);
542
543		if (!bp) {
544			error = nfs_sigintr(nmp, NULL, td);
545			return (error ? error : EINTR);
546		}
547
548		/*
549		 * If B_CACHE is not set, we must issue the read.  If this
550		 * fails, we return an error.
551		 */
552
553		if ((bp->b_flags & B_CACHE) == 0) {
554		    bp->b_iocmd = BIO_READ;
555		    vfs_busy_pages(bp, 0);
556		    error = nfs_doio(vp, bp, cred, td);
557		    if (error) {
558			brelse(bp);
559			return (error);
560		    }
561		}
562
563		/*
564		 * on is the offset into the current bp.  Figure out how many
565		 * bytes we can copy out of the bp.  Note that bcount is
566		 * NOT DEV_BSIZE aligned.
567		 *
568		 * Then figure out how many bytes we can copy into the uio.
569		 */
570
571		n = 0;
572		if (on < bcount)
573			n = min((unsigned)(bcount - on), uio->uio_resid);
574		break;
575	    case VLNK:
576		nfsstats.biocache_readlinks++;
577		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
578		if (!bp) {
579			error = nfs_sigintr(nmp, NULL, td);
580			return (error ? error : EINTR);
581		}
582		if ((bp->b_flags & B_CACHE) == 0) {
583		    bp->b_iocmd = BIO_READ;
584		    vfs_busy_pages(bp, 0);
585		    error = nfs_doio(vp, bp, cred, td);
586		    if (error) {
587			bp->b_ioflags |= BIO_ERROR;
588			brelse(bp);
589			return (error);
590		    }
591		}
592		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
593		on = 0;
594		break;
595	    case VDIR:
596		nfsstats.biocache_readdirs++;
597		if (np->n_direofoffset
598		    && uio->uio_offset >= np->n_direofoffset) {
599		    return (0);
600		}
601		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
602		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
603		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
604		if (!bp) {
605		    error = nfs_sigintr(nmp, NULL, td);
606		    return (error ? error : EINTR);
607		}
608		if ((bp->b_flags & B_CACHE) == 0) {
609		    bp->b_iocmd = BIO_READ;
610		    vfs_busy_pages(bp, 0);
611		    error = nfs_doio(vp, bp, cred, td);
612		    if (error) {
613			    brelse(bp);
614		    }
615		    while (error == NFSERR_BAD_COOKIE) {
616			(nmp->nm_rpcops->nr_invaldir)(vp);
617			error = nfs_vinvalbuf(vp, 0, td, 1);
618			/*
619			 * Yuck! The directory has been modified on the
620			 * server. The only way to get the block is by
621			 * reading from the beginning to get all the
622			 * offset cookies.
623			 *
624			 * Leave the last bp intact unless there is an error.
625			 * Loop back up to the while if the error is another
626			 * NFSERR_BAD_COOKIE (double yuch!).
627			 */
628			for (i = 0; i <= lbn && !error; i++) {
629			    if (np->n_direofoffset
630				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
631				    return (0);
632			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
633			    if (!bp) {
634				error = nfs_sigintr(nmp, NULL, td);
635				return (error ? error : EINTR);
636			    }
637			    if ((bp->b_flags & B_CACHE) == 0) {
638				    bp->b_iocmd = BIO_READ;
639				    vfs_busy_pages(bp, 0);
640				    error = nfs_doio(vp, bp, cred, td);
641				    /*
642				     * no error + B_INVAL == directory EOF,
643				     * use the block.
644				     */
645				    if (error == 0 && (bp->b_flags & B_INVAL))
646					    break;
647			    }
648			    /*
649			     * An error will throw away the block and the
650			     * for loop will break out.  If no error and this
651			     * is not the block we want, we throw away the
652			     * block and go for the next one via the for loop.
653			     */
654			    if (error || i < lbn)
655				    brelse(bp);
656			}
657		    }
658		    /*
659		     * The above while is repeated if we hit another cookie
660		     * error.  If we hit an error and it wasn't a cookie error,
661		     * we give up.
662		     */
663		    if (error)
664			    return (error);
665		}
666
667		/*
668		 * If not eof and read aheads are enabled, start one.
669		 * (You need the current block first, so that you have the
670		 *  directory offset cookie of the next block.)
671		 */
672		if (nmp->nm_readahead > 0 &&
673		    (bp->b_flags & B_INVAL) == 0 &&
674		    (np->n_direofoffset == 0 ||
675		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
676		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
677			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
678			if (rabp) {
679			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
680				rabp->b_flags |= B_ASYNC;
681				rabp->b_iocmd = BIO_READ;
682				vfs_busy_pages(rabp, 0);
683				if (nfs_asyncio(nmp, rabp, cred, td)) {
684				    rabp->b_flags |= B_INVAL;
685				    rabp->b_ioflags |= BIO_ERROR;
686				    vfs_unbusy_pages(rabp);
687				    brelse(rabp);
688				}
689			    } else {
690				brelse(rabp);
691			    }
692			}
693		}
694		/*
695		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
696		 * chopped for the EOF condition, we cannot tell how large
697		 * NFS directories are going to be until we hit EOF.  So
698		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
699		 * it just so happens that b_resid will effectively chop it
700		 * to EOF.  *BUT* this information is lost if the buffer goes
701		 * away and is reconstituted into a B_CACHE state ( due to
702		 * being VMIO ) later.  So we keep track of the directory eof
703		 * in np->n_direofoffset and chop it off as an extra step
704		 * right here.
705		 */
706		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
707		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
708			n = np->n_direofoffset - uio->uio_offset;
709		break;
710	    default:
711		nfs_printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
712		bp = NULL;
713		break;
714	    };
715
716	    if (n > 0) {
717		    error = uiomove(bp->b_data + on, (int)n, uio);
718	    }
719	    if (vp->v_type == VLNK)
720		n = 0;
721	    if (bp != NULL)
722		brelse(bp);
723	} while (error == 0 && uio->uio_resid > 0 && n > 0);
724	return (error);
725}
726
727/*
728 * The NFS write path cannot handle iovecs with len > 1. So we need to
729 * break up iovecs accordingly (restricting them to wsize).
730 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
731 * For the ASYNC case, 2 copies are needed. The first a copy from the
732 * user buffer to a staging buffer and then a second copy from the staging
733 * buffer to mbufs. This can be optimized by copying from the user buffer
734 * directly into mbufs and passing the chain down, but that requires a
735 * fair amount of re-working of the relevant codepaths (and can be done
736 * later).
737 */
738static int
739nfs_directio_write(vp, uiop, cred, ioflag)
740	struct vnode *vp;
741	struct uio *uiop;
742	struct ucred *cred;
743	int ioflag;
744{
745	int error;
746	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
747	struct thread *td = uiop->uio_td;
748	int size;
749	int wsize;
750
751	mtx_lock(&nmp->nm_mtx);
752	wsize = nmp->nm_wsize;
753	mtx_unlock(&nmp->nm_mtx);
754	if (ioflag & IO_SYNC) {
755		int iomode, must_commit;
756		struct uio uio;
757		struct iovec iov;
758do_sync:
759		while (uiop->uio_resid > 0) {
760			size = min(uiop->uio_resid, wsize);
761			size = min(uiop->uio_iov->iov_len, size);
762			iov.iov_base = uiop->uio_iov->iov_base;
763			iov.iov_len = size;
764			uio.uio_iov = &iov;
765			uio.uio_iovcnt = 1;
766			uio.uio_offset = uiop->uio_offset;
767			uio.uio_resid = size;
768			uio.uio_segflg = UIO_USERSPACE;
769			uio.uio_rw = UIO_WRITE;
770			uio.uio_td = td;
771			iomode = NFSV3WRITE_FILESYNC;
772			error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred,
773						      &iomode, &must_commit);
774			KASSERT((must_commit == 0),
775				("nfs_directio_write: Did not commit write"));
776			if (error)
777				return (error);
778			uiop->uio_offset += size;
779			uiop->uio_resid -= size;
780			if (uiop->uio_iov->iov_len <= size) {
781				uiop->uio_iovcnt--;
782				uiop->uio_iov++;
783			} else {
784				uiop->uio_iov->iov_base =
785					(char *)uiop->uio_iov->iov_base + size;
786				uiop->uio_iov->iov_len -= size;
787			}
788		}
789	} else {
790		struct uio *t_uio;
791		struct iovec *t_iov;
792		struct buf *bp;
793
794		/*
795		 * Break up the write into blocksize chunks and hand these
796		 * over to nfsiod's for write back.
797		 * Unfortunately, this incurs a copy of the data. Since
798		 * the user could modify the buffer before the write is
799		 * initiated.
800		 *
801		 * The obvious optimization here is that one of the 2 copies
802		 * in the async write path can be eliminated by copying the
803		 * data here directly into mbufs and passing the mbuf chain
804		 * down. But that will require a fair amount of re-working
805		 * of the code and can be done if there's enough interest
806		 * in NFS directio access.
807		 */
808		while (uiop->uio_resid > 0) {
809			size = min(uiop->uio_resid, wsize);
810			size = min(uiop->uio_iov->iov_len, size);
811			bp = getpbuf(&nfs_pbuf_freecnt);
812			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
813			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
814			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
815			t_iov->iov_len = size;
816			t_uio->uio_iov = t_iov;
817			t_uio->uio_iovcnt = 1;
818			t_uio->uio_offset = uiop->uio_offset;
819			t_uio->uio_resid = size;
820			t_uio->uio_segflg = UIO_SYSSPACE;
821			t_uio->uio_rw = UIO_WRITE;
822			t_uio->uio_td = td;
823			bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size);
824			bp->b_flags |= B_DIRECT;
825			bp->b_iocmd = BIO_WRITE;
826			if (cred != NOCRED) {
827				crhold(cred);
828				bp->b_wcred = cred;
829			} else
830				bp->b_wcred = NOCRED;
831			bp->b_caller1 = (void *)t_uio;
832			bp->b_vp = vp;
833			error = nfs_asyncio(nmp, bp, NOCRED, td);
834			if (error) {
835				free(t_iov->iov_base, M_NFSDIRECTIO);
836				free(t_iov, M_NFSDIRECTIO);
837				free(t_uio, M_NFSDIRECTIO);
838				bp->b_vp = NULL;
839				relpbuf(bp, &nfs_pbuf_freecnt);
840				if (error == EINTR)
841					return (error);
842				goto do_sync;
843			}
844			uiop->uio_offset += size;
845			uiop->uio_resid -= size;
846			if (uiop->uio_iov->iov_len <= size) {
847				uiop->uio_iovcnt--;
848				uiop->uio_iov++;
849			} else {
850				uiop->uio_iov->iov_base =
851					(char *)uiop->uio_iov->iov_base + size;
852				uiop->uio_iov->iov_len -= size;
853			}
854		}
855	}
856	return (0);
857}
858
859/*
860 * Vnode op for write using bio
861 */
862int
863nfs_write(struct vop_write_args *ap)
864{
865	int biosize;
866	struct uio *uio = ap->a_uio;
867	struct thread *td = uio->uio_td;
868	struct vnode *vp = ap->a_vp;
869	struct nfsnode *np = VTONFS(vp);
870	struct ucred *cred = ap->a_cred;
871	int ioflag = ap->a_ioflag;
872	struct buf *bp;
873	struct vattr vattr;
874	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
875	daddr_t lbn;
876	int bcount;
877	int n, on, error = 0;
878	struct proc *p = td?td->td_proc:NULL;
879
880#ifdef DIAGNOSTIC
881	if (uio->uio_rw != UIO_WRITE)
882		panic("nfs_write mode");
883	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
884		panic("nfs_write proc");
885#endif
886	if (vp->v_type != VREG)
887		return (EIO);
888	mtx_lock(&np->n_mtx);
889	if (np->n_flag & NWRITEERR) {
890		np->n_flag &= ~NWRITEERR;
891		mtx_unlock(&np->n_mtx);
892		return (np->n_error);
893	} else
894		mtx_unlock(&np->n_mtx);
895	mtx_lock(&nmp->nm_mtx);
896	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
897	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
898		mtx_unlock(&nmp->nm_mtx);
899		(void)nfs_fsinfo(nmp, vp, cred, td);
900	} else
901		mtx_unlock(&nmp->nm_mtx);
902
903	/*
904	 * Synchronously flush pending buffers if we are in synchronous
905	 * mode or if we are appending.
906	 */
907	if (ioflag & (IO_APPEND | IO_SYNC)) {
908		mtx_lock(&np->n_mtx);
909		if (np->n_flag & NMODIFIED) {
910			mtx_unlock(&np->n_mtx);
911#ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
912			/*
913			 * Require non-blocking, synchronous writes to
914			 * dirty files to inform the program it needs
915			 * to fsync(2) explicitly.
916			 */
917			if (ioflag & IO_NDELAY)
918				return (EAGAIN);
919#endif
920flush_and_restart:
921			np->n_attrstamp = 0;
922			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
923			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
924			if (error)
925				return (error);
926		} else
927			mtx_unlock(&np->n_mtx);
928	}
929
930	/*
931	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
932	 * get the append lock.
933	 */
934	if (ioflag & IO_APPEND) {
935		np->n_attrstamp = 0;
936		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
937		error = VOP_GETATTR(vp, &vattr, cred);
938		if (error)
939			return (error);
940		mtx_lock(&np->n_mtx);
941		uio->uio_offset = np->n_size;
942		mtx_unlock(&np->n_mtx);
943	}
944
945	if (uio->uio_offset < 0)
946		return (EINVAL);
947	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
948		return (EFBIG);
949	if (uio->uio_resid == 0)
950		return (0);
951
952	if (nfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
953		return nfs_directio_write(vp, uio, cred, ioflag);
954
955	/*
956	 * Maybe this should be above the vnode op call, but so long as
957	 * file servers have no limits, i don't think it matters
958	 */
959	if (p != NULL) {
960		PROC_LOCK(p);
961		if (uio->uio_offset + uio->uio_resid >
962		    lim_cur(p, RLIMIT_FSIZE)) {
963			psignal(p, SIGXFSZ);
964			PROC_UNLOCK(p);
965			return (EFBIG);
966		}
967		PROC_UNLOCK(p);
968	}
969
970	biosize = vp->v_mount->mnt_stat.f_iosize;
971	/*
972	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
973	 * would exceed the local maximum per-file write commit size when
974	 * combined with those, we must decide whether to flush,
975	 * go synchronous, or return error.  We don't bother checking
976	 * IO_UNIT -- we just make all writes atomic anyway, as there's
977	 * no point optimizing for something that really won't ever happen.
978	 */
979	if (!(ioflag & IO_SYNC)) {
980		int nflag;
981
982		mtx_lock(&np->n_mtx);
983		nflag = np->n_flag;
984		mtx_unlock(&np->n_mtx);
985		int needrestart = 0;
986		if (nmp->nm_wcommitsize < uio->uio_resid) {
987			/*
988			 * If this request could not possibly be completed
989			 * without exceeding the maximum outstanding write
990			 * commit size, see if we can convert it into a
991			 * synchronous write operation.
992			 */
993			if (ioflag & IO_NDELAY)
994				return (EAGAIN);
995			ioflag |= IO_SYNC;
996			if (nflag & NMODIFIED)
997				needrestart = 1;
998		} else if (nflag & NMODIFIED) {
999			int wouldcommit = 0;
1000			BO_LOCK(&vp->v_bufobj);
1001			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
1002				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
1003				    b_bobufs) {
1004					if (bp->b_flags & B_NEEDCOMMIT)
1005						wouldcommit += bp->b_bcount;
1006				}
1007			}
1008			BO_UNLOCK(&vp->v_bufobj);
1009			/*
1010			 * Since we're not operating synchronously and
1011			 * bypassing the buffer cache, we are in a commit
1012			 * and holding all of these buffers whether
1013			 * transmitted or not.  If not limited, this
1014			 * will lead to the buffer cache deadlocking,
1015			 * as no one else can flush our uncommitted buffers.
1016			 */
1017			wouldcommit += uio->uio_resid;
1018			/*
1019			 * If we would initially exceed the maximum
1020			 * outstanding write commit size, flush and restart.
1021			 */
1022			if (wouldcommit > nmp->nm_wcommitsize)
1023				needrestart = 1;
1024		}
1025		if (needrestart)
1026			goto flush_and_restart;
1027	}
1028
1029	do {
1030		nfsstats.biocache_writes++;
1031		lbn = uio->uio_offset / biosize;
1032		on = uio->uio_offset & (biosize-1);
1033		n = min((unsigned)(biosize - on), uio->uio_resid);
1034again:
1035		/*
1036		 * Handle direct append and file extension cases, calculate
1037		 * unaligned buffer size.
1038		 */
1039		mtx_lock(&np->n_mtx);
1040		if (uio->uio_offset == np->n_size && n) {
1041			mtx_unlock(&np->n_mtx);
1042			/*
1043			 * Get the buffer (in its pre-append state to maintain
1044			 * B_CACHE if it was previously set).  Resize the
1045			 * nfsnode after we have locked the buffer to prevent
1046			 * readers from reading garbage.
1047			 */
1048			bcount = on;
1049			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1050
1051			if (bp != NULL) {
1052				long save;
1053
1054				mtx_lock(&np->n_mtx);
1055				np->n_size = uio->uio_offset + n;
1056				np->n_flag |= NMODIFIED;
1057				vnode_pager_setsize(vp, np->n_size);
1058				mtx_unlock(&np->n_mtx);
1059
1060				save = bp->b_flags & B_CACHE;
1061				bcount += n;
1062				allocbuf(bp, bcount);
1063				bp->b_flags |= save;
1064			}
1065		} else {
1066			/*
1067			 * Obtain the locked cache block first, and then
1068			 * adjust the file's size as appropriate.
1069			 */
1070			bcount = on + n;
1071			if ((off_t)lbn * biosize + bcount < np->n_size) {
1072				if ((off_t)(lbn + 1) * biosize < np->n_size)
1073					bcount = biosize;
1074				else
1075					bcount = np->n_size - (off_t)lbn * biosize;
1076			}
1077			mtx_unlock(&np->n_mtx);
1078			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1079			mtx_lock(&np->n_mtx);
1080			if (uio->uio_offset + n > np->n_size) {
1081				np->n_size = uio->uio_offset + n;
1082				np->n_flag |= NMODIFIED;
1083				vnode_pager_setsize(vp, np->n_size);
1084			}
1085			mtx_unlock(&np->n_mtx);
1086		}
1087
1088		if (!bp) {
1089			error = nfs_sigintr(nmp, NULL, td);
1090			if (!error)
1091				error = EINTR;
1092			break;
1093		}
1094
1095		/*
1096		 * Issue a READ if B_CACHE is not set.  In special-append
1097		 * mode, B_CACHE is based on the buffer prior to the write
1098		 * op and is typically set, avoiding the read.  If a read
1099		 * is required in special append mode, the server will
1100		 * probably send us a short-read since we extended the file
1101		 * on our end, resulting in b_resid == 0 and, thusly,
1102		 * B_CACHE getting set.
1103		 *
1104		 * We can also avoid issuing the read if the write covers
1105		 * the entire buffer.  We have to make sure the buffer state
1106		 * is reasonable in this case since we will not be initiating
1107		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1108		 * more information.
1109		 *
1110		 * B_CACHE may also be set due to the buffer being cached
1111		 * normally.
1112		 */
1113
1114		if (on == 0 && n == bcount) {
1115			bp->b_flags |= B_CACHE;
1116			bp->b_flags &= ~B_INVAL;
1117			bp->b_ioflags &= ~BIO_ERROR;
1118		}
1119
1120		if ((bp->b_flags & B_CACHE) == 0) {
1121			bp->b_iocmd = BIO_READ;
1122			vfs_busy_pages(bp, 0);
1123			error = nfs_doio(vp, bp, cred, td);
1124			if (error) {
1125				brelse(bp);
1126				break;
1127			}
1128		}
1129		if (bp->b_wcred == NOCRED)
1130			bp->b_wcred = crhold(cred);
1131		mtx_lock(&np->n_mtx);
1132		np->n_flag |= NMODIFIED;
1133		mtx_unlock(&np->n_mtx);
1134
1135		/*
1136		 * If dirtyend exceeds file size, chop it down.  This should
1137		 * not normally occur but there is an append race where it
1138		 * might occur XXX, so we log it.
1139		 *
1140		 * If the chopping creates a reverse-indexed or degenerate
1141		 * situation with dirtyoff/end, we 0 both of them.
1142		 */
1143
1144		if (bp->b_dirtyend > bcount) {
1145			nfs_printf("NFS append race @%lx:%d\n",
1146			    (long)bp->b_blkno * DEV_BSIZE,
1147			    bp->b_dirtyend - bcount);
1148			bp->b_dirtyend = bcount;
1149		}
1150
1151		if (bp->b_dirtyoff >= bp->b_dirtyend)
1152			bp->b_dirtyoff = bp->b_dirtyend = 0;
1153
1154		/*
1155		 * If the new write will leave a contiguous dirty
1156		 * area, just update the b_dirtyoff and b_dirtyend,
1157		 * otherwise force a write rpc of the old dirty area.
1158		 *
1159		 * While it is possible to merge discontiguous writes due to
1160		 * our having a B_CACHE buffer ( and thus valid read data
1161		 * for the hole), we don't because it could lead to
1162		 * significant cache coherency problems with multiple clients,
1163		 * especially if locking is implemented later on.
1164		 *
1165		 * as an optimization we could theoretically maintain
1166		 * a linked list of discontinuous areas, but we would still
1167		 * have to commit them separately so there isn't much
1168		 * advantage to it except perhaps a bit of asynchronization.
1169		 */
1170
1171		if (bp->b_dirtyend > 0 &&
1172		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1173			if (bwrite(bp) == EINTR) {
1174				error = EINTR;
1175				break;
1176			}
1177			goto again;
1178		}
1179
1180		error = uiomove((char *)bp->b_data + on, n, uio);
1181
1182		/*
1183		 * Since this block is being modified, it must be written
1184		 * again and not just committed.  Since write clustering does
1185		 * not work for the stage 1 data write, only the stage 2
1186		 * commit rpc, we have to clear B_CLUSTEROK as well.
1187		 */
1188		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1189
1190		if (error) {
1191			bp->b_ioflags |= BIO_ERROR;
1192			brelse(bp);
1193			break;
1194		}
1195
1196		/*
1197		 * Only update dirtyoff/dirtyend if not a degenerate
1198		 * condition.
1199		 */
1200		if (n) {
1201			if (bp->b_dirtyend > 0) {
1202				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1203				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1204			} else {
1205				bp->b_dirtyoff = on;
1206				bp->b_dirtyend = on + n;
1207			}
1208			vfs_bio_set_valid(bp, on, n);
1209		}
1210
1211		/*
1212		 * If IO_SYNC do bwrite().
1213		 *
1214		 * IO_INVAL appears to be unused.  The idea appears to be
1215		 * to turn off caching in this case.  Very odd.  XXX
1216		 */
1217		if ((ioflag & IO_SYNC)) {
1218			if (ioflag & IO_INVAL)
1219				bp->b_flags |= B_NOCACHE;
1220			error = bwrite(bp);
1221			if (error)
1222				break;
1223		} else if ((n + on) == biosize) {
1224			bp->b_flags |= B_ASYNC;
1225			(void) (nmp->nm_rpcops->nr_writebp)(bp, 0, NULL);
1226		} else {
1227			bdwrite(bp);
1228		}
1229	} while (uio->uio_resid > 0 && n > 0);
1230
1231	return (error);
1232}
1233
1234/*
1235 * Get an nfs cache block.
1236 *
1237 * Allocate a new one if the block isn't currently in the cache
1238 * and return the block marked busy. If the calling process is
1239 * interrupted by a signal for an interruptible mount point, return
1240 * NULL.
1241 *
1242 * The caller must carefully deal with the possible B_INVAL state of
1243 * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1244 * indirectly), so synchronous reads can be issued without worrying about
1245 * the B_INVAL state.  We have to be a little more careful when dealing
1246 * with writes (see comments in nfs_write()) when extending a file past
1247 * its EOF.
1248 */
1249static struct buf *
1250nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1251{
1252	struct buf *bp;
1253	struct mount *mp;
1254	struct nfsmount *nmp;
1255
1256	mp = vp->v_mount;
1257	nmp = VFSTONFS(mp);
1258
1259	if (nmp->nm_flag & NFSMNT_INT) {
1260 		sigset_t oldset;
1261
1262 		nfs_set_sigmask(td, &oldset);
1263		bp = getblk(vp, bn, size, PCATCH, 0, 0);
1264 		nfs_restore_sigmask(td, &oldset);
1265		while (bp == NULL) {
1266			if (nfs_sigintr(nmp, NULL, td))
1267				return (NULL);
1268			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1269		}
1270	} else {
1271		bp = getblk(vp, bn, size, 0, 0, 0);
1272	}
1273
1274	if (vp->v_type == VREG) {
1275		int biosize;
1276
1277		biosize = mp->mnt_stat.f_iosize;
1278		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1279	}
1280	return (bp);
1281}
1282
1283/*
1284 * Flush and invalidate all dirty buffers. If another process is already
1285 * doing the flush, just wait for completion.
1286 */
1287int
1288nfs_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1289{
1290	struct nfsnode *np = VTONFS(vp);
1291	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1292	int error = 0, slpflag, slptimeo;
1293 	int old_lock = 0;
1294
1295	ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
1296
1297	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1298		intrflg = 0;
1299	if (intrflg) {
1300		slpflag = PCATCH;
1301		slptimeo = 2 * hz;
1302	} else {
1303		slpflag = 0;
1304		slptimeo = 0;
1305	}
1306
1307	old_lock = nfs_upgrade_vnlock(vp);
1308	if (vp->v_iflag & VI_DOOMED) {
1309		/*
1310		 * Since vgonel() uses the generic vinvalbuf() to flush
1311		 * dirty buffers and it does not call this function, it
1312		 * is safe to just return OK when VI_DOOMED is set.
1313		 */
1314		nfs_downgrade_vnlock(vp, old_lock);
1315		return (0);
1316	}
1317
1318	/*
1319	 * Now, flush as required.
1320	 */
1321	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1322		VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
1323		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1324		VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
1325		/*
1326		 * If the page clean was interrupted, fail the invalidation.
1327		 * Not doing so, we run the risk of losing dirty pages in the
1328		 * vinvalbuf() call below.
1329		 */
1330		if (intrflg && (error = nfs_sigintr(nmp, NULL, td)))
1331			goto out;
1332	}
1333
1334	error = vinvalbuf(vp, flags, slpflag, 0);
1335	while (error) {
1336		if (intrflg && (error = nfs_sigintr(nmp, NULL, td)))
1337			goto out;
1338		error = vinvalbuf(vp, flags, 0, slptimeo);
1339	}
1340	mtx_lock(&np->n_mtx);
1341	if (np->n_directio_asyncwr == 0)
1342		np->n_flag &= ~NMODIFIED;
1343	mtx_unlock(&np->n_mtx);
1344out:
1345	nfs_downgrade_vnlock(vp, old_lock);
1346	return error;
1347}
1348
1349/*
1350 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1351 * This is mainly to avoid queueing async I/O requests when the nfsiods
1352 * are all hung on a dead server.
1353 *
1354 * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1355 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1356 */
1357int
1358nfs_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1359{
1360	int iod;
1361	int gotiod;
1362	int slpflag = 0;
1363	int slptimeo = 0;
1364	int error, error2;
1365
1366	/*
1367	 * Commits are usually short and sweet so lets save some cpu and
1368	 * leave the async daemons for more important rpc's (such as reads
1369	 * and writes).
1370	 */
1371	mtx_lock(&nfs_iod_mtx);
1372	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1373	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1374		mtx_unlock(&nfs_iod_mtx);
1375		return(EIO);
1376	}
1377again:
1378	if (nmp->nm_flag & NFSMNT_INT)
1379		slpflag = PCATCH;
1380	gotiod = FALSE;
1381
1382	/*
1383	 * Find a free iod to process this request.
1384	 */
1385	for (iod = 0; iod < nfs_numasync; iod++)
1386		if (nfs_iodwant[iod]) {
1387			gotiod = TRUE;
1388			break;
1389		}
1390
1391	/*
1392	 * Try to create one if none are free.
1393	 */
1394	if (!gotiod) {
1395		iod = nfs_nfsiodnew();
1396		if (iod != -1)
1397			gotiod = TRUE;
1398	}
1399
1400	if (gotiod) {
1401		/*
1402		 * Found one, so wake it up and tell it which
1403		 * mount to process.
1404		 */
1405		NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
1406		    iod, nmp));
1407		nfs_iodwant[iod] = NULL;
1408		nfs_iodmount[iod] = nmp;
1409		nmp->nm_bufqiods++;
1410		wakeup(&nfs_iodwant[iod]);
1411	}
1412
1413	/*
1414	 * If none are free, we may already have an iod working on this mount
1415	 * point.  If so, it will process our request.
1416	 */
1417	if (!gotiod) {
1418		if (nmp->nm_bufqiods > 0) {
1419			NFS_DPF(ASYNCIO,
1420				("nfs_asyncio: %d iods are already processing mount %p\n",
1421				 nmp->nm_bufqiods, nmp));
1422			gotiod = TRUE;
1423		}
1424	}
1425
1426	/*
1427	 * If we have an iod which can process the request, then queue
1428	 * the buffer.
1429	 */
1430	if (gotiod) {
1431		/*
1432		 * Ensure that the queue never grows too large.  We still want
1433		 * to asynchronize so we block rather then return EIO.
1434		 */
1435		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1436			NFS_DPF(ASYNCIO,
1437				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1438			nmp->nm_bufqwant = TRUE;
1439 			error = nfs_msleep(td, &nmp->nm_bufq, &nfs_iod_mtx,
1440					   slpflag | PRIBIO,
1441 					   "nfsaio", slptimeo);
1442			if (error) {
1443				error2 = nfs_sigintr(nmp, NULL, td);
1444				if (error2) {
1445					mtx_unlock(&nfs_iod_mtx);
1446					return (error2);
1447				}
1448				if (slpflag == PCATCH) {
1449					slpflag = 0;
1450					slptimeo = 2 * hz;
1451				}
1452			}
1453			/*
1454			 * We might have lost our iod while sleeping,
1455			 * so check and loop if nescessary.
1456			 */
1457			if (nmp->nm_bufqiods == 0) {
1458				NFS_DPF(ASYNCIO,
1459					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1460				goto again;
1461			}
1462		}
1463
1464		/* We might have lost our nfsiod */
1465		if (nmp->nm_bufqiods == 0) {
1466			NFS_DPF(ASYNCIO,
1467				("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1468			goto again;
1469		}
1470
1471		if (bp->b_iocmd == BIO_READ) {
1472			if (bp->b_rcred == NOCRED && cred != NOCRED)
1473				bp->b_rcred = crhold(cred);
1474		} else {
1475			if (bp->b_wcred == NOCRED && cred != NOCRED)
1476				bp->b_wcred = crhold(cred);
1477		}
1478
1479		if (bp->b_flags & B_REMFREE)
1480			bremfreef(bp);
1481		BUF_KERNPROC(bp);
1482		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1483		nmp->nm_bufqlen++;
1484		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1485			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1486			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1487			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1488			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1489		}
1490		mtx_unlock(&nfs_iod_mtx);
1491		return (0);
1492	}
1493
1494	mtx_unlock(&nfs_iod_mtx);
1495
1496	/*
1497	 * All the iods are busy on other mounts, so return EIO to
1498	 * force the caller to process the i/o synchronously.
1499	 */
1500	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1501	return (EIO);
1502}
1503
1504void
1505nfs_doio_directwrite(struct buf *bp)
1506{
1507	int iomode, must_commit;
1508	struct uio *uiop = (struct uio *)bp->b_caller1;
1509	char *iov_base = uiop->uio_iov->iov_base;
1510	struct nfsmount *nmp = VFSTONFS(bp->b_vp->v_mount);
1511
1512	iomode = NFSV3WRITE_FILESYNC;
1513	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1514	(nmp->nm_rpcops->nr_writerpc)(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit);
1515	KASSERT((must_commit == 0), ("nfs_doio_directwrite: Did not commit write"));
1516	free(iov_base, M_NFSDIRECTIO);
1517	free(uiop->uio_iov, M_NFSDIRECTIO);
1518	free(uiop, M_NFSDIRECTIO);
1519	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1520		struct nfsnode *np = VTONFS(bp->b_vp);
1521		mtx_lock(&np->n_mtx);
1522		np->n_directio_asyncwr--;
1523		if (np->n_directio_asyncwr == 0) {
1524			VTONFS(bp->b_vp)->n_flag &= ~NMODIFIED;
1525			if ((np->n_flag & NFSYNCWAIT)) {
1526				np->n_flag &= ~NFSYNCWAIT;
1527				wakeup((caddr_t)&np->n_directio_asyncwr);
1528			}
1529		}
1530		mtx_unlock(&np->n_mtx);
1531	}
1532	bp->b_vp = NULL;
1533	relpbuf(bp, &nfs_pbuf_freecnt);
1534}
1535
1536/*
1537 * Do an I/O operation to/from a cache block. This may be called
1538 * synchronously or from an nfsiod.
1539 */
1540int
1541nfs_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td)
1542{
1543	struct uio *uiop;
1544	struct nfsnode *np;
1545	struct nfsmount *nmp;
1546	int error = 0, iomode, must_commit = 0;
1547	struct uio uio;
1548	struct iovec io;
1549	struct proc *p = td ? td->td_proc : NULL;
1550	uint8_t	iocmd;
1551
1552	np = VTONFS(vp);
1553	nmp = VFSTONFS(vp->v_mount);
1554	uiop = &uio;
1555	uiop->uio_iov = &io;
1556	uiop->uio_iovcnt = 1;
1557	uiop->uio_segflg = UIO_SYSSPACE;
1558	uiop->uio_td = td;
1559
1560	/*
1561	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1562	 * do this here so we do not have to do it in all the code that
1563	 * calls us.
1564	 */
1565	bp->b_flags &= ~B_INVAL;
1566	bp->b_ioflags &= ~BIO_ERROR;
1567
1568	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1569	iocmd = bp->b_iocmd;
1570	if (iocmd == BIO_READ) {
1571	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1572	    io.iov_base = bp->b_data;
1573	    uiop->uio_rw = UIO_READ;
1574
1575	    switch (vp->v_type) {
1576	    case VREG:
1577		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1578		nfsstats.read_bios++;
1579		error = (nmp->nm_rpcops->nr_readrpc)(vp, uiop, cr);
1580
1581		if (!error) {
1582		    if (uiop->uio_resid) {
1583			/*
1584			 * If we had a short read with no error, we must have
1585			 * hit a file hole.  We should zero-fill the remainder.
1586			 * This can also occur if the server hits the file EOF.
1587			 *
1588			 * Holes used to be able to occur due to pending
1589			 * writes, but that is not possible any longer.
1590			 */
1591			int nread = bp->b_bcount - uiop->uio_resid;
1592			int left  = uiop->uio_resid;
1593
1594			if (left > 0)
1595				bzero((char *)bp->b_data + nread, left);
1596			uiop->uio_resid = 0;
1597		    }
1598		}
1599		/* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
1600		if (p && (vp->v_vflag & VV_TEXT)) {
1601			mtx_lock(&np->n_mtx);
1602			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.va_mtime)) {
1603				mtx_unlock(&np->n_mtx);
1604				PROC_LOCK(p);
1605				killproc(p, "text file modification");
1606				PROC_UNLOCK(p);
1607			} else
1608				mtx_unlock(&np->n_mtx);
1609		}
1610		break;
1611	    case VLNK:
1612		uiop->uio_offset = (off_t)0;
1613		nfsstats.readlink_bios++;
1614		error = (nmp->nm_rpcops->nr_readlinkrpc)(vp, uiop, cr);
1615		break;
1616	    case VDIR:
1617		nfsstats.readdir_bios++;
1618		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1619		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1620			error = nfs_readdirplusrpc(vp, uiop, cr);
1621			if (error == NFSERR_NOTSUPP)
1622				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1623		}
1624		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1625			error = nfs_readdirrpc(vp, uiop, cr);
1626		/*
1627		 * end-of-directory sets B_INVAL but does not generate an
1628		 * error.
1629		 */
1630		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1631			bp->b_flags |= B_INVAL;
1632		break;
1633	    default:
1634		nfs_printf("nfs_doio:  type %x unexpected\n", vp->v_type);
1635		break;
1636	    };
1637	    if (error) {
1638		bp->b_ioflags |= BIO_ERROR;
1639		bp->b_error = error;
1640	    }
1641	} else {
1642	    /*
1643	     * If we only need to commit, try to commit
1644	     */
1645	    if (bp->b_flags & B_NEEDCOMMIT) {
1646		    int retv;
1647		    off_t off;
1648
1649		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1650		    retv = (nmp->nm_rpcops->nr_commit)(
1651				vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1652				bp->b_wcred, td);
1653		    if (retv == 0) {
1654			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1655			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1656			    bp->b_resid = 0;
1657			    bufdone(bp);
1658			    return (0);
1659		    }
1660		    if (retv == NFSERR_STALEWRITEVERF) {
1661			    nfs_clearcommit(vp->v_mount);
1662		    }
1663	    }
1664
1665	    /*
1666	     * Setup for actual write
1667	     */
1668	    mtx_lock(&np->n_mtx);
1669	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1670		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1671	    mtx_unlock(&np->n_mtx);
1672
1673	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1674		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1675		    - bp->b_dirtyoff;
1676		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1677		    + bp->b_dirtyoff;
1678		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1679		uiop->uio_rw = UIO_WRITE;
1680		nfsstats.write_bios++;
1681
1682		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1683		    iomode = NFSV3WRITE_UNSTABLE;
1684		else
1685		    iomode = NFSV3WRITE_FILESYNC;
1686
1687		error = (nmp->nm_rpcops->nr_writerpc)(vp, uiop, cr, &iomode, &must_commit);
1688
1689		/*
1690		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1691		 * to cluster the buffers needing commit.  This will allow
1692		 * the system to submit a single commit rpc for the whole
1693		 * cluster.  We can do this even if the buffer is not 100%
1694		 * dirty (relative to the NFS blocksize), so we optimize the
1695		 * append-to-file-case.
1696		 *
1697		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1698		 * cleared because write clustering only works for commit
1699		 * rpc's, not for the data portion of the write).
1700		 */
1701
1702		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1703		    bp->b_flags |= B_NEEDCOMMIT;
1704		    if (bp->b_dirtyoff == 0
1705			&& bp->b_dirtyend == bp->b_bcount)
1706			bp->b_flags |= B_CLUSTEROK;
1707		} else {
1708		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1709		}
1710
1711		/*
1712		 * For an interrupted write, the buffer is still valid
1713		 * and the write hasn't been pushed to the server yet,
1714		 * so we can't set BIO_ERROR and report the interruption
1715		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1716		 * is not relevant, so the rpc attempt is essentially
1717		 * a noop.  For the case of a V3 write rpc not being
1718		 * committed to stable storage, the block is still
1719		 * dirty and requires either a commit rpc or another
1720		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1721		 * the block is reused. This is indicated by setting
1722		 * the B_DELWRI and B_NEEDCOMMIT flags.
1723		 *
1724		 * If the buffer is marked B_PAGING, it does not reside on
1725		 * the vp's paging queues so we cannot call bdirty().  The
1726		 * bp in this case is not an NFS cache block so we should
1727		 * be safe. XXX
1728		 *
1729		 * The logic below breaks up errors into recoverable and
1730		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1731		 * and keep the buffer around for potential write retries.
1732		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1733		 * and save the error in the nfsnode. This is less than ideal
1734		 * but necessary. Keeping such buffers around could potentially
1735		 * cause buffer exhaustion eventually (they can never be written
1736		 * out, so will get constantly be re-dirtied). It also causes
1737		 * all sorts of vfs panics. For non-recoverable write errors,
1738		 * also invalidate the attrcache, so we'll be forced to go over
1739		 * the wire for this object, returning an error to user on next
1740		 * call (most of the time).
1741		 */
1742    		if (error == EINTR || error == EIO || error == ETIMEDOUT
1743		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1744			int s;
1745
1746			s = splbio();
1747			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1748			if ((bp->b_flags & B_PAGING) == 0) {
1749			    bdirty(bp);
1750			    bp->b_flags &= ~B_DONE;
1751			}
1752			if (error && (bp->b_flags & B_ASYNC) == 0)
1753			    bp->b_flags |= B_EINTR;
1754			splx(s);
1755	    	} else {
1756		    if (error) {
1757			bp->b_ioflags |= BIO_ERROR;
1758			bp->b_flags |= B_INVAL;
1759			bp->b_error = np->n_error = error;
1760			mtx_lock(&np->n_mtx);
1761			np->n_flag |= NWRITEERR;
1762			np->n_attrstamp = 0;
1763			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1764			mtx_unlock(&np->n_mtx);
1765		    }
1766		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1767		}
1768	    } else {
1769		bp->b_resid = 0;
1770		bufdone(bp);
1771		return (0);
1772	    }
1773	}
1774	bp->b_resid = uiop->uio_resid;
1775	if (must_commit)
1776	    nfs_clearcommit(vp->v_mount);
1777	bufdone(bp);
1778	return (error);
1779}
1780
1781/*
1782 * Used to aid in handling ftruncate() operations on the NFS client side.
1783 * Truncation creates a number of special problems for NFS.  We have to
1784 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1785 * we have to properly handle VM pages or (potentially dirty) buffers
1786 * that straddle the truncation point.
1787 */
1788
1789int
1790nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1791{
1792	struct nfsnode *np = VTONFS(vp);
1793	u_quad_t tsize;
1794	int biosize = vp->v_mount->mnt_stat.f_iosize;
1795	int error = 0;
1796
1797	mtx_lock(&np->n_mtx);
1798	tsize = np->n_size;
1799	np->n_size = nsize;
1800	mtx_unlock(&np->n_mtx);
1801
1802	if (nsize < tsize) {
1803		struct buf *bp;
1804		daddr_t lbn;
1805		int bufsize;
1806
1807		/*
1808		 * vtruncbuf() doesn't get the buffer overlapping the
1809		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1810		 * buffer that now needs to be truncated.
1811		 */
1812		error = vtruncbuf(vp, cred, td, nsize, biosize);
1813		lbn = nsize / biosize;
1814		bufsize = nsize & (biosize - 1);
1815		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1816 		if (!bp)
1817 			return EINTR;
1818		if (bp->b_dirtyoff > bp->b_bcount)
1819			bp->b_dirtyoff = bp->b_bcount;
1820		if (bp->b_dirtyend > bp->b_bcount)
1821			bp->b_dirtyend = bp->b_bcount;
1822		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1823		brelse(bp);
1824	} else {
1825		vnode_pager_setsize(vp, nsize);
1826	}
1827	return(error);
1828}
1829
1830